1
|
Zhang JD, Wang Q, Hu HX, Guo KX, Guo CY, Chen HC, Liu ZF. Brucella lipopolysaccharide deficiency with lipid A induces robust T cells immune response. Mol Immunol 2025; 182:11-19. [PMID: 40157278 DOI: 10.1016/j.molimm.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/17/2025] [Accepted: 03/14/2025] [Indexed: 04/01/2025]
Abstract
Brucella, an opportunistic intracellular parasitic bacterium, is classified as a Gram-negative organism. Lipopolysaccharide (LPS), as primary virulence factor of Brucella, includes lipid A, O-antigen, and core polysaccharide, with lipid A being the principal component. The atypical structure of Brucella LPS, noted for its very-long-chain fatty acids, may suppress the host immune response, thus facilitating chronic disease development. The mechanism by which these chains induce immunosuppression remains poorly understood.This study aimed to investigate these chains through deletion of the BacA gene. We extracted LPS to stimulate Bone Marrow-Derived Dendritic Cells (BMDCs) in vitro and co-cultured them with T cells to induce proliferation and differentiation. The in vivo immune response to LPS was evaluated through routine blood tests, CD4 and CD8 assays, and lymphocyte stimulation indices. Our findings demonstrate that wild-type LPS from B. melitensis (Bm-WT) does not elicit an immunostimulatory response in vitro; rather, it promotes immune suppression in vivo. In contrast, LPS derived from B. melitensis with a mutated BacA gene (Bm-ΔBacA) disrupts the immune suppression and encourages the production of inflammatory factors. These findings underscore the crucial role of modifying lipid A through molecular biology techniques to advance bacterial vaccines and adjuvants.
Collapse
Affiliation(s)
- Jian-Dong Zhang
- State Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qun Wang
- State Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hong-Xia Hu
- State Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Kai-Xuan Guo
- State Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chao-Yue Guo
- State Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huan-Chun Chen
- State Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zheng-Fei Liu
- State Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Dehghankhold M, Nezafat N, Farahmandnejad M, Abolmaali SS, Tamaddon AM. Immunoinformatic approach to design an efficient multi-epitope peptide vaccine against melanoma. Biotechnol Appl Biochem 2025; 72:164-186. [PMID: 39245893 DOI: 10.1002/bab.2654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 08/05/2024] [Indexed: 09/10/2024]
Abstract
Melanoma is known to be the most hazardous and life-threatening type of skin cancer. Although numerous treatments have been authorized in recent years, they often result in severe side effects and may not fully cure the disease. To combat this issue, immunotherapy has emerged as a promising approach for the prevention and treatment of melanoma. Specifically, the use of epitope melanoma vaccine, a subset of immunotherapy, has recently gained attention. The aim of this study was to create a multi-epitope melanoma vaccine using immunoinformatic methods. Two well-known antigens, NYESO-1 and MAGE-C2, were selected due to their strong immunogenicity and high expression in melanoma. To enhance the immunogenicity of the peptide vaccine, Brucella cell-surface protein 31 (BCSP31), the G5 domain of resuscitation-promoting factor B (RpfB) adjuvants, and the helper epitope of pan HLADR-binding epitope (PADRE) were incorporated to vaccine construct. These different segments were connected with suitable linkers and the resulting vaccine structure was evaluated for its physicochemical, structural, and immunological properties using computational tools. The designed vaccine was found to have satisfactory allergenicity, antigenicity, and physicochemical parameters. Additionally, a high-quality tertiary structure of the vaccine was achieved through modeling, refinement, and validation. Docking and molecular dynamics studies showed that the vaccine had a stable and appropriate interaction with the cognate TLR2 and TLR4 receptors during the simulation period. Finally, in silico immune simulation analysis revealed a significant increase in the levels of helper and cytotoxic T cells, as well as the cytokines interferon-gamma and interleukin-2, after repeated exposure to the melanoma vaccine. These results suggest that the designed vaccine has the potential to be an effective therapeutic option for melanoma. However, additional in vitro and in vivo validations are crucial to assess real-world efficacy and safety.
Collapse
Affiliation(s)
- Mahvash Dehghankhold
- Department of Pharmaceutical Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Computational Vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mitra Farahmandnejad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology and Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Fernández-Gómez B, Marchena MA, Piñeiro D, Gómez-Martín P, Sánchez E, Laó Y, Valencia G, Nocera S, Benítez-Fernández R, Castaño-León AM, Lagares A, Hernández-Jiménez M, de Castro F. ApTOLL: A new therapeutic aptamer for cytoprotection and (re)myelination after multiple sclerosis. Br J Pharmacol 2024; 181:3263-3281. [PMID: 38742374 DOI: 10.1111/bph.16399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/17/2023] [Accepted: 12/11/2023] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND AND PURPOSE ApTOLL is an aptamer selected to antagonize toll-like receptor 4 (TLR4), a relevant actor for innate immunity involved in inflammatory responses in multiple sclerosis (MS) and other diseases. The currently available therapeutic arsenal to treat MS is composed of immunomodulators but, to date, there are no (re)myelinating drugs available in clinics. In our present study, we studied the effect of ApTOLL on different animal models of MS. EXPERIMENTAL APPROACH The experimental autoimmune encephalomyelitis (EAE) model was used to evaluate the effect of ApTOLL on reducing the inflammatory component. A more direct effect on oligodendroglia was studied with the cuprizone model and purified primary cultures of murine and human oligodendrocyte precursor cells (OPCs) isolated through magnetic-activated cell sorting (MACS) from samples of brain cortex. Also, we tested these effects in an ex vivo model of organotypic cultures demyelinated with lysolecithin (LPC). KEY RESULTS ApTOLL treatment positively impacted the clinical symptomatology of mice in the EAE and cuprizone models, which was associated with better preservation plus restoration of myelin and oligodendrocytes in the demyelinated lesions of animals. Restoration was corroborated on purified cultures of rodent and human OPCs. CONCLUSION AND IMPLICATIONS Our findings reveal a new therapeutic approach for the treatment of inflammatory and demyelinating diseases such as MS. The molecular nature of the aptamer exerts not only an anti-inflammatory effect but also neuroprotective and remyelinating effects. The excellent safety profile demonstrated by ApTOLL in animals and humans opens the door to future clinical trials in MS patients.
Collapse
Affiliation(s)
- Beatriz Fernández-Gómez
- Instituto Cajal-CSIC, Madrid, Spain
- AptaTargets SL, Madrid, Spain
- PhD Program in Neuroscience, Universidad Autónoma de Madrid-Cajal Institute, Madrid, Spain
| | - Miguel A Marchena
- Instituto Cajal-CSIC, Madrid, Spain
- Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela
- Instituto de Investigación Sanitaria HM Hospitales
| | | | | | | | | | | | | | | | | | - Alfonso Lagares
- Servicio de Neurocirugía, Hospital 12 de Octubre, Madrid, Spain
| | - Macarena Hernández-Jiménez
- AptaTargets SL, Madrid, Spain
- Unidad de Investigación Neurovascular, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | | |
Collapse
|
4
|
Yu H, Gu X, Wang D, Wang Z. Brucella infection and Toll-like receptors. Front Cell Infect Microbiol 2024; 14:1342684. [PMID: 38533384 PMCID: PMC10963510 DOI: 10.3389/fcimb.2024.1342684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/17/2024] [Indexed: 03/28/2024] Open
Abstract
Brucella consists of gram-negative bacteria that have the ability to invade and replicate in professional and non-professional phagocytes, and its prolonged persistence in the host leads to brucellosis, a serious zoonosis. Toll-like receptors (TLRs) are the best-known sensors of microorganisms implicated in the regulation of innate and adaptive immunity. In particular, TLRs are transmembrane proteins with a typical structure of an extracellular leucine-rich repeat (LRR) region and an intracellular Toll/interleukin-1 receptor (TIR) domain. In this review, we discuss Brucella infection and the aspects of host immune responses induced by pathogens. Furthermore, we summarize the roles of TLRs in Brucella infection, with substantial emphasis on the molecular insights into its mechanisms of action.
Collapse
Affiliation(s)
- Hui Yu
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- School of Basic Medicine, Baotou Medical College, Baotou, China
| | - Xinyi Gu
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Danfeng Wang
- The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Zhanli Wang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
| |
Collapse
|
5
|
Gentile A, Fulgione A, Auzino B, Iovane V, Gallo D, Garramone R, Iaccarino N, Randazzo A, Iovane G, Cuomo P, Capparelli R, Iannelli D. In vivo biological validation of in silico analysis: A novel approach for predicting the effects of TLR4 exon 3 polymorphisms on brucellosis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105552. [PMID: 38218390 DOI: 10.1016/j.meegid.2024.105552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
The role of the Toll-like receptor 4 (TLR4) is of recognising intracellular and extracellular pathogens and of activating the immune response. This process can be compromised by single nucleotide polymorphisms (SNPs) which might affect the activity of several TLRs. The aim of this study is of ascertaining whether SNPs in the TLR4 of Bubalus bubalis infected by Brucella abortus, compromise the protein functionality. For this purpose, a computational analysis was performed. Next, computational predictions were confirmed by performing genotyping analysis. Finally, NMR-based metabolomics analysis was performed to identify potential biomarkers for brucellosis. The results indicate two SNPs (c. 672 A > C and c. 902 G > C) as risk factor for brucellosis in Bubalus bubalis, and three metabolites (lactate, 3-hydroxybutyrate and acetate) as biological markers for predicting the risk of developing the disease. These metabolites, together with TLR4 structural modifications in the MD2 interaction domain, are a clear signature of the immune system alteration during diverse Gram-negative bacterial infections. This suggests the possibility to extend this study to other pathogens, including Mycobacterium tuberculosis. In conclusion, this study combines multidisciplinary approaches to evaluate the biological and structural effects of SNPs on protein function.
Collapse
Affiliation(s)
- Antonio Gentile
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples 80055, Italy
| | - Andrea Fulgione
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples 80055, Italy
| | - Barbara Auzino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples 80055, Italy
| | - Valentina Iovane
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples 80055, Italy
| | - Daniela Gallo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples 80055, Italy
| | - Raffaele Garramone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples 80055, Italy
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples 80137, Italy
| | - Paola Cuomo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples 80055, Italy
| | - Rosanna Capparelli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples 80055, Italy.
| | - Domenico Iannelli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples 80055, Italy
| |
Collapse
|
6
|
Kumar SK, Mani KP. Proinflammatory signaling mechanism of endocan in macrophages: Involvement of TLR2 mediated MAPK-NFkB pathways. Cytokine 2024; 175:156482. [PMID: 38159469 DOI: 10.1016/j.cyto.2023.156482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Endocan is an endothelial cell-specific proteoglycan that contributes to vascular dysfunction by impairing endothelial function and inducing vascular smooth muscle cell migration. However, its role in regulating macrophage inflammation, a key pathological feature of vascular dysfunction, is not well understood. In this study, we investigated the effect of endocan on macrophage inflammation to better understand its contribution to vascular dysfunction. We found that endocan upregulated pro-inflammatory cytokines including IL-1β, IL-6 and TNF-α in RAW 264.7 cells and activated MAPK/NFkB signaling pathways. Inhibiting these pathways reduced endocan-induced cytokine levels, while inhibiting TLR2 compromised the MAPK/NFkB regulation. Additionally, LPS-induced HUVEC conditioned medium stimulated cytokine levels in RAW 264.7 cells, which were reduced by endocan siRNA treatment in HUVEC. These results suggest that endocan positively regulates pro-inflammation in macrophages through the TLR2-MAPK-NFkB axis, highlighting the potential of targeting endocan to reduce inflammation in vascular dysfunction.
Collapse
Affiliation(s)
- Sarwareddy Kartik Kumar
- Vascular Research Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - Krishna Priya Mani
- Vascular Research Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
7
|
Wu A, Wang Y, Ali A, Xu Z, Zhang D, Zhumanov K, Sheng J, Yi J. Design of a multi-epitope vaccine against brucellosis fused to IgG-fc by an immunoinformatics approach. Front Vet Sci 2023; 10:1238634. [PMID: 37937155 PMCID: PMC10625910 DOI: 10.3389/fvets.2023.1238634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/27/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Brucella, a type of intracellular Gram-negative bacterium, has unique features and acts as a zoonotic pathogen. It can lead to abortion and infertility in animals. Eliminating brucellosis becomes very challenging once it spreads among both humans and animals, putting a heavy burden on livestock and people worldwide. Given the increasing spread of brucellosis, it is crucial to develop improved vaccines for susceptible animals to reduce the disease's impact. Methods In this study, we effectively used an immunoinformatics approach with advanced computer software to carefully identify and analyze important antigenic parts of Brucella abortus. Subsequently, we skillfully designed chimeric peptides to enhance the vaccine's strength and effectiveness. We used computer programs to find four important parts of the Brucella bacteria that our immune system recognizes. Then, we carefully looked for eight parts that are recognized by a type of white blood cell called cytotoxic T cells, six parts recognized by T helper cells, and four parts recognized by B cells. We connected these parts together using a special link, creating a strong new vaccine. To make the vaccine even better, we added some extra parts called molecular adjuvants. These included something called human β-defensins 3 (hBD-3) that we found in a database, and another part that helps the immune system called PADRE. We attached these extra parts to the beginning of the vaccine. In a new and clever way, we made the vaccine even stronger by attaching a part from a mouse's immune system to the end of it. This created a new kind of vaccine called MEV-Fc. We used advanced computer methods to study how well the MEV-Fc vaccine interacts with certain receptors in the body (TLR-2 and TLR-4). Results In the end, Immunosimulation predictions showed that the MEV-Fc vaccine can make the immune system respond strongly, both in terms of cells and antibodies. Discussion In summary, our results provide novel insights for the development of Brucella vaccines. Although further laboratory experiments are required to assess its protective effect.
Collapse
Affiliation(s)
- Aodi Wu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Yueli Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Adnan Ali
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Zhenyu Xu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Dongsheng Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Kairat Zhumanov
- College of Veterinary Medicine, Kazakhstan Kazakh State Agricultural University, Almaty, Kazakhstan
| | - Jinliang Sheng
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| | - Jihai Yi
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
8
|
Dawood AS, Elrashedy A, Nayel M, Salama A, Guo A, Zhao G, Algharib SA, Zaghawa A, Zubair M, Elsify A, Mousa W, Luo W. Brucellae as resilient intracellular pathogens: epidemiology, host-pathogen interaction, recent genomics and proteomics approaches, and future perspectives. Front Vet Sci 2023; 10:1255239. [PMID: 37876633 PMCID: PMC10591102 DOI: 10.3389/fvets.2023.1255239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Brucellosis is considered one of the most hazardous zoonotic diseases all over the world. It causes formidable economic losses in developed and developing countries. Despite the significant attempts to get rid of Brucella pathogens in many parts of the world, the disease continues to spread widely. Recently, many attempts proved to be effective for the prevention and control of highly contagious bovine brucellosis, which could be followed by others to achieve a prosperous future without rampant Brucella pathogens. In this study, the updated view for worldwide Brucella distribution, possible predisposing factors for emerging Brucella pathogens, immune response and different types of Brucella vaccines, genomics and proteomics approaches incorporated recently in the field of brucellosis, and future perspectives for prevention and control of bovine brucellosis have been discussed comprehensively. So, the current study will be used as a guide for researchers in planning their future work, which will pave the way for a new world without these highly contagious pathogens that have been infecting and threatening the health of humans and terrestrial animals.
Collapse
Affiliation(s)
- Ali Sobhy Dawood
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Alyaa Elrashedy
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Mohamed Nayel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Akram Salama
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gang Zhao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan, China
| | - Samah Attia Algharib
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues (HZAU), Wuhan, China
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Ahmed Zaghawa
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Muhammed Zubair
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ahmed Elsify
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Walid Mousa
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Wanhe Luo
- Engineering Laboratory for Tarim Animal Diseases Diagnosis and Control, College of Animal Science and Technology, Tarim University, Alar, Xinjiang, China
| |
Collapse
|
9
|
Li L, Guo T, Yuan Y, Xiao J, Yang R, Wang H, Xu W, Yin Y, Zhang X. ΔA146Ply-HA stem protein immunization protects mice against influenza A virus infection and co-infection with Streptococcus pneumoniae. Mol Immunol 2023; 161:91-103. [PMID: 37531919 DOI: 10.1016/j.molimm.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Influenza virus (IV) is a common pathogen affecting the upper respiratory tract, that causes various diseases. Secondary bacterial pneumonia is a common complication and a major cause of death in influenza patients. Streptococcus pneumoniae (S. pneumoniae) is the predominant co-infected bacteria in the pandemic, which colonizes healthy people but can cause diseases in immunocompromised individuals. Vaccination is a crucial strategy for avoiding infection, however, no universal influenza vaccine (UIV) that is resistant to multiple influenza viruses is available. Despite its limited immunogenicity, the hemagglutinin (HA) stem is a candidate peptide for UIV. ΔA146Ply (pneumolysin with a single deletion of A146) not only retains the Toll-like receptor 4 agonist effect but also is a potential vaccine adjuvant and a candidate protein for the S. pneumoniae vaccine. We constructed the fusion protein ΔA146Ply-HA stem and studied its immunoprotective effect in mice infection models. The results showed that intramuscular immunization of ΔA146Ply-HA stem without adjuvant could induce specific antibodies against HA stem and specific CD4+ T and CD8+ T cellular immunity in BALB/c and C57BL/6 mice, which could improve the survival rate of mice infected with IAV and co-infected with S. pneumoniae, but the protective effect on BALB/c mice was better than that on C57BL/6 mice. ΔA146Ply-HA stem serum antibody could protect BALB/c and C57BL/6 mice from IAV, and recognized HA polypeptides of H3N2, H5N1, H7N9, and H9N2 viruses. Moreover, ΔA146Ply-HA stem intramuscular immunization had a high safety profile with no obvious toxic side effects. The results indicated that coupling ΔA146Ply with influenza protein as a vaccine was a safe and effective strategy against the IV and secondary S. pneumoniae infection.
Collapse
Affiliation(s)
- Lian Li
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Ting Guo
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yuan Yuan
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Jiangming Xiao
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Rui Yang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Hanyi Wang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Wenlong Xu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
10
|
Heidarinia H, Tajbakhsh E, Rostamian M, Momtaz H. Epitope mapping of Acinetobacter baumannii outer membrane protein W (OmpW) and laboratory study of an OmpW-derivative peptide. Heliyon 2023; 9:e18614. [PMID: 37560650 PMCID: PMC10407128 DOI: 10.1016/j.heliyon.2023.e18614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
Outer membrane protein W (OmpW) is a less-known A. baumannii antigen with potential immunogenic properties. The epitopes of this protein are not well-identified yet. Therefore, in the present study, B- and T-cell epitopes of A. baumannii OmpW were found using comprehensive in silico and partially in vitro studies. The T-cell (both class-I and class-II) and B-cell (both linear and conformational) epitopes were predicted and screened through many bioinformatics approaches including the prediction of IFN-γ production, immunogenicity, toxicity, allergenicity, human similarity, and clustering. A single 15-mer epitopic peptide containing a linear B-cell and both classes of T-cell epitopes were found and used for further assays. For in vitro assays, patient- and healthy control-derived peripheral blood mononuclear cells were stimulated with the 15-mer peptide, Phytohemagglutinin, or medium alone, and cell proliferation and IFN-γ production assays were performed. The bioinformatics studies led to mapping OmpW epitopes and introducing a 15-mer peptide. In vitro assays to some extent showed its potency in cell proliferation but not in IFN-γ induction, although the responses were not very expressive and faced some questions/limitations. In general, in the current study, we mapped the most immunogenic epitopes of OmpW that may be used for future studies and also assayed one of these epitopes in vitro, which was shown to have an immunogenicity potential. However, the induced immune responses were not strong which suggests that the present peptide needs a series of biotechnological manipulations to be used as a potential vaccine candidate. More studies in this field are recommended.
Collapse
Affiliation(s)
- Hana Heidarinia
- Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Elahe Tajbakhsh
- Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mosayeb Rostamian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hassan Momtaz
- Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
11
|
Wang J, Tang J, Li X, Ning X, Sun C, Zhang N, Zhang S. Curcumin alleviates spleen immunotoxicity induced by decabrominated diphenyl ethers (BDE-209) by improving immune function and inhibiting inflammation and apoptosis in broilers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115048. [PMID: 37224787 DOI: 10.1016/j.ecoenv.2023.115048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/21/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023]
Abstract
This study was conducted to assess the mitigating effects of curcumin (Cur) on immunotoxicity in the spleen of broilers induced by the polybrominated diphenyl ether BDE-209. Eighty one-day-old broilers were allocated to the following four groups: control group, BDE-209 (0.4 g/kg) group, BDE-209 (0.4 g/kg) + Cur (0.3 mg/kg) group, and Cur (0.3 mg/kg) group. Growth performance, immunological function, inflammation, and apoptosis were assessed after 42 days of treatment. The findings demonstrate that firstly, Cur restored spleen damage caused by BDE-209 by increasing body weight, decreasing feed-to-gain ratio, correcting the spleen index, and improving the histopathological structure of the spleen. Secondly, Cur relieved BDE-209-induced immunosuppression by increasing the levels of the immunoglobulins IgG, IgM, and IgA in the serum, as well as the levels of white blood cells and lymphocytes. The levels at which GATA binding protein 3, T-box expressed in T cells, interferon-γ, and interleukin (IL)- 4 are expressed were controlled. The ratio of T helper (Th) type 1 (Th1) to Th2 cells in the spleen of broilers was also controlled. Thirdly, Cur reduced the expression of Toll like receptor (TLR) 2, TLR4, nuclear factor (NF)-κB, IL-8, IL-6, and IL-1β, which alleviated BDE-209-induced inflammation in broilers. Cur reduced BDE-209-induced apoptosis by increasing the expression of the bcl-2 protein, decreasing the expression of cleaved caspase-3 and bax proteins, decreasing the bax/bcl-2 protein ratio, and decreasing the mean optical density of TUNEL. These results suggest that Cur protects broiler spleens from BDE-209-induced immunotoxicity via modulating humoral immunity, the equilibrium between Th1 and Th2 cells, the TLRs/NF-κB inflammatory pathway, and the apoptotic pathway.
Collapse
Affiliation(s)
- Jiaqi Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, PR China
| | - Jilang Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China.
| | - Xueqin Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, PR China
| | - Xiaqing Ning
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, PR China
| | - Chen Sun
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, PR China
| | - Nuannuan Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, PR China
| | - Shixia Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, PR China.
| |
Collapse
|
12
|
Sivanantham A, Alktaish W, Murugeasan S, Gong B, Lee H, Jin Y. Caveolin-1 regulates OMV-induced macrophage pro-inflammatory activation and multiple Toll-like receptors. Front Immunol 2023; 14:1044834. [PMID: 36817491 PMCID: PMC9933776 DOI: 10.3389/fimmu.2023.1044834] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Macrophages (MФ), the primary cell of the innate immune system, serves as the first line of defense. During bacterial infection, Gram-negative (G-) bacteria release nanosized outer membrane vesicles (OMVs), facilitating the crosstalk between the microbe and the host. The underlying mechanisms by which OMVs induced pro-inflammatory (M1) activation are still unknown. Our study shows that OMVs caused M1 activation via modulating various toll-like receptor (TLR) expressions as they contain LPS, LTA, bacterial DNAs, and flagellins. Also, we found that caveolin-1 (cav-1), a 21-kDa scaffolding protein of caveolae and lipid rafts, plays a significant role in OMV-induced pro-inflammatory response in regulating various TLR signaling pathways. Specifically, cav-1 deletion increased the expression of OMV-induced TLRs, pro-inflammatory cytokine secretions (TNF-α and IL-1β), and the reactive oxygen species (ROS) production in MФs. Further, we examined the interaction between Cav-1 and TLR4 by immunoprecipitation, colocalization, and computational models, providing future direction to explore the role of cav-1 in OMV-induced other TLR signaling. Altogether, Cav-1 is a key regulator in OMV-induced multiple TLRs response. This study promotes future research to develop drugs by targeting the specific motif of cav-1 or TLRs against bacterial infection and macrophage-mediated inflammation.
Collapse
Affiliation(s)
- Ayyanar Sivanantham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA, United States
| | - Ward Alktaish
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA, United States
| | - Selvakumar Murugeasan
- Department of Chemical Engineering, Indian Institute of Technology, Tirupati, Andhra Pradesh, India
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Heedoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA, United States.,Department of Biology and Chemistry, Changwon National University, Changwon, Republic of Korea
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA, United States
| |
Collapse
|
13
|
Díaz-Dinamarca DA, Salazar ML, Castillo BN, Manubens A, Vasquez AE, Salazar F, Becker MI. Protein-Based Adjuvants for Vaccines as Immunomodulators of the Innate and Adaptive Immune Response: Current Knowledge, Challenges, and Future Opportunities. Pharmaceutics 2022; 14:1671. [PMID: 36015297 PMCID: PMC9414397 DOI: 10.3390/pharmaceutics14081671] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 12/03/2022] Open
Abstract
New-generation vaccines, formulated with subunits or nucleic acids, are less immunogenic than classical vaccines formulated with live-attenuated or inactivated pathogens. This difference has led to an intensified search for additional potent vaccine adjuvants that meet safety and efficacy criteria and confer long-term protection. This review provides an overview of protein-based adjuvants (PBAs) obtained from different organisms, including bacteria, mollusks, plants, and humans. Notably, despite structural differences, all PBAs show significant immunostimulatory properties, eliciting B-cell- and T-cell-mediated immune responses to administered antigens, providing advantages over many currently adopted adjuvant approaches. Furthermore, PBAs are natural biocompatible and biodegradable substances that induce minimal reactogenicity and toxicity and interact with innate immune receptors, enhancing their endocytosis and modulating subsequent adaptive immune responses. We propose that PBAs can contribute to the development of vaccines against complex pathogens, including intracellular pathogens such as Mycobacterium tuberculosis, those with complex life cycles such as Plasmodium falciparum, those that induce host immune dysfunction such as HIV, those that target immunocompromised individuals such as fungi, those with a latent disease phase such as Herpes, those that are antigenically variable such as SARS-CoV-2 and those that undergo continuous evolution, to reduce the likelihood of outbreaks.
Collapse
Affiliation(s)
- Diego A. Díaz-Dinamarca
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
- Sección de Biotecnología, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7750000, Chile
| | - Michelle L. Salazar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
| | - Byron N. Castillo
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
| | - Augusto Manubens
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
- Biosonda Corporation, Santiago 7750000, Chile
| | - Abel E. Vasquez
- Sección de Biotecnología, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7750000, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Providencia, Santiago 8320000, Chile
| | - Fabián Salazar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, UK
| | - María Inés Becker
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
- Biosonda Corporation, Santiago 7750000, Chile
| |
Collapse
|
14
|
Kumar A, Varma VP, Sridhar K, Abdullah M, Vyas P, Ashiq Thalappil M, Chang YF, Faisal SM. Deciphering the Role of Leptospira Surface Protein LigA in Modulating the Host Innate Immune Response. Front Immunol 2022; 12:807775. [PMID: 34975922 PMCID: PMC8716722 DOI: 10.3389/fimmu.2021.807775] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023] Open
Abstract
Leptospira, a zoonotic pathogen, is known to infect various hosts and can establish persistent infection. This remarkable ability of bacteria is attributed to its potential to modulate (activate or evade) the host immune response by exploiting its surface proteins. We have identified and characterized the domain of the variable region of Leptospira immunoglobulin-like protein A (LAV) involved in immune modulation. The 11th domain (A11) of the variable region of LigA (LAV) induces a strong TLR4 dependent innate response leading to subsequent induction of humoral and cellular immune responses in mice. A11 is also involved in acquiring complement regulator FH and binds to host protease Plasminogen (PLG), there by mediating functional activity to escape from complement-mediated killing. The deletion of A11 domain significantly impaired TLR4 signaling and subsequent reduction in the innate and adaptive immune response. It also inhibited the binding of FH and PLG thereby mediating killing of bacteria. Our study discovered an unprecedented role of LAV as a nuclease capable of degrading Neutrophil Extracellular Traps (NETs). This nuclease activity was primarily mediated by A11. These results highlighted the moonlighting function of LigA and demonstrated that a single domain of a surface protein is involved in modulating the host innate immune defenses, which might allow the persistence of Leptospira in different hosts for a long term without clearance.
Collapse
Affiliation(s)
- Ajay Kumar
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| | - Vivek P Varma
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Kavela Sridhar
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| | - Mohd Abdullah
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India.,Department of Biosciences, Integral University, Lucknow, India
| | - Pallavi Vyas
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| | | | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Syed M Faisal
- Laboratory of Vaccine Immunology, National Institute of Animal Biotechnology, Hyderabad, India
| |
Collapse
|
15
|
Cheng Y, Yang C, Chen W, Yan Q, Tan Z, He Z. Effects of substituting soybean meal with corn on immune function and gene expression of gut TLR4 pathway of growing goats. PeerJ 2022; 10:e12910. [PMID: 35186490 PMCID: PMC8830315 DOI: 10.7717/peerj.12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/19/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Protein malnutrition remains a severe problem in ruminant production and can increase susceptibility to infection, especially during the growth stage. This study aimed to explore substituting soybean meal with corn on activation of the TLR pathway and potential impact on immune response bias towards Type 1 or Type 2 using growing female goats as experimental animals. METHODS Twenty-four Xiangdong black goats (initial BW = 19.83 ± 0.53 kg, about 8 ± 0.3 months old) were selected and randomly divided into the corn-soybean meal basal diet group (CON, 10.77% protein) and replacing soybean meal with 100% of corn group (CRS, 5.52% protein). EDTA whole blood and serum samples were collected prior to slaughter for determinations of blood cell counts, anti-inflammatory cytokines and antibodies. The duodenum, jejunum, ileum and colon tissues were collected after formal trial to study the effect of CRS diet on the expression of TLR4 pathway. RESULTS Our results showed CRS diet did not induce a significant change in immune function, as evidenced by the observations that white blood cell (WBC), neutrophil (Neu), lymphocyte (Lym), monocyte (Mon), eosinophil (Eos), interleukin-4 (IL-4), IL-5, IL-13, immunoglobin G (IgG), IgA, and IgM levels in serum were similar between the two groups. RT-PCR results showed the expression of tumor necrosis factor-α (TNF-α) (P < 0.01) and interferon-β (IFN-β) (P < 0.01) were up-regulated in the colon of goats in the CRS group. No differences in the expression of myeloid differentiation factor 88 (MyD88) adaptor-like protein (TIRAP), IL-1 receptor-associated kinase 1 (IRAK1), TNF receptor related factor 6 (TRAF6), NF-kappa B (NF-κB), mitogen-activated protein kinase 1 (MAPK1) or activator protein-1 (AP-1) in the TLR4/MyD88 dependent pathway were observed between the two groups for any of the tested tissue. However, the expression of NF-κB activator (TANK) binding kinase 1 (TBK1) in TLR4/MyD88 independent pathway was up-regulated in the duodenum and colon (P < 0.01), and the expression of interferon regulatory factor-3 (IRF3) was up-regulated (P < 0.01) in colon. CONCLUSIONS Our results suggested that the CRS diet failed to induce a significant change in innate immunity and adaptive immunity in growing goats. However, the up-regulated TBK1 and IRF3 in the colon from the CRS goats suggests that the CRS diet may induce the expression of Th1-type proinflammatory cytokines and inflammatory response through a TLR4-MyD88-independent pathway, and the colon may be the easiest targeted section in the intestinal tract.
Collapse
Affiliation(s)
- Yan Cheng
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China,University of Chinese Academy of Sciences, Beijing, China
| | - Chao Yang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China,University of Chinese Academy of Sciences, Beijing, China
| | - Wenxun Chen
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China,University of Chinese Academy of Sciences, Beijing, China
| | - Qiongxian Yan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China,University of Chinese Academy of Sciences, Beijing, China,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China,University of Chinese Academy of Sciences, Beijing, China,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan, China,University of Chinese Academy of Sciences, Beijing, China,Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, Hunan, China
| |
Collapse
|
16
|
Yu H, Bai Y, Qiu J, He X, Xiong J, Dai Q, Wang X, Li Y, Sheng H, Xin R, Jiang L, Li Q, Li D, Zhang H, Zhang L, Chen Q, Peng J, Hu X, Zhang K. Pseudomonas aeruginosa PcrV Enhances the Nitric Oxide-Mediated Tumoricidal Activity of Tumor-Associated Macrophages via a TLR4/PI3K/AKT/mTOR-Glycolysis-Nitric Oxide Circuit. Front Oncol 2021; 11:736882. [PMID: 34900687 PMCID: PMC8654729 DOI: 10.3389/fonc.2021.736882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/04/2021] [Indexed: 01/09/2023] Open
Abstract
Tumor-associated macrophages (TAMs), which display a tumor-supportive M2 phenotype, are closely related to tumor growth and metastasis. The reprogramming of TAMs toward a tumoricidal M1 profile has emerged as an attractive strategy for cancer immunotherapy. In this study, we found that the intratumoral injection of PcrV protein, a component of the Pseudomonas aeruginosa type 3 secretion system, suppressed tumor growth and increased apoptosis, inducible nitric oxide synthase (iNOS) expression, and the percentage of M1-polarized TAMs in tumor tissues. Furthermore, the intratumoral injection of PcrV-primed macrophages exerted a similar tumoricidal effect. In vitro analyses revealed that PcrV reeducated TAMs toward an antitumoral M1 phenotype and augmented their nitric oxide (NO)-mediated cytotoxicity against cancer cells. Mechanistically, we found that these effects were dependent on the activation of Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)-mediated regulation of a PI3K/AKT/mTOR-glycolysis-NO feedback loop via direct interaction with TLR4. Collectively, these results revealed a potential role for PcrV in cancer immunotherapy through the targeting of TAM plasticity.
Collapse
Affiliation(s)
- Hua Yu
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ying Bai
- Health Management Center, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jing Qiu
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiaomei He
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Junzhi Xiong
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qian Dai
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xingmin Wang
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuanyuan Li
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Halei Sheng
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Rong Xin
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lu Jiang
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qiaoqiao Li
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Defeng Li
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hong Zhang
- Administration Department of Nosocomial Infection, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Le Zhang
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qian Chen
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jin Peng
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiaomei Hu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Kebin Zhang
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
17
|
Qadri M, Jay GD, Zhang LX, Schmidt TA, Totonchy J, Elsaid KA. Proteoglycan-4 is an essential regulator of synovial macrophage polarization and inflammatory macrophage joint infiltration. Arthritis Res Ther 2021; 23:241. [PMID: 34521469 PMCID: PMC8439011 DOI: 10.1186/s13075-021-02621-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/05/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Synovial macrophages perform a multitude of functions that include clearance of cell debris and foreign bodies, tissue immune surveillance, and resolution of inflammation. The functional diversity of macrophages is enabled by distinct subpopulations that express unique surface markers. Proteoglycan-4 (PRG4) is an important regulator of synovial hyperplasia and fibrotic remodeling, and the involvement of macrophages in PRG4's synovial role is yet to be defined. Our objectives were to study the PRG4's importance to macrophage homeostatic regulation in the synovium and infiltration of pro-inflammatory macrophages in acute synovitis and investigate whether macrophages mediated synovial fibrosis in Prg4 gene-trap (Prg4GT/GT) murine knee joints. METHODS Macrophage phenotyping in Prg4GT/GT and Prg4+/+ joints was performed by flow cytometry using pan-macrophage markers, e.g., CD11b, F4/80, and surface markers of M1 macrophages (CD86) and M2 macrophages (CD206). Characterizations of the various macrophage subpopulations were performed in 2- and 6-month-old animals. The expression of inflammatory markers, IL-6, and iNOS in macrophages that are CD86+ and/or CD206+ was studied. The impact of Prg4 recombination on synovial macrophage populations of 2- and 6-month-old animals and infiltration of pro-inflammatory macrophages in response to a TLR2 agonist challenge was determined. Macrophages were depleted using liposomal clodronate and synovial membrane thickness, and the expression of fibrotic markers α-SMA, PLOD2, and collagen type I (COL-I) was assessed using immunohistochemistry. RESULTS Total macrophages in Prg4GT/GT joints were higher than Prg4+/+ joints (p<0.0001) at 2 and 6 months, and the percentages of CD86+/CD206- and CD86+/CD206+ macrophages increased in Prg4GT/GT joints at 6 months (p<0.0001), whereas the percentage of CD86-/CD206+ macrophages decreased (p<0.001). CD86+/CD206- and CD86+/CD206+ macrophages expressed iNOS and IL-6 compared to CD86-/CD206+ macrophages (p<0.0001). Prg4 re-expression limited the accumulation of CD86+ macrophages (p<0.05) and increased CD86-/CD206+ macrophages (p<0.001) at 6 months. Prg4 recombination attenuated synovial recruitment of pro-inflammatory macrophages in 2-month-old animals (p<0.001). Clodronate-mediated macrophage depletion reduced synovial hyperplasia, α-SMA, PLOD2, and COL-I expressions in the synovium (p<0.0001). CONCLUSIONS PRG4 regulates the accumulation and homeostatic balance of macrophages in the synovium. In its absence, the synovium becomes populated with M1 macrophages. Furthermore, macrophages exert an effector role in synovial fibrosis in Prg4GT/GT animals.
Collapse
Affiliation(s)
- Marwa Qadri
- Department of Pharmacology, College of Pharmacy, Jazan University, Jazan, 82826 Kingdom of Saudi Arabia
| | - Gregory D. Jay
- Department of Emergency Medicine, Rhode Island Hospital, Providence, RI USA
| | - Ling X. Zhang
- Department of Emergency Medicine, Rhode Island Hospital, Providence, RI USA
| | - Tannin A. Schmidt
- Biomedical Engineering Department, School of Dental Medicine, University of Connecticut, Farmington, CT USA
| | - Jennifer Totonchy
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Sciences Campus, 9401 Jeronimo Road, Irvine, CA 92618 USA
| | - Khaled A. Elsaid
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Sciences Campus, 9401 Jeronimo Road, Irvine, CA 92618 USA
| |
Collapse
|
18
|
El-Obeid A, Yahya WB, Almuzzaini B, Tuwaijri AA, Najdi M, Hassib A, Matou-Nasri S. Herbal melanin induces interleukin-1β secretion and production by human THP-1 monocytes via Toll-like receptor 2 and p38 MAPK activation. Exp Ther Med 2021; 22:1081. [PMID: 34447474 PMCID: PMC8355711 DOI: 10.3892/etm.2021.10515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Herbal melanin (HM), extracted from Nigella sativa, is known for its immunogenic properties through the modulation of cytokine production via Toll-like receptor (TLR)4. TLRs play a crucial role in the host defense through the regulation of innate and adaptive immune responses. However, the potential effect of HM on the production of interleukin-1β (IL-1β), the main immunoregulatory cytokine secreted by activated monocytes, has not been reported. The present study aimed to investigate the effects of HM on IL-1β secretion and production, detected by enzyme-linked immunosorbent assay, western blotting and mRNA expression monitored by reverse transcription-PCR, in human monocytes and a monocytic cell line, THP-1. Signaling pathways involved in the HM-induced IL-1β production was investigated in the THP-1 cells. It was shown that HM upregulated the IL-1β mRNA in the THP-1 cells and induced the secretion of IL-1β in the monocytes and THP-1 cells, in a dose-dependent manner, compared to the untreated cells. HM increased the protein expression of IL-1β, TLR2, the main receptor for IL-1β production, and activated p38 mitogen-activated protein kinase (MAPK), a key mediator for stress-induced IL-1β gene expression. The blockade of the p38 MAPK pathway, with the pharmacological inhibitor SB202190, and TLR2 receptor with a neutralization antibody, resulted in the decrease of HM-induced IL-1β production in THP-1 cells. The TLR4 receptor blockade also decreased HM-induced IL-1β production, but to a lesser extent than TLR2 blockade. In conclusion, the present study demonstrated that HM stimulates IL-1β production in monocytes and THP-1 cells, in a TLR2/p38 MAPK pathway-dependent manner, suggesting promising immunoregulatory potentials of HM against inflammatory-associated diseases.
Collapse
Affiliation(s)
- Adila El-Obeid
- Biobank, King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia.,School of Pharmacy, Ahfad University for Women, Omdurman, Khartoum 11111, Sudan.,Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University Hospital, 752 37 Uppsala, Sweden
| | - Wesam Bin Yahya
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia.,Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs; King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Bader Almuzzaini
- Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs; King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Abeer Al Tuwaijri
- Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs; King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Maria Najdi
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia.,Postgraduate Program, King Saud University, Riyadh 12372, Saudi Arabia
| | - Adil Hassib
- Department of Physics, Faculty of Science, University of Khartoum, Khartoum 11111, Sudan
| | - Sabine Matou-Nasri
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia.,Medical Genomics Research Department, King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs; King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| |
Collapse
|
19
|
Reyes AWB, Huy TXN, Vu SH, Kim HJ, Lee JJ, Choi JS, Lee JH, Kim S. Protection of palmitic acid treatment in RAW264.7 cells and BALB/c mice during Brucella abortus 544 infection. J Vet Sci 2021; 22:e18. [PMID: 33774934 PMCID: PMC8007444 DOI: 10.4142/jvs.2021.22.e18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/27/2020] [Accepted: 01/11/2021] [Indexed: 01/22/2023] Open
Abstract
Background We previously elucidated the protective mechanism of Korean red ginseng oil (RGO) against Brucella abortus infection, and our phytochemical analysis revealed that palmitic acid (PA) was an abundant component of RGO. Consequently, we investigated the contribution of PA against B. abortus. Objectives We aimed to investigate the efficacy of PA against B. abortus infection using a murine cell line and a murine model. Methods Cell viability, bactericidal, internalization, and intracellular replication, western blot, nitric oxide (NO), and superoxide (O2-) analyses and flow cytometry were performed to determine the effects of PA on the progression of B. abortus infection in macrophages. Flow cytometry for cytokine analysis of serum samples and bacterial counts from the spleens were performed to determine the effect of PA in a mouse model. Results PA did not affect the growth of B. abortus. PA treatment in macrophages did not change B. abortus uptake but it did attenuate the intracellular survivability of B. abortus. Incubation of cells with PA resulted in a modest increase in sirtuin 1 (SIRT1) expression. Compared to control cells, reduced nitrite accumulation, augmented O2-, and enhanced pro-inflammatory cytokine production were observed in PA-treated B. abortus-infected cells. Mice orally treated with PA displayed a decreased serum interleukin-10 level and enhanced bacterial resistance. Conclusions Our results suggest that PA participates in the control of B. abortus within murine macrophages, and the in vivo study results confirm its efficacy against the infection. However, further investigations are encouraged to completely characterize the mechanisms involved in the inhibition of B. abortus infection by fatty acids.
Collapse
Affiliation(s)
| | - Tran Xuan Ngoc Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Son Hai Vu
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Hyun Jin Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Jin Ju Lee
- Bacterial Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - Jeong Soo Choi
- Bacterial Disease Research Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
20
|
Splichalova I, Balounová J, Vobořil M, Brabec T, Sedlacek R, Filipp D. Deletion of TLR2 + erythro-myeloid progenitors leads to embryonic lethality in mice. Eur J Immunol 2021; 51:2237-2250. [PMID: 34107067 DOI: 10.1002/eji.202049142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/29/2021] [Accepted: 06/08/2021] [Indexed: 11/05/2022]
Abstract
Early embryonic hematopoiesis in mammals is defined by three successive waves of hematopoietic progenitors which exhibit a distinct hematopoietic potential and provide continuous support for the development of the embryo and adult organism. Although the functional importance of each of these waves has been analyzed, their spatio-temporal overlap and the lack of wave-specific markers hinders the accurate separation and assessment of their functional roles during early embryogenesis. We have recently shown that TLR2, in combination with c-kit, represents the earliest signature of emerging precursors of the second hematopoietic wave, erythro-myeloid precursors (EMPs). Since the onset of Tlr2 expression distinguishes EMPs from primitive progenitors which coexist in the yolk sac from E7.5, we generated a novel transgenic "knock in" mouse model, Tlr2Dtr , suitable for inducible targeted depletion of TLR2+ EMPs. In this model, the red fluorescent protein and diphtheria toxin receptor sequences are linked via a P2A sequence and inserted into the Tlr2 locus before its stop codon. We show that a timely controlled deletion of TLR2+ EMPs in Tlr2Dtr embryos results in a marked decrease in both erythroid as well as myeloid lineages and, consequently, in embryonic lethality peaking before E13.5. These findings validate the importance of EMPs in embryonic development.
Collapse
Affiliation(s)
- Iva Splichalova
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Balounová
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.,Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Matouš Vobořil
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Brabec
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics & Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
21
|
IgE-activated mast cells enhance TLR4-mediated antigen-specific CD4 + T cell responses. Sci Rep 2021; 11:9686. [PMID: 33958642 PMCID: PMC8102524 DOI: 10.1038/s41598-021-88956-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/19/2021] [Indexed: 12/30/2022] Open
Abstract
Mast cells are potent mediators of allergy and asthma, yet their role in regulating adaptive immunity remains ambiguous. On the surface of mast cells, the crosslinking of IgE bound to FcεRI by a specific antigen recognized by that IgE triggers the release of immune mediators such as histamine and cytokines capable of activating other immune cells; however, little is known about the mast cell contribution to the induction of endogenous, antigen-specific CD4+ T cells. Here we examined the effects of specific mast cell activation in vivo on the initiation of an antigen-specific CD4+ T cell response. While CD4+ T cells were not enhanced by FcεRI stimulation alone, their activation was synergistically enhanced when FcεRI activation was combined with TLR4 stimulation. This enhanced activation was dependent on global TLR4 stimulation but appeared to be less dependent on mast cell expressed TLR4. This study provides important new evidence to support the role of mast cells as mediators of the antigen-specific adaptive immune response.
Collapse
|
22
|
Balan I, Aurelian L, Schleicher R, Boero G, O'Buckley T, Morrow AL. Neurosteroid allopregnanolone (3α,5α-THP) inhibits inflammatory signals induced by activated MyD88-dependent toll-like receptors. Transl Psychiatry 2021; 11:145. [PMID: 33637705 PMCID: PMC7909379 DOI: 10.1038/s41398-021-01266-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
We have shown that endogenous neurosteroids, including pregnenolone and 3α,5α-THP inhibit toll-like receptor 4 (TLR4) signal activation in mouse macrophages and the brain of alcohol-preferring (P) rat, which exhibits innate TLR4 signal activation. The current studies were designed to examine whether other activated TLR signals are similarly inhibited by 3α,5α-THP. We report that 3α,5α-THP inhibits selective agonist-mediated activation of TLR2 and TLR7, but not TLR3 signaling in the RAW246.7 macrophage cell line. The TLR4 and TLR7 signals are innately activated in the amygdala and NAc from P rat brains and inhibited by 3α,5α-THP. The TLR2 and TLR3 signals are not activated in P rat brain and they are not affected by 3α,5α-THP. Co-immunoprecipitation studies indicate that 3α,5α-THP inhibits the binding of MyD88 with TLR4 or TLR7 in P rat brain, but the levels of TLR4 co-precipitating with TRIF are not altered by 3α,5α-THP treatment. Collectively, the data indicate that 3α,5α-THP inhibits MyD88- but not TRIF-dependent TLR signal activation and the production of pro-inflammatory mediators through its ability to block TLR-MyD88 binding. These results have applicability to many conditions involving pro-inflammatory TLR activation of cytokines, chemokines, and interferons and support the use of 3α,5α-THP as a therapeutic for inflammatory disease.
Collapse
Affiliation(s)
- Irina Balan
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - Laure Aurelian
- Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Riana Schleicher
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - Giorgia Boero
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - Todd O'Buckley
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA
| | - A Leslie Morrow
- Department of Psychiatry, Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
23
|
Pawar K, Shigematsu M, Sharbati S, Kirino Y. Infection-induced 5'-half molecules of tRNAHisGUG activate Toll-like receptor 7. PLoS Biol 2020; 18:e3000982. [PMID: 33332353 PMCID: PMC7745994 DOI: 10.1371/journal.pbio.3000982] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/13/2020] [Indexed: 01/15/2023] Open
Abstract
Toll-like receptors (TLRs) play a crucial role in the innate immune response. Although endosomal TLR7 recognizes single-stranded RNAs, their endogenous RNA ligands have not been fully explored. Here, we report 5'-tRNA half molecules as abundant activators of TLR7. Mycobacterial infection and accompanying surface TLR activation up-regulate the expression of 5'-tRNA half molecules in human monocyte-derived macrophages (HMDMs). The abundant accumulation of 5'-tRNA halves also occur in HMDM-secreted extracellular vehicles (EVs); the abundance of EV-5'-tRNAHisGUG half molecules is >200-fold higher than that of the most abundant EV-microRNA (miRNA). Sequence identification of the 5'-tRNA halves using cP-RNA-seq revealed abundant and selective packaging of specific 5'-tRNA half species into EVs. The EV-5'-tRNAHisGUG half was experimentally demonstrated to be delivered into endosomes in recipient cells and to activate endosomal TLR7. Up-regulation of the 5'-tRNA half molecules was also observed in the plasma of patients infected with Mycobacterium tuberculosis. These results unveil a novel tRNA-engaged pathway in the innate immune response and assign the role of "immune activators" to 5'-tRNA half molecules.
Collapse
Affiliation(s)
- Kamlesh Pawar
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Soroush Sharbati
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
24
|
Inaba H, Yoshida S, Nomura R, Kato Y, Asai F, Nakano K, Matsumoto-Nakano M. Porphyromonas gulae lipopolysaccharide elicits inflammatory responses through toll-like receptor 2 and 4 in human gingivalis epithelial cells. Cell Microbiol 2020; 22:e13254. [PMID: 32827217 DOI: 10.1111/cmi.13254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/29/2022]
Abstract
Porphyromonas gulae, a Gram-negative black-pigmented anaerobe, has been associated with periodontal disease in companion animals and its virulence has been attributed to various factors, including lipopolysaccharide (LPS), protease and fimbriae. Toll-like receptors (TLRs) recognise pathogen-associated molecular patterns, such as peptidoglycan, lipids, lipoproteins, nucleic acid and LPS. Following P. gulae infection, some inflammatory responses are dependent on both TLR2 and TLR4. In addition, a recent clinical study revealed that acute and persistent inflammatory responses enhance the expressions of TLR2 and TLR4 in the oral cavity. In this study, we investigated the interaction between P. gulae LPS and human gingivalis epithelial cells (Ca9-22 cells). P. gulae LPS was found to increase TLR2 and TLR4 mRNA expressions and protein productions, and enhanced inflammatory responses, such as COX2 , TNF-ɑ, IL-6 and IL-8. Stimulated Ca9-22 cells exhibited phosphorylation of ERK1/2 and p38, and their inhibitors diminished inflammatory responses, while knockdown of the TLR2 and/or TLR4 genes with small interfering RNA (siRNA) prevented inflammatory responses. Moreover, p38 and ERK1/2 phosphorylation was decreased in TLR2 and TLR4 gene knockdown cells. These findings suggest that P. gulae LPS activates p38 and ERK1/2 via TLR2 and TLR4, leading to inflammatory responses in human gingival epithelial cells.
Collapse
Affiliation(s)
- Hiroaki Inaba
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sho Yoshida
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryota Nomura
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yukio Kato
- Department of Veterinary Public Health II, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Fumitoshi Asai
- Department of Pharmacology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
25
|
Yu H, Xiong J, Qiu J, He X, Sheng H, Dai Q, Li D, Xin R, Jiang L, Li Q, Chen Q, Peng J, Wang M, Rao X, Zhang K. Type III Secretion Protein, PcrV, Impairs Pseudomonas aeruginosa Biofilm Formation by Increasing M1 Macrophage-Mediated Anti-bacterial Activities. Front Microbiol 2020; 11:1971. [PMID: 32903626 PMCID: PMC7438568 DOI: 10.3389/fmicb.2020.01971] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/24/2020] [Indexed: 01/04/2023] Open
Abstract
Pseudomonas aeruginosa biofilms employ a variety of strategies to hijack the host immune defense system to achieve chronic infection. However, the bacterial components that are involved in this process are not yet fully understood. PcrV, a needle tip protein of the P. aeruginosa type III secretion system (T3SS), was downregulated during P. aeruginosa biofilm infection. The impaired expression of the P. aeruginosa pcrV gene is associated with attenuated immune activation and an increased percentage of M2 macrophages following P. aeruginosa biofilm infection. Treatment with exogenous PcrV produced from Escherichia coli elevated tissue inflammation and the percentage of M1 macrophages, resulting in reduction in the biofilm burden. Further analyses demonstrated that the potential of PcrV to induce classically activated M1 macrophages as evidenced by the increased production of proinflammatory cytokines and anti-bacterial mediators, including inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS), as well as increased phagocytosis of bacteria. Mechanistically, PcrV-mediated promotion of macrophage M1 polarization and phagocytosis occurs through the activation of mitogen-activated protein kinases (MAPKs) and NF-κB signaling pathways. Collectively, these findings reveal a potential role of PcrV in skewing host immune defense to promote P. aeruginosa biofilm infection and provide new insights into the therapeutic strategies for P. aeruginosa biofilm infection.
Collapse
Affiliation(s)
- Hua Yu
- Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Junzhi Xiong
- Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jing Qiu
- Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiaomei He
- Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Halei Sheng
- Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qian Dai
- Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Defeng Li
- Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Rong Xin
- Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lu Jiang
- Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qiaoqiao Li
- Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qian Chen
- Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jin Peng
- Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Maolin Wang
- Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China.,Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Kebin Zhang
- Central Laboratory, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
26
|
Jelacic TM, Ribot WJ, Chua J, Boyer AE, Woolfitt AR, Barr JR, Friedlander AM. Human Innate Immune Cells Respond Differentially to Poly-γ-Glutamic Acid Polymers from Bacillus anthracis and Nonpathogenic Bacillus Species. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1263-1273. [PMID: 31932496 PMCID: PMC7970647 DOI: 10.4049/jimmunol.1901066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/17/2019] [Indexed: 11/19/2022]
Abstract
The poly-γ-glutamic acid (PGA) capsule produced by Bacillus anthracis is composed entirely of d-isomer glutamic acid, whereas nonpathogenic Bacillus species produce mixed d-, l-isomer PGAs. To determine if B. anthracis PGA confers a pathogenic advantage over other PGAs, we compared the responses of human innate immune cells to B. anthracis PGA and PGAs from nonpathogenic B. subtilis subsp. chungkookjang and B. licheniformis Monocytes and immature dendritic cells (iDCs) responded differentially to the PGAs, with B. anthracis PGA being least stimulatory and B. licheniformis PGA most stimulatory. All three elicited IL-8 and IL-6 from monocytes, but B. subtilis PGA also elicited IL-10 and TNF-α, whereas B. licheniformis PGA elicited all those plus IL-1β. Similarly, all three PGAs elicited IL-8 from iDCs, but B. subtilis PGA also elicited IL-6, and B. licheniformis PGA elicited those plus IL-12p70, IL-10, IL-1β, and TNF-α. Only B. licheniformis PGA induced dendritic cell maturation. TLR assays also yielded differential results. B. subtilis PGA and B. licheniformis PGA both elicited more TLR2 signal than B. anthracis PGA, but only responses to B. subtilis PGA were affected by a TLR6 neutralizing Ab. B. licheniformis PGA elicited more TLR4 signal than B. anthracis PGA, whereas B. subtilis PGA elicited none. B. anthracis PGA persisted longer in high m.w. form in monocyte and iDC cultures than the other PGAs. Reducing the m.w. of B. anthracis PGA reduced monocytes' cytokine responses. We conclude that B. anthracis PGA is recognized less effectively by innate immune cells than PGAs from nonpathogenic Bacillus species, resulting in failure to induce a robust host response, which may contribute to anthrax pathogenesis.
Collapse
Affiliation(s)
- Tanya M Jelacic
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702;
| | - Wilson J Ribot
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702
| | - Jennifer Chua
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702
| | - Anne E Boyer
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341; and
| | - Adrian R Woolfitt
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341; and
| | - John R Barr
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341; and
| | - Arthur M Friedlander
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702;
- Department of Medicine, Uniformed University of Health Services, Bethesda, MD 20814
| |
Collapse
|
27
|
Shim S, Park HE, Soh SH, Im YB, Yoo HS. Induction of Th2 response through TLR2-mediated MyD88-dependent pathway in human microfold cells stimulated with chitosan nanoparticles loaded with Brucella abortus Mdh. Microb Pathog 2020; 142:104040. [PMID: 32032767 DOI: 10.1016/j.micpath.2020.104040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 01/18/2023]
Abstract
Drug delivery by the nasal or oral route is considered the preferred route of administration because it can induce systemic mucosal immunity. However, few studies have examined the immunogenicity and transport of antigen at the level of the microfold (M) cell, the epithelial cell that specializes in antigen sampling at mucosal surfaces. In our previous study, Brucella abortus malate dehydrogenase (Mdh) was loaded in chitosan nanoparticles (CNs), and it induced high production of proinflammatory cytokines in THP-1 cells and systemic IgA in BALB/C mice. In the present study, an in vitro M cell model was used in which Caco-2 cells and Raji B cells were co-cultured to investigate the impact of the uptake and immunogenicity of B. abortus Mdh on nanoparticle transport in human M cells. Our results showed that loaded CNs induced enhanced transport of Mdh in the M cell model. ELISAs showed significantly higher production of IL-1β and IL-6 in the CN-Mdh stimulation group than that seen in the Mdh stimulation group. The observed increase of gene expression of TLR2, MyD88, TRAF6, IRF4 and CD14 implied that MyD88-dependent TLR2 signaling was activated by stimulation with CNs-Mdh. These results suggest that Mdh and CNs may function synergistically to enhance Th2-related responses triggered by the MyD88-dependent TLR2 signaling pathway and could induce an inflammatory response in M cells as an M cell-targeted delivery system. This study will contribute to the development of not only effective antigens for intracellular bacteria, including B. abortus, but also vaccine delivery systems that target M cells.
Collapse
Affiliation(s)
- Soojin Shim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Hyun-Eui Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Sang Hee Soh
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Young Bin Im
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea; BioMax/N-Bio Institute, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
28
|
Costa Mendonça-Natividade F, Duque Lopes C, Ricci-Azevedo R, Sardinha-Silva A, Figueiredo Pinzan C, Paiva Alegre-Maller AC, L Nohara L, B Carneiro A, Panunto-Castelo A, C Almeida I, Roque-Barreira MC. Receptor Heterodimerization and Co-Receptor Engagement in TLR2 Activation Induced by MIC1 and MIC4 from Toxoplasma gondii. Int J Mol Sci 2019; 20:ijms20205001. [PMID: 31658592 PMCID: PMC6829480 DOI: 10.3390/ijms20205001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 01/07/2023] Open
Abstract
The microneme organelles of Toxoplasma gondii tachyzoites release protein complexes (MICs), including one composed of the transmembrane protein MIC6 plus MIC1 and MIC4. In this complex, carbohydrate recognition domains of MIC1 and MIC4 are exposed and interact with terminal sialic acid and galactose residues, respectively, of host cell glycans. Recently, we demonstrated that MIC1 and MIC4 binding to the N-glycans of Toll-like receptor (TLR) 2 and TLR4 on phagocytes triggers cell activation and pro-inflammatory cytokine production. Herein, we investigated the requirement for TLR2 heterodimerization and co-receptors in MIC-induced responses, as well as the signaling molecules involved. We used MICs to stimulate macrophages and HEK293T cells transfected with TLR2 and TLR1 or TLR6, both with or without the co-receptors CD14 and CD36. Then, the cell responses were analyzed, including nuclear factor-kappa B (NF-κB) activation and cytokine production, which showed that (1) only TLR2, among the studied factors, is crucial for MIC-induced cell activation; (2) TLR2 heterodimerization augments, but is not critical for, activation; (3) CD14 and CD36 enhance the response to MIC stimulus; and (4) MICs activate cells through a transforming growth factor beta-activated kinase 1 (TAK1)-, mammalian p38 mitogen-activated protein kinase (p38)-, and NF-κB-dependent pathway. Remarkably, among the studied factors, the interaction of MIC1 and MIC4 with TLR2 N-glycans is sufficient to induce cell activation, which promotes host protection against T. gondii infection.
Collapse
Affiliation(s)
- Flávia Costa Mendonça-Natividade
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirão Preto SP 14049-900, Brazil.
| | - Carla Duque Lopes
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirão Preto SP 14049-900, Brazil.
| | - Rafael Ricci-Azevedo
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirão Preto SP 14049-900, Brazil.
| | - Aline Sardinha-Silva
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirão Preto SP 14049-900, Brazil.
| | - Camila Figueiredo Pinzan
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirão Preto SP 14049-900, Brazil.
| | - Ana Claudia Paiva Alegre-Maller
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirão Preto SP 14049-900, Brazil.
| | - Lilian L Nohara
- Border Biomedical Research Center (BBRC), Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX 79968, USA.
| | - Alan B Carneiro
- Border Biomedical Research Center (BBRC), Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX 79968, USA.
- Institute of Medical Biochemistry, Program of Molecular Biology and Biotechnology at Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro RJ 21941-599, Brazil.
| | - Ademilson Panunto-Castelo
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo USP (FFCLRP/USP), Ribeirão Preto SP 14040-900, Brazil.
| | - Igor C Almeida
- Border Biomedical Research Center (BBRC), Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX 79968, USA.
| | - Maria Cristina Roque-Barreira
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirão Preto SP 14049-900, Brazil.
| |
Collapse
|
29
|
Kumar S, Sunagar R, Gosselin E. Bacterial Protein Toll-Like-Receptor Agonists: A Novel Perspective on Vaccine Adjuvants. Front Immunol 2019; 10:1144. [PMID: 31191528 PMCID: PMC6549121 DOI: 10.3389/fimmu.2019.01144] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Adjuvants have been used in vaccines for over a century, however, the search for safe and effective vaccine adjuvants continues. In recent decades toll-like-receptor (TLR) agonists have been investigated as potential vaccine adjuvants. In this regard, the majority of the currently investigated TLR agonists are non-protein microbial components such as lipopolysaccharides, oligonucleotides, and lipopeptides. On the other hand, a growing number of studies reveal that TLR signaling and immune responses can be activated by numerous bacterial proteins. However, their potential roles as adjuvants have been somewhat overlooked. Herein, we discuss several such bacterial proteins which exhibit adjuvant properties, including the activation of TLR signaling, antigen presenting cell maturation, pro-inflammatory cytokine production and adaptive immune response. The protein nature of these TLR agonists presents several unique features not shared by non-protein TLR agonists. These properties include the amenability for modifying the structure and function as necessary for optimal immunogenicity and minimal toxicity. Protein adjuvants can be genetically fused to protein antigens which ensure the co-delivery of adjuvant-antigen not only into the same cell but also in the same endocytic cargo, leading to more effective activation of innate and adaptive immune response.
Collapse
Affiliation(s)
- Sudeep Kumar
- Department of Immunology and Microbial Diseases, Albany Medical College, Albany, NY, United States
| | - Raju Sunagar
- Ella Foundation, Genome Valley, Hyderabad, India
| | - Edmund Gosselin
- Department of Immunology and Microbial Diseases, Albany Medical College, Albany, NY, United States
| |
Collapse
|
30
|
Xu X, Ding Z, Li J, Liang J, Bu Z, Ding J, Yang Y, Lang X, Wang X, Yin R, Qian J. Newcastle disease virus-like particles containing the Brucella BCSP31 protein induce dendritic cell activation and protect mice against virulent Brucella challenge. Vet Microbiol 2018; 229:39-47. [PMID: 30642597 DOI: 10.1016/j.vetmic.2018.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/15/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
Brucellosis is a widespread zoonosis that poses a substantial threat to human and animal public health due to the absence of a sufficiently safe and efficient vaccine. Virus-like particles (VLPs) have been developed as novel vaccine candidates and suitable carrier platforms for the delivery of exogenous proteins. Herein, we constructed chimeric virus-like particles (cVLPs) assembled by a Newcastle disease virus (NDV) M protein and glycosylphosphatidylinositol-anchored Brucella BCSP31 protein (GPI-BCSP31). cVLPs-GPI-BCSP31 were highly efficient in murine dendritic cell (DC) activation, both in vitro and in vivo. Moreover, they elicited strong specific humoural immune responses detected through ELISA assay with inactivated Brucella and recombinant BCSP31 protein and by elevated cellular immune responses indicated by intracellular IFN-γ and IL-4 levels in CD3+CD4+ T and CD3+CD8+ T cells. Importantly, cVLPs-GPI-BCSP31 conferred protection against virulent Brucella melitensis strain 16 M challenge, comparable to the efficacy of Brucella vaccine strain M5. In summary, this study provides a new strategy for the development of a safe and effective vaccine candidate against virulent Brucella and further extends the application of NDV VLP-based vaccine platforms.
Collapse
Affiliation(s)
- Xiaohong Xu
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Zhuang Ding
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Jindou Li
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Jiaming Liang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China
| | - Zhaoyang Bu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China
| | - Jiaxin Ding
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China
| | - Yanling Yang
- Institute of Special Wild Animal & Plant Science, Chinese Academy of Agricultural Sciences, Changchun 130122, China
| | - Xulong Lang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China
| | - Xinglong Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China
| | - Renfu Yin
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130062, China.
| | - Jing Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences / Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture, Nanjing 210014, China.
| |
Collapse
|
31
|
SslE (YghJ), a Cell-Associated and Secreted Lipoprotein of Neonatal Septicemic Escherichia coli, Induces Toll-Like Receptor 2-Dependent Macrophage Activation and Proinflammation through NF-κB and MAP Kinase Signaling. Infect Immun 2018; 86:IAI.00399-18. [PMID: 29891541 DOI: 10.1128/iai.00399-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
SslE (YghJ), a cell surface-associated and secreted lipoprotein, was identified as a potential vaccine candidate for extraintestinal pathogenic Escherichia coli, providing nearly complete protection from sepsis in a mouse model. We earlier found that SslE from neonatal septicemic E. coli could trigger the secretion of various proinflammatory cytokines in murine macrophages, the signaling pathway of which is still obscure. In this study, we showed that SslE specifically binds to Toll-like receptor 2 (TLR2)/TLR1 heterodimers and recruits downstream adaptors MyD88, TIRAP, and TRAF6. In addition, SslE stimulates nuclear translocation of NF-κB and activates different mitogen-activated protein (MAP) kinase signaling cascades specific to the secretion of each cytokine in murine macrophages, which becomes impaired in TLR2 small interfering RNA (siRNA)-transfected cells and in cells blocked with a monoclonal antibody (MAb) against TLR2, suggesting the involvement of TLR2 in NF-κB and MAP kinase activation and subsequent cytokine secretion. Furthermore, our study is the first to show that SslE can stimulate TLR2-dependent production of other proinflammatory hallmarks, such as reactive nitrogen and oxygen species as well as type 1 chemokines, which contribute to the anti-infection immune response of the host. Also, the overexpression of major histocompatibility complex class II (MHC II) and other costimulatory molecules (CD80 and CD86) in macrophages essentially indicates that SslE promotes macrophage activation and M1 polarization, which are crucial in framing the host's innate immune response to this protein, and hence, SslE could be a potent immunotherapeutic target against E. coli sepsis.
Collapse
|
32
|
Liu Y, Cai H. The Lrp of Mycobacterium tuberculosis regulates the innate immune response of macrophages. Cell Mol Immunol 2018; 15:934-936. [PMID: 29578530 DOI: 10.1038/cmi.2018.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/27/2017] [Accepted: 12/27/2017] [Indexed: 01/01/2023] Open
Affiliation(s)
- Yuan Liu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, 100871, Beijing, China
| | - Hong Cai
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
33
|
Dey S, Bishayi B. Killing of S. aureus in murine peritoneal macrophages by Ascorbic acid along with antibiotics Chloramphenicol or Ofloxacin: Correlation with inflammation. Microb Pathog 2018; 115:239-250. [DOI: 10.1016/j.micpath.2017.12.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/02/2017] [Accepted: 12/18/2017] [Indexed: 01/05/2023]
|
34
|
Luo X, Zhang X, Wu X, Yang X, Han C, Wang Z, Du Q, Zhao X, Liu SL, Tong D, Huang Y. Brucella Downregulates Tumor Necrosis Factor-α to Promote Intracellular Survival via Omp25 Regulation of Different MicroRNAs in Porcine and Murine Macrophages. Front Immunol 2018; 8:2013. [PMID: 29387067 PMCID: PMC5776175 DOI: 10.3389/fimmu.2017.02013] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/28/2017] [Indexed: 01/18/2023] Open
Abstract
Brucella spp. impedes the production of pro-inflammatory cytokines by its outer membrane protein Omp25 in order to promote survival and immune evasion. However, how Omp25 regulates tumor necrosis factor (TNF-α) expression in different mammalian macrophages remains unclear. In this study, we investigated the potential mechanisms by which Omp25 regulates TNF-α expression and found that Omp25-deficient mutant of B. suis exhibited an enhanced TNF-α expression compared with wild-type (WT) B. suis, whereas ectopic expression of Omp25 suppressed LPS-induced TNF-α production at both protein and mRNA levels in porcine alveolar macrophages (PAMs) and murine macrophage RAW264.7 cells. We observed that Omp25 protein as well as WT B. suis upregulated miR-146a, -181a, -181b, and -301a-3p and downregulated TRAF6 and IRAK1 in both PAMs and RAW264.7 cells, but separately upregulates miR-130a-3p in PAMs and miR-351-5p in RAW264.7. The upregulation of miR-146a or miR-351-5p attenuated TNF-α transcription by targeting TRAF6 and IRAK1 at the 3' untranslated region (UTR), resulting in inhibition of NF-kB pathway, while upregulation of miR-130a-3p, -181a, or -301a-3p correlated temporally with decreased TNF-α by targeting its 3'UTR in PAMs or RAW264.7 cells. In contrast, inhibition of miR-130a-3p, -146a, -181a, and -301a-3p attenuated the inhibitory effects of Omp25 on LPS-induced TNF-α in PAMs, while inhibition of miR-146a, -181a, -301a-3p, and -351-5p attenuated the inhibitory effects of Omp25 in RAW264.7, resulting in an increased TNF-α production and decreased intracellular bacteria in both cells. Taken together, our results demonstrate that Brucella downregulates TNF-α to promote intracellular survival via Omp25 regulation of different microRNAs in porcine and murine macrophages.
Collapse
Affiliation(s)
- Xiaomao Luo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiujuan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xingchen Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xuefeng Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Cong Han
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhengyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, United States.,Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
35
|
Hu S, He W, Du X, Yang J, Wen Q, Zhong XP, Ma L. IL-17 Production of Neutrophils Enhances Antibacteria Ability but Promotes Arthritis Development During Mycobacterium tuberculosis Infection. EBioMedicine 2017; 23:88-99. [PMID: 28821374 PMCID: PMC5605331 DOI: 10.1016/j.ebiom.2017.08.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 01/13/2023] Open
Abstract
To our knowledge, no studies have examined the role of IL-17 production by neutrophils in immune defense against Mycobacterium tuberculosis (MTB) infection and the pathogenesis of rheumatoid arthritis (RA) caused by MTB infection. Here, we determined that neutrophils express IL-17 in an autocrine IL-6- and IL-23-dependent manner during MTB infection. MTB H37Rv-induced IL-6 production was dependent on the NF-κB, p38, and JNK signaling pathways; however, IL-23 production was dependent on NF-κB and EKR in neutrophils. Furthermore, we found that Toll-like receptor 2 (TLR2) and TLR4 mediated the activation of the kinases NF-κB, p38, ERK, and JNK and the production of IL-6, IL-23, and IL-17 in neutrophils infected with MTB H37Rv. Autocrine IL-17 produced by neutrophils played a vital role in inhibiting MTB H37Rv growth by mediating reactive oxygen species production and the migration of neutrophils in the early stages of infection. However, IL-17 production by neutrophils contributed to collagen-induced arthritis development during MTB infection. Our findings identify a protective mechanism against mycobacteria and the pathogenic role of MTB in arthritis development.
Collapse
Affiliation(s)
- Shengfeng Hu
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Wenting He
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xialin Du
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Jiahui Yang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Ping Zhong
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China; Department of Pediatrics, Division of Allergy and Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
36
|
Su Y, Li D, Xing Y, Wang H, Wang J, Yuan J, Wang X, Cui F, Yin Y, Zhang X. Subcutaneous Immunization with Fusion Protein DnaJ-ΔA146Ply without Additional Adjuvants Induces both Humoral and Cellular Immunity against Pneumococcal Infection Partially Depending on TLR4. Front Immunol 2017; 8:686. [PMID: 28659923 PMCID: PMC5466963 DOI: 10.3389/fimmu.2017.00686] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/26/2017] [Indexed: 01/13/2023] Open
Abstract
Subunit vaccines that are poorly immunogenic are often combined with adjuvants for immunization. Our previous research identified a pneumolysin variant (ΔA146Ply), a Toll-like receptor 4 agonist, that was an effective adjuvant in the protection of fusion protein DnaJ-ΔA146Ply against mucosal Streptococcus pneumoniae infections. For pneumococcal vaccines, World Health Organization recommend injection as a regular vaccination approach. Subcutaneous immunization is a common and effective method of injection, so we explored the immunity mechanism of subcutaneous immunization with DnaJ-ΔA146Ply. We found that mice immunized subcutaneously with fusion proteins ΔA146Ply-DnaJ and DnaJ-ΔA146Ply produced a higher anti-DnaJ IgG titer than when DnaJ alone was administered. DnaJ-ΔA146Ply induced both B-cell and T-cell-dependent protection against both colonization and lethal pneumococcal infections. Levels of IFN-γ, IL-4, and IL-17A were also elevated in DnaJ-ΔA146Ply immunized mice. However, all these effects were negated in TLR4-/- mice compared to WT mice immunized with DnaJ-ΔA146Ply. B-cell-deficient μMT mice, nude mice, IFN-γ-/-, and IL-4-/- mice immunized with DnaJ-ΔA146Ply could not resist infection with pneumococci. IL-17A-/- and TLR4-/- mice did not benefit from DnaJ-ΔPly immunization in colonization experiments although their survival was not impaired compared with WT mice. Collectively, our data indicated that ΔA146Ply can be a potential subcutaneous adjuvant, and the DnaJ-ΔA146Ply fusion protein induces both humoral and cellular immune response to resist S. pneumoniae infection. The protective effect of colonization also depends on TLR4.
Collapse
Affiliation(s)
- Yufeng Su
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China.,Department of Laboratory Medicine, People's Hospital of Changshou, Chongqing, China
| | - Dagen Li
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China.,Department of Laboratory Medicine, People's Hospital of Changshou, Chongqing, China
| | - Yan Xing
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Jian Wang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Jun Yuan
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Xiaofang Wang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Fang Cui
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| |
Collapse
|
37
|
Lankarani KB, Honarvar B, Athari SS. The Mechanisms Underlying Helicobacter Pylori-Mediated Protection against Allergic Asthma. TANAFFOS 2017; 16:251-259. [PMID: 29849681 PMCID: PMC5971755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Helicobacter pylori, a gram negative pathogen, infects the stomach and gastrointestinal tract and causes pathological damage to these organs. H. pylori infection is more prevalent among people living in developing countries. Allergic asthma is a chronic inflammatory disease of the airways. Hyperinflation, hyperresponsiveness, and abnormal immunological and inflammatory processes in respiratory airways typically occur during an asthma attack. The results of recent studies have suggested an association between H. pylori and asthma risk. However, the role of H. pylori infection in the pathophysiology of asthma is still a matter of debate. The results of some studies indicate an association between H. pylori infection and protection against allergic asthma. Exposure to infectious agents might educate the immune system and provide protection against allergic diseases. H. pylori inflammation also changes gastric hormonal levels and could influence the autonomic nervous system. T-regs could be influenced by the immunological response to H. pylori and then inhibit the Th-2-mediated allergic response. Therefore, H. pylori might play a protective role against asthma. H. pylori can also reduce gastro-esophageal reflux, which is an asthma stimulator. High loads of H. pylori are not always present during infection. It is not definitely clear whether H. pylori is a pathogen or simply an opportunist. It has been suggested that early exposure to H. pylori prevents development of pediatric asthma. Therefore, it is possible that therapeutic products made from H. pylori can be used for the treatment or prevention of asthma.
Collapse
Affiliation(s)
- Kamran Bagheri Lankarani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behnam Honarvar
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Shamsadin Athari
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
38
|
Sakai J, Cammarota E, Wright JA, Cicuta P, Gottschalk RA, Li N, Fraser IDC, Bryant CE. Lipopolysaccharide-induced NF-κB nuclear translocation is primarily dependent on MyD88, but TNFα expression requires TRIF and MyD88. Sci Rep 2017; 7:1428. [PMID: 28469251 PMCID: PMC5431130 DOI: 10.1038/s41598-017-01600-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/29/2017] [Indexed: 01/12/2023] Open
Abstract
TLR4 signalling through the MyD88 and TRIF-dependent pathways initiates translocation of the transcription factor NF-κB into the nucleus. In cell population studies using mathematical modeling and functional analyses, Cheng et al. suggested that LPS-driven activation of MyD88, in the absence of TRIF, impairs NF-κB translocation. We tested the model proposed by Cheng et al. using real-time single cell analysis in macrophages expressing EGFP-tagged p65 and a TNFα promoter-driven mCherry. Following LPS stimulation, cells lacking TRIF show a pattern of NF-κB dynamics that is unaltered from wild-type cells, but activation of the TNFα promoter is impaired. In macrophages lacking MyD88, there is minimal NF-κB translocation to the nucleus in response to LPS stimulation, and there is no activation of the TNFα promoter. These findings confirm that signalling through MyD88 is the primary driver for LPS-dependent NF-κB translocation to the nucleus. The pattern of NF-κB dynamics in TRIF-deficient cells does not, however, directly reflect the kinetics of TNFα promoter activation, supporting the concept that TRIF-dependent signalling plays an important role in the transcription of this cytokine.
Collapse
Affiliation(s)
- Jiro Sakai
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Eugenia Cammarota
- Sector of Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - John A Wright
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Pietro Cicuta
- Sector of Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Rachel A Gottschalk
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institute of Heath, Bethesda, MD, 20892, USA
| | - Ning Li
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institute of Heath, Bethesda, MD, 20892, USA
| | - Iain D C Fraser
- Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institute of Heath, Bethesda, MD, 20892, USA
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom.
| |
Collapse
|
39
|
Dey S, Bishayi B. Effect of iNOS inhibitor LNMMA along with antibiotics Chloramphenicol or Ofloxacin in murine peritoneal macrophages regulates S.aureus infection as well as inflammation: An in vitro study. Microb Pathog 2017; 105:307-320. [PMID: 28242423 DOI: 10.1016/j.micpath.2017.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 12/15/2022]
Abstract
Death due to sepsis by S. aureus is rapidly increasing because of their potent weaponries against macrophage mediated killing. Macrophages serve as intracellular reservoirs of S. aureus. Although significant resources have been invested during the last decade in new treatments for sepsis, only antibiotic therapy has failed to improve outcomes. Moreover the host pathogen interaction resulted in host cell death triggering inflammation. So, successful therapy requires amalgamation of therapies to delineate pathogen along with providing protection to host cell. With this idea, LNMMA, the iNOS inhibitor is used along with antibiotics Ofloxacin or Chloramphenicol on S. aureus infected mouse peritoneal macrophage. ROS like H2O2, O2- production has been measured. NO inhibition by iNOS inhibitor and antioxidant levels has been analysed. COX2, TLR2 and iNOS expression along with proinflammatory cytokine level was studied. It was found that the use of iNOS inhibitor LNMMA along with antibiotics not only enhances bacterial clearance but also decreases proinflammatory responses in Staphylococcus aureus infected macrophages. Inhibition of TLR2 as well as COX2 has also been found in combined treatment groups. The use of iNOS inhibitor LNMMA plus Ofloxacin or Chloramphenicol pretreatment enhanced bacterial clearance by increasing ROS. Decreases in NO protect the cell from harmful peroxynitril as well as inflammatory damage by changes in iNOS, COX2 activity along with reduced proinflammatory cytokines like TNFα, IFNγ, IL1-β etc. Changes in antioxidant level has been found. This in-vitro realm of augmented bacterial clearance and regulated inflammation may be considered as a novel and important therapeutic intervention.
Collapse
Affiliation(s)
- Somrita Dey
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 A.P.C. Road, Calcutta 700009, West Bengal, India.
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 A.P.C. Road, Calcutta 700009, West Bengal, India.
| |
Collapse
|
40
|
Gunal O, Yigit S, Yalcın AD, Celik B, Barut S, Demir O, Ates O, Duygu F, Kaya S, Rustemoglu A, Sezer O. The IL4-VNTR P1 Allele, IL4-VNTR P2P2 Genotype, and IL4-VNTR_IL6-174CG P2P1-GG Genotype Are Associated with an Increased Risk of Brucellosis. Jpn J Infect Dis 2017; 70:61-64. [PMID: 27169944 DOI: 10.7883/yoken.jjid.2015.550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study, associations between IL-4, IL-6, and macrophage migration inhibitory factor (MIF) polymorphisms and susceptibility to brucellosis were investigated. Consecutive adult patients with no known treatment against brucellosis and who did not have any other autoimmune and/or chronic disorders, were included in this study (n = 120, Group I). Age and sex-matched controls who had no other autoimmune and/or chronic disorders were also included (n = 120, healthy volunteers, Group II). The IL4_P2P2 genotype, IL4_P1 allele, and IL4_variable number of tandem repeats (VNTR)_IL6-174CG compound genotype were found to be more frequent in the patient group than in control subjects. There were significant differences between the patients and controls with respect to the frequencies of the IL4_P2P2 genotype (77.5% versus 87.5%; p = 0.001; OR, 0.36; 95% confidence interval [CI], 0.21-0.62) and the IL4_P1 allele (12.1% versus 6.7%; p = 0.030; OR, 0.92; CI, 1.02-3.64). The IL4-VNTR_IL6-174CG compound genotype was also present at a significantly higher frequency in the patient group than in control subjects (11.7% versus 4.2%; p = 0.027, OR, 3.04; CI, 1.06-8.68). No statistically significant differences in the frequencies of the IL-6-174, MIF-173, IL-4_P1P1, and IL4_P2P1 genotypes were observed between patients and control subjects. The IL4_VNTR P1 allele, P2P2 genotypes, and IL4-VNTR_IL6-174CG P2P1-GG genotypes are common in southern Turkey, and carriers of these polymorphisms are susceptible to brucellosis.
Collapse
Affiliation(s)
- Ozgur Gunal
- Department of Infectious Diseases and Clinical Microbiology, Samsun Training and Research Hospital
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Leptospira surface adhesin (Lsa21) induces Toll like receptor 2 and 4 mediated inflammatory responses in macrophages. Sci Rep 2016; 6:39530. [PMID: 27996041 PMCID: PMC5172228 DOI: 10.1038/srep39530] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/23/2016] [Indexed: 12/18/2022] Open
Abstract
Leptospirosis is zoonotic and emerging infectious disease of global importance. Little is understood about Leptospira pathogenesis and host immune response. In the present work we have investigated how Leptospira modulates the host innate immune response mediated by Toll-like receptors (TLRs) via surface exposed proteins. We screened Leptospira outer membrane/surface proteins for their ability to activate/inhibit TLR2/4 signaling in HEK293 cell lines. Of these the 21 kDa Leptospira surface adhesin, Lsa21 had strong TLR2 and TLR4 activity leading to production of proinflammatory cytokines and expression of costimulatory molecules in mouse macrophages. This activity of Lsa21 on innate response was dependent on activation of mitogen activated protein kinases (MAPKs) via stimulating the rapid phosphorylation of p38, JNK and activation of transcription factor NF-κB. Additionally, neutralizing antibodies against TLR2 and TLR4 significantly inhibited cytokine secretion and attenuated Lsa21 induced phosphorylation of p38 and JNK. Furthermore, Lsa21 induced cytokine levels were significantly lower in TLR2-/- and TLR4-/- than in wild type mouse macrophage cell lines. Confocal microscopy and molecular docking confirmed that Lsa21 interacted with both TLR2 and TLR4. These results indicate that Lsa21 is a potent TLR2 and TLR4 agonist that induces strong innate response and may play important role in Leptospira pathogenesis.
Collapse
|
42
|
Liu J, Cao X. Cellular and molecular regulation of innate inflammatory responses. Cell Mol Immunol 2016; 13:711-721. [PMID: 27818489 PMCID: PMC5101451 DOI: 10.1038/cmi.2016.58] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 10/16/2016] [Indexed: 02/07/2023] Open
Abstract
Innate sensing of pathogens by pattern-recognition receptors (PRRs) plays essential roles in the innate discrimination between self and non-self components, leading to the generation of innate immune defense and inflammatory responses. The initiation, activation and resolution of innate inflammatory response are mediated by a complex network of interactions among the numerous cellular and molecular components of immune and non-immune system. While a controlled and beneficial innate inflammatory response is critical for the elimination of pathogens and maintenance of tissue homeostasis, dysregulated or sustained inflammation leads to pathological conditions such as chronic infection, inflammatory autoimmune diseases. In this review, we discuss some of the recent advances in our understanding of the cellular and molecular mechanisms for the establishment and regulation of innate immunity and inflammatory responses.
Collapse
Affiliation(s)
- Juan Liu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China
- National Key Laboratory of Medical Molecular Biology, Department of Immunology & Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
43
|
Li Y, Lian D, Deng S, Zhang X, Zhang J, Li W, Bai H, Wang Z, Wu H, Fu J, Han H, Feng J, Liu G, Lian L, Lian Z. Efficient production of pronuclear embryos in breeding and nonbreeding season for generating transgenic sheep overexpressing TLR4. J Anim Sci Biotechnol 2016; 7:38. [PMID: 27408716 PMCID: PMC4940989 DOI: 10.1186/s40104-016-0096-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 06/13/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Brucella is a zoonotic Gram-negative pathogen that causes abortion and infertility in ruminants and humans. TLR4 is the receptor for LPS which can recognize Brucella and initiate antigen-presenting cell activities that affect both innate and adaptive immunity. Consequently, transgenic sheep over-expressing TLR4 are an suitable model to investigate the effects of TLR4 on preventing Brucellosis. In this study, we generated transgenic sheep overexpressing TLR4 and aimed to evaluate the effects of different seasons (breeding and non-breeding season) on superovulation and the imported exogenous gene on growth. RESULTS In total of 43 donor ewes and 166 recipient ewes in breeding season, 37 donor ewes and 144 recipient ewes in non-breeding season were selected for super-ovulation and injected embryo transfer to generate transgenic sheep. Our results indicated the no. of embryos recovered of donors and the rate of pronuclear embryos did not show any significant difference between breeding and non-breeding seasons (P > 0.05). The positive rate of exogenous TLR4 tested were 21.21 % and 22.58 % in breeding and non-breeding season by Southern blot. The expression level of TLR4 in the transgenic sheep was 1.5 times higher than in the non-transgenic group (P < 0.05). The lambs overexpressing TLR4 had similar growth performance with non-transgenic lambs, and the blood physiological parameters of transgenic and non-transgenic were both in the normal range and did not show any difference. CONCLUSIONS Here we establish an efficient platform for the production of transgenic sheep by the microinjection of pronuclear embryos during the whole year. The over-expression of TLR4 had no adverse effect on the growth of the sheep.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Di Lian
- Department of Public Health, Benedictine University, Lisle, IL 60532 USA
| | - Shoulong Deng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | | | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin, 300381 China
| | - Wenting Li
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Hai Bai
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Zhixian Wang
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Hongping Wu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Juncai Fu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Hongbing Han
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Jianzhong Feng
- Tianjin Institute of Animal Sciences, Tianjin, 300381 China
| | - Guoshi Liu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Ling Lian
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Zhengxing Lian
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
44
|
Expression of cytokine and apoptosis-related genes in bovine peripheral blood mononuclear cells stimulated with Brucella abortus recombinant proteins. Vet Res 2016; 47:30. [PMID: 26864657 PMCID: PMC4750197 DOI: 10.1186/s13567-016-0311-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 01/12/2016] [Indexed: 01/13/2023] Open
Abstract
Brucellosis is a clinically and economically important disease. Therefore, eradication programs of the disease have been implemented in several countries. One hurdle in these programs is the detection of infected animals at the early stage. Although the protein antigens as diagnostic antigens have recently received attention, the exact mechanisms at the beginning of immune responses are not yet known. Therefore, genes encoding five B. abortus cellular proteins were cloned and the expressed recombinant proteins were purified. The expression of several cytokine genes (IL-1β, IL-4, IL-6, IL-12p40, IFN-γ, TNF-α, and iNOS) was analyzed in bovine peripheral blood mononuclear cells (bPBMC) after stimulation with the recombinant proteins. Three apoptosis-related genes, Bax, Bcl-2, and TLR4, were also included in the analysis to find out the adverse effects of the proteins to the cells. Each protein induced different patterns of cytokine expression depending on the stimulation time and antigen dose. Expression of IL-6, IL-12p40, and IFN-γ was induced with all of the proteins while IL-1β, IL-4, TNF-α, and iNOS gene expression was not. Expression of apoptosis-related genes was not altered except TLR4. These results suggest that the cellular antigens of B. abortus induce both humoral and cellular immunity via the production of IL-6, IL-12p40, and IFN-γ in bPBMC without exerting any adverse effects on the cells.
Collapse
|
45
|
MicroRNA-381 Negatively Regulates TLR4 Signaling in A549 Cells in Response to LPS Stimulation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:849475. [PMID: 26688820 PMCID: PMC4672107 DOI: 10.1155/2015/849475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/05/2015] [Accepted: 11/08/2015] [Indexed: 01/11/2023]
Abstract
It is widely reported that miR-381 is dysregulated in various tumors. However, the specific role of miR-381 in respiratory infections has not been reported. To probe this role, A549 cells were pretreated with 1 μg/mL LPS for 24 h. The level of miR-381 was detected using RT-qPCR. The expression of proinflammatory cytokines was determined using an ELISA kit and western blotting. Bioinformatics analysis was used to predict the target genes of miR-381, and a luciferase reporter assay was used to validate the expression of the target genes. miR-381 expression was increased in A549 cells treated with LPS, which is a ligand of TLRs. Further study revealed that the overexpression of miR-381 increased the activity of NF-κB signaling, thereby increasing the expression of IL-6, TNFα, and COX-2. Further study revealed that IκBα was a target gene of miR-381. The upregulation of miR-381 under LPS stimulation contributes to respiratory infections mainly by targeting IκBα.
Collapse
|
46
|
Yu XH, Zhang J, Zheng XL, Yang YH, Tang CK. Interferon-γ in foam cell formation and progression of atherosclerosis. Clin Chim Acta 2015; 441:33-43. [DOI: 10.1016/j.cca.2014.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 11/28/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
|
47
|
Xu D, Xiong H, Xiao Z, He J, Liao Q, Xue L, Wang N, Yang Q. Uterine Cytokine Profile in a Rat Model of Endometritis. Am J Reprod Immunol 2014; 73:214-20. [DOI: 10.1111/aji.12330] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/17/2014] [Indexed: 01/13/2023] Open
Affiliation(s)
- Daojun Xu
- College of Veterinary Medicine; Hunan Agricultural University; Changsha China
| | - Hailin Xiong
- College of Veterinary Medicine; Hunan Agricultural University; Changsha China
| | - Zhonglin Xiao
- College of Veterinary Medicine; Hunan Agricultural University; Changsha China
| | - Jun He
- College of Animal Science and Technology; Hunan Agricultural University; Changsha China
| | - Qing Liao
- College of Veterinary Medicine; Hunan Agricultural University; Changsha China
| | - Liqun Xue
- College of Veterinary Medicine; Hunan Agricultural University; Changsha China
| | - Naidong Wang
- College of Veterinary Medicine; Hunan Agricultural University; Changsha China
| | - Qing Yang
- College of Veterinary Medicine; Hunan Agricultural University; Changsha China
| |
Collapse
|