1
|
Yin Y, Liu Y, Du L, Wu S. Compromised B-cell homeostasis: Unraveling the link between major depression, infection and autoimmune disorders. J Affect Disord 2025; 374:565-578. [PMID: 39842671 DOI: 10.1016/j.jad.2025.01.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/22/2024] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Major depression can increase susceptibility to viral infections and autoimmune diseases. B cell responses are crucial for immune defense against infections but can trigger autoimmunity when deregulated. However, it remains unclear whether compromised B-cell homeostasis in major depression contributes to an increased risk of infection and autoimmunity. METHODS Chronic unpredictable mild stress (CUMS) procedure was applied to adult C57BL/6 J mice to generate a reliable depression model. Mice were immunized with (4-hydroxy-3-nitrophenyl) acetyl (NP) keyhole limpet hemocyanin (NP-KLH) to elicit B-cell-mediated humoral immune responses. CUMS mice were subjected to a collagen-induced arthritis model or a Bm12-induced systemic lupus erythematosus model to assess the contribution of major depression to autoimmunity. RNA sequencing was performed to understand the effects of CUMS on B-cell homeostasis at the transcriptomic level. RESULTS CUMS mice exhibited an impaired humoral immune response, as evidenced by reduced germinal centers (GCs), plasma cells, and antigen-specific antibodies. Unimmunized CUMS mice displayed aberrant spontaneous expansion of GC B cells, plasma cells, age-associated B cells and autoantibody production. CUMS mice also demonstrated a greater exacerbation of autoimmune manifestations. RNA sequencing revealed that genes involved in B-cell-mediated immune response were downregulated in B cells from CUMS mice, while the pathways related to autoimmunity seem to be upregulated. LIMITATIONS Further research is needed to understand the specific targets, mechanisms, and role of B cell dysfunction in major depression. CONCLUSIONS Our results provide novel insights into B-cell-dependent mechanisms that involve the association of increased susceptibility to infections and autoimmunity in major depression.
Collapse
Affiliation(s)
- Yuye Yin
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuan Liu
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shusheng Wu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
2
|
Li J, Wang M, Zhou J, Fei Y, Li M, Zhao Y, Zeng X, Peng L, Zhang W. Polarization of Vδ2 T cells to a Th2-like phenotype promotes plasmablast differentiation and possesses pro-fibrotic properties in IgG4-related disease. Front Immunol 2025; 16:1550405. [PMID: 40213561 PMCID: PMC11983612 DOI: 10.3389/fimmu.2025.1550405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
Objectives To explore the phenotype and role of gamma delta (γδ) T cells in the pathogenesis of IgG4-related disease (IgG4-RD). Methods Flow cytometry and quantitative RT-PCR were employed to analyze γδ T cell subsets, chemokine receptor expression, cytokine production, pro-fibrotic gene expression, and transcription factor profiles. Immunofluorescence assessed Vδ2 T cell infiltration in affected tissues. Chemotaxis assays and co-culture experiments investigated Vδ2 T cell migration and their influence on B cell differentiation. The impact of IL-21 stimulation and JAK/STAT3 inhibitors on γδ T cell was also evaluated. Results Patients with IgG4-RD exhibited decreased peripheral Vδ2 T cells displaying a Th2-like phenotype characterized by elevated Th2 cytokine production and activated IL-21-STAT3-Blimp-1-GATA3 pathway. Vδ2 T cells accumulated in affected tissues through CCR7 upregulation, and co-localizing with B cells. Both Vδ2 T cells and culture supernatants from IgG4-RD patients promoted B cell differentiation. IL-21 stimulation augmented pSTAT3, Blimp-1, and GATA3 expression in Vδ2 T cells, while JAK and STAT3 inhibitors attenuated these effects. IgG4-RD patients exhibited increased TGF-β and pro-fibrotic gene expression in γδ T cells. Conclusion Within the IL-21-rich microenvironment of IgG4-RD, peripheral Vδ2 T cells acquire a Th2-like phenotype via the IL-21-STAT3-Blimp-1-GATA3 pathway. Targeting JAK/STAT3 inhibitors holds therapeutic potential for IgG4-RD.
Collapse
Affiliation(s)
- Jieqiong Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, The Ministry of Education Key Laboratory, Beijing, China
| | - Mu Wang
- Department of Stomatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaxin Zhou
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, The Ministry of Education Key Laboratory, Beijing, China
| | - Yunyun Fei
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, The Ministry of Education Key Laboratory, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, The Ministry of Education Key Laboratory, Beijing, China
| | - Yan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, The Ministry of Education Key Laboratory, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, The Ministry of Education Key Laboratory, Beijing, China
| | - Linyi Peng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, The Ministry of Education Key Laboratory, Beijing, China
| | - Wen Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, The Ministry of Education Key Laboratory, Beijing, China
| |
Collapse
|
3
|
Noor AAM, Nor AKCM, Redzwan NM. The immunological understanding on germinal center B cells in psoriasis. J Cell Physiol 2024; 239:e31266. [PMID: 38578060 DOI: 10.1002/jcp.31266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/16/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
The development of psoriasis is mainly driven by the dysregulation of T cells within the skin, marking a primary involvement of these cells in the pathogenesis. Although B cells are integral components of the immune system, their role in the initiation and progression of psoriasis is not as pivotal as that of T cells. The paradox of B cell suggests that, while it is crucial for adaptive immunity, B cells may contribute to the exacerbation of psoriasis. Numerous ideas proposed that there are potential relationships between psoriasis and B cells especially within germinal centers (GCs). Recent research projected that B cells might be triggered by autoantigens which then induced molecular mimicry to alter B cells activity within GC and generate autoantibodies and pro-inflammatory cytokines, form ectopic GC, and dysregulate the proliferation of keratinocytes. Hence, in this review, we gathered potential evidence indicating the participation of B cells in psoriasis within the context of GC, aiming to enhance our comprehension and advance treatment strategies for psoriasis thus inviting many new researchers to investigate this issue.
Collapse
Affiliation(s)
- Aina Akmal Mohd Noor
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Abdah Karimah Che Md Nor
- Central Research Laboratory, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Norhanani Mohd Redzwan
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
4
|
Lin M, Huang L, Huang J, Yu J, Yang X, Yang J. Modulation of PKM2 inhibits follicular helper T cell differentiation and ameliorates inflammation in lupus-prone mice. J Autoimmun 2024; 145:103198. [PMID: 38428341 DOI: 10.1016/j.jaut.2024.103198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
OBJECTIVES Expansion of follicular helper T (Tfh) cells and abnormal glucose metabolism are present in patients with systemic lupus erythematosus (SLE). Pyruvate kinase M2 (PKM2) is one of the key glycolytic enzymes, and the underlying mechanism of PKM2-mediated Tfh cell glycolysis in SLE pathogenesis remains elusive. METHODS We analyzed the percentage of Tfh cells and glycolysis in CD4+ T cells from SLE patients and healthy donors and performed RNA sequencing analysis of peripheral blood CD4+ T cells and differentiated Tfh cells from SLE patients. Following Tfh cell development in vitro and following treatment with PKM2 activator TEPP-46, PKM2 expression, glycolysis, and signaling pathway proteins were analyzed. Finally, diseased MRL/lpr mice were treated with TEPP-46 and assessed for treatment effects. RESULTS We found that Tfh cell percentage and glycolysis levels were increased in SLE patients and MRL/lpr mice. TEPP-46 induced PKM2 tetramerization, thereby inhibiting Tfh cell glycolysis levels. On the one hand, TEPP-46 reduced the dimeric PKM2 entering the nucleus and reduced binding to the transcription factor BCL6. On the other hand, TEPP-46 inhibited the AKT/GSK-3β pathway and glycolysis during Tfh cell differentiation. Finally, we confirmed that TEPP-46 effectively alleviated inflammatory damage in lupus-prone mice and reduced the expansion of Tfh cells in vivo. CONCLUSIONS Our results demonstrate the involvement of PKM2-mediated glycolysis in Tfh cell differentiation and SLE pathogenesis, and PKM2 could be a key therapeutic target for the treatment of SLE.
Collapse
Affiliation(s)
- Manna Lin
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liuting Huang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junxia Huang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia Yu
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xue Yang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Ji Yang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Ishii K, Kamachi K, Okamoto S, Katsuya H, Fujita M, Nagaie T, Nishioka A, Yoshimura M, Ureshino H, Kubota Y, Ando T, Watanabe T, Takeuchi M, Kai K, Ohshima K, Kimura S. Diffuse Large B-cell Lymphoma Involving an Abundant Infiltration of T Follicular Helper Cells. Intern Med 2023; 62:1335-1340. [PMID: 36130892 PMCID: PMC10208781 DOI: 10.2169/internalmedicine.0521-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/03/2022] [Indexed: 11/06/2022] Open
Abstract
A 76-year-old man presented with skin plaque and splenic nodules, and diffuse large B-cell lymphoma (DLBCL) with infiltration of T-cells was suspected based on the skin lesions. The disease showed indolent clinical behavior for three months, when systemic lymphadenopathy rapidly evolved. An inguinal lymph node biopsy revealed DLBCL with abundant infiltration of T follicular helper (TFH) cells. A polymerase chain reaction-based analysis of immunoglobulin variable heavy chain showed that the skin, splenic nodules, and inguinal lymph node shared the same clone. This case indicates that the dysregulated infiltration of TFH cells in the tumor microenvironment accelerates the lymphomagenesis and progression of DLBCL.
Collapse
Affiliation(s)
- Keitaro Ishii
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Japan
| | - Kazuharu Kamachi
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Japan
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Japan
| | - Sho Okamoto
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Japan
| | - Hiroo Katsuya
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Japan
| | - Mai Fujita
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Japan
| | - Toshiaki Nagaie
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Japan
| | - Atsujiro Nishioka
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Japan
| | - Mariko Yoshimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Japan
| | - Hiroshi Ureshino
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Japan
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Japan
| | - Yasushi Kubota
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Japan
- Department of Transfusion Medicine and Cell Therapy, Saitama Medical Center, Saitama Medical University, Japan
| | - Toshihiko Ando
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Japan
| | - Tatsuro Watanabe
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Japan
| | - Mai Takeuchi
- Department of Pathology, Kurume University School of Medicine, Japan
| | - Keita Kai
- Department of Pathology, Saga University Hospital, Japan
| | - Koichi Ohshima
- Department of Pathology, Kurume University School of Medicine, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Japan
- Department of Drug Discovery and Biomedical Sciences, Faculty of Medicine, Saga University, Japan
| |
Collapse
|
6
|
Ali Abdulla A, Abdulaali Abed T, Razzaq Abdul-Ameer W. Impact of IL-21 Gene Polymorphisms (rs2055979) and the Levels of Serum IL-21 on the Risk of Multiple Sclerosis. ARCHIVES OF RAZI INSTITUTE 2022; 77:81-86. [PMID: 35891764 PMCID: PMC9288640 DOI: 10.22092/ari.2021.356470.1848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/29/2021] [Indexed: 05/25/2023]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system. Genetic and environmental factors have important roles in the induction, onset, and progression of MS. In this study, the IL-21 genotype (rs2055979) (G/T) in Iraqi MS patients was compared with a healthy control group to investigate the possible association of any particular genotype or allele with multiple sclerosis. This study included 70 patients with relapsing-remitting MS and 50 healthy individuals as control. Following the extraction of genomic DNA, polymerase chain reaction-restriction fragment length polymorphism, the frequencies of genotypes, and alleles were calculated and statistically analyzed. The results of the study revealed a significant reduction in the distribution of the wild homozygous genotype (GG) in MS patients, in comparison to a healthy control group (14.3% vs. 34 %; 0.0129 at P≤0.05; odds ratio [OR] 3.0909, 95% confidence interval [CI]: 1.2704-7.5203). However, MS cases and controls did not differ significantly in neither GT nor TT genotypes, 62.9% (OR 0.6402, 95% CI: 0.3064-1.3374) and 52% (OR 0.5494, 95% CI: 0.2074-1.4557), respectively. The data of allele frequencies in patients and controls showed that the G allele frequencies were 0.46 vs. 0.60 in patients and controls, respectively, while T allele frequencies were 0.54 vs. 0.40 in patients and controls, respectively. The current conclusions indicated that in the study group, the GG genotype of IL-21(rs2055979) could be related to MS.
Collapse
Affiliation(s)
- A Ali Abdulla
- Department of Biology, College of Sciences, University of Babylon, Babylon, Iraq
| | - T Abdulaali Abed
- Department of Biology, College of Sciences, University of Babylon, Babylon, Iraq
| | - W Razzaq Abdul-Ameer
- Department of Medicine, Neurology, College of Medicine, University of Babylon, Babylon, Iraq
| |
Collapse
|
7
|
Cui D, Tang Y, Jiang Q, Jiang D, Zhang Y, Lv Y, Xu D, Wu J, Xie J, Wen C, Lu L. Follicular Helper T Cells in the Immunopathogenesis of SARS-CoV-2 Infection. Front Immunol 2021; 12:731100. [PMID: 34603308 PMCID: PMC8481693 DOI: 10.3389/fimmu.2021.731100] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a serious infectious disease that has led to a global pandemic with high morbidity and mortality. High-affinity neutralizing antibody is important for controlling infection, which is closely regulated by follicular helper T (Tfh) cells. Tfh cells play a central role in promoting germinal center reactions and driving cognate B cell differentiation for antibody secretion. Available studies indicate a close relationship between virus-specific Tfh cell-mediated immunity and SARS-CoV-2 infection progression. Although several lines of evidence have suggested that Tfh cells contribute to the control of SARS-CoV-2 infection by eliciting neutralizing antibody productions, further studies are needed to elucidate Tfh-mediated effector mechanisms in anti-SARS-CoV-2 immunity. Here, we summarize the functional features and roles of virus-specific Tfh cells in the immunopathogenesis of SARS-CoV-2 infection and in COVID-19 vaccines, and highlight the potential of targeting Tfh cells as therapeutic strategy against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Tang
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,Chongqing International Institute for Immunology, Chongqing, China
| | - Qi Jiang
- Department of Blood Transfusion, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Daixi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Zhang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Lv
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dandan Xu
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jue Xie
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengping Wen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,Chongqing International Institute for Immunology, Chongqing, China
| |
Collapse
|
8
|
A follicular regulatory Innate Lymphoid Cell population impairs interactions between germinal center Tfh and B cells. Commun Biol 2021; 4:563. [PMID: 33980982 PMCID: PMC8115650 DOI: 10.1038/s42003-021-02079-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
Innate Lymphoid Cells (ILCs) are immune cells typically found on mucosal surfaces and in secondary lymphoid organs where they regulate the immune response to pathogens. Despite their key role in the immune response, there are still fundamental gaps in our understanding of ILCs. Here we report a human ILC population present in the follicles of tonsils and lymph nodes termed follicular regulatory ILCs (ILCFR) that to our knowledge has not been previously identified. ILCFR have a distinct phenotype and transcriptional program when compared to other defined ILCs. Surprisingly, ILCFR inhibit the ability of follicular helper T (Tfh) cells to provide B cell help. The localization of ILCFR to the germinal centers suggests these cells may interfere with germinal center B cell (GC-B) and germinal center Tfh cell (GC-Tfh) interactions through the production of transforming growth factor beta (TGF-β. Intriguingly, under conditions of impaired GC-Tfh-GC-B cell interactions, such as human immunodeficiency virus (HIV) infection, the frequency of these cells is increased. Overall, we predict a role for ILCFR in regulating GC-Tfh-GC-B cell interactions and propose they expand in chronic inflammatory conditions. Margaret O’Connor et al. report a new Innate Lymphoid Cell population in human tonsils and lymph nodes that inhibit the functional interaction of follicular helper T cells and germinal center B cells. They show that this cell population is expanded under chronic HIV infection and results in decreased antibody production, suggesting a potential role for these cells in diseases with dysregulated immune responses.
Collapse
|
9
|
Wang Z, Zhao M, Yin J, Liu L, Hu L, Huang Y, Liu A, Ouyang J, Min X, Rao S, Zhou W, Wu H, Yoshimura A, Lu Q. E4BP4-mediated inhibition of T follicular helper cell differentiation is compromised in autoimmune diseases. J Clin Invest 2021; 130:3717-3733. [PMID: 32191636 DOI: 10.1172/jci129018] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
T follicular helper (Tfh) cells are indispensable for the formation of germinal center (GC) reactions, whereas T follicular regulatory (Tfr) cells inhibit Tfh-mediated GC responses. Aberrant activation of Tfh cells contributes substantially to the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus (SLE). Nonetheless, the molecular mechanisms mitigating excessive Tfh cell differentiation are not fully understood. Herein we demonstrate that the adenovirus E4 promoter-binding protein (E4BP4) mediates a feedback loop and acts as a transcriptional brake to inhibit Tfh cell differentiation. Furthermore, we show that such an immunological mechanism is compromised in patients with SLE. Establishing mice with either conditional knockout (cKO) or knockin (cKI) of the E4bp4 gene in T cells reveals that E4BP4 strongly inhibits Tfh cell differentiation. Mechanistically, E4BP4 regulates Bcl6 transcription by recruiting the repressive epigenetic modifiers HDAC1 and EZH2. E4BP4 phosphorylation site mutants have limited capability with regard to inhibiting Tfh cell differentiation. In SLE, we detected impaired phosphorylation of E4BP4, finding that this compromised transcription factor is positively correlated with disease activity. These findings unveiled molecular mechanisms by which E4BP4 restrains Tfh cell differentiation, whose compromised function is associated with uncontrolled autoimmune reactions in SLE.
Collapse
Affiliation(s)
- Zijun Wang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Jinghua Yin
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Limin Liu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Longyuan Hu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Yi Huang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Aiyun Liu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Jiajun Ouyang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Xiaoli Min
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Shijia Rao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Wenhui Zhou
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| |
Collapse
|
10
|
Daba TM, Zhao Y, Pan Z. Advancement of Mechanisms of Coxsackie Virus B3-Induced Myocarditis Pathogenesis and the Potential Therapeutic Targets. Curr Drug Targets 2020; 20:1461-1473. [PMID: 31215390 DOI: 10.2174/1389450120666190618124722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
Viral myocarditis is a cardiac disease caused by Group B Coxsackie virus of Enterovirus genus in the Picorna viridae family. It causes heart failure in children, young and adults. Ten Percent (10%) of acute heart failure and 12% of sudden deaths in young and adults who are less than 40 years is due to this viral myocarditis. If treatment action is not taken earlier, the viral disease can develop into chronic myocarditis and Dilated Cardiomyopathy which lead to congestive heart failure. And these eventually result in a reduced cardiac function which finally brings the victim to death. The only treatment option of the disease is heart transplantation once the acute stage of disease develops to chronic and Dilated Cardiomyopathy. Currently, there is a limitation in daily clinical treatments and even some available treatment options are ineffective. Therefore, focusing on search for treatment options through investigation is imperative. Recent studies have reported that biological molecules show a promising role. But their mechanism of pathogenesis is still unclear. A detailed study on identifying the role of biological molecules involved in Coxsackie B3 virus induced myocarditis and their mechanisms of pathogenesis; compiling and disseminating the findings of the investigation to the scientific communities contribute one step forward to the solution. Therefore, this review is aimed at compiling information from findings of current studies on the potential therapeutic role of micro RNA, cytokines and chemokines on the mechanism of pathogenesis of Coxsackie virus B3- induced myocarditis to give brief information for scholars to conduct a detailed study in the area.
Collapse
Affiliation(s)
- Tolessa Muleta Daba
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, China.,Department of Biology, College of Natural and Computational Sciences, Bule Hora University, Bule Hora, Ethiopia
| | - Yue Zhao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhenwei Pan
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Li H, Cao XY, Dang WZ, Jiang B, Zou J, Shen XY. Total Glucosides of Paeony protects against collagen-induced mouse arthritis via inhibiting follicular helper T cell differentiation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 65:153091. [PMID: 31654988 DOI: 10.1016/j.phymed.2019.153091] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/07/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The development of rheumatoid arthritis (RA) is related to germinal center (GC) response and autoreactive T cells, which mediate adaptive immunity and play an important role in stimulating the production of autoantibodies and pro-inflammatory cytokines by B cells and macrophages. Total Glucosides of Paeony (TGP) has anti-inflammatory, immunomodulatory and analgesic effects and is widely used to treat RA. However, few studies investigated whether the therapeutic effect of TGP is associated with the inhibition of autoimmune response. PURPOSE The aim of this study was to investigate the effects and mechanisms of TGP on RA. STUDY DESIGN Type II collagen-induced arthritis (CIA) mouse model was used, and TGP and paeoniflorin were intragastrically treated. METHODS DBA/1 mice were divided into 5 groups: control, model, positive drug (paeoniflorin) and high- and low-dose TGP group. After 21 days of intragastric administration, the pathological change, inflammation expression and molecular mechanism of each group of mice were detected by Micro-CT, histochemical analysis, ELLSA, Western blot, RT-qPCR and flow cytometry. RESULTS Our study found that TGP treatment effectively improved inflammation and joint destruction in CIA mice. It reduced the production of serum IgG2a and pro-inflammatory cytokines, including serum interleukin (IL)-21, tumor necrosis factor (TNF)-α and IL-6, and the phosphorylation of NF-κB p65 and STAT3 in a dose-dependent manner. More importantly, TGP could suppress the frequency of germinal center B cells and Tfh cells in the spleen. CONCLUSION TGP can not only improve symptoms, but also inhibit bone destruction. The therapeutic effect of TGP on CIA is mainly achieved by inhibiting spleen Tfh cell differentiation and GC formation through STAT3 signaling pathway.
Collapse
Affiliation(s)
- Hui Li
- School of Kinesiology, Shanghai University of Sport, No. 188, Hengren Road, Yangpu Aera, Shanghai 200438, China; Department of Pharmacology, School of Pharmaceutical Sciences, Fudan University, No. 826, Zhangheng Road, Pudong New Area, Shanghai 201203, China
| | - Xin-Yue Cao
- Department of Pharmacology, School of Pharmaceutical Sciences, Fudan University, No. 826, Zhangheng Road, Pudong New Area, Shanghai 201203, China
| | - Wen-Zhen Dang
- Department of Pharmacology, School of Pharmaceutical Sciences, Fudan University, No. 826, Zhangheng Road, Pudong New Area, Shanghai 201203, China
| | - Bing Jiang
- Department of Pharmacology, School of Pharmaceutical Sciences, Fudan University, No. 826, Zhangheng Road, Pudong New Area, Shanghai 201203, China
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, No. 188, Hengren Road, Yangpu Aera, Shanghai 200438, China.
| | - Xiao-Yan Shen
- School of Kinesiology, Shanghai University of Sport, No. 188, Hengren Road, Yangpu Aera, Shanghai 200438, China; Department of Pharmacology, School of Pharmaceutical Sciences, Fudan University, No. 826, Zhangheng Road, Pudong New Area, Shanghai 201203, China.
| |
Collapse
|
12
|
Perfluorinated substances, risk factors for multiple sclerosis and cellular immune activation. J Neuroimmunol 2019; 330:90-95. [PMID: 30852181 DOI: 10.1016/j.jneuroim.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/05/2023]
Abstract
Perfluorinated alkylated substances (PFASs) have immunomodulatory effects but the impact on multiple sclerosis (MS) and cellular immune functions is only sparsely described. In the present study, we found lower concentrations of the long chain PFAS perfluorooctane sulfonic acid (PFOS) in MS than in healthy controls (HC). In HC, we did not detect associations between PFOS concentrations and immune phenotypes. Analyzing the impact of known MS risk factors on cellular immune functions, we found that smoking and Epstein-Barr nuclear antigen 1 antibodies were associated with distinct circulating immune cell changes. In summary, current background PFAS exposure is not an important risk factor for MS.
Collapse
|
13
|
Preite S, Huang B, Cannons JL, McGavern DB, Schwartzberg PL. PI3K Orchestrates T Follicular Helper Cell Differentiation in a Context Dependent Manner: Implications for Autoimmunity. Front Immunol 2019; 9:3079. [PMID: 30666254 PMCID: PMC6330320 DOI: 10.3389/fimmu.2018.03079] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/12/2018] [Indexed: 11/25/2022] Open
Abstract
T follicular helper (Tfh) cells are a specialized population of CD4+ T cells that provide help to B cells for the formation and maintenance germinal centers, and the production of high affinity class-switched antibodies, long-lived plasma cells, and memory B cells. As such, Tfh cells are essential for the generation of successful long-term humoral immunity and memory responses to vaccination and infection. Conversely, overproduction of Tfh cells has been associated with the generation of autoantibodies and autoimmunity. Data from gene-targeted mice, pharmacological inhibitors, as well as studies of human and mice expressing activating mutants have revealed that PI3Kδ is a key regulator of Tfh cell differentiation, acting downstream of ICOS to facilitate inactivation of FOXO1, repression of Klf2 and induction of Bcl6. Nonetheless, here we show that after acute LCMV infection, WT and activated-PI3Kδ mice (Pik3cdE1020K/+) show comparable ratios of Tfh:Th1 viral specific CD4+ T cells, despite higher polyclonal Tfh cells in Pik3cdE1020K/+ mice. Thus, the idea that PI3K activity primarily drives Tfh cell differentiation may be an oversimplification and PI3K-mediated pathways are likely to integrate multiple signals to promote distinct effector T cell lineages. The consequences of dysregulated Tfh cell generation will be discussed in the context of the human primary immunodeficiency “Activated PI3K-delta Syndrome” (APDS), also known as “p110 delta-activating mutation causing senescent T cells, lymphadenopathy and immunodeficiency” (PASLI). Overall, these data underscore a major role for PI3K signaling in the orchestration of T lymphocyte responses.
Collapse
Affiliation(s)
- Silvia Preite
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States.,National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Bonnie Huang
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States.,National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jennifer L Cannons
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States.,National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Dorian B McGavern
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Pamela L Schwartzberg
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, United States.,National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
14
|
Loo TT, Gao Y, Lazarevic V. Transcriptional regulation of CD4 + T H cells that mediate tissue inflammation. J Leukoc Biol 2018; 104:1069-1085. [PMID: 30145844 DOI: 10.1002/jlb.1ri0418-152rr] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022] Open
Abstract
Acquired and genetic immunodeficiencies have revealed an indispensable role for CD4+ T cells in the induction of protective host immune responses against a myriad of microbial pathogens. Influenced by the cytokines present in the microenvironment, activated CD4+ T cells may differentiate into several highly-specialized helper subsets defined by the production of distinct signature cytokines tailored to combat diverse classes of pathogens. The process of specification and differentiation is controlled by networks of core, master, and accessory transcription factors, which ensure that CD4+ T helper (TH ) cell responses mounted against an invading microbe are of the correct specificity and type. However, aberrant activation or inactivation of transcription factors can result in sustained and elevated expression of immune-related genes, leading to chronic activation of CD4+ TH cells and organ-specific autoimmunity. In this review, we provide an overview of the molecular basis of CD4+ TH cell differentiation and examine how combinatorial expression of transcription factors, which promotes genetic plasticity of CD4+ TH cells, can contribute to immunological dysfunction of CD4+ TH responses. We also discuss recent studies which highlight the potential of exploiting the genetic plasticity of CD4+ TH cells in the treatment of autoimmune and other immune-mediated disorders.
Collapse
Affiliation(s)
- Tiffany T Loo
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuanyuan Gao
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Vanja Lazarevic
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Dai L, He L, Wang Z, Bai X, He Y, Cao L, Zhu M, Ruan C. Altered circulating T follicular helper cells in patients with chronic immune thrombocytopenia. Exp Ther Med 2018; 16:2471-2477. [PMID: 30186484 PMCID: PMC6122441 DOI: 10.3892/etm.2018.6508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 06/01/2018] [Indexed: 12/27/2022] Open
Abstract
The present study aimed to illuminate the role of circulating T follicular helper (TFH) cells in patients diagnosed with chronic immune thrombocytopenia (cITP). Fifty-four patients with cITP and 30 age-matched healthy control subjects were enrolled in the present study. TFH cell frequencies, expression of CD4+ TFH cell-associated cytokines, including interleukin (IL)-2, IL-4, IL-10 and IL-21 and associated regulatory mRNA expression levels including Bcl-6, c-Maf, Blimp-1 and PD-1 pre- and post-treatment with intravenous immunoglobulin and corticosteroids, were detected by flow cytometry, ELISA and reverse transcription-quantitative polymerase chain reaction, respectively. TFH cell frequencies of patients were significantly higher compared with healthy controls pre-treatment (P<0.05). Following treatment, significantly decreased percentages of TFH cells were present in cITP responders (P<0.05). Correlation analysis revealed that the number of TFH cells was negatively correlated with the platelet count in the peripheral blood. Furthermore, analysis of inflammatory cytokines indicated significant differences in serum interleukin (IL)-21 and IL-10 between pretreated patients and healthy controls (P<0.05). Additionally, transcription factor B-cell lymphoma (Bcl)-6, c-Maf and programmed death-ligand (PD)-1 mRNA expression levels were significantly different between cITP patients prior to treatment and the healthy controls (P<0.05). However, the expression levels of Bcl-6, C-Maf and PD-1 mRNA were significantly changed post-treatment (P<0.05). These data demonstrated that circulating TFH cells and CD4+ TFH cell-associated cytokines may serve a role in cITP. The findings suggest that the overactivation of TFH cells may contribute to the immunopathogenesis of cITP, thus blocking the pathway of TFH cells may be reasonable for therapeutic intervention.
Collapse
Affiliation(s)
- Lan Dai
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Linyan He
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhaoyue Wang
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xia Bai
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yang He
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Lijuan Cao
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Mingqing Zhu
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Changgeng Ruan
- Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
16
|
Gong Y, Tong J, Wang S. Are Follicular Regulatory T Cells Involved in Autoimmune Diseases? Front Immunol 2017; 8:1790. [PMID: 29312316 PMCID: PMC5732443 DOI: 10.3389/fimmu.2017.01790] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022] Open
Abstract
In the germinal center (GC), follicular helper T (TFH) cells interact with B cells and undergo a series of GC reactions to ultimately produce high-affinity antibodies and memory plasma cells. Recent studies have found a subpopulation of regulatory T cells called follicular regulatory T (TFR) cells. TFR cells can inhibit TFH cells and/or B cells in a variety of ways to specifically regulate GC reactions. Dysfunction of TFR cells may lead to immune disorders and a variety of autoimmune diseases. In this review, we summarize the differentiation and function of TFR cells and provide an overview of TFR cells in autoimmune diseases.
Collapse
Affiliation(s)
- Yonglu Gong
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Jia Tong
- Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
17
|
A Critical Role for IL-21 Receptor Signaling in the Coxsackievirus B3-Induced Myocarditis. Inflammation 2017; 40:1428-1435. [DOI: 10.1007/s10753-017-0586-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Development of T follicular helper cells and their role in disease and immune system. Biomed Pharmacother 2016; 84:1668-1678. [DOI: 10.1016/j.biopha.2016.10.083] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 02/06/2023] Open
|
19
|
Yu S, Jia L, Zhang Y, Zhong J, Yang B, Wu C. IL-12 induced the generation of IL-21- and IFN-γ-co-expressing poly-functional CD4+ T cells from human naive CD4+ T cells. Cell Cycle 2016; 14:3362-72. [PMID: 26566861 DOI: 10.1080/15384101.2015.1093703] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Interleukine-12 is critical for the differentiation of Th1 cells and can improve the development of Th1 cells with Tfh cell features in mouse model. Human effector CD4(+) T cells also exhibit poly-functionality by co-expressing IL-21 and IFN-γ. However, the effects of IL-12 on regulating generation of human IL-21- and IFN-γ-expressing CD4(+) T cells are still incompletely understood. Our studies found that IL-12 but not IL-21 could induce the differentiation of human naive CD4(+) T cells into multi-cytokine expressing CD4(+) T cells in vitro, which co-expressed IL-21 and IFN-γ with or without IL-2 and TNF-α. At early stage of differentiation, addition of excess exogenous IFN-γ could increase the generation of IL-21- and IFN-γ-expressing CD4(+) T cells, furthermore, anti-IFN-γ depressed the percentage of poly-functional CD4(+) T cells. Phenotypically, IL-21(+)IFN-γ(+)CD4(+) T cells exhibited more characteristic features about both of Th1 and Tfh cells than IL-21 or IFN-γ single-expressing CD4(+) T cells. Mechamistically, IL-12 modulated the differentiation of IL-21(+)IFN-γ(+)CD4(+) T cells from naive CD4(+) T cells via the pathways of STAT-1/4, T-bet and BCL(-)6. Different from naive CD4(+) T cells, IL-12 increasing the generation of IL-21(+)IFN-γ(+)CD4(+) T cells from memory CD4(+) T cells was only involved in STAT-4 pathway but not STAT-1. Poly-functional CD4(+) T cells were contributed to generation and progress of varies diseases and our studies provide basic theoretics for the designs of vaccine and therapies of diseases.
Collapse
Affiliation(s)
- Sifei Yu
- a Institute of Immunology; Zhongshan School of Medicine; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology; Sun Yat-sen University ; Guangzhou , China
| | - Lei Jia
- a Institute of Immunology; Zhongshan School of Medicine; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology; Sun Yat-sen University ; Guangzhou , China
| | - Yannan Zhang
- a Institute of Immunology; Zhongshan School of Medicine; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology; Sun Yat-sen University ; Guangzhou , China
| | - Junmin Zhong
- b Guangzhou Women and Children's Medical Center ; Guangzhou , China
| | - Binyan Yang
- a Institute of Immunology; Zhongshan School of Medicine; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology; Sun Yat-sen University ; Guangzhou , China
| | - Changyou Wu
- a Institute of Immunology; Zhongshan School of Medicine; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology; Sun Yat-sen University ; Guangzhou , China
| |
Collapse
|
20
|
Ghalamfarsa G, Mahmoudi M, Mohammadnia-Afrouzi M, Yazdani Y, Anvari E, Hadinia A, Ghanbari A, Setayesh M, Yousefi M, Jadidi-Niaragh F. IL-21 and IL-21 receptor in the immunopathogenesis of multiple sclerosis. J Immunotoxicol 2015; 13:274-85. [PMID: 26507681 DOI: 10.3109/1547691x.2015.1089343] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cytokines are considered important factors in the modulation of various immune responses. Among them, interleukin (IL)-21 is one of the major immune modulators, adjusting various immune responses by affecting various immune cells. It has been suggested that IL-21 may enhance autoimmunity through different mechanisms, such as development and activation of helper T (TH)-17 and follicular helper T (TFH) cells, activation of natural killer (NK) cells, enhancing B-cell differentiation and antibody secretion and suppression of regulatory T (Treg) cells. Moreover, IL-21 has also been suggested to be an inducer of autoimmunity when following treatment of MS patients with some therapeutics such as alemtuzumab. This review will seek to clarify the precise role of IL-21/IL-21R in the pathogenesis of MS and, in its animal model, experimental autoimmune encephalomyelitis (EAE).
Collapse
Affiliation(s)
- Ghasem Ghalamfarsa
- a Cellular and Molecular Research Center, Yasuj University of Medical Sciences , Yasuj , Iran
| | - Mahmoud Mahmoudi
- b Immunology Research Center, Department of Immunology and Allergy , School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mousa Mohammadnia-Afrouzi
- c Department of Immunology and Microbiology , School of Medicine, Babol University of Medical Sciences , Babol , Iran
| | - Yaghoub Yazdani
- d Infectious Diseases Research Center and Laboratory Science Research Center, Golestan University of Medical Sciences , Gorgan , Iran
| | - Enayat Anvari
- e Department of Physiology , Faculty of Medicine, Ilam University of Medical Sciences , Ilam , Iran
| | - Abolghasem Hadinia
- a Cellular and Molecular Research Center, Yasuj University of Medical Sciences , Yasuj , Iran
| | - Amir Ghanbari
- a Cellular and Molecular Research Center, Yasuj University of Medical Sciences , Yasuj , Iran
| | - Maryam Setayesh
- f Biology Department , School of Sciences, Shiraz University , Shiraz , Iran
| | - Mehdi Yousefi
- g Immunology Research Center, Tabriz University of Medical Sciences , Tabriz , Iran ;,h Department of Immunology , Faculty of Medicine, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Farhad Jadidi-Niaragh
- i Department of Immunology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
21
|
Porichis F, Hart MG, Griesbeck M, Everett HL, Hassan M, Baxter AE, Lindqvist M, Miller SM, Soghoian DZ, Kavanagh DG, Reynolds S, Norris B, Mordecai SK, Nguyen Q, Lai C, Kaufmann DE. High-throughput detection of miRNAs and gene-specific mRNA at the single-cell level by flow cytometry. Nat Commun 2014; 5:5641. [PMID: 25472703 PMCID: PMC4256720 DOI: 10.1038/ncomms6641] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 10/22/2014] [Indexed: 02/06/2023] Open
Abstract
Fluorescent in situ hybridization (FISH) is a method that uses fluorescent probes to detect specific nucleic acid sequences at the single-cell level. Here we describe optimized protocols that exploit a highly sensitive FISH method based on branched DNA technology to detect mRNA and miRNA in human leukocytes. This technique can be multiplexed and combined with fluorescent antibody protein staining to address a variety of questions in heterogeneous cell populations. We demonstrate antigen-specific upregulation of IFNγ and IL-2 mRNAs in HIV- and CMV-specific T cells. We show simultaneous detection of cytokine mRNA and corresponding protein in single cells. We apply this method to detect mRNAs for which flow antibodies against the corresponding proteins are poor or are not available. We use this technique to show modulation of a microRNA critical for T-cell function, miR-155. We adapt this assay for simultaneous detection of mRNA and proteins by ImageStream technology.
Collapse
Affiliation(s)
- Filippos Porichis
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02114, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery
| | - Meghan G. Hart
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02114, USA
| | - Morgane Griesbeck
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02114, USA
| | - Holly L. Everett
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02114, USA
| | - Muska Hassan
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02114, USA
| | - Amy E. Baxter
- Centre de Recherche du Centre Hospitalier de l' Université de Montréal (CRCHUM) and University of Montreal, Montréal, QC H2X 0A9, Canada
| | - Madelene Lindqvist
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02114, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery
| | - Sara M. Miller
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02114, USA
| | - Damien Z. Soghoian
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02114, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery
| | | | - Susan Reynolds
- Affymetrix, Inc., 3380 Central Expressway, Santa Clara, CA 95051, USA
| | - Brett Norris
- Affymetrix, Inc., 3380 Central Expressway, Santa Clara, CA 95051, USA
| | - Scott K. Mordecai
- Department of Pathology, Massachusetts General Hospital, Boston MA, USA
| | - Quan Nguyen
- Affymetrix, Inc., 3380 Central Expressway, Santa Clara, CA 95051, USA
| | - Chunfai Lai
- Affymetrix, Inc., 3380 Central Expressway, Santa Clara, CA 95051, USA
| | - Daniel E. Kaufmann
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02114, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery
- Centre de Recherche du Centre Hospitalier de l' Université de Montréal (CRCHUM) and University of Montreal, Montréal, QC H2X 0A9, Canada
| |
Collapse
|
22
|
Parodi C, Badano MN, Galassi N, Coraglia A, Baré P, Malbrán A, Bracco MMDED. Follicular helper T lymphocytes in health and disease. World J Hematol 2014; 3:118-127. [DOI: 10.5315/wjh.v3.i4.118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/12/2014] [Accepted: 09/19/2014] [Indexed: 02/05/2023] Open
Abstract
A correct antibody response requires the participation of both B and T lymphocytes and antigen presenting cells. In this review we address the role of follicular helper T lymphocytes (TFH) in this reaction. We shall focus on the regulation of their development and function in health and disease. TFH can be characterized on the basis of their phenotype and the pattern of secretion of cytokines. This fact is useful to study their participation in the generation of antibody deficiency in primary immunodeficiency diseases such as common variable immunodeficiency, X-linked hyper IgM syndrome or X-linked lymphoproliferative disease. Increased numbers of TFH have been demonstrated in several autoimmune diseases and are thought to play a role in the development of autoantibodies. In chronic viral infections caused by the human immunodeficiency virus, hepatitis B or C virus, increased circulating TFH have been observed, but their role in the protective immune response to these agents is under discussion. Likewise, an important role of TFH in the control of some experimental protozoan infections has been proposed, and it will be important to assess their relevance in order to design effective vaccination strategies.
Collapse
|
23
|
Winstead CJ. Follicular helper T cell-mediated mucosal barrier maintenance. Immunol Lett 2014; 162:39-47. [PMID: 25149860 DOI: 10.1016/j.imlet.2014.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/14/2014] [Accepted: 07/29/2014] [Indexed: 02/07/2023]
Abstract
The basic functions of the immune system are protection from pathogens and maintenance of tolerance to self. The maintenance of commensal microbiota at mucosal surfaces adds a layer of complexity to these basic functions. Recent reports suggest follicular helper T cells (Tfh), a CD4(+) T cell subset specialized to provide help to B cells undergoing isotype switching and affinity maturation in germinal centers (GC), interact with the microbiota and are essential to maintenance of mucosal barriers. Complicating the issue is ongoing controversy in the field regarding origin of the Tfh subset and its distinction from other effector CD4 T cell phenotypes (Th1/Th17/Treg). This review focuses on the differentiation, phenotypic plasticity, and function of CD4 T cells, with an emphasis on commensal-specific GC responses in the gut.
Collapse
Affiliation(s)
- Colleen J Winstead
- University of Alabama at Birmingham, Department of Pathology, Birmingham, AL, United States.
| |
Collapse
|
24
|
Deng XM, Yan SX, Wei W. IL-21 acts as a promising therapeutic target in systemic lupus erythematosus by regulating plasma cell differentiation. Cell Mol Immunol 2014; 12:31-9. [PMID: 25088225 DOI: 10.1038/cmi.2014.58] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 06/13/2014] [Accepted: 06/14/2014] [Indexed: 12/21/2022] Open
Abstract
Plasma cells, which secrete auto-antibodies, are considered to be the arch-criminal of autoimmune diseases such as systemic lupus erythematosus, but there are many cytokines involved in inducing the differentiation of B-cell subsets into plasma cells. Here, we emphasize IL-21, which has emerged as the most potent inducer of plasma cell differentiation. In this review, we focused on the promoting effects of IL-21 on plasma cell differentiation and discuss how these effects contribute to B cell-mediated autoimmune disease.
Collapse
|
25
|
|