1
|
Yan L, Er T, Sun S, Deng Y, Wan Z, Zhao J, Wang A, Liu B, Wang Q, Sui L, Ma H. Distinct astrocyte activation patterns associated with neuroinflammation induced by gamma and proton beam irradiation. Sci Rep 2025; 15:11481. [PMID: 40181058 PMCID: PMC11968924 DOI: 10.1038/s41598-025-94812-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/17/2025] [Indexed: 04/05/2025] Open
Abstract
The aim of this study was to investigate the impact of radiation exposure on astrocyte response and assess their potential roles and mechanisms in surrounding neural cells. Healthy male rats were irradiated different radiation types to induce the neural inflammation. U87-MG cells were exposed respectively to gamma rays (2 Gy and 10 Gy) and proton irradiation (0.1 Gy and 0.5 Gy). Cell viability, mRNA expression, mitochondrial membrane potential, glucose uptake and cytokine levels were analyzed respectively to evaluate the neuroinflammation or neural damage. Gamma rays and proton beam irradiation induced distinct patterns of inflammatory factor expression in the hippocampal region of rats. Moreover, we observed changes in cell morphology and a dose-dependent inhibition of cell proliferation across all radiation types. Significant upregulation of caspase-8 and caspase-3 enzymatic activities in U87-MG cells was observed after exposure to gamma rays. Astrocytes showed increased expression of GFAP, C3, and PTX3 after exposure to gamma rays, and downregulation while exposure to proton. Additionally, proton beam irradiation potentially increased glutamine synthesis in astrocytes. Furthermore, we investigated the influence of irradiated astrocytes on neurons via mitochondrial integrity, neurotransmitter levels, and glucose metabolism. Additionally, the expression of miR92a-3p, which can significantly downregulate GFAP and IL-6 expression, was downregulated by gamma rays, while upregulated by proton irradiation. The findings highlight the differential impact of gamma rays and proton radiation on inflammatory responses in vivo, with gamma rays inducing a pro-inflammatory effect and proton radiation exerting anti-inflammatory properties. Overall, this study provides valuable insights for radiotherapy management.
Collapse
Affiliation(s)
- Liben Yan
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Tianyi Er
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Shaoqian Sun
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhirong Wan
- Department of Neurology, Aerospace Center Hospital, Beijing, China
| | - Jing Zhao
- Department of Neurology, Aerospace Center Hospital, Beijing, China
| | - Ailu Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Beiqin Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiaojuan Wang
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, 100081, China
| | - Li Sui
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing, 100081, China.
| | - Hong Ma
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
2
|
Patra S, Roy PK, Dey A, Mandal M. Impact of HMGB1 on cancer development and therapeutic insights focused on CNS malignancy. Biochim Biophys Acta Rev Cancer 2024; 1879:189105. [PMID: 38701938 DOI: 10.1016/j.bbcan.2024.189105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
The present study explores the complex roles of High Mobility Group Box 1 (HMGB1) in the context of cancer development, emphasizing glioblastoma (GBM) and other central nervous system (CNS) cancers. HMGB1, primarily known for its involvement in inflammation and angiogenesis, emerges as a multifaceted player in the tumorigenesis of GBM. The overexpression of HMGB1 correlates with glioma malignancy, influencing key pathways like RAGE/MEK/ERK and RAGE/Rac1. Additionally, HMGB1 secretion is linked to the maintenance of glioma stem cells (GSCs) and contributes to the tumor microenvironment's (TME) vascular leakiness. Henceforth, our review discusses the bidirectional impact of HMGB1, acting as both a promoter of tumor progression and a mediator of anti-tumor immune responses. Notably, HMGB1 exhibits tumor-suppressive roles by inducing apoptosis, limiting cellular proliferation, and enhancing the sensitivity of GBM to therapeutic interventions. This dualistic nature of HMGB1 calls for a nuanced understanding of its implications in GBM pathogenesis, offering potential avenues for more effective and personalized treatment strategies. The findings underscore the need to explore HMGB1 as a prognostic marker, therapeutic target, and a promising tool for stimulating anti-tumor immunity in GBM.
Collapse
Affiliation(s)
- Sucharita Patra
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India.
| | - Pritam Kumar Roy
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India.
| | - Ankita Dey
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India.
| | - Mahitosh Mandal
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, India.
| |
Collapse
|
3
|
Zhou H, Wang YX, Wu M, Lan X, Xiang D, Cai R, Ma Q, Miao J, Fang X, Wang J, Luo D, He Z, Cui Y, Liang P, Wang Y, Bian XW. FANCD2 deficiency sensitizes SHH medulloblastoma to radiotherapy via ferroptosis. J Pathol 2024; 262:427-440. [PMID: 38229567 DOI: 10.1002/path.6245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
Radiotherapy is one of the standard therapeutic regimens for medulloblastoma (MB). Tumor cells utilize DNA damage repair (DDR) mechanisms to survive and develop resistance during radiotherapy. It has been found that targeting DDR sensitizes tumor cells to radiotherapy in several types of cancer, but whether and how DDR pathways are involved in the MB radiotherapy response remain to be determined. Single-cell RNA sequencing was carried out on 38 MB tissues, followed by expression enrichment assays. Fanconi anemia group D2 gene (FANCD2) expression was evaluated in MB samples and public MB databases. The function of FANCD2 in MB cells was examined using cell counting assays (CCK-8), clone formation, lactate dehydrogenase activity, and in mouse orthotopic models. The FANCD2-related signaling pathway was investigated using assays of peroxidation, a malondialdehyde assay, a reduced glutathione assay, and using FerroOrange to assess intracellular iron ions (Fe2+ ). Here, we report that FANCD2 was highly expressed in the malignant sonic hedgehog (SHH) MB subtype (SHH-MB). FANCD2 played an oncogenic role and predicted worse prognosis in SHH-MB patients. Moreover, FANCD2 knockdown markedly suppressed viability, mobility, and growth of SHH-MB cells and sensitized SHH-MB cells to irradiation. Mechanistically, FANCD2 deficiency led to an accumulation of Fe2+ due to increased divalent metal transporter 1 expression and impaired glutathione peroxidase 4 activity, which further activated ferroptosis and reduced proliferation of SHH-MB cells. Using an orthotopic mouse model, we observed that radiotherapy combined with silencing FANCD2 significantly inhibited the growth of SHH-MB cell-derived tumors in vivo. Our study revealed FANCD2 as a potential therapeutic target in SHH-MB and silencing FANCD2 could sensitize SHH-MB cells to radiotherapy via inducing ferroptosis. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Hong Zhou
- School of Medicine, Chongqing University, Chongqing, PR China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Yan-Xia Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Min Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, PR China
| | - Xi Lan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Dongfang Xiang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Ruili Cai
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Qinghua Ma
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Jingya Miao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Xuanyu Fang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Junjie Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Dan Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Zhicheng He
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Youhong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
| | - Ping Liang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
- Jinfeng Laboratory, Institute of Advanced Pathology, Chongqing, PR China
| | - Xiu-Wu Bian
- School of Medicine, Chongqing University, Chongqing, PR China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Chongqing, PR China
- Jinfeng Laboratory, Institute of Advanced Pathology, Chongqing, PR China
| |
Collapse
|
4
|
Chaturvedi G, Sarusi-Portuguez A, Loza O, Shimoni-Sebag A, Yoron O, Lawrence YR, Zach L, Hakim O. Dose-Dependent Transcriptional Response to Ionizing Radiation Is Orchestrated with DNA Repair within the Nuclear Space. Int J Mol Sci 2024; 25:970. [PMID: 38256047 PMCID: PMC10815587 DOI: 10.3390/ijms25020970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Radiation therapy is commonly used to treat glioblastoma multiforme (GBM) brain tumors. Ionizing radiation (IR) induces dose-specific variations in transcriptional programs, implicating that they are tightly regulated and critical components in the tumor response and survival. Yet, our understanding of the downstream molecular events triggered by effective vs. non-effective IR doses is limited. Herein, we report that variations in the genetic programs are positively and functionally correlated with the exposure to effective or non-effective IR doses. Genome architecture analysis revealed that gene regulation is spatially and temporally coordinated with DNA repair kinetics. The radiation-activated genes were pre-positioned in active sub-nuclear compartments and were upregulated following the DNA damage response, while the DNA repair activity shifted to the inactive heterochromatic spatial compartments. The IR dose affected the levels of DNA damage repair and transcription modulation, but not the order of the events, which was linked to their spatial nuclear positioning. Thus, the distinct coordinated temporal dynamics of DNA damage repair and transcription reprogramming in the active and inactive sub-nuclear compartments highlight the importance of high-order genome organization in synchronizing the molecular events following IR.
Collapse
Affiliation(s)
- Garima Chaturvedi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat Gan 5290002, Israel; (A.S.-P.)
| | - Avital Sarusi-Portuguez
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat Gan 5290002, Israel; (A.S.-P.)
| | - Olga Loza
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat Gan 5290002, Israel; (A.S.-P.)
| | - Ariel Shimoni-Sebag
- Institute of Oncology, Sheba Medical Center, Ramat Gan 5262000, Israel; (A.S.-S.)
| | - Orly Yoron
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat Gan 5290002, Israel; (A.S.-P.)
| | | | - Leor Zach
- Institute of Oncology, Tel Aviv Soraski Medical Center, Tel Aviv 6423906, Israel
| | - Ofir Hakim
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Ramat Gan 5290002, Israel; (A.S.-P.)
| |
Collapse
|
5
|
Identification of Novel Regulators of Radiosensitivity Using High-Throughput Genetic Screening. Int J Mol Sci 2022; 23:ijms23158774. [PMID: 35955908 PMCID: PMC9369104 DOI: 10.3390/ijms23158774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The biological impact of ionizing radiation (IR) on humans depends not only on the physical properties and absorbed dose of radiation but also on the unique susceptibility of the exposed individual. A critical target of IR is DNA, and the DNA damage response is a safeguard mechanism for maintaining genomic integrity in response to the induced cellular stress. Unrepaired DNA lesions lead to various mutations, contributing to adverse health effects. Cellular sensitivity to IR is highly correlated with the ability of cells to repair DNA lesions, in particular coding sequences of genes that affect that process and of others that contribute to preserving genomic integrity. However, accurate profiling of the molecular events underlying individual sensitivity requires techniques with sensitive readouts. Here we summarize recent studies that have used whole-genome analysis and identified genes that impact individual radiosensitivity. Whereas microarray and RNA-seq provide a snapshot of the transcriptome, RNA interference (RNAi) and CRISPR-Cas9 techniques are powerful tools that enable modulation of gene expression and characterizing the function of specific genes involved in radiosensitivity or radioresistance. Notably, CRISPR-Cas9 has altered the landscape of genome-editing technology with its increased readiness, precision, and sensitivity. Identifying critical regulators of cellular radiosensitivity would help tailor regimens that enhance the efficacy of therapeutic treatments and fast-track prediction of clinical outcomes. It would also contribute to occupational protection based on average individual sensitivity, as well as the formulation of countermeasures to the harmful effects of radiation.
Collapse
|
6
|
Bhawe K, Das JK, Yoo C, Felty Q, Gong Z, Deoraj A, Liuzzi JP, Ehtesham NZ, Hasnain SE, Singh VP, Mohapatra I, Komotar RJ, Roy D. Nuclear respiratory factor 1 transcriptomic signatures as prognostic indicators of recurring aggressive mesenchymal glioblastoma and resistance to therapy in White American females. J Cancer Res Clin Oncol 2022; 148:1641-1682. [PMID: 35441887 DOI: 10.1007/s00432-022-03987-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE The mechanisms contributing to recurrence of glioblastoma (GBM), an aggressive neuroepithelial brain tumor, remain unknown. We have recently shown that nuclear respiratory factor 1 (NRF1) is an oncogenic transcription factor and its transcriptional activity is associated with the progression and prognosis of GBM. Herein, we extend our efforts to (1) identify influential NRF1-driven gene and microRNA (miRNA) expression for the aggressiveness of mesenchymal GBM; and (2) understand the molecular basis for its poor response to therapy. METHODS Clinical data and RNA-Seq from four independent GBM cohorts were analyzed by Bayesian Network Inference with Java Objects (BANJO) and Markov chain Monte Carlo (MCMC)-based gene order to identify molecular drivers of mesenchymal GBM as well as prognostic indicators of poor response to radiation and chemotherapy. RESULTS We are the first to report sex-specific NRF1 motif enriched gene signatures showing increased susceptibility to GBM. Risk estimates for GBM were increased by greater than 100-fold with the joint effect of NRF1-driven gene signatures-CDK4, DUSP6, MSH2, NRF1, and PARK7 in female GBM patients and CDK4, CASP2, H6PD, and NRF1 in male GBM patients. NRF1-driven causal Bayesian network genes were predictive of poor survival and resistance to chemoradiation in IDH1 wild-type mesenchymal GBM patients. NRF1-regulatable miRNAs were also associated with poor response to chemoradiation therapy in female IDH1 wild-type mesenchymal GBM. Stable overexpression of NRF1 reprogramed human astrocytes into neural stem cell-like cells expressing SOX2 and nestin. These cells differentiated into neurons and form tumorospheroids. CONCLUSIONS In summary, our novel discovery shows that NRF1-driven causal genes and miRNAs involved in cancer cell stemness and mesenchymal features contribute to cancer aggressiveness and recurrence of aggressive therapy-resistant glioblastoma.
Collapse
Affiliation(s)
- Kaumudi Bhawe
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Jayanta K Das
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Changwon Yoo
- Department of Biostatistics, Florida International University, Miami, FL, 33199, USA
| | - Quentin Felty
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Zhenghua Gong
- Department of Biostatistics, Florida International University, Miami, FL, 33199, USA
| | - Alok Deoraj
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Juan P Liuzzi
- Department of Dietetics and Nutrition, Florida International University, Miami, FL, 33199, USA
| | - Nasreen Z Ehtesham
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Seyed E Hasnain
- Delhi (IIT-D), Indian Institute of Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Varindera Paul Singh
- Institute of Neuroscience, Medanta-The Medicity, Gurugram, Haryana, 12200, India
| | - Ishani Mohapatra
- Institute of Neuroscience, Medanta-The Medicity, Gurugram, Haryana, 12200, India
| | - Ricardo Jorge Komotar
- Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, USA
| | - Deodutta Roy
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
7
|
Haehnel S, Rade M, Kaiser N, Reiche K, Horn A, Loeffler D, Blumert C, Rapp F, Horn F, Meixensberger J, Renner C, Mueller W, Gaunitz F, Bechmann I, Winter K. RNA sequencing of glioblastoma tissue slice cultures reveals the effects of treatment at the transcriptional level. FEBS Open Bio 2021; 12:480-493. [PMID: 34923780 PMCID: PMC8804611 DOI: 10.1002/2211-5463.13353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/22/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
One of the major challenges in cancer research is finding models that closely resemble tumors within patients. Human tissue slice cultures are a promising approach to provide a model of the patient's tumor biology ex vivo. Recently, it was shown that these slices can be successfully analyzed by whole transcriptome sequencing as well as automated histochemistry, increasing their usability as preclinical model. Glioblastoma multiforme (GBM) is a highly malignant brain tumor with poor prognosis and little is known about its genetic background and heterogeneity regarding therapy success. In this study, tissue from the tumors of 25 patients with primary GBM was processed into slice cultures and treated with standard therapy (irradiation and temozolomide). Total RNA sequencing and automated histochemistry were performed to enable analysis of treatment effects at a transcriptional and histological level. Slice cultures from long‐term survivors (overall survival [OS] > 24 months) exhibited more apoptosis than cultures from patients with shorter OS. Proliferation within these slices was slightly increased in contrast to other groups, but not significantly. Among all samples, 58 protein‐coding genes were upregulated and 32 downregulated in treated vs. untreated slice cultures. In general, an upregulation of DNA damage‐related and cell cycle checkpoint genes as well as enrichment of genotoxicity pathways and p53‐dependent signaling was found after treatment. Overall, the current study reproduces knowledge from former studies regarding the feasibility of transcriptomic analyses and automated histology in tissue slice cultures. We further demonstrate that the experimental data merge with the clinical follow‐up of the patients, which improves the applicability of our model system.
Collapse
Affiliation(s)
- Susann Haehnel
- Institute of Anatomy, Faculty of Medicine, University of Leipzig, Germany
| | - Michael Rade
- Department of Diagnostics, Fraunhofer Institute of Cell Therapy and Immunology, Leipzig, Germany
| | - Nicole Kaiser
- Institute of Anatomy, Faculty of Medicine, University of Leipzig, Germany
| | - Kristin Reiche
- Department of Diagnostics, Fraunhofer Institute of Cell Therapy and Immunology, Leipzig, Germany
| | - Andreas Horn
- Institute of Anatomy, Faculty of Medicine, University of Leipzig, Germany
| | - Dennis Loeffler
- Department of Diagnostics, Fraunhofer Institute of Cell Therapy and Immunology, Leipzig, Germany
| | - Conny Blumert
- Department of Diagnostics, Fraunhofer Institute of Cell Therapy and Immunology, Leipzig, Germany
| | - Felicitas Rapp
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Friedemann Horn
- Department of Diagnostics, Fraunhofer Institute of Cell Therapy and Immunology, Leipzig, Germany.,Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, Germany
| | | | | | - Wolf Mueller
- Department of Neuropathology, University Hospital Leipzig, Germany
| | - Frank Gaunitz
- Department of Neurosurgery, University Hospital Leipzig, Germany
| | - Ingo Bechmann
- Institute of Anatomy, Faculty of Medicine, University of Leipzig, Germany
| | - Karsten Winter
- Institute of Anatomy, Faculty of Medicine, University of Leipzig, Germany
| |
Collapse
|
8
|
Hong Z, Lu Y, Ran C, Tang P, Huang J, Yang Y, Duan X, Wu H. The bioactive ingredients in Actinidia chinensis Planch. Inhibit liver cancer by inducing apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114553. [PMID: 34428524 DOI: 10.1016/j.jep.2021.114553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Actinidia chinensis Planch. (ACP) is a common traditional Chinese medicine, which is mostly used for cancer treatment clinically. Liver cancer is a refractory tumor with a high incidence. Although ACP has been reported in the treatment of liver cancer, its possible mechanism of action is little known. AIM OF STUDY The aim of this paper was to investigate the active components of ACP in the treatment of liver cancer and the related mechanisms by a network pharmacology approach. METHODS The active components of ACP and the corresponding targets were obtained from multiple databases. Cytoscape software and STRING database were used to build the "herb-component-target (H-C-T)" network and protein-protein interactions (PPI) network. The key components and targets were further predicted by the Cytohubba plug-in in Cytoscape. Then, experiments were carried out on HepG2 cell line and Huh7 cell line to verify the effects and related mechanisms of the key compounds in ACP. RESULTS 28 active components in ACP and 1299 related targets were screened out according to two indicators, oral bioavailability (OB) and drug-likeness (DL). The key compounds predicted include rutinum, astragalin, and L-epicatechin, and the main signaling pathways focus on apoptosis. Astragalin, a key compound in ACP, could inhibit the expression of Bcl-2, up-regulate the expression of Bax, cleaved caspase 3, cleaved caspase 8, and cleaved caspase 9, and regulate the apoptosis signaling pathway to inhibit the proliferation of liver cancer cells to play a therapeutic role in anti-liver cancer. CONCLUSIONS These results suggest that ACP can alleviate the progression of liver cancer through the mechanisms predicted by network pharmacology, and provide a basis for the further understanding of the application of ACP in anti-cancer.
Collapse
Affiliation(s)
- Zongchao Hong
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Yi Lu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Chongwang Ran
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Peili Tang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, China
| | - Ju Huang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, China
| | - Yanfang Yang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Xueyun Duan
- Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, China.
| | - Hezhen Wu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| |
Collapse
|
9
|
Shen J, Shi H, Zhao Y, Fent K, Zhang K. Large-Scale Transcriptional Profiling of Molecular Perturbations Reveals Cell Line Specific Responses and Implications for Environmental Screening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15266-15275. [PMID: 34714046 DOI: 10.1021/acs.est.1c04965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cell-based bioassays represent nearly half of all high-throughput screens currently conducted for risk assessment of environmental chemicals. However, there has long been a concern about the sensitivity and heterogeneity among cell lines, which were explored only in a limited manner. Here, we address this question by conducting a large-scale transcriptome analysis of the responses of discrete cell lines to specific molecules. We report the collections of >223 300 gene expression profiles from a wide array of cell lines exposed to 2243 compounds. Our results demonstrate distinct responses among cell lines at both the gene and the pathway levels. Temporal variations for a very large proportion of compounds occur as well. High sensitivity and/or heterogeneity is either cell line-specific or universal depending on the modes of action of the compounds. Among 12 representative pathways analyzed, distinct cell-chemical interactions exist. On one hand, lung carcinoma cells are always best suited for glucocorticoid receptor agonist identification, while on the other hand, high sensitivity and heterogenic features are universal for histone deacetylase inhibitors and ATPase inhibitors. Our data provide novel insights into the understanding of cell-specific responses and interactions between cells and xenobiotics. The findings have substantial implications for the design, execution, and interpretation of high-throughput screening assays in (eco)toxicology.
Collapse
Affiliation(s)
- Jing Shen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haochun Shi
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanbin Zhao
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Karl Fent
- Institute of Biogeochemistry and Pollution Dynamics, Department of Environmental Systems Science, ETH Zürich, CH-8092 Zürich, Switzerland
| | - Kun Zhang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
10
|
Kim YJ, Kim K, Seo SY, Yu J, Kim IH, Kim HJ, Park CK, Lee KH, Choi J, Song MS, Kim JH. Time-sequential change in immune-related gene expression after irradiation in glioblastoma: next-generation sequencing analysis. Anim Cells Syst (Seoul) 2021; 25:245-254. [PMID: 34408813 PMCID: PMC8366673 DOI: 10.1080/19768354.2021.1954550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The time-sequential change in immune-related gene expression of the glioblastoma cell line after irradiation was evaluated to speculate the effect of combined immunotherapy with radiotherapy. The U373 MG glioblastoma cell line was irradiated with 6 Gy single dose. Next-generation sequencing (NGS) transcriptome data was generated before irradiation (control), and at 6, 24, and 48 h post-irradiation. Immune-related pathways were analyzed at each time period. The same analyses were also performed for A549 lung cancer and U87 MG glioblastoma cell lines. Western blotting confirmed the programmed death-ligand 1 (PD-L1) expression levels over time. In the U373 MG cell line, neutrophil-mediated immunity, type I interferon signaling, antigen cross-presentation to T cell, and interferon-γ signals began to increase significantly at 24 h and were upregulated until 48 h after irradiation. The results were similar to those of the A549 and U87 MG cell lines. Without T cell infiltration, PD-L1 did not increase even with upregulated interferon-γ signaling in cancer cells. In conclusions, in the glioblastoma cell line, immune-related signals were significantly upregulated at 24 and 48 h after irradiation. Therefore, the time interval between daily radiotherapy might not be enough to expect full immune responses by combined immune checkpoint inhibitors and newly infiltrating immune cells after irradiation.
Collapse
Affiliation(s)
- Yi-Jun Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Convergence Medicine, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea
| | - Kwangsoo Kim
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soo Yeon Seo
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Juyeon Yu
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Il Han Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Hak Jae Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kye Hwa Lee
- Department of Information Medicine, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Junjeong Choi
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Myung Seon Song
- Department of Psychiatry, Keyo Hospital, Uiwang, Republic of Korea
| | - Jin Ho Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Qin F, Fan Q, Yu PKN, Almahi WA, Kong P, Yang M, Cao W, Nie L, Chen G, Han W. Properties and gene expression profiling of acquired radioresistance in mouse breast cancer cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:628. [PMID: 33987326 PMCID: PMC8106033 DOI: 10.21037/atm-20-4667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Acquired radioresistant cells exhibit many characteristic changes which may influence cancer progression and further treatment options. The purpose of this study is to investigate the changes of radioresistant human epidermal growth factor receptor 2 (HER2)-positive breast cancer cells on both phenotypic and molecular levels. Methods We established an acquired radioresistant cell line from its parental NF639 cell line (HER2-positive) by fractionated radiation and assessed changes in cellular morphology, proliferation, migration, anti-apoptosis activity, basal reactive oxygen species (ROS) level and energy metabolism. RNA-sequencing (RNA-seq) was also used to reveal the potential regulating genes and molecular mechanisms associated with the acquired changed phenotypes. Real-time PCR was used to validate the results of RNA-seq. Results The NF639R cells exhibited increased radioresistance and enhanced activity of proliferation, migration and anti-apoptosis, but decreased basal ROS. Two main energy metabolism pathways, mitochondrial respiration and glycolytic, were also upregulated. Furthermore, 490 differentially expressed genes were identified by RNA-seq. Enrichment analysis based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes showed many differently expressed genes were significantly enriched in cell morphology, proliferation, migration, anti-apoptosis, antioxidation, tumor stem cells and energy metabolism and the signaling cascades such as the transforming growth factor-β, Wnt, Hedgehog, vascular endothelial growth factor, retinoic acid-inducible gene I (RIG-I)-like receptor, Toll-like receptor and nucleotide oligomerization domain (NOD)-like receptor were significantly altered in NF639R cells. Conclusions In clinical radiotherapy, repeat radiotherapy for short-term recurrence of breast cancer may result in enhanced radioresistance and promote malignant progression. Our research provided hints to understand the tumor resistance to radiotherapy de novo and recurrence with a worse prognosis following radiotherapy.
Collapse
Affiliation(s)
- Feng Qin
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Scinece Island Branch, Graduate School of USTC, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China.,Institute of Sericultural, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Qiang Fan
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Scinece Island Branch, Graduate School of USTC, Hefei, China
| | - Peter K N Yu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China.,State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Waleed Abdelbagi Almahi
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Scinece Island Branch, Graduate School of USTC, Hefei, China
| | - Peizhong Kong
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Scinece Island Branch, Graduate School of USTC, Hefei, China
| | - Miaomiao Yang
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Scinece Island Branch, Graduate School of USTC, Hefei, China.,Clinical Pathology Center, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Cao
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Scinece Island Branch, Graduate School of USTC, Hefei, China
| | - Lili Nie
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Guodong Chen
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Wei Han
- Anhui Province Key Laboratory of Medical Physics and Technology/Institute of Health and Medical Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China.,Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, China
| |
Collapse
|
12
|
Gao Y, Duan Q, Wu N, Xu B. A heterogeneous cellular response to ionizing radiation revealed by single cell transcriptome sequencing. Am J Cancer Res 2021; 11:513-529. [PMID: 33575084 PMCID: PMC7868766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023] Open
Abstract
Our understanding on transcriptional regulation of tumour cells responding to ionizing radiation (IR) has mostly come from bulk sequencing. However, due to the heterogeneity of tumour, how each individual cell responds to IR differently is unclear. We report here a heterogeneous cellular response to IR by single cell transcriptome sequencing. We utilized the barcoded Smart-seq2 single cell transcriptome sequencing technology in breast cancer cell line MDA-MB-231 both without and with IR treatment. To further understand how ATM, a major hub protein required for an optimal DNA damage response, affected the heterogeneous IR response, we also knocked down ATM gene for single cell transcriptome sequencing. Single cell t-SNE analysis showed four clusters of cells responding to IR in distinctive ways: Cluster 1 changed the least; Cluster 2 responded to IR by upregulating ribosome associated genes, while Cluster 4 upregulated both ribosome and G1/S phase associated genes; Cluster 3 was a new cluster, which appeared only in irradiated cells. In the absence of ATM kinase, cells displayed much less transcriptional changes after IR. And Cluster 4 in wild-type cells, which had the greatest change in response to IR, was not present in the ATM knock-down cells. We also selected three IR-induced genes for functional validation in both MDA-MB-231 and an additional breast cancer cell line to demonstrate their importance in radiation sensitivity. Taken together, our single cell transcriptome analysis has revealed a heterogeneous cellular response to DNA damage induced by IR and identified potential biomarkers of radiation sensitivity.
Collapse
Affiliation(s)
- Yan Gao
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of EducationTianjin 300060, China
| | - Qingke Duan
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of EducationTianjin 300060, China
| | - Ning Wu
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of EducationTianjin 300060, China
| | - Bo Xu
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of EducationTianjin 300060, China
- Center for Intelligent Oncology, Chongqing University Cancer Hospital, Chongqing University School of MedicineChongqing 400030, China
| |
Collapse
|
13
|
Choudhary S, Burns SC, Mirsafian H, Li W, Vo DT, Qiao M, Lei X, Smith AD, Penalva LO. Genomic analyses of early responses to radiation inglioblastoma reveal new alterations at transcription,splicing, and translation levels. Sci Rep 2020; 10:8979. [PMID: 32488114 PMCID: PMC7265345 DOI: 10.1038/s41598-020-65638-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022] Open
Abstract
High-dose radiation is the main component of glioblastoma therapy. Unfortunately, radio-resistance is a common problem and a major contributor to tumor relapse. Understanding the molecular mechanisms driving response to radiation is critical for identifying regulatory routes that could be targeted to improve treatment response. We conducted an integrated analysis in the U251 and U343 glioblastoma cell lines to map early alterations in the expression of genes at three levels: transcription, splicing, and translation in response to ionizing radiation. Changes at the transcriptional level were the most prevalent response. Downregulated genes are strongly associated with cell cycle and DNA replication and linked to a coordinated module of expression. Alterations in this group are likely driven by decreased expression of the transcription factor FOXM1 and members of the E2F family. Genes involved in RNA regulatory mechanisms were affected at the mRNA, splicing, and translation levels, highlighting their importance in radiation-response. We identified a number of oncogenic factors, with an increased expression upon radiation exposure, including BCL6, RRM2B, IDO1, FTH1, APIP, and LRIG2 and lncRNAs NEAT1 and FTX. Several of these targets have been previously implicated in radio-resistance. Therefore, antagonizing their effects post-radiation could increase therapeutic efficacy. Our integrated analysis provides a comprehensive view of early response to radiation in glioblastoma. We identify new biological processes involved in altered expression of various oncogenic factors and suggest new target options to increase radiation sensitivity and prevent relapse.
Collapse
Affiliation(s)
- Saket Choudhary
- Computational Biology and Bioinformatics, University of Southern California, California, USA
| | - Suzanne C Burns
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Hoda Mirsafian
- Computational Biology and Bioinformatics, University of Southern California, California, USA
| | - Wenzheng Li
- Computational Biology and Bioinformatics, University of Southern California, California, USA
| | - Dat T Vo
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Texas, USA
| | - Mei Qiao
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Xiufen Lei
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Andrew D Smith
- Computational Biology and Bioinformatics, University of Southern California, California, USA
| | - Luiz O Penalva
- Greheey Children's Research Institute, University of Texas Health Science Center at San Antonio, Texas, USA.
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, Texas, USA.
| |
Collapse
|
14
|
Zhang P, Wang H, Chen Y, Lodhi AF, Sun C, Sun F, Yan L, Deng Y, Ma H. DR5 related autophagy can promote apoptosis in gliomas after irradiation. Biochem Biophys Res Commun 2019; 522:910-916. [PMID: 31806377 DOI: 10.1016/j.bbrc.2019.11.161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/24/2019] [Indexed: 12/17/2022]
Abstract
As a cancer treatment strategy, irradiation therapy is widely used that can cause DNA breakage and increase free radicals, which leads to different types of cell death. Among them, apoptosis and autophagy are the most important and the most studied cell death processes. Although the exploration of the relationship between apoptosis and autophagy has been a major area of focus, still the molecular mechanisms of autophagy on apoptosis remain unclear. Here, we have revealed that apoptosis was enhanced by the death receptor 5 (DR5) pathway, and the effect of autophagy on apoptosis was promoted by DR5 interacting with LC3B as well as Caspase8 in gliomas after irradiation. Interestingly, we observed that the addition of four different autophagy inducers, rapamycin (RAP), CCI779, ABT737 and temozolomide (TMZ), induced the differences of DR5 expression and cell apoptosis after irradiation. Unlike RAP and CCI779, ABT737 and TMZ were able to increase DR5 expression and further induce cell death. Therefore, we have concluded that DR5 plays a novel and indispensable role in promoting cell apoptosis under irradiation and suggest a potential therapeutic approach for glioblastoma treatment.
Collapse
Affiliation(s)
- Peng Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hailong Wang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yu Chen
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Adil Farooq Lodhi
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China; Department of Microbiology, Faculty of Health Sciences, Hazara University, Mansehra, Pakistan
| | - Chunli Sun
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Feiyi Sun
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Liben Yan
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hong Ma
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
15
|
Perez‐Añorve IX, Gonzalez‐De la Rosa CH, Soto‐Reyes E, Beltran‐Anaya FO, Del Moral‐Hernandez O, Salgado‐Albarran M, Angeles‐Zaragoza O, Gonzalez‐Barrios JA, Landero‐Huerta DA, Chavez‐Saldaña M, Garcia‐Carranca A, Villegas‐Sepulveda N, Arechaga‐Ocampo E. New insights into radioresistance in breast cancer identify a dual function of miR-122 as a tumor suppressor and oncomiR. Mol Oncol 2019; 13:1249-1267. [PMID: 30938061 PMCID: PMC6487688 DOI: 10.1002/1878-0261.12483] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/10/2019] [Accepted: 03/13/2019] [Indexed: 12/25/2022] Open
Abstract
Radioresistance of tumor cells gives rise to local recurrence and disease progression in many patients. MicroRNAs (miRNAs) are master regulators of gene expression that control oncogenic pathways to modulate the radiotherapy response of cells. In the present study, differential expression profiling assays identified 16 deregulated miRNAs in acquired radioresistant breast cancer cells, of which miR-122 was observed to be up-regulated. Functional analysis revealed that miR-122 has a role as a tumor suppressor in parental cells by decreasing survival and promoting radiosensitivity. However, in radioresistant cells, miR-122 functions as an oncomiR by promoting survival. The transcriptomic landscape resulting from knockdown of miR-122 in radioresistant cells showed modulation of the ZNF611, ZNF304, RIPK1, HRAS, DUSP8 and TNFRSF21 genes. Moreover, miR-122 and the set of affected genes were prognostic factors in breast cancer patients treated with radiotherapy. Our data indicate that up-regulation of miR-122 promotes cell survival in acquired radioresistant breast cancer and also suggest that miR-122 differentially controls the response to radiotherapy by a dual function as a tumor suppressor an and oncomiR dependent on cell phenotype.
Collapse
Affiliation(s)
- Isidro X. Perez‐Añorve
- Posgrado en Ciencias Naturales e IngenieriaDivision de Ciencias Naturales e IngenieriaUniversidad Autonoma MetropolitanaMexico CityMexico
- Departamento de Ciencias NaturalesUniversidad Autonoma Metropolitana, Unidad CuajimalpaMexico CityMexico
| | | | - Ernesto Soto‐Reyes
- Departamento de Ciencias NaturalesUniversidad Autonoma Metropolitana, Unidad CuajimalpaMexico CityMexico
| | - Fredy O. Beltran‐Anaya
- Laboratorio de Genomica del CancerInstituto Nacional de Medicina GenomicaMexico CityMexico
| | - Oscar Del Moral‐Hernandez
- Laboratorio de Virologia y Epigenetica del CancerFacultad de Ciencias Quimico BiologicasUniversidad Autonoma de GuerreroChilpancingoMexico
| | - Marisol Salgado‐Albarran
- Departamento de Ciencias NaturalesUniversidad Autonoma Metropolitana, Unidad CuajimalpaMexico CityMexico
| | | | | | - Daniel A. Landero‐Huerta
- Posgrado en Ciencias Naturales e IngenieriaDivision de Ciencias Naturales e IngenieriaUniversidad Autonoma MetropolitanaMexico CityMexico
- Departamento de Ciencias NaturalesUniversidad Autonoma Metropolitana, Unidad CuajimalpaMexico CityMexico
- Laboratorio de Biologia de la ReproduccionInstituto Nacional de PediatríaMexico CityMexico
| | | | - Alejandro Garcia‐Carranca
- Unidad de Investigacion Biomedica en Cancer‐Laboratorio de Virus y CancerInstituto Nacional de CancerologiaMexico CityMexico
| | - Nicolas Villegas‐Sepulveda
- Departamento de Biomedicina MolecularCentro de Investigacion y de Estudios Avanzados (CINVESTAV)Mexico CityMexico
| | - Elena Arechaga‐Ocampo
- Departamento de Ciencias NaturalesUniversidad Autonoma Metropolitana, Unidad CuajimalpaMexico CityMexico
| |
Collapse
|
16
|
Zhang L, Cheng F, Wei Y, Zhang L, Guo D, Wang B, Li W. Inhibition of TAZ contributes radiation-induced senescence and growth arrest in glioma cells. Oncogene 2019; 38:2788-2799. [PMID: 30542117 PMCID: PMC6461515 DOI: 10.1038/s41388-018-0626-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/27/2018] [Accepted: 11/21/2018] [Indexed: 11/09/2022]
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor and resistant to current available therapeutics, such as radiation. To improve the clinical efficacy, it is important to understand the cellular mechanisms underlying tumor responses to radiation. Here, we investigated long-term cellular responses of human GBM cells to ionizing radiation. Comparing to the initial response within 12 hours, gene expression modulation at 7 days after radiation is markedly different. While genes related to cell cycle arrest and DNA damage responses are mostly modulated at the initial stage; immune-related genes are specifically affected as the long-term effect. This later response is associated with increased cellular senescence and inhibition of transcriptional coactivator with PDZ-binding motif (TAZ). Mechanistically, TAZ inhibition does not depend on the canonical Hippo pathway, but relies on enhanced degradation mediated by the β-catenin destruction complex in the Wnt pathway. We further showed that depletion of TAZ by RNAi promotes radiation-induced senescence and growth arrest. Pharmacological activation of the β-catenin destruction complex is able to promote radiation-induced TAZ inhibition and growth arrest in these tumor cells. The correlation between senescence and reduced expression of TAZ as well as β-catenin also occurs in human gliomas treated by radiation. Collectively, these findings suggested that inhibition of TAZ is involved in radiation-induced senescence and might benefit GBM radiotherapy.
Collapse
Affiliation(s)
- Lei Zhang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Penn State Health Hershey Medical Center, Penn State College of Medicine, Hershey, PA, 17033, USA
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Fangling Cheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yiju Wei
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Penn State Health Hershey Medical Center, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Lijun Zhang
- Institute for Personalized Medicine, Penn State Health Hershey Medical Center, Penn State College of Medicine, Hershey, PA, 17033, USA
- Department of Biochemistry & Molecular Biology, Penn State Health Hershey Medical Center, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Wei Li
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Penn State Health Hershey Medical Center, Penn State College of Medicine, Hershey, PA, 17033, USA.
- Department of Biochemistry & Molecular Biology, Penn State Health Hershey Medical Center, Penn State College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
17
|
Gao Y, Liu B, Feng L, Sun B, He S, Yang Y, Wu G, E G, Liu C, Gao Y, Zhang E, Zhu B. Targeting JUN, CEBPB, and HDAC3: A Novel Strategy to Overcome Drug Resistance in Hypoxic Glioblastoma. Front Oncol 2019; 9:33. [PMID: 30775317 PMCID: PMC6367651 DOI: 10.3389/fonc.2019.00033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/14/2019] [Indexed: 11/23/2022] Open
Abstract
Hypoxia is a predominant feature in glioblastoma (GBM) and contributes greatly to its drug resistance. However, the molecular mechanisms which are responsible for the development of the resistant phenotype of GBM under hypoxic conditions remain unclear. To analyze the key pathways promoting therapy resistance in hypoxic GBM, we utilized the U87-MG cell line as a human GBM cell model and the human brain HEB cell line as a non-neoplastic brain cell model. These cell lines were cultured in the presence of 21, 5, and 1% O2 for 24 h. We detected the changes in transcriptional profiling and analyzed the biological processes and functional interactions for the genes with different expression levels under different hypoxia conditions. The results indicated that those alterations of U87-MG cells presented specific transcriptional signature in response to diverse hypoxia levels. Gene ontology analysis revealed that the genes related to the DNA replication and cell cycle were suppressed, while the genes involved in tissue and system development to promote cancer development were activated following hypoxia. Moreover, functional interaction analysis suggested that the epigenetic regulator HDAC3 and the transcriptional factors CEBPB and JUN played a central role in organ and system developmental process pathway. Previous studies reported the global alterations caused by activation of HDAC3, CEBPB, and JUN could form the molecular basis of the resistance to chemotherapy and radiation therapy of hypoxic GBM. In our study, the significant growth inhibitory effect of temozolomide on hypoxic GBM cells could be promoted under downregulation of these genes. The experiment suggested that HDAC3, CEBPB, and JUN were closely involved in the drug-resistance phenotype of hypoxic GBM. In summary, we profiled the hypoxia-dependent changes in the transcriptome of the U87-MG cell line and the human brain cell line HEB to identify the transcriptional signatures of U87-MG cells and elucidate the role of hypoxia in the drug-resistant phenotype of GBM. Furthermore, we identified three key genes and explored their important roles in the drug resistance of hypoxic GBM.
Collapse
Affiliation(s)
- Yixing Gao
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Bao Liu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Lan Feng
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Binda Sun
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Shu He
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Yidong Yang
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Gang Wu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Guoji E
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Chang Liu
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Yuqi Gao
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Erlong Zhang
- Institute of Medicine and Equipment for High Altitude Region, College of High Altitude Military Medicine, Army Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Bo Zhu
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
18
|
Szczepaniak J, Strojny B, Chwalibog ES, Jaworski S, Jagiello J, Winkowska M, Szmidt M, Wierzbicki M, Sosnowska M, Balaban J, Winnicka A, Lipinska L, Pilaszewicz OW, Grodzik M. Effects of Reduced Graphene Oxides on Apoptosis and Cell Cycle of Glioblastoma Multiforme. Int J Mol Sci 2018; 19:ijms19123939. [PMID: 30544611 PMCID: PMC6320889 DOI: 10.3390/ijms19123939] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/02/2018] [Accepted: 12/02/2018] [Indexed: 02/06/2023] Open
Abstract
Graphene (GN) and its derivatives (rGOs) show anticancer properties in glioblastoma multiforme (GBM) cells in vitro and in tumors in vivo. We compared the anti-tumor effects of rGOs with different oxygen contents with those of GN, and determined the characteristics of rGOs useful in anti-glioblastoma therapy using the U87 glioblastoma line. GN/ExF, rGO/Term, rGO/ATS, and rGO/TUD were structurally analysed via transmission electron microscopy, Raman spectroscopy, FTIR, and AFM. Zeta potential, oxygen content, and electrical resistance were determined. We analyzed the viability, metabolic activity, apoptosis, mitochondrial membrane potential, and cell cycle. Caspase- and mitochondrial-dependent apoptotic pathways were investigated by analyzing gene expression. rGO/TUD induced the greatest decrease in the metabolic activity of U87 cells. rGO/Term induced the highest level of apoptosis compared with that induced by GN/ExF. rGO/ATS induced a greater decrease in mitochondrial membrane potential than GN/ExF. No significant changes were observed in the cytometric study of the cell cycle. The effectiveness of these graphene derivatives was related to the presence of oxygen-containing functional groups and electron clouds. Their cytotoxicity mechanism may involve electron clouds, which are smaller in rGOs, decreasing their cytotoxic effect. Overall, cytotoxic activity involved depolarization of the mitochondrial membrane potential and the induction of apoptosis in U87 glioblastoma cells.
Collapse
Affiliation(s)
- Jaroslaw Szczepaniak
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Barbara Strojny
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Ewa Sawosz Chwalibog
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Slawomir Jaworski
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Joanna Jagiello
- Department of Chemical Synthesis and Flake Graphene, Institute of Electronic Materials Technology, 01-919 Warsaw, Poland.
| | - Magdalena Winkowska
- Department of Chemical Synthesis and Flake Graphene, Institute of Electronic Materials Technology, 01-919 Warsaw, Poland.
| | - Maciej Szmidt
- Department of Morphologic Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Mateusz Wierzbicki
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Malwina Sosnowska
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Jasmina Balaban
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Anna Winnicka
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Ludwika Lipinska
- Department of Chemical Synthesis and Flake Graphene, Institute of Electronic Materials Technology, 01-919 Warsaw, Poland.
| | - Olga Witkowska Pilaszewicz
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Marta Grodzik
- Department of Animal Nutrition and Biotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| |
Collapse
|
19
|
Irradiation of pediatric glioblastoma cells promotes radioresistance and enhances glioma malignancy via genome-wide transcriptome changes. Oncotarget 2018; 9:34122-34131. [PMID: 30344926 PMCID: PMC6183347 DOI: 10.18632/oncotarget.26137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/08/2018] [Indexed: 01/05/2023] Open
Abstract
Pediatric glioblastoma (GBM) is a relatively rare brain tumor in children that has a dismal prognosis. Surgery followed by radiotherapy is the main treatment protocol used for older patients. The benefit of adjuvant chemotherapy is still limited due to a poor understanding of the underlying molecular and genetic changes that occur with irradiation of the tumor. In this study, we performed total RNA sequencing on an established stable radioresistant pediatric GBM cell line to identify mRNA expression changes following radiation. The expression of many genes was altered in the radioresistant pediatric GBM model. These genes have never before been reported to be associated with the development of radioresistant GBM. In addition to exhibiting an accelerated growth rate, radioresistant GBM cells also have overexpression of the DNA synthesis-rate-limiting enzyme ribonucleotide reductase, and pro-cathepsin B. These newly identified genes should be concertedly studied to better understand their role in pediatric GBM recurrence and progression after radiation. It was observed that the changes in multiple biological pathways protected GBM cells against radiation and transformed them to a more malignant form. These changes emphasize the importance of developing a treatment regimen that consists of a multiple-agent cocktail that acts on multiple implicated pathways to effectively target irradiated pediatric GBM. An alternative to radiation or a novel therapy that targets differentially expressed genes, such as metalloproteases, growth factors, and oncogenes and aim to minimize oncogenic changes following radiation is necessary to improve recurrent GBM survival.
Collapse
|
20
|
Hasslacher S, Schneele L, Stroh S, Langhans J, Zeiler K, Kattner P, Karpel-Massler G, Siegelin MD, Schneider M, Zhou S, Grunert M, Halatsch ME, Nonnenmacher L, Debatin KM, Westhoff MA. Inhibition of PI3K signalling increases the efficiency of radiotherapy in glioblastoma cells. Int J Oncol 2018; 53:1881-1896. [PMID: 30132519 PMCID: PMC6192725 DOI: 10.3892/ijo.2018.4528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma, the most common primary brain tumour, is also considered one of the most lethal cancers per se. It is highly refractory to therapeutic intervention, as highlighted by the mean patient survival of only 15 months, despite an aggressive treatment approach, consisting of maximal safe surgical resection, followed by radio- and chemotherapy. Radiotherapy, in particular, can have effects on the surviving fractions of tumour cells, which are considered adverse to the desired clinical outcome: It can induce increased cellular proliferation, as well as enhanced invasion. In this study, we established that differentiated glioblastoma cells alter their DNA repair response following repeated exposure to radiation and, therefore, high single-dose irradiation (SD-IR) is not a good surrogate marker for fractionated dose irradiation (FD-IR), as used in clinical practice. Integrating irradiation into a combination therapy approach, we then investigated whether the pharmacological inhibition of PI3K signalling, the most abundantly activated survival cascade in glioblastoma, enhances the efficacy of radiotherapy. Of note, treatment with GDC-0941, which blocks PI3K-mediated signalling, did not enhance cell death upon irradiation, but both treatment modalities functioned synergistically to reduce the total cell number. Furthermore, GDC-0941 not only prevented the radiation-induced increase in the motility of the differentiated cells, but further reduced their speed below that of untreated cells. Therefore, combining radiotherapy with the pharmacological inhibition of PI3K signalling is a potentially promising approach for the treatment of glioblastoma, as it can reduce the unwanted effects on the surviving fraction of tumour cells.
Collapse
Affiliation(s)
- Sebastian Hasslacher
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany
| | - Lukas Schneele
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany
| | - Sebastien Stroh
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany
| | - Julia Langhans
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany
| | - Katharina Zeiler
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany
| | - Patricia Kattner
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany
| | | | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Matthias Schneider
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany
| | - Shaoxia Zhou
- Department of Clinical Chemistry, University Medical Center Ulm, D-89075 Ulm, Germany
| | - Michael Grunert
- Department of Radiology, German Armed Forces Hospital of Ulm, D-89081 Ulm, Germany
| | - Marc-Eric Halatsch
- Department of Neurosurgery, University Medical Center Ulm, D-89075 Ulm, Germany
| | - Lisa Nonnenmacher
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany
| |
Collapse
|
21
|
Nguyen HS, Shabani S, Awad AJ, Kaushal M, Doan N. Molecular Markers of Therapy-Resistant Glioblastoma and Potential Strategy to Combat Resistance. Int J Mol Sci 2018; 19:ijms19061765. [PMID: 29899215 PMCID: PMC6032212 DOI: 10.3390/ijms19061765] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant tumor of the central nervous system. With its overall dismal prognosis (the median survival is 14 months), GBMs demonstrate a resounding resilience against all current treatment modalities. The absence of a major progress in the treatment of GBM maybe a result of our poor understanding of both GBM tumor biology and the mechanisms underlying the acquirement of treatment resistance in recurrent GBMs. A comprehensive understanding of these markers is mandatory for the development of treatments against therapy-resistant GBMs. This review also provides an overview of a novel marker called acid ceramidase and its implication in the development of radioresistant GBMs. Multiple signaling pathways were found altered in radioresistant GBMs. Given these global alterations of multiple signaling pathways found in radioresistant GBMs, an effective treatment for radioresistant GBMs may require a cocktail containing multiple agents targeting multiple cancer-inducing pathways in order to have a chance to make a substantial impact on improving the overall GBM survival.
Collapse
Affiliation(s)
- Ha S Nguyen
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
- Faculty of Neurosurgery, California Institute of Neuroscience, Thousand Oaks, CA 91360, USA.
| | - Saman Shabani
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Ahmed J Awad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
- Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 11941, Palestine.
| | - Mayank Kaushal
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Ninh Doan
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
- Department of Neurosurgery, Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
22
|
Lacombe J, Sima C, Amundson SA, Zenhausern F. Candidate gene biodosimetry markers of exposure to external ionizing radiation in human blood: A systematic review. PLoS One 2018; 13:e0198851. [PMID: 29879226 PMCID: PMC5991767 DOI: 10.1371/journal.pone.0198851] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
Purpose To compile a list of genes that have been reported to be affected by external ionizing radiation (IR) and to assess their performance as candidate biomarkers for individual human radiation dosimetry. Methods Eligible studies were identified through extensive searches of the online databases from 1978 to 2017. Original English-language publications of microarray studies assessing radiation-induced changes in gene expression levels in human blood after external IR were included. Genes identified in at least half of the selected studies were retained for bio-statistical analysis in order to evaluate their diagnostic ability. Results 24 studies met the criteria and were included in this study. Radiation-induced expression of 10,170 unique genes was identified and the 31 genes that have been identified in at least 50% of studies (12/24 studies) were selected for diagnostic power analysis. Twenty-seven genes showed a significant Spearman’s correlation with radiation dose. Individually, TNFSF4, FDXR, MYC, ZMAT3 and GADD45A provided the best discrimination of radiation dose < 2 Gy and dose ≥ 2 Gy according to according to their maximized Youden’s index (0.67, 0.55, 0.55, 0.55 and 0.53 respectively). Moreover, 12 combinations of three genes display an area under the Receiver Operating Curve (ROC) curve (AUC) = 1 reinforcing the concept of biomarker combinations instead of looking for an ideal and unique biomarker. Conclusion Gene expression is a promising approach for radiation dosimetry assessment. A list of robust candidate biomarkers has been identified from analysis of the studies published to date, confirming for example the potential of well-known genes such as FDXR and TNFSF4 or highlighting other promising gene such as ZMAT3. However, heterogeneity in protocols and analysis methods will require additional studies to confirm these results.
Collapse
Affiliation(s)
- Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, University of Arizona, Phoenix, Arizona, United States of America
- * E-mail:
| | - Chao Sima
- Center for Bioinformatics and Genomic Systems Engineering, Texas A&M Engineering Experiment Station, College Station, TX, United States of America
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Medical Center, New York, NY, United States of America
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, University of Arizona, Phoenix, Arizona, United States of America
- Honor Health Research Institute, Scottsdale, Arizona, United States of America
- Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| |
Collapse
|
23
|
Murad H, Alghamian Y, Aljapawe A, Madania A. Effects of ionizing radiation on the viability and proliferative behavior of the human glioblastoma T98G cell line. BMC Res Notes 2018; 11:330. [PMID: 29784026 PMCID: PMC5963135 DOI: 10.1186/s13104-018-3438-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/11/2018] [Indexed: 01/30/2023] Open
Abstract
Objective Radiotherapy is the traditional therapy for glioma patients. Glioma has poor response to ionizing radiation (IR). Studying radiation-induced cell death can help in understanding the cellular mechanisms underlying its radioresistance. T98G cell line was irradiated with Co60 source by 2 or 10 Gy. MTT assay was used to calculate the surviving fraction. Cell viability, cell cycle distribution and apoptosis assays were conducted by flow cytometry for irradiated and control cells for the 10 Gy dose.
Results The SF2 value for irradiated cells was 0.8. Cell viability was decreased from 93.29 to 73.61%, while, the Sub G0/G1 phase fraction was significantly increased at 10 Gy after 48 h. On the other hand, there was an increase in the percentage of apoptotic cells which reached 40.16% after 72 h at the same dose, while, it did not exceeds 2% for non-irradiated cells. Our results showed that, the T98G cells is radioresistant to IR up to 10 Gy. Effects of irradiation on the viability of T98G cells were relatively mild, since entering apoptosis was delayed for about 3 days after irradiation.
Collapse
Affiliation(s)
- Hossam Murad
- Human Genetics Division, Department of Molecular Biology & Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria.
| | - Yaman Alghamian
- Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria
| | - Abdulmunim Aljapawe
- Human Genetics Division, Department of Molecular Biology & Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| | - Ammar Madania
- Department of Radiation Medicine, Atomic Energy Commission of Syria (AECS), Damascus, Syria
| |
Collapse
|
24
|
Doan NB, Nguyen HS, Alhajala HS, Jaber B, Al-Gizawiy MM, Ahn EYE, Mueller WM, Chitambar CR, Mirza SP, Schmainda KM. Identification of radiation responsive genes and transcriptome profiling via complete RNA sequencing in a stable radioresistant U87 glioblastoma model. Oncotarget 2018; 9:23532-23542. [PMID: 29805753 PMCID: PMC5955095 DOI: 10.18632/oncotarget.25247] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/08/2018] [Indexed: 12/19/2022] Open
Abstract
The absence of major progress in the treatment of glioblastoma (GBM) is partly attributable to our poor understanding of both GBM tumor biology and the acquirement of treatment resistance in recurrent GBMs. Recurrent GBMs are characterized by their resistance to radiation. In this study, we used an established stable U87 radioresistant GBM model and total RNA sequencing to shed light on global mRNA expression changes following irradiation. We identified many genes, the expressions of which were altered in our radioresistant GBM model, that have never before been reported to be associated with the development of radioresistant GBM and should be concertedly further investigated to understand their roles in radioresistance. These genes were enriched in various biological processes such as inflammatory response, cell migration, positive regulation of epithelial to mesenchymal transition, angiogenesis, apoptosis, positive regulation of T-cell migration, positive regulation of macrophage chemotaxis, T-cell antigen processing and presentation, and microglial cell activation involved in immune response genes. These findings furnish crucial information for elucidating the molecular mechanisms associated with radioresistance in GBM. Therapeutically, with the global alterations of multiple biological pathways observed in irradiated GBM cells, an effective GBM therapy may require a cocktail carrying multiple agents targeting multiple implicated pathways in order to have a chance at making a substantial impact on improving the overall GBM survival.
Collapse
Affiliation(s)
- Ninh B Doan
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ha S Nguyen
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hisham S Alhajala
- Department of Medicine, Hematology/Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Basem Jaber
- Faculty of Medicine, University of Damascus, Damascus, Syria
| | - Mona M Al-Gizawiy
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Wade M Mueller
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher R Chitambar
- Department of Medicine, Hematology/Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shama P Mirza
- Department of Chemistry and Biochemistry, University of Wisconsin, Milwaukee, WI, USA
| | - Kathleen M Schmainda
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
25
|
Gieryng A, Pszczolkowska D, Bocian K, Dabrowski M, Rajan WD, Kloss M, Mieczkowski J, Kaminska B. Immune microenvironment of experimental rat C6 gliomas resembles human glioblastomas. Sci Rep 2017; 7:17556. [PMID: 29242629 PMCID: PMC5730558 DOI: 10.1038/s41598-017-17752-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/22/2017] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor, with ineffective anti-tumor responses and a poor prognosis despite aggressive treatments. GBM immune microenvironment is heterogenous and activation of specific immune populations in GBM is not fully characterized. Reliable animal models are critical for defining mechanisms of anti-tumor immunity. First we analyzed the immune subpopulations present in rat C6 gliomas. Using flow cytometry we determined kinetics of infiltration of myeloid cells and T lymphocytes into glioma-bearing brains. We found significant increases of the amoeboid, pro-tumorigenic microglia/macrophages, T helper (Th) and T regulatory (Treg) cells in tumor-bearing brains, and rare infiltrating T cytotoxic (Tc) cells. Transcriptomic analyses of glioma-bearing hemispheres revealed overexpression of invasion and immunosuppression-related genes, reflecting the immunosuppressive microenvironment. Microglia, sorted as CD11b+CD45low cells from gliomas, displayed the pro-invasive and immunosuppressive type of activation. Accumulation of Th and Treg cells combined with the reduced presence of Tc lymphocytes in rat gliomas may result in the lack of effective anti–tumor responses. Transcriptional profiles of CD11b+ cells and composition of immune infiltrates in C6 gliomas indicate that rat C6 gliomas employ similar immune system evasion strategies as human GBMs.
Collapse
Affiliation(s)
- Anna Gieryng
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warszawa, Poland
| | - Dominika Pszczolkowska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warszawa, Poland
| | - Katarzyna Bocian
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warszawa, Poland
| | - Michal Dabrowski
- Laboratory of Bioinformatics, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warszawa, Poland
| | - Wenson David Rajan
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warszawa, Poland
| | - Michal Kloss
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warszawa, Poland
| | - Jakub Mieczkowski
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warszawa, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warszawa, Poland.
| |
Collapse
|
26
|
Alghamian Y, Abou Alchamat G, Murad H, Madania A. Effects of γ-radiation on cell growth, cell cycle and promoter methylation of 22 cell cycle genes in the 1321NI astrocytoma cell line. Adv Med Sci 2017; 62:330-337. [PMID: 28511071 DOI: 10.1016/j.advms.2017.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE DNA damage caused by radiation initiates biological responses affecting cell fate. DNA methylation regulates gene expression and modulates DNA damage pathways. Alterations in the methylation profiles of cell cycle regulating genes may control cell response to radiation. In this study we investigated the effect of ionizing radiation on the methylation levels of 22 cell cycle regulating genes in correlation with gene expression in 1321NI astrocytoma cell line. METHODS 1321NI cells were irradiated with 2, 5 or 10Gy doses then analyzed after 24, 48 and 72h for cell viability using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliu bromide) assay. Flow cytometry were used to study the effect of 10Gy irradiation on cell cycle. EpiTect Methyl II PCR Array was used to identify differentially methylated genes in irradiated cells. Changes in gene expression was determined by qPCR. Azacytidine treatment was used to determine whether DNA methylation affectes gene expression. RESULTS Our results showed that irradiation decreased cell viability and caused cell cycle arrest at G2/M. Out of 22 genes tested, only CCNF and RAD9A showed some increase in DNA methylation (3.59% and 3.62%, respectively) after 10Gy irradiation, and this increase coincided with downregulation of both genes (by 4 and 2 fold, respectively). TREATMENT with azacytidine confirmed that expression of CCNF and RAD9A genes was regulated by methylation. CONCLUSIONS 1321NI cell line is highly radioresistant and that irradiation of these cells with a 10Gy dose increases DNA methylation of CCNF and RAD9A genes. This dose down-regulates these genes, favoring G2/M arrest.
Collapse
|
27
|
Dadey DYA, Kapoor V, Khudanyan A, Urano F, Kim AH, Thotala D, Hallahan DE. The ATF6 pathway of the ER stress response contributes to enhanced viability in glioblastoma. Oncotarget 2016; 7:2080-92. [PMID: 26716508 PMCID: PMC4811517 DOI: 10.18632/oncotarget.6712] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/21/2015] [Indexed: 11/25/2022] Open
Abstract
Therapeutic resistance is a major barrier to improvement of outcomes for patients with glioblastoma. The endoplasmic reticulum stress response (ERSR) has been identified as a contributor to chemoresistance in glioblastoma; however the contributions of the ERSR to radioresistance have not been characterized. In this study we found that radiation can induce ER stress and downstream signaling associated with the ERSR. Induction of ER stress appears to be linked to changes in ROS balance secondary to irradiation. Furthermore, we observed global induction of genes downstream of the ERSR in irradiated glioblastoma. Knockdown of ATF6, a regulator of the ERSR, was sufficient to enhance radiation induced cell death. Also, we found that activation of ATF6 contributes to the radiation-induced upregulation of glucose regulated protein 78 (GRP78) and NOTCH1. Our results reveal ATF6 as a potential therapeutic target to enhance the efficacy of radiation therapy.
Collapse
Affiliation(s)
- David Y A Dadey
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.,Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Vaishali Kapoor
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Arpine Khudanyan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Fumihiko Urano
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.,Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Dinesh Thotala
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis E Hallahan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.,Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.,Hope Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
28
|
Balbous A, Cortes U, Guilloteau K, Rivet P, Pinel B, Duchesne M, Godet J, Boissonnade O, Wager M, Bensadoun RJ, Chomel JC, Karayan-Tapon L. A radiosensitizing effect of RAD51 inhibition in glioblastoma stem-like cells. BMC Cancer 2016; 16:604. [PMID: 27495836 PMCID: PMC4974671 DOI: 10.1186/s12885-016-2647-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 07/28/2016] [Indexed: 06/29/2024] Open
Abstract
Background Radioresistant glioblastoma stem cells (GSCs) contribute to tumor recurrence and identification of the molecular targets involved in radioresistance mechanisms is likely to enhance therapeutic efficacy. This study analyzed the DNA damage response following ionizing radiation (IR) in 10 GSC lines derived from patients. Methods DNA damage was quantified by Comet assay and DNA repair effectors were assessed by Low Density Array. The effect of RAD51 inhibitor, RI-1, was evaluated by comet and annexin V assays. Results While all GSC lines displayed efficient DNA repair machinery following ionizing radiation, our results demonstrated heterogeneous responses within two distinct groups showing different intrinsic radioresistance, up to 4Gy for group 1 and up to 8Gy for group 2. Radioresistant cell group 2 (comprising 5 out of 10 GSCs) showed significantly higher RAD51 expression after IR. In these cells, inhibition of RAD51 prevented DNA repair up to 180 min after IR and induced apoptosis. In addition, RAD51 protein expression in glioblastoma seems to be associated with poor progression-free survival. Conclusion These results underscore the importance of RAD51 in radioresistance of GSCs. RAD51 inhibition could be a therapeutic strategy helping to treat a significant number of glioblastoma, in combination with radiotherapy. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2647-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anaïs Balbous
- INSERM1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, F-86021, France.,Université de Poitiers, U1084, Poitiers, F-86022, France.,CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, F-86021, France
| | - Ulrich Cortes
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, F-86021, France
| | - Karline Guilloteau
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, F-86021, France
| | - Pierre Rivet
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, F-86021, France
| | - Baptiste Pinel
- CHU de Poitiers, Service d'Oncologie Radiotherapique, Poitiers, F86021, France
| | - Mathilde Duchesne
- CHU de Poitiers, Service d'Anatomo-cytopathologie, Poitiers, F86021, France
| | - Julie Godet
- CHU de Poitiers, Service d'Anatomo-cytopathologie, Poitiers, F86021, France
| | - Odile Boissonnade
- CHU de Poitiers, Service d'Oncologie Radiotherapique, Poitiers, F86021, France
| | - Michel Wager
- CHU de Poitiers, Service de Neurochirurgie, Poitiers, F86021, France
| | - René Jean Bensadoun
- CHU de Poitiers, Service d'Oncologie Radiotherapique, Poitiers, F86021, France
| | - Jean-Claude Chomel
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, F-86021, France
| | - Lucie Karayan-Tapon
- INSERM1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, F-86021, France. .,Université de Poitiers, U1084, Poitiers, F-86022, France. .,CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, F-86021, France.
| |
Collapse
|
29
|
Lei R, Zhao T, Li Q, Wang X, Ma H, Deng Y. Carbon Ion Irradiated Neural Injury Induced the Peripheral Immune Effects in Vitro or in Vivo. Int J Mol Sci 2015; 16:28334-46. [PMID: 26633364 PMCID: PMC4691056 DOI: 10.3390/ijms161226109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022] Open
Abstract
Carbon ion radiation is a promising treatment for brain cancer; however, the immune system involved long-term systemic effects evoke a concern of complementary and alternative therapies in clinical treatment. To clarify radiotherapy caused fundamental changes in peripheral immune system, examinations were performed based on established models in vitro and in vivo. We found that brain-localized carbon ion radiation of neural cells induced complex changes in the peripheral blood, thymus, and spleen at one, two, and three months after its application. Atrophy, apoptosis, and abnormal T-cell distributions were observed in rats receiving a single high dose of radiation. Radiation downregulated the expression of proteins involved in T-cell development at the transcriptional level and increased the proportion of CD3⁺CD4(-)CD8⁺ T-cells in the thymus and the proportion of CD3⁺CD4⁺CD8(-) T-cells in the spleen. These data show that brain irradiation severely affects the peripheral immune system, even at relatively long times after irradiation. In addition, they provide valuable information that will implement the design of biological-based strategies that will aid brain cancer patients suffering from the long-term side effects of radiation.
Collapse
Affiliation(s)
- Runhong Lei
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Tuo Zhao
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Qiang Li
- Department of Space Radiobiology, Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Xiao Wang
- Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China.
| | - Hong Ma
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
30
|
Gehring MP, Kipper F, Nicoletti NF, Sperotto ND, Zanin R, Tamajusuku ASK, Flores DG, Meurer L, Roesler R, Filho AB, Lenz G, Campos MM, Morrone FB. P2X7 receptor as predictor gene for glioma radiosensitivity and median survival. Int J Biochem Cell Biol 2015; 68:92-100. [PMID: 26358881 DOI: 10.1016/j.biocel.2015.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 10/23/2022]
Abstract
Glioblastoma multiforme (GBM) is considered the most lethal intracranial tumor and the median survival time is approximately 14 months. Although some glioma cells present radioresistance, radiotherapy has been the mainstay of therapy for patients with malignant glioma. The activation of P2X7 receptor (P2X7R) is responsible for ATP-induced death in various cell types. In this study, we analyzed the importance of ATP-P2X7R pathway in the radiotherapy response P2X7R silenced cell lines, in vivo and human tumor samples. Both glioma cell lines used in this study present a functional P2X7R and the P2X7R silencing reduced P2X7R pore activity by ethidium bromide uptake. Gamma radiation (2Gy) treatment reduced cell number in a P2X7R-dependent way, since both P2X7R antagonist and P2X7R silencing blocked the cell cytotoxicity caused by irradiation after 24h. The activation of P2X7R is time-dependent, as EtBr uptake significantly increased after 24h of irradiation. The radiotherapy plus ATP incubation significantly increased annexin V incorporation, compared with radiotherapy alone, suggesting that ATP acts synergistically with radiotherapy. Of note, GL261 P2X7R silenced-bearing mice failed in respond to radiotherapy (8Gy) and GL261 WT-bearing mice, that constitutively express P2X7R, presented a significant reduction in tumor volume after radiotherapy, showing in vivo that functional P2X7R expression is essential for an efficient radiotherapy response in gliomas. We also showed that a high P2X7R expression is a good prognostic factor for glioma radiosensitivity and survival probability in humans. Our data revealed the relevance of P2X7R expression in glioma cells to a successful radiotherapy response, and shed new light on this receptor as a useful predictor of the sensitivity of cancer patients to radiotherapy and median survival.
Collapse
Affiliation(s)
- Marina P Gehring
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Farmacologia Aplicada, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| | - Franciele Kipper
- Laboratório de Sinalização e Plasticidade Celular, UFRGS, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil.
| | - Natália F Nicoletti
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Farmacologia Aplicada, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| | - Nathalia D Sperotto
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Farmacologia Aplicada, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| | - Rafael Zanin
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Farmacologia Aplicada, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| | - Alessandra S K Tamajusuku
- Laboratório de Sinalização e Plasticidade Celular, UFRGS, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil.
| | - Debora G Flores
- Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Porto Alegre, RS, Brazil.
| | - Luise Meurer
- Departamento de Patologia, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90420-010 Porto Alegre, RS, Brazil.
| | - Rafael Roesler
- Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil; Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), UFRGS, Porto Alegre, RS, Brazil; National Institute for Translational Medicine, Rua Sarmento Leite, 500, Sala 202, 90050-170 Porto Alegre, RS, Brazil.
| | - Aroldo B Filho
- Serviço de Radioterapia, Hospital São Lucas da PUCRS, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| | - Guido Lenz
- Laboratório de Sinalização e Plasticidade Celular, UFRGS, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil.
| | - Maria M Campos
- PUCRS, Instituto de Toxicologia e Farmacologia e Faculdade de Odontologia, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| | - Fernanda B Morrone
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Farmacologia Aplicada, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| |
Collapse
|
31
|
Chen J, Shen Z, Zheng Y, Wang S, Mao W. Radiotherapy induced Lewis lung cancer cell apoptosis via inactivating β-catenin mediated by upregulated HOTAIR. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:7878-7886. [PMID: 26339352 PMCID: PMC4555680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/22/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE HOTAIR, a long intervening non-coding Hox transcript antisense intergenic RNA, negatively regulates transcription on another chromosome and is reported to reprogram chromatin organization and promote tumor progression. Nevertheless, little is known about its roles in the development of radiation therapy of lung cancer. In this study, we established a xenografed model of Lewis lung carcinoma in C57BL/6 mice and investigated the possible involvement of HOTAIR in this radiotherapy. METHODS C57BL/6 mice were subcutaneously transplanted with Lewis lung carcinoma cells and locally irradiated followed by measurement in tumor volume. Levels of HOTAIR and WIF-1 mRNA expression were determined by using Quantitative Real-Time PCR. Levels of WIF-1 and β-catenin were determined by using western blot assay. Cell viability was evaluated by MTT assay. Cell apoptosis was examined by using TUNEL assay. RESULTS In mice bearing Lewis lung carcinoma tumor, local radiotherapy suppressed tumor growth and it also reduced level of HOTAIR but increased WIF-1 expression. When HOTAIR was overexpressed, radio-sensitivity was reduced. In vitro experiments, irradiation inhibited HOTAIR transportation to the nucleus. However, it was reversed by over-expressed HOTAIR. Cells transfected with pcDNA-HOTAIR or siRNA-HOTAIR resulted in decline or increase in radiosensitivity, which was abrogated by co-tansfected with siRNA-β-catenin. CONCLUSION Radiotherapy induced Lewis lung cancer cell apoptosis via inactivating β-catenin mediated by upregulated HOTAIR.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Apoptosis/radiation effects
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/radiotherapy
- Cell Line, Tumor
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Gene Expression Regulation, Neoplastic
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Male
- Mice, Inbred C57BL
- RNA Interference
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Messenger/metabolism
- Signal Transduction/radiation effects
- Time Factors
- Transfection
- Tumor Burden/radiation effects
- Up-Regulation
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Jianxiang Chen
- Department of Radiation Oncology, Zhejiang, Cancer HospitalHangzhou, China
| | - Zhuping Shen
- Department of Thoracic Oncology, Zhejiang, Cancer HospitalHangzhou, China
| | - Yuanda Zheng
- Department of Radiation Oncology, Zhejiang, Cancer HospitalHangzhou, China
| | - Shengye Wang
- Department of Radiation Oncology, Zhejiang, Cancer HospitalHangzhou, China
| | - Weimin Mao
- Department of Thoracic Oncology, Zhejiang, Cancer HospitalHangzhou, China
| |
Collapse
|
32
|
Lu CC, Huang BR, Liao PJ, Yen GC. Ursolic acid triggers nonprogrammed death (necrosis) in human glioblastoma multiforme DBTRG-05MG cells through MPT pore opening and ATP decline. Mol Nutr Food Res 2014; 58:2146-56. [PMID: 25131308 DOI: 10.1002/mnfr.201400051] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 08/04/2014] [Accepted: 08/12/2014] [Indexed: 12/12/2022]
Abstract
SCOPE Ursolic acid, a natural pentacyclic triterpenic acid, possesses anticancer potential and diverse biological effects, but its correlation with glioblastoma multiforme cells and different modes of cell death is unclear. We studied the cellular actions of human glioblastoma multiforme DBTRG-05MG cells after ursolic acid treatment and explored cell-selective killing effect of necrotic death as a cell fate. METHODS AND RESULTS Ursolic acid effectively reversed temozolomide resistance and reduced DBTRG-05MG cell viability. Surprisingly, ursolic acid failed to stimulate the apoptosis- and autophagy-related signaling networks. The necrotic death was characterized by annexin V/propidium iodide double-positive detection and release of high-mobility group protein B1 and lactate dehydrogenase. These ursolic acid elicited responses were accompanied by reactive oxygen species generation and glutathione depletion. Rapid mitochondrial dysfunction was paralleled by the preferential induction of necrosis, rather than apoptotic death. Mitochondrial permeability transition (MPT) is a phenomenon to provide the onset of mitochondrial depolarization during cellular necrosis. The opening of MPT pores that were mechanistically regulated by cyclophilin D, and adenosine triphosphate decline occurred in treated necrotic DBTRG-05MG cells. Cyclosporine A (an MPT pore inhibitor) prevented ursolic acid-provoked necrotic death and the acid-involved key regulators. CONCLUSION Our study is the first to report that ursolic acid-modified mitochondrial function triggers defective death by necrosis in DBTRG-05MG cells rather than augmenting programmed death.
Collapse
Affiliation(s)
- Chi-Cheng Lu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | | | | | | |
Collapse
|
33
|
Damage of neuroblastoma cell SH-SY5Y mediated by MPP+ inhibits proliferation of T-cell leukemia Jurkat by co-culture system. Int J Mol Sci 2014; 15:10738-50. [PMID: 24933638 PMCID: PMC4100177 DOI: 10.3390/ijms150610738] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 05/19/2014] [Accepted: 06/03/2014] [Indexed: 11/26/2022] Open
Abstract
The adaptive immune system has implications in pathology of Parkinson’s disease (PD). Research data demonstrated that the peripheral CD4+ T-cell population decreased in pathogenesis of PD. The effect of damaged dopaminergic neurons on peripheral T cells of PD is still unknown. In this study, we constructed a neuronal and glial cells co-culture model by using human neuroblastoma cells SH-SY5Y and gliomas cells U87. After the co-culture cells were treated with neurotoxin 1-methyl-4-phenylpyridinium (MPP+) for 24 h, the conditioned media was harvested and used to cultivate T-cell leukemia Jurkat cells for another 24 h. We then analyzed the cell proliferation, cell cycle and necrosis effect of Jurkat cells. The results showed that co-culture medium of SH-SY5Y and U87 cells with MPP+ treatment inhibited the proliferation of Jurkat cells compared to control medium without MPP+, even though the same concentration of MPP+ had very little toxicity to the Jurkat cell. Furthermore, co-culture medium with low concentration of MPP+ (100 µM) arrested Jurkat cells cycle in G2/M phase through increasing cell cycle division 2 (CDC2) and CyclinB1 expression level, whereas co-culture medium with high concentration of MPP+ (500 µM) induced Jurkat cell necrosis through cellular swelling and membrane breakage. Our data implies that damaged dopamine neurons with glial cells can lead to the reduced number or inhibited proliferation activity of peripheral T cells.
Collapse
|