1
|
Li JH, Liu C, Qiu SY, Zheng SM, He YZ. Epigenetic Modifications in Sensorineural Hearing Loss: Protective Mechanisms and Therapeutic Potential. Curr Med Sci 2025:10.1007/s11596-025-00049-9. [PMID: 40397300 DOI: 10.1007/s11596-025-00049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 05/22/2025]
Abstract
Hearing loss, which currently affects more than 430 million individuals globally and is projected to exceed 700 million by 2050, predominantly manifests as sensorineural hearing loss (SNHL), for which existing technologies such as hearing aids and cochlear implants fail to restore natural auditory function. Research focusing on protecting inner ear hair cells (HCs) from harmful factors through the regulation of epigenetic modifications has gained significant attention in otology for its role in regulating gene expression without altering the DNA sequence, suggesting potential strategies for preventing and treating SNHL. By synthesizing relevant studies on the inner ear, this review summarizes the emerging roles of histone modifications, DNA methylation, and noncoding RNAs in HC damage, with a focus on their therapeutic potential through epigenetic modulation. Moreover, this review examines the therapeutic potential of epigenetic regulation for the prevention and treatment of SNHL, emphasizing the application of small-molecule epigenetic compounds and their efficacy in modulating gene expression to preserve and restore auditory function.
Collapse
Affiliation(s)
- Jia-Huan Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Chang Liu
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Si-Yu Qiu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Shi-Mei Zheng
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Ying-Zi He
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
2
|
Ho WHJ, Marinova MB, Listijono DR, Bertoldo MJ, Richani D, Kim LJ, Brown A, Riepsamen AH, Cabot S, Frost ER, Bustamante S, Zhong L, Selesniemi K, Wong D, Madawala R, Marchante M, Goss DM, Li C, Araki T, Livingston DJ, Turner N, Sinclair DA, Walters KA, Homer HA, Gilchrist RB, Wu LE. Fertility protection during chemotherapy treatment by boosting the NAD(P) + metabolome. EMBO Mol Med 2024; 16:2583-2618. [PMID: 39169162 PMCID: PMC11473878 DOI: 10.1038/s44321-024-00119-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Chemotherapy induced ovarian failure and infertility is an important concern in female cancer patients of reproductive age or younger, and non-invasive, pharmacological approaches to maintain ovarian function are urgently needed. Given the role of reduced nicotinamide adenine dinucleotide phosphate (NADPH) as an essential cofactor for drug detoxification, we sought to test whether boosting the NAD(P)+ metabolome could protect ovarian function. We show that pharmacological or transgenic strategies to replenish the NAD+ metabolome ameliorates chemotherapy induced female infertility in mice, as measured by oocyte yield, follicle health, and functional breeding trials. Importantly, treatment of a triple-negative breast cancer mouse model with the NAD+ precursor nicotinamide mononucleotide (NMN) reduced tumour growth and did not impair the efficacy of chemotherapy drugs in vivo or in diverse cancer cell lines. Overall, these findings raise the possibility that NAD+ precursors could be a non-invasive strategy for maintaining ovarian function in cancer patients, with potential benefits in cancer therapy.
Collapse
Affiliation(s)
- Wing-Hong Jonathan Ho
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
- The Kinghorn Cancer Centre, St. Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Maria B Marinova
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Dave R Listijono
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Michael J Bertoldo
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Dulama Richani
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Lynn-Jee Kim
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Amelia Brown
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | | | - Safaa Cabot
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Emily R Frost
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Kaisa Selesniemi
- Paul F Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA, USA
| | - Derek Wong
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Romanthi Madawala
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Maria Marchante
- IVI Foundation, Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynaecology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Dale M Goss
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Catherine Li
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo, 187-8502, Japan
| | | | - Nigel Turner
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - David A Sinclair
- Paul F Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA, USA
| | - Kirsty A Walters
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Hayden A Homer
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
- Christopher Chen Oocyte Biology Laboratory, University of Queensland Centre for Clinical Research, Royal Brisbane & Women's Hospital, Herston, QLD, 4029, Australia
| | - Robert B Gilchrist
- School of Clinical Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Lindsay E Wu
- School of Biomedical Sciences, UNSW Sydney, Kensington, NSW, 2052, Australia.
| |
Collapse
|
3
|
Koo C, Richter CP, Tan X. Roles of Sirtuins in Hearing Protection. Pharmaceuticals (Basel) 2024; 17:998. [PMID: 39204103 PMCID: PMC11357115 DOI: 10.3390/ph17080998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Hearing loss is a health crisis that affects more than 60 million Americans. Currently, sodium thiosulfate is the only drug approved by the Food and Drug Administration (FDA) to counter hearing loss. Sirtuins were proposed as therapeutic targets in the search for new compounds or drugs to prevent or cure age-, noise-, or drug-induced hearing loss. Sirtuins are proteins involved in metabolic regulation with the potential to ameliorate sensorineural hearing loss. The mammalian sirtuin family includes seven members, SIRT1-7. This paper is a literature review on the sirtuins and their protective roles in sensorineural hearing loss. Literature search on the NCBI PubMed database and NUsearch included the keywords 'sirtuin' and 'hearing'. Studies on sirtuins without relevance to hearing and studies on hearing without relevance to sirtuins were excluded. Only primary research articles with data on sirtuin expression and physiologic auditory tests were considered. The literature review identified 183 records on sirtuins and hearing. After removing duplicates, eighty-one records remained. After screening for eligibility criteria, there were forty-eight primary research articles with statistically significant data relevant to sirtuins and hearing. Overall, SIRT1 (n = 29) was the most studied sirtuin paralog. Over the last two decades, research on sirtuins and hearing has largely focused on age-, noise-, and drug-induced hearing loss. Past and current studies highlight the role of sirtuins as a mediator of redox homeostasis. However, more studies need to be conducted on the involvement of SIRT2 and SIRT4-7 in hearing protection.
Collapse
Affiliation(s)
- Chail Koo
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (C.K.); (C.-P.R.)
| | - Claus-Peter Richter
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (C.K.); (C.-P.R.)
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA
| | - Xiaodong Tan
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (C.K.); (C.-P.R.)
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
4
|
Feng B, Dong T, Song X, Zheng X, Jin C, Cheng Z, Liu Y, Zhang W, Wang X, Tao Y, Wu H. Personalized Porous Gelatin Methacryloyl Sustained-Release Nicotinamide Protects Against Noise-Induced Hearing Loss. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305682. [PMID: 38225752 DOI: 10.1002/advs.202305682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/11/2023] [Indexed: 01/17/2024]
Abstract
There are no Food and Drug Administration-approved drugs for treating noise-induced hearing loss (NIHL), reflecting the absence of clear specific therapeutic targets and effective delivery strategies. Noise trauma is demonstrated results in nicotinamide adenine dinucleotide (NAD+) downregulation and mitochondrial dysfunction in cochlear hair cells (HCs) and spiral ganglion neurons (SGNs) in mice, and NAD+ boosted by nicotinamide (NAM) supplementation maintains cochlear mitochondrial homeostasis and prevents neuroexcitatory toxic injury in vitro and ex vivo, also significantly ameliorated NIHL in vivo. To tackle the limited drug delivery efficiency due to sophisticated anatomical barriers and unique clearance pathway in ear, personalized NAM-encapsulated porous gelatin methacryloyl (PGMA@NAM) are developed based on anatomy topography of murine temporal bone by micro-computed tomography and reconstruction of round window (RW) niche, realizing hydrogel in situ implantation completely, NAM sustained-release and long-term auditory preservation in mice. This study strongly supports personalized PGMA@NAM as NIHL protection drug with effective inner ear delivery, providing new inspiration for drug-based treatment of NIHL.
Collapse
Affiliation(s)
- Baoyi Feng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Tingting Dong
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Xinyu Song
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xiaofei Zheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Chenxi Jin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Zhenzhe Cheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Yiqing Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xueling Wang
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Yong Tao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| |
Collapse
|
5
|
Li F, Wu C, Wang G. Targeting NAD Metabolism for the Therapy of Age-Related Neurodegenerative Diseases. Neurosci Bull 2024; 40:218-240. [PMID: 37253984 PMCID: PMC10838897 DOI: 10.1007/s12264-023-01072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/10/2023] [Indexed: 06/01/2023] Open
Abstract
As the aging population continues to grow rapidly, age-related diseases are becoming an increasing burden on the healthcare system and a major concern for the well-being of elderly individuals. While aging is an inevitable process for all humans, it can be slowed down and age-related diseases can be treated or alleviated. Nicotinamide adenine dinucleotide (NAD) is a critical coenzyme or cofactor that plays a central role in metabolism and is involved in various cellular processes including the maintenance of metabolic homeostasis, post-translational protein modifications, DNA repair, and immune responses. As individuals age, their NAD levels decline, and this decrease has been suggested to be a contributing factor to the development of numerous age-related diseases, such as cancer, diabetes, cardiovascular diseases, and neurodegenerative diseases. In pursuit of healthy aging, researchers have investigated approaches to boost or maintain NAD levels. Here, we provide an overview of NAD metabolism and the role of NAD in age-related diseases and summarize recent progress in the development of strategies that target NAD metabolism for the treatment of age-related diseases, particularly neurodegenerative diseases.
Collapse
Affiliation(s)
- Feifei Li
- School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Chou Wu
- School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Gelin Wang
- School of Pharmaceutical Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
6
|
Wei L, He X, Zhao D, Kandawa-Shultz M, Shao G, Wang Y. Biotin-conjugated Ru(II) complexes with AIE characteristics as mitochondria-targeted photosensitizers for enhancing photodynamic therapy by disrupting cellular redox balance. Eur J Med Chem 2024; 264:115985. [PMID: 38016298 DOI: 10.1016/j.ejmech.2023.115985] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/05/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
The potential use of Ru(II) complexes as photosensitizers (PSs) in photodynamic therapy (PDT) has gained significant attention. In comparison with fluorophores with aggregation-caused quenching (ACQ), fluorophores with aggregation-induced emission (AIE) characteristics exhibit sustained fluorescence and dispersibility in aqueous solutions. PSs with AIE characteristics have received much attention in recent years. Herein, we reported two novel biotin-conjugated Ru(II) polypyridyl complexes (Ru1 and Ru2) with AIE characteristics. When exposed to 460 nm (10 mW cm-2) light, Ru1 and Ru2 exhibited outstanding photostability and photocatalytic activity. Ru1 and Ru2 could efficiently generate singlet oxygen and induce pUC19 DNA photolysis when exposed to 460 nm light. Interestingly, both Ru1 and Ru2 also functioned as catalysts for NADH oxidation when exposed to 460 nm light. The presence of biotin fragments in Ru1 and Ru2 enhanced the specific uptake of these complexes by tumor cells. Both complexes showed minimal toxicity to selected cells in the dark. Nevertheless, the phototoxicity of both complexes significantly increased upon 460 nm light irradiation for 15 min. Further experiments revealed that Ru2 primarily accumulated in mitochondria and might bind to mitochondrial DNA. Under 460 nm light irradiation, Ru2 induced the generation of reactive oxygen species (ROS) and NADH depletion disrupting intracellular redox homeostasis in A549 cells, activating the mitochondrial apoptosis pathway resulting in up-regulation of apoptotic marker caspase-3, effectively damaged A549 cell DNA and arrested A549 cell cycle in the S phase. In vivo anti-tumor experiments were conducted to assess the effects of Ru2 on tumor growth in A549 tumor-bearing mice. The results showed that Ru2 effectively inhibited tumor growth under 460 nm light irradiation conditions. These findings indicate that Ru2 has great potential as a targeted photosensitizer for mitochondrial targeting imaging and photodynamic therapy of tumors.
Collapse
Affiliation(s)
- Lai Wei
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xiangdong He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Deming Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Martha Kandawa-Shultz
- Department of Chemistry and Biochemistry, University of Namibia, Windhoek, 13301, Namibia
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 211166, China.
| | - Yihong Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
7
|
Yuhan L, Khaleghi Ghadiri M, Gorji A. Impact of NQO1 dysregulation in CNS disorders. J Transl Med 2024; 22:4. [PMID: 38167027 PMCID: PMC10762857 DOI: 10.1186/s12967-023-04802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
NAD(P)H Quinone Dehydrogenase 1 (NQO1) plays a pivotal role in the regulation of neuronal function and synaptic plasticity, cellular adaptation to oxidative stress, neuroinflammatory and degenerative processes, and tumorigenesis in the central nervous system (CNS). Impairment of the NQO1 activity in the CNS can result in abnormal neurotransmitter release and clearance, increased oxidative stress, and aggravated cellular injury/death. Furthermore, it can cause disturbances in neural circuit function and synaptic neurotransmission. The abnormalities of NQO1 enzyme activity have been linked to the pathophysiological mechanisms of multiple neurological disorders, including Parkinson's disease, Alzheimer's disease, epilepsy, multiple sclerosis, cerebrovascular disease, traumatic brain injury, and brain malignancy. NQO1 contributes to various dimensions of tumorigenesis and treatment response in various brain tumors. The precise mechanisms through which abnormalities in NQO1 function contribute to these neurological disorders continue to be a subject of ongoing research. Building upon the existing knowledge, the present study reviews current investigations describing the role of NQO1 dysregulations in various neurological disorders. This study emphasizes the potential of NQO1 as a biomarker in diagnostic and prognostic approaches, as well as its suitability as a target for drug development strategies in neurological disorders.
Collapse
Affiliation(s)
- Li Yuhan
- Epilepsy Research Center, Münster University, Münster, Germany
- Department of Breast Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Ali Gorji
- Epilepsy Research Center, Münster University, Münster, Germany.
- Department of Neurosurgery, Münster University, Münster, Germany.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Rybak LP, Alberts I, Patel S, Al Aameri RFH, Ramkumar V. Effects of natural products on cisplatin ototoxicity and chemotherapeutic efficacy. Expert Opin Drug Metab Toxicol 2023; 19:635-652. [PMID: 37728555 DOI: 10.1080/17425255.2023.2260737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023]
Abstract
INTRODUCTION Cisplatin is a very effective chemotherapeutic agent against a variety of solid tumors. Unfortunately, cisplatin causes permanent sensorineural hearing loss in at least two-thirds of patients treated. There are no FDA approved drugs to prevent this serious side effect. AREAS COVERED This paper reviews various natural products that ameliorate cisplatin ototoxicity. These compounds are strong antioxidants and anti-inflammatory agents. This review includes mostly preclinical studies but also discusses a few small clinical trials with natural products to minimize hearing loss from cisplatin chemotherapy in patients. The interactions of natural products with cisplatin in tumor-bearing animal models are highlighted. A number of natural products did not interfere with cisplatin anti-tumor efficacy and some agents actually potentiated cisplatin anti-tumor activity. EXPERT OPINION There are a number of natural products or their derivatives that show excellent protection against cisplatin ototoxicity in preclinical studies. There is a need to insure uniform standards for purity of drugs derived from natural sources and to ensure adequate pharmacokinetics and safety of these products. Natural products that protect against cisplatin ototoxicity and augment cisplatin's anti-tumor effects in multiple studies of tumor-bearing animals are most promising for advancement to clinical trials. The most promising natural products include honokiol, sulforaphane, and thymoquinone.
Collapse
Affiliation(s)
- Leonard P Rybak
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Ian Alberts
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Shree Patel
- Department of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Raheem F H Al Aameri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| |
Collapse
|
9
|
IGF-1 Controls Metabolic Homeostasis and Survival in HEI-OC1 Auditory Cells through AKT and mTOR Signaling. Antioxidants (Basel) 2023; 12:antiox12020233. [PMID: 36829792 PMCID: PMC9952701 DOI: 10.3390/antiox12020233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) is a trophic factor for the nervous system where it exerts pleiotropic effects, including the regulation of metabolic homeostasis. IGF-1 deficiency induces morphological alterations in the cochlea, apoptosis and hearing loss. While multiple studies have addressed the role of IGF-1 in hearing protection, its potential function in the modulation of otic metabolism remains unclear. Here, we report that "House Ear Institute-organ of Corti 1" (HEI-OC1) auditory cells express IGF-system genes that are regulated during their differentiation. Upon binding to its high-affinity receptor IGF1R, IGF-1 activates AKT and mTOR signaling to stimulate anabolism and, concomitantly, to reduce autophagic catabolism in HEI-OC1 progenitor cells. Notably, IGF-1 stimulation during HEI-OC1 differentiation to mature otic cells sustained both constructive metabolism and autophagic flux, possibly to favor cell remodeling. IGF1R engagement and downstream AKT signaling promoted HEI-OC1 cell survival by maintaining redox balance, even when cells were challenged with the ototoxic agent cisplatin. Our findings establish that IGF-1 not only serves an important function in otic metabolic homeostasis but also activates antioxidant defense mechanisms to promote hair cell survival during the stress response to insults.
Collapse
|
10
|
Siegel D, Harris PS, Michel CR, de Cabo R, Fritz KS, Ross D. Redox state and the sirtuin deacetylases are major factors that regulate the acetylation status of the stress protein NQO1. Front Pharmacol 2022; 13:1015642. [DOI: 10.3389/fphar.2022.1015642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
The stress induced protein NQO1 can participate in a wide range of biological pathways which are dependent upon the interaction of NQO1 with protein targets. Many of the protein-protein interactions involving NQO1 have been shown to be regulated by the pyridine nucleotide redox balance. NQO1 can modify its conformation as a result of redox changes in pyridine nucleotides and sites on the C-terminal and helix seven regions of NQO1 have been identified as potential areas that may be involved in redox-dependent protein-protein interactions. Since post-translational modifications can modify the functionality of proteins, we examined whether redox-dependent conformational changes induced in NQO1 would alter lysine acetylation. Recombinant NQO1 was incubated with and without NADH then acetylated non-enzymatically by acetic anhydride or S-acetylglutathione (Ac-GSH). NQO1 acetylation was determined by immunoblot and site-specific lysine acetylation was quantified by mass spectrometry (MS). NQO1 was readily acetylated by acetic anhydride and Ac-GSH. Interestingly, despite a large number of lysine residues (9%) in NQO1 only a small subset of lysines were acetylated and the majority of these were located in or near the functional C-terminal or helix seven regions. Reduction of NQO1 by NADH prior to acetylation resulted in almost complete protection of NQO1 from lysine acetylation as confirmed by immunoblot analysis and MS. Lysines located within the redox-active C-terminus and helix seven regions were readily acetylated when NQO1 was in an oxidized conformation but were protected from acetylation when NQO1 was in the reduced conformation. To investigate regulatory mechanisms of enzymatic deacetylation, NQO1 was acetylated by Ac-GSH then exposed to purified sirtuins (SIRT 1-3) or histone deacetylase 6 (HDAC6). NQO1 could be deacetylated by all sirtuin isoforms and quantitative MS analysis performed using SIRT2 revealed very robust deacetylation of NQO1, specifically at K262 and K271 in the C-terminal region. No deacetylation of NQO1 by HDAC6 was detected. These data demonstrate that the same subset of key lysine residues in the C-terminal and helix seven regions of NQO1 undergo redox dependent acetylation and are regulated by sirtuin-mediated deacetylation.
Collapse
|
11
|
Lee SH, Kim HJ, Oh GS, Lee SB, Khadka D, Cao W, Choe SK, Shim H, Kim CD, Kwak TH, So HS. Augmentation of NAD + by Dunnione Ameliorates Imiquimod-Induced Psoriasis-Like Dermatitis in Mice. J Inflamm Res 2022; 15:4623-4636. [PMID: 35991005 PMCID: PMC9386739 DOI: 10.2147/jir.s372543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background Dunnione has anti-inflammatory properties arising from its ability to alter the ratio of NAD+/NADH through NAD(P)H quinone oxidoreductase 1 (NQO1) enzymatic action, followed by subsequent inhibition of NF-κB and inflammatory cytokines. Psoriasis is a chronic, inflammatory skin disorder in which the IL-23/Th17 axis plays an important role in inflammation. However, it is unclear whether modulation of NAD+ levels affects psoriasis, such as skin inflammation. Therefore, in this study, we investigated the effect of NAD+/NADH ratio modulation on imiquimod (IMQ)-induced, psoriasis-like skin inflammation in mice. Methods Psoriasis-like skin inflammation was generated by daily topical application of IMQ cream. The severity of dermatitis was assessed using the Psoriasis Area Severity Index (PASI) and histochemistry. Expression of inflammatory cytokines was detected by enzyme-linked immunosorbent assay and quantitative PCR. Acetylation of NF-κB p65 and STAT3 was determined by Western blotting. Results Dunnione improved IMQ-induced epidermal hyperplasia and inflammation, consistent with decreased levels of inflammatory cytokines (IL-17, IL-22, and IL-23) in skin lesions. Moreover, we found that an increase in the NAD+/NADH ratio by dunnione restored SIRT1 activity, thereby reduced imiquimod-induced STAT3 acetylation, which modulates the expression of psoriasis-promoting inflammatory cytokines, such as IL-17, IL-22, and IL-23. Conclusion Pharmacological modulation of cellular NAD+ levels could be a promising therapeutic approach for psoriasis-like skin disease.
Collapse
Affiliation(s)
- Seung Hoon Lee
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Hyung-Jin Kim
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Gi-Su Oh
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Su-Bin Lee
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Dipendra Khadka
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Wal Cao
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Seong-Kyu Choe
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Hyeok Shim
- Department of Hemato-Oncology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Chang-Deok Kim
- Department of Dermatology, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Tae Hwan Kwak
- R&D Center, NADIANBIO Ltd, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Hong-Seob So
- Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 54538, Republic of Korea.,R&D Center, NADIANBIO Ltd, Iksan, Jeonbuk, 54538, Republic of Korea
| |
Collapse
|
12
|
Safabakhsh S, Wijesinghe P, Nunez M, Nunez DA. The role of hypoxia-associated miRNAs in acquired sensorineural hearing loss. Front Cell Neurosci 2022; 16:916696. [PMID: 35990888 PMCID: PMC9389718 DOI: 10.3389/fncel.2022.916696] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/20/2022] [Indexed: 12/09/2022] Open
Abstract
Introduction: Sensorineural hearing loss (SNHL) is a prevalent sensory deficit presenting commonly as age-related hearing loss. Other forms of SNHL include noise-induced and sudden SNHL. Recent evidence has pointed to oxidative stress as a common pathogenic pathway in most subtypes of acquired SNHL. MicroRNAs (miRNAs) are small non-coding RNA sequences that suppress target mRNA expression and affect downstream processes. Many studies have shown that miRNAs are integral biomolecules in hypoxia-adaptive responses. They also promote apoptosis in response to oxidative stress resulting in SNHL. Our hypothesis is that miRNAs are involved in the pathophysiological responses to hypoxia and oxidative stress that result in SNHL. This study reviews the evidence for hypoxia-adaptive miRNAs (hypoxamiRs) in different types of acquired SNHL and focuses on miRNAs involved in hypoxia driven SNHL. Methods: Electronic bibliographic databases PubMed, Ovid MEDLINE, Ovid EMBASE, and Web of Science Core Collection were searched independently by two investigators for articles published in English from the inception of individual databases to the end of July 2020. The text word or medical subject heading searches of all fields, titles, abstracts, or subject headings depending on the database were undertaken with combinations of the words "microRNAs", "hypoxia", "hypoxamiRs", "oxidative stress", "ischemia" and "hearing loss". The reference lists of studies meeting the inclusion criteria were searched to identify additional relevant studies. The inclusion criteria included relevant clinical studies with human subjects, animals, and in vitro experiments. The risk of bias was assessed using the Cochrane risk of bias assessment tool for human studies and the Systematic Review Center for Laboratory animal Experimentation (SYRCLE) a risk of bias assessment tool for animal model and in vitro studies. Results: A total of 15 primary articles were selected for full text screening after excluding duplicates, reviews, retracted articles, and articles not published in English. All nine articles meeting the study inclusion criteria were from animal or in vitro model studies and were assessed to be at low risk of bias. miRNAs miR-34a and miR-29b were reported to be involved in SNHL in inner ear cell models exposed to oxidative stress. Signaling pathways Sirtuin 1/peroxisome proliferator-activated receptor gamma coactivator-1-alpha (SIRT1/PGC-1α), SIRT1/p53, and SIRT1/hypoxia-inducible factor 1-alpha (HIF-1α) were identified as underlying pathways involved in acquired SNHL. Conclusion: There is evidence that miR-34a and -29b are involved in hypoxia-driven and other causes of oxidative stress-related acquired SNHL. Further studies are required to determine if these findings are clinically applicable.
Collapse
Affiliation(s)
- Sina Safabakhsh
- Division of Otolaryngology—Head and Neck Surgery, Department of Surgery, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Printha Wijesinghe
- Division of Otolaryngology—Head and Neck Surgery, Department of Surgery, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Morgan Nunez
- Division of Otolaryngology—Head and Neck Surgery, Department of Surgery, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
- Faculty of Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Desmond A. Nunez
- Division of Otolaryngology—Head and Neck Surgery, Department of Surgery, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
- Division of Otolaryngology—Head and Neck Surgery, Gordon and Leslie Diamond Health Care Centre, Vancouver General Hospital, Vancouver, BC, Canada
| |
Collapse
|
13
|
Lin SY, Syu JP, Lo YT, Chau YP, Don MJ, Shy HT, Lai SM, Kung HN. Mitochondrial activity is the key to the protective effect of β-Lapachone, a NAD + booster, in healthy cells against cisplatin cytotoxicity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154094. [PMID: 35447421 DOI: 10.1016/j.phymed.2022.154094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 03/05/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cisplatin (CDDP) is a first-line chemotherapeutic drug for treating various cancers. However, CDDP also damages normal cells and causes many side effects. Recently, CDDP has been demonstrated to kill cancer cells by targeting mitochondria. Protecting mitochondria might be a potential therapeutic strategy for CDDP-induced side effects. β-Lapachone (β-lap), a recognized NAD+ booster, has been reported to regulate mitochondrial activity. However, it remains unclear whether maintaining mitochondrial activity is the key factor in the protective effects of β-lap in CDDP-treated normal cells. PURPOSE In this study, the protective effects of β-lap on mitochondria against CDDP cytotoxicity in normal cells were evaluated. STUDY DESIGN In vitro cell models were used in this study, including 3T3 fibroblasts, human dermal fibroblasts, MCF-7 breast cancer cells, and MDA-MB-231 breast cancer cells. METHODS Cells were treated with CDDP and β-lap, and cell survival, NAD+, mitochondrial activity, autophagy, and ATP production were measured. Various inhibitors and siRNAs were used to confirm the key signal underlying the protective effects of β-lap. RESULTS The results demonstrated that β-lap significantly decreased CDDP cytotoxicity in normal fibroblasts. With various inhibitors and siRNAs, β-lap reduced CDDP-induced damage to normal fibroblasts by maintaining mitochondrial activity and increasing autophagy through the NQO1/NAD+/SIRT1 axis. Most importantly, the protective effects of β-lap in fibroblasts did not affect the therapeutic effects of CDDP in cancer cells. This study indicated that mitochondrial activity, energy production, and NQO1 levels might be crucial responses separating normal cells from cancer cells under exposure to CDDP and β-lap. CONCLUSION β-lap could be a good synergistic drug for reducing the side effects of CDDP without affecting the anticancer drug effect.
Collapse
Affiliation(s)
- Sheng-Yi Lin
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Jhih-Pu Syu
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen-Ai Road, Taipei 10051, Taiwan
| | - Yu-Ting Lo
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen-Ai Road, Taipei 10051, Taiwan
| | - Yat-Pang Chau
- Department of Medicine, Mackay Medical College, Taipei, Taiwan
| | - Ming-Jaw Don
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Horng-Tzer Shy
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen-Ai Road, Taipei 10051, Taiwan
| | - Shu-Mei Lai
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen-Ai Road, Taipei 10051, Taiwan
| | - Hsiu-Ni Kung
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, 1-1 Jen-Ai Road, Taipei 10051, Taiwan.
| |
Collapse
|
14
|
Qiu D, Song S, Wang Y, Bian Y, Wu M, Wu H, Shi Y, Duan H. NAD(P)H: quinone oxidoreductase 1 attenuates oxidative stress and apoptosis by regulating Sirt1 in diabetic nephropathy. J Transl Med 2022; 20:44. [PMID: 35090502 PMCID: PMC8796493 DOI: 10.1186/s12967-021-03197-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/14/2021] [Indexed: 12/29/2022] Open
Abstract
Background Diabetic nephropathy (DN) is one of the main complications of diabetes, and oxidative stress plays an important role in its progression. NAD(P)H: quinone oxidoreductase 1 (NQO1) protects cells from oxidative stress and toxic quinone damage. In the present study, we aimed to investigate the protective effects and underlying mechanisms of NQO1 on diabetes-induced renal tubular epithelial cell oxidative stress and apoptosis. Methods In vivo, the kidneys of db/db mice, which are a type 2 diabetes model, were infected with adeno-associated virus to induce NQO1 overexpression. In vitro, human renal tubular epithelial cells (HK-2 cells) were transfected with NQO1 pcDNA3.1(+) and cultured in high glucose (HG). Gene and protein expression was assessed by quantitative real-time PCR, western blotting, immunofluorescence analysis, and immunohistochemical staining. Reactive oxygen species (ROS) were examined by MitoSox red and flow cytometry. TUNEL assays were used to measure apoptosis. Result In vivo, NQO1 overexpression reduced the urinary albumin/creatinine ratio (UACR) and blood urea nitrogen (BUN) level in db/db mice. Our results revealed that NQO1 overexpression could significantly increase the ratio of NAD+/NADH and silencing information regulator 1 (Sirt1) expression and block tubular oxidative stress and apoptosis in diabetic kidneys. In vitro, NQO1 overexpression reduced the generation of ROS, NADPH oxidase 1 (Nox1) and Nox4, the Bax/Bcl-2 ratio and the expression of Cleaved Caspase-3 and increased NAD+/NADH levels and Sirt1 expression in HK-2 cells under HG conditions. However, these effects were reversed by the Sirt1 inhibitor EX527. Conclusions All these data suggest that NQO1 has a protective effect against oxidative stress and apoptosis in DN, which may be mediated by the regulation of Sirt1 through increasing intracellular NAD+/NADH levels. Therefore, NQO1 may be a new therapeutic target for DN.
Collapse
Affiliation(s)
- Duojun Qiu
- Department of Pathology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, China
| | - Shan Song
- Department of Pathology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, China
| | - Yuhan Wang
- Department of Pathology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, China.,Digestive Department, Tangshan Workers Hospital, Tangshan, China
| | - Yawei Bian
- Department of Pathology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, China
| | - Ming Wu
- Department of Pathology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, China
| | - Haijiang Wu
- Department of Pathology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, China. .,Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China.
| | - Huijun Duan
- Department of Pathology, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, China. .,Hebei Key Laboratory of Kidney Diseases, Shijiazhuang, China.
| |
Collapse
|
15
|
Ramkumar V, Mukherjea D, Dhukhwa A, Rybak LP. Oxidative Stress and Inflammation Caused by Cisplatin Ototoxicity. Antioxidants (Basel) 2021; 10:antiox10121919. [PMID: 34943021 PMCID: PMC8750101 DOI: 10.3390/antiox10121919] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
Hearing loss is a significant health problem that can result from a variety of exogenous insults that generate oxidative stress and inflammation. This can produce cellular damage and impairment of hearing. Radiation damage, ageing, damage produced by cochlear implantation, acoustic trauma and ototoxic drug exposure can all generate reactive oxygen species in the inner ear with loss of sensory cells and hearing loss. Cisplatin ototoxicity is one of the major causes of hearing loss in children and adults. This review will address cisplatin ototoxicity. It includes discussion of the mechanisms associated with cisplatin-induced hearing loss including uptake pathways for cisplatin entry, oxidative stress due to overpowering antioxidant defense mechanisms, and the recently described toxic pathways that are activated by cisplatin, including necroptosis and ferroptosis. The cochlea contains G-protein coupled receptors that can be activated to provide protection. These include adenosine A1 receptors, cannabinoid 2 receptors (CB2) and the Sphingosine 1-Phosphate Receptor 2 (S1PR2). A variety of heat shock proteins (HSPs) can be up-regulated in the cochlea. The use of exosomes offers a novel method of delivery of HSPs to provide protection. A reversible MET channel blocker that can be administered orally may block cisplatin uptake into the cochlear cells. Several protective agents in preclinical studies have been shown to not interfere with cisplatin efficacy. Statins have shown efficacy in reducing cisplatin ototoxicity without compromising patient response to treatment. Additional clinical trials could provide exciting findings in the prevention of cisplatin ototoxicity.
Collapse
Affiliation(s)
- Vickram Ramkumar
- Department of Pharmacology, School of Medicine, Southern Illinois University, 801 N. Rutledge Street, Springfield, IL 62702, USA; (V.R.); (A.D.)
| | - Debashree Mukherjea
- Department of Otolaryngology, School of Medicine, Southern Illinois University, 801 N. Rutledge Street, Springfield, IL 62702, USA;
| | - Asmita Dhukhwa
- Department of Pharmacology, School of Medicine, Southern Illinois University, 801 N. Rutledge Street, Springfield, IL 62702, USA; (V.R.); (A.D.)
| | - Leonard P. Rybak
- Department of Otolaryngology, School of Medicine, Southern Illinois University, 801 N. Rutledge Street, Springfield, IL 62702, USA;
- Correspondence: ; Fax: +1-217-545-6544
| |
Collapse
|
16
|
Lee WS, Ham W, Kim J. Roles of NAD(P)H:quinone Oxidoreductase 1 in Diverse Diseases. Life (Basel) 2021; 11:life11121301. [PMID: 34947831 PMCID: PMC8703842 DOI: 10.3390/life11121301] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/07/2023] Open
Abstract
NAD(P)H:quinone oxidoreductase (NQO) is an antioxidant flavoprotein that catalyzes the reduction of highly reactive quinone metabolites by employing NAD(P)H as an electron donor. There are two NQO enzymes—NQO1 and NQO2—in mammalian systems. In particular, NQO1 exerts many biological activities, including antioxidant activities, anti-inflammatory effects, and interactions with tumor suppressors. Moreover, several recent studies have revealed the promising roles of NQO1 in protecting against cardiovascular damage and related diseases, such as dyslipidemia, atherosclerosis, insulin resistance, and metabolic syndrome. In this review, we discuss recent developments in the molecular regulation and biochemical properties of NQO1, and describe the potential beneficial roles of NQO1 in diseases associated with oxidative stress.
Collapse
Affiliation(s)
- Wang-Soo Lee
- Division of Cardiology, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
- Correspondence: (W.-S.L.); (J.K.); Tel.: +82-2-6299-1419 (W.-S.L.); +82-2-6299-1397 (J.K.)
| | - Woojin Ham
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea;
| | - Jaetaek Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea;
- Correspondence: (W.-S.L.); (J.K.); Tel.: +82-2-6299-1419 (W.-S.L.); +82-2-6299-1397 (J.K.)
| |
Collapse
|
17
|
Zhan T, Xiong H, Pang J, Zhang W, Ye Y, Liang Z, Huang X, He F, Jian B, He W, Gao Y, Min X, Zheng Y, Yang H. Modulation of NAD + biosynthesis activates SIRT1 and resists cisplatin-induced ototoxicity. Toxicol Lett 2021; 349:115-123. [PMID: 34089817 DOI: 10.1016/j.toxlet.2021.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/02/2021] [Accepted: 05/31/2021] [Indexed: 01/07/2023]
Abstract
Cisplatin, the most widely used platinum-based anticancer drug, often causes progressive and irreversible sensorineural hearing loss in cancer patients. However, the precise mechanism underlying cisplatin-associated ototoxicity is still unclear. Nicotinamide adenine dinucleotide (NAD+), a co-substrate for the sirtuin family and PARPs, has emerged as a potent therapeutic molecular target in various diseases. In our investigates, we observed that NAD+ level was changed in the cochlear explants of mice treated with cisplatin. Supplementation of a specific inhibitor (TES-1025) of α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD), a rate-limiting enzyme of NAD+de novo synthesis pathway, promoted SIRT1 activity, increased mtDNA contents and enhanced AMPK expression, thus significantly reducing hair cells loss and deformation. The protection was blocked by EX527, a specific SIRT1 inhibitor. Meanwhile, the use of NMN, a precursor of NAD+ salvage synthesis pathway, had shown beneficial effect on hair cell under cisplatin administration, effectively suppressing PARP1. In vivo experiments confirmed the hair cell protection of NAD+ modulators in cisplatin treated mice and zebrafish. In conclusion, we demonstrated that modulation of NAD+ biosynthesis via the de novo synthesis pathway and the salvage synthesis pathway could both prevent ototoxicity of cisplatin. These results suggested that direct modulation of cellular NAD+ levels could be a promising therapeutic approach for protection of hearing from cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Ting Zhan
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Jiaqi Pang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Weijian Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yongyi Ye
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Zhengrong Liang
- Department of Otolaryngology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaotong Huang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Feinan He
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bingquan Jian
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wuhui He
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yiming Gao
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xin Min
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Department of Hearing and Speech-Language Science, Xinhua College, Guangzhou, China.
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China; Department of Hearing and Speech-Language Science, Xinhua College, Guangzhou, China.
| |
Collapse
|
18
|
Li D, Yang Y, Wang S, He X, Liu M, Bai B, Tian C, Sun R, Yu T, Chu X. Role of acetylation in doxorubicin-induced cardiotoxicity. Redox Biol 2021; 46:102089. [PMID: 34364220 PMCID: PMC8350499 DOI: 10.1016/j.redox.2021.102089] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
As a potent chemotherapeutic agent, doxorubicin (DOX) is widely used for the treatment of a variety of cancers However, its clinical utility is limited by dose-dependent cardiotoxicity, and pathogenesis has traditionally been attributed to the formation of reactive oxygen species (ROS). Accordingly, the prevention of DOX-induced cardiotoxicity is an indispensable goal to optimize therapeutic regimens and reduce morbidity. Acetylation is an emerging and important epigenetic modification regulated by histone deacetylases (HDACs) and histone acetyltransferases (HATs). Despite extensive studies of the molecular basis and biological functions of acetylation, the application of acetylation as a therapeutic target for cardiotoxicity is in the initial stage, and further studies are required to clarify the complex acetylation network and improve the clinical management of cardiotoxicity. In this review, we summarize the pivotal functions of HDACs and HATs in DOX-induced oxidative stress, the underlying mechanisms, the contributions of noncoding RNAs (ncRNAs) and exercise-mediated deacetylases to cardiotoxicity. Furthermore, we describe research progress related to several important SIRT activators and HDAC inhibitors with potential clinical value for chemotherapy and cardiotoxicity. Collectively, a comprehensive understanding of specific roles and recent developments of acetylation in doxorubicin-induced cardiotoxicity will provide a basis for improved treatment outcomes in cancer and cardiovascular diseases.
Collapse
Affiliation(s)
- Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, Qingdao, 266071, China
| | - Shizhong Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Meixin Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Baochen Bai
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chao Tian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Ruicong Sun
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Basic Medicine School, Qingdao University, 38 Deng Zhou Road, Qingdao, 266021, China.
| | - Xianming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China; Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266071, China.
| |
Collapse
|
19
|
Gentilin E, Cani A, Simoni E, Chicca M, Di Paolo ML, Martini A, Astolfi L. Hydrogen peroxide toxicity on auditory cells: An in vitro study. Chem Biol Interact 2021; 345:109575. [PMID: 34228970 DOI: 10.1016/j.cbi.2021.109575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/04/2021] [Accepted: 07/02/2021] [Indexed: 01/22/2023]
Abstract
In recent decades, interest has increased in the role of reactive oxygen species (ROS) in health and disease. The ROS are key causative factors in several hearing loss pathologies including ototoxicity, noise trauma, cochlear ageing and ischemic injury. In order to investigate ROS effects on inner ear cells and counteract them, we developed an in vitro model of oxidative stress by exposing the inner ear cell line OC-k3 to hydrogen peroxide (H2O2) at concentrations able to affect in vivo cellular components but allowing cell survival. The treatment with high concentrations (20 and 30 μM) resulted in reduction of cell viability, activation of apoptosis/necrosis and alteration of morphology, cell cycle progression and antioxidant defences. The ROS effects in inner ear cells are difficult to assess in vivo. Organocultures may provide preservation of tissue architecture but involve ethical issues and can be used only for a limited time. An in vitro model that could be commercially available and easy to handle is necessary to investigate inner ear oxidative stress and the ways to counteract it. The OC-k3 line is a suitable in vitro model to study ROS effects on inner ear cells because the observed cell alterations and damages were similar to those reported in studies investigating ROS effects of ototoxic drugs, noise trauma and cochlear ageing.
Collapse
Affiliation(s)
- Erica Gentilin
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, Padua, Italy.
| | - Alice Cani
- Department of Woman and Children's Health, University of Padua, Padua, Italy.
| | - Edi Simoni
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, Padua, Italy.
| | - Milvia Chicca
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | | | - Alessandro Martini
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, Padua, Italy; Interdepartmental Research Centre "I-APPROVE - International Auditory Processing Project in Venice", University of Padua, Santi Giovanni e Paolo Hospital, ULSS3 Serenissima, Venice, Italy.
| | - Laura Astolfi
- Bioacoustics Research Laboratory, Department of Neurosciences, University of Padua, Padua, Italy; Interdepartmental Research Centre "I-APPROVE - International Auditory Processing Project in Venice", University of Padua, Santi Giovanni e Paolo Hospital, ULSS3 Serenissima, Venice, Italy.
| |
Collapse
|
20
|
Ghanem MS, Monacelli F, Nencioni A. Advances in NAD-Lowering Agents for Cancer Treatment. Nutrients 2021; 13:1665. [PMID: 34068917 PMCID: PMC8156468 DOI: 10.3390/nu13051665] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential redox cofactor, but it also acts as a substrate for NAD-consuming enzymes, regulating cellular events such as DNA repair and gene expression. Since such processes are fundamental to support cancer cell survival and proliferation, sustained NAD production is a hallmark of many types of neoplasms. Depleting intratumor NAD levels, mainly through interference with the NAD-biosynthetic machinery, has emerged as a promising anti-cancer strategy. NAD can be generated from tryptophan or nicotinic acid. In addition, the "salvage pathway" of NAD production, which uses nicotinamide, a byproduct of NAD degradation, as a substrate, is also widely active in mammalian cells and appears to be highly exploited by a subset of human cancers. In fact, research has mainly focused on inhibiting the key enzyme of the latter NAD production route, nicotinamide phosphoribosyltransferase (NAMPT), leading to the identification of numerous inhibitors, including FK866 and CHS-828. Unfortunately, the clinical activity of these agents proved limited, suggesting that the approaches for targeting NAD production in tumors need to be refined. In this contribution, we highlight the recent advancements in this field, including an overview of the NAD-lowering compounds that have been reported so far and the related in vitro and in vivo studies. We also describe the key NAD-producing pathways and their regulation in cancer cells. Finally, we summarize the approaches that have been explored to optimize the therapeutic response to NAMPT inhibitors in cancer.
Collapse
Affiliation(s)
- Moustafa S. Ghanem
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
21
|
Ross D, Siegel D. The diverse functionality of NQO1 and its roles in redox control. Redox Biol 2021; 41:101950. [PMID: 33774477 PMCID: PMC8027776 DOI: 10.1016/j.redox.2021.101950] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/20/2022] Open
Abstract
In this review, we summarize the multiple functions of NQO1, its established roles in redox processes and potential roles in redox control that are currently emerging. NQO1 has attracted interest due to its roles in cell defense and marked inducibility during cellular stress. Exogenous substrates for NQO1 include many xenobiotic quinones. Since NQO1 is highly expressed in many solid tumors, including via upregulation of Nrf2, the design of compounds activated by NQO1 and NQO1-targeted drug delivery have been active areas of research. Endogenous substrates have also been proposed and of relevance to redox stress are ubiquinone and vitamin E quinone, components of the plasma membrane redox system. Established roles for NQO1 include a superoxide reductase activity, NAD+ generation, interaction with proteins and their stabilization against proteasomal degradation, binding and regulation of mRNA translation and binding to microtubules including the mitotic spindles. We also summarize potential roles for NQO1 in regulation of glucose and insulin metabolism with relevance to diabetes and the metabolic syndrome, in Alzheimer's disease and in aging. The conformation and molecular interactions of NQO1 can be modulated by changes in the pyridine nucleotide redox balance suggesting that NQO1 may function as a redox-dependent molecular switch.
Collapse
Affiliation(s)
- David Ross
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - David Siegel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
22
|
Role of PGC-1α in the Mitochondrial NAD + Pool in Metabolic Diseases. Int J Mol Sci 2021; 22:ijms22094558. [PMID: 33925372 PMCID: PMC8123861 DOI: 10.3390/ijms22094558] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria play vital roles, including ATP generation, regulation of cellular metabolism, and cell survival. Mitochondria contain the majority of cellular nicotinamide adenine dinucleotide (NAD+), which an essential cofactor that regulates metabolic function. A decrease in both mitochondria biogenesis and NAD+ is a characteristic of metabolic diseases, and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) orchestrates mitochondrial biogenesis and is involved in mitochondrial NAD+ pool. Here we discuss how PGC-1α is involved in the NAD+ synthesis pathway and metabolism, as well as the strategy for increasing the NAD+ pool in the metabolic disease state.
Collapse
|
23
|
Dutta RK, Maharjan Y, Lee JN, Park C, Ho YS, Park R. Catalase deficiency induces reactive oxygen species mediated pexophagy and cell death in the liver during prolonged fasting. Biofactors 2021; 47:112-125. [PMID: 33496364 DOI: 10.1002/biof.1708] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022]
Abstract
Peroxisomes are dynamic organelles that participate in a diverse array of cellular processes, including β-oxidation, which produces a considerable amount of reactive oxygen species (ROS). Although we showed that catalase depletion induces ROS-mediated pexophagy in cells, the effect of catalase deficiency during conditions that favor ROS generation remains elusive in mice. In this study, we reported that prolonged fasting in catalase-knockout (KO) mice drastically increased ROS production, which induced liver-specific pexophagy, an autophagic degradation of peroxisomes. In addition, increased ROS generation induced the production of pro-inflammatory cytokines in the liver tissues of catalase-KO mice. Furthermore, there was a significant increase in the levels of aspartate transaminase and alanine transaminase as well as apparent cell death in the liver of catalase-KO mice during prolonged fasting. However, an intra-peritoneal injection of the antioxidant N-acetyl-l-cysteine (NAC) and autophagy inhibitor chloroquine inhibited the inflammatory response, liver damage, and pexophagy in the liver of catalase-KO mice during prolonged fasting. Consistently, genetic ablation of autophagy, Atg5 led to suppression of pexophagy during catalase inhibition by 3-aminotriazole (3AT). Moreover, treatment with chloroquine also ameliorated the inflammatory response and cell death in embryonic fibroblast cells from catalase-KO mice. Taken together, our data suggest that ROS-mediated liver-specific pexophagy observed during prolonged fasting in catalase-KO mice may be responsible for the process associated with hepatic cell death.
Collapse
Affiliation(s)
- Raghbendra Kumar Dutta
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, Republic of Korea
| | - Yunash Maharjan
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, Republic of Korea
| | - Joon No Lee
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, Republic of Korea
| | - Channy Park
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, Republic of Korea
| | - Ye-Shih Ho
- Institute of Environmental Health Sciences and Department of Biochemistry and Molecular Biology, Wayne State University, Detroit, Michigan, USA
| | - Raekil Park
- Department of Biomedical Science & Engineering, Gwangju Institute of Science & Technology, Gwangju, Republic of Korea
| |
Collapse
|
24
|
Mukherjea D, Dhukhwa A, Sapra A, Bhandari P, Woolford K, Franke J, Ramkumar V, Rybak L. Strategies to reduce the risk of platinum containing antineoplastic drug-induced ototoxicity. Expert Opin Drug Metab Toxicol 2020; 16:965-982. [PMID: 32757852 DOI: 10.1080/17425255.2020.1806235] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Cisplatin is a highly effective chemotherapeutic agent against a variety of solid tumors in adults and in children. Unfortunately, a large percentage of patients suffer permanent sensorineural hearing loss. Up to 60% of children and at least 50% of adults suffer this complication that seriously compromises their quality of life. Hearing loss is due to damage to the sensory cells in the inner ear. The mechanisms of cochlear damage are still being investigated. However, it appears that inner ear damage is triggered by reactive oxygen species (ROS) formation and inflammation 34. AREAS COVERED We discuss a number of potential therapeutic targets that can be addressed to provide hearing protection. These strategies include enhancing the endogenous antioxidant pathways, heat shock proteins, G protein coupled receptors and counteracting ROS and reactive nitrogen species, and blocking pathways that produce inflammation, including TRPV1 and STAT1 36. EXPERT OPINION Numerous potential protective agents show promise in animal models by systemic or local administration. However, clinical trials have not shown much efficacy to date with the exception of sodium thiosulfate. There is an urgent need to discover safe and effective protective agents that do not interfere with the efficacy of cisplatin against tumors yet preserve hearing 151.
Collapse
Affiliation(s)
| | - Asmita Dhukhwa
- Springfield Combined Laboratory Facility, Novear Therapeutics LLC ., Springfield, IL, USA
| | - Amit Sapra
- Department of Internal Medicine, SIU School of Medicine , Springfield, IL, USA
| | - Priyanka Bhandari
- Department of Internal Medicine, SIU School of Medicine , Springfield, IL, USA
| | - Katlyn Woolford
- Department of Otolaryngology, SIU School of Medicine , Springfield, IL, USA
| | - Jacob Franke
- Department of Otolaryngology, SIU School of Medicine , Springfield, IL, USA
| | - Vickram Ramkumar
- Department of Pharmacology, SIU School of Medicine , Springfield, IL, USA
| | - Leonard Rybak
- Department of Otolaryngology, SIU School of Medicine , Springfield, IL, USA
| |
Collapse
|
25
|
Arenas-Jal M, Suñé-Negre JM, García-Montoya E. Therapeutic potential of nicotinamide adenine dinucleotide (NAD). Eur J Pharmacol 2020; 879:173158. [PMID: 32360833 DOI: 10.1016/j.ejphar.2020.173158] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/06/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
Abstract
Nicotinamide adenine nucleotide (NAD) is a small ubiquitous hydrophilic cofactor that participates in several aspects of cellular metabolism. As a coenzyme it has an essential role in the regulation of energetic metabolism, but it is also a cosubstrate for enzymes that regulate fundamental biological processes such as transcriptional regulation, signaling and DNA repairing among others. The fluctuation and oxidative state of NAD levels regulate the activity of these enzymes, which is translated into marked effects on cellular function. While alterations in NAD homeostasis are a common feature of different conditions and age-associated diseases, in general, increased NAD levels have been associated with beneficial health effects. Due to its therapeutic potential, the interest in this molecule has been renewed, and the regulation of NAD metabolism has become an attractive target for drug discovery. In fact, different approaches to replenish or increase NAD levels have been tested, including enhancement of biosynthesis and inhibition of NAD breakdown. Despite further research is needed, this review provides an overview and update on NAD metabolism, including the therapeutic potential of its regulation, as well as pharmacokinetics, safety, precautions and formulation challenges of NAD supplementation.
Collapse
Affiliation(s)
- Marta Arenas-Jal
- Pharmacy and Pharmaceutical Technology Department (Faculty of Pharmacy and Food Sciences), University of Barcelona, Barcelona, Spain; ICN2 - Catalan Institute of Nanoscience and Nanotechnology (Autonomous University of Barcelona), Bellaterra (Barcelona), Spain.
| | - J M Suñé-Negre
- Pharmacy and Pharmaceutical Technology Department (Faculty of Pharmacy and Food Sciences), University of Barcelona, Barcelona, Spain
| | - Encarna García-Montoya
- Pharmacy and Pharmaceutical Technology Department (Faculty of Pharmacy and Food Sciences), University of Barcelona, Barcelona, Spain
| |
Collapse
|
26
|
Katsyuba E, Romani M, Hofer D, Auwerx J. NAD + homeostasis in health and disease. Nat Metab 2020; 2:9-31. [PMID: 32694684 DOI: 10.1038/s42255-019-0161-5] [Citation(s) in RCA: 385] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022]
Abstract
The conceptual evolution of nicotinamide adenine dinucleotide (NAD+) from being seen as a simple metabolic cofactor to a pivotal cosubstrate for proteins regulating metabolism and longevity, including the sirtuin family of protein deacylases, has led to a new wave of scientific interest in NAD+. NAD+ levels decline during ageing, and alterations in NAD+ homeostasis can be found in virtually all age-related diseases, including neurodegeneration, diabetes and cancer. In preclinical settings, various strategies to increase NAD+ levels have shown beneficial effects, thus starting a competitive race to discover marketable NAD+ boosters to improve healthspan and lifespan. Here, we review the basics of NAD+ biochemistry and metabolism, and its roles in health and disease, and we discuss current challenges and the future translational potential of NAD+ research.
Collapse
Affiliation(s)
- Elena Katsyuba
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Nagi Bioscience, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mario Romani
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Dina Hofer
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Thermo Fisher Scientific, Zug, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
27
|
Zhou Q, Zhu L, Qiu W, Liu Y, Yang F, Chen W, Xu R. Nicotinamide Riboside Enhances Mitochondrial Proteostasis and Adult Neurogenesis through Activation of Mitochondrial Unfolded Protein Response Signaling in the Brain of ALS SOD1 G93A Mice. Int J Biol Sci 2020; 16:284-297. [PMID: 31929756 PMCID: PMC6949147 DOI: 10.7150/ijbs.38487] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/28/2019] [Indexed: 01/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is caused by the progressive degeneration of motor neurons in the spinal cord, the brain stem, and the motor cortex. So far, there is still a lack of effective drugs. Nicotinamide adenine dinucleotide (NAD+) takes part in redox reactions and the NAD-dependent signaling pathway. The NAD+ decline is related with many neurological diseases, leading to the accumulation of neurotoxic protein in the central nervous system. Moreover, the NAD+ supplementation is shown to promote neural stem cells/neuronal precursor cells (NSCs/NPCs) pool maintenance. Regulatory mechanisms and functions of NAD+ metabolism in ALS are still unknown. Thus, we hypothesized the aggregation of human SOD1 toxic protein and the fate of NSCs/NPCs in the ALS disease could be improved by the administration of nicotinamide riboside (NR), an NAD+ precursor. In this study, we treated SOD1G93A transgenic and wild-type mice by the oral administration of 20 mg/ml NR starting at 50 days of age. Effects of NR on the body weight, the motor function, the onset and the survival were assessed during the experiment. The expression of mutant hSOD1 protein, mitochondrial unfolded protein response (UPRmt) related protein, mitophagy markers and NAD+ metabolism related protein were detected by immunoblotting. Effects of NR on the NSCs/NPCs in neurogenic niches of brain were identified by the immunofluorescence staining. Our investigation elucidated that the NR treatment exhibited better hanging wire endurance but did not postpone the onset or extend the life span of SOD1G93A mice. Besides, we observed that the NR repletion promoted the clearance of mitochondrial hSOD1 neurotoxic protein. Meanwhile, the mitochondrial function pathway was disrupted in the brain of SOD1G93A mice. What's more, we demonstrated that the inadequate function of NAD+ salvage synthesis pathway was the primary explanation behind the decline of NAD+, and the NR treatment enhanced the proliferation and migration of NSCs/NPCs in the brain of SOD1G93A mice. At last, we found that levels of UPRmt related protein were significantly increased in the brain of SOD1G93A mice after the NR treatment. In summary, these findings reveal that the administration of NR activates UPRmt signaling, modulates mitochondrial proteostasis and improves the adult neurogenesis in the brain of SOD1G93A mice.
Collapse
Affiliation(s)
- Qi Zhou
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Lei Zhu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Weiwen Qiu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yue Liu
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Fang Yang
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Wenzhi Chen
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Renshi Xu
- ✉ Corresponding author: Prof. Renshi Xu, or , Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang 330006, Jiangxi, China. Tel: +86 0791-88603798
| |
Collapse
|
28
|
Nan B, Gu X, Huang X. The Role of the Reactive Oxygen Species Scavenger Agent, Astaxanthin, in the Protection of Cisplatin-Treated Patients Against Hearing Loss. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4291-4303. [PMID: 31908415 PMCID: PMC6927222 DOI: 10.2147/dddt.s212313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022]
Abstract
Emerging evidence of significant hearing loss occurring shortly after cisplatin administration in cancer patients has stimulated research into the causes and treatment of this side effect. Although the aetiology of cisplatin-induced hearing loss (CIHL) remains unknown, an increasing body of research suggests that it is associated with excessive generation of intracellular reactive oxygen species (ROS) in the cochlea. Astaxanthin, a xanthophyll carotenoid, has powerful anti-oxidant, anti-inflammatory, and anti-apoptotic properties based on its unique cell membrane function, diverse biological activities, and ability to permeate the blood-brain barrier. In this review, we summarize the role of ROS in CIHL and the effect of astaxanthin on inhibiting ROS production. We focus on investigating the mechanism of action of astaxanthin in suppressing excessive production of ROS.
Collapse
Affiliation(s)
- Benyu Nan
- Department of Otorhinolaryngology-Head and Neck Surgery, Wenzhou Medical University, Affiliated Hospital 2, Wenzhou 325000, People's Republic of China.,Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, People's Republic of China
| | - Xi Gu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350000, People's Republic of China
| | - Xinsheng Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, People's Republic of China
| |
Collapse
|
29
|
Gentilin E, Simoni E, Candito M, Cazzador D, Astolfi L. Cisplatin-Induced Ototoxicity: Updates on Molecular Targets. Trends Mol Med 2019; 25:1123-1132. [DOI: 10.1016/j.molmed.2019.08.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/26/2019] [Accepted: 08/02/2019] [Indexed: 12/20/2022]
|
30
|
Nazari Soltan Ahmad S, Sanajou D, Kalantary-Charvadeh A, Hosseini V, Roshangar L, Khojastehfard M, Haiaty S, Mesgari-Abbasi M. β-LAPachone ameliorates doxorubicin-induced cardiotoxicity via regulating autophagy and Nrf2 signalling pathways in mice. Basic Clin Pharmacol Toxicol 2019; 126:364-373. [PMID: 31630478 DOI: 10.1111/bcpt.13340] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022]
Abstract
β-LAPachone (B-LAP) is a naphthoquinone that possesses antioxidant properties. In the present investigation, the protective effect of B-LAP against doxorubicin (DOX)-induced cardiotoxicity was examined in mice. Thirty-five mice were divided into 5 groups: control group, B-LAP (5 mg/kg) group, DOX (15 mg/kg) group, DOX+B-LAP (2.5 mg/kg) group and DOX+B-LAP (5 mg/kg) group. B-LAP was administered orally for 14 days of experimental period. A single dose of DOX (15 mg/kg) was injected intraperitoneally on day 3. Cardiac function, histoarchitecture, indices of oxidative stress and circulating markers of cardiac injury were examined. B-LAP (5 mg/kg) decreased serum levels of lactate dehydrogenase (LDH), creatine kinase MB (CK-MB) and cardiac troponin I (cTnI), and ameliorated cardiac histopathological alterations. In addition to increasing cellular NAD+ /NADH ratio, B-LAP up-regulated the cardiac levels of SIRT1, beclin-1, p-LKB1 and p-AMPK, and reduced the cardiac levels of p-mTOR, interleukin (IL)-1β, TNF (tumour necrosis factor)-α and caspase-3. B-LAP also elevated the nuclear accumulation of Nrf2 and simultaneously up-regulated the protein levels of haem oxygenase (HO-1) and glutathione S-transferase (GST) in the hearts of DOX mice. While B-LAP reduced malondialdehyde concentrations in heart of DOX-treated mice, it further promoted the activities of cardiac superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT).In accordance with increased cell survival, B-LAP significantly improved the cardiac function of DOX mice. Collectively, these findings underline the protective potential of B-LAP against DOX-induced cardiotoxicity by regulating autophagy and AMPK/Nrf2 signalling pathway in mice.
Collapse
Affiliation(s)
- Saeed Nazari Soltan Ahmad
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Sanajou
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahid Hosseini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Khojastehfard
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Department of Clinical Biochemistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
31
|
Prasad KN, Bondy SC. Increased oxidative stress, inflammation, and glutamate: Potential preventive and therapeutic targets for hearing disorders. Mech Ageing Dev 2019; 185:111191. [PMID: 31765645 DOI: 10.1016/j.mad.2019.111191] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/30/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022]
Abstract
Hearing disorders constitute one of the major health concerns in the USA. Decades of basic and clinical studies have identified numerous ototoxic agents and investigated their modes of action on the inner ear, utilizing tissue culture as well as animal and human models. Current preventive and therapeutic approaches are considered unsatisfactory. Therefore, additional modalities should be developed. Many studies suggest that increased levels of oxidative stress, chronic inflammation, and glutamate play an important role in the initiation and progression of damage to the inner ear leading to hearing impairments. To prevent these cellular deficits, antioxidants, anti-inflammatory agents, and antagonists of glutamate receptor have been used individually or in combination with limited success. It is essential, therefore, to simultaneously enhance the levels of antioxidant enzymes by activating the Nrf2 (a nuclear transcriptional factor) pathway, dietary and endogenous antioxidant compounds, and B12-vitamins in order to reduce the levels of oxidative stress, chronic inflammation, and glutamate at the same time. This review presents evidence to show that increased levels of these cellular metabolites, biochemical or factors are involved in the pathogenesis of cochlea leading to hearing impairments. It presents scientific rationale for the use of a mixture of micronutrients that may decrease the levels of oxidative damage, chronic inflammation, and glutamate at the same time. The benefits for using oral administration of proposed micronutrient mixture in humans are presented. Animal and limited human studies indirectly suggest that orally administered micronutrients can accumulate in the inner ear. Therefore, this route of administration may be useful in prevention, and in combination with standard care, in improved management of hearing problems following exposure to well-recognized and studied ototoxic agents, such as noise, cisplatin, aminoglycoside antibiotics, and advanced age.
Collapse
Affiliation(s)
- Kadar N Prasad
- Engage Global, 245 El Faisan Drive, San Rafael, CA, 94903, United States.
| | - Stephen C Bondy
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA, 92697-1830, United States
| |
Collapse
|
32
|
Cisplatin-resistant triple-negative breast cancer subtypes: multiple mechanisms of resistance. BMC Cancer 2019; 19:1039. [PMID: 31684899 PMCID: PMC6829976 DOI: 10.1186/s12885-019-6278-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Understanding mechanisms underlying specific chemotherapeutic responses in subtypes of cancer may improve identification of treatment strategies most likely to benefit particular patients. For example, triple-negative breast cancer (TNBC) patients have variable response to the chemotherapeutic agent cisplatin. Understanding the basis of treatment response in cancer subtypes will lead to more informed decisions about selection of treatment strategies. METHODS In this study we used an integrative functional genomics approach to investigate the molecular mechanisms underlying known cisplatin-response differences among subtypes of TNBC. To identify changes in gene expression that could explain mechanisms of resistance, we examined 102 evolutionarily conserved cisplatin-associated genes, evaluating their differential expression in the cisplatin-sensitive, basal-like 1 (BL1) and basal-like 2 (BL2) subtypes, and the two cisplatin-resistant, luminal androgen receptor (LAR) and mesenchymal (M) subtypes of TNBC. RESULTS We found 20 genes that were differentially expressed in at least one subtype. Fifteen of the 20 genes are associated with cell death and are distributed among all TNBC subtypes. The less cisplatin-responsive LAR and M TNBC subtypes show different regulation of 13 genes compared to the more sensitive BL1 and BL2 subtypes. These 13 genes identify a variety of cisplatin-resistance mechanisms including increased transport and detoxification of cisplatin, and mis-regulation of the epithelial to mesenchymal transition. CONCLUSIONS We identified gene signatures in resistant TNBC subtypes indicative of mechanisms of cisplatin. Our results indicate that response to cisplatin in TNBC has a complex foundation based on impact of treatment on distinct cellular pathways. We find that examination of expression data in the context of heterogeneous data such as drug-gene interactions leads to a better understanding of mechanisms at work in cancer therapy response.
Collapse
|
33
|
Cousins RPC. Medicines discovery for auditory disorders: Challenges for industry. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3652. [PMID: 31795652 DOI: 10.1121/1.5132706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Currently, no approved medicines are available for the prevention or treatment of hearing loss. Pharmaceutical industry productivity across all therapeutic indications has historically been disappointing, with a 90% chance of failure in delivering a marketed drug after entering clinical evaluation. To address these failings, initiatives have been applied in the three cornerstones of medicine discovery: target selection, clinical candidate selection, and clinical studies. These changes aimed to enable data-informed decisions on the translation of preclinical observations into a safe, clinically effective medicine by ensuring the best biological target is selected, the most appropriate chemical entity is advanced, and that the clinical studies enroll the correct patients. The specific underlying pathologies need to be known to allow appropriate patient selection, so improved diagnostics are required, as are methodologies for measuring in the inner ear target engagement, drug delivery and pharmacokinetics. The different therapeutic strategies of protecting hearing or preventing hearing loss versus restoring hearing are reviewed along with potential treatments for tinnitus. Examples of current investigational drugs are discussed to highlight key challenges in drug discovery and the learnings being applied to improve the probability of success of launching a marketed medicine.
Collapse
Affiliation(s)
- Rick P C Cousins
- University College London Ear Institute, University College London, London, WC1X 8EE, United Kingdom
| |
Collapse
|
34
|
Kim H, Cao W, Oh G, Lee S, Shen A, Khadka D, Lee S, Sharma S, Kim SY, Choe S, Kwak TH, Kim J, Park R, So H. Augmentation of cellular NAD + by NQO1 enzymatic action improves age-related hearing impairment. Aging Cell 2019; 18:e13016. [PMID: 31353811 PMCID: PMC6718544 DOI: 10.1111/acel.13016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 06/09/2019] [Accepted: 07/07/2019] [Indexed: 12/20/2022] Open
Abstract
Age-related hearing loss (ARHL) is a major neurodegenerative disorder and the leading cause of communication deficit in the elderly population, which remains largely untreated. The development of ARHL is a multifactorial event that includes both intrinsic and extrinsic factors. Recent studies suggest that NAD+ /NADH ratio may play a critical role in cellular senescence by regulating sirtuins, PARP-1, and PGC-1α. Nonetheless, the beneficial effect of direct modulation of cellular NAD+ levels on aging and age-related diseases has not been studied, and the underlying mechanisms remain obscure. Herein, we investigated the effect of β-lapachone (β-lap), a known plant-derived metabolite that modulates cellular NAD+ by conversion of NADH to NAD+ via the enzymatic action of NADH: quinone oxidoreductase 1 (NQO1) on ARHL in C57BL/6 mice. We elucidated that the reduction of cellular NAD+ during the aging process was an important contributor for ARHL; it facilitated oxidative stress and pro-inflammatory responses in the cochlear tissue through regulating sirtuins that alter various signaling pathways, such as NF-κB, p53, and IDH2. However, augmentation of NAD+ by β-lap effectively prevented ARHL and accompanying deleterious effects through reducing inflammation and oxidative stress, sustaining mitochondrial function, and promoting mitochondrial biogenesis in rodents. These results suggest that direct regulation of cellular NAD+ levels by pharmacological agents may be a tangible therapeutic option for treating various age-related diseases, including ARHL.
Collapse
Affiliation(s)
- Hyung‐Jin Kim
- Center for Metabolic Function Regulation (CMFR) and Department of Microbiology Wonkwang University School of Medicine Jeonbuk Korea
- NADIANBIO Ltd, Business Incubation Center Iksan Korea
| | - Wa Cao
- Center for Metabolic Function Regulation (CMFR) and Department of Microbiology Wonkwang University School of Medicine Jeonbuk Korea
| | - Gi‐Su Oh
- NADIANBIO Ltd, Business Incubation Center Iksan Korea
| | - SeungHoon Lee
- NADIANBIO Ltd, Business Incubation Center Iksan Korea
| | - AiHua Shen
- Center for Metabolic Function Regulation (CMFR) and Department of Microbiology Wonkwang University School of Medicine Jeonbuk Korea
| | - Dipendra Khadka
- Center for Metabolic Function Regulation (CMFR) and Department of Microbiology Wonkwang University School of Medicine Jeonbuk Korea
| | - Su‐Bin Lee
- Center for Metabolic Function Regulation (CMFR) and Department of Microbiology Wonkwang University School of Medicine Jeonbuk Korea
| | - Subham Sharma
- Center for Metabolic Function Regulation (CMFR) and Department of Microbiology Wonkwang University School of Medicine Jeonbuk Korea
| | - Seon Young Kim
- Center for Metabolic Function Regulation (CMFR) and Department of Microbiology Wonkwang University School of Medicine Jeonbuk Korea
| | - Seong‐Kyu Choe
- Center for Metabolic Function Regulation (CMFR) and Department of Microbiology Wonkwang University School of Medicine Jeonbuk Korea
| | - Tae Hwan Kwak
- NADIANBIO Ltd, Business Incubation Center Iksan Korea
| | - Jin‐Man Kim
- Department of Pathology and Infection Signaling Network Research Center Chungnam National University School of Medicine Daejeon Korea
| | - Raekil Park
- Department of Biomedical Science & Engineering, Institute of Integrated Technology Gwangju Institute of Science and Technology Gwangju Korea
| | - Hong‐Seob So
- Center for Metabolic Function Regulation (CMFR) and Department of Microbiology Wonkwang University School of Medicine Jeonbuk Korea
| |
Collapse
|
35
|
Tropitzsch A, Müller M, Paquet-Durand F, Mayer F, Kopp HG, Schrattenholz A, Müller A, Löwenheim H. Poly (ADP-Ribose) Polymerase-1 (PARP1) Deficiency and Pharmacological Inhibition by Pirenzepine Protects From Cisplatin-Induced Ototoxicity Without Affecting Antitumor Efficacy. Front Cell Neurosci 2019; 13:406. [PMID: 31551715 PMCID: PMC6746891 DOI: 10.3389/fncel.2019.00406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022] Open
Abstract
Cisplatin remains an indispensable drug for the systemic treatment of many solid tumors. However, a major dose-limiting side-effect is ototoxicity. In some scenarios, such as treatment of germ cell tumors or adjuvant therapy of non-small cell lung cancer, cisplatin cannot be replaced without undue loss of efficacy. Inhibition of polyadenosine diphosphate-ribose polymerase-1 (PARP1), is presently being evaluated as a novel anti-neoplastic principle. Of note, cisplatin-induced PARP1 activation has been related to inner ear cell death. Thus, PARP1 inhibition may exert a protective effect on the inner ear without compromising the antitumor activity of cisplatin. Here, we evaluated PARP1 deficiency and PARP1 pharmacological inhibition as a means to protect the auditory hair cells from cisplatin-mediated ototoxicity. We demonstrate that cisplatin-induced loss of sensory hair cells in the organ of Corti is attenuated in PARP1-deficient cochleae. The PARP inhibitor pirenzepine and its metabolite LS-75 mimicked the protective effect observed in PARP1-deficient cochleae. Moreover, the cytotoxic potential of cisplatin was unchanged by PARP inhibition in two different cancer cell lines. Taken together, the results from our study suggest that the negative side-effects of cisplatin anti-cancer treatment could be alleviated by a PARP inhibition adjunctive therapy.
Collapse
Affiliation(s)
- Anke Tropitzsch
- Department of Otorhinolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center, University of Tübingen Medical Center, Tübingen, Germany
| | - Marcus Müller
- Department of Otorhinolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center, University of Tübingen Medical Center, Tübingen, Germany
| | - François Paquet-Durand
- Cell Death Mechanisms Lab, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Frank Mayer
- Department of Oncology, Hematology, Immunology, Rheumatology and Pulmology, University of Tübingen Medical Center, Tübingen, Germany
| | - Hans-Georg Kopp
- Department of Oncology, Hematology, Immunology, Rheumatology and Pulmology, University of Tübingen Medical Center, Tübingen, Germany
| | | | - Andrea Müller
- Department of Otorhinolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center, University of Tübingen Medical Center, Tübingen, Germany
| | - Hubert Löwenheim
- Department of Otorhinolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center, University of Tübingen Medical Center, Tübingen, Germany
| |
Collapse
|
36
|
Pang J, Xiong H, Zhan T, Cheng G, Jia H, Ye Y, Su Z, Chen H, Lin H, Lai L, Ou Y, Xu Y, Chen S, Huang Q, Liang M, Cai Y, Zhang X, Xu X, Zheng Y, Yang H. Sirtuin 1 and Autophagy Attenuate Cisplatin-Induced Hair Cell Death in the Mouse Cochlea and Zebrafish Lateral Line. Front Cell Neurosci 2019; 12:515. [PMID: 30692914 PMCID: PMC6339946 DOI: 10.3389/fncel.2018.00515] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022] Open
Abstract
Cisplatin-induced ototoxicity is one of the major adverse effects in cisplatin chemotherapy, and hearing protective approaches are unavailable in clinical practice. Recent work unveiled a critical role of autophagy in cell survival in various types of hearing loss. Since the excessive activation of autophagy can contribute to apoptotic cell death, whether the activation of autophagy increases or decreases the rate of cell death in CDDP ototoxicity is still being debated. In this study, we showed that CDDP induced activation of autophagy in the auditory cell HEI-OC1 at the early stage. We then used rapamycin, an autophagy activator, to increase the autophagy activity, and found that the cell death significantly decreased after CDDP injury. In contrast, treatment with the autophagy inhibitor 3-methyladenine (3-MA) significantly increased cell death. In accordance with in vitro results, rapamycin alleviated CDDP-induced death of hair cells in zebrafish lateral line and cochlear hair cells in mice. Notably, we found that CDDP-induced increase of Sirtuin 1 (SIRT1) in the HEI-OC1 cells modulated the autophagy function. The specific SIRT1 activator SRT1720 could successfully protect against CDDP-induced cell loss in HEI-OC1 cells, zebrafish lateral line, and mice cochlea. These findings suggest that SIRT1 and autophagy activation can be suggested as potential therapeutic strategies for the treatment of CDDP-induced ototoxicity.
Collapse
Affiliation(s)
- Jiaqi Pang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Ting Zhan
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gui Cheng
- Department of Otolaryngology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haiying Jia
- Department of Otolaryngology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yongyi Ye
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhongwu Su
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongyu Chen
- Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Hanqing Lin
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lan Lai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yongkang Ou
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Yaodong Xu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Suijun Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Qiuhong Huang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Maojin Liang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Yuexin Cai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Xueyuan Zhang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Hearing and Speech Science, Xinhua College, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
37
|
Khadka D, Kim HJ, Oh GS, Shen A, Lee S, Lee SB, Sharma S, Kim SY, Pandit A, Choe SK, Kwak TH, Yang SH, Sim H, Eom GH, Park R, So HS. Augmentation of NAD + levels by enzymatic action of NAD(P)H quinone oxidoreductase 1 attenuates adriamycin-induced cardiac dysfunction in mice. J Mol Cell Cardiol 2018; 124:45-57. [PMID: 30291911 DOI: 10.1016/j.yjmcc.2018.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/18/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Adriamycin (ADR) is a powerful chemotherapeutic agent extensively used to treat various human neoplasms. However, its clinical utility is hampered due to severe adverse side effects i.e. cardiotoxicity and heart failure. ADR-induced cardiomyopathy (AIC) has been reported to be caused by myocardial damage and dysfunction through oxidative stress, DNA damage, and inflammatory responses. Nonetheless, the remedies for AIC are even not established. Therefore, we illustrate the role of NAD+/NADH modulation by NAD(P)H quinone oxidoreductase 1 (NQO1) enzymatic action on AIC. METHODS AND RESULTS AIC was established by intraperitoneal injection of ADR in C57BL/6 wild-type (WT) and NQO1 knockout (NQO1-/-) mice. All Mice were orally administered dunnione (named NQO1 substrate) before and after exposure to ADR. Cardiac biomarker levels in the plasma, cardiac dysfunction, oxidative biomarkers, and mRNA and protein levels of pro-inflammatory mediators were determined compared the cardiac toxicity of each experimental group. All biomarkers of Cardiac damage and oxidative stress, and mRNA levels of pro-inflammatory cytokines including cardiac dysfunction were increased in ADR-treated both WT and NQO1-/- mice. However, this increase was significantly reduced by dunnione in WT, but not in NQO1-/- mice. In addition, a decrease in SIRT1 activity due to a reduction in the NAD+/NADH ratio by PARP-1 hyperactivation was associated with AIC through increased nuclear factor (NF)-κB p65 and p53 acetylation in both WT and NQO1-/- mice. While an elevation in NAD+/NADH ratio via NQO1 enzymatic action using dunnione recovered SIRT1 activity and subsequently deacetylated NF-κB p65 and p53, however not in NQO1-/- mice, thereby attenuating AIC. CONCLUSION Thus, modulation of NAD+/NADH by NQO1 may be a novel therapeutic approach to prevent chemotherapy-associated heart failure, including AIC.
Collapse
Affiliation(s)
- Dipendra Khadka
- Center for Metabolic Function Regulation, & Department of Microbiology, Republic of Korea
| | - Hyung-Jin Kim
- Center for Metabolic Function Regulation, & Department of Microbiology, Republic of Korea
| | - Gi-Su Oh
- Center for Metabolic Function Regulation, & Department of Microbiology, Republic of Korea
| | - AiHua Shen
- Center for Metabolic Function Regulation, & Department of Microbiology, Republic of Korea
| | - SeungHoon Lee
- Center for Metabolic Function Regulation, & Department of Microbiology, Republic of Korea
| | - Su-Bin Lee
- Center for Metabolic Function Regulation, & Department of Microbiology, Republic of Korea
| | - Subham Sharma
- Center for Metabolic Function Regulation, & Department of Microbiology, Republic of Korea
| | - Seon Young Kim
- Center for Metabolic Function Regulation, & Department of Microbiology, Republic of Korea
| | - Arpana Pandit
- Center for Metabolic Function Regulation, & Department of Microbiology, Republic of Korea
| | - Seong-Kyu Choe
- Center for Metabolic Function Regulation, & Department of Microbiology, Republic of Korea
| | - Tae Hwan Kwak
- Center for Metabolic Function Regulation, & Department of Microbiology, Republic of Korea
| | - Sei-Hoon Yang
- Internal Medicine, School of Medicine Wonkwang, University School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Hyuk Sim
- Internal Medicine, School of Medicine Wonkwang, University School of Medicine, Iksan, Jeonbuk 54538, Republic of Korea
| | - Gwang Hyeon Eom
- Department of Pharmacology, Medical Research Center for Gene Regulation Chonnam, National University Medical School, Hwasungun Jeollanam-do 58128, Republic of Korea
| | - Raekil Park
- Department of Biomedical Science & Engineering, Institute of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hong-Seob So
- Center for Metabolic Function Regulation, & Department of Microbiology, Republic of Korea..
| |
Collapse
|
38
|
Seo KS, Kim JH, Min KN, Moon JA, Roh TC, Lee MJ, Lee KW, Min JE, Lee YM. KL1333, a Novel NAD + Modulator, Improves Energy Metabolism and Mitochondrial Dysfunction in MELAS Fibroblasts. Front Neurol 2018; 9:552. [PMID: 30026729 PMCID: PMC6041391 DOI: 10.3389/fneur.2018.00552] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/19/2018] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS), one of the most common maternally inherited mitochondrial diseases, is caused by mitochondrial DNA mutations that lead to mitochondrial dysfunction. Several treatment options exist, including supplementation with CoQ10, vitamins, and nutrients, but no treatment with proven efficacy is currently available. In this study, we investigated the effects of a novel NAD+ modulator, KL1333, in human fibroblasts derived from a human patient with MELAS. KL1333 is an orally available, small organic molecule that reacts with NAD(P)H:quinone oxidoreductase 1 (NQO1) as a substrate, resulting in increases in intracellular NAD+ levels via NADH oxidation. To elucidate the mechanism of action of KL1333, we used C2C12 myoblasts, L6 myoblasts, and MELAS fibroblasts. Elevated NAD+ levels induced by KL1333 triggered the activation of SIRT1 and AMPK, and subsequently activated PGC-1α in these cells. In MELAS fibroblasts, KL1333 increased ATP levels and decreased lactate and ROS levels, which are often dysregulated in this disease. In addition, mitochondrial functional analyses revealed that KL1333 increased mitochondrial mass, membrane potential, and oxidative capacity. These results indicate that KL1333 improves mitochondrial biogenesis and function, and thus represents a promising therapeutic agent for the treatment of MELAS.
Collapse
Affiliation(s)
- Kang-Sik Seo
- R&D Center, Yungjin Pharmaceutical, Suwon, South Korea
| | - Jin-Hwan Kim
- R&D Center, Yungjin Pharmaceutical, Suwon, South Korea
| | - Ki-Nam Min
- R&D Center, Yungjin Pharmaceutical, Suwon, South Korea
| | - Jeong-A Moon
- R&D Center, Yungjin Pharmaceutical, Suwon, South Korea
| | - Tae-Chul Roh
- R&D Center, Yungjin Pharmaceutical, Suwon, South Korea
| | - Mi-Jung Lee
- R&D Center, Yungjin Pharmaceutical, Suwon, South Korea
| | - Kang-Woo Lee
- R&D Center, Yungjin Pharmaceutical, Suwon, South Korea
| | - Ji-Eun Min
- R&D Center, Yungjin Pharmaceutical, Suwon, South Korea
| | - Young-Mock Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
39
|
Miguel V, Cui JY, Daimiel L, Espinosa-Díez C, Fernández-Hernando C, Kavanagh TJ, Lamas S. The Role of MicroRNAs in Environmental Risk Factors, Noise-Induced Hearing Loss, and Mental Stress. Antioxid Redox Signal 2018; 28:773-796. [PMID: 28562070 PMCID: PMC5911706 DOI: 10.1089/ars.2017.7175] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE MicroRNAs (miRNAs) are important regulators of gene expression and define part of the epigenetic signature. Their influence on every realm of biomedicine is established and progressively increasing. The impact of environment on human health is enormous. Among environmental risk factors impinging on quality of life are those of chemical nature (toxic chemicals, heavy metals, pollutants, and pesticides) as well as those related to everyday life such as exposure to noise or mental and psychosocial stress. Recent Advances: This review elaborates on the relationship between miRNAs and these environmental risk factors. CRITICAL ISSUES The most relevant facts underlying the role of miRNAs in the response to these environmental stressors, including redox regulatory changes and oxidative stress, are highlighted and discussed. In the cases wherein miRNA mutations are relevant for this response, the pertinent literature is also reviewed. FUTURE DIRECTIONS We conclude that, even though in some cases important advances have been made regarding close correlations between specific miRNAs and biological responses to environmental risk factors, a need for prospective large-cohort studies is likely necessary to establish causative roles. Antioxid. Redox Signal. 28, 773-796.
Collapse
Affiliation(s)
- Verónica Miguel
- 1 Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) , Madrid, Spain
| | - Julia Yue Cui
- 2 Department of Environmental and Occupational Health Sciences, University of Washington , Seattle, Washington
| | - Lidia Daimiel
- 3 Instituto Madrileño de Estudios Avanzados-Alimentación (IMDEA-Food) , Madrid, Spain
| | - Cristina Espinosa-Díez
- 4 Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University , Portland, Oregon
| | | | - Terrance J Kavanagh
- 2 Department of Environmental and Occupational Health Sciences, University of Washington , Seattle, Washington
| | - Santiago Lamas
- 1 Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) , Madrid, Spain
| |
Collapse
|
40
|
Fang EF, Lautrup S, Hou Y, Demarest TG, Croteau DL, Mattson MP, Bohr VA. NAD + in Aging: Molecular Mechanisms and Translational Implications. Trends Mol Med 2017; 23:899-916. [PMID: 28899755 PMCID: PMC7494058 DOI: 10.1016/j.molmed.2017.08.001] [Citation(s) in RCA: 344] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/31/2017] [Accepted: 08/07/2017] [Indexed: 12/19/2022]
Abstract
The coenzyme NAD+ is critical in cellular bioenergetics and adaptive stress responses. Its depletion has emerged as a fundamental feature of aging that may predispose to a wide range of chronic diseases. Maintenance of NAD+ levels is important for cells with high energy demands and for proficient neuronal function. NAD+ depletion is detected in major neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, cardiovascular disease and muscle atrophy. Emerging evidence suggests that NAD+ decrements occur in various tissues during aging, and that physiological and pharmacological interventions bolstering cellular NAD+ levels might retard aspects of aging and forestall some age-related diseases. Here, we discuss aspects of NAD+ biosynthesis, together with putative mechanisms of NAD+ action against aging, including recent preclinical and clinical trials.
Collapse
Affiliation(s)
- Evandro F Fang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway; Co-first authors
| | - Sofie Lautrup
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, 8000 Aarhus C, Denmark; Co-first authors
| | - Yujun Hou
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Tyler G Demarest
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Danish Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
41
|
Ross D, Siegel D. Functions of NQO1 in Cellular Protection and CoQ 10 Metabolism and its Potential Role as a Redox Sensitive Molecular Switch. Front Physiol 2017; 8:595. [PMID: 28883796 PMCID: PMC5573868 DOI: 10.3389/fphys.2017.00595] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/02/2017] [Indexed: 01/25/2023] Open
Abstract
NQO1 is one of the two major quinone reductases in mammalian systems. It is highly inducible and plays multiple roles in cellular adaptation to stress. A prevalent polymorphic form of NQO1 results in an absence of NQO1 protein and activity so it is important to elucidate the specific cellular functions of NQO1. Established roles of NQO1 include its ability to prevent certain quinones from one electron redox cycling but its role in quinone detoxification is dependent on the redox stability of the hydroquinone generated by two-electron reduction. Other documented roles of NQO1 include its ability to function as a component of the plasma membrane redox system generating antioxidant forms of ubiquinone and vitamin E and at high levels, as a direct superoxide reductase. Emerging roles of NQO1 include its function as an efficient intracellular generator of NAD+ for enzymes including PARP and sirtuins which has gained particular attention with respect to metabolic syndrome. NQO1 interacts with a growing list of proteins, including intrinsically disordered proteins, protecting them from 20S proteasomal degradation. The interactions of NQO1 also extend to mRNA. Recent identification of NQO1 as a mRNA binding protein have been investigated in more detail using SERPIN1A1 (which encodes the serine protease inhibitor α-1-antitrypsin) as a target mRNA and indicate a role of NQO1 in control of translation of α-1-antitrypsin, an important modulator of COPD and obesity related metabolic syndrome. NQO1 undergoes structural changes and alterations in its ability to bind other proteins as a result of the cellular reduced/oxidized pyridine nucleotide ratio. This suggests NQO1 may act as a cellular redox switch potentially altering its interactions with other proteins and mRNA as a result of the prevailing redox environment.
Collapse
Affiliation(s)
- David Ross
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical CampusAurora, CO, United States
| | - David Siegel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado Anschutz Medical CampusAurora, CO, United States
| |
Collapse
|
42
|
NAD + augmentation ameliorates acute pancreatitis through regulation of inflammasome signalling. Sci Rep 2017; 7:3006. [PMID: 28592850 PMCID: PMC5462749 DOI: 10.1038/s41598-017-03418-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 04/27/2017] [Indexed: 12/12/2022] Open
Abstract
Acute pancreatitis (AP) is a complicated disease without specific drug therapy. The cofactor nicotinamide adenine dinucleotide (NAD+) is an important regulator of cellular metabolism and homeostasis. However, it remains unclear whether modulation of NAD+ levels has an impact on caerulein-induced AP. Therefore, in this study, we investigated the effect of increased cellular NAD+ levels on caerulein-induced AP. We demonstrated for the first time that the activities and expression of SIRT1 were suppressed by reduction of intracellular NAD+ levels and the p53-microRNA-34a pathway in caerulein-induced AP. Moreover, we confirmed that the increase of cellular NAD+ by NQO1 enzymatic action using the substrate β-Lapachone suppressed caerulein-induced AP with down-regulating TLR4-mediated inflammasome signalling, and thereby reducing the inflammatory responses and pancreatic cell death. These results suggest that pharmacological stimulation of NQO1 could be a promising therapeutic strategy to protect against pathological tissue damage in AP.
Collapse
|
43
|
Gu DR, Lee JN, Oh GS, Kim HJ, Kim MS, Lee SH. The inhibitory effect of beta-lapachone on RANKL-induced osteoclastogenesis. Biochem Biophys Res Commun 2016; 482:1073-1079. [PMID: 27913299 DOI: 10.1016/j.bbrc.2016.11.160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 11/28/2016] [Indexed: 01/08/2023]
Abstract
β-lapachone (β-L) is a substrate of reduced nicotinamide adenine dinucleotide (NADH): quinone oxidoreductase 1 (NQO1). NQO1 reduces quinones to hydroquinones using NADH as an electron donor and consequently increases the intracellular NAD+/NADH ratio. The activation of NQO1 by β-L has beneficial effects on several metabolic syndromes, such as obesity, hypertension, and renal injury. However, the effect of β-L on bone metabolism remains unclear. Here, we show that β-L might be a potent inhibitor of receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis. β-L inhibited osteoclast formation in a dose-dependent manner and also reduced the expression of osteoclast differentiation marker genes, such as tartrate-resistant acid phosphatase (Acp5 or TRAP), cathepsin K (CtsK), the d2 isoform of vacuolar ATPase V0 domain (Atp6v0d2), osteoclast-associated receptor (Oscar), and dendritic cell-specific transmembrane protein (Dc-stamp). β-L treatment of RANKL-induced osteoclastogenesis significantly increased the cellular NAD+/NADH ratio and resulted in the activation of 5' AMP-activated protein kinase (AMPK), a negative regulator of osteoclast differentiation. In addition, β-L treatment led to significant suppression of the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and peroxisome proliferator-activated receptor gamma coactivator 1β (PGC1β), which can stimulate osteoclastogenesis. β-L treatment downregulated c-Fos and nuclear factor of activated T-cells 1 (NFATc1), which are master transcription factors for osteoclastogenesis. Taken together, the results demonstrated that β-L inhibits RANKL-induced osteoclastogenesis and could be considered a potent inhibitor of RANKL-mediated bone diseases, such as postmenopausal osteoporosis, rheumatoid arthritis, and periodontitis.
Collapse
Affiliation(s)
- Dong Ryun Gu
- Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Republic of Korea; Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Republic of Korea
| | - Joon No Lee
- Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Republic of Korea
| | - Gi-Su Oh
- Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Republic of Korea
| | - Hyung Jin Kim
- Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Republic of Korea
| | - Min Seuk Kim
- Department of Oral Physiology, College of Dentistry, Wonkwang University, Republic of Korea; Institute of Biomaterials Implant, Wonkwang University, Republic of Korea
| | - Seoung Hoon Lee
- Department of Oral Microbiology and Immunology, College of Dentistry, Wonkwang University, Republic of Korea; Center for Metabolic Function Regulation (CMFR), School of Medicine, Wonkwang University, Republic of Korea; Institute of Biomaterials Implant, Wonkwang University, Republic of Korea; Integrated Omics Institute, Wonkwang University, Iksan, Jeonbuk, 54538, Republic of Korea.
| |
Collapse
|
44
|
Oh GS, Lee SB, Karna A, Kim HJ, Shen A, Pandit A, Lee S, Yang SH, So HS. Increased Cellular NAD + Level through NQO1 Enzymatic Action Has Protective Effects on Bleomycin-Induced Lung Fibrosis in Mice. Tuberc Respir Dis (Seoul) 2016; 79:257-266. [PMID: 27790277 PMCID: PMC5077729 DOI: 10.4046/trd.2016.79.4.257] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/16/2016] [Accepted: 05/26/2016] [Indexed: 01/13/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis is a common interstitial lung disease; it is a chronic, progressive, and fatal lung disease of unknown etiology. Over the last two decades, knowledge about the underlying mechanisms of pulmonary fibrosis has improved markedly and facilitated the identification of potential targets for novel therapies. However, despite the large number of antifibrotic drugs being described in experimental pre-clinical studies, the translation of these findings into clinical practices has not been accomplished yet. NADH:quinone oxidoreductase 1 (NQO1) is a homodimeric enzyme that catalyzes the oxidation of NADH to NAD+ by various quinones and thereby elevates the intracellular NAD+ levels. In this study, we examined the effect of increase in cellular NAD+ levels on bleomycin-induced lung fibrosis in mice. Methods C57BL/6 mice were treated with intratracheal instillation of bleomycin. The mice were orally administered with β-lapachone from 3 days before exposure to bleomycin to 1-3 weeks after exposure to bleomycin. Bronchoalveolar lavage fluid (BALF) was collected for analyzing the infiltration of immune cells. In vitro, A549 cells were treated with transforming growth factor β1 (TGF-β1) and β-lapachone to analyze the extracellular matrix (ECM) and epithelial-mesenchymal transition (EMT). Results β-Lapachone strongly attenuated bleomycin-induced lung inflammation and fibrosis, characterized by histological staining, infiltrated immune cells in BALF, inflammatory cytokines, fibrotic score, and TGF-β1, α-smooth muscle actin accumulation. In addition, β-lapachone showed a protective role in TGF-β1–induced ECM expression and EMT in A549 cells. Conclusion Our results suggest that β-lapachone can protect against bleomycin-induced lung inflammation and fibrosis in mice and TGF-β1–induced EMT in vitro, by elevating the NAD+/NADH ratio through NQO1 activation.
Collapse
Affiliation(s)
- Gi-Su Oh
- Department of Microbiology, Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Korea
| | - Su-Bin Lee
- Department of Microbiology, Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Korea
| | - Anjani Karna
- Department of Microbiology, Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Korea
| | - Hyung-Jin Kim
- Department of Microbiology, Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Korea
| | - AiHua Shen
- Department of Microbiology, Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Korea
| | - Arpana Pandit
- Department of Microbiology, Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Korea
| | - SeungHoon Lee
- Department of Microbiology, Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Korea
| | - Sei-Hoon Yang
- Department of Internal Medicine, Wonkwang University School of Medicine, Iksan, Korea
| | - Hong-Seob So
- Department of Microbiology, Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Korea
| |
Collapse
|
45
|
Di Francesco A, Di Germanio C, Panda AC, Huynh P, Peaden R, Navas-Enamorado I, Bastian P, Lehrmann E, Diaz-Ruiz A, Ross D, Siegel D, Martindale JL, Bernier M, Gorospe M, Abdelmohsen K, de Cabo R. Novel RNA-binding activity of NQO1 promotes SERPINA1 mRNA translation. Free Radic Biol Med 2016; 99:225-233. [PMID: 27515817 PMCID: PMC5107118 DOI: 10.1016/j.freeradbiomed.2016.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/31/2016] [Accepted: 08/07/2016] [Indexed: 12/21/2022]
Abstract
NAD(P)H: quinone oxidoreductase (NQO1) is essential for cell defense against reactive oxidative species, cancer, and metabolic stress. Recently, NQO1 was found in ribonucleoprotein (RNP) complexes, but NQO1-interacting mRNAs and the functional impact of such interactions are not known. Here, we used ribonucleoprotein immunoprecipitation (RIP) and microarray analysis to identify comprehensively the subset of NQO1 target mRNAs in human hepatoma HepG2 cells. One of its main targets, SERPINA1 mRNA, encodes the serine protease inhibitor α-1-antitrypsin, A1AT, which is associated with disorders including obesity-related metabolic inflammation, chronic obstructive pulmonary disease (COPD), liver cirrhosis and hepatocellular carcinoma. Biotin pulldown analysis indicated that NQO1 can bind the 3' untranslated region (UTR) and the coding region (CR) of SERPINA1 mRNA. NQO1 did not affect SERPINA1 mRNA levels; instead, it enhanced the translation of SERPINA1 mRNA, as NQO1 silencing decreased the size of polysomes forming on SERPINA1 mRNA and lowered the abundance of A1AT. Luciferase reporter analysis further indicated that NQO1 regulates SERPINA1 mRNA translation through the SERPINA1 3'UTR. Accordingly, NQO1-KO mice had reduced hepatic and serum levels of A1AT and increased activity of neutrophil elastase (NE), one of the main targets of A1AT. We propose that this novel mechanism of action of NQO1 as an RNA-binding protein may help to explain its pleiotropic biological effects.
Collapse
Affiliation(s)
- Andrea Di Francesco
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
| | - Clara Di Germanio
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
| | - Amaresh C Panda
- RNA Regulation Section, Laboratory of Genetics and Genomics, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
| | - Phu Huynh
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
| | - Robert Peaden
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
| | - Ignacio Navas-Enamorado
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
| | - Paul Bastian
- RNA Regulation Section, Laboratory of Genetics and Genomics, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
| | - Elin Lehrmann
- RNA Regulation Section, Laboratory of Genetics and Genomics, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
| | - Alberto Diaz-Ruiz
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
| | - David Ross
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, 12858 East Montview Blvd., Aurora, CO 80045, USA
| | - David Siegel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, 12858 East Montview Blvd., Aurora, CO 80045, USA
| | - Jennifer L Martindale
- RNA Regulation Section, Laboratory of Genetics and Genomics, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
| | - Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- RNA Regulation Section, Laboratory of Genetics and Genomics, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- RNA Regulation Section, Laboratory of Genetics and Genomics, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA.
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224, USA.
| |
Collapse
|
46
|
Bianchi AR, Ferreri C, Ruggiero S, Deplano S, Sunda V, Galloro G, Formisano C, Mennella MRF. Automodification of PARP and fatty acid-based membrane lipidome as a promising integrated biomarker panel in molecular medicine. Biomark Med 2016; 10:229-242. [PMID: 26860237 DOI: 10.2217/bmm.16.3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/15/2016] [Indexed: 02/07/2023] Open
Abstract
AIM Establishing by statistical analyses whether the analyses of auto-modified poly(ADP-ribose)polymerase and erythrocyte membrane fatty acid composition (Fat Profile(®)), separately or in tandem, help monitoring the physio-pathology of the cell, and correlate with diseases, if present. PATIENTS & METHODS Ninety five subjects were interviewed and analyzed blindly. Blood lymphocytes and erythrocytes were prepared to assay poly(ADP-ribose)polymerase automodification and fatty acid based membrane lipidome, respectively. RESULTS Poly(ADP-ribose)polymerase automodification levels confirmed their correlation with DNA damage extent, and allowed monitoring disease activity, upon surgical/therapeutic treatment. Membrane lipidome profiles showed lipid unbalance mainly linked to inflammatory states. Statistically both tests were separately significant, and correlated each other within some pathologies. CONCLUSION In the laboratory routine, both tests, separately or in tandem, might be a preliminary and helpful step to investigate the occurrence of a given disease. Their combination represents a promising integrated panel for sensible, noninvasive and routine health monitoring.
Collapse
Affiliation(s)
- Anna Rita Bianchi
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| | - Carla Ferreri
- National Research Council (CNR), Institute of Organic Synthesis & Photoreactivity (ISOF), 40129 Bologna, Italy
| | - Simona Ruggiero
- Department of Clinical Medicine & Surgery, University of Naples "Federico II", 80135 Naples, Italy
| | - Simone Deplano
- Lipinutragen srl, Lipidomic Laboratory, 40129 Bologna, Italy
| | - Valentina Sunda
- Lipinutragen srl, Lipidomic Laboratory, 40129 Bologna, Italy
| | - Giuseppe Galloro
- Department of Clinical Medicine & Surgery, University of Naples "Federico II", 80135 Naples, Italy
| | - Cesare Formisano
- Department of Clinical Medicine & Surgery, University of Naples "Federico II", 80135 Naples, Italy
| | - Maria Rosaria Faraone Mennella
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
- National Institute of Biostructures & Biosystems, 00136 Rome, Italy
| |
Collapse
|
47
|
New Therapeutic Concept of NAD Redox Balance for Cisplatin Nephrotoxicity. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4048390. [PMID: 26881219 PMCID: PMC4736397 DOI: 10.1155/2016/4048390] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/09/2015] [Indexed: 12/14/2022]
Abstract
Cisplatin is a widely used chemotherapeutic agent for the treatment of various tumors. In addition to its antitumor activity, cisplatin affects normal cells and may induce adverse effects such as ototoxicity, nephrotoxicity, and peripheral neuropathy. Various mechanisms such as DNA adduct formation, mitochondrial dysfunction, oxidative stress, and inflammatory responses are closely associated with cisplatin-induced nephrotoxicity; however, the precise mechanism remains unclear. The cofactor nicotinamide adenine dinucleotide (NAD+) has emerged as a key regulator of cellular energy metabolism and homeostasis. Recent studies have demonstrated associations between disturbance in intracellular NAD+ levels and clinical progression of various diseases through the production of reactive oxygen species and inflammation. Furthermore, we demonstrated that reduction of the intracellular NAD+/NADH ratio is critically involved in cisplatin-induced kidney damage through inflammation and oxidative stress and that increase of the cellular NAD+/NADH ratio suppresses cisplatin-induced kidney damage by modulation of potential damage mediators such as oxidative stress and inflammatory responses. In this review, we describe the role of NAD+ metabolism in cisplatin-induced nephrotoxicity and discuss a potential strategy for the prevention or treatment of cisplatin-induced adverse effects with a particular focus on NAD+-dependent cellular pathways.
Collapse
|
48
|
Kim HJ, Pandit A, Oh GS, Shen A, Lee SB, Khadka D, Lee S, Shim H, Yang SH, Cho EY, Kwak TH, Choe SK, Park R, So HS. Dunnione ameliorates cisplatin ototoxicity through modulation of NAD(+) metabolism. Hear Res 2015; 333:235-246. [PMID: 26341473 DOI: 10.1016/j.heares.2015.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 08/25/2015] [Accepted: 08/27/2015] [Indexed: 12/14/2022]
Abstract
Ototoxicity is an important issue in patients receiving cisplatin chemotherapy. Numerous studies have demonstrated that cisplatin-induced ototoxicity is related to oxidative stress and DNA damage. However, the precise mechanism underlying cisplatin-associated ototoxicity is still unclear. The cofactor nicotinamide adenine dinucleotide (NAD(+)) has emerged as an important regulator of energy metabolism and cellular homeostasis. Here, we demonstrate that the levels and activities of sirtuin-1 (SIRT1) are suppressed by the reduction of intracellular NAD(+) levels in cisplatin-mediated ototoxicity. We provide evidence that the decreases in SIRT1 activity and expression facilitated by increasing poly(ADP-ribose) polymerase-1 (PARP-1) activation and microRNA-34a levels through cisplatin-mediated p53 activation aggravate the associated ototoxicity. Furthermore, we show that the induction of cellular NAD(+) levels using dunnione, which targets intracellular NQO1, prevents the toxic effects of cisplatin through the regulation of PARP-1 and SIRT1 activity. These results suggest that direct modulation of cellular NAD(+) levels by pharmacological agents could be a promising therapeutic approach for protection from cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Hyung-Jin Kim
- Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Arpana Pandit
- Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Gi-Su Oh
- Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - AiHua Shen
- Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Su-Bin Lee
- Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Dipendra Khadka
- Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - SeungHoon Lee
- Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Hyeok Shim
- Department of Internal Medicine, Wonkwang University School of Medicine, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Sei-Hoon Yang
- Department of Internal Medicine, Wonkwang University School of Medicine, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Eun-Young Cho
- Department of Internal Medicine, Wonkwang University School of Medicine, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Tae Hwan Kwak
- PAEAN Biotechnology, 160 Techno-2 Street, Yuseong-gu, Daejeon, 305-500, Republic of Korea
| | - Seong-Kyu Choe
- Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Raekil Park
- Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Hong-Seob So
- Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, 570-749, Republic of Korea.
| |
Collapse
|
49
|
Poulose N, Raju R. Sirtuin regulation in aging and injury. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2442-55. [PMID: 26303641 DOI: 10.1016/j.bbadis.2015.08.017] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/03/2015] [Accepted: 08/20/2015] [Indexed: 12/17/2022]
Abstract
Sirtuins or Sir2 family of proteins are a class of NAD(+) dependent protein deacetylases which are evolutionarily conserved from bacteria to humans. Some sirtuins also exhibit mono-ADP ribosyl transferase, demalonylation and desuccinylation activities. Originally identified in the yeast, these proteins regulate key cellular processes like cell cycle, apoptosis, metabolic regulation and inflammation. Humans encode seven sirtuin isoforms SIRT1-SIRT7 with varying intracellular distribution. Apart from their classic role as histone deacetylases regulating transcription, a number of cytoplasmic and mitochondrial targets of sirtuins have also been identified. Sirtuins have been implicated in longevity and accumulating evidence indicate their role in a spectrum of diseases like cancer, diabetes, obesity and neurodegenerative diseases. A number of studies have reported profound changes in SIRT1 expression and activity linked to mitochondrial functional alterations following hypoxic-ischemic conditions and following reoxygenation injury. The SIRT1 mediated deacetylation of targets such as PGC-1α, FOXO3, p53 and NF-κb has profound effect on mitochondrial function, apoptosis and inflammation. These biological processes and functions are critical in life-span determination and outcome following injury. Aging is reported to be characterized by declining SIRT1 activity, and its increased expression or activation demonstrated prolonged life-span in lower forms of animals. A pseudohypoxic state due to declining NAD(+) has also been implicated in aging. In this review we provide an overview of studies on the role of sirtuins in aging and injury.
Collapse
Affiliation(s)
- Ninu Poulose
- Georgia Regents University, Augusta, GA 30912, United States
| | - Raghavan Raju
- Georgia Regents University, Augusta, GA 30912, United States.
| |
Collapse
|
50
|
Pourrajab F, Vakili Zarch A, Hekmatimoghaddam S, Zare-Khormizi MR. The master switchers in the aging of cardiovascular system, reverse senescence by microRNA signatures; as highly conserved molecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:111-28. [PMID: 26033200 DOI: 10.1016/j.pbiomolbio.2015.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/17/2015] [Accepted: 05/27/2015] [Indexed: 02/07/2023]
Abstract
The incidence of CVD increases with aging, because of long-term exposure to risk factors/stressors. Aging is a complex biological process resulting in progressive loss of physiological integrity, leading to impaired function and increased vulnerability to death. The main hallmarks of aging are cellular senescence, stem cell exhaustion, and altered intracellular communication. The major hallmarks of senescence are mitochondrial dysfunction, genomic instability, telomere attrition and epigenetic alterations, all of which contributing to cellular aging. Such events are controls by a family of small, non-coding RNAs (miRNAs) that interact with component of cellular senescence pathway; mitochondrial biogenesis/removal, DNA damage response machinery and IGF-1 signaling pathway. Here, we review recent in vivo/in vitro reports that miRNAs are key modulators of heart senescence, and act as master switchers to influence reprogramming pathway. We discuss evidence that abrupt deregulation of some mit-miRNAs governing senescence programs underlies age-associated CVD. In particular, due to the highly conserved nature and well-recognized target sites, miRNAs have been defined as master switchers in controlling heart progenitor cell biology. Modulation of mit-miRNA expression holds the great promise in switching off/on cellular senescence/reprogramming to rejuvenate stem cells to aid regenerative process.
Collapse
Affiliation(s)
- Fatemeh Pourrajab
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Clinical Biochemistry and Molecular Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Abbas Vakili Zarch
- School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedhossein Hekmatimoghaddam
- Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|