1
|
Li N, Li Y, Li J, Tang S, Gao H, Li Y. Correlation of the abundance of MDSCs, Tregs, PD-1, and PD-L1 with the efficacy of chemotherapy and prognosis in gastric cancer. Lab Med 2025; 56:259-270. [PMID: 39566022 DOI: 10.1093/labmed/lmae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
OBJECTIVE The aim of this study was to investigate the relationship between tumor microenvironment markers (myeloid-derived suppressor cells [MDSCs], regulatory T cells [Tregs], programmed cell death 1 [PD-1], and programmed death ligand 1 [PD-L1]) and chemotherapy efficacy and prognosis in advanced gastric cancer, identifying potential monitoring indicators. METHODS Advanced gastric cancer patients' MDSC and Treg expression was measured by flow cytometry pre- and postchemotherapy; PD-1 and PD-L1 expression in cancer tissues was assessed by immunohistochemistry. Correlations with chemotherapy outcomes and prognosis were analyzed. RESULTS Postchemotherapy reductions in MDSC and Treg levels correlated with chemotherapy efficacy (P <.01). Negative PD-1 and PD-L1 expression in cancer tissues predicted better chemotherapy responses (P <.01). Patients with lower MDSC and Treg levels and negative PD-1 and PD-L1 had significantly longer median progression-free survival (PFS) and overall survival (OS) (P <.05). CONCLUSION In advanced gastric cancer, reduced peripheral blood MDSC and Treg levels postchemotherapy and negative PD-1 and PD-L1 expression in tissues are associated with improved chemotherapy efficacy and are independent prognostic factors for PFS and OS.
Collapse
Affiliation(s)
- Na Li
- Cancer Center of Suining Central Hospital, Suining 629000, China
- Department of Medical Oncology, First Affiliated Hospital of Medical College of Shihezi University, Shihezi 832000, China
| | - Yun Li
- Radionuclide Diagnosis and Treatment Center, Beijing Nuclear Industry Hospital, Beijing 102413, China
| | - Jing Li
- Department of Medical Oncology, First Affiliated Hospital of Medical College of Shihezi University, Shihezi 832000, China
| | - Shimin Tang
- Cancer Center of Suining Central Hospital, Suining 629000, China
| | - Hongbo Gao
- Radionuclide Diagnosis and Treatment Center, Beijing Nuclear Industry Hospital, Beijing 102413, China
| | - Yong Li
- Department of Radiology, Suining Central Hospital, Suining 629000, China
| |
Collapse
|
2
|
Glapiński F, Zając W, Fudalej M, Deptała A, Czerw A, Sygit K, Kozłowski R, Badowska-Kozakiewicz A. The Role of the Tumor Microenvironment in Pancreatic Ductal Adenocarcinoma: Recent Advancements and Emerging Therapeutic Strategies. Cancers (Basel) 2025; 17:1599. [PMID: 40427098 DOI: 10.3390/cancers17101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Pancreatic cancer (PC), with pancreatic ductal adenocarcinoma (PDAC) comprising about 90% of all cases, is one of the most aggressive and lethal solid tumors. PDAC remains one of the most significant challenges of oncology to this day due to its inadequate response to conventional treatment, gradual rise in incidence since 2004, and poor five-year survival rates. As cancer cells are the primary adversary in this uneven fight, they remain the primary research target. Nevertheless, increasing attention is being paid to the tumor microenvironment (TME). The most crucial TME constellation components are immune cells, especially macrophages, stellate cells and lymphocytes, fibroblasts, bacterial and fungal microflora, and neuronal cells. Depending on the particular phenotype of these cells, the composition of the microenvironment, and the cell ratio, patients can experience different disease outcomes and varying vulnerability to treatment approaches. This study aims to present the current knowledge and review the most up-to-date scientific findings regarding the microenvironment of PC. It contains detailed information on the structure and cellular composition of the stroma, including its impact on disease development, metastasis, and response to treatment, as well as the therapeutic opportunities that arise from targeting this tissue.
Collapse
Affiliation(s)
- Franciszek Glapiński
- Students' Scientific Organization of Cancer Cell Biology, Department of Oncological Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
| | - Weronika Zając
- Students' Scientific Organization of Cancer Cell Biology, Department of Oncological Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
| | - Marta Fudalej
- Department of Oncological Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
- Department of Oncology, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
| | - Andrzej Deptała
- Department of Oncological Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
| | - Aleksandra Czerw
- Department of Health Economics and Medical Law, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Economic and System Analyses, National Institute of Public Health NIH-National Research Institute, 00-791 Warsaw, Poland
| | - Katarzyna Sygit
- Faculty of Health Sciences, Calisia University, 62-800 Kalisz, Poland
| | - Remigiusz Kozłowski
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-131 Lodz, Poland
| | | |
Collapse
|
3
|
Jamouss KT, Damanakis AI, Cornwell AC, Jongepier M, Trujillo MA, Pflüger MJ, Kawalerski R, Maalouf A, Hirose K, Datta S, Sipes A, Pedro BA, Gudmundsson E, Assarzadegan N, Engle L, Scharpf RB, Kawamoto S, Thompson ED, Wood LD. Tumor immune microenvironment alterations associated with progression in human intraductal papillary mucinous neoplasms. J Pathol 2025; 266:40-50. [PMID: 40001347 DOI: 10.1002/path.6402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 11/26/2024] [Accepted: 01/08/2025] [Indexed: 02/27/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) poses a significant challenge due to late-stage diagnoses. To improve patient outcomes, early intervention in precursor lesions such as intraductal papillary mucinous neoplasm (IPMN) is crucial. However, early intervention must be balanced against overtreatment of low-risk lesions that are unlikely to progress, underscoring the need to better understand molecular alterations in neoplastic cells and changes in the tumor microenvironment (TME) that drive the progression of IPMNs. In this study, we characterized alterations in the TME of IPMNs as they progressed to high-grade dysplasia, using immunohistochemistry to quantify immune cell density and activation status in more than 100 well-characterized human IPMN samples. Analyses revealed progression to a more immunosuppressive TME in high-grade IPMN compared with low-grade IPMN, characterized by elevated expression of immune checkpoint molecules (PD-L1, TIM3, VISTA), increased density of macrophages, and decreased density of cytotoxic T cells. Intriguingly, the alterations in macrophages were limited to focal regions of high-grade dysplasia, while T-cell alterations affected the entire IPMN. Additionally, elevated VISTA expression was associated with poorer clinical outcome after IPMN resection in an independent cohort. These findings provide important insights into the interplay between the immune microenvironment and IPMN progression, highlighting potential targets to modify the TME for cancer interception. © 2025 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Kevin T Jamouss
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander Ioannis Damanakis
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abigail C Cornwell
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martine Jongepier
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria A Trujillo
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael Johannes Pflüger
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Graduate School of Life Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ryan Kawalerski
- Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexandre Maalouf
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Katsuya Hirose
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shalini Datta
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abigail Sipes
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian A Pedro
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emma Gudmundsson
- Department of Physiology, University of Maryland, Baltimore, MD, USA
| | - Naziheh Assarzadegan
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, University of Florida, Gainesville, FL, USA
| | - Logan Engle
- Bloomberg Kimmel Institute, Tumor Microenvironment Technology Development Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert B Scharpf
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Satomi Kawamoto
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth D Thompson
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
4
|
Liu J, Li H, Lin X, Xiong J, Wu G, Ding L, Lin B. Deciphering the heterogeneity of epithelial cells in pancreatic ductal adenocarcinoma: implications for metastasis and immune evasion. World J Surg Oncol 2025; 23:144. [PMID: 40240899 PMCID: PMC12004766 DOI: 10.1186/s12957-025-03793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
OBJECTIVE This study examines the cellular heterogeneity of epithelial cells within pancreatic ductal adenocarcinoma (PDAC) and their contributions to tumor progression, metastasis, and immunosuppressive interactions using single-cell RNA sequencing. METHODS Single-cell RNA-sequencing data from two datasets (GSE154778 and GSE158356) were integrated using the Harmony algorithm, followed by quality control, clustering, and differential gene expression analysis. Distinct subpopulations of epithelial cells were identified, and their gene expression profiles were analyzed. To assess the malignancy of these subpopulations, single-cell copy number variation (CNV) analysis and trajectory analysis were conducted. Additionally, intercellular communication was examined using the CellChat platform. RESULTS The analysis revealed pronounced heterogeneity among PDAC epithelial cells, with specific subpopulations exhibiting distinct roles in tumor proliferation, extracellular matrix remodeling, and metastatic dissemination. Subpopulations 4 and 6 were characterized by increased CNV levels and a more malignant phenotype, suggesting an enhanced capacity for metastasis. Single-cell trajectory analysis, along with CellChat, mapped the temporal evolution of epithelial cells, identifying key regulatory genes such as DCBLD2 and JUN. A prognostic model incorporating five key genes, including KLF6, was developed and demonstrated strong predictive accuracy for patient outcomes. Notably, KLF6 emerged as a critical prognostic marker associated with immune modulation, particularly through interactions with M2 macrophages. CONCLUSION The study highlights the pronounced heterogeneity of epithelial cells in PDAC and their distinct contributions to tumor progression, metastasis, and immune modulation. Through single-cell transcriptomic and CNV analyses, we identified epithelial subpopulations with varying malignant potentials and distinct interactions with the tumor microenvironment. Among these, KLF6 emerged as a key regulator associated with immune modulation and metastasis. Our findings emphasize the significance of epithelial cell heterogeneity in shaping pancreatic cancer progression. These insights provide a foundation for future investigations into novel prognostic markers and therapeutic strategies.
Collapse
Affiliation(s)
- Jie Liu
- Department of Hepatopancreatobiliary Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Hui Li
- Department of Hepatopancreatobiliary Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Xiuyun Lin
- Department of Hepatopancreatobiliary Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Jiani Xiong
- Department of Hepatopancreatobiliary Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Guangfeng Wu
- Department of Hepatopancreatobiliary Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Lingyan Ding
- Department of Hepatopancreatobiliary Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Bin Lin
- Department of Orthodontics, Fujian Medical University Union Hospital, No. 29 of Xinquan Road, Gulou District, Fuzhou, 350001, China.
| |
Collapse
|
5
|
Guan X, Xu L, Liu J, Fei H, Wang C. Single-Cell Sequencing and Transcriptome Analysis Explored Changes in Midnolin-Related Immune Microenvironment and Constructed Combined Prognostic Model for Pancreatic Cancer. J Inflamm Res 2025; 18:2975-2990. [PMID: 40026303 PMCID: PMC11872096 DOI: 10.2147/jir.s503326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/22/2025] [Indexed: 03/05/2025] Open
Abstract
Background Pancreatic cancer has one of the worst prognoses of any malignant tumor. The value of MIDN, midnolin-related genes and midnolin-related immune infiltrating cells (MICs) in the prognosis of pancreatic cancer remains unknown. Methods Single-cell analysis were used to identify midnolin-related genes. Immune cell infiltration was obtained using CIBERSORT. The prognostic midnolin-related genes were identified through the utilization of Cox regression and the least absolute selection operator (LASSO) approach. The combined prognostic model was created using multifactorial Cox regression analysis. Survival analyses, immune microenvironment assessments, drug sensitivity checks were performed to evaluate the combined model performance. Finally, cellular experiments were carried out to confirm MIDN significance in pancreatic cancer. Results The combined model was constructed based on MIDN expression, prognostic model of 10 midnolin-related genes and M1 cell infiltration. Most immune checkpoint-related genes were expressed at greater levels in the low-risk group, suggesting a greater chance of immunotherapy's benefits. The most significant model gene, MIDN, was shown to have a function by cellular tests. In pancreatic cancer, MIDN knockdown drastically decreased pancreatic cancer cell lines' activity, proliferation, and invasive potential. Conclusion The combined model helped assess the prognosis of pancreatic cancer and offered fresh perspectives on immunotherapy in particular.
Collapse
Affiliation(s)
- Xiao Guan
- Department of Pancreatic and Gastric Surgery, Cancer Hospital Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Lei Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Jinsong Liu
- Department of VIP Medical, Cancer Hospital Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - He Fei
- Department of Pancreatic and Gastric Surgery, Cancer Hospital Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Chengfeng Wang
- Department of Pancreatic and Gastric Surgery, Cancer Hospital Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Wang Y, Dong Q, Yuan M, Hu J, Lin P, Yan Y, Wang Y, Wang Y. Effects of metabolism upon immunity: Targeting myeloid-derived suppressor cells for the treatment of breast cancer is a promising area of study. Int Immunopharmacol 2025; 147:113892. [PMID: 39740506 DOI: 10.1016/j.intimp.2024.113892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025]
Abstract
Breast cancer (BC) ranks among the most prevalent malignancies affecting women, with advanced-stage patients facing an increased mortality risk. Myeloid-derived suppressor cells (MDSCs) contribute significantly to poor prognostic outcomes. Research has concentrated predominantly on the immunological mechanisms underlying MDSC functions, but a comprehensive investigation into the metabolic interactions between BC cells and MDSCs is lacking. In a hypoxic tumor microenvironment (TME), BC cells can enhance aerobic-glycolysis rates, upregulate expression of key lipid metabolism enzymes such as cluster of differentiation (CD) 36 and 5-lipoxygenase (5-LOX), accelerate glutamine (Gln) uptake, and elevate extracellular adenosine (eADO) levels, thereby fostering MDSC proliferation and amplifying immune suppression. Concurrently, alterations in the metabolic state of MDSCs also influence BC progression. To ensure adequate proliferative resources, MDSCs upregulate the pentose phosphate pathway and expedite glycolysis for energy supply while increasing the expression of fatty acid transport proteins (FATPs) such as CD36 and fatty acid transporter 2 (FATP2) to maintain intracellular lipid availability, thereby enhancing their adaptability within the TME. Furthermore, MDSCs undermine T-cell anti-tumor efficacy by depleting essential amino acids (AAs), such as arginine (Arg), tryptophan (Trp), and cysteine (Cys), required for T-cell function. This review elucidates how pharmacological agents such as metformin, liver X receptor (LXR) agonists, and 6-diazo-5-oxo-L-norleucine (DON) can augment anti-cancer treatment efficacy by targeting metabolic pathways in MDSCs. We systematically delineate the mechanisms governing interactions between BC cells and MDSCs from a metabolic standpoint while summarizing therapeutic strategies to modulate metabolism within MDSCs. Our review provides a framework for optimizing MDSC applications in BC immunotherapy.
Collapse
Affiliation(s)
- Yulin Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qiutong Dong
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Menghan Yuan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingxian Hu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peizhe Lin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yijing Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanyan Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
7
|
He S, Zheng L, Qi C. Myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment and their targeting in cancer therapy. Mol Cancer 2025; 24:5. [PMID: 39780248 PMCID: PMC11707952 DOI: 10.1186/s12943-024-02208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
The advent of immunotherapy represents a significant breakthrough in cancer treatment, with immune checkpoint inhibitors (ICIs) targeting PD-1 and CTLA-4 demonstrating remarkable therapeutic efficacy. However, patient responses to immunotherapy vary significantly, with immunosuppression within the tumor microenvironment (TME) being a critical factor influencing this variability. Immunosuppression plays a pivotal role in regulating cancer progression, metastasis, and reducing the success rates of immunotherapy. Myeloid-derived suppressor cells (MDSCs), due to their potent immunosuppressive capabilities, emerged as major negative regulators within the TME, facilitating tumor immune evasion by modulating various immune cells. In addition to their immunosuppressive functions, MDSCs also promote tumor growth and metastasis through non-immunological mechanisms, such as angiogenesis and the formation of pre-metastatic niches. Consequently, MDSCs in the TME are key regulators of cancer immune responses and potential therapeutic targets in cancer treatment. This review describes the origins and phenotypes of MDSCs, their biological roles in tumor progression, and regulatory mechanisms, with a focus on current therapeutic approaches targeting tumor-associated MDSCs. Furthermore, the synergistic effects of targeting MDSCs in combination with immunotherapy are explored, aiming to provide new insights and directions for cancer therapy.
Collapse
Affiliation(s)
- Shuyan He
- Department of Tumor Center, The Affiliated Jiangyin Hospital of Nantong University, Jiangyin, Jiangsu, China
| | - Lu Zheng
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Chunjian Qi
- Laboratory of Oncology, Basic Research Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
8
|
Koizumi F, Katoh N, Kanehira T, Kawamoto Y, Nakamura T, Kakisaka T, Myojin M, Nishiyama N, Yonesaka A, Otsuka M, Takashina R, Minatogawa H, Higaki H, Uchinami Y, Taguchi H, Nishioka K, Yasuda K, Miyamoto N, Yokota I, Kobashi K, Aoyama H. Normal tissue complication probability model for severe radiation-induced lymphopenia in patients with pancreatic cancer treated with concurrent chemoradiotherapy. Phys Imaging Radiat Oncol 2025; 33:100690. [PMID: 39817285 PMCID: PMC11733268 DOI: 10.1016/j.phro.2024.100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025] Open
Abstract
Background and purpose Radiation-induced lymphopenia (RIL) may be associated with a worse prognosis in pancreatic cancer. This study aimed to develop a normal tissue complication probability (NTCP) model to predict severe RIL in patients with pancreatic cancer undergoing concurrent chemoradiotherapy (CCRT). Materials and methods We reviewed pancreatic cancer patients treated at our facility for model training and internal validation. Subsequently, we reviewed data from three other facilities to validate model fit externally. An absolute lymphocyte count (ALC) of <0.5 × 103/μL during CCRT was defined as severe RIL. An NTCP model was trained using a least absolute shrinkage and selection operator (LASSO)-based logistic model. The model's predictive performance was evaluated using the receiver operating characteristic area under the curve (AUC), scaled Brier score, and calibration plots. Results Among the 114 patients in the training set, 78 had severe RIL. LASSO showed that low baseline ALC, large planning target volume, and high percentage of bilateral kidneys receiving ≥ 5Gy were selected as parameters of the NTCP model for severe RIL. The AUC and scaled Brier score were 0.91 and 0.49, respectively. Internal validation yielded an average AUC of 0.92. In the external validation with 68 patients, the AUC and scaled Brier score was 0.83 and 0.30, respectively. Calibration plots showed good conformity. Conclusions The NTCP model for severe RIL during CCRT for pancreatic cancer, developed and validated in this study, demonstrated good predictive performance. This model can be used to evaluate and compare the risk of RIL.
Collapse
Affiliation(s)
- Fuki Koizumi
- Department of Radiation Oncology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Norio Katoh
- Department of Radiation Oncology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Takahiro Kanehira
- Department of Medical Physics, Hokkaido University Hospital, North 14 West 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
| | - Yasuyuki Kawamoto
- Division of Cancer Center, Hokkaido University Hospital, North 14 West 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
| | - Toru Nakamura
- Department of Gastroenterological Surgery Ⅱ, Hokkaido University Faculty of Medicine, North 15 West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Tatsuhiko Kakisaka
- Department of Gastroenterological Surgery Ⅰ, Hokkaido University Hospital, North 14 West 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
| | - Miyako Myojin
- Department of Radiation Oncology, Keiyukai Sapporo Hospital, South 1-1, Hondori-9, Shiroishi-ku, Sapporo, Hokkaido 003-0026, Japan
| | - Noriaki Nishiyama
- Department of Radiation Oncology, Hokkaido Cancer Center, 2-3-54, Kikusui-4, Shiroishi-ku, Sapporo, Hokkaido 003-0804, Japan
| | - Akio Yonesaka
- Department of Radiology, Kushiro Rosai Hospital, 13-23, Nakazonocho, Kushiro, Hokkaido 085-8533, Japan
| | - Manami Otsuka
- Department of Radiation Oncology, Hokkaido Cancer Center, 2-3-54, Kikusui-4, Shiroishi-ku, Sapporo, Hokkaido 003-0804, Japan
| | - Rikiya Takashina
- Department of Radiation Oncology, Hokkaido Cancer Center, 2-3-54, Kikusui-4, Shiroishi-ku, Sapporo, Hokkaido 003-0804, Japan
| | - Hideki Minatogawa
- Department of Radiation Oncology, Hokkaido Cancer Center, 2-3-54, Kikusui-4, Shiroishi-ku, Sapporo, Hokkaido 003-0804, Japan
| | - Hajime Higaki
- Department of Radiation Oncology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Yusuke Uchinami
- Department of Radiation Oncology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Hiroshi Taguchi
- Department of Radiation Oncology, Hokkaido University Hospital, North 14 West 5, Kita-ku, Sapporo 060-8648, Japan
| | - Kentaro Nishioka
- Global Center for Biomedical Science and Engineering, Hokkaido University Faculty of Medicine, North 15 West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Koichi Yasuda
- Department of Radiation Oncology, Hokkaido University Hospital, North 14 West 5, Kita-ku, Sapporo 060-8648, Japan
| | - Naoki Miyamoto
- Department of Medical Physics, Hokkaido University Hospital, North 14 West 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
| | - Isao Yokota
- Department of Biostatistics, Hokkaido University Faculty of Medicine, North 15 West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Keiji Kobashi
- Global Center for Biomedical Science and Engineering, Hokkaido University Faculty of Medicine, North 15 West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Hidefumi Aoyama
- Department of Radiation Oncology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| |
Collapse
|
9
|
Wang X, Yin X, Li Y, Zhang S, Hu M, Wei M, Li Z. Novel insight and perspectives of nanoparticle-mediated gene delivery and immune-modulating therapies for pancreatic cancer. J Nanobiotechnology 2024; 22:771. [PMID: 39696302 DOI: 10.1186/s12951-024-02975-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Current standard-of-care therapies have failed to improve the survival of patients with metastatic pancreatic cancer (PCA). Therefore, exploring novel therapeutic approaches for cancer targeting is of utmost need. During the past few years, many efforts have been made to develop conventional treatment strategies to reduce chemotherapy resistance. However, critical challenges have impeded current cancer management outcomes, and limited clinical responses have been achieved due to unfavorable off-target effects. Advances in nanotechnology-based gene and immune-modulator delivery systems have excellent advantages for improving the therapeutic efficacy of PCA and provide promising avenues for overcoming the immunosuppressive tumor microenvironment and enhancing patient treatment outcomes. This review article provides insight into the challenges, opportunities, and future perspectives of these novel emerging nanoparticles based on lipid, polymer, and inorganic metal carriers to modulate genes and immunotherapy paradigms for PCA anticancer activity.
Collapse
Affiliation(s)
- Xinqiao Wang
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning Province, 110001, P.R. China
| | - Xue Yin
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China
| | - Yuxin Li
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China
| | - Shuhui Zhang
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China
| | - Meie Hu
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China.
| | - Zhenhua Li
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China.
| |
Collapse
|
10
|
Rafaqat S, Khurshid H, Hafeez R, Arif M, Zafar A, Gilani M, Ashraf H, Rafaqat S. Role of Interleukins in Pancreatic Cancer: A Literature Review. J Gastrointest Cancer 2024; 55:1498-1510. [PMID: 39256264 DOI: 10.1007/s12029-024-01111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2024] [Indexed: 09/12/2024]
Abstract
PURPOSE This review article summarizes the pathophysiological aspects of interleukins (ILs) including IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, and IL-10 in pancreatic cancer (PC). METHODS Science Direct, PubMed, and Google Scholar were used for the literature review. The search was conducted until August 12, 2024, and particular keywords such as "Pancreatic Cancer," "Interleukins," "Pathophysiological Aspects," "Immunosuppression," "Invasiveness," and "Metastasis" were used. Focusing on interleukins related to pancreatic cancer, 61 original studies were included: 32 studies for human patients, 16 studies for animal models, and 13 studies for both animal models and human patients. All types of PC were considered. The timeframe of 1991 to 2024 was chosen for clinical studies. RESULTS In epithelial pancreatic tumors, IL-1 is a major inflammation factor. Serum concentrations of soluble interleukin-2-receptor were considerably greater in patients with PC and chronic pancreatitis than in healthy individuals. In comparison to controls, pancreatic cancer patients had considerably greater levels of macrophage colony-stimulating factor and significantly lower levels of stem cell factor and IL-3. The tissues and cells of pancreatic cancer have higher concentrations of IL-4 receptors. IL-5 has a role in the accumulation of pancreatic fibrosis. For individuals with pancreatic ductal adenocarcinoma (PDAC), a high serum level of IL-6 may be a separate risk factor for the development of widespread liver metastases. PDAC patients' peripheral blood mononuclear cells exhibit a substantial upregulation of IL-7 receptor. The role of IL-8 in the growth and spread of PC in humans. The miR-200a/β-catenin axis may be the mechanism by which IL-9 stimulates the proliferation and metastasis of PC cells. Blocking IL-10 in the local microenvironment appears to result in a significant reversal of tumor-induced immunosuppression. CONCLUSION The article concludes that interleukins 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 played significant roles in the pathogenesis of PC.
Collapse
Affiliation(s)
- Saira Rafaqat
- Department of Zoology, Lahore College for Women University, Lahore, 54000, Pakistan.
| | - Huma Khurshid
- Department of Zoology, Lahore College for Women University, Lahore, 54000, Pakistan
| | - Ramsha Hafeez
- Department of Zoology, Lahore College for Women University, Lahore, 54000, Pakistan
| | - Mehnaz Arif
- Department of Zoology, Lahore College for Women University, Lahore, 54000, Pakistan
| | - Ayesha Zafar
- Department of Zoology, Lahore College for Women University, Lahore, 54000, Pakistan
| | - Mahrukh Gilani
- Department of Zoology, Lahore College for Women University, Lahore, 54000, Pakistan
| | - Habiba Ashraf
- Department of Zoology, Lahore College for Women University, Lahore, 54000, Pakistan
| | - Sana Rafaqat
- Department of Biotechnology (Human Genetics), Lahore College for Women University, Lahore, 54000, Pakistan
| |
Collapse
|
11
|
Debesset A, Pilon C, Meunier S, Cuelenaere-Bonizec O, Richer W, Thiolat A, Houppe C, Ponzo M, Magnan J, Caron J, Caudana P, Tosello Boari J, Baulande S, To NH, Salomon BL, Piaggio E, Cascone I, Cohen JL. TNFR2 blockade promotes antitumoral immune response in PDAC by targeting activated Treg and reducing T cell exhaustion. J Immunother Cancer 2024; 12:e008898. [PMID: 39562007 PMCID: PMC11580249 DOI: 10.1136/jitc-2024-008898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, highly resistant to standard chemotherapy and immunotherapy. Regulatory T cells (Tregs) expressing tumor necrosis factor α receptor 2 (TNFR2) contribute to immunosuppression in PDAC. Treg infiltration correlates with poor survival and tumor progression in patients with PDAC. We hypothesized that TNFR2 inhibition using a blocking monoclonal antibody (mAb) could shift the Treg-effector T cell balance in PDAC, thus enhancing antitumoral responses. METHOD To support this hypothesis, we first described TNFR2 expression in a cohort of 24 patients with PDAC from publicly available single-cell analysis data. In orthotopic and immunocompetent mouse models of PDAC, we also described the immune environment of PDAC after immune cell sorting and single-cell analysis. The modifications of the immune environment before and after anti-TNFR2 mAb treatment were evaluated as well as the effect on tumor progression. RESULTS Patients with PDAC exhibited elevated TNFR2 expression in Treg, myeloid cells and endothelial cells and lower level in tumor cells. By flow cytometry and single-cell RNA-seq analysis, we identified two Treg populations in orthotopic mouse models: Resting and activated Tregs. The anti-TNFR2 mAb selectively targeted activated tumor-infiltrating Tregs, reducing T cell exhaustion markers in CD8+ T cells. However, anti-TNFR2 treatment alone had limited efficacy in activating CD8+ T cells and only slightly reduced the tumor growth. The combination of the anti-TNFR2 mAb with agonistic anti-CD40 mAb promoted stronger T cell activation, tumor growth inhibition, and improved survival and immunological memory in PDAC-bearing mice. CONCLUSION Our data suggest that combining a CD40 agonist with a TNFR2 antagonist represents a promising therapeutic strategy for patients with PDAC.
Collapse
Affiliation(s)
- Anais Debesset
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Caroline Pilon
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
- CIC Biotherapy, Fédération hospitalo-Universitaire TRUE, AP-HP, GH Henri Mondor, Créteil, France
| | - Sylvain Meunier
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | | | - Wilfrid Richer
- INSERM U932, Institute Curie Research Center, PSL Research University, Paris, France
- Department of Translational Research, Institut Curie Research center, PSL Research University, Paris, France
| | - Allan Thiolat
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Claire Houppe
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Matteo Ponzo
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Jeanne Magnan
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Jonathan Caron
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Pamela Caudana
- INSERM U932, Institute Curie Research Center, PSL Research University, Paris, France
- Department of Translational Research, Institut Curie Research center, PSL Research University, Paris, France
| | - Jimena Tosello Boari
- INSERM U932, Institute Curie Research Center, PSL Research University, Paris, France
- Department of Translational Research, Institut Curie Research center, PSL Research University, Paris, France
| | - Sylvain Baulande
- Institut Curie Research Center, ICGex Next-Generation Sequencing Platform, Single Cell Initiative, PSL Research University, Paris, France
| | - Nhu Han To
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
- Department of Radiation Oncology, Henri Mondor Breast Center, AP-HP, GH Henri Mondor, Paris, France
| | - Benoit Laurent Salomon
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France
| | - Eliane Piaggio
- INSERM U932, Institute Curie Research Center, PSL Research University, Paris, France
- Department of Translational Research, Institut Curie Research center, PSL Research University, Paris, France
| | - Ilaria Cascone
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
| | - José Laurent Cohen
- INSERM, IMRB U955, Université Paris-Est Créteil Val de Marne, Créteil, France
- CIC Biotherapy, Fédération hospitalo-Universitaire TRUE, AP-HP, GH Henri Mondor, Créteil, France
| |
Collapse
|
12
|
Xun J, Jiang X, Liu B, Hu Z, Liu J, Han Y, Gao R, Zhang H, Yang S, Yu X, Wang X, Yan C, Zhang Q. Neogambogic acid enhances anti-PD-1 immunotherapy efficacy by attenuating suppressive function of MDSCs in pancreatic cancer. Int Immunopharmacol 2024; 139:112696. [PMID: 39018692 DOI: 10.1016/j.intimp.2024.112696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Anti-PD-1-based immunotherapy has limited benefits in patients with pancreatic cancer. Accumulating data indicate that natural products exert antitumor activity by remodeling the tumor immune microenvironment. It has been reported that neogambogic acid (NGA), an active natural monomer extracted from Garcinia, has anti-inflammatory and antitumor effects. Nevertheless, there are few systematic studies on the antitumor efficacy and immunomodulatory effects of NGA in pancreatic cancer. METHODS An orthotopic mouse model of pancreatic cancer was established and were treated with different doses of NGA. Tumor growth and ascites were observed. Flow cytometry and immunohistochemistry (IHC) were used to investigate the tumor immune microenvironment. CD11b+ MDSCs were infused back into mice with pancreatic cancer to observe tumor progression after NGA treatment. Bone marrow cells were induced to differentiate into MDSCs, and the effects of NGA on MDSCs were analyzed and the underlying mechanism was explored. The effects of NGA combined with an anti-PD-1 antibody on pancreatic cancer were further tested. RESULTS NGA significantly inhibited the tumor growth and improve ascites character in pancreatic cancer model mice. Flow cytometry and IHC analysis revealed that NGA decreased the MDSCs proportion and infiltration in the tumor microenvironment. Moreover, adoptive MDSCs largely attenuated the inhibitory effect of NGA on the progression of pancreatic cancer. In addition, we showed that NGA significantly promoted apoptosis and inhibited the differentiation, migration and immunosuppressive function of MDSCs and decreased level of STAT3 and p-STAT3. Furthermore, we demonstrated that NGA synergistically enhanced the efficacy of anti-PD-1 antibodies against pancreatic cancer. CONCLUSION NGA inhibited the progression of pancreatic cancer by inhibiting MDSCs in the tumor microenvironment, and enhanced the efficacy of anti-PD-1 therapy in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Jing Xun
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin 300100, China
| | - Xiaolin Jiang
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin 300100, China
| | - Bin Liu
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin 300100, China
| | - Zhibo Hu
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin 300100, China
| | - Jinjin Liu
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin 300100, China; Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, China
| | - Yingdi Han
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin 300100, China
| | - Ruifang Gao
- Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin 300020, China
| | - Hui Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin 300100, China; Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, China
| | - Shimin Yang
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Xiangyang Yu
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Ximo Wang
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China
| | - Chen Yan
- Tianjin Vocational College of Bioengineering, Tianjin 300301, China.
| | - Qi Zhang
- Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China; Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Tianjin 300100, China; Institute of Integrative Medicine for Acute Abdominal Diseases, Tianjin 300100, China.
| |
Collapse
|
13
|
Grauers Wiktorin H, Aydin E, Kiffin R, Vilhav C, Bourghardt Fagman J, Kaya M, Paul S, Westman B, Bratlie SO, Naredi P, Hellstrand K, Martner A. Impact of Surgery-Induced Myeloid-derived Suppressor Cells and the NOX2/ROS Axis on Postoperative Survival in Human Pancreatic Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:1135-1149. [PMID: 38598844 PMCID: PMC11044860 DOI: 10.1158/2767-9764.crc-23-0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/12/2024]
Abstract
Preclinical studies imply that surgery triggers inflammation that may entail tumor outgrowth and metastasis. The potential impact of surgery-induced inflammation in human pancreatic cancer is insufficiently explored. This study included 17 patients with periampullary cancer [pancreatic ductal adenocarcinoma (PDAC) n = 14, ampullary carcinoma n = 2, cholangiocarcinoma n = 1] undergoing major pancreatic cancer surgery with curative intent. We analyzed the potential impact of preoperative and postoperative immune phenotypes and function on postoperative survival with >30 months follow-up. The surgery entailed prompt expansion of monocytic myeloid-derived suppressor cells (M-MDSC) that generated NOX2-derived reactive oxygen species (ROS). Strong induction of immunosuppressive M-MDSC after surgery predicted poor postoperative survival and coincided with reduced functionality of circulating natural killer (NK) cells. The negative impact of surgery-induced M-MDSC on survival remained significant in separate analysis of patients with PDAC. M-MDSC-like cells isolated from patients after surgery significantly suppressed NK cell function ex vivo, which was reversed by inhibition of NOX2-derived ROS. High NOX2 subunit expression within resected tumors from patients with PDAC correlated with poor survival whereas high expression of markers of cytotoxic cells associated with longer survival. The surgery-induced myeloid inflammation was recapitulated in vivo in a murine model of NK cell-dependent metastasis. Surgical stress thus induced systemic accumulation of M-MDSC-like cells and promoted metastasis of NK cell-sensitive tumor cells. Genetic or pharmacologic suppression of NOX2 reduced surgery-induced inflammation and distant metastasis in this model. We propose that NOX2-derived ROS generated by surgery-induced M-MDSC may be targeted for improved outcome after pancreatic cancer surgery. SIGNIFICANCE Pancreatic cancer surgery triggered pronounced accumulation of NOX2+ myeloid-derived suppressor cells that inhibited NK cell function and negatively prognosticated postoperative patient survival. We propose the targeting of M-MDSC as a conceivable strategy to reduce postoperative immunosuppression in pancreatic cancer.
Collapse
Affiliation(s)
- Hanna Grauers Wiktorin
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ebru Aydin
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roberta Kiffin
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Caroline Vilhav
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Johan Bourghardt Fagman
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mustafa Kaya
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sanchari Paul
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Beatrice Westman
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Svein Olav Bratlie
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Peter Naredi
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kristoffer Hellstrand
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Martner
- TIMM Laboratory, Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Meng X, Ma F, Yu D. The diverse effects of cisplatin on tumor microenvironment: Insights and challenges for the delivery of cisplatin by nanoparticles. ENVIRONMENTAL RESEARCH 2024; 240:117362. [PMID: 37827371 DOI: 10.1016/j.envres.2023.117362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Cisplatin is a well-known platinum-based chemotherapy medication that is widely utilized for some malignancies. Despite the direct cytotoxic consequences of cisplatin on tumor cells, studies in the recent decade have revealed that cisplatin can also affect different cells and their secretions in the tumor microenvironment (TME). Cisplatin has complex impacts on the TME, which may contribute to its anti-tumor activity or drug resistance mechanisms. These regulatory effects of cisplatin play a paramount function in tumor growth, invasion, and metastasis. This paper aims to review the diverse impacts of cisplatin and nanoparticles loaded with cisplatin on cancer cells and also non-cancerous cells in TME. The impacts of cisplatin on immune cells, tumor stroma, cancer cells, and also hypoxia will be discussed in the current review. Furthermore, we emphasize the challenges and prospects of using cisplatin in combination with other adjuvants and therapeutic modalities that target TME. We also discuss the potential synergistic effects of cisplatin with immune checkpoint inhibitors (ICIs) and other agents with anticancer potentials such as polyphenols and photosensitizers. Furthermore, the potential of nanoparticles for targeting TME and better delivery of cisplatin into tumors will be discussed.
Collapse
Affiliation(s)
- Xinxin Meng
- Zhuji Sixth People's Hospital of Zhejiang Province, Zhuji, Zhejiang, 311801, China
| | - Fengyun Ma
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China.
| | - Dingli Yu
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China
| |
Collapse
|
15
|
Gualtieri P, Cianci R, Frank G, Pizzocaro E, De Santis GL, Giannattasio S, Merra G, Butturini G, De Lorenzo A, Di Renzo L. Pancreatic Ductal Adenocarcinoma and Nutrition: Exploring the Role of Diet and Gut Health. Nutrients 2023; 15:4465. [PMID: 37892540 PMCID: PMC10610120 DOI: 10.3390/nu15204465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
The incidence of pancreatic cancer is increasing worldwide. The most common form is represented by pancreatic ductal adenocarcinoma (PDAC) which has been shown to be linked to chronic inflammation. Notably, the gut microbiota has emerged as a critical player in regulating immune responses and inflammation. Indeed, intestinal dysbiosis, characterized by an imbalance in the gut microbiota composition, can contribute to the initiation of chronic inflammation. Sterile chronic inflammation can occur, probably activated by the translocation of bacterial components, such as lipopolysaccharide (LPS), the major component of Gram-negative microbiota, with the consequent induction of innate mucosal immunity, through the activation of Toll-like receptors (TLRs). Furthermore, the interaction between LPS and TLRs could enhance cancer progression. Recent research has shed light on the pivotal role of nutrition, as a modifiable risk factor, in PDAC immunological processes, particularly focusing on the immuno-modulatory effects of the gut microbiota. Different dietary regimens, fiber intake, immunonutrients, and antioxidants have the potential to either exacerbate or mitigate chronic inflammation, thereby influencing the pathogenesis and natural history of PDAC. These dietary components may affect the gut microbiota composition and, consequently, the level of inflammation, either promoting or protecting against PDAC. In this review of reviews, we discuss the modulatory role of nutrition and the gut microbiota in PDAC's immunological processes to explore a translational therapeutic approach that could improve the survival and quality of life of these patients.
Collapse
Affiliation(s)
- Paola Gualtieri
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy (G.M.); (L.D.R.)
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Giulia Frank
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.F.); (E.P.); (S.G.)
- PhD School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Erica Pizzocaro
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.F.); (E.P.); (S.G.)
| | - Gemma Lou De Santis
- PhD School of Applied Medical-Surgical Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Silvia Giannattasio
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (G.F.); (E.P.); (S.G.)
| | - Giuseppe Merra
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy (G.M.); (L.D.R.)
| | - Giovanni Butturini
- Division of Hepato-Bilio-Pancreatic Surgery, P. Pederzoli Hospital, Via Monte Baldo 24, 37019 Peschiera del Garda, Italy;
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy (G.M.); (L.D.R.)
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy (G.M.); (L.D.R.)
| |
Collapse
|
16
|
Fard D, Giraudo E, Tamagnone L. Mind the (guidance) signals! Translational relevance of semaphorins, plexins, and neuropilins in pancreatic cancer. Trends Mol Med 2023; 29:817-829. [PMID: 37598000 DOI: 10.1016/j.molmed.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/21/2023]
Abstract
Pancreatic cancer is a major cause of demise worldwide. Although key associated genetic changes have been discovered, disease progression is sustained by pathogenic mechanisms that are poorly understood at the molecular level. In particular, the tissue microenvironment of pancreatic adenocarcinoma (PDAC) is usually characterized by high stromal content, scarce recruitment of immune cells, and the presence of neuronal fibers. Semaphorins and their receptors, plexins and neuropilins, comprise a wide family of regulatory signals that control neurons, endothelial and immune cells, embryo development, and normal tissue homeostasis, as well as the microenvironment of human tumors. We focus on the role of these molecular signals in pancreatic cancer progression, as revealed by experimental research and clinical studies, including novel approaches for cancer treatment.
Collapse
Affiliation(s)
- Damon Fard
- Università Cattolica del Sacro Cuore, Department of Life Sciences and Public Health, Rome, Italy
| | - Enrico Giraudo
- Department of Science and Drug Technology, University of Turin, Turin, Italy; Candiolo Cancer Institute, FPO IRCCS, Candiolo, Turin, Italy
| | - Luca Tamagnone
- Università Cattolica del Sacro Cuore, Department of Life Sciences and Public Health, Rome, Italy; Fondazione Policlinico Gemelli, IRCCS, Rome, Italy.
| |
Collapse
|
17
|
Guo J, Wang S, Gao Q. An integrated overview of the immunosuppression features in the tumor microenvironment of pancreatic cancer. Front Immunol 2023; 14:1258538. [PMID: 37771596 PMCID: PMC10523014 DOI: 10.3389/fimmu.2023.1258538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies. It is characterized by a complex and immunosuppressive tumor microenvironment (TME), which is primarily composed of tumor cells, stromal cells, immune cells, and acellular components. The cross-interactions and -regulations among various cell types in the TME have been recognized to profoundly shape the immunosuppression features that meaningfully affect PDAC biology and treatment outcomes. In this review, we first summarize five cellular composition modules by integrating the cellular (sub)types, phenotypes, and functions in PDAC TME. Then we discuss an integrated overview of the cross-module regulations as a determinant of the immunosuppressive TME in PDAC. We also briefly highlight TME-targeted strategies that potentially improve PDAC therapy.
Collapse
Affiliation(s)
- Jinglong Guo
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun, China
| | - Siyue Wang
- Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| | - Qi Gao
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Song C, Ji Y, Wang W, Tao N. Ginger polysaccharide promotes myeloid-derived suppressor cell apoptosis by regulating lipid metabolism. Phytother Res 2023; 37:2894-2901. [PMID: 36806265 DOI: 10.1002/ptr.7784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
Recently, targeting myeloid-derived suppressor cells (MDSCs) which mainly play an immunosuppressive role in tumor microenvironment has become a hot spot in tumor immunotherapy. This study focuses on biological effect of ginger polysaccharide extracted from natural plants on promoting apoptosis of MDSCs by regulating lipid metabolism. An MTT assay was used to detect the inhibitory effect of ginger polysaccharide on the growth of an MDSC-like cell line (MSC-2). The apoptosis-promoting effect of ginger polysaccharide on MSC-2 cells was detected by flow cytometry. Expression levels of apoptosis proteins (caspase 9 and Bcl-2) and lipid metabolism enzymes (fatty acid synthase (FASN) and diacylglycerol acyltransferase 2) in MSC-2 cells treated with different concentrations of ginger polysaccharide were detected by western blot assay. Nile red staining was used to quantitatively detect the effect of ginger polysaccharide on lipid droplet synthesis. Ginger polysaccharide inhibited proliferation of MSC-2 cells and promoted their apoptosis by upregulating pro-apoptotic caspase 9 protein, downregulating anti-apoptotic Bcl-2 protein, inhibiting expression of FASN and diacylglycerol acyltransferase 2 (key enzymes in fatty acid synthesis and lipid droplet formation, respectively). Ginger polysaccharide promoted apoptosis of MDSCs by regulating key lipid metabolism enzymes, inhibiting fatty acid synthesis and lipid droplet accumulation, and reducing the energy supply of cells.
Collapse
Affiliation(s)
| | - Yufei Ji
- Xicheng District Youth Science and Technology centre, Beijing, China
| | | | - Ning Tao
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Bandi DSR, Sarvesh S, Farran B, Nagaraju GP, El-Rayes BF. Targeting the metabolism and immune system in pancreatic ductal adenocarcinoma: Insights and future directions. Cytokine Growth Factor Rev 2023; 71-72:26-39. [PMID: 37407355 DOI: 10.1016/j.cytogfr.2023.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC), presents a challenging landscape due to its complex nature and the highly immunosuppressive tumor microenvironment (TME). This immunosuppression severely limits the effectiveness of immune-based therapies. Studies have revealed the critical role of immunometabolism in shaping the TME and influencing PDAC progression. Genetic alterations, lysosomal dysfunction, gut microbiome dysbiosis, and altered metabolic pathways have been shown to modulate immunometabolism in PDAC. These metabolic alterations can significantly impact immune cell functions, including T-cells, myeloid-derived suppressor cells (MDSCs), and macrophages, evading anti-tumor immunity. Advances in immunotherapy offer promising avenues for overcoming immunosuppressive TME and enhancing patient outcomes. This review highlights the challenges and opportunities for future research in this evolving field. By exploring the connections between immunometabolism, genetic alterations, and the microbiome in PDAC, it is possible to tailor novel approaches capable of improving immunotherapy outcomes and addressing the limitations posed by immunosuppressive TME. Ultimately, these insights may pave the way for improved treatment options and better outcomes for PDAC patients.
Collapse
Affiliation(s)
- Dhana Sekhar Reddy Bandi
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA
| | - Sujith Sarvesh
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA.
| | - Bassel F El-Rayes
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
20
|
Fang X, Lan H, Jin K, Qian J. Pancreatic cancer and exosomes: role in progression, diagnosis, monitoring, and treatment. Front Oncol 2023; 13:1149551. [PMID: 37287924 PMCID: PMC10242099 DOI: 10.3389/fonc.2023.1149551] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/05/2023] [Indexed: 06/09/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most dangerous diseases that threaten human life, and investigating the details affecting its progression or regression is particularly important. Exosomes are one of the derivatives produced from different cells, including tumor cells and other cells such as Tregs, M2 macrophages, and MDSCs, and can help tumor growth. These exosomes perform their actions by affecting the cells in the tumor microenvironment, such as pancreatic stellate cells (PSCs) that produce extracellular matrix (ECM) components and immune cells that are responsible for killing tumor cells. It has also been shown that pancreatic cancer cell (PCC)-derived exosomes at different stages carry molecules. Checking the presence of these molecules in the blood and other body fluids can help us in the early stage diagnosis and monitoring of PC. However, immune system cell-derived exosomes (IEXs) and mesenchymal stem cell (MSC)-derived exosomes can contribute to PC treatment. Immune cells produce exosomes as part of the mechanisms involved in the immune surveillance and tumor cell-killing phenomenon. Exosomes can be modified in such a way that their antitumor properties are enhanced. One of these methods is drug loading in exosomes, which can significantly increase the effectiveness of chemotherapy drugs. In general, exosomes form a complex intercellular communication network that plays a role in developing, progressing, diagnosing, monitoring, and treating pancreatic cancer.
Collapse
Affiliation(s)
- Xingliang Fang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People’s Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang, China
| |
Collapse
|
21
|
Palma AM, Vudatha V, Peixoto ML, Madan E. Tumor heterogeneity: An oncogenic driver of PDAC progression and therapy resistance under stress conditions. Adv Cancer Res 2023; 159:203-249. [PMID: 37268397 DOI: 10.1016/bs.acr.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a clinically challenging disease usually diagnosed at advanced or metastasized stage. By this year end, there are an expected increase in 62,210 new cases and 49,830 deaths in the United States, with 90% corresponding to PDAC subtype alone. Despite advances in cancer therapy, one of the major challenges combating PDAC remains tumor heterogeneity between PDAC patients and within the primary and metastatic lesions of the same patient. This review describes the PDAC subtypes based on the genomic, transcriptional, epigenetic, and metabolic signatures observed among patients and within individual tumors. Recent studies in tumor biology suggest PDAC heterogeneity as a major driver of disease progression under conditions of stress including hypoxia and nutrient deprivation, leading to metabolic reprogramming. We therefore advance our understanding in identifying the underlying mechanisms that interfere with the crosstalk between the extracellular matrix components and tumor cells that define the mechanics of tumor growth and metastasis. The bilateral interaction between the heterogeneous tumor microenvironment and PDAC cells serves as another important contributor that characterizes the tumor-promoting or tumor-suppressing phenotypes providing an opportunity for an effective treatment regime. Furthermore, we highlight the dynamic reciprocating interplay between the stromal and immune cells that impact immune surveillance or immune evasion response and contribute towards a complex process of tumorigenesis. In summary, the review encapsulates the existing knowledge of the currently applied treatments for PDAC with emphasis on tumor heterogeneity, manifesting at multiple levels, impacting disease progression and therapy resistance under stress.
Collapse
Affiliation(s)
| | - Vignesh Vudatha
- Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | | | - Esha Madan
- Champalimaud Centre for the Unknown, Lisbon, Portugal; Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| |
Collapse
|
22
|
Arner EN, Rathmell JC. Metabolic programming and immune suppression in the tumor microenvironment. Cancer Cell 2023; 41:421-433. [PMID: 36801000 PMCID: PMC10023409 DOI: 10.1016/j.ccell.2023.01.009] [Citation(s) in RCA: 233] [Impact Index Per Article: 116.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/18/2023]
Abstract
Increased glucose metabolism and uptake are characteristic of many tumors and used clinically to diagnose and monitor cancer progression. In addition to cancer cells, the tumor microenvironment (TME) encompasses a wide range of stromal, innate, and adaptive immune cells. Cooperation and competition between these cell populations supports tumor proliferation, progression, metastasis, and immune evasion. Cellular heterogeneity leads to metabolic heterogeneity because metabolic programs within the tumor are dependent not only on the TME cellular composition but also on cell states, location, and nutrient availability. In addition to driving metabolic plasticity of cancer cells, altered nutrients and signals in the TME can lead to metabolic immune suppression of effector cells and promote regulatory immune cells. Here we discuss how metabolic programming of cells within the TME promotes tumor proliferation, progression, and metastasis. We also discuss how targeting metabolic heterogeneity may offer therapeutic opportunities to overcome immune suppression and augment immunotherapies.
Collapse
Affiliation(s)
- Emily N Arner
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA.
| |
Collapse
|
23
|
Yang XY, Lu YF, Xu JX, Du YZ, Yu RS. Recent Advances in Well-Designed Therapeutic Nanosystems for the Pancreatic Ductal Adenocarcinoma Treatment Dilemma. Molecules 2023; 28:molecules28031506. [PMID: 36771172 PMCID: PMC9920782 DOI: 10.3390/molecules28031506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with an extremely poor prognosis and low survival rate. Due to its inconspicuous symptoms, PDAC is difficult to diagnose early. Most patients are diagnosed in the middle and late stages, losing the opportunity for surgery. Chemotherapy is the main treatment in clinical practice and improves the survival of patients to some extent. However, the improved prognosis is associated with higher side effects, and the overall prognosis is far from satisfactory. In addition to resistance to chemotherapy, PDAC is significantly resistant to targeted therapy and immunotherapy. The failure of multiple treatment modalities indicates great dilemmas in treating PDAC, including high molecular heterogeneity, high drug resistance, an immunosuppressive microenvironment, and a dense matrix. Nanomedicine shows great potential to overcome the therapeutic barriers of PDAC. Through the careful design and rational modification of nanomaterials, multifunctional intelligent nanosystems can be obtained. These nanosystems can adapt to the environment's needs and compensate for conventional treatments' shortcomings. This review is focused on recent advances in the use of well-designed nanosystems in different therapeutic modalities to overcome the PDAC treatment dilemma, including a variety of novel therapeutic modalities. Finally, these nanosystems' bottlenecks in treating PDAC and the prospect of future clinical translation are briefly discussed.
Collapse
Affiliation(s)
- Xiao-Yan Yang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Yuan-Fei Lu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Jian-Xia Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, 318 Chaowang Road, Hangzhou 310005, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Correspondence: (Y.-Z.D.); (R.-S.Y.); Tel.: +86-571-88208435 (Y.-Z.D.); +86-571-87783925 (R.-S.Y.)
| | - Ri-Sheng Yu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
- Correspondence: (Y.-Z.D.); (R.-S.Y.); Tel.: +86-571-88208435 (Y.-Z.D.); +86-571-87783925 (R.-S.Y.)
| |
Collapse
|
24
|
Engineered nanomedicines to overcome resistance of pancreatic cancer to immunotherapy. Drug Discov Today 2023; 28:103434. [PMID: 36368630 DOI: 10.1016/j.drudis.2022.103434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/20/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Pancreatic cancer (PC) is a highly aggressive malignant type of cancer. Although immunotherapy has been successfully used for treatment of many cancer types, many challenges limit its success in PC. Therefore, nanomedicines were engineered to enhance the responsiveness of PC cells to immune checkpoint inhibitors (ICIs). In this review, we highlight recent advances in engineering nanomedicines to overcome PC immune resistance. Nanomedicines were used to increase the immunogenicity of PC cells, inactivate stromal cancer-associated fibroblasts (CAFs), enhance the antigen-presenting capacity of dendritic cells (DCs), reverse the highly immunosuppressive nature of the tumor microenvironment (TME), and, hence, improve the infiltration of cytotoxic T lymphocytes (CTLs), resulting in efficient antitumor immune responses.
Collapse
|
25
|
Pollini T, Adsay V, Capurso G, Dal Molin M, Esposito I, Hruban R, Luchini C, Maggino L, Matthaei H, Marchegiani G, Scarpa A, Wood LD, Bassi C, Salvia R, Mino-Kenudson M, Maker AV. The tumour immune microenvironment and microbiome of pancreatic intraductal papillary mucinous neoplasms. Lancet Gastroenterol Hepatol 2022; 7:1141-1150. [PMID: 36057265 PMCID: PMC9844533 DOI: 10.1016/s2468-1253(22)00235-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/19/2023]
Abstract
Pancreatic intraductal papillary mucinous neoplasms (IPMNs) have gained substantial attention because they represent one of the only radiographically identifiable precursors of invasive pancreatic ductal adenocarcinoma. Although most of these neoplasms have low-grade dysplasia and will remain indolent, a subset of IPMNs will progress to invasive cancer. The role of the immune system in the progression of IPMNs is unclear, but understanding its role could reveal the mechanism of neoplastic progression and targets for immunotherapy to inhibit progression or treat invasive disease. The available evidence supports a shift in the immune composition of IPMNs during neoplastic progression. Although low-grade lesions contain a high proportion of effector T cells, high-grade IPMNs, and IPMNs with an associated invasive carcinoma lose the T-cell infiltrate and are characterised by a predominance of immunosuppressive elements. Several possible therapeutic strategies emerge from this analysis that are unique to IPMNs and its microbiome.
Collapse
Affiliation(s)
- Tommaso Pollini
- Division of Surgical Oncology, Department of Surgery, University of California San Francisco, San Francisco, CA, USA; Department of General and Pancreatic Surgery, The Pancreas Institute, Section of Pathology University of Verona, Verona, Italy
| | - Volcan Adsay
- Department of Pathology, Koç University Hospital and Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Gabriele Capurso
- Department of Pancreatobiliary Endoscopy and Endosonography, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele, Milan, Italy
| | - Marco Dal Molin
- Department of Surgery, University of Maryland Medical Center, Baltimore, MD, USA
| | - Irene Esposito
- Department of Pathology, Heinrich Heine University and University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Ralph Hruban
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology University of Verona, Verona, Italy
| | - Laura Maggino
- Department of General and Pancreatic Surgery, The Pancreas Institute, Section of Pathology University of Verona, Verona, Italy
| | - Hanno Matthaei
- Department of Surgery, University Hospital of Bonn, Bonn, Germany
| | - Giovanni Marchegiani
- Department of General and Pancreatic Surgery, The Pancreas Institute, Section of Pathology University of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology University of Verona, Verona, Italy
| | - Laura D Wood
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MA, USA
| | - Claudio Bassi
- Department of General and Pancreatic Surgery, The Pancreas Institute, Section of Pathology University of Verona, Verona, Italy
| | - Roberto Salvia
- Department of General and Pancreatic Surgery, The Pancreas Institute, Section of Pathology University of Verona, Verona, Italy
| | - Mari Mino-Kenudson
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ajay V Maker
- Division of Surgical Oncology, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
26
|
Zhao T, Xiao D, Jin F, Sun X, Yu J, Wang H, Liu J, Cai W, Huang C, Wang X, Gao S, Liu Z, Yang S, Gao C, Hao J. ESE3-positive PSCs drive pancreatic cancer fibrosis, chemoresistance and poor prognosis via tumour-stromal IL-1β/NF-κB/ESE3 signalling axis. Br J Cancer 2022; 127:1461-1472. [PMID: 35986089 PMCID: PMC9553871 DOI: 10.1038/s41416-022-01927-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Desmoplastic stroma, a feature of pancreatic ductal adenocarcinoma (PDAC), contains abundant activated pancreatic stellate cells (PSCs). How PSCs promote PDAC progression remains incompletely understood. METHODS Effect of epithelium-specific E-twenty six factor 3 (ESE3)-positive PSCs on PDAC fibrosis and chemoresistance was examined by western blot, RT-PCR, immunofluorescence, flow cytometry assay, chromatin immunoprecipitation, luciferase assay, immunohistochemistry and subcutaneous pancreatic cancer mouse model. RESULTS ESE3 expression increased in PSCs in PDAC tissues compared with those in normal PSCs. Clinical data showed that ESE3 upregulation in PSCs was positively correlated with tumour size, pTNM stage, CA19-9, carcinoembryonic antigen and serum CA242 level. ESE3 overexpression in PSCs was an independent negative prognostic factor for disease-free survival and overall survival amongst patients with PDAC. Mechanistically, the conditional medium from the loss and gain of ESE3-expressing PSCs influenced PDAC chemoresistance and tumour growth. ESE3 directly induced the transcription of α-SMA, collagen-I and IL-1β by binding to ESE3-binding sites on their promoters to activate PSCs. IL-1β upregulated ESE3 in PSCs through NF-κB activation, and ESE3 was required for PSC activation by tumour cell-derived IL-1β. CONCLUSION Inhibiting the IL-1β/ESE3 (PSCs)/IL-1β-positive feedback loop is a promising therapeutic strategy to reduce tumour fibrosis and increase chemotherapeutic efficacy in PDAC.
Collapse
Affiliation(s)
- Tiansuo Zhao
- grid.411918.40000 0004 1798 6427Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Di Xiao
- grid.411918.40000 0004 1798 6427Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Fanjie Jin
- grid.411918.40000 0004 1798 6427Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Xugang Sun
- grid.411918.40000 0004 1798 6427Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Jie Yu
- grid.452461.00000 0004 1762 8478Hepatopancreatobiliary Surgery Department, First Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Hongwei Wang
- grid.411918.40000 0004 1798 6427Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Jing Liu
- grid.411918.40000 0004 1798 6427Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Wenrun Cai
- grid.411918.40000 0004 1798 6427Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Chongbiao Huang
- grid.411918.40000 0004 1798 6427Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Xiuchao Wang
- grid.411918.40000 0004 1798 6427Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Song Gao
- grid.411918.40000 0004 1798 6427Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Zhe Liu
- grid.265021.20000 0000 9792 1228Department of Immunology, Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, PR China
| | - Shengyu Yang
- grid.240473.60000 0004 0543 9901Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA USA
| | - Chuntao Gao
- grid.411918.40000 0004 1798 6427Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| | - Jihui Hao
- grid.411918.40000 0004 1798 6427Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, PR China
| |
Collapse
|
27
|
Lou W, Gong C, Ye Z, Hu Y, Zhu M, Fang Z, Xu H. Lipid metabolic features of T cells in the Tumor Microenvironment. Lipids Health Dis 2022; 21:94. [PMID: 36203151 PMCID: PMC9535888 DOI: 10.1186/s12944-022-01705-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/12/2022] Open
Abstract
The tumor microenvironment (TME) is characterized by discrete changes in metabolic features of cancer and immune cells, with various implications. Cancer cells take up most of the available glucose to support their growth, thereby leaving immune cells with insufficient nutrients to expand. In the relative absence of glucose, T cells switch the metabolic program to lipid-based sources, which is pivotal to T-cell differentiation and activation in nutrient-stressed TME. Although consumption of lipids should provide an alternative energy source to starving T cells, a literature survey has revealed that it may not necessarily lead to antitumor responses. Different subtypes of T cells behave differently in various lipid overload states, which widely depends upon the kind of free fatty acids (FFA) engulfed. Key lipid metabolic genes provide cytotoxic T cells with necessary nutrients for proliferation in the absence of glucose, thereby favoring antitumor immunity, but the same genes cause immune evasion in Tmem and Treg. This review aims to detail the complexity of differential lipid metabolism in distinct subtypes of T cells that drive the antitumor or pro-tumor immunity in specific TME states. We have identified key drug targets related to lipid metabolic rewiring in TME.
Collapse
Affiliation(s)
- Wanshuang Lou
- Department of Integrated Traditional & Western Medicine, Sanmen People's Hospital, 317100, Sanmen, Zhejiang, China.,Department of Integrated Traditional & Western Medicine, Sanmen Hospital of Chinese Medicine, 317100, Sanmen, Zhejiang, China
| | - Chaoju Gong
- Central Laboratory, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, 221100, Xuzhou, Jiangsu, China
| | - Zhuoni Ye
- Second College of Clinical Medical, Wenzhou Medical University, 325000, Wenzhou Zhejiang, China
| | - Ynayan Hu
- Central Laboratory, Sanmen People's Hospital, 317100, Sanmen, Zhejiang, China
| | - Minjing Zhu
- Central Laboratory, Sanmen People's Hospital, 317100, Sanmen, Zhejiang, China
| | - Zejun Fang
- Central Laboratory, Sanmen People's Hospital, 317100, Sanmen, Zhejiang, China.
| | - Huihui Xu
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, 317000, Linhai, Zhejiang, China.
| |
Collapse
|
28
|
Nucleolin Therapeutic Targeting Decreases Pancreatic Cancer Immunosuppression. Cancers (Basel) 2022; 14:cancers14174265. [PMID: 36077801 PMCID: PMC9454580 DOI: 10.3390/cancers14174265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022] Open
Abstract
Background: The pancreatic ductal adenocarcinoma (PDAC) microenvironment is highly fibrotic and hypoxic, with poor immune cell infiltration. Recently, we showed that nucleolin (NCL) inhibition normalizes tumour vessels and impairs PDAC growth. Methods: Immunocompetent mouse models of PDAC were treated by the pseudopeptide N6L, which selectively inhibits NCL. Tumour-infiltrating immune cells and changes in the tumour microenvironment were analysed. Results: N6L reduced the proportion of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) and increased tumour-infiltrated T lymphocytes (TILs) with an activated phenotype. Low-dose anti-VEGFR2 treatment normalized PDAC vessels but did not modulate the immune suppressive microenvironment. RNAseq analysis of N6L-treated PDAC tumours revealed a reduction of cancer-associated fibroblast (CAF) expansion in vivo and in vitro. Notably, N6L treatment decreased IL-6 levels both in tumour tissues and in serum. Treating mPDAC by an antibody blocking IL-6 reduced the proportion of Tregs and MDSCs and increased the amount of TILs, thus mimicking the effects of N6L. Conclusions: These results demonstrate that NCL inhibition blocks the amplification of lymphoid and myeloid immunosuppressive cells and promotes T cell activation in PDAC through a new mechanism of action dependent on the direct inhibition of the tumoral stroma.
Collapse
|
29
|
Chong YP, Peter EP, Lee FJM, Chan CM, Chai S, Ling LPC, Tan EL, Ng SH, Masamune A, Ghafar SAA, Ismail N, Ho KL. Conditioned media of pancreatic cancer cells and pancreatic stellate cells induce myeloid-derived suppressor cells differentiation and lymphocytes suppression. Sci Rep 2022; 12:12315. [PMID: 35853996 PMCID: PMC9296552 DOI: 10.1038/s41598-022-16671-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/13/2022] [Indexed: 11/09/2022] Open
Abstract
As pancreatic cancer cells (PCCs) and pancreatic stellate cells (PSCs) are the two major cell types that comprise the immunosuppressive tumor microenvironment of pancreatic cancer, we aimed to investigate the role of conditioned medium derived from PCCs and PSCs co-culture on the viability of lymphocytes. The conditioned medium (CM) collected from PCCs and/or PSCs was used to treat peripheral blood mononuclear cells (PBMCs) to determine CM ability in reducing lymphocytes population. A proteomic analysis has been done on the CM to investigate the differentially expressed protein (DEP) expressed by two PCC lines established from different stages of tumor. Subsequently, we investigated if the reduction of lymphocytes was directly caused by CM or indirectly via CM-induced MDSCs. This was achieved by isolating lymphocyte subtypes and treating them with CM and CM-induced MDSCs. Both PCCs and PSCs were important in suppressing lymphocytes, and the PCCs derived from a metastatic tumor appeared to have a stronger suppressive effect than the PCCs derived from a primary tumor. According to the proteomic profiles of CM, 416 secreted proteins were detected, and 13 DEPs were identified between PANC10.05 and SW1990. However, CM was found unable to reduce lymphocytes viability through a direct pathway. In contrast, CM that contains proteins secreted by PCC and/or PSC appear immunogenic as they increase the viability of lymphocytes subtypes. Lymphocyte subtype treated with CM-induced MDSCs showed reduced viability in T helper 1 (Th1), T helper 2 (Th2), and T regulatory (Treg) cells, but not in CD8+ T cells, and B cells. As a conclusion, the interplay between PCCs and PSCs is important as their co-culture displays a different trend in lymphocytes suppression, hence, their co-culture should be included in future studies to better mimic the tumor microenvironment.
Collapse
Affiliation(s)
- Yuen Ping Chong
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Evelyn Priya Peter
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Feon Jia Ming Lee
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Chu Mun Chan
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Shereen Chai
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Lorni Poh Chou Ling
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Eng Lai Tan
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Sook Han Ng
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Siti Aisyah Abd Ghafar
- Department of Basic Science and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Seremban, Malaysia
| | - Norsharina Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ket Li Ho
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
30
|
Chamma H, Vila IK, Taffoni C, Turtoi A, Laguette N. Activation of STING in the pancreatic tumor microenvironment: A novel therapeutic opportunity. Cancer Lett 2022; 538:215694. [PMID: 35489447 DOI: 10.1016/j.canlet.2022.215694] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/21/2022] [Accepted: 04/15/2022] [Indexed: 12/20/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a cancer of poor prognosis that presents with a dense desmoplastic stroma that contributes to therapeutic failure. PDAC patients are mostly unresponsive to immunotherapy. However, hopes to elicit response to immunotherapy have emerged with novel strategies targeting the Stimulator of Interferon Genes (STING) protein, which is a major regulator of tumor-associated inflammation. Combination of STING agonists with conventional immunotherapy approaches has proven to potentiate therapeutic benefits in several cancers. However, recent data underscore that the output of STING activation varies depending on the cellular and tissue context. This suggests that tumor heterogeneity, and in particular the heterogeneity of the tumor microenvironment (TME), is a key factor determining whether STING activation would bear benefits for patients. In this review, we discuss the potential benefits of STING activation in PDAC. To this aim, we describe the major components of the PDAC TME, and the expected consequences of STING activation.
Collapse
Affiliation(s)
- Hanane Chamma
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France
| | - Isabelle K Vila
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France
| | - Clara Taffoni
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France
| | - Andrei Turtoi
- Tumor Microenvironment Laboratory, Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier, INSERM U1194, 34000, Montpellier, France.
| | - Nadine Laguette
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Molecular Basis of Inflammation Laboratory, Montpellier, France.
| |
Collapse
|
31
|
Wang J, Liu X, Ji J, Luo J, Zhao Y, Zhou X, Zheng J, Guo M, Liu Y. Orthotopic and Heterotopic Murine Models of Pancreatic Cancer Exhibit Different Immunological Microenvironments and Different Responses to Immunotherapy. Front Immunol 2022; 13:863346. [PMID: 35874730 PMCID: PMC9302770 DOI: 10.3389/fimmu.2022.863346] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
For decades, tumor-bearing murine models established using tumor cell lines have been the most commonly used models to study human cancers. Even though there are several studies reported that implant sites caused disparities in tumor behaviors, few of them illuminated the positional effect on immunotherapy. Herein, we describe surgical techniques for a novel orthotopic implantation of syngeneic pancreatic ductal adenocarcinoma (PDAC) tissue slices. This method has a high success modeling rate and stable growth kinetics, which makes it useful for testing novel therapeutics. Pathological examination indicated that the orthotopic tumor displayed poor vascularization, desmoplastic stromal reaction, and a highly immunosuppressive tumor microenvironment. This unique microenvironment resulted in limited response to PD1/CTLA4 blockade therapy and anti-MUC1 (αMUC1) CAR-T transfer treatment. To reverse the suppressive tumor microenvironment, we developed gene modified T-cells bearing a chimeric receptor in which activating receptor NKG2D fused to intracellular domains of 4-1BB and CD3ζ (NKG2D CAR). The NKG2D CAR-T cells target myeloid-derived suppressor cells (MDSCs), which overexpress Rae1 (NKG2D ligands) within the TME. Results indicated that NKG2D CAR-T cells eliminated MDSCs and improved antitumor activity of subsequently infused CAR-T cells. Moreover, we generated a bicistronic CAR-T, including αMUC1 CAR and NKG2D CAR separated by a P2A element. Treatment with the dual targeted bicistronic CAR-T cells also resulted in prolonged survival of orthotopic model mice. In summary, this study describes construction of a novel orthotopic PDAC model through implantation of tissue slices and discusses resistance to immunotherapy from the perspective of a PDAC microenvironment. Based on the obtained results, it is evident that elimination MDSCs by NKG2D CAR could rescue the impaired CAR-T cell activity.
Collapse
Affiliation(s)
- Jin Wang
- Department of pathology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Xingchen Liu
- Department of pathology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Junsong Ji
- Institute of Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Jianhua Luo
- National Key Laboratory of Medical Immunology & Institute of Immunology, Navy Medical University, Shanghai, China
| | - Yuanyu Zhao
- Institute of Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Xiaonan Zhou
- Department of Anesthesiology, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Jianming Zheng
- Department of pathology, Changhai Hospital, Navy Medical University, Shanghai, China
- *Correspondence: Yanfang Liu, ; Meng Guo, ; Jianming Zheng,
| | - Meng Guo
- National Key Laboratory of Medical Immunology & Institute of Immunology, Navy Medical University, Shanghai, China
- *Correspondence: Yanfang Liu, ; Meng Guo, ; Jianming Zheng,
| | - Yanfang Liu
- Department of pathology, Changhai Hospital, Navy Medical University, Shanghai, China
- National Key Laboratory of Medical Immunology & Institute of Immunology, Navy Medical University, Shanghai, China
- *Correspondence: Yanfang Liu, ; Meng Guo, ; Jianming Zheng,
| |
Collapse
|
32
|
Sharma V, Sachdeva N, Gupta V, Nada R, Jacob J, Sahni D, Aggarwal A. CCR4 + monocytic myeloid-derived suppressor cells are associated with the increased epithelial-mesenchymal transition in pancreatic adenocarcinoma patients. Immunobiology 2022; 227:152210. [PMID: 35358941 DOI: 10.1016/j.imbio.2022.152210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/06/2022] [Accepted: 03/20/2022] [Indexed: 12/13/2022]
Abstract
Among all the cancer-related deaths globally, pancreatic ductal adenocarcinoma (PDAC) accounts for the seventh leading cause of mortality. A dysregulated immune system disrupts anti-tumor immunity by abnormal accumulation of myeloid-derived suppressor cells (MDSCs), but the underlying mechanisms are still inconclusive. To gain new insights into the role of MDSCs in tumor settings, we aimed to determine the mechanism of expansion of various subsets of MDSCs in PDAC patients and their role in promoting invasiveness. We assessed the load of MDSCs, chemokines responsible for the recruitment of MDSCs in PDAC patients by flow cytometry. We investigated the chemokine profile of tumor tissue using qRT-PCR and the status of epithelial-mesenchymal transition (EMT) related markers E-Cadherin, N-Cadherin, Snail, and ZEB1 by qRT-PCR and immunohistochemistry. We found a higher frequency of tumor infiltrated MDSCs in PDAC patients. Chemokine ligands CCL2 and the receptor CCR4 were markedly elevated in the PDAC tumor, while CCR4+ monocytic MDSCs (M-MDSCs) were found significantly elevated in peripheral blood and tumor tissue. In tumor tissue, expression of E-Cadherin was significantly reduced, while N-Cadherin, Snail, and ZEB1 were markedly raised. The frequency of CCR4+ M-MDSCs significantly correlated with the expression of mesenchymal transition markers N-Cadherin, Snail, and ZEB1. Collectively, these results suggest that the CCL2-CCR4 axis plays a crucial role in driving the recruitment of M-MDSCs, which is associated with increased invasiveness in PDAC. This study sheds light on the expansion mechanism of MDSCs, which can serve as a crucial target of future anti-cancer strategies to inhibit tumor cell invasiveness.
Collapse
Affiliation(s)
- Vinit Sharma
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Vikas Gupta
- Department of Surgical Gastroenterology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ritambhra Nada
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Justin Jacob
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Daisy Sahni
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anjali Aggarwal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
| |
Collapse
|
33
|
Hung YH, Chen LT, Hung WC. The Trinity: Interplay among Cancer Cells, Fibroblasts, and Immune Cells in Pancreatic Cancer and Implication of CD8 + T Cell-Orientated Therapy. Biomedicines 2022; 10:biomedicines10040926. [PMID: 35453676 PMCID: PMC9026398 DOI: 10.3390/biomedicines10040926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
The microenvironment in tumors is complicated and is constituted by different cell types and stromal proteins. Among the cell types, the abundance of cancer cells, fibroblasts, and immune cells is high and these cells work as the “Trinity” in promoting tumorigenesis. Although unidirectional or bidirectional crosstalk between two independent cell types has been well characterized, the multi-directional interplays between cancer cells, fibroblasts, and immune cells in vitro and in vivo are still unclear. We summarize recent studies in addressing the interaction of the “Trinity” members in the tumor microenvironment and propose a functional network for how these members communicate with each other. In addition, we discuss the underlying mechanisms mediating the interplay. Moreover, correlations of the alterations in the distribution and functionality of cancer cells, fibroblasts, and immune cells under different circumstances are reviewed. Finally, we point out the future application of CD8+ T cell-oriented therapy in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yu-Hsuan Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 804, Taiwan
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Correspondence: (L.-T.C.); (W.-C.H.)
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
- Correspondence: (L.-T.C.); (W.-C.H.)
| |
Collapse
|
34
|
Yang J, Zhang Q, Wang J, Lou Y, Hong Z, Wei S, Sun K, Wang J, Chen Y, Sheng J, Su W, Bai X, Liang T. Dynamic profiling of immune microenvironment during pancreatic cancer development suggests early intervention and combination strategy of immunotherapy. EBioMedicine 2022; 78:103958. [PMID: 35316682 PMCID: PMC8943259 DOI: 10.1016/j.ebiom.2022.103958] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has little response to immune checkpoint inhibitors. An in-depth understanding of the immune microenvironment from a comprehensive and dynamic perspective is critical to generate effective therapeutic strategies for PDAC. METHODS Using mass cytometry and immunohistochemistry, we explored the dynamic changes of tumor-infiltrating immune cells during the development of PDAC in a genetically engineered mouse model (KrasG12D/+; Trp53R172H/+; Pdx1-cre) and human specimens. PD-L1-/- mice were crossed with KrasG12D/+; TgfβR2flox/flox; Ptf1a-cre mice to achieve early depletion of PD-L1 in pancreatic cancer. Combination therapy of Arginase-1 (Arg-1) inhibitor and anti-PD-1 mAb was validated in syngeneic mouse models. FINDINGS Two different stages of immunosuppression with unique features were observed in both mouse model and human specimens. Early stage of immunosuppression featured highly abundant Tregs during acinar-to-ductal metaplasia, despite of a prominent and continuous presence of effector lymphocytes. The differentiation/activation branch of Ly-6C+ monocytes changed from a BST2+/MHC-II+ phenotype to an Arg-1+ phenotype over time during PDAC development. The late stage of immunosuppression thus featured the presence of a large number of myeloid suppressive cells together with a significant reduction of effector lymphocytes. Removal of PD-L1 from the beginning efficiently triggered anti-tumor immunity and significantly prolonged survival in PDAC-developing mice. Targeting Arg1+ macrophages with an Arg-1 inhibitor synergized with anti-PD-1 immunotherapy and led to PDAC-specific immune memory. INTERPRETATION By demonstrating the coevolution of histopathology and immunology in PDAC, this study highlights the necessity and value of early intervention and combinational approach in leveraging immunotherapy to treat pancreatic cancer. FUNDING A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Jiaqi Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| | - Junli Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Yu Lou
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Zhengtao Hong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Shumei Wei
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Sun
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058 China; Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianing Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China
| | - Yiwen Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| | - Jianpeng Sheng
- Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| | - Wei Su
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058 China.
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou 310003, China; Key Laboratory of Pancreatic Disease of Zhejiang Province, Hangzhou, China; Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058 China.
| |
Collapse
|
35
|
Chen Z, Zhang S, Dong S, Xu H, Zhou W. Association of the Microbiota and Pancreatic Cancer: Opportunities and Limitations. Front Immunol 2022; 13:844401. [PMID: 35309293 PMCID: PMC8928443 DOI: 10.3389/fimmu.2022.844401] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
The human body is thoroughly colonized by a wide variety of microorganisms, termed microbiota. Pancreatic cancer, one of the most aggressive forms of cancer, is no exception. The microbiota of pancreatic cancer largely influences and even dominates the occurrence, development and outcome of pancreatic cancer in many ways. Studies have shown that microbiota could change the malignant phenotype and prognosis of pancreatic cancer by stimulating persistent inflammation, regulating the antitumor immune system, changing the tumor microenvironment and affecting cellular metabolism. This is why the association of the microbiota with pancreatic cancer is an emerging area of research that warrants further exploration. Herein, we investigated the potential microbial markers of pancreatic cancer, related research models, the mechanism of action of microbiota in pancreatic cancer, and pancreatic cancer-microbiota-related treatment.
Collapse
Affiliation(s)
- Zhou Chen
- Department of General Surgery, The First Hospital of Lanzhou University, The First Clinical Medical School of Lanzhou University, Lanzhou University, Lanzhou, China
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Shaofeng Zhang
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Shi Dong
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hao Xu
- Department of General Surgery, The First Hospital of Lanzhou University, The First Clinical Medical School of Lanzhou University, Lanzhou University, Lanzhou, China
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Wence Zhou
- Department of General Surgery, The First Hospital of Lanzhou University, The First Clinical Medical School of Lanzhou University, Lanzhou University, Lanzhou, China
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| |
Collapse
|
36
|
Muller M, Haghnejad V, Schaefer M, Gauchotte G, Caron B, Peyrin-Biroulet L, Bronowicki JP, Neuzillet C, Lopez A. The Immune Landscape of Human Pancreatic Ductal Carcinoma: Key Players, Clinical Implications, and Challenges. Cancers (Basel) 2022; 14:cancers14040995. [PMID: 35205742 PMCID: PMC8870260 DOI: 10.3390/cancers14040995] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and deadliest cancer worldwide with an overall survival rate, all stages combined, of still <10% at 5 years. The poor prognosis is attributed to challenges in early detection, a low opportunity for radical resection, limited response to chemotherapy, radiotherapy, and resistance to immune therapy. Moreover, pancreatic tumoral cells are surrounded by an abundant desmoplastic stroma, which is responsible for creating a mechanical barrier, preventing appropriate vascularization and leading to poor immune cell infiltration. Accumulated evidence suggests that PDAC is impaired with multiple “immune defects”, including a lack of high-quality effector cells (CD4, CD8 T cells, dendritic cells), barriers to effector cell infiltration due to that desmoplastic reaction, and a dominance of immune cells such as regulatory T cells, myeloid-derived suppressor cells, and M2 macrophages, resulting in an immunosuppressive tumor microenvironment (TME). Although recent studies have brought new insights into PDAC immune TME, its understanding remains not fully elucidated. Further studies are required for a better understanding of human PDAC immune TME, which might help to develop potent new therapeutic strategies by correcting these immune defects with the hope to unlock the resistance to (immune) therapy. In this review, we describe the main effector immune cells and immunosuppressive actors involved in human PDAC TME, as well as their implications as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Marie Muller
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- Correspondence:
| | - Vincent Haghnejad
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Marion Schaefer
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Guillaume Gauchotte
- Department of Pathology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France;
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Bénédicte Caron
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Jean-Pierre Bronowicki
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Cindy Neuzillet
- Medical Oncology Department, Curie Institute, Versailles Saint-Quentin University (UVQ), Paris Saclay University, 92064 Saint-Cloud, France;
| | - Anthony Lopez
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| |
Collapse
|
37
|
Chen S, Huang F, He C, Li J, Chen S, Li Y, Chen Y, Lian G, Huang K. Peripheral blood monocytes predict clinical prognosis and support tumor invasiveness through NF-κB-dependent upregulation of Snail in pancreatic cancer. Transl Cancer Res 2022; 10:4773-4785. [PMID: 35116330 PMCID: PMC8797572 DOI: 10.21037/tcr-21-980] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/09/2021] [Indexed: 12/02/2022]
Abstract
Background The tumor inflammatory microenvironment plays a vital role in the initiation and progression of pancreatic cancer (PC). Both the lymphocyte-to-monocyte ratio (LMR) and preoperative peripheral blood monocytes are related to the prognosis of PC patients. However, the direct effect of monocytes on PC cells is not fully understood. The current study aimed to assess the effect of monocytes on PC and explore its potential mechanism. Methods The cutoff value of peripheral blood monocytes was evaluated by the receiver operating characteristic (ROC) curve. Transwell migration and invasion assays were used to detect the mobility of PC cells. The cytokines derived from monocytes were measured by quantitative real-time polymerase chain reaction (qRT-PCR). Western blotting was utilized to assess the expression of epithelial-mesenchymal transition (EMT) related markers. The expression level of Snail in PC tissue was determined by immunohistochemical (IHC) staining. Results A high monocyte count was inversely correlated with lymph node status and 5-year overall survival in PC. The PC cells underwent a cellular morphology change and increased cell motility after coculture with THP-1 monocytes. The THP-1 monocytes secreted various proinflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin-1α (IL-1α), which activated the nuclear factor-κB (NF-κB) signaling pathway leading to the upregulation of Snail and thereby promoting the EMT of PC cells. The expression level of Snail correlated significantly with the density of peripheral blood monocytes, and their level status was significantly associated with 5-year overall survival. Conclusions These findings indicated that elevated monocytes counts were a poor prognostic marker in PC, and monocytes could directly induce the EMT process of PC cells by upregulating Snail expression through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shaojie Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Feifei Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chong He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiajia Li
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shangxiang Chen
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaqing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yinting Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guoda Lian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kaihong Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Mouratidis PXE, ter Haar G. Latest Advances in the Use of Therapeutic Focused Ultrasound in the Treatment of Pancreatic Cancer. Cancers (Basel) 2022; 14:638. [PMID: 35158903 PMCID: PMC8833696 DOI: 10.3390/cancers14030638] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
Traditional oncological interventions have failed to improve survival for pancreatic cancer patients significantly. Novel treatment modalities able to release cancer-specific antigens, render immunologically "cold" pancreatic tumours "hot" and disrupt or reprogram the pancreatic tumour microenvironment are thus urgently needed. Therapeutic focused ultrasound exerts thermal and mechanical effects on tissue, killing cancer cells and inducing an anti-cancer immune response. The most important advances in therapeutic focused ultrasound use for initiation and augmentation of the cancer immunity cycle against pancreatic cancer are described. We provide a comprehensive review of the use of therapeutic focused ultrasound for the treatment of pancreatic cancer patients and describe recent studies that have shown an ultrasound-induced anti-cancer immune response in several tumour models. Published studies that have investigated the immunological effects of therapeutic focused ultrasound in pancreatic cancer are described. This article shows that therapeutic focused ultrasound has been deemed to be a safe technique for treating pancreatic cancer patients, providing pain relief and improving survival rates in pancreatic cancer patients. Promotion of an immune response in the clinic and sensitisation of tumours to the effects of immunotherapy in preclinical models of pancreatic cancer is shown, making it a promising candidate for use in the clinic.
Collapse
Affiliation(s)
- Petros X. E. Mouratidis
- Department of Physics, Division of Radiotherapy and Imaging, The Institute of Cancer Research: Royal Marsden Hospital, Sutton, London SM25NG, UK;
| | | |
Collapse
|
39
|
Chen Y, Chen D, Wang Q, Xu Y, Huang X, Haglund F, Su H. Immunological Classification of Pancreatic Carcinomas to Identify Immune Index and Provide a Strategy for Patient Stratification. Front Immunol 2022; 12:719105. [PMID: 35111149 PMCID: PMC8801451 DOI: 10.3389/fimmu.2021.719105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background Cancer immunotherapy has produced significant positive clinical effects in a variety of tumor types. However, pancreatic ductal adenocarcinoma (PDAC) is widely considered to be a "cold" cancer with poor immunogenicity. Our aim is to determine the detailed immune features of PDAC to seek new treatment strategies. Methods The immune cell abundance of PDAC patients was evaluated with the single-sample gene set enrichment analysis (ssGSEA) using 119 immune gene signatures. Based on these data, patients were classified into different immune subtypes (ISs) according to immune gene signatures. We analyzed their response patterns to immunotherapy in the datasets, then established an immune index to reflect the different degrees of immune infiltration through linear discriminant analysis (LDA). Finally, potential prognostic markers associated with the immune index were identified based on weighted correlation network analysis (WGCNA) that was functionally validated in vitro. Results Three ISs were identified in PDAC, of which IS3 had the best prognosis across all three cohorts. The different expressions of immune profiles among the three ISs indicated a distinct responsiveness to immunotherapies in PDAC subtypes. By calculating the immune index, we found that the IS3 represented higher immune infiltration, while IS1 represented lower immune infiltration. Among the investigated signatures, we identified ZNF185, FANCG, and CSTF2 as risk factors associated with immune index that could potentially facilitate diagnosis and could be therapeutic target markers in PDAC patients. Conclusions Our findings identified immunologic subtypes of PDAC with distinct prognostic implications, which allowed us to establish an immune index to represent the immune infiltration in each subtype. These results show the importance of continuing investigation of immunotherapy and will allow clinical workers to personalized treatment more effectively in PDAC patients.
Collapse
Affiliation(s)
- Yi Chen
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Didi Chen
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiang Wang
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Yajing Xu
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaowei Huang
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Felix Haglund
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Huafang Su
- Department of Radiation Oncology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
40
|
Dong P, Yan Y, Fan Y, Wang H, Wu D, Yang L, Zhang J, Yin X, Lv Y, Zhang J, Hou Y, Liu F, Yu X. The Role of Myeloid-Derived Suppressor Cells in the Treatment of Pancreatic Cancer. Technol Cancer Res Treat 2022; 21:15330338221142472. [PMID: 36573015 PMCID: PMC9806441 DOI: 10.1177/15330338221142472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/05/2022] [Accepted: 10/14/2022] [Indexed: 12/29/2022] Open
Abstract
Pancreatic cancer has the highest mortality rate of all major cancers, with a 5-year survival rate of about 10%. Early warning signs and symptoms of pancreatic cancer are vague or nonexistent, and most patients are diagnosed in Stage IV, when surgery is not an option for about 80%-85% of patients. For patients with inoperable pancreatic cancer, current conventional treatment modalities such as chemotherapy and radiotherapy (RT) have suboptimal efficacy. Tumor progression is closely associated with the tumor microenvironment, which includes peripheral blood vessels, bone marrow-derived inflammatory cells, fibroblasts, immune cells, signaling molecules, and extracellular matrix. Tumor cells affect the microenvironment by releasing extracellular signaling molecules, inducing peripheral immune tolerance, and promoting tumor angiogenesis. In turn, the immune cells of the tumor affect the survival and proliferation of cancer cells. Myeloid-derived suppressor cells are key cellular components in the tumor microenvironment and exert immunosuppressive functions by producing cytokines, recognizing other immune cells, and promoting tumor growth and metastasis. Myeloid-derived suppressor cells are the main regulator of the tumor immune response and a key target for tumor treatments. Since the combination of RT and immunotherapy is the main strategy for the treatment of pancreatic cancer, it is very important to understand the immune mechanisms which lead to MDSCs generation and the failure of current therapies in order to develop new target-based therapies. This review summarizes the research advances on the role of Myeloid-derived suppressor cells in the progression of pancreatic cancer and its treatment application in recent years.
Collapse
Affiliation(s)
- Peng Dong
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| | - Yu Yan
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| | - Yujun Fan
- Medical Management Center,Health Commission of Shandong Province, Jinan, Shandong, China
| | - Hui Wang
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| | - Danzhu Wu
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
- Department of Oncology, Clinical Medical College of Jining Medical University, Jining, Shandong, China
| | - Liyuan Yang
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| | - Junpeng Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Oncology, The Second Hospital, Cheeloo College of Medicine Shandong University, Jinan, China
| | - Xiaoyang Yin
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yajuan Lv
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| | - Jiandong Zhang
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| | - Yuzhu Hou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, ShaanXi, China
| | - Fengjun Liu
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| | - Xinshuang Yu
- Department of oncology, The First affiliated hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Shandong, China
| |
Collapse
|
41
|
Reddy AV, Deek MP, Jackson JF, Hill CS, Sehgal S, He J, Zheng L, Herman JM, Meyer J, Narang AK. Vertebral body and splenic irradiation are associated with lymphopenia in localized pancreatic cancer treated with stereotactic body radiation therapy. Radiat Oncol 2021; 16:242. [PMID: 34952610 PMCID: PMC8709967 DOI: 10.1186/s13014-021-01969-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/15/2021] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES The purpose of this study was to determine if vertebral body and splenic dosimetry was associated with the development of lymphopenia in patients with borderline resectable (BRPC) and locally advanced pancreatic cancer (LAPC) treated with stereotactic body radiation therapy (SBRT). METHODS Patients with BRPC/LAPC who were treated with SBRT and who had lymphocyte counts and radiation treatment plans available for review were included in the study. Vertebral body levels T11-L3 and the spleen were retrospectively contoured for each patient. Univariate (UVA) and multivariable analyses (MVA) were performed to identify associations between vertebral body and splenic dosimetric parameters with absolute lymphocyte count (ALC) and grade ≥ 2 lymphopenia. Receiver operator characteristic curves were generated to identify dose-volume thresholds in predicting grade ≥ 2 lymphopenia. RESULTS A total of 132 patients were included in the study. On UVA and MVA, vertebral V15 (regression coefficient [β]: - 0.026, 95% CI - 0.044 to - 0.009, p = 0.003), vertebral V2.5 (β: - 0.011, 95% CI - 0.020 to - 0.002, p = 0.015), and log10PTV (β: - 0.15, 95% CI - 0.30 to - 0.005, p = 0.042) were associated with post-SBRT ALC. On UVA and MVA, vertebral V15 (odds ratio [OR]: 3.98, 95% CI 1.09-14.51, p = 0.027), vertebral V2.5 (OR: 1.04, 95% CI 1.00-1.09, p = 0.032), and spleen V10 (OR: 1.05, 95% CI 1.09-1.95, p = 0.004) were associated with development of grade ≥ 2 lymphopenia. Development of grade ≥ 2 lymphopenia was more likely in patients with vertebral V15 ≥ 5.84% (65.5% vs 34.0%, p = 0.002), vertebral V2.5 ≥ 48.36% (48.9% vs 23.8%, p = 0.005), and spleen V10 ≥ 4.17% (56.2% vs 26.9%, p < 0.001). CONCLUSIONS Increasing radiation dose to vertebral bodies and spleen were associated with the development of lymphopenia in BRPC/LAPC treated with SBRT. Optimization of vertebral body and splenic dosimetry may reduce the risk of developing lymphopenia and improve clinical outcomes in this population.
Collapse
Affiliation(s)
- Abhinav V Reddy
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Sidney Kimmel Cancer Center, 401 N Broadway, Baltimore, MD, 21231, USA.
| | - Matthew P Deek
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ, 08901, USA
| | - Juan F Jackson
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Sidney Kimmel Cancer Center, 401 N Broadway, Baltimore, MD, 21231, USA
| | - Colin S Hill
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Sidney Kimmel Cancer Center, 401 N Broadway, Baltimore, MD, 21231, USA
| | - Shuchi Sehgal
- Philadelphia College of Osteopathic Medicine, 4170 City Ave, Philadelphia, PA, 19131, USA
| | - Jin He
- Department of Surgery, Johns Hopkins University School of Medicine, Sidney Kimmel Cancer Center, 401 N Broadway, Baltimore, MD, 21231, USA
| | - Lei Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, Sidney Kimmel Cancer Center, 401 N Broadway, Baltimore, MD, 21231, USA
| | - Joseph M Herman
- Department of Radiation Oncology, Northwell Health, 450 Lakeville Road, New Hyde Park, NY, 11042, USA
| | - Jeffrey Meyer
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Sidney Kimmel Cancer Center, 401 N Broadway, Baltimore, MD, 21231, USA
| | - Amol K Narang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Sidney Kimmel Cancer Center, 401 N Broadway, Baltimore, MD, 21231, USA
| |
Collapse
|
42
|
Vaish U, Jain T, Are AC, Dudeja V. Cancer-Associated Fibroblasts in Pancreatic Ductal Adenocarcinoma: An Update on Heterogeneity and Therapeutic Targeting. Int J Mol Sci 2021; 22:13408. [PMID: 34948209 PMCID: PMC8706283 DOI: 10.3390/ijms222413408] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related morbidity and mortality in the western world, with limited therapeutic strategies and dismal long-term survival. Cancer-associated fibroblasts (CAFs) are key components of the pancreatic tumor microenvironment, maintaining the extracellular matrix, while also being involved in intricate crosstalk with cancer cells and infiltrating immunocytes. Therefore, they are potential targets for developing therapeutic strategies against PDAC. However, recent studies have demonstrated significant heterogeneity in CAFs with respect to their origins, spatial distribution, and functional phenotypes within the PDAC tumor microenvironment. Therefore, it is imperative to understand and delineate this heterogeneity prior to targeting CAFs for PDAC therapy.
Collapse
Affiliation(s)
| | | | | | - Vikas Dudeja
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (U.V.); (T.J.); (A.C.A.)
| |
Collapse
|
43
|
Mohseni G, Li J, Ariston Gabriel AN, Du L, Wang YS, Wang C. The Function of cGAS-STING Pathway in Treatment of Pancreatic Cancer. Front Immunol 2021; 12:781032. [PMID: 34858438 PMCID: PMC8630697 DOI: 10.3389/fimmu.2021.781032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/25/2021] [Indexed: 12/23/2022] Open
Abstract
The activation of stimulator of interferon genes (STING) signalling pathway has been suggested to promote the immune responses against malignancy. STING is activated in response to the detection of cytosolic DNA and can induce type I interferons and link innate immunity with the adaptive immune system. Due to accretive evidence demonstrating that the STING pathway regulates the immune cells of the tumor microenvironment (TME), STING as a cancer biotherapy has attracted considerable attention. Pancreatic cancer, with a highly immunosuppressive TME, remains fatal cancer. STING has been applied to the treatment of pancreatic cancer through distinct strategies. This review reveals the role of STING signalling on pancreatic tumors and other diseases related to the pancreas. We then discuss new advances of STING in either monotherapy or combination methods for pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Ghazal Mohseni
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory Diagnostics, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Abakundana Nsenga Ariston Gabriel
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory Diagnostics, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun-Shan Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
44
|
Sharma V, Sachdeva N, Gupta V, Nada R, Jacob J, Sahni D, Aggarwal A. IL-6 is associated with expansion of myeloid-derived suppressor cells and enhanced immunosuppression in pancreatic adenocarcinoma patients. Scand J Immunol 2021; 94:e13107. [PMID: 38192074 DOI: 10.1111/sji.13107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 01/05/2023]
Abstract
Chronic inflammation favours the expansion of myeloid-derived suppressor cells (MDSCs) by secreting pro-inflammatory mediators. The role of MDSCs in mediating immunosuppression in pancreatic adenocarcinoma and in defining a premalignant route from chronic pancreatitis remains unclear. We aimed to study the immunosuppressive potential of all subsets of MDSCs and their correlation with inflammatory cytokines in pancreatic adenocarcinoma and chronic pancreatitis. Relative frequencies of MDSCs, immunosuppressive markers arginase-1 (ARG-1), programmed death-ligand 1 (PD-L1), reactive oxygen species (ROS) and cytokines in circulation and surgically resected local pancreatic tissue of chronic pancreatitis and pancreatic adenocarcinoma patients were analysed by multicolour flow cytometry and cytokine bead array, respectively. Levels of cytokines involved in MDSCs activation were analysed by ELISA, and the immunosuppressive nature of MDSCs was confirmed by T-cell suppression assay. Frequencies of circulating MDSCs and ARG-1, PD-L1, and ROS were significantly higher in pancreatic adenocarcinoma than healthy controls and showed a significant positive correlation with MDSCs burden in cancer tissue. Serum levels of cytokines IL-6, IL-8 and IL-10 were significantly elevated in pancreatic adenocarcinoma. IL-6 serum levels showed a significant positive correlation with frequencies of circulating MDSCs in pancreatic adenocarcinoma patients, and MDSCs mediated suppression of T-cell proliferation in vitro was associated with elevated IL-6 levels in the cell culture medium. Collectively, our results suggest that IL-6 plays a crucial role in the expansion of MDSCs and activating their immunosuppressive nature in pancreatic adenocarcinoma. The relative frequency of MDSCs in circulation can be used as a potential diagnostic biomarker for pancreatic cancer.
Collapse
Affiliation(s)
- Vinit Sharma
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Vikas Gupta
- Department of Surgical Gastroenterology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ritambhra Nada
- Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Justin Jacob
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Daisy Sahni
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anjali Aggarwal
- Department of Anatomy, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
45
|
Li HB, Yang ZH, Guo QQ. Immune checkpoint inhibition for pancreatic ductal adenocarcinoma: limitations and prospects: a systematic review. Cell Commun Signal 2021; 19:117. [PMID: 34819086 PMCID: PMC8611916 DOI: 10.1186/s12964-021-00789-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/16/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is an extremely malignant tumor with the lowest 5-year survival rate among all tumors. Pancreatic ductal adenocarcinoma (PDAC), as the most common pathological subtype of pancreatic cancer, usually has poor therapeutic results. Immune checkpoint inhibitors (ICIs) can relieve failure of the tumor-killing effect of immune effector cells caused by immune checkpoints. Therefore, they have been used as a novel treatment for many solid tumors. However, PDAC is not sensitive to monotherapy with ICIs, which might be related to the inhibitory immune microenvironment of pancreatic cancer. Therefore, the way to improve the microenvironment has raised a heated discussion in recent years. Here, we elaborate on the relationship between different immune cellular components in this environment, list some current preclinical or clinical attempts to enhance the efficacy of ICIs by targeting the inhibitory tumor microenvironment of PDAC or in combination with other therapies. Such information offers a better understanding of the sophisticated tumor-microenvironment interactions, also providing insights on therapeutic guidance of PDAC targeting. Video Abstract.
Collapse
Affiliation(s)
- Hong-Bo Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang Province China
| | - Zi-Han Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang Province China
| | - Qing-Qu Guo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009 Zhejiang Province China
| |
Collapse
|
46
|
Pancreatic Cancer Small Extracellular Vesicles (Exosomes): A Tale of Short- and Long-Distance Communication. Cancers (Basel) 2021; 13:cancers13194844. [PMID: 34638330 PMCID: PMC8508300 DOI: 10.3390/cancers13194844] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Even today, pancreatic cancer still has a dismal prognosis. It is characterized by a lack of early symptoms and thus late diagnosis as well as early metastasis. The majority of patients suffer from pancreatic ductal adenocarcinoma (PDAC). PDACs communicate extensively with cellular components of their microenvironment, but also with distant metastatic niches to facilitate tumor progression and dissemination. This crosstalk is substantially enabled by small extracellular vesicles (sEVs, exosomes) with a size of 30–150 nm that are released from the tumor cells. sEVs carry bioactive cargos that reprogram target cells to promote tumor growth, migration, metastasis, immune evasion, or chemotherapy resistance. Interestingly, sEVs also carry novel diagnostic, prognostic and potentially also predictive biomarkers. Moreover, engineered sEVs may be utilized as therapeutic agents, improving treatment options. The role of sEVs for PDAC development, progression, diagnosis, prognosis, and treatment is the focus of this review. Abstract Even with all recent advances in cancer therapy, pancreatic cancer still has a dismal 5-year survival rate of less than 7%. The most prevalent tumor subtype is pancreatic ductal adenocarcinoma (PDAC). PDACs display an extensive crosstalk with their tumor microenvironment (TME), e.g., pancreatic stellate cells, but also immune cells to regulate tumor growth, immune evasion, and metastasis. In addition to crosstalk in the local TME, PDACs were shown to induce the formation of pre-metastatic niches in different organs. Recent advances have attributed many of these interactions to intercellular communication by small extracellular vesicles (sEVs, exosomes). These nanovesicles are derived of endo-lysosomal structures (multivesicular bodies) with a size range of 30–150 nm. sEVs carry various bioactive cargos, such as proteins, lipids, DNA, mRNA, or miRNAs and act in an autocrine or paracrine fashion to educate recipient cells. In addition to tumor formation, progression, and metastasis, sEVs were described as potent biomarker platforms for diagnosis and prognosis of PDAC. Advances in sEV engineering have further indicated that sEVs might once be used as effective drug carriers. Thus, extensive sEV-based communication and applications as platform for biomarker analysis or vehicles for treatment suggest a major impact of sEVs in future PDAC research.
Collapse
|
47
|
Wang S, Zheng Y, Yang F, Zhu L, Zhu XQ, Wang ZF, Wu XL, Zhou CH, Yan JY, Hu BY, Kong B, Fu DL, Bruns C, Zhao Y, Qin LX, Dong QZ. The molecular biology of pancreatic adenocarcinoma: translational challenges and clinical perspectives. Signal Transduct Target Ther 2021; 6:249. [PMID: 34219130 PMCID: PMC8255319 DOI: 10.1038/s41392-021-00659-4] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/27/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is an increasingly common cause of cancer mortality with a tight correspondence between disease mortality and incidence. Furthermore, it is usually diagnosed at an advanced stage with a very dismal prognosis. Due to the high heterogeneity, metabolic reprogramming, and dense stromal environment associated with pancreatic cancer, patients benefit little from current conventional therapy. Recent insight into the biology and genetics of pancreatic cancer has supported its molecular classification, thus expanding clinical therapeutic options. In this review, we summarize how the biological features of pancreatic cancer and its metabolic reprogramming as well as the tumor microenvironment regulate its development and progression. We further discuss potential biomarkers for pancreatic cancer diagnosis, prediction, and surveillance based on novel liquid biopsies. We also outline recent advances in defining pancreatic cancer subtypes and subtype-specific therapeutic responses and current preclinical therapeutic models. Finally, we discuss prospects and challenges in the clinical development of pancreatic cancer therapeutics.
Collapse
Affiliation(s)
- Shun Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Feng Yang
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Le Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xiao-Qiang Zhu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhe-Fang Wang
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Xiao-Lin Wu
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Cheng-Hui Zhou
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Jia-Yan Yan
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bei-Yuan Hu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Bo Kong
- Department of Surgery, Klinikum rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - De-Liang Fu
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China
| | - Christiane Bruns
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Yue Zhao
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany.
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China.
| | - Qiong-Zhu Dong
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai, China.
- Key laboratory of whole-period monitoring and precise intervention of digestive cancer, Shanghai Municipal Health Commission (SMHC), Shanghai, China.
| |
Collapse
|
48
|
Wei J, Chen P, Gupta P, Ott M, Zamler D, Kassab C, Bhat KP, Curran MA, de Groot JF, Heimberger AB. Immune biology of glioma-associated macrophages and microglia: functional and therapeutic implications. Neuro Oncol 2021; 22:180-194. [PMID: 31679017 DOI: 10.1093/neuonc/noz212] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CNS immune defenses are marshaled and dominated by brain resident macrophages and microglia, which are the innate immune sentinels and frontline host immune barriers against various pathogenic insults. These myeloid lineage cells are the predominant immune population in gliomas and can constitute up to 30-50% of the total cellular composition. Parenchymal microglial cells and recruited monocyte-derived macrophages from the periphery exhibit disease-specific phenotypic characteristics with spatial and temporal distinctions and are heterogeneous subpopulations based on their molecular signatures. A preponderance of myeloid over lymphoid lineage cells during CNS inflammation, including gliomas, is a contrasting feature of brain immunity relative to peripheral immunity. Herein we discuss glioma-associated macrophage and microglia immune biology in the context of their identity, molecular drivers of recruitment, nomenclature and functional paradoxes, therapeutic reprogramming and polarization strategies, relevant challenges, and our perspectives on therapeutic modulation.
Collapse
Affiliation(s)
- Jun Wei
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peiwen Chen
- Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pravesh Gupta
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Martina Ott
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel Zamler
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cynthia Kassab
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Krishna P Bhat
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael A Curran
- Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John F de Groot
- Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amy B Heimberger
- Departments of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
49
|
Regulation of tumor microenvironment for pancreatic cancer therapy. Biomaterials 2021; 270:120680. [PMID: 33588140 DOI: 10.1016/j.biomaterials.2021.120680] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/04/2021] [Accepted: 01/14/2021] [Indexed: 02/05/2023]
Abstract
Pancreatic cancer (PC) is one kind of the most lethal malignancies worldwide, owing to its insidious symptoms, early metastases, and negative responses to current therapies. With an increasing understanding of pathology, the tumor microenvironment (TME) plays a significant role in ineffective treatment and poor prognosis of PC. Thus, a growing number of studies have focused on whether components of the TME could be effective targets for PC therapy. Biomaterials have been widely applied in cancer therapy, and numerous organic or inorganic biomaterials for TME regulation have been developed to inhibit the growth and metastasis of PC, as well as reverse therapeutic resistance. In this review, we discuss various biomaterials utilized to treat PC based on different components of the TME, including, but not limited to, extracellular matrix (ECM), abnormal tumor vascularization, and tumor-associated immune cells, as well as other unconventional therapeutic strategies. Besides, the perspectives on the underlying future of theranostic nanomedicines for PC therapy are also presented.
Collapse
|
50
|
Elebo N, Fru P, Omoshoro-Jones J, Candy GP, Nweke EE. Role of different immune cells and metabolic pathways in modulating the immune response in pancreatic cancer (Review). Mol Med Rep 2020; 22:4981-4991. [PMID: 33174057 PMCID: PMC7646946 DOI: 10.3892/mmr.2020.11622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is an aggressive cancer, making it a leading cause of cancer‑related deaths. It is characteristically resistant to treatment, which results in low survival rates. In pancreatic cancer, immune cells undergo transitions that can inhibit or promote their functions, enabling treatment resistance and tumor progression. These transitions can be fostered by metabolic pathways that are dysregulated during tumorigenesis. The present review aimed to summarize the different immune cells and their roles in pancreatic cancer. The review also highlighted the individual metabolic pathways in pancreatic cancer and how they enable transitions in immune cells. Finally, the potential of targeting metabolic pathways for effective therapeutic strategies was considered.
Collapse
Affiliation(s)
- Nnenna Elebo
- Department of Surgery, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, Gauteng 2193, South Africa
| | - Pascaline Fru
- Department of Surgery, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, Gauteng 2193, South Africa
| | - Jones Omoshoro-Jones
- Department of Surgery, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, Gauteng 2193, South Africa
| | - Geoffrey Patrick Candy
- Department of Surgery, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, Gauteng 2193, South Africa
| | - Ekene Emmanuel Nweke
- Department of Surgery, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, Gauteng 2193, South Africa
| |
Collapse
|