1
|
WANG JIAHUI, GE HONGCHENG, YU ZHENGYUAN, WU LINGZHI. Non-coding RNAs as potential mediators of resistance to lung cancer immunotherapy and chemotherapy. Oncol Res 2025; 33:1033-1054. [PMID: 40296912 PMCID: PMC12034021 DOI: 10.32604/or.2024.058256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/18/2024] [Indexed: 04/30/2025] Open
Abstract
Lung cancer is a common cause of cancer-related death globally. The majority of lung cancer patients initially benefit from chemotherapy and immunotherapy. However, as the treatment cycle progresses and the disease evolves, the emergence of acquired resistance leads to treatment failure. Many researches have shown that non-coding RNAs (ncRNAs) not only influence lung cancer progression but also act as potential mediators of immunotherapy and chemotherapy resistance in lung cancer, mediating drug resistance by regulating multiple targets and pathways. In addition, the regulation of immune response by ncRNAs is dualistic, forming a microenvironment for inhibits/promotes immune escape through changes in the expression of immune checkpoints. The aim of this review is to understand the effects of ncRNAs on the occurrence and development of lung cancer, focusing on the role of ncRNAs in regulating drug resistance of lung cancer.
Collapse
Affiliation(s)
- JIAHUI WANG
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - HONGCHENG GE
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310018, China
| | - ZHENGYUAN YU
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - LINGZHI WU
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| |
Collapse
|
2
|
Zhan X, Zhong CM, Tang H, Xiao H, Guo Y, Zhang C, Qu C, Wang X, Huang C. microRNA-18a-5p promotes vascular smooth muscle cell phenotypic switch by targeting Notch2 as therapeutic targets in vein grafts restenosis. Eur J Pharmacol 2024; 985:177097. [PMID: 39522684 DOI: 10.1016/j.ejphar.2024.177097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Vascular smooth muscle cells (VSMCs) phenotype switching plays a crucial role in vein graft restenosis following coronary artery bypass grafting (CABG) surgery. To discover novel clinically relevant therapeutic targets for vein graft restenosis after CABG, we therefore investigated whether miRNA-18a-5p mediated phenotype switching plays a critical role in the development of vein graft restenosis. We studied miRNA-18a-5p expression in plasma samples of patients with or without vein graft restenosis at 1, 3 and 5 years after coronary artery bypass graft surgery, and in normal vs. atherosclerotic human femoral artery samples, to prove its role in VSMC phenotype switching. We found that the expression of miRNA-18a-5p significantly increased in vein grafts restenosis rat model after bypass surgery at 7, 14, 28 days and human blood specimens with vein grafts failure after grafting surgery. Through gain- and loss-of-function approaches, we determined that miRNA-18a-5p affects VSMC proliferation, migration, differentiation, and contractility. Notch2 was found to be a direct target of miRNA-18a-5p, which is critical for VSMC phenotype switching. Finally, miRNA-18a-5p knockdown used miRNA sponge via AAV6 locally delivery in vivo, miRNA-18a-5p sponge gene transfer therapy reduced the neointimal area, neointimal thickness, and intimal/media area ratio in vein grafts compared with the controls and improved vein graft hemodynamics. miRNA-18a-5p is a critical modulator of VSMC phenotypic switch during development of vein graft restenosis by downregulating Notch2, therefore targeting miRNA-18a-5p may be a helpful strategy for the treatment of vein grafts restenosis or failure after CABG surgery.
Collapse
MESH Headings
- MicroRNAs/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Animals
- Humans
- Receptor, Notch2/genetics
- Receptor, Notch2/metabolism
- Rats
- Male
- Phenotype
- Graft Occlusion, Vascular/genetics
- Graft Occlusion, Vascular/pathology
- Graft Occlusion, Vascular/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Cell Proliferation/genetics
- Rats, Sprague-Dawley
- Coronary Artery Bypass/adverse effects
- Cell Movement/genetics
- Neointima/pathology
- Coronary Restenosis/genetics
- Coronary Restenosis/etiology
- Coronary Restenosis/pathology
- Coronary Restenosis/metabolism
Collapse
Affiliation(s)
- Xu Zhan
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chang-Ming Zhong
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hao Tang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hansong Xiao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yongzheng Guo
- Division of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Centre for Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| | - Can Qu
- Division of Pharmacology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Chun Huang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
Wu S, Luo T, Lei X, Yang X. Emerging role of competing endogenous RNA in lung cancer drug resistance. J Chemother 2024; 36:546-565. [PMID: 38124356 DOI: 10.1080/1120009x.2023.2294582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Lung cancer remains one of the most common malignant cancers worldwide, and its survival rate is extremely low. Chemotherapy, the mainstay of lung cancer treatment, is not as effective as it could be due to the development of cellular resistance. The molecular mechanisms of drug resistance in lung cancer remain to be elucidated. Accumulating evidence suggests that ceRNAs are involved in various carcinogenesis and development. CeRNA is a transcript that regulates each other through competition with miRNA. However, the relationship between ceRNAs and chemoresistance in lung cancer remains unclear. In this narrative review, we provided a summary of treatment approaches that focus on ceRNA networks to overcome drug resistance.
Collapse
Affiliation(s)
- Shijie Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
| | - Ting Luo
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People's Republic of China
| |
Collapse
|
4
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Liu X, Chai B, Wang X, Wu Z, Zou H, Liu Y, Zheng S, Qian G, Ma Z, Lu J. Environmentally Persistent Free Radical Promotes Lung Cancer Progression by Regulating the Expression Profile of miRNAs. Cancer Biother Radiopharm 2024; 39:584-592. [PMID: 35594306 DOI: 10.1089/cbr.2021.0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Environmentally persistent free radicals (EPFRs) are generated in the combustion processes of solid waste and can cause adverse influences on human health, especially lung diseases. Lung cancer is one of the most serious malignancies in recent years, which the global deaths rate is about 1.6 million every year. Methods and Results: In this study, we verified that ZnO/MCB EPFRs promote cell proliferation and migration, impedes cell apoptosis in lung cancer. Furthermore, we found that ZnO/MCB could influence the expression of miRNAs (miR-18a and miR-34a). In vivo, ZnO/MCB and ZnO EPFRs can reduce the weight and survival rate of BALB/c male mice more than that of BALB/c female mice. In the ZnO/MCB exposed group, male mice lung became even smaller, while the female mice the lung increased significantly. Taken together, our results provide evidence for assessing the potential health risks of persistent free radicals on fine particles. Conclusions: This study linked toxicity of EPFRs with miRNAs revealed the potential health hazard to human lung cancer.
Collapse
Affiliation(s)
- Xiaomin Liu
- Shanghai Tobacco Group Corp, Shanghai, P.R. China
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, P.R. China
| | - Binshu Chai
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, P.R. China
| | - Xianyi Wang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, P.R. China
| | - Zong Wu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, P.R. China
| | - Heng Zou
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, P.R. China
| | - Yangyang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, P.R. China
| | | | - Guangren Qian
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, P.R. China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, P.R. China
| | - Jie Lu
- Shanghai Tobacco Group Corp, Shanghai, P.R. China
| |
Collapse
|
6
|
Chakraborty S, Nandi P, Mishra J, Niharika, Roy A, Manna S, Baral T, Mishra P, Mishra PK, Patra SK. Molecular mechanisms in regulation of autophagy and apoptosis in view of epigenetic regulation of genes and involvement of liquid-liquid phase separation. Cancer Lett 2024; 587:216779. [PMID: 38458592 DOI: 10.1016/j.canlet.2024.216779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Cellular physiology is critically regulated by multiple signaling nexuses, among which cell death mechanisms play crucial roles in controlling the homeostatic landscape at the tissue level within an organism. Apoptosis, also known as programmed cell death, can be induced by external and internal stimuli directing the cells to commit suicide in unfavourable conditions. In contrast, stress conditions like nutrient deprivation, infection and hypoxia trigger autophagy, which is lysosome-mediated processing of damaged cellular organelle for recycling of the degraded products, including amino acids. Apparently, apoptosis and autophagy both are catabolic and tumor-suppressive pathways; apoptosis is essential during development and cancer cell death, while autophagy promotes cell survival under stress. Moreover, autophagy plays dual role during cancer development and progression by facilitating the survival of cancer cells under stressed conditions and inducing death in extreme adversity. Despite having two different molecular mechanisms, both apoptosis and autophagy are interconnected by several crosslinking intermediates. Epigenetic modifications, such as DNA methylation, post-translational modification of histone tails, and miRNA play a pivotal role in regulating genes involved in both autophagy and apoptosis. Both autophagic and apoptotic genes can undergo various epigenetic modifications and promote or inhibit these processes under normal and cancerous conditions. Epigenetic modifiers are uniquely important in controlling the signaling pathways regulating autophagy and apoptosis. Therefore, these epigenetic modifiers of both autophagic and apoptotic genes can act as novel therapeutic targets against cancers. Additionally, liquid-liquid phase separation (LLPS) also modulates the aggregation of misfolded proteins and provokes autophagy in the cytosolic environment. This review deals with the molecular mechanisms of both autophagy and apoptosis including crosstalk between them; emphasizing epigenetic regulation, involvement of LLPS therein, and possible therapeutic approaches against cancers.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
7
|
Franz C, Jötten L, Wührl M, Hartmann S, Klupp F, Schmidt T, Schneider M. Protective effect of miR-18a in resected liver metastases of colorectal cancer and FOLFOX treatment. Cancer Rep (Hoboken) 2023; 6:e1899. [PMID: 37698257 PMCID: PMC10728504 DOI: 10.1002/cnr2.1899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/22/2023] [Accepted: 08/27/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Colorectal cancer ranks second in terms of cancer associated deaths worldwide, whereas miRNA play a pivotal role in the etiology of cancer and its metastases. AIMS Studying the expression and cellular function of miR-18a in metastatic colorectal cancer and association to progression-free survival. METHODS AND RESULTS Colorectal liver metastases (N = 123) and primary colorectal cancer (N = 27) where analyzed by RT-PCR and correlated with clinical follow up data. Invasion and migration assays were performed with the liver metastatic cell line LIM2099 after miR-18a knockdown. Cell viability under FOLFOX treatment and knockdown was measured. We found that the expression of miR-18a was increased 4.38-fold in liver metastases and 3.86-fold in colorectal tumor tissue compared to healthy liver tissue and colorectal mucosa, respectively (p ≤ .001). Patients with a high miR-18a expression in liver metastases had a progression-free survival (PFS) of 13.6 months versus 8.9 months in patients with low expression (N = 123; p = .024). In vitro migration of LIM2099 cells was reduced after miR-18a knockdown and cell viability was significantly increased after miR-18a knockdown and treatment with folinic acid or oxaliplatin. Subgroup analysis of PFS revealed significant benefits for patients with high miR-18a expression receiving 5-FU, folinic acid or oxaliplatin. CONCLUSIONS High expression of miR-18a in colorectal liver metastases might have a protective effect after resection of metastases and FOLFOX treatment regarding PFS.
Collapse
Affiliation(s)
- Clemens Franz
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Laila Jötten
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Wührl
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Sibylle Hartmann
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Fee Klupp
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
Sadeghi MS, Lotfi M, Soltani N, Farmani E, Fernandez JHO, Akhlaghitehrani S, Mohammed SH, Yasamineh S, Kalajahi HG, Gholizadeh O. Recent advances on high-efficiency of microRNAs in different types of lung cancer: a comprehensive review. Cancer Cell Int 2023; 23:284. [PMID: 37986065 PMCID: PMC10661689 DOI: 10.1186/s12935-023-03133-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023] Open
Abstract
Carcinoma of the lung is among the most common types of cancer globally. Concerning its histology, it is categorized as a non-small cell carcinoma (NSCLC) and a small cell cancer (SCLC) subtype. MicroRNAs (miRNAs) are a member of non-coding RNA whose nucleotides range from 19 to 25. They are known to be critical regulators of cancer via epigenetic control of oncogenes expression and by regulating tumor suppressor genes. miRNAs have an essential function in a tumorous microenvironment via modulating cancer cell growth, metastasis, angiogenesis, metabolism, and apoptosis. Moreover, a wide range of information produced via several investigations indicates their tumor-suppressing, oncogenic, diagnostic assessment, and predictive marker functions in different types of lung malignancy. miRNA mimics or anti-miRNAs can be transferred into a lung cancer cell, with possible curative implications. As a result, miRNAs hold promise as targets for lung cancer treatment and detection. In this study, we investigate the different functions of various miRNAs in different types of lung malignancy, which have been achieved in recent years that show the lung cancer-associated regulation of miRNAs expression, concerning their function in lung cancer beginning, development, and resistance to chemotherapy, also the probability to utilize miRNAs as predictive biomarkers for therapy reaction.
Collapse
Affiliation(s)
- Mohammad Saleh Sadeghi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Lotfi
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Narges Soltani
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Raczkowska J, Bielska A, Krętowski A, Niemira M. Extracellular circulating miRNAs as potential non-invasive biomarkers in non-small cell lung cancer patients. Front Oncol 2023; 13:1209299. [PMID: 37546401 PMCID: PMC10401434 DOI: 10.3389/fonc.2023.1209299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) comprises 85% of all lung cancers and is a malignant condition resistant to advanced-stage treatment. Despite the advancement in detection and treatment techniques, the disease is taking a deadly toll worldwide, being the leading cause of cancer death every year. Current diagnostic methods do not ensure the detection of the disease at an early stage, nor can they predict the risk of its development. There is an urgent need to identify biomarkers that can help predict an individual's risk of developing NSCLC, distinguish NSCLC subtype, allow monitor disease and treatment progression which can improve patient survival. Micro RNAs (miRNAs) represent the class of small and non-coding RNAs involved in gene expression regulation, influencing many biological processes such as proliferation, differentiation, and carcinogenesis. Research reports significant differences in miRNA profiles between healthy and neoplastic tissues in NSCLC. Its abundant presence in biofluids, such as serum, blood, urine, and saliva, makes them easily detectable and does not require invasive collection techniques. Many studies support miRNAs' importance in detecting, predicting, and prognosis of NSCLC, indicating their utility as a promising biomarker. In this work, we reviewed up-to-date research focusing on biofluid miRNAs' role as a diagnostic tool in NSCLC cases. We also discussed the limitations of applying miRNAs as biomarkers and highlighted future areas of interest.
Collapse
Affiliation(s)
- Justyna Raczkowska
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Agnieszka Bielska
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Adam Krętowski
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Białystok, Poland
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
10
|
Reynolds DE, Vallapureddy P, Morales RT, Oh D, Pan M, Chintapula U, Linardi RL, Gaesser AM, Ortved K, Ko J. Equine mesenchymal stem cell derived extracellular vesicle immunopathology biomarker discovery. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e89. [PMID: 38938916 PMCID: PMC11080797 DOI: 10.1002/jex2.89] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 06/29/2024]
Abstract
The use of mesenchymal stem cells (MSCs) in human and veterinary clinical applications has become a subject of increasing importance due to their roles in immunomodulation and regenerative processes. MSCs are especially relevant in equine medicine because they may have the ability to treat prevalent musculoskeletal disorders, among other conditions. However, recent evidence suggests that the components secreted by MSCs, particularly extracellular vesicles (EVs), are responsible for these properties. EVs contain proteins and nucleic acids, which possess an active role in intercellular communication and can be used as therapeutics. However, because the intersection of equine veterinary medicine with EVs remains a relatively new field, there is a demand to identify biomarkers that can discern and enrich for therapeutic EVs, progressing their clinical efficacy. In this study, we identified and characterized 84 miRNAs, between three equine donors involved in immunomodulation in cell and EV subjects. We discovered distinct groups of shared miRNAs, like miR-21-5p and miR-451a, that are abundant and enriched between the donors' EVs, respectively. By mapping and comparing the MSC-EV miRNA expression, we discovered many pathways that are involved in immunomodulation and tissue regenerative processes related to equine clinical applications. Therefore, the miRNAs highlighted in this article can be used as valuable biomarkers for screening MSC-derived EVs for potential equine therapy.
Collapse
Affiliation(s)
- David E. Reynolds
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Phoebe Vallapureddy
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Daniel Oh
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Menghan Pan
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Uday Chintapula
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Renata L. Linardi
- Department of Clinical StudiesNew Bolton Center, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Angela M. Gaesser
- Department of Clinical StudiesNew Bolton Center, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kyla Ortved
- Department of Clinical StudiesNew Bolton Center, School of Veterinary Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Jina Ko
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
11
|
Han C, Qi Y, She Y, Zhang M, Xie H, Zhang J, Zhao Z, Peng C, Liu Y, Lin Y, Wang J, Zeng D. Long noncoding RNA SENCR facilitates the progression of acute myeloid leukemia through the miR-4731-5p/IRF2 pathway. Pathol Res Pract 2023; 245:154483. [PMID: 37120908 DOI: 10.1016/j.prp.2023.154483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a type of hematological tumor caused by malignant clone hematopoietic stem cells. The relationship between lncRNAs and tumor occurrence and progression has been gaining attention. Research has shown that Smooth muscle and endothelial cell-enriched migration/differentiation-associated lncRNA (SENCR) is abnormally expressed in various diseases, whereas its role in AML is still poorly understood. METHODS The expression of SENCR, microRNA-4731-5p (miR-4731-5p) and Interferon regulatory factor 2 (IRF2) were measured using qRT-PCR. The proliferation, cycle and apoptosis of AML cells with or without knockdown of SENCR were detected by CCK-8 assay, EdU assay, flow cytometry, western blotting and TUNEL assay, respectively. Consistently, SENCR knockdown was impaired the AML progression in immunodeficient mice. In addition, the binding of miR-4731-5p to SENCR or IRF2 was confirmed by luciferase reporter genes assay. Finally, rescue experiments were conducted to confirm the role of SENCR/miR-4731-5p/IRF2 axis in AML. RESULTS SENCR is highly expressed in AML patients and cell lines. The patients with high SENCR expression had poorer prognosis compared with those with low SENCR expression. Interestingly, knockdown of SENCR inhibits the growth of AML cells. Further results demonstrated that the reduction of SENCR slows the progression of AML in vivo. SENCR could function as a competing endogenous RNA (ceRNA) to negatively regulate miR-4731-5p in AML cells. Furthermore, IRF2 was validated as a direct target gene of miR-4731-5p in AML cells. CONCLUSIONS Our findings underscore the important role of SENCR in regulating the malignant phenotype of AML cells by targeting the miR-4731-5p/IRF2 axis.
Collapse
Affiliation(s)
- Changhao Han
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Yan Qi
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Yuanting She
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Meijuan Zhang
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Huan Xie
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Jing Zhang
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Zhongyue Zhao
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Cuicui Peng
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Yu Liu
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Yizhang Lin
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Jin Wang
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China
| | - Dongfeng Zeng
- Department of Hematology, Daping Hospital, Third Military Medical University, No. 10 Changjiang Branch Road, Yuzhong District, Chongqing 400042, China.
| |
Collapse
|
12
|
Niazi M, Azizi A, Khajavi Z, Sheikh M, Taheri S, Radfar S, Alizadeh A, Ghanbari R. A universal ratiometric method for Micro-RNA detection based on the ratio of electrochemical/electrochemiluminescence signal, and toehold-mediated strand displacement amplification. Anal Chim Acta 2023; 1257:341119. [PMID: 37062560 DOI: 10.1016/j.aca.2023.341119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/05/2023] [Accepted: 03/17/2023] [Indexed: 04/04/2023]
Abstract
An ultra-selective and reproductive ratiometric platform was introduced based on the ratio of Ru(phen)32+ electrochemiluminescence (ECL) signal and methylene blue (MB) electrochemistry (EC) signal, which was amplified using a specific and efficient toehold-mediated strand displacement (TMSD). The stable DNA nanoclews (NCs) were efficiently loaded with MB (MB-NCs) as EC signal tags after being synthesized utilizing a simple rolling circle amplification reaction. Besides, Ti3C2-based nanocomposite could apply as a superb carrier for both Ru(phen)32+ and gold nanoparticles (Ti3C2-Au-Ru), resulting in a nearly constant ECL internal reference to eliminate the possible interferences. The Ti3C2-Au-Ru was attached to the surface of the electrode using Nafion, which exhibited excellent conductivity, and hairpin DNAs (hDNAs) were fixed on AuNPs via an Au-S bond. The designed biosensor was finally applied for miRNA-18a detection as a target model. The TMSD method made it possible to concurrently convert and amplify a single miRNA-18ainput into a large amount of output DNAs with high selectivity. These output DNAs were designed to unfold the stem-locked area of hDNAs. The opened hDNAs then hybridized with the MB-NCs to produce an EC signal. In the proposed biosensing system, by raising the target concentration of miRNA, the EC signal gradually rose, the ECL signal remained nearly constant, and the ratiometric detection method markedly promoted biosensor accuracy. Linear correlations of the ratio value of the EC/ECL with miRNA-18a concentrations between 20 aM and 50 pMwere observed, with the limit of detection of 9 aM. The biosensor was applied to detect miRNA-18a in real serum samples with satisfactory results.
Collapse
Affiliation(s)
- Mohammad Niazi
- Department of Biological Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Ava Azizi
- Department of Biological Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Zeynab Khajavi
- Department of Biological Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Milad Sheikh
- Department of Biological Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Salman Taheri
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Science, Tehran, Iran.
| | - Sasan Radfar
- Stem Cell and Regenerative Medicine Center of Excellence, Tehran University of Medical Science, Tehran, Iran.
| | - Abdolhamid Alizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, 1993893973, Iran.
| | - Reza Ghanbari
- Department of Biological Science and Technology, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| |
Collapse
|
13
|
Hsa_circ_0000520 Promotes Non-Small Cell Lung Cancer Progression through the miR-1258/AKT3 Axis. JOURNAL OF ONCOLOGY 2022; 2022:3676685. [PMID: 36593867 PMCID: PMC9805391 DOI: 10.1155/2022/3676685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/09/2022] [Accepted: 11/05/2022] [Indexed: 12/25/2022]
Abstract
Background There are several previous studies suggesting that circular RNAs (circRNAs) are involved in tumorigenesis of non-small cell lung cancer (NSCLC). Nevertheless, the role of circRNA_0000520 (circ_0000520) in this disease has not yet been studied. Methods circ_0000520, microRNA (miR)-1258, and AKT serine/threonine kinase 3 (AKT3) mRNA expression levels were detected by qPCR. CCK-8, EdU, and Transwell assays were utilized to detect NSCLC cells' malignant biological behaviors. The targeted relationship between miR-1258 and AKT3 3'-UTR or circ_0000520 was verified through the dual-luciferase reporter gene assay. Western blotting was utilized to measure the AKT3 expression after circ_0000520 and miR-1258 were selectively regulated. Results circ_0000520 was upregulated in NSCLC. Highly expressed circ_0000520 is linked to the NSCLC patient's advanced TNM stage and lymph node metastasis. circ_0000520 overexpression facilitated NSCLC cell growth, migration, and invasion. miR-1258 was identified as the downstream target of circ_0000520. miR-1258 overexpression weakened the effect of circ_0000520 overexpression on NSCLC cells. miR-1258 targeted and inhibited AKT3. circ_0000520 positively regulated the AKT3 expression in NSCLC cells by sponging miR-1258. Conclusion circ_0000520 upregulates AKT3 by competitively binding with miR-1258 to facilitate NSCLC progression.
Collapse
|
14
|
Sun S, Zhi Z, Su Y, Sun J, Li Q. A CD8+ T cell-associated immune gene panel for prediction of the prognosis and immunotherapeutic effect of melanoma. Front Immunol 2022; 13:1039565. [PMID: 36341357 PMCID: PMC9633226 DOI: 10.3389/fimmu.2022.1039565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background Skin cutaneous melanoma (SKCM) is the most frequently encountered tumor of the skin. Immunotherapy has opened a new horizon in melanoma treatment. We aimed to construct a CD8+ T cell-associated immune gene prognostic model (CDIGPM) for SKCM and unravel the immunologic features and the benefits of immunotherapy in CDIGPM-defined SKCM groups. Method Single-cell SKCM transcriptomes were utilized in conjunction with immune genes for the screening of CD8+ T cell-associated immune genes (CDIGs) for succeeding assessment. Thereafter, through protein-protein interaction (PPI) networks analysis, univariate COX analysis, and multivariate Cox analysis, six genes (MX1, RSAD2, IRF2, GBP2, IFITM1, and OAS2) were identified to construct a CDIGPM. We detected cell proliferation of SKCM cells transfected with IRF2 siRNA. Then, we analyzed the immunologic features and the benefits of immunotherapy in CDIGPM-defined groups. Results The overall survival (OS) was much better in low-CDIGPM group versus high CDIGPM group in TCGA dataset and GSE65904 dataset. On the whole, the results unfolded that a low CDIGPM showed relevance to immune response-correlated pathways, high expressions of CTLA4 and PD-L1, a high infiltration rate of CD8+ T cells, and more benefits from immunotherapy. Conclusion CDIGPM is an good model to predict the prognosis, the potential immune escape from immunotherapy for SKCM, and define immunologic and molecular features.
Collapse
Affiliation(s)
- Shanwen Sun
- Department of Medical Oncology, The Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’an, Huaian, China
| | - Zhengke Zhi
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Su
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Jingxian Sun
- Hypertension Research Institute of Geriatric Hospital of Nanjing Medical University, Jiangsu Province Official Hospital, Nanjing, China
- *Correspondence: Qianjun Li, ; Jingxian Sun,
| | - Qianjun Li
- Department of Gastroenterology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huaian, China
- *Correspondence: Qianjun Li, ; Jingxian Sun,
| |
Collapse
|
15
|
The miR-17-92 cluster: Yin and Yang in human cancers. Cancer Treat Res Commun 2022; 33:100647. [PMID: 36327576 DOI: 10.1016/j.ctarc.2022.100647] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/27/2022]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs which modulate gene expression via multiple post-transcriptional mechanisms. They are involved in a variety of biological processes, including cell proliferation, metastasis, metabolism, tumorigenesis, and apoptosis. Dysregulation of miRNA expression has been implicated in human cancers, and they may also serve as biomarkers of disease progression and prognosis. The miR-17-92 cluster is one of the most widely studied miRNA clusters, which was initially reported as an oncogene, but was later reported to exhibit tumour suppressive effects in some human cancers. This review summarizes the recent progress and context-dependant role of this cluster in various cancers. We summarize the known mechanisms which regulate miR-17-92 expression and molecular pathways that are in turn controlled by it. We discuss examples where it acts as an oncogene or a tumour suppressor along with key targets affecting hallmarks of cancer. We discuss how cellular contexts regulate the biological effects of miR-17-92. The plausible mechanisms of its paradoxical roles are explained, and mechanisms are described that may contribute to cell fate regulation by miR-17-92. Further, we discuss recently developed strategies to target miR-17-92 cluster in human cancers. MiR-17-92 may serve as a potential biomarker for prognosis and response to therapy as well as a target for cancer prevention and therapeutics.
Collapse
|
16
|
Ortuño-Sahagún D, Enterría-Rosales J, Izquierdo V, Griñán-Ferré C, Pallàs M, González-Castillo C. The Role of the miR-17-92 Cluster in Autophagy and Atherosclerosis Supports Its Link to Lysosomal Storage Diseases. Cells 2022; 11:cells11192991. [PMID: 36230953 PMCID: PMC9564236 DOI: 10.3390/cells11192991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
Establishing the role of non-coding RNA (ncRNA), especially microRNAs (miRNAs), in the regulation of cell function constitutes a current research challenge. Two to six miRNAs can act in clusters; particularly, the miR-17-92 family, composed of miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-92a is well-characterized. This cluster functions during embryonic development in cell differentiation, growth, development, and morphogenesis and is an established oncogenic cluster. However, its role in the regulation of cellular metabolism, mainly in lipid metabolism and autophagy, has received less attention. Here, we argue that the miR-17-92 cluster is highly relevant for these two processes, and thus, could be involved in the study of pathologies derived from lysosomal deficiencies. Lysosomes are related to both processes, as they control cholesterol flux and regulate autophagy. Accordingly, we compiled, analyzed, and discussed current evidence that highlights the cluster's fundamental role in regulating cellular energetic metabolism (mainly lipid and cholesterol flux) and atherosclerosis, as well as its critical participation in autophagy regulation. Because these processes are closely related to lysosomes, we also provide experimental data from the literature to support our proposal that the miR-17-92 cluster could be involved in the pathogenesis and effects of lysosomal storage diseases (LSD).
Collapse
Affiliation(s)
- Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB) CUCS, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Correspondence: (D.O.-S.); (C.G.-C.)
| | - Julia Enterría-Rosales
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico
| | - Vanesa Izquierdo
- Pharmacology and Toxicology Section and Institute of Neuroscience, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08007 Barcelona, Spain
| | - Christian Griñán-Ferré
- Pharmacology and Toxicology Section and Institute of Neuroscience, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08007 Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology and Toxicology Section and Institute of Neuroscience, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08007 Barcelona, Spain
| | - Celia González-Castillo
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico
- Correspondence: (D.O.-S.); (C.G.-C.)
| |
Collapse
|
17
|
IRF2 Destabilizes Oncogenic KPNA2 to Modulate the Development of Osteosarcoma. JOURNAL OF ONCOLOGY 2022; 2022:9973519. [PMID: 36199790 PMCID: PMC9529396 DOI: 10.1155/2022/9973519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Osteosarcomas (OS) are the most common primary malignant bone tumor. Emerging evidence revealed that karyopherin alpha 2 (KPNA2) was strongly associated with the tumorigenesis and development of numerous human cancers. The aim of the present study was to investigate the expression pattern, biological functions, and underlying mechanism of KPNA2 in OS. Bioinformatics TFBIND online was applied to forecast transcription factor (TF) binding sites in the promoter region of KPNA2. The expression profile of KPNA2 in OS tissues were firstly assessed. CCK8, colony formation, wound healing, and Transwell assays were used to assess cell viability, proliferation, and migration in vitro, and in vivo experiments were performed to explore the effects of KPNA2 and interferon regulatory factor-2 (IRF2) on tumor growth. Furthermore, the correlation between IRF2 and KPNA2 was investigated using chromatin immunoprecipitation (ChIP), RT-qPCR, western blot, and dual-luciferase assays. KPNA2 was obviously upregulated, while IRF2 decreased significantly in OS tissues and cell lines, as well as negatively correlated with each other. KPNA2 removal remarkably suppressed OS cell growth, migration, invasion in vitro, and tumor growth in vivo, while IRF2 knockdown exerts an opposing effect. IRF2 binds to the KPNA2 promoter to modulate the malignant phenotypes of OS cells by regulating epithelial-to-mesenchymal transition (EMT). The present study demonstrated that KPNA2 performed the oncogenic function, possibly regulating tumor development through EMT. Importantly, it was confirmed that IRF2 serves as a potential upstream TF of KPNA2 involved in the regulation of EMT progress in OS.
Collapse
|
18
|
Coley AB, DeMeis JD, Chaudhary NY, Borchert GM. Small Nucleolar Derived RNAs as Regulators of Human Cancer. Biomedicines 2022; 10:1819. [PMID: 36009366 PMCID: PMC9404758 DOI: 10.3390/biomedicines10081819] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022] Open
Abstract
In the past decade, RNA fragments derived from full-length small nucleolar RNAs (snoRNAs) have been shown to be specifically excised and functional. These sno-derived RNAs (sdRNAs) have been implicated as gene regulators in a multitude of cancers, controlling a variety of genes post-transcriptionally via association with the RNA-induced silencing complex (RISC). In this review, we have summarized the literature connecting sdRNAs to cancer gene regulation. SdRNAs possess miRNA-like functions and are able to fill the role of tumor-suppressing or tumor-promoting RNAs in a tissue context-dependent manner. Indeed, there are many miRNAs that are actually derived from snoRNA transcripts, meaning that they are truly sdRNAs and as such are included in this review. As sdRNAs are frequently discarded from ncRNA analyses, we emphasize that sdRNAs are functionally relevant gene regulators and likely represent an overlooked subclass of miRNAs. Based on the evidence provided by the papers reviewed here, we propose that sdRNAs deserve more extensive study to better understand their underlying biology and to identify previously overlooked biomarkers and therapeutic targets for a multitude of human cancers.
Collapse
Affiliation(s)
- Alexander Bishop Coley
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (A.B.C.); (J.D.D.); (N.Y.C.)
| | - Jeffrey David DeMeis
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (A.B.C.); (J.D.D.); (N.Y.C.)
| | - Neil Yash Chaudhary
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (A.B.C.); (J.D.D.); (N.Y.C.)
| | - Glen Mark Borchert
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (A.B.C.); (J.D.D.); (N.Y.C.)
- School of Computing, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
19
|
Erfanparast L, Taghizadieh M, Shekarchi AA. Non-Coding RNAs and Oral Cancer: Small Molecules With Big Functions. Front Oncol 2022; 12:914593. [PMID: 35898889 PMCID: PMC9309727 DOI: 10.3389/fonc.2022.914593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Oral cancer remains a major public concern with considerable socioeconomic impact in the world. Despite substantial advancements have been made in treating oral cancer, the five-year survival rate for oral cancer remained undesirable, and the molecular mechanisms underlying OSCC carcinogenesis have not been fully understood. Noncoding RNAs (ncRNAs) include transfer RNAs (tRNAs), as well as small RNAs such as microRNAs, and the long ncRNAs such as HOTAIR are a large segment of the transcriptome that do not have apparent protein-coding roles, but they have been verified to play important roles in diverse biological processes, including cancer cell development. Cell death, such as apoptosis, necrosis, and autophagy, plays a vital role in the progression of cancer. A better understanding of the regulatory relationships between ncRNAs and these various types of cancer cell death is therefore urgently required. The occurrence and development of oral cancer can be controlled by increasing or decreasing the expression of ncRNAs, a method which confers broad prospects for oral cancer treatment. Therefore, it is urgent for us to understand the influence of ncRNAs on the development of different modes of oral tumor death, and to evaluate whether ncRNAs have the potential to be used as biological targets for inducing cell death and recurrence of chemotherapy. The purpose of this review is to describe the impact of ncRNAs on cell apoptosis and autophagy in oral cancer in order to explore potential targets for oral cancer therapy.
Collapse
Affiliation(s)
- Leila Erfanparast
- Department of Pediatric Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Mohammad Taghizadieh,
| | - Ali Akbar Shekarchi
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
MiRNAs in Lung Cancer: Diagnostic, Prognostic, and Therapeutic Potential. Diagnostics (Basel) 2022; 12:diagnostics12071610. [PMID: 35885514 PMCID: PMC9322918 DOI: 10.3390/diagnostics12071610] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the dominant emerging factor in cancer-related mortality around the globe. Therapeutic interventions for lung cancer are not up to par, mainly due to reoccurrence/relapse, chemoresistance, and late diagnosis. People are currently interested in miRNAs, which are small double-stranded (20–24 ribonucleotides) structures that regulate molecular targets (tumor suppressors, oncogenes) involved in tumorigeneses such as cell proliferation, apoptosis, metastasis, and angiogenesis via post-transcriptional regulation of mRNA. Many studies suggest the emerging role of miRNAs in lung cancer diagnostics, prognostics, and therapeutics. Therefore, it is necessary to intensely explore the miRNOME expression of lung tumors and the development of anti-cancer strategies. The current review focuses on the therapeutic, diagnostic, and prognostic potential of numerous miRNAs in lung cancer.
Collapse
|
21
|
Zhang X, Wang X, Chai B, Wu Z, Liu X, Zou H, Hua Z, Ma Z, Wang W. Downregulated miR-18a and miR-92a synergistically suppress non-small cell lung cancer via targeting Sprouty 4. Bioengineered 2022; 13:11281-11295. [PMID: 35484993 PMCID: PMC9208480 DOI: 10.1080/21655979.2022.2066755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
As a novel noncoding RNA cluster, miR-17-92 cluster include six members: miR-17, miR-18a, miR-19a, miR-19b-1, miR-20a, and miR-92a. Dysregulation of miR-17-92 has been proved to be connected with the advancement of a series of human diseases, but the roles of miR-17-92 cluster in non-small cell lung cancer (NSCLC) have not been absolutely elaborated. Herein, we determined that miR-17-92 cluster were upregulated significantly in NSCLC tissues, and the cell proliferation, migration and cycle progression of NSCLC were also facilitated under the function of miR-17-92 cluster. Sprouty 4 (SPRY4) was a direct target of miR-92a, and its overexpression restrained the exacerbation of NSCLC induced by miR-92a. Furthermore, the tumor xenograft assay showed that miR-92a facilitated tumor growth by inhibiting the expression of SPRY4 and mediating Epithelial-Mesenchymal Transition (EMT) in vivo. Finally, we looked into the synergistic effects of miR-92a and miR-18a on NSCLC, and found that antagomiR-18a treatment arrested the tumor growth rate of xenografted mice markedly.
Collapse
Affiliation(s)
- Xinju Zhang
- Lab for Noncoding RNA & Cancer, Shanghai University, Shanghai, China
| | - Xianyi Wang
- Lab for Noncoding RNA & Cancer, Shanghai University, Shanghai, China
| | - Binshu Chai
- Lab for Noncoding RNA & Cancer, Shanghai University, Shanghai, China
| | - Zong Wu
- Lab for Noncoding RNA & Cancer, Shanghai University, Shanghai, China
| | - Xiaomin Liu
- Lab for Noncoding RNA & Cancer, Shanghai University, Shanghai, China
| | - Heng Zou
- Lab for Noncoding RNA & Cancer, Shanghai University, Shanghai, China
| | - Ziyi Hua
- Experimental Center for Life Science, Shanghai University, Shanghai, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, Shanghai University, Shanghai, China
| | - Weiwei Wang
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, China
| |
Collapse
|
22
|
Arslan S, Bakir M, Bayyurt B, Aydemir EI, Kinaci K, Engin A. Long noncoding RNA expression analysis in Crimean Congo hemorrhagic fever patients. J Med Virol 2022; 94:3257-3262. [DOI: 10.1002/jmv.27721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/03/2021] [Accepted: 03/11/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Serdal Arslan
- Department of Medical BiologyFaculty of Medicine, Mersin University33343MersinTurkey
| | - Mehmet Bakir
- Department of Infectious Diseases and Clinical MicrobiologyFaculty of Medicine, Sivas Cumhuriyet University58140SivasTurkey
| | - Burcu Bayyurt
- Department of Medical BiologyFaculty of Medicine, Sivas Cumhuriyet University58140SivasTurkey
| | - Eylem Itir Aydemir
- Department of StatisticFaculty of Science, Sivas Cumhuriyet University58140SivasTurkey
| | - Kenan Kinaci
- SEM Laboratories, Barbaros NeighbourhoodJuly Street, SEM Plaza, No:6Atasehir, IstanbulTurkey
| | - Aynur Engin
- Department of Infectious Diseases and Clinical MicrobiologyFaculty of Medicine, Sivas Cumhuriyet University58140SivasTurkey
| |
Collapse
|
23
|
Chen YJ, Luo SN, Wu H, Zhang NP, Dong L, Liu TT, Liang L, Shen XZ. IRF-2 inhibits cancer proliferation by promoting AMER-1 transcription in human gastric cancer. J Transl Med 2022; 20:68. [PMID: 35115027 PMCID: PMC8812234 DOI: 10.1186/s12967-022-03275-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Interferon regulatory factor 2 (IRF-2) acts as an anti-oncogene in gastric cancer (GC); however, the underlying mechanism remains unknown. METHODS This study determined the expression of IRF-2 in GC tissues and adjacent non-tumor tissues using immunohistochemistry (IHC) and explored the predictive value of IRF-2 for the prognoses of GC patients. Cell function and xenograft tumor growth experiments in nude mice were performed to test tumor proliferation ability, both in vitro and in vivo. Chromatin immunoprecipitation sequencing (ChIP-Seq) assay was used to verify the direct target of IRF-2. RESULTS We found that IRF-2 expression was downregulated in GC tissues and was negatively correlated with the prognoses of GC patients. IRF-2 negatively affected GC cell proliferation both in vitro and in vivo. ChIP-Seq assay showed that IRF-2 could directly activate AMER-1 transcription and regulate the Wnt/β-catenin signaling pathway, which was validated using IHC, in both tissue microarray and xenografted tumor tissues, western blot analysis, and cell function experiments. CONCLUSIONS Increased expression of IRF-2 can inhibit tumor growth and affect the prognoses of patients by directly regulating AMER-1 transcription in GC and inhibiting the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yan-Jie Chen
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Shu-Neng Luo
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Hao Wu
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Ning-Ping Zhang
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Ling Dong
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Tao-Tao Liu
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Li Liang
- Department of Medical Oncology, Zhongshan Hospital Affiliated To Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.
- Cancer Center, Zhongshan Hospital Affiliated To Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.
- Center of Evidence-Based Medicine, Zhongshan Hospital Affiliated To Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.
| | - Xi-Zhong Shen
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Fudan University, NO. 180, Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
24
|
Li Y, Liu X, Ma Z. EGFR, NF-κB and noncoding RNAs in precision medicine. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 190:189-218. [DOI: 10.1016/bs.pmbts.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Li Y, Wang Y, Guo H, Wu Q, Hu Y. IRF2 contributes to myocardial infarction via regulation of GSDMD induced pyroptosis. Mol Med Rep 2021; 25:40. [PMID: 34878155 PMCID: PMC8674697 DOI: 10.3892/mmr.2021.12556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
Interferon regulatory factor (IRF) 2 is a transcription factor belonging to the IRF family, which is essential for gasdermin D (GSDMD)‑induced pyroptosis. Decreasing myocardial cell pyroptosis confers protection against heart damage and cardiac dysfunction caused by myocardial infarction (MI). The aim of the present study was to investigate the involvement of IRF2 in MI and the underlying mechanism of IRF2 in pyroptosis. To mimic MI, ligation of the left anterior descending coronary artery was performed to establish an in vivo mouse model and rat cardiomyocytes H9c2 cells were cultured under hypoxic conditions to establish an in vitro model. Transthoracic echocardiography was used to assess cardiac function. Hematoxylin and eosin staining was used to observe histopathological changes in the myocardial tissue. Immunohistochemistry and western blotting were performed to detect IRF2 expression levels. TUNEL staining and flow cytometry were used to detect apoptosis in myocardial tissue and cells. Chromatin immunoprecipitation and dual luciferase reporter assay were used to verify the effect of IRF2 on GSDMD transcription. IRF2 was upregulated in MI mice. MI induced pyroptosis, as evidenced by increased GSDMD, N‑terminal GSDMD (GSDMD‑N), and cleaved (c‑) caspase‑1 levels. MI increased IL‑1β and IL‑18 levels. These alterations were alleviated by IRF2 silencing. Furthermore, in hypoxia‑treated H9c2 cells, IRF2 silencing significantly decreased the elevated levels of IL‑1β and IL‑18 and pyroptosis‑associated proteins, including GSDMD, GSDMD‑N and c‑caspase1. Moreover, in hypoxia‑treated H9c2 cells, IRF2 directly bound to the GSDMD promoter to drive GSDMD transcription and promote pyroptosis and IRF2 expression may be regulated via the hypoxia inducible factor 1 signaling pathway. In conclusion, the present results demonstrated that IRF2 is a key regulator of MI by mediating pyroptosis, which triggers GSDMD activation.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Yan Wang
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Hua Guo
- Department of Cardiovascular Medicine, Hebei Province Cangzhou Hospital of Integrated Traditional and Western, Cangzhou, Hebei 061001, P.R. China
| | - Qinghua Wu
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| | - Yamin Hu
- Department of Cardiovascular Medicine, Cangzhou Central Hospital, Cangzhou, Hebei 061001, P.R. China
| |
Collapse
|
26
|
Li Y, Zhang H, Guo J, Li W, Wang X, Zhang C, Sun Q, Ma Z. Downregulation of LINC01296 suppresses non-small-cell lung cancer via targeting miR-143-3p/ATG2B. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1681-1690. [PMID: 34695177 DOI: 10.1093/abbs/gmab149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
The 5-year survival rate of lung cancer is one of the lowest among various malignant tumors. Long noncoding RNAs (lncRNAs), noncoding RNAs longer than 200 nucleotides, can function either as tumor suppressors or as oncogenes. The aim of this study is to investigate the function of lncRNA LINC01296 and its molecular mechanism in non-small-cell lung cancer (NSCLC). According to the Gene Expression Omnibus database, 10 differentially expressed lncRNAs in NSCLC cells and patient tissues are upregulated. LINC01296 is the one with the most significant overexpression. Knockdown of LINC01296 inhibits the growth and migration, arrests the cell cycle, and promotes the apoptosis of NSCLC cells. Knocking down LINC01296 in vivo suppresses tumor growth and metastasis. LINC01296 also acts as the sponge of miR-143-3p. Lowering the expression of LINC01296 leads to decreased expression of autophagy-related 2B (ATG2B), a target gene of miR-143-3p. Moreover, downregulation of LINC01296 promotes paclitaxel sensitivity in NSCLC. These results demonstrated that the LINC01296/miR-143-3p/ATG2B axis is crucial in promoting the development of NSCLC and paclitaxel resistance. Our study may provide new ideas for the further research of clinical chemotherapy of NSCLC in the near future.
Collapse
Affiliation(s)
- Yanli Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hui Zhang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jing Guo
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wanqiu Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xianyi Wang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Caiyan Zhang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qiangling Sun
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
27
|
Cui M, Qu F, Wang L, Cheng D, Liu X. MiR-18a-5p Facilitates Progression of Hepatocellular Carcinoma by Targeting CPEB3. Technol Cancer Res Treat 2021; 20:15330338211043976. [PMID: 34738854 PMCID: PMC8573499 DOI: 10.1177/15330338211043976] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Objective: To explore the function of the miR-18a-5p/CPEB3 axis in regulating the occurrence of hepatocellular carcinoma (HCC). Methods: Differentially expressed miRNAs and mRNAs were acquired by bioinformatics analysis. qRT-PCR was used for miR-18a-5p and CPEB3 mRNA expression detection. Cell functional assays were implemented to examine the biological functions of HCC cells. The binding relationship between miR-18a-5p and CPEB3 was verified by a dual luciferase assay. Results: In HCC, miR-18a-5p was remarkably highly expressed, while CPEB3 was markedly lowly expressed. HCC cell progression was facilitated after cells transfecting miR-18a-5p mimic, whereas silencing miR-18a-5p caused the opposite result. Overexpressing CPEB3 could restore promoting effect of miR-18a-5p on the growth of HCC cells. Conclusion: Oncogene miR-18a-5p accelerates malignant phenotype by suppressing CPEB3. MiR-18a-5p/CPEB3 axis in HCC identified in this study provides a new target for HCC treatment.
Collapse
Affiliation(s)
- Mingxin Cui
- 159363Tangshan Gongren Hospital, Tangshan, China
| | - Fengzhi Qu
- 159363Tangshan Gongren Hospital, Tangshan, China
| | - Libing Wang
- 159363Tangshan Gongren Hospital, Tangshan, China
| | - Daming Cheng
- 159363Tangshan Gongren Hospital, Tangshan, China
| | - Xiaogang Liu
- 159363Tangshan Gongren Hospital, Tangshan, China
| |
Collapse
|
28
|
Rezaei H, Hosseini M, Radfar S. A dual-signaling electrochemical ratiometric strategy combining "signal-off" and "signal-on" approaches for detection of MicroRNAs. Anal Biochem 2021; 632:114356. [PMID: 34516967 DOI: 10.1016/j.ab.2021.114356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 12/16/2022]
Abstract
A dual-signaling electrochemical ratio metric strategy was developed for detection microRNA-18a based on the duplex-specific nuclease-assisted target recycling and electrochemical atom transfer radical polymerization signal amplification. In the presence of target microRNA, RNA/DNA duplexes are formed, which become the substrate of the duplex-specific nuclease-assisted target recycling. Hence only the DNA strand is cleaved by duplex-specific nuclease enzyme, resulting in the throw away of methylene blue (MB) from the electrode (signal off) accompanied by releasing of target microRNA, which can be recycled in the next hybridization. The remaining piece of capture DNAs on the electrode surface hybridize with the Azide labeled-signal DNAs. "Click reactions" were carried out between 3-Butynyl-2-bromoisobutyrate and Azide to initiate the electrochemical atom transfer radical polymerization reaction. This process could bring a great number of ferrocenylmethyl methacrylate (FMMA) on the surface of electrode (signal on). The IFMMA/IMB value was proportionate to the microRNA-18a concentration and measured by square wave voltammetry. The promising potential of the proposed biosensor in clinical analyses was exhibited by its remarkable features such as strong performance, high specificity, agreeable storage stability, and notable selectivity in real sample evaluation with no pretreatment or amplification. Finally, our biosensing method offers such an application to be used for the early clinical diagnosis of Pancreatic Cancer.
Collapse
Affiliation(s)
- H Rezaei
- Genetics Division, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - M Hosseini
- Chemical Engineering Group, University of Jahad Higher Education Institute of Isfahan Province, Isfahan, Iran
| | - S Radfar
- Faculty of Sciences, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan, Iran.
| |
Collapse
|
29
|
Miao Y, Chen X, Qin M, Zhou W, Wang Y, Ji Y. lncRNA GAS5, as a ceRNA, inhibits the proliferation of diffuse large B‑cell lymphoma cells by regulating the miR‑18a‑5p/RUNX1 axis. Int J Oncol 2021; 59:94. [PMID: 34698360 PMCID: PMC8562389 DOI: 10.3892/ijo.2021.5274] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a common and fatal malignant tumor caused by B-lymphocytes. Long non-coding RNA (lncRNA) GAS5 (growth arrest specific 5) has been reported to function as a tumor suppressor gene, and is differentially expressed in DLBCL. The present study aimed to explore the potential mechanisms of action of lncRNA GAS5 in the proliferation of DLBCL cells. The expression levels of GAS5, miR-18a-5p and Runt-related transcription factor 1 (RUNX1) in DLBCL cell lines were detected using reverse transcription-quantitative polymerase chain reaction, and their effects on cell proliferation, the cell cycle and apoptosis were determined using 5-ethynyl-2′-deoxyuridine assay and flow cytometry. Dual-luciferase reporter and RNA pull-down assays were used to evaluate the interaction between GAS5 and miR-18a-5p, or between miR-18a-5p and RUNX1. Chromatin immunoprecipitation assay was used to identify the interaction between RUNX1 and BAX. The expression levels of GAS5 and RUNX1 were downregulated; however, miR-18a-5p expression was upregulated in the DLBCL cell lines compared with the normal controls. GAS5 directly interacted with miR-18a-5p by acting as a competing endogenous RNA (ceRNA) and reversed the low expression of RUNX1 induced by miR-18a-5p. Additionally, the knockdown of RUNX1 reversed the inhibitory effects of GAS5 on the proliferation and cell cycle G1 arrest, and its promoting effects on the apoptosis of OCI-Ly3 and TMD8 cells. Moreover, RUNX1 enhanced BAX expression by directly binding to the BAX promoter. On the whole, the present study demonstrates that GAS5 functions as a ceRNA, inhibiting DLBCL cell proliferation by sponging miR-18a-5p to upregulate RUNX1 expression. These findings may provide a potential therapeutic strategy for DLBCL.
Collapse
Affiliation(s)
- Yinsha Miao
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaodong Chen
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Mengting Qin
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Wen Zhou
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Yang Wang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Yanhong Ji
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
30
|
Chen Q, Xu J, Zhu M. miR-18a-5p Facilitates Malignant Progression of Head and Neck Squamous Cell Carcinoma Cells via Modulating SORBS2. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5953881. [PMID: 34707683 PMCID: PMC8545503 DOI: 10.1155/2021/5953881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/18/2021] [Indexed: 12/15/2022]
Abstract
This study attempted to investigate possible molecular mechanism and role of miR-18a-5p in head and neck squamous cell carcinoma (HNSCC). Differential miRNAs and their possible targets were analyzed through TCGA database. By conducting qRT-PCR, miR-18a-5p was tested to be increased and SORBS2 was assessed to be downregulated in HNSCC cells. CCK-8, Transwell, and flow cytometry assays disclosed that miR-18a-5p facilitated HNSCC cell proliferation, migration, and invasion and repressed cell apoptosis. By dual-luciferase reporter gene assay, it was verified that miR-18a-5p had binding sites into SORBS2. Rescue experiments displayed that forced expression of SORBS2 restored the impact of miR-18a-5p overexpression on HNSCC cells. Collectively, our research preliminarily identified the promotion effect of miR-18a-5p/SORBS2 axis on malignant phenotypes of HNSCC cells. Our findings may provide a preclinical reference for HNSCC treatment.
Collapse
Affiliation(s)
- Qian Chen
- Department of Oncology, The Second People's Hospital of Lianyungang (The Oncology Hospital of Lianyungang), Lianyungang City, Jiangsu Province 222000, China
| | - Jing Xu
- Department of Oncology, The Second People's Hospital of Lianyungang (The Oncology Hospital of Lianyungang), Lianyungang City, Jiangsu Province 222000, China
| | - Mingzhen Zhu
- Department of Oncology, The Second People's Hospital of Lianyungang (The Oncology Hospital of Lianyungang), Lianyungang City, Jiangsu Province 222000, China
| |
Collapse
|
31
|
Lu B, Xu H, Ding M, Yan C. Interferon Regulatory Factor 2 (IRF2) Inhibits the Invasion and Migration of Renal Clear Cell Carcinoma Cells by Downregulation of Spindle Pole Body Component 24 (SPC24). J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
It has been reported that the increased expression of SPC24 (spindle pole body component 24) was involved in the initiation and development of various cancers. However, the role of SPC24 in ccRCC (clear cell renal cell carcinoma) remains largely unknown. In the present study, the changes
and correlation of SPC24 and IRF2 (interferon regulatory factor 2) with ccRCC were evaluated by using GEPIA, TCGA and GTEx database. Then the involvement of SPC24 and IRF2 in invasion and migration was investigated in CaKi-1 cells, a human renal adenocarcinoma cell line. The bioinformatics
assay revealed that the expression of SPC24 and IRF2 in kidney tissue of patients with renal clear cell cancer was significantly increased, and the expression of SPC24 and IRF2 in kidney tissue was positively and negatively related to cancer phase and survival rate in patients with ccRCC respectively.
Notably, in vitro experimental study demonstrated that SPC25 promoted the invasion and migration of CaKi-1 cells, a human renal adenocarcinoma cell line. Furthermore, IRF2 shows potential binding site with SPC24 promoter, IRF2 overexpression significantly decreased SPC24 mRNA level,
whereas inhibition of IRF2 with specific small hairpin RNA (shRNA) significantly increased SPC24 mRNA level. Functionally, inhibition of SPC24 with specific shRNA reversed the stimulatory effect of IRF2 shRNA on the invasion and migration of cells, whereas SPC24 over-expression reversed the
inhibitory effect of IRF2 overexpression on the invasion and migration of cells. Finally, ChIP (chromatin immunoprecipitation) assay shows that IRF2 could directly bind with SPC24 promoter. In conclusion, these results demonstrated that IRF2/SPC24 signaling pathway contributes to the increased
invasion and migration in ccRCC.
Collapse
Affiliation(s)
- Bing Lu
- Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, 215000, P. R. China
| | - Hongbo Xu
- Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, 215000, P. R. China
| | - Meng Ding
- Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, 215000, P. R. China
| | - Chunyin Yan
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, P. R. China
| |
Collapse
|
32
|
Chang K, Han K, Qiu W, Hu Z, Chen X, Chen X, Xie X, Wang S, Hu C, Mao H. Grass carp (Ctenopharyngodon idella) interferon regulatory factor 8 down-regulates interferon1 expression via interaction with interferon regulatory factor 2 in vitro. Mol Immunol 2021; 137:202-211. [PMID: 34280770 DOI: 10.1016/j.molimm.2021.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Interferon regulatory factor 8 (IRF8), also known as interferon consensus sequence-binding protein (ICSBP), is a negative regulatory factor of interferon (IFN) and plays an important role in cell differentiation and innate immunity in mammals. In recent years, some irf8 homologous genes have been cloned and confirmed to take part in innate immune response in fish, but the mechanism still remains unclear. In this paper, a grass carp (Ctenopharyngodon idella) irf8 gene (Ciirf8) was cloned and characterized. The deduced protein (CiIRF8) possesses a highly conserved N-terminal DNA binding domain but a less well-conserved C-terminal IRF association domain (IAD). Ciirf8 was widely expressed in all tested tissues of grass carp and up-regulated following poly(I:C) stimulation. Ciirf8 expression was also up-regulated in CIK cells upon treatment with poly(I:C). To explore the molecular mechanism of how fish IRF8 regulates ifn1 expression, the similarities and differences of grass carp IRF8 and IRF2 were compared and contrasted. Subcellular localization analysis showed that CiIRF8 is located both in the cytoplasm and nucleus; however, CiIRF2 is only located in the nucleus. The nuclear-cytoplasmic translocation of CiIRF8 was observed in CIK cells under stimulation with poly(I:C). The interaction of CiIRF8 and CiIRF2 was further confirmed by a co-immunoprecipitation assay in the nucleus. Dual-luciferase reporter assays showed that the promoter activity of Ciifn1 was significantly inhibited by co-transfection with CiIRF2 and CiIRF8. The transcription inhibition of Ciifn1 was alleviated by competitive binding of CiIRF2 and CiIRF8 to CiIRF1. In conclusion, CiIRF8 down-regulates Ciifn1 expression via interaction with CiIRF2 in cells.
Collapse
Affiliation(s)
- Kaile Chang
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Kun Han
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Weihua Qiu
- Teaching Material Research Office of Jiangxi Provincial Education Department, China
| | - Zhizhen Hu
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xingxing Chen
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xin Chen
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xiaofen Xie
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Shanghong Wang
- School of Life Science, Nanchang University, Nanchang, 330031, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
33
|
Wu K, Guo C, Li Y, Yang J, Zhou Q, Cheng S, Li Y, Nie B, Zeng Y. MicroRNA-18a-5p regulates the Warburg effect by targeting hypoxia-inducible factor 1α in the K562/ADM cell line. Exp Ther Med 2021; 22:1069. [PMID: 34447462 PMCID: PMC8355681 DOI: 10.3892/etm.2021.10503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The Warburg effect is involved in drug resistance and recurrence of cancer, and poses a challenge for the treatment of chronic myelogenous leukemia (CML). Hypoxia-inducible factor 1α (HIF-1α) plays a key role in the Warburg effect. microRNAs (miRs) targeting HIF-1α have potential of regulating such aberrant metabolic process. The present study demonstrated that miR-18a-5p was expressed at a low level in K562/ADM cells via reverse transcription-quantitative PCR (RT-qPCR). The results of the luciferase reporter assay indicated that miR-18a-5p could specifically bind the 3'-untranslated region of HIF-1α. Through RT-qPCR and western blotting, it was revealed that miR-18a-5p downregulated the expression of HIF-1α. By inhibiting HIF-1α, miR-18a-5p suppressed aerobic glycolysis in K562/ADM cells, according to the results produced by glucose uptake, lactate production, pyruvate level and ATP synthesis measurement, along with the results obtained from extracellular acidification rate and oxygen consumption rate assays. These results provided new evidence that miR-18a-5p may suppress the Warburg effect by targeting HIF-1α. Furthermore, via CCK-8 and flow cytometry assays, cells transfected with miR-18a-5p mimics were more sensitive to Adriamycin (AMD) compared with AMD group. Reversing the Warburg effect by miR-30a-5p might provide a potential therapeutic strategy for CML.
Collapse
Affiliation(s)
- Kun Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.,Yunnan Key Laboratory of Laboratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.,Yunnan Innovation Team of Clinical Laboratory and Diagnosis, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Chong Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.,Yunnan Key Laboratory of Laboratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.,Yunnan Innovation Team of Clinical Laboratory and Diagnosis, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yixun Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.,Yunnan Key Laboratory of Laboratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.,Yunnan Innovation Team of Clinical Laboratory and Diagnosis, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Jinrong Yang
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.,Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Qiang Zhou
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.,Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Shenju Cheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.,Yunnan Key Laboratory of Laboratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.,Yunnan Innovation Team of Clinical Laboratory and Diagnosis, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yanhong Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.,Yunnan Key Laboratory of Laboratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.,Yunnan Innovation Team of Clinical Laboratory and Diagnosis, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Bo Nie
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.,Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yun Zeng
- Department of Hematology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China.,Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
34
|
Li Y, Yang G, Yang C, Tang P, Chen J, Zhang J, Liu J, Ouyang L. Targeting Autophagy-Related Epigenetic Regulators for Cancer Drug Discovery. J Med Chem 2021; 64:11798-11815. [PMID: 34378389 DOI: 10.1021/acs.jmedchem.1c00579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Existing evidence has demonstrated that epigenetic modifications (including DNA methylation, histone modifications, and microRNAs), which are associated with the occurrence and development of tumors, can directly or indirectly regulate autophagy. In particular, nuclear events induced by several epigenetic regulators can regulate the autophagic process and expression levels of tumor-associated genes, thereby promoting tumor progression. Tumor-associated microRNAs, including oncogenic and tumor-suppressive microRNAs, are of great significance to autophagy during tumor progression. Targeting autophagy with emerging epigenetic drugs is expected to be a promising therapeutic strategy for human tumors. From this perspective, we aim to summarize the role of epigenetic modification in the autophagic process and the underlying molecular mechanisms of tumorigenesis. Furthermore, the regulatory efficacy of epigenetic drugs on the autophagic process in tumors is also summarized. This perspective may provide a theoretical basis for the combined treatment of epigenetic drugs/autophagy mediators in tumors.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Gaoxia Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Chengcan Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Pan Tang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Juncheng Chen
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jifa Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jie Liu
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
35
|
Hu G, Zhai S, Yu S, Huang Z, Gao R. Circular RNA circRHOBTB3 is downregulated in hepatocellular carcinoma and suppresses cell proliferation by inhibiting miR-18a maturation. Infect Agent Cancer 2021; 16:48. [PMID: 34187598 PMCID: PMC8243428 DOI: 10.1186/s13027-021-00384-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Circular RNA circRHOBTB3 has been characterized as a tumor suppressor in gastric cancer, while its role in hepatocellular carcinoma (HCC) is unknown. This study was carried out to analyze the role of circRHOBTB3 in HCC. METHODS In this study, circRHOBTB3, mature miR-18a, and miR-18a precursor in HCC and paired non-cancer tissues were detected by RT-qPCR. The role of circRHOBTB3 in the production of mature miR-18a was explored by transfecting circRHOBTB3 expression vector into HCC cells, followed by RT-qPCR to determine the expression of mature miR-18a and miR-18a precursor. The role of circRHOBTB3 and miR-18a in HCC cell proliferation was studied using CCK-8 assay. RESULTS CircRHOBTB3 was under-expressed in HCC compared to normal tissues. In HCC cells, circRHOBTB3 overexpression decreased mature miR-18a level but not miR-18a precursor. Cell proliferation analysis showed that circRHOBTB3 overexpression decreased cell proliferation while miR-18a overexpression increased cell proliferation. Moreover, circRHOBTB3 suppressed the role of miR-18a in cell proliferation. CONCLUSIONS CircRHOBTB3 is downregulated in HCC and may suppress cell proliferation by reducing miR-18a production.
Collapse
Affiliation(s)
- Gang Hu
- Department of General Surgery, Strategic Support Force Characteristic Medical Center, Beijing, 100101, People's Republic of China
| | - Shusen Zhai
- Department of Oncology, Strategic Support Force Characteristic Medical Center, Beijing, 100101, People's Republic of China
| | - Sheng Yu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou City, Guangdong Province, 510515, People's Republic of China.
| | - Zhen Huang
- Department of General Surgery, Strategic Support Force Characteristic Medical Center, Beijing, 100101, People's Republic of China
| | - Ran Gao
- Department of General Surgery, Strategic Support Force Characteristic Medical Center, Beijing, 100101, People's Republic of China
| |
Collapse
|
36
|
Chen Q, Zhang H, Zhang J, Shen L, Yang J, Wang Y, Ma J, Zhuan B. miR-210-3p Promotes Lung Cancer Development and Progression by Modulating USF1 and PCGF3. Onco Targets Ther 2021; 14:3687-3700. [PMID: 34140779 PMCID: PMC8203303 DOI: 10.2147/ott.s288788] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Lung cancer represents one of the most frequent solid tumors. Adenocarcinoma is a common type of tumor and a significant threat to individual health globally. MicroRNAs (miRNAs) are recognized as critical governors of gene expression during carcinogenesis, while their effects on lung cancer occurrence and development are required for further investigation. Herein, the functional role of miR-210-3p and its regulation mechanism were characterized in lung cancer. Methods A total of 50 pairs of tumor and tumor-free lung tissues were surgically resected from lung cancer patients. Dual-luciferase reporter assay and RNA immunoprecipitation assay were performed to examine USF1 binding with miR-210-3p and PCGF3. Cultured human lung cancer cells A549 were assayed for viability, apoptosis, migration, and invasion in vitro by CCK-8 test, flow cytometry, transwell chamber assays, tumorigenesis, and lymph node metastasis in vivo by mouse xenograft experiments. Results miR-210-3p was upregulated in lung cancer tissues. The inhibition of miR-210-3p by specific inhibitor tempered lung cancer development and metastasis in vitro and in vivo. miR-210-3p targeted USF1 and inhibited its expression. USF1 was bound with PCGF3, which increased its transcription. PCGF3-specific knockdown mimicked the effect of miR-210-3p on lung cancer development and metastasis in vitro and in vivo. Conclusion The current study demonstrated that miR-210-3p facilitates lung cancer development and metastasis by impairing USF1-mediated promotion of PCGF3, which provides a better understanding of the mechanism of lung cancer development and metastasis.
Collapse
Affiliation(s)
- Qian Chen
- Department of Respiratory Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, People's Republic of China.,Department of Respiratory Medicine, First Affiliated Hospital of Northwest Minzu University, Yinchuan, People's Republic of China
| | - Hongyu Zhang
- Department of Intervention and Vascular Surgery, People's Hospital of Ningxia Hui Autonomous, Yinchuan, People's Republic of China.,Department of Intervention and Vascular Surgery, First Affiliated Hospital of Northwest Minzu University, Yinchuan, People's Republic of China
| | - Jianyin Zhang
- Department of Respiratory Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, People's Republic of China.,Department of Respiratory Medicine, First Affiliated Hospital of Northwest Minzu University, Yinchuan, People's Republic of China
| | - Le Shen
- Department of Respiratory Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, People's Republic of China.,Department of Respiratory Medicine, First Affiliated Hospital of Northwest Minzu University, Yinchuan, People's Republic of China
| | - Jing Yang
- Department of Respiratory Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, People's Republic of China.,Department of Respiratory Medicine, First Affiliated Hospital of Northwest Minzu University, Yinchuan, People's Republic of China
| | - Yan Wang
- Department of Respiratory Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, People's Republic of China.,Department of Respiratory Medicine, First Affiliated Hospital of Northwest Minzu University, Yinchuan, People's Republic of China
| | - JinXiu Ma
- Department of Respiratory Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, People's Republic of China.,Department of Respiratory Medicine, First Affiliated Hospital of Northwest Minzu University, Yinchuan, People's Republic of China
| | - Bing Zhuan
- Department of Respiratory Medicine, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, People's Republic of China.,Department of Respiratory Medicine, First Affiliated Hospital of Northwest Minzu University, Yinchuan, People's Republic of China
| |
Collapse
|
37
|
Liu YR, Wang PY, Xie N, Xie SY. MicroRNAs as Therapeutic Targets for Anticancer Drugs in Lung Cancer Therapy. Anticancer Agents Med Chem 2021; 20:1883-1894. [PMID: 32538735 DOI: 10.2174/1871520620666200615133011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are short, non-coding RNA molecules that regulate gene expression by translational repression or deregulation of messenger RNAs. Accumulating evidence suggests that miRNAs play various roles in the development and progression of lung cancers. Although their precise roles in targeted cancer therapy are currently unclear, miRNAs have been shown to affect the sensitivity of tumors to anticancer drugs. A large number of recent studies have demonstrated that some anticancer drugs exerted antitumor activities by affecting the expression of miRNAs and their targeted genes. These studies have elucidated the specific biological mechanism of drugs in tumor suppression, which provides a new idea or basis for their clinical application. In this review, we summarized the therapeutic mechanisms of drugs in lung cancer therapy through their effects on miRNAs and their targeted genes, which highlights the roles of miRNAs as targets in lung cancer therapy.
Collapse
Affiliation(s)
- Yuan-Rong Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, YanTai, ShanDong, 264003, China
| | - Ping-Yu Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, YanTai, ShanDong, 264003, China
| | - Ning Xie
- Department of Chest Surgery, YanTaiShan Hospital, YanTai, 264000, ShanDong, China
| | - Shu-Yang Xie
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Binzhou Medical University, YanTai, ShanDong, 264003, China
| |
Collapse
|
38
|
Ma J, Miao H, Zhang H, Ren J, Qu S, Da J, Xu F, Zhao H. LncRNA GAS5 modulates the progression of non-small cell lung cancer through repressing miR-221-3p and up-regulating IRF2. Diagn Pathol 2021; 16:46. [PMID: 34022918 PMCID: PMC8140465 DOI: 10.1186/s13000-021-01108-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 05/05/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Long non-coding RNA growth arrest specific 5 (GAS5) is a regulator in non-small cell lung cancer (NSCLC) progression. Nonetheless, the mechanism by which GAS5 exerts its biological function in NSCLC cells remains unclear. METHODS GAS5, miR-221-3p relative expression levels in NSCLC tissues and cells were examined by qPCR. After gain-of-function and loss-of-function models were established, the viability of H1299 and A549 cells were examined by CCK-8 and EdU assays. Cell migration and invasion were examined by the Transwell experiment. The binding sequence of GAS5 for miR-221-3p was confirmed by the dual-luciferase reporter gene experiment. The regulatory function of GAS5 and miR-221-3p on IRF2 was investigated by Western blot. RESULTS GAS5 expression was down-modulated in NSCLC tissues and cell lines. GAS5 overexpression restrained the proliferation, migration and invasion of NSCLC cells, while miR-221-3p, which was targeted and negatively modulated by GAS5, worked oppositely. Restoration of miR-221-3p markedly reversed the effects of GAS5 on NSCLC cells. Additionally, GAS5 increased IRF2 expression in NSCLC cells by repressing miR-221-3p. CONCLUSIONS GAS5 blocks the progression of NSCLC partly via increasing IRF2 expression level via repressing miR-221-3p.
Collapse
Affiliation(s)
- Juan Ma
- Department of Clinical Laboratory, The Sixth People's Hospital of Nantong, Yonghe road No.500, 226011, Nantong, Jiangsu, China
| | - Haiyan Miao
- Department of General Surgery, The Sixth People's Hospital of Nantong, 226011, Nantong, Jiangsu, China
| | - Haiyun Zhang
- Department of Clinical Laboratory, The Sixth People's Hospital of Nantong, Yonghe road No.500, 226011, Nantong, Jiangsu, China
| | - Jingjing Ren
- Department of Clinical Laboratory, The Sixth People's Hospital of Nantong, Yonghe road No.500, 226011, Nantong, Jiangsu, China
| | - Shengyan Qu
- Department of Clinical Laboratory, The Sixth People's Hospital of Nantong, Yonghe road No.500, 226011, Nantong, Jiangsu, China
| | - Jing Da
- Department of Gastroenterology, The Sixth People's Hospital of Nantong, 226011, Nantong, Jiangsu, China
| | - Feifan Xu
- Department of Clinical Laboratory, The Sixth People's Hospital of Nantong, Yonghe road No.500, 226011, Nantong, Jiangsu, China.
| | - Huan Zhao
- Department of Respiration, The Sixth People's Hospital of Nantong, Yonghe road No.500, 226011, Nantong, Jiangsu, China.
| |
Collapse
|
39
|
Shao L, Lu X, Zhou Y, Wang Y, Wang X, Zhuang Z, Gong J. Altered miR-93-5p/miR-18a expression in serum for diagnosing non-small cell lung cancer. Am J Transl Res 2021; 13:5073-5079. [PMID: 34150094 PMCID: PMC8205697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE This research aimed at probing into miR-93-5p and miR-18a's diagnostic and prognostic values in non-small cell lung cancer (NSCLC) patients. METHODS A total of 107 patients diagnosed with NSCLC in the Department of Oncology and Thoracic Surgery of our hospital from January 2015 to June 2016 were regarded as the research group (RG), and 42 healthy people were considered as the control group (CG). Serum samples were collected and miR-93-5p, miR-18a expression was detected via qPCR. The relationship between miR-93-5p, miR-18a and clinicopathological characteristics of NSCLC patients was assessed, and the diagnostic value of the two miRNAs was analyzed by ROC curve. RESULTS miR-93-5p and miR-18a were up-regulated in NSCLC. The higher the degree of tumor differentiation, the higher the TNM stage and the expression of the two miRNAs were. The high expression was tied to tumor differentiation degree, TNM stage, lymph node metastasis and lymph-vascular space invasion (LVSI). The survival rate of miR-93-5p and miR-18a high expression patients was worse than that of those with low expression. The AUC value of both of the mRNAs in NSCLC diagnosis was high (0.8905). CONCLUSION The expression of miR-93-5p and miR-18a is associated with NSCLC severity and prognosis, and both can be used as potential markers for diagnosis.
Collapse
Affiliation(s)
- Lili Shao
- Department of Medical Oncology, The Second Affiliated Hospital of Soochow UniversitySuzhou 215004, Jiangsu Province, China
- Department of Medical Oncology, Affiliated Tumor Hospital of Nantong UniversityNantong 226361, Jiangsu Province, China
| | - Xiaomin Lu
- Department of Oncology, Affiliated Haian Hospital of Nantong UniversityNantong 226601, Jiangsu, China
| | - Yan Zhou
- Department of Medical Oncology, Affiliated Tumor Hospital of Nantong UniversityNantong 226361, Jiangsu Province, China
| | - Yan Wang
- Department of Medical Oncology, Affiliated Tumor Hospital of Nantong UniversityNantong 226361, Jiangsu Province, China
| | - Xiaoli Wang
- Department of Medical Oncology, Affiliated Tumor Hospital of Nantong UniversityNantong 226361, Jiangsu Province, China
| | - Zhixiang Zhuang
- Department of Medical Oncology, The Second Affiliated Hospital of Soochow UniversitySuzhou 215004, Jiangsu Province, China
| | - Jun Gong
- Department of Medical Oncology, Affiliated Tumor Hospital of Nantong UniversityNantong 226361, Jiangsu Province, China
| |
Collapse
|
40
|
Liu HM, Guo CL, Zhang YF, Chen JF, Liang ZP, Yang LH, Ma YP. Leonurine-Repressed miR-18a-5p/SOCS5/JAK2/STAT3 Axis Activity Disrupts CML malignancy. Front Pharmacol 2021; 12:657724. [PMID: 33935775 PMCID: PMC8087248 DOI: 10.3389/fphar.2021.657724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
Leonurine, an active natural alkaloid compound isolated from Herba leonuri, has been reported to exhibit promising anticancer activity in solid tumors. The aim of this study was to explore whether leonurine is able to inhibit chronic myeloid leukemia (CML) malignancy. Here, we found that leonurine dose dependently inhibited the proliferation, migration, colony formation and promoted apoptosis of CML cells. Furthermore, leonurine markedly reduced CML xenograft growth in vivo. Mechanically, leonurine upregulated SOCS5 expression, thus leading JAK2/STAT3 signaling suppression. Silencing of SOCS5 by its siRNA abrogated the effect of leonurine on CML cells, demonstrating that SOCS5 mediates the anti-leukemia effect of leonurine. Notably, we observed that miR-18a-5p was remarkably increased in CML cells. Treating CML cells with leonurine significantly decreased miR-18a-5p expression. Moreover, we found miR-18a-5p repressed SOCS5 by directly targeting its 3′-UTR. miR-18a-5p downregulation induced by leonurine reduced the biological activity of CML cells by relieving miR-18a-5p repression of SOCS5 expression. Taken together, leonurine exerts significant anti-leukemia efficacy in CML by regulating miR-18a-5p/SOCS5/JAK2/STAT3 axis.
Collapse
Affiliation(s)
- Hui-Min Liu
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chun-Ling Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yao-Fang Zhang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian-Fang Chen
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhi-Peng Liang
- Basic Laboratory of Internal Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lin-Hua Yang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan-Ping Ma
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
41
|
Szafranski P, Gambin T, Karolak JA, Popek E, Stankiewicz P. Lung-specific distant enhancer cis regulates expression of FOXF1 and lncRNA FENDRR. Hum Mutat 2021; 42:694-698. [PMID: 33739555 DOI: 10.1002/humu.24198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/22/2021] [Accepted: 03/14/2021] [Indexed: 12/21/2022]
Abstract
The FOXF1 gene, causative for a neonatal lethal lung developmental disorder alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV), maps 1.7 kb away from the long noncoding RNA gene FENDRR on the opposite strand, suggesting they may be coregulated. Using RNA sequencing in lung tissue from ACDMPV patients with heterozygous deletions of the FOXF1 distant enhancer located 286 kb upstream, leaving FOXF1 and FENDRR intact, we have found that the FENDRR and FOXF1 expressions were reduced by approximately 75% and 50%, respectively, and were monoallelic from the intact chromosome 16q24.1. In contrast, ACDMPV patients with FOXF1 SNVs had biallelic FENDRR expression reduced by 66%-82%. Corroboratively, depletion of FOXF1 by small interfering RNA in lung fibroblasts resulted in a 50% decrease of FENDRR expression. These data indicate that FENDRR expression in the lungs is regulated both in cis by the FOXF1 distant enhancer and in trans by FOXF1. Our findings are compatible with the involvement of FENDRR in FOXF1-related disorders, including ACDMPV.
Collapse
Affiliation(s)
- Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland.,Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Justyna A Karolak
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Edwina Popek
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
42
|
Sharma B, Randhawa V, Vaiphei K, Gupta V, Dahiya D, Agnihotri N. Expression of miR-18a-5p, miR-144-3p, and miR-663b in colorectal cancer and their association with cholesterol homeostasis. J Steroid Biochem Mol Biol 2021; 208:105822. [PMID: 33465419 DOI: 10.1016/j.jsbmb.2021.105822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/29/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Though cholesterol accumulation is an established hallmark of a tumor cell, the relationship between the two is still not clear. Previously, we identified 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR), Sterol Regulatory Element BindingTranscription Factor 2 (SREBF2), Nuclear Receptor Subfamily 1 Group H Member 3 (NR1H3), and Nuclear Receptor Subfamily 1 Group H Member 2 (NR1H2) as the key cholesterol homeostasis genes involved in colorectal cancer (CRC). In the present study, we aimed to identify microRNAs regulating these key genes in CRC. METHODS miR-18a-5p, miR-144-3p, and miR-663b were selected as the miRNAs targeting NR1H2, HMGCR, and SREBF2, respectively, based on the bioinformatic prediction tools and literature review. Their expression was evaluated in the local and The Cancer Genome Atlas (TCGA) cohorts. Receiver Operating Characteristic Curves and Kaplan Meier analysis were performed to elucidate their diagnostic and prognostic potential. Pearson or Spearman's correlations were used to evaluate the relationship between miRNAs and their target genes. Protein-protein interaction networks and Gene Ontology analyses were performed to investigate the potential molecular mechanism of these miRNAs. RESULTS Deregulated expression of miR-18a-5p, miR-144-3p, and miR-663b was associated with various clinicopathological features. miR-18a-5p exhibited an inverse correlation with NR1H2. miR-18a-5p and miR-144-3p also had a significant direct correlation with miR-33a-5p, an important modulator of cholesterol homeostasis. These miRNAs also exhibited high centrality in the mirna-protein interaction network. miR-144-3p and miR-663b exhibited the potential to be used as diagnostic biomarkers. CONCLUSIONS miR-18a-5p and miR-144-3p exhibited the potential to modulate cholesterol homeostasis in CRC. miR-663b is an interesting candidate in CRC pathophysiology.
Collapse
Affiliation(s)
- Bhoomika Sharma
- Department of Biochemistry, Panjab University, Sector-25, Chandigarh, 160014, India.
| | - Vinay Randhawa
- Department of Biochemistry, Panjab University, Sector-25, Chandigarh, 160014, India.
| | - Kim Vaiphei
- Department of Histopathology, Post Graduate Institute of Medical Education & Research, Sector 12, Chandigarh, 160012, India.
| | - Vikas Gupta
- Department of General Surgery, Post Graduate Institute of Medical Education & Research (PGIMER), Sector 12, Chandigarh, 160012, India.
| | - Divya Dahiya
- Department of General Surgery, Post Graduate Institute of Medical Education & Research (PGIMER), Sector 12, Chandigarh, 160012, India.
| | - Navneet Agnihotri
- Department of Biochemistry, Panjab University, Sector-25, Chandigarh, 160014, India.
| |
Collapse
|
43
|
Shi L, Magee P, Fassan M, Sahoo S, Leong HS, Lee D, Sellers R, Brullé-Soumaré L, Cairo S, Monteverde T, Volinia S, Smith DD, Di Leva G, Galuppini F, Paliouras AR, Zeng K, O'Keefe R, Garofalo M. A KRAS-responsive long non-coding RNA controls microRNA processing. Nat Commun 2021; 12:2038. [PMID: 33795683 PMCID: PMC8016872 DOI: 10.1038/s41467-021-22337-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Wild-type KRAS (KRASWT) amplification has been shown to be a secondary means of KRAS activation in cancer and associated with poor survival. Nevertheless, the precise role of KRASWT overexpression in lung cancer progression is largely unexplored. Here, we identify and characterize a KRAS-responsive lncRNA, KIMAT1 (ENSG00000228709) and show that it correlates with KRAS levels both in cell lines and in lung cancer specimens. Mechanistically, KIMAT1 is a MYC target and drives lung tumorigenesis by promoting the processing of oncogenic microRNAs (miRNAs) through DHX9 and NPM1 stabilization while halting the biogenesis of miRNAs with tumor suppressor function via MYC-dependent silencing of p21, a component of the Microprocessor Complex. KIMAT1 knockdown suppresses not only KRAS expression but also KRAS downstream signaling, thereby arresting lung cancer growth in vitro and in vivo. Taken together, this study uncovers a role for KIMAT1 in maintaining a positive feedback loop that sustains KRAS signaling during lung cancer progression and provides a proof of principle that interfering with KIMAT1 could be a strategy to hamper KRAS-induced tumorigenesis.
Collapse
Affiliation(s)
- Lei Shi
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK
| | - Peter Magee
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Sudhakar Sahoo
- Computational Biology Support, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Hui Sun Leong
- Computational Biology Support, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Dave Lee
- Computational Biology Support, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Robert Sellers
- Computational Biology Support, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | | | | | - Tiziana Monteverde
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Duncan D Smith
- Biological Mass Spectrometry Facility, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Gianpiero Di Leva
- School of Pharmacy and Bioengineering, Keele University, Stock-on-Trent, UK
| | - Francesca Galuppini
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Athanasios R Paliouras
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK
| | - Kang Zeng
- Imaging & Cytometry Facility, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Raymond O'Keefe
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Michela Garofalo
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK.
| |
Collapse
|
44
|
WM Nor WMFSB, Chung I, Said NABM. MicroRNA-548m Suppresses Cell Migration and Invasion by Targeting Aryl Hydrocarbon Receptor in Breast Cancer Cells. Oncol Res 2021; 28:615-629. [PMID: 33109304 PMCID: PMC7962940 DOI: 10.3727/096504020x16037933185170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer among women and one of the leading causes of cancer mortality worldwide, in which the most severe form happens when it metastasizes to other regions of the body. Metastasis is responsible for most treatment failures in advanced breast cancer. Epithelialmesenchymal transition (EMT) plays a significant role in promoting metastatic processes in breast cancer. MicroRNAs (miRNAs) are highly conserved endogenous short noncoding RNAs that play a role in regulating a broad range of biological processes, including cancer initiation and development, by functioning as tumor promoters or tumor suppressors. Expression of miR-548m has been found in various types of cancers, but the biological function and molecular mechanisms of miR-548m in cancers have not been fully studied. Here we demonstrated the role of miR-548m in modulating EMT in the breast cancer cell lines MDA-MB-231 and MCF-7. Expression data for primary breast cancer obtained from NCBI GEO data sets showed that miR-548m expression was downregulated in breast cancer patients compared with healthy group. We hypothesize that miR-548m acts as a tumor suppressor in breast cancer. Overexpression of miR-548m in both cell lines increased E-cadherin expression and decreased the EMT-associated transcription factors SNAI1, SNAI2, ZEB1, and ZEB2, as well as MMP9 expression. Consequently, migration and invasion capabilities of both MDA-MB-231 and MCF-7 cells were significantly inhibited in miR-548m-overexpressing cells. Analysis of 1,059 putative target genes of miR-548m revealed common pathways involving both tight junction and the mTOR signaling pathway, which has potential impacts on cell migration and invasion. Furthermore, this study identified aryl hydrocarbon receptor (AHR) as a direct target of miR-548m in breast cancer cells. Taken together, our findings suggest a novel function of miR-548m in reversing the EMT of breast cancer by reducing their migratory and invasive potentials, at least in part via targeting AHR expression.
Collapse
Affiliation(s)
- WM Farhan Syafiq B. WM Nor
- *Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- †Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| | - Ivy Chung
- ‡Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- §University of Malaya Cancer Research Institute, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nur Akmarina B. M. Said
- †Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
45
|
Liu Y, Shao G, Yang Z, Lin X, Liu X, Qian B, Liu Z. Interferon regulatory factor 6 correlates with the progression of non-small cell lung cancer and can be regulated by miR-320. J Pharm Pharmacol 2021; 73:682-691. [PMID: 33772297 DOI: 10.1093/jpp/rgab009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/29/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVES The expression of interferon regulatory factor 6 (IRF6) has been reported in several cancer types, but its roles underlying the progression of lung cancer have not been detailedly investigated. METHODS The pairs of lung cancer tissues and para-carcinoma tissues and The Cancer Genome Atlas database were collected to detect IRF6 expression. Cell counting kit-8, transwell and terminal-deoxynucleoitidyl transferase-mediated nick end labelling assays were used to evaluate cell proliferation, migration and apoptosis. KEY FINDINGS A significant up-regulation of IRF6 in both lung adenocarcinoma and lung squamous cell carcinoma tissues compared with normal non-tumor tissues. Subsequently, Immunostaining also revealed that canceration of lung tissues predisposed to evoke IRF6 expression. In vitro experiments revealed the antitumour effects, including growth and migration inhibition, of IRF6 siRNA transfection. Considering miR-320 as an endogenous inhibitor to IRF6, miR-320 mimics transfection led to the inhibition of proliferation and migration of lung cancer cells. However, overexpressed IRF6 neutralized the antineoplastic activities of miR-320 in lung cancer cells. CONCLUSIONS The miR-320/IRF6 signalling axis was implicated in pulmonary canceration. miR-320 as an endogenous inhibitor of IRF6 provided a novel therapeutic strategy for the treatment of lung cancer.
Collapse
Affiliation(s)
- Yunpeng Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, P.R. China
| | - Guoguang Shao
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, P.R. China
| | - Zhiguang Yang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, P.R. China
| | - Xingyu Lin
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, P.R. China
| | - Xing Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, P.R. China
| | - Benxin Qian
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, P.R. China
| | - Zihao Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, P.R. China
| |
Collapse
|
46
|
Zhou J, Wang H, Sun Q, Liu X, Wu Z, Wang X, Fang W, Ma Z. miR-224-5p-enriched exosomes promote tumorigenesis by directly targeting androgen receptor in non-small cell lung cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:1217-1228. [PMID: 33664999 PMCID: PMC7899953 DOI: 10.1016/j.omtn.2021.01.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the most common form of cancer, resulting in cancer-related deaths worldwide. Exosomes, a subclass of extracellular vesicles, are produced and secreted from various types of cells, including cancer cells. Cancer-derived exosomes can deliver nucleic acids, proteins, and lipids to provide a favorable microenvironment that supports tumor growth through enhancing cell proliferation and metastasis. Our results showed that miR-224-5p was upregulated in NSCLC patient tissues and cell lines, with a tumor-promoting phenotype. Meanwhile, exosome-derived miR-224-5p induced cell proliferation and metastasis in NSCLC and human lung cells. Moreover, we characterized the androgen receptor (AR) as a direct target of miR-224-5p. Tumor xenograft assay experiments revealed that overexpression of miR-224-5p drove NSCLC tumor growth via the suppression of AR and the mediation of epithelial-mesenchymal transition (EMT). Collectively, our results suggest that miR-224-5p-enriched exosomes promote tumorigenesis by directly targeting AR in NSCLC, which may provide novel potential therapeutic and preventive targets for NSCLC.
Collapse
Affiliation(s)
- Jinbao Zhou
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hongshu Wang
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Qiangling Sun
- Department of Thoracic Surgery, Thoracic Cancer Institute, Shanghai Chest Hospital, Jiaotong University Medical School, Shanghai 200030, China
| | - Xiaomin Liu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zong Wu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xianyi Wang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wentao Fang
- Department of Thoracic Surgery, Thoracic Cancer Institute, Shanghai Chest Hospital, Jiaotong University Medical School, Shanghai 200030, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
47
|
Zhao W, Zhao J, Guo X, Feng Y, Zhang B, Tian L. LncRNA MT1JP plays a protective role in intrahepatic cholangiocarcinoma by regulating miR-18a-5p/FBP1 axis. BMC Cancer 2021; 21:142. [PMID: 33557774 PMCID: PMC7871555 DOI: 10.1186/s12885-021-07838-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background Cholangiocarcinoma is a common malignant tumor of digestive system. LncRNA metallothionein 1 J, pseudogene (MT1JP) has been reported to play tumor-suppressing roles in multiple cancers. However, its effect on cholangiocarcinoma has not been evaluated. Methods The expression of MT1JP in intrahepatic cholangiocarcinoma specimens and paired para-carcinoma tissues were detected by real-time PCR. The overexpression plasmid and siRNA of MT1JP were transfected into intrahepatic cholangiocarcinoma cells to change the expression levels of MT1JP. CCK-8, flow cytometry and transwell assays were performed to measure proliferation, cell cycle transition, apoptosis, migration and invasion. Dual-luciferase reporter assay, real-time PCR and western blot were carried out to screen the miRNA bound by MT1JP. In addition, xenograft experiment was used to determine the tumorigenesis of cholangiocarcinoma cells in nude mice. Results MT1JP was downregulated in intrahepatic cholangiocarcinoma specimens, and its expression was related with TNM stage and lymph node metastasis. Overexpression of MT1JP inhibited proliferation, cell cycle transition, migration and invasion, and induced apoptosis in intrahepatic cholangiocarcinoma cells. The knockdown of MT1JP led to opposite results. MT1JP bound to miR-18a-5p to facilitate the expression of fructose-1,6-bisphosphatase 1 (FBP1). MiR-18a-5p was increased in intrahepatic cholangiocarcinoma samples, and its expression was negatively correlated with that of MT1JP. In addition, MT1JP also suppressed tumorigenesis in nude mice. Conclusions MT1JP alleviated proliferation, migration and invasion, and induced apoptosis in cholangiocarcinoma cells by regulating miR-18a-5p/FBP1 axis. These findings may provide novel insights for clinical diagnosis and treatment of cholangiocarcinoma. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07838-0.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Hepatopancreatobiliary Surgery, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Qingdao, 266000, People's Republic of China.
| | - Jing Zhao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Xiao Guo
- Heart Center, Qingdao Fuwai Cardiovascular Hospital, Qingdao, 266034, People's Republic of China
| | - Yujie Feng
- Department of Hepatopancreatobiliary Surgery, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Qingdao, 266000, People's Republic of China
| | - Bingyuan Zhang
- Department of Hepatopancreatobiliary Surgery, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Qingdao, 266000, People's Republic of China
| | - Lantian Tian
- Department of Hepatopancreatobiliary Surgery, The Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Qingdao, 266000, People's Republic of China
| |
Collapse
|
48
|
Szafranski P, Stankiewicz P. Long Non-Coding RNA FENDRR: Gene Structure, Expression, and Biological Relevance. Genes (Basel) 2021; 12:177. [PMID: 33513839 PMCID: PMC7911649 DOI: 10.3390/genes12020177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
The FOXF1 Adjacent Noncoding Developmental Regulatory RNA (Fendrr) plays an important role in the control of gene expression in mammals. It is transcribed in the opposite direction to the neighboring Foxf1 gene with which it shares a region containing promoters. In humans, FENDRR is located on chromosome 16q24.1, and is positively regulated both by the FOXF1 distant lung-specific cis-acting enhancer and by trans-acting FOXF1. Fendrr has been shown to function as a competing endogenous RNA, sponging microRNAs and protein factors that control stability of mRNAs, and as an epigenetic modifier of chromatin structure around gene promoters and other regulatory sites, targeting them with histone methyltrasferase complexes. In mice, Fendrr is essential for development of the heart, lungs, and gastrointestinal system; its homozygous loss causes embryonic or perinatal lethality. Importantly, deregulation of FENDRR expression has been causatively linked also to tumorigenesis, resistance to chemotherapy, fibrosis, and inflammatory diseases. Here, we review the current knowledge on the FENDRR structure, expression, and involvement in development and tissue maintenance.
Collapse
Affiliation(s)
- Przemyslaw Szafranski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA;
| | | |
Collapse
|
49
|
Palmini G, Romagnoli C, Donati S, Zonefrati R, Galli G, Marini F, Iantomasi T, Aldinucci A, Leoncini G, Franchi A, Beltrami G, Campanacci DA, Capanna R, Brandi ML. Analysis of a Preliminary microRNA Expression Signature in a Human Telangiectatic Osteogenic Sarcoma Cancer Cell Line. Int J Mol Sci 2021; 22:1163. [PMID: 33503899 PMCID: PMC7866083 DOI: 10.3390/ijms22031163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 11/30/2022] Open
Abstract
Telangiectatic osteosarcoma (TOS) is an aggressive variant of osteosarcoma (OS) with distinctive radiographic, gross, microscopic features, and prognostic implications. Despite several studies on OS, we are still far from understanding the molecular mechanisms of TOS. In recent years, many studies have demonstrated not only that microRNAs (miRNAs) are involved in OS tumorigenesis, development, and metastasis, but also that the presence in high-grade types of OS of cancer stem cells (CSCs) plays an important role in tumor progression. Despite these findings, nothing has been described previously about the expression of miRNAs and the presence of CSCs in human TOS. Therefore, we have isolated/characterized a putative CSC cell line from human TOS (TOS-CSCs) and evaluated the expression levels of several miRNAs in TOS-CSCs using real-time quantitative assays. We show, for the first time, the existence of CSCs in human TOS, highlighting the in vitro establishment of this unique stabilized cell line and an identification of a preliminary expression of the miRNA profile, characteristic of TOS-CSCs. These findings represent an important step in the study of the biology of one of the most aggressive variants of OS and the role of miRNAs in TOS-CSC behavior.
Collapse
Affiliation(s)
- Gaia Palmini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Cecilia Romagnoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Simone Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Roberto Zonefrati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Gianna Galli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Francesca Marini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Alessandra Aldinucci
- Central Laboratory, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | - Gigliola Leoncini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Alessandro Franchi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Giovanni Beltrami
- Ortopedia Oncologica Pediatrica, AOU Careggi-AOU Meyer, 50139 Florence, Italy
| | | | - Rodolfo Capanna
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
- Fondazione Italiana Ricerca sulle Malattie dell'Osso (FIRMO Onlus), 50141 Florence, Italy
| |
Collapse
|
50
|
MicroRNAs: Emerging oncogenic and tumor-suppressive regulators, biomarkers and therapeutic targets in lung cancer. Cancer Lett 2021; 502:71-83. [PMID: 33453304 DOI: 10.1016/j.canlet.2020.12.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/24/2020] [Accepted: 12/26/2020] [Indexed: 02/05/2023]
Abstract
Lung cancer is one of the most common solid tumors worldwide and the leading cause of cancer-related deaths, causing a devastating impact on human health. The clinical prognosis of lung cancer is usually restricted by delayed diagnosis and resistance to anticancer therapies. MicroRNAs, a range of small endogenous noncoding RNAs 22 nucleotides in length, have emerged as one of the most important players in cancer initiation and progression in recent decades. Current evidence reveals pivotal roles of microRNAs in regulating cell proliferation, migration, invasion and metastasis in lung cancer. An increasing number of preclinical and clinical studies have also explored the potential of microRNAs as promising biomarkers and new therapeutic targets for lung cancer. The current review summarizes the most recent progress on the functional mechanisms of microRNAs involved in lung cancer development and progression and further discusses the clinical application of miRNAs as putative therapeutic targets for molecular diagnosis and prognostic prediction in lung cancer.
Collapse
|