1
|
Wang Z, Lu J, Liu X, Liu J, Li J. Identification of key exosomes-related genes in hepatitis B virus-related hepatocellular carcinoma. Technol Health Care 2025; 33:1343-1357. [PMID: 40331539 DOI: 10.1177/09287329241296353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
One of the primary risk factors for hepatocellular carcinoma (HCC) is the hepatitis B virus (HBV). Exosomes have a significant impact on the dissemination of HBV-infected HCC. This study aimed to screen HBV exosome-related hub genes in HCC for a better understanding of the HCC pathogenic mechanism. First, multiple HBV-induced HCC datasets were collected from the Gene Expression Omnibus (GEO) database, and the exosome-related gene set was obtained from relevant literature. Nine HBV-related HCC exosome hub genes (HP, C9, APOA1, PON1, TTR, LPA, FCN2, FCN3, and MBL2) were selected through differential analysis and network analysis. An analysis of the receiver operation characteristic (ROC) revealed that these genes had good diagnostic value. These hub genes were primarily enriched in biological processes such as the citrate cycle tca cycle, phenylalanine metabolism, and fatty acid metabolism, according to gene set enrichment analysis (GSEA). Furthermore, this study predicted the miRNA (hsa-miR-590-5p) targeting LPA, as well as 12 lncRNAs (AL121655, SAP30-DT, LINC00472, etc.) targeting hsa-miR-590-5p. Finally, nelarabine, methylprednisolone, and methylprednisolone were predicted to be possible medications that target the hub gene based on the CellMiner database. To sum up, this work was crucial for discovering new biomarkers and comprehending the function of exosome-related genes in the growth of HBV-infected HCC.
Collapse
Affiliation(s)
- Zhuoyi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College of Zhejiang Shuren University, Hangzhou, China
| | - Jianfang Lu
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College of Zhejiang Shuren University, Hangzhou, China
| | - Xiangyan Liu
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College of Zhejiang Shuren University, Hangzhou, China
| | - Jingfeng Liu
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College of Zhejiang Shuren University, Hangzhou, China
| | - Jianhui Li
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College of Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
2
|
Zheng H, Xu B, Fan Y, Tuekprakhon A, Stamataki Z, Wang F. The role of immune regulation in HBV infection and hepatocellular carcinogenesis. Front Immunol 2025; 16:1506526. [PMID: 40160817 PMCID: PMC11949809 DOI: 10.3389/fimmu.2025.1506526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025] Open
Abstract
Hepatitis B virus (HBV) infection is a well-documented independent risk factor for developing hepatocellular carcinoma (HCC). Consequently, extensive research has focused on elucidating the mechanisms by which HBV induces hepatocarcinogenesis. The majority of studies are dedicated to understanding how HBV DNA integration into the host genome, viral RNA expression, and the resulting protein transcripts affect cellular processes and promote the malignant transformation of hepatocytes. However, considering that most acute HBV infections are curable, immune suppression potentially contributes to the critical challenges in the treatment of chronic infections. Regulatory T cells (Tregs) are crucial in immune tolerance. Understanding the interplay of Tregs within the liver microenvironment following HBV infection could offer novel therapeutic approaches for treating HBV infections and preventing HBV-related HCC. Two viewpoints to targeting Tregs in the liver microenvironment include means of reducing their inhibitory function and decreasing Treg frequency. As these strategies may disrupt the immune balance and lead to autoimmune responses, careful and comprehensive profiling of the patient's immunological status and genetic factors is required to successfully employ this promising therapeutic approach.
Collapse
Affiliation(s)
- Hailong Zheng
- Department of Hepatobiliary, Pancreatic, and Spleen Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Bingchen Xu
- Department of Hepatobiliary, Pancreatic, and Spleen Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yiyu Fan
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation & Immunology, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Aekkachai Tuekprakhon
- Department of Hepatobiliary, Pancreatic, and Spleen Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation & Immunology, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Zania Stamataki
- Centre for Liver and Gastrointestinal Research, School of Infection, Inflammation & Immunology, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom
| | - Fei Wang
- Department of Hepatobiliary, Pancreatic, and Spleen Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| |
Collapse
|
3
|
Athira AP, Sreekanth S, Chandran A, Lahon A. Dual Role of Extracellular Vesicles as Orchestrators of Emerging and Reemerging Virus Infections. Cell Biochem Biophys 2025; 83:159-175. [PMID: 39225901 DOI: 10.1007/s12013-024-01495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Current decade witnessed the emergence and re-emergence of many viruses, which affected public health significantly. Viruses mainly utilize host cell machinery to promote its growth, and spread of these diseases. Numerous factors influence virus-host cell interactions, of which extracellular vesicles play an important role, where they transfer information both locally and distally by enclosing viral and host-derived proteins and RNAs as their cargo. Thus, they play a dual role in mediating virus infections by promoting virus dissemination and evoking immune responses in host organisms. Moreover, it acts as a double-edged sword during these infections. Advances in extracellular vesicles regulating emerging and reemerging virus infections, particularly in the context of SARS-CoV-2, Dengue, Ebola, Zika, Chikungunya, West Nile, and Japanese Encephalitis viruses are discussed in this review.
Collapse
Affiliation(s)
- A P Athira
- Department of Viral Vaccines, Institute of Advanced Virology, Bio 360 Life Science Park, Thiruvananthapuram, Kerala, India
| | - Smrithi Sreekanth
- Department of Viral Vaccines, Institute of Advanced Virology, Bio 360 Life Science Park, Thiruvananthapuram, Kerala, India
| | - Ananthu Chandran
- Department of Viral Vaccines, Institute of Advanced Virology, Bio 360 Life Science Park, Thiruvananthapuram, Kerala, India
| | - Anismrita Lahon
- Department of Viral Vaccines, Institute of Advanced Virology, Bio 360 Life Science Park, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
4
|
Lu Y, Lu Y. Clinical predictive factors of the efficacy of immune checkpoint inhibitors and kinase inhibitors in advanced hepatocellular cancer. Clin Transl Oncol 2025; 27:1142-1154. [PMID: 39158804 PMCID: PMC11913906 DOI: 10.1007/s12094-024-03644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly aggressive tumor associated with significant morbidity and mortality rates. Combination therapy with immune checkpoint inhibitors (ICIs) and kinase inhibitors has emerged as a promising strategy for liver cancer treatment in recent years. However, the clinical factors predicting the outcomes of combination therapy in patients with advanced liver cancer remain uncertain. Therefore, this study investigated the relationships between clinical predictors and the efficacy of ICI plus kinase inhibitor therapy to personalize treatment plans. METHODS We retrospectively enrolled 98 patients who received combination treatment with ICIs and kinase inhibitors for advanced HCC. Based on blood lipid levels and other clinical factors prior to treatment, we investigated potential biomarkers that could predict treatment responses in this patient population. RESULTS Mean progression-free survival (PFS) and overall survival (OS) in this cohort were 10.1 and 17.2 months, respectively. Via multivariate analysis, the absence of extrahepatic metastasis, the absence of portal vein thrombosis (PVT), neutrophil-to-lymphocyte ratio (NLR) < 3.225, platelet-to-lymphocyte ratio (PLR) < 140.75, and prognostic nutritional index (PNI) ≥ 37.25 were identified as independent predictors of improved PFS. Factors associated with better OS included PLR < 140.75 and total cholesterol (TC) < 3.46 mmol/L. Univariate analysis identified significant associations of Eastern Cooperative Oncology Group performance status (ECOG PS), hepatitis B virus (HBV) DNA levels, Child-Pugh classification, alpha-fetoprotein (AFP), TC, and the receipt of regorafenib with PFS. Additionally, ECOG PS, Child-Pugh classification, AFP, PVT, NLR, PNI, and the receipt of regorafenib were significantly associated with OS. CONCLUSIONS PLR and TC were potential clinical predictive factors for survival outcomes in patients with advanced HCC who received ICI/kinase inhibitor combination therapy. It is important to know the clinical characteristics of patients prior to treatment initiation to optimize outcomes.
Collapse
Affiliation(s)
- Yunyun Lu
- Department of Radiation Oncology, Ningbo Medical Center Lihuili Hospital, Ningbo, 315048, Zhejiang, China
| | - Yi Lu
- Department of Radiation Oncology, Ningbo Medical Center Lihuili Hospital, Ningbo, 315048, Zhejiang, China.
| |
Collapse
|
5
|
Kostas JC, Brainard CS, Cristea IM. A Primer on Proteomic Characterization of Intercellular Communication in a Virus Microenvironment. Mol Cell Proteomics 2025; 24:100913. [PMID: 39862905 PMCID: PMC11889360 DOI: 10.1016/j.mcpro.2025.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Intercellular communication is fundamental to multicellular life and a core determinant of outcomes during viral infection, where the common goals of virus and host for persistence and replication are generally at odds. Hosts rely on encoded innate and adaptive immune responses to detect and clear viral pathogens, while viruses can exploit or disrupt these pathways and other intercellular communication processes to enhance their spread and promote pathogenesis. While virus-induced signaling can result in systemic changes to the host, striking alterations are observed within the cellular microenvironment directly surrounding a site of infection, termed the virus microenvironment (VME). Mechanisms employed by viruses to condition their VMEs are emerging and are critical for understanding the biology and pathologies of viral infections. Recent advances in experimental approaches, including proteomic methods, have enabled study of the VME in unprecedented detail. In this review article, we provide a primer on proteomic approaches used to study how viral infections alter intercellular communication, highlighting the ways in which these approaches have been implemented and the exciting biology they have uncovered. First, we consider the different molecules secreted by an infected cell, including proteins, either soluble or contained within extracellular vesicles, and metabolites. We further discuss the modalities of interactions facilitated by alteration at the cell surface of infected cells, including immunopeptide presentation and interactions with the extracellular matrix. Finally, we review spatial profiling approaches that have allowed distinguishing how specific subpopulations of cells within a VME respond to infection and alter their protein composition, discussing valuable insights these methods have offered.
Collapse
Affiliation(s)
- James C Kostas
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Colter S Brainard
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.
| |
Collapse
|
6
|
Bi W, Li X, Jiang Y, Gao T, Zhao H, Han Q, Zhang J. Tumor-derived exosomes induce neutrophil infiltration and reprogramming to promote T-cell exhaustion in hepatocellular carcinoma. Theranostics 2025; 15:2852-2869. [PMID: 40083930 PMCID: PMC11898284 DOI: 10.7150/thno.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/22/2025] [Indexed: 03/16/2025] Open
Abstract
Rationale: High neutrophil infiltration in hepatocellular carcinoma (HCC) is associated with a poor prognosis in patients with HCC. Tumor-derived exosomes (TDEs) have been proven to be important in the reprogramming of tumor-associated neutrophils (TANs), but the roles and mechanisms have not been fully clarified. Methods: The roles of HCC-exosome-reprogrammed neutrophils on tumor progression were evaluated in the DEN/CCl4-induced HCC mouse model by blocking neutrophil infiltration, depleting neutrophil, and neutrophil adoptive transfer. Transcriptome sequencing and flow cytometry were performed to investigate the effects of HCC exosomes on the phenotype and function of neutrophils. The mobilization and apoptosis of neutrophils were evaluated by the Transwell experiment and Annexin V/7-AAD staining, respectively. Moreover, we detected the effects of HCC-exosome-reprogrammed neutrophils on T cells by flow cytometry. Next, we used the NF-κB pathway inhibitor JSH-23 and miR-362-5p inhibitor or mimic to determine the molecular mechanisms. Lastly, we constructed the miR-362-5p sponge to validate its targeted therapeutic potential. Results: We found that HCC exosomes induced neutrophil infiltration and T-cell exhaustion in the livers of DEN/CCl4-induced HCC mice and promoted tumor progression. Blocking neutrophil infiltration and depleting neutrophils diminished these promotive effects of HCC exosomes. In addition, HCC exosome-reprogrammed neutrophils display proinflammatory and protumor phenotypes, and can directly induce T-cell exhaustion in vitro. The transfer of HCC exosome-reprogrammed neutrophils exacerbated tumor progression and induced T-cell exhaustion, as evidenced by the downregulation of IFN-γ and TNF-α, and the upregulation of PD-1 and Tim3 in T cells. Mechanistically, we found that HCC exosomes upregulate the expression of miR-362-5p in neutrophils and activate the NF-κB signaling pathway by targeting CYLD, promoting the survival and recruitment of neutrophils. In HCC mice, blocking miR-362-5p suppressed neutrophil infiltration, attenuated T-cell exhaustion, and suppressed HCC progression. Conclusions: This study clarified the roles of HCC exosomes on neutrophil infiltration and reprogramming and identified a potential target miR-362-5p for HCC treatment.
Collapse
Affiliation(s)
- Wenchao Bi
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xue Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yu Jiang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Tongtong Gao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
7
|
Ghoshal B, Jhunjhunwala S. A game of hide-and-seek: how extracellular vesicles evade the immune system. Drug Deliv Transl Res 2025:10.1007/s13346-025-01789-w. [PMID: 39843837 DOI: 10.1007/s13346-025-01789-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2024] [Indexed: 01/24/2025]
Abstract
Extracellular vesicles (EVs) are heterogeneously sized, cell-derived nanoparticles operating as proficient mediators of intercellular communication. They are produced by normal as well as diseased cells and carry a variety of cargo. While the molecular details of EV biology have been worked out over the past two decades, one question that continues to intrigue many is how are EVs able to evade the phagocytic immune cells while also being effectively internalized by the target cell or tissue. While some of the components that facilitate this process have started to be identified, many mechanisms are yet to be dissected. This review summarises some of the key mechanisms that cancer cell-derived and viral infected cell-derived EVs utilize to evade the immune system. It will discuss the diverse cloaking mechanisms, in the form of membrane proteins and cargo content that these EVs utilize to enhance pathogenesis. Further, it will highlight the different strategies that have been used to design EVs to escape the immune system, thereby increasing their circulation time with no major toxic effects in vivo. An understanding of the potential EV components that allow better immune evasion can be used to bioengineer EVs with better circulation times for therapeutic purposes.
Collapse
Affiliation(s)
- Bartika Ghoshal
- Department of Bioengineering, Indian Institute of Science, Bengaluru, 560012, India.
| | | |
Collapse
|
8
|
Ganesan M, Pathania AS, Bybee G, Kharbanda KK, Poluektova LY, Osna NA. Ethanol Disrupts the Protective Crosstalk Between Macrophages and HBV-Infected Hepatocytes. Biomolecules 2025; 15:57. [PMID: 39858451 PMCID: PMC11761873 DOI: 10.3390/biom15010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/27/2024] [Accepted: 01/01/2025] [Indexed: 01/30/2025] Open
Abstract
About 296 million people worldwide are living with chronic hepatitis B viral (HBV) infection, and outcomes to end-stage liver diseases are potentiated by alcohol. HBV replicates in hepatocytes, but other liver non-parenchymal cells can sense the virus. In this study, we aimed to investigate the regulatory effects of macrophages on HBV marker and interferon-stimulated genes (ISGs) expressions in hepatocytes. This study was performed on HBV-replicating HepG2.2.15 cells and human monocyte-derived macrophages (MDMs). We found that exposure of HepG2.2.15 cells to an acetaldehyde-generating system (AGS) increased HBV RNA, HBV DNA, and cccDNA expressions and suppressed the activation of ISGs, APOBEC3G, ISG15, and OAS1. Supernatants collected from IFNα-activated MDMs decreased HBV marker levels and induced ISG activation in AGS-treated and untreated HepG2.215 cells. These effects were reversed by exposure of MDMs to ethanol and mimicked by treatment with exosome release inhibitor GW4869. We conclude that exosome-mediated crosstalk between IFN-activated macrophages and HBV-replicating hepatocytes plays a protective role via the up-regulation of ISGs and suppression of HBV replication. However, ethanol exposure to macrophages breaks this protection.
Collapse
Affiliation(s)
- Murali Ganesan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.G.); (A.S.P.); (G.B.); (L.Y.P.)
| | - Anup S. Pathania
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.G.); (A.S.P.); (G.B.); (L.Y.P.)
| | - Grace Bybee
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.G.); (A.S.P.); (G.B.); (L.Y.P.)
| | - Kusum K. Kharbanda
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA;
- Research Service, Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.G.); (A.S.P.); (G.B.); (L.Y.P.)
| | - Natalia A. Osna
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA; (M.G.); (A.S.P.); (G.B.); (L.Y.P.)
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68105, USA;
| |
Collapse
|
9
|
Chuang YC, Ou JHJ. Hepatitis B virus entry, assembly, and egress. Microbiol Mol Biol Rev 2024; 88:e0001424. [PMID: 39440957 DOI: 10.1128/mmbr.00014-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
SUMMARYHepatitis B virus (HBV) is an important human pathogen that chronically infects approximately 250 million people in the world, resulting in ~1 million deaths annually. This virus is a hepatotropic virus and can cause severe liver diseases including cirrhosis and hepatocellular carcinoma. The entry of HBV into hepatocytes is initiated by the interaction of its envelope proteins with its receptors. This is followed by the delivery of the viral nucleocapsid to the nucleus for the release of its genomic DNA and the transcription of viral RNAs. The assembly of the viral capsid particles may then take place in the nucleus or the cytoplasm and may involve cellular membranes. This is followed by the egress of the virus from infected cells. In recent years, significant research progresses had been made toward understanding the entry, the assembly, and the egress of HBV particles. In this review, we discuss the molecular pathways of these processes and compare them with those used by hepatitis delta virus and hepatitis C virus , two other hepatotropic viruses that are also enveloped. The understanding of these processes will help us to understand how HBV replicates and causes diseases, which will help to improve the treatments for HBV patients.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - J-H James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| |
Collapse
|
10
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Extracellular Vesicles in Viral Liver Diseases. Viruses 2024; 16:1785. [PMID: 39599900 PMCID: PMC11598962 DOI: 10.3390/v16111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Extracellular vesicles (EVs) are bilayer vesicles released by cells in the microenvironment of the liver including parenchymal and non-parenchymal cells. They are the third important mechanism in the communications between cells, besides the secretion of cytokines and chemokines and the direct cell-to-cell contact. The aim of this review is to discuss the important role of EVs in viral liver disease, as there is increasing evidence that the transportation of viral proteins, all types of RNA, and viral particles including complete virions is implicated in the pathogenesis of both viral cirrhosis and viral-related hepatocellular carcinoma. The biogenesis of EVs is discussed and their role in the pathogenesis of viral liver diseases is presented. Their use as diagnostic and prognostic biomarkers is also analyzed. Most importantly, the significance of possible novel treatment strategies for liver fibrosis and hepatocellular carcinoma is presented, although available data are based on experimental evidence and clinical trials have not been reported.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Greece;
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece;
| |
Collapse
|
11
|
Ebrahimi F, Modaresi Movahedi A, Sabbaghian M, Poortahmasebi V. A State-of-the-Art Review on the Recent Advances in Exosomes in Oncogenic Virus. Health Sci Rep 2024; 7:e70196. [PMID: 39558933 PMCID: PMC11570872 DOI: 10.1002/hsr2.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
Background and Aims Oncogenic viruses are responsible for approximately 12% of human malignancies, influencing various cancer processes through intricate interactions with host cells. Exosomes (EXOs), nanometric-sized microvesicles involved in cell communication, have emerged as critical mediators in these interactions. This review aims to explore the mechanisms by which EXOs produced by cells infected with oncogenic viruses promote cancer growth, enhance viral transmissibility, and act as immunomodulators. Methods A comprehensive review was conducted, focusing on recent studies highlighting the mechanisms by which EXOs facilitate the oncogenic potential of viruses. The analysis included the characterization of exosomal content, such as microRNAs (miRNAs) and proteins, and their effects on tumor microenvironments and immune responses. A search was performed using databases including PubMed, ScienceDirect, and Google Scholar. MeSH keywords related to EXOs, oncogenic viruses, and cancer were used to retrieve relevant review, systematic, and research articles. Results Findings indicate that EXOs from oncogenic virus-infected cells carry viral components that facilitate infection and inflammation. These EXOs alter the tumor microenvironment, contributing to the development of virus-associated cancers. Additionally, the review highlights the growing interest among researchers regarding the implications of EXOs in cancer progression and their potential role in enhancing the oncogenicity of viruses. Conclusion The findings underscore the pivotal role of EXOs in mediating the oncogenic effects of viruses, suggesting that targeting exosomal pathways may provide new therapeutic avenues for managing virus-associated cancers. Further research is needed to fully elucidate the functional mechanisms of EXOs in viral oncogenesis.
Collapse
Affiliation(s)
- Fatemeh Ebrahimi
- Department of Bacteriology and VirologyFaculty of Medical Sciences, Tabriz University of Medical SciencesTabrizIran
| | - Ali Modaresi Movahedi
- Department of Medical Parasitology and MycologyFaculty of Medical Sciences, Shahid Sadoughi University of Medical SciencesYazdIran
| | - Mohammad Sabbaghian
- Department of Bacteriology and VirologyFaculty of Medical Sciences, Tabriz University of Medical SciencesTabrizIran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and VirologyFaculty of Medical Sciences, Tabriz University of Medical SciencesTabrizIran
| |
Collapse
|
12
|
Li S, Cheng F, Zhang Z, Xu R, Shi H, Yan Y. The role of hepatocyte-derived extracellular vesicles in liver and extrahepatic diseases. Biomed Pharmacother 2024; 180:117502. [PMID: 39357327 DOI: 10.1016/j.biopha.2024.117502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Extracellular vesicles (EVs) are vesicle-like bodies with a double membrane structure that are released from the cell membrane or secreted by cells into the extracellular environment. These include exosomes, microvesicles, and apoptotic bodies. There is growing evidence indicating that the composition of liver cell contents changes following injury. The quantity of EVs and the biologically active substances they carry vary depending on the condition of the liver cells. Hepatocytes utilize EVs to modulate the functions of different liver cells and transfer them to distant organs via the systemic circulation, thereby playing a crucial role in intercellular communication. This review provides a concise overview of the research on the effects and potential mechanisms of hepatocyte-derived EVs (Hep-EVs) on liver diseases and extrahepatic diseases under different physiological and pathological conditions. Common liver diseases discussed include non-alcoholic fatty liver disease (NAFLD), viral hepatitis, alcoholic liver disease, drug-induced liver damage, and liver cancer. Given that NAFLD is the most prevalent chronic liver disease globally, this review particularly highlights the use of hepatocyte-derived EVs in NAFLD for disease progression, diagnosis, and treatment.
Collapse
Affiliation(s)
- Shihui Li
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Fang Cheng
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Zhuan Zhang
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Ruizi Xu
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Honglei Shi
- Wujin Hospital Affiliated With Jiangsu University, Changzhou Wujin People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213004, China; Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou 213017, China; Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou 213017, China.
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou 213017, China; Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou 213017, China; Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou 213017, China.
| |
Collapse
|
13
|
Chu YD, Chen MC, Yeh CT, Lai MW. Hijacking host extracellular vesicle machinery by hepatotropic viruses: current understandings and future prospects. J Biomed Sci 2024; 31:97. [PMID: 39369194 PMCID: PMC11453063 DOI: 10.1186/s12929-024-01063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/25/2024] [Indexed: 10/07/2024] Open
Abstract
Recent advances in studies exploring the roles of extracellular vesicles (EVs) in viral transmission and replication have illuminated hepatotropic viruses, such as hepatitis A (HAV), hepatitis B (HBV), hepatitis C (HCV), hepatitis D (HDV), and hepatitis E (HEV). While previous investigations have uncovered these viruses' ability to exploit cellular EV pathways for replication and transmission, most have focused on the impacts of exosomal pathways. With an improved understanding of EVs, four main subtypes, including exosomes, microvesicles, large oncosomes, and apoptotic bodies, have been categorized based on size and biogenic pathways. However, there remains a noticeable gap in comprehensive reviews summarizing recent findings and outlining future perspectives for EV studies related to hepatotropic viruses. This review aims to consolidate insights into EV pathways utilized by hepatotropic viruses, offering guidance for the future research direction in this field. By comprehending the diverse range of hepatotropic virus-associated EVs and their role in cellular communication during productive viral infections, this review may offer valuable insights for targeting therapeutics and devising strategies to combat virulent hepatotropic virus infections and the associated incidence of liver cancer.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
| | - Mi-Chi Chen
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan
- Department of Pediatric, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| | - Ming-Wei Lai
- Liver Research Center, Chang Gung Memorial Hospital, 5F., No. 15, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 333, Taiwan.
- Department of Pediatric, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
14
|
Paturel A, Casuscelli di Tocco F, Bousquet D, Plissonnier ML, Grand X, Tak H, Berby F, Scholtès C, Testoni B, Zoulim F, Levrero M. A molecular standard for circulating HBV RNA detection and quantification assays in patients with chronic hepatitis B. JHEP Rep 2024; 6:101124. [PMID: 39328324 PMCID: PMC11424956 DOI: 10.1016/j.jhepr.2024.101124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 09/28/2024] Open
Abstract
Background & Aims Circulating HBV RNAs have been proposed as a biomarker that reflects the transcriptional activity of covalently closed circular DNA (cccDNA) and may help to evaluate HBV treatment activity. Different research assays have been proposed and, although two PCR-based research use only investigational assays have been developed, the lack of standardized protocols represents an important limitation. Here we have designed and generated a stable clonal cell line producing an RNA-based standard for the calibration of PCR-based circulating HBV RNA assays. Methods HBV RNA-producing Huh7-derived stable cell lines were generated by transfecting pTriEX plasmids containing 1.1 unit length HBV DNA genomes carrying mutations in the catalytic site (YMAA mutation) and the TP domain (Y63F) of the polymerase, and the ε-loop of the pregenomic (pg)RNA (mutation A1G). Results The clonal cell line (Huh7-3D29), carrying a double YMAA and Y63F mutation, displayed, and maintained over several passages in culture, a high RNA secretion phenotype with negligible residual secreted HBV DNA. Density gradient centrifugation showed that most of the secreted HBV RNA from Huh7-3D29 cells was detected in naked capsid and virion-like particles and only a minority in small extracellular vescicles. Nanopore sequencing of 5'RACE products shows that the majority of the Huh7-3D29-secreted HBV RNAs start at the 5' end of pgRNA and pgRNA-derived spliced RNAs. Finally, Huh7-3D29 cells showed a high and up-scalable secreted RNA yield allowing 1,300 standard curves in 9 days from one flask. Conclusion We generated a clonal cell line that produces high quantities of HBV RNAs with very low quantities of contaminating HBV DNAs, representing a stable source of RNA standard for HBV RNA assay calibration. Impact and implications Several investigational assays and two research use only assays have been developed to detect and quantify circulating HBV RNAs, an emerging biomarker of covalently closed circular DNA transcriptional activity and target engagement by new HBV treatments. The lack of a unique molecular standard for circulating HBV RNA quantification represents an important limitation. Here we describe the generation of a stable clonal cell line producing and secreting an RNA-based standard containing all the HBV RNA species found in HBV patients' sera (e.g. pgRNA, HBx transcripts). This new RNA standard can be used to calibrate all PCR-based assays for circulating HBV RNA quantification to evaluate, in a non-invasive manner, the size of the transcriptionally active cccDNA pool and the activity of novel strategies aimed at curing HBV infection.
Collapse
Affiliation(s)
- Alexia Paturel
- IHU Lyon, Lyon Hepatology Institute, Lyon, France
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052 / CNRS 5286, Lyon, France
- University of Lyon, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Francesca Casuscelli di Tocco
- IHU Lyon, Lyon Hepatology Institute, Lyon, France
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052 / CNRS 5286, Lyon, France
- University of Lyon, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Delphine Bousquet
- IHU Lyon, Lyon Hepatology Institute, Lyon, France
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052 / CNRS 5286, Lyon, France
- University of Lyon, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Marie-Laure Plissonnier
- IHU Lyon, Lyon Hepatology Institute, Lyon, France
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052 / CNRS 5286, Lyon, France
| | - Xavier Grand
- IHU Lyon, Lyon Hepatology Institute, Lyon, France
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052 / CNRS 5286, Lyon, France
- University of Lyon, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Hyosun Tak
- IHU Lyon, Lyon Hepatology Institute, Lyon, France
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052 / CNRS 5286, Lyon, France
- University of Lyon, University Claude Bernard Lyon 1, 69008 Lyon, France
| | - Françoise Berby
- IHU Lyon, Lyon Hepatology Institute, Lyon, France
- Department of Hepatology, Hospices Civils de Lyon, France
| | - Caroline Scholtès
- IHU Lyon, Lyon Hepatology Institute, Lyon, France
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052 / CNRS 5286, Lyon, France
- University of Lyon, University Claude Bernard Lyon 1, 69008 Lyon, France
- Laboratoire de Virologie, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Barbara Testoni
- IHU Lyon, Lyon Hepatology Institute, Lyon, France
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052 / CNRS 5286, Lyon, France
| | - Fabien Zoulim
- IHU Lyon, Lyon Hepatology Institute, Lyon, France
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052 / CNRS 5286, Lyon, France
- University of Lyon, University Claude Bernard Lyon 1, 69008 Lyon, France
- Department of Hepatology, Hospices Civils de Lyon, France
| | - Massimo Levrero
- IHU Lyon, Lyon Hepatology Institute, Lyon, France
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052 / CNRS 5286, Lyon, France
- University of Lyon, University Claude Bernard Lyon 1, 69008 Lyon, France
- Department of Hepatology, Hospices Civils de Lyon, France
- Department of Internal Medicine, SCIAC and the IIT Center for Life Nanoscience, Sapienza University, Rome, Italy
| |
Collapse
|
15
|
Martin C, Ligat G, Malnou CE. The Yin and the Yang of extracellular vesicles during viral infections. Biomed J 2024; 47:100659. [PMID: 37690583 PMCID: PMC11403433 DOI: 10.1016/j.bj.2023.100659] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
The role of extracellular vesicles (EVs) as key players in the intercellular communication is a subject of growing interest in all areas of physiology and pathophysiology, and the field of viral infections is no exception to the rule. In this review, we focus on the current state of knowledge and remaining gaps regarding the entanglement of viruses and EVs during infections. These two entities share many similarities, mainly due to their intricated biogenesis pathways that are in constant interaction. EVs can promote the replication and dissemination of viruses within the organism, through the dysregulation of their cargo and the modulation of the innate and adaptive immune response that occurs upon infection, but they can also promote the mitigation of viral infections. Here, we examine how viruses hijack EV biogenesis pathways and describe the consequences of dysregulated EV secretion during viral infections, beneficial or not for viruses, revealing the duality of their possible effects.
Collapse
Affiliation(s)
- Charlène Martin
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Gaëtan Ligat
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Cécile E Malnou
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France.
| |
Collapse
|
16
|
Tang CW, Yang JH, Qin JW, Wu HJ, Cui HP, Ge LY, Liu AQ. Regulation of the PD-1/PD-L1 Axis and NK Cell Dysfunction by Exosomal miR-552-5p in Gastric Cancer. Dig Dis Sci 2024; 69:3276-3289. [PMID: 39020183 PMCID: PMC11415408 DOI: 10.1007/s10620-024-08536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/18/2024] [Indexed: 07/19/2024]
Abstract
OBJECTIVE NK cells play a vital role in tumor immune resistance. Various factors affect NK cell activity. While NK cell dysfunction has been observed in numerous malignancies, the underlying mechanisms in gastric cancer remain unclear. METHOD Flow cytometry was used to identify the phenotypic distribution and expression of activated receptors on NK cells. ELISA was used to determine the expression of cytokines. We examined the expression of NK cell-related genes and explored their association with survival and prognosis. Additionally, we conducted PCR detection of miR-552-5p expression levels in plasma exosomes of patients and investigated its correlation with phenotypic distribution and activated receptors. We used flow cytometry and ELISA to verify the role of miR-552-5p in NK cell dysfunction. Furthermore, we investigated the potential role of PD-1/PD-L1 in regulating NK cell dysfunction in patients' cells. RESULTS We observed a significant decrease in the percentage of NKG2D and NKp30 and IFN-γ and TNF-α in patients than in healthy volunteers. Patients with low levels of CD56, CD16, NKG2D, and NKP46 exhibited poorer survival prognoses. Moreover, increased expression levels of plasma exosomal miR-552-5p in patients were negatively associated with NK cell phenotypic distribution and activated receptor expression. MiR-552-5p downregulated the secretion of perforin, granzyme, and IFN-γ as well as the expression of NKp30, NKp46, and NKG2D. Additionally, it suppressed the cytotoxicity of NK cells. The inhibitory effect of miR-552-5p, on NK cell function was reversed when anti-PD-L1 antibodies were used. CONCLUSION Exosomal miR-552-5p targets the PD-1/PD-L1 axis, leading to impaired NK cell function.
Collapse
Affiliation(s)
- Chun-Wei Tang
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Jin-Hua Yang
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Jing-Wen Qin
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Hui-Jie Wu
- Department of Digestive Endoscopy Center, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Hao-Peng Cui
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Lian-Ying Ge
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China
| | - Ai-Qun Liu
- Department of Endoscopy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, China.
| |
Collapse
|
17
|
Zhang Z, Liu J, Yu L, Zeng R, Pan W. The hijacking of HBV by small extracellular vesicles inhibits M1 macrophages to facilitate immune evasion. Sci Rep 2024; 14:19917. [PMID: 39198597 PMCID: PMC11358331 DOI: 10.1038/s41598-024-70924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
Small extracellular vesicles (sEVs) have the ability to transfer genetic material between cells, but their role in mediating HBV infection and regulating M1 macrophages to promote immune evasion remains unclear. In this study, we utilized PMA + LPS + IFN-γ to induce THP-1 into M1 macrophages. We then extracted sEVs from HepG2.2.15 cell and treated the M1 macrophages with these sEVs. QPCR detection revealed the presence of HBV-DNA in the M1 macrophages. Additionally, RT-qPCR and WB analysis demonstrated a significantly decreased in the expression of TLR4, NLRP3, pro-caspase-1, caspase-1p20, IL-1β and IL-18 in the M1 macrophages (P < 0.05). Furthermore, RT-qPCR results displayed high expression levels of that miR-146a and FEN-1 in the sEVs derived from HepG2.2.15 cells (P < 0.01). RT -qPCR and WB analysis showed that these sEVs enhanced the expression of FEN-1 or miR-146a in the M1 macrophages through miR-146a or FEN-1 (P < 0.05), while simultaneously reducing the expression of TLR4, NLRP3, caspase-1p20, IL-1β and IL-18 in the M1 macrophages (P < 0.05). In summary, our findings indicate that sEVs loaded with HBV inhibit the inflammatory function of M1 macrophages and promote immune escape. Additionally, miR-146a and FEN-1 present in the sEVs play a crucial role in this process.
Collapse
Affiliation(s)
- Zili Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China
- Xichong County People's Hospital, Nanchong, 637200, Sichuan, China
| | - Jiamin Liu
- The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, China
| | - Ling Yu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Rong Zeng
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China
| | - Wanlong Pan
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637000, China.
| |
Collapse
|
18
|
Ważny Ł, Whiteside TL, Pietrowska M. Oncoviral Infections and Small Extracellular Vesicles. Viruses 2024; 16:1291. [PMID: 39205265 PMCID: PMC11359865 DOI: 10.3390/v16081291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Small extracellular vesicles (sEV) are small membrane-bound nanovesicles with a size range below 200 nm that are released by all types of cells. sEV carry a diverse cargo of proteins, lipids, glycans, and nucleic acids that mimic the content of producer cells. sEV mediate intercellular communication and play a key role in a broad variety of physiological and pathological conditions. Recently, numerous reports have emerged examining the role of sEV in viral infections. A significant number of similarities in the sEV biogenesis pathways and the replication cycles of viruses suggest that sEV might influence the course of viral infections in diverse ways. Besides directly modulating virus propagation by transporting the viral cargo (complete virions, proteins, RNA, and DNA), sEV can also modify the host antiviral response and increase the susceptibility of cells to infection. The network of mutual interactions is particularly complex in the case of oncogenic viruses, deserving special consideration because of its significance in cancer progression. This review summarizes the current knowledge of interactions between sEV and oncogenic viruses, focusing on sEV abilities to modulate the carcinogenic properties of oncoviruses.
Collapse
Affiliation(s)
- Łukasz Ważny
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| | - Theresa L. Whiteside
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA;
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland;
| |
Collapse
|
19
|
Zhu X, Lin X, Hu L, Wang L, Zhu Q. Harnessing crosstalk between extracellular vesicles and viruses for disease diagnostics and therapeutics. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:358-370. [PMID: 39697627 PMCID: PMC11648403 DOI: 10.20517/evcna.2024.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) are increasingly acknowledged as important mediators of intercellular communication, closely related to the occurrence and development of a variety of diseases. Numerous studies have demonstrated that EVs play a multifaceted role in the infection process of viral diseases, elucidating their ability to both facilitate viral spread and inhibit infection progression. These versatile entities not only enhance infection rates and widen the scope of viral infection through the transmission of entire viruses or viral genomes, but also trigger antiviral responses and prompt cytokine secretion near the infection site, thereby fortifying the host's defense mechanisms and safeguarding neighboring cells against infection. This complicated crosstalk between EVs and viral infections prompts a deeper exploration into their roles in potential clinical applications. In this review, we aim to encapsulate the recent advances in understanding the intricate interplay between viruses and EVs, shedding light on the mechanisms underlying this vesicle-to-virion crosstalk. Furthermore, we underscore the significance of harnessing this knowledge for diagnostic and therapeutic functions in combating viral diseases.
Collapse
Affiliation(s)
- Xinxi Zhu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
- Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Xiuhui Lin
- Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Liang Hu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Liangxing Wang
- Key Laboratory of Heart and Lung, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Qingfu Zhu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| |
Collapse
|
20
|
Wu X, Niu J, Shi Y. Exosomes target HBV-host interactions to remodel the hepatic immune microenvironment. J Nanobiotechnology 2024; 22:315. [PMID: 38840207 PMCID: PMC11151510 DOI: 10.1186/s12951-024-02544-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
Chronic hepatitis B poses a significant global burden, modulating immune cells, leading to chronic inflammation and long-term damage. Due to its hepatotropism, the hepatitis B virus (HBV) cannot infect other cells. The mechanisms underlying the intercellular communication among different liver cells in HBV-infected individuals and the immune microenvironment imbalance remain elusive. Exosomes, as important intercellular communication and cargo transportation tools between HBV-infected hepatocytes and immune cells, have been shown to assist in HBV cargo transportation and regulate the immune microenvironment. However, the role of exosomes in hepatitis B has only gradually received attention in recent years. Minimal literature has systematically elaborated on the role of exosomes in reshaping the immune microenvironment of the liver. This review unfolds sequentially based on the biological processes of exosomes: exosomes' biogenesis, release, transport, uptake by recipient cells, and their impact on recipient cells. We delineate how HBV influences the biogenesis of exosomes, utilizing exosomal covert transmission, and reshapes the hepatic immune microenvironment. And based on the characteristics and functions of exosomes, potential applications of exosomes in hepatitis B are summarized and predicted.
Collapse
Affiliation(s)
- Xiaojing Wu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Junqi Niu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| | - Ying Shi
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China.
| |
Collapse
|
21
|
Khabir M, Blanchet M, Angelo L, Loucif H, van Grevenynghe J, Bukong TN, Labonté P. Exosomes as Conduits: Facilitating Hepatitis B Virus-Independent Hepatitis D Virus Transmission and Propagation in Hepatocytes. Viruses 2024; 16:825. [PMID: 38932118 PMCID: PMC11209184 DOI: 10.3390/v16060825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
A number of research studies, including ours, have spotlighted exosomes as critical facilitators of viral dissemination. While hepatitis B virus (HBV) transmission through exosomes has been studied, the focus on its satellite virus, the hepatitis delta virus (HDV), has been unexplored in this context. HDV, although being a defective virus, can replicate its genome autonomously within hepatocytes, independently of HBV. Investigations on Huh7 cells revealed an intriguing phenomenon: the HDV proteins, S-HDAg and L-HDAg, are transmitted between cells without a complete viral structure. Detailed analysis further revealed that the expression of these proteins not only bolstered exosome secretion but also ensured their enrichment within these vesicles. Our experimental approach utilized transfection of various plasmids to examine the role of HDV RNA and proteins in the process. One salient finding was the differential propagation of the HDV proteins S-HDAg and L-HDAg, suggesting intricate molecular mechanisms behind their transmission. Notably, the purity of our exosome preparations was monitored using markers such as TSG101 and CD81. Importantly, these exosomes were found to carry both HDV RNA and proteins, highlighting their role in HDV dissemination. This novel study underscores the role of exosomes in mediating the transmission of HDV components between hepatocytes independent of HBV. These revelations about the exosomal pathway of HDV transmission provide a foundation for the development of innovative therapeutic strategies against HDV infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Patrick Labonté
- INRS–Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (M.K.); (M.B.); (L.A.); (H.L.); (J.v.G.); (T.N.B.)
| |
Collapse
|
22
|
Wu L, Yang Z, Zheng M. Biogenesis of serum HBV RNA and clinical phenomena of serum HBV RNA in chronic hepatitis B patients before and after receiving nucleos(t)ide analogues therapy. J Viral Hepat 2024; 31:255-265. [PMID: 38332479 DOI: 10.1111/jvh.13926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
There are estimated 300 million people afflicted with chronic hepatitis B (CHB) worldwide. The risk of liver cirrhosis and hepatocellular carcinoma (HCC) increases considerably with chronic hepatitis B infection. While current therapeutics are effective in controlling hepatitis B virus (HBV) infection and disease progression, a cure for HBV infection remains unattainable due to an intranuclear replicative intermediate known as covalently closed circular DNA (cccDNA). It has recently been shown that serum HBV RNA is a non-invasive biomarker that reflects cccDNA transcriptional activity. This review provides a comprehensive overview and the latest updates on the molecular characteristics and clinical significance of serum HBV RNA, such as species of serum HBV RNA, forms of serum HBV RNA carriers and predictive value for relapses in CHB patients after nucleos(t)ide analogues (NAs) discontinuation and development of liver fibrosis and HCC. Furthermore, we summarize standardized assays for testing serum HBV RNA, the dynamic changes of serum HBV RNA levels in treatment-naïve CHB patients and those under NAs therapy, as well as the host and viral influencing factors of serum HBV RNA levels. Finally, we discuss the future perspectives in studies of serum HBV RNA.
Collapse
Affiliation(s)
- Liandong Wu
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhenggang Yang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
He J, Miao R, Chen Y, Wang H, Liu M. The dual role of regulatory T cells in hepatitis B virus infection and related hepatocellular carcinoma. Immunology 2024; 171:445-463. [PMID: 38093705 DOI: 10.1111/imm.13738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/27/2023] [Indexed: 03/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a major contributor to cancer-related deaths worldwide. Hepatitis B virus (HBV) infection is a major etiologic factor leading to HCC. While there have been significant advancements in controlling HBV replication, achieving a complete cure for HBV-related HCC (HBV-HCC) remains an intricate challenge. HBV persistence is attributed to a myriad of mechanisms, encompassing both innate and adaptive immune responses. Regulatory T cells (Tregs) are pivotal in upholding immune tolerance and modulating excessive immune activation. During HBV infection, Tregs mediate specific T cell suppression, thereby contributing to both persistent infection and the mitigation of liver inflammatory responses. Studies have demonstrated an augmented expression of circulating and intrahepatic Tregs in HBV-HCC, which correlates with impaired CD8+ T cell function. Consequently, Tregs play a dual role in the context of HBV infection and the progression of HBV-HCC. In this comprehensive review, we discuss pertinent studies concerning Tregs in HBV infection, HBV-related cirrhosis and HCC. Furthermore, we summarize Treg responses to antiviral therapy and provide Treg-targeted therapies specific to HBV and HCC.
Collapse
Affiliation(s)
- Jinan He
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Miao
- Guangzhou Women and Children Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yao Chen
- Department of Internal Medicine, Northeast Yunnan Regional Central Hospital, Zhaotong, Yunan, China
| | - Han Wang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
24
|
Zhang F, Ju J, Diao H, Song J, Bian Y, Yang B. Innovative pharmacotherapy for hepatic metabolic and chronic inflammatory diseases in China. Br J Pharmacol 2024. [PMID: 38514420 DOI: 10.1111/bph.16342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/04/2024] [Accepted: 01/27/2024] [Indexed: 03/23/2024] Open
Abstract
Liver disease constitutes a significant global health concern, particularly in China where it has distinctive characteristics. China grapples with a staggering 300 million cases, predominantly due to hepatitis B and metabolic non-alcoholic fatty liver disease. Additionally, hepatocellular carcinoma has become a prevalent which is a lethal type of cancer. Despite the scarcity of innovative treatment options, Chinese hepatologists and researchers have achieved notable breakthroughs in the prevention, diagnosis, management and treatment of liver diseases. Traditional Chinese medicines have found widespread application in the treatment of various liver ailments owing to their commendable pharmacological efficacy and minimal side effects. Furthermore, there is a growing body of research in extracellular vesicles, cell therapy and gene therapy, offering new hope in the fight against liver diseases. This paper provides a comprehensive overview of the epidemiological characteristics of liver diseases and the diverse array of treatments that Chinese scholars and scientists have pursued in critical field.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaming Ju
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hongtao Diao
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jinglun Song
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yu Bian
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Baofeng Yang
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
25
|
Simon F, Thoma-Kress AK. Intercellular Transport of Viral Proteins. Results Probl Cell Differ 2024; 73:435-474. [PMID: 39242389 DOI: 10.1007/978-3-031-62036-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Viruses are vehicles to exchange genetic information and proteins between cells and organisms by infecting their target cells either cell-free, or depending on cell-cell contacts. Several viruses like certain retroviruses or herpesviruses transmit by both mechanisms. However, viruses have also evolved the properties to exchange proteins between cells independent of viral particle formation. This exchange of viral proteins can be directed to target cells prior to infection to interfere with restriction factors and intrinsic immunity, thus, making the target cell prone to infection. However, also bystander cells, e.g. immune cell populations, can be targeted by viral proteins to dampen antiviral responses. Mechanistically, viruses exploit several routes of cell-cell communication to exchange viral proteins like the formation of extracellular vesicles or the formation of long-distance connections like tunneling nanotubes. Although it is known that viral nucleic acids can be transferred between cells as well, this chapter concentrates on viral proteins of human pathogenic viruses covering all Baltimore classes and summarizes our current knowledge on intercellular transport of viral proteins between cells.
Collapse
Affiliation(s)
- Florian Simon
- Institute of Clinical and Molecular Virology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andrea K Thoma-Kress
- Institute of Clinical and Molecular Virology, Uniklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
26
|
Panneerselvam S, Wilson C, Kumar P, Abirami D, Pamarthi J, Reddy MS, Varghese J. Overview of hepatocellular carcinoma: from molecular aspects to future therapeutic options. Cell Adh Migr 2023; 17:1-21. [PMID: 37726886 PMCID: PMC10512929 DOI: 10.1080/19336918.2023.2258539] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the seventh most highly prevalent malignant tumor globally and the second most common cause of mortality. HCC develops with complex pathways that occur through multistage biological processes. Non-alcoholic fatty liver disease, metabolic-associated fatty liver disease, alcoholic liver disease, autoimmune hepatitis, hepatitis B, and hepatitis C are the causative etiologies of HCC. HCC develops as a result of epigenetic changes, protein-coding gene mutations, and altered signaling pathways. Biomarkers and potential therapeutic targets for HCC open up new possibilities for treating the disease. Immune checkpoint inhibitors are included in the treatment options in combination with molecular targeted therapy.
Collapse
Affiliation(s)
- Sugan Panneerselvam
- Department of Hepatology and Transplant Hepatology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Cornelia Wilson
- Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Discovery Park, Sandwich, UK
| | - Prem Kumar
- Department of Hepatology and Transplant Hepatology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Dinu Abirami
- Department of Gastroenterology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Jayakrishna Pamarthi
- Multi-Disciplinary Research Unit, Madras Medical College, Chennai, Tamil Nadu, India
| | - Mettu Srinivas Reddy
- The Director and Head, Liver Transplant and HPB surgery, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| | - Joy Varghese
- Department of Gastroenterology, Gleneagles Global Health City, Chennai, Tamil Nadu, India
| |
Collapse
|
27
|
Rey-Cadilhac F, Rachenne F, Missé D, Pompon J. Viral Components Trafficking with(in) Extracellular Vesicles. Viruses 2023; 15:2333. [PMID: 38140574 PMCID: PMC10747788 DOI: 10.3390/v15122333] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
The global public health burden exerted by viruses partially stems from viruses' ability to subdue host cells into creating an environment that promotes their multiplication (i.e., pro-viral). It has been discovered that viruses alter cell physiology by transferring viral material through extracellular vesicles (EVs), which serve as vehicles for intercellular communication. Here, we aim to provide a conceptual framework of all possible EV-virus associations and their resulting functions in infection output. First, we describe the different viral materials potentially associated with EVs by reporting that EVs can harbor entire virions, viral proteins and viral nucleic acids. We also delineate the different mechanisms underlying the internalization of these viral components into EVs. Second, we describe the potential fate of EV-associated viral material cargo by detailing how EV can circulate and target a naive cell once secreted. Finally, we itemize the different pro-viral strategies resulting from EV associations as the Trojan horse strategy, an alternative mode of viral transmission, an expansion of viral cellular tropism, a pre-emptive alteration of host cell physiology and an immunity decoy. With this conceptual overview, we aim to stimulate research on EV-virus interactions.
Collapse
Affiliation(s)
- Félix Rey-Cadilhac
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394 Montpellier, France; (F.R.-C.); (F.R.); (D.M.)
- Faculty of Science, Université de Montpellier, 34095 Montpellier, France
| | - Florian Rachenne
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394 Montpellier, France; (F.R.-C.); (F.R.); (D.M.)
- Faculty of Science, Université de Montpellier, 34095 Montpellier, France
| | - Dorothée Missé
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394 Montpellier, France; (F.R.-C.); (F.R.); (D.M.)
| | - Julien Pompon
- MIVEGEC, Université de Montpellier, IRD, CNRS, 34394 Montpellier, France; (F.R.-C.); (F.R.); (D.M.)
| |
Collapse
|
28
|
Srinivas AN, Suresh D, Kaur S, Kumar DP. The promise of small particles: extracellular vesicles as biomarkers in liver pathology. J Physiol 2023; 601:4953-4971. [PMID: 35708653 DOI: 10.1113/jp283074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
Extracellular vesicles (EVs) are nanoscopic packages that are heterogeneous and bona fide players in hepatic physiology and pathology as they are involved in intercellular communication. EVs carrying bioactive cargoes rich in lipids, proteins or nucleic acids are implicated in the onset and progression of liver diseases. Liver pathology using liver biopsy has been assessed for several intricate conditions such as viral hepatitis, alcoholic and non-alcoholic fatty liver disease, hepatic malignancies and drug-induced liver injury. The lacunae, however, lie in early diagnosis and timely treatment of the above conditions, underscoring the need for non-invasive, accurate diagnostic tools that could replace the gold standard method of tissue biopsy. In this regard, EVs have emerged as promising candidates that could serve as potential biomarkers. In the last two decades, EVs, owing to their multifaceted charm in bringing out cell-free therapeutic responses and the ability of their cargoes to be applied to novel biomarkers, have drawn the great attention of researchers with the advancement and clinical application of liquid biopsy. In this review, we recapitulate the role of EVs and provide insights into the promising role of these small packages as biomarkers in liver pathology.
Collapse
Affiliation(s)
- Akshatha N Srinivas
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Diwakar Suresh
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Savneet Kaur
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
| | - Divya P Kumar
- Department of Biochemistry, CEMR, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
29
|
Razizadeh MH, Zafarani A, Taghavi-Farahabadi M, Khorramdelazad H, Minaeian S, Mahmoudi M. Natural killer cells and their exosomes in viral infections and related therapeutic approaches: where are we? Cell Commun Signal 2023; 21:261. [PMID: 37749597 PMCID: PMC10519079 DOI: 10.1186/s12964-023-01266-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023] Open
Abstract
Innate immunity is the first line of the host immune system to fight against infections. Natural killer cells are the innate immunity lymphocytes responsible for fighting against virus-infected and cancerous cells. They have various mechanisms to suppress viral infections. On the other hand, viruses have evolved to utilize different ways to evade NK cell-mediated responses. Viruses can balance the response by regulating the cytokine release pattern and changing the proportion of activating and inhibitory receptors on the surface of NK cells. Exosomes are a subtype of extracellular vesicles that are involved in intercellular communication. Most cell populations can release these nano-sized vesicles, and it was shown that these vesicles produce identical outcomes to the originating cell from which they are released. In recent years, the role of NK cell-derived exosomes in various diseases including viral infections has been highlighted, drawing attention to utilizing the therapeutic potential of these nanoparticles. In this article, the role of NK cells in various viral infections and the mechanisms used by viruses to evade these important immune system cells are initially examined. Subsequently, the role of NK cell exosomes in controlling various viral infections is discussed. Finally, the current position of these cells in the treatment of viral infections and the therapeutic potential of their exosomes are reviewed. Video Abstract.
Collapse
Affiliation(s)
- Mohammad Hossein Razizadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Zafarani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Ren EC, Zhuo NZ, Goh ZY, Bonne I, Malleret B, Ko HL. cccDNA-Targeted Drug Screen Reveals a Class of Antihistamines as Suppressors of HBV Genome Levels. Biomolecules 2023; 13:1438. [PMID: 37892121 PMCID: PMC10604930 DOI: 10.3390/biom13101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Chronic infection with hepatitis B virus (HBV) is incurable, as the current therapeutics cannot eliminate its persistent genomic material, cccDNA. Screening systems for cccDNA-targeting therapeutics are unavailable, as low copies of cccDNA in vitro complicate detection. To address this, cccDNA copies were massively increased to levels detectable via automated plate readers. This was achieved via continuous infection in a contact-free co-culture of an HBV generator (clone F881), which stably produced clinically relevant amounts of HBV, and HBV acceptors selected to carry high cccDNA loads. cccDNA-targeted therapeutics were then identified via reduced cccDNA-specific fluorescence, taking differences in the cell numbers and viability into account. Amongst the drugs tested, the H1 antihistamine Bilastine, HBVCP inhibitors and, surprisingly, current HBV therapeutics downregulated the cccDNA significantly, reflecting the assay's accuracy and sensitivity in identifying drugs that induce subtle changes in cccDNA levels, which take years to manifest in vivo. Bilastine was the only therapeutic that did not reduce HBV production from F881, indicating it to be a novel direct suppressor of cccDNA levels. When further assessed, only the structurally similar antihistamines Pitolisant and Nizatidine suppressed cccDNA levels when other H1 antihistamines could not. Taken together, our rapid fluorescence cccDNA-targeted drug screen successfully identified a class of molecules with the potential to treat hepatitis B.
Collapse
Affiliation(s)
- Ee Chee Ren
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, #03-06, Singapore 138648, Singapore; (N.Z.Z.); (Z.Y.G.); (B.M.)
- Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Block MD4, Level 3, Singapore 117545, Singapore;
| | - Nicole Ziyi Zhuo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, #03-06, Singapore 138648, Singapore; (N.Z.Z.); (Z.Y.G.); (B.M.)
| | - Zhi Yi Goh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, #03-06, Singapore 138648, Singapore; (N.Z.Z.); (Z.Y.G.); (B.M.)
- Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Block MD4, Level 3, Singapore 117545, Singapore;
| | - Isabelle Bonne
- Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Block MD4, Level 3, Singapore 117545, Singapore;
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, MD1, Tahir Foundation Building, #B1-01, 12 Science Drive 2, Singapore 117549, Singapore
- Immunology Programme, Life Sciences Institute, Center for Life Sciences, National University of Singapore, #05-02, 28 Medical Drive, Singapore 117456, Singapore
| | - Benoît Malleret
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, #03-06, Singapore 138648, Singapore; (N.Z.Z.); (Z.Y.G.); (B.M.)
- Immunology Translational Research Programme, Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Block MD4, Level 3, Singapore 117545, Singapore;
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, MD1, Tahir Foundation Building, #B1-01, 12 Science Drive 2, Singapore 117549, Singapore
| | - Hui Ling Ko
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, #03-06, Singapore 138648, Singapore; (N.Z.Z.); (Z.Y.G.); (B.M.)
| |
Collapse
|
31
|
Jiang X, Wu S, Hu C. A narrative review of the role of exosomes and caveolin-1 in liver diseases and cancer. Int Immunopharmacol 2023; 120:110284. [PMID: 37196562 DOI: 10.1016/j.intimp.2023.110284] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/16/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
Exosomes are nanoscale (40-100 nm) vesicles secreted by different types of cells and have attracted extensive interest in recent years because of their unique role in disease development. It can carry related goods, such as lipids, proteins, and nucleic acids, to mediate intercellular communication. This review summarizes exosome biogenesis, release, uptake, and their role in mediating the development of liver diseases and cancer, such as viral hepatitis, drug-induced liver injury, alcohol-related liver disease, non-alcoholic fatty liver disease, hepatocellular carcinoma, and other tumors. Meanwhile, a fossa structural protein, caveolin-1(CAV-1), has also been proposed to be involved in the development of various diseases, especially liver diseases and tumors. In this review, we discuss the role of CAV-1 in liver diseases and different tumor stages (inhibition of early growth and promotion of late metastasis) and the underlying mechanisms by which CAV-1 regulates the process. In addition, CAV-1 has also been found to be a secreted protein that can be released directly through the exosome pathway or change the cargo composition of the exosomes, thus contributing to enhancing the metastasis and invasion of cancer cells during the late stage of tumor development. In conclusion, the role of CAV-1 and exosomes in disease development and the association between them remains to be one challenging uncharted area.
Collapse
Affiliation(s)
- Xiangfu Jiang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui medical university, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Shuai Wu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui medical university, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China
| | - Chengmu Hu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui medical university, Hefei 230032, China; Key Laboratory of anti-inflammatory and Immune Medicine, Ministry of Education, Hefei 230032, China.
| |
Collapse
|
32
|
Parthasarathy G, Hirsova P, Kostallari E, Sidhu GS, Ibrahim SH, Malhi H. Extracellular Vesicles in Hepatobiliary Health and Disease. Compr Physiol 2023; 13:4631-4658. [PMID: 37358519 PMCID: PMC10798368 DOI: 10.1002/cphy.c210046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Extracellular vesicles (EVs) are membrane-bound nanoparticles released by cells and are an important means of intercellular communication in physiological and pathological states. We provide an overview of recent advances in the understanding of EV biogenesis, cargo selection, recipient cell effects, and key considerations in isolation and characterization techniques. Studies on the physiological role of EVs have relied on cell-based model systems due to technical limitations of studying endogenous nanoparticles in vivo . Several recent studies have elucidated the mechanistic role of EVs in liver diseases, including nonalcoholic fatty liver disease, viral hepatitis, cholestatic liver disease, alcohol-associated liver disease, acute liver injury, and liver cancers. Employing disease models and human samples, the biogenesis of lipotoxic EVs downstream of endoplasmic reticulum stress and microvesicles via intracellular activation stress signaling are discussed in detail. The diverse cargoes of EVs including proteins, lipids, and nucleic acids can be enriched in a disease-specific manner. By carrying diverse cargo, EVs can directly confer pathogenic potential, for example, recruitment and activation of monocyte-derived macrophages in NASH and tumorigenicity and chemoresistance in hepatocellular carcinoma. We discuss the pathogenic role of EVs cargoes and the signaling pathways activated by EVs in recipient cells. We review the literature that EVs can serve as biomarkers in hepatobiliary diseases. Further, we describe novel approaches to engineer EVs to deliver regulatory signals to specific cell types, and thus use them as therapeutic shuttles in liver diseases. Lastly, we identify key lacunae and future directions in this promising field of discovery and development. © 2023 American Physiological Society. Compr Physiol 13:4631-4658, 2023.
Collapse
Affiliation(s)
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Guneet S. Sidhu
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Samar H. Ibrahim
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
33
|
Zheng P, Dou Y, Wang Q. Immune response and treatment targets of chronic hepatitis B virus infection: innate and adaptive immunity. Front Cell Infect Microbiol 2023; 13:1206720. [PMID: 37424786 PMCID: PMC10324618 DOI: 10.3389/fcimb.2023.1206720] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a major global public health risk that threatens human life and health, although the number of vaccinated people has increased. The clinical outcome of HBV infection depends on the complex interplay between viral replication and the host immune response. Innate immunity plays an important role in the early stages of the disease but retains no long-term immune memory. However, HBV evades detection by the host innate immune system through stealth. Therefore, adaptive immunity involving T and B cells is crucial for controlling and clearing HBV infections that lead to liver inflammation and damage. The persistence of HBV leads to immune tolerance owing to immune cell dysfunction, T cell exhaustion, and an increase in suppressor cells and cytokines. Although significant progress has been made in HBV treatment in recent years, the balance between immune tolerance, immune activation, inflammation, and fibrosis in chronic hepatitis B remains unknown, making a functional cure difficult to achieve. Therefore, this review focuses on the important cells involved in the innate and adaptive immunity of chronic hepatitis B that target the host immune system and identifies treatment strategies.
Collapse
Affiliation(s)
- Peiyu Zheng
- Department of Infectious Diseases, The First Hospital of Shanxi Medical University, Taiyuan, China
- Graduate School of Shanxi Medical University, Taiyuan, China
| | - Yongqing Dou
- Department of Infectious Diseases, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Qinying Wang
- Department of Infectious Diseases, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
34
|
Hu M, Li X, Jiang Z, Xia Q, Hu Y, Guo J, Fu L. Exosomes and circular RNAs: promising partners in hepatocellular carcinoma from bench to bedside. Discov Oncol 2023; 14:60. [PMID: 37154831 PMCID: PMC10167081 DOI: 10.1007/s12672-023-00672-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by high morbidity and mortality, and a low 5-year survival rate. Exploring the potential molecular mechanisms, finding diagnostic biomarkers with high sensitivity and specificity, and determining new therapeutic targets for HCC are urgently needed. Circular RNAs (circRNAs) have been found to play a key role in the occurrence and development of HCC, while exosomes play an important role in intercellular communication; thus, the combination of circRNAs and exosomes may have inestimable potential in early diagnosis and curative therapy. Previous studies have shown that exosomes can transfer circRNAs from normal or abnormal cells to surrounding or distant cells; thereafter, circRNAs influence target cells. This review summarizes the recent progress regarding the roles of exosomal circRNAs in the diagnosis, prognosis, occurrence and development and immune checkpoint inhibitor and tyrosine kinase inhibitor resistance of HCC to provide inspiration for further research.
Collapse
Affiliation(s)
- Mengyuan Hu
- School of Medicine, Ningbo University, Ningbo, 315211, China
- Department of Infection and Hepatology, Ningbo No. 2 Hospital, Ningbo, 315010, China
| | - Xue Li
- Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhenluo Jiang
- Department of Emergency, Ningbo No. 2 Hospital, Ningbo, 315010, China
| | - Qing Xia
- Department of Hepatopancreatobiliary Surgery, Ningbo No. 2 Hospital, Ningbo, 315010, China
| | - Yaoren Hu
- School of Medicine, Ningbo University, Ningbo, 315211, China
- Department of Infection and Hepatology, Ningbo No. 2 Hospital, Ningbo, 315010, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, 315010, China
| | - Junming Guo
- School of Medicine, Ningbo University, Ningbo, 315211, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China
| | - Liyun Fu
- School of Medicine, Ningbo University, Ningbo, 315211, China.
- Department of Infection and Hepatology, Ningbo No. 2 Hospital, Ningbo, 315010, China.
- Wenzhou Medical University, Wenzhou, 325035, China.
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, 315010, China.
- Ningbo Clinical Research Center for Digestive System Tumors, Ningbo, 315010, China.
| |
Collapse
|
35
|
You H, Wang X, Ma L, Zhang F, Zhang H, Wang Y, Pan X, Zheng K, Kong F, Tang R. Insights into the impact of hepatitis B virus on hepatic stellate cell activation. Cell Commun Signal 2023; 21:70. [PMID: 37041599 PMCID: PMC10088164 DOI: 10.1186/s12964-023-01091-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/26/2023] [Indexed: 04/13/2023] Open
Abstract
During chronic hepatitis B virus (HBV) infection, hepatic fibrosis is a serious pathological condition caused by virus-induced liver damage. The activation of hepatic stellate cells (HSCs) is a central event in the occurrence and progression of liver fibrosis. Although accumulating evidence has shown that HBV directly stimulates HSC activation, whether the virus infects and replicates in HSCs remains controversial. Inflammation is one of the obvious characteristics of chronic HBV infection, and it has been demonstrated that persistent inflammation has a predominant role in triggering and maintaining liver fibrosis. In particular, the regulation of HSC activation by HBV-related hepatocytes via various inflammatory modulators, including TGF-β and CTGF, in a paracrine manner has been reported. In addition to these inflammation-related molecules, several inflammatory cells are essential for the progression of HBV-associated liver fibrosis. Monocytes, macrophages, Th17 cells, NK cells, as well as NKT cells, participate in the modulation of HBV-related liver fibrosis by interacting with HSCs. This review summarizes current findings on the effects of HBV and the relevant molecular mechanisms involved in HSC activation. Because HSC activation is essential for liver fibrosis, targeting HSCs is an attractive therapeutic strategy to prevent and reverse hepatic fibrosis induced by HBV infection. Video abstract.
Collapse
Affiliation(s)
- Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xing Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lihong Ma
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fulong Zhang
- Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Huanyang Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuxin Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiucheng Pan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
36
|
Peng Y, Yang Y, Li Y, Shi T, Luan Y, Yin C. Exosome and virus infection. Front Immunol 2023; 14:1154217. [PMID: 37063897 PMCID: PMC10098074 DOI: 10.3389/fimmu.2023.1154217] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Exosomes are messengers of intercellular communication in monolayer vesicles derived from cells. It affects the pathophysiological process of the body in various diseases, such as tumors, inflammation, and infection. It has been confirmed that exosomes are similar to viruses in biogenesis, and exosome cargo is widely involved in many viruses’ replication, transmission, and infection. Simultaneously, virus-associated exosomes can promote immune escape and activate the antiviral immune response of the body, which bidirectionally modulates the immune response. This review focuses on the role of exosomes in HIV, HBV, HCV, and SARS-CoV-2 infection and explores the prospects of exosome development. These insights may be translated into therapeutic measures for viral infections and reduce the disease burden.
Collapse
Affiliation(s)
| | | | | | | | - Yingyi Luan
- *Correspondence: Yingyi Luan, ; Chenghong Yin,
| | | |
Collapse
|
37
|
Zaiets I, Gunewardena S, Menne S, Weinman SA, Gudima SO. Sera of Individuals Chronically Infected with Hepatitis B Virus (HBV) Contain Diverse RNA Types Produced by HBV Replication or Derived from Integrated HBV DNA. J Virol 2023; 97:e0195022. [PMID: 36877036 PMCID: PMC10062156 DOI: 10.1128/jvi.01950-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/11/2023] [Indexed: 03/07/2023] Open
Abstract
This study aimed to better characterize the repertoire of serum hepatitis B virus (HBV) RNAs during chronic HBV infection in humans, which remains understudied. Using reverse transcription-PCR (RT-PCR), real-time quantitative PCR (RT-qPCR), RNA-sequencing, and immunoprecipitation, we found that (i) >50% of serum samples bore different amounts of HBV replication-derived RNAs (rd-RNAs); (ii) a few samples contained RNAs transcribed from integrated HBV DNA, including 5'-HBV-human-3' RNAs (integrant-derived RNAs [id-RNAs]) and 5'-human-HBV-3' transcripts, as a minority of serum HBV RNAs; (iii) spliced HBV RNAs were abundant in <50% of analyzed samples; (iv) most serum rd-RNAs were polyadenylated via conventional HBV polyadenylation signal; (v) pregenomic RNA (pgRNA) was the major component of the pool of serum RNAs; (vi) the area of HBV positions 1531 to 1739 had very high RNA read coverage and thus should be used as a target for detecting serum HBV RNAs; (vii) the vast majority of rd-RNAs and pgRNA were associated with HBV virions but not with unenveloped capsids, exosomes, classic microvesicles, or apoptotic vesicles and bodies; (viii) considerable rd-RNAs presence in the circulating immune complexes was found in a few samples; and (ix) serum relaxed circular DNA (rcDNA) and rd-RNAs should be quantified simultaneously to evaluate HBV replication status and efficacy of anti-HBV therapy with nucleos(t)ide analogs. In summary, sera contain various HBV RNA types of different origin, which are likely secreted via different mechanisms. In addition, since we previously showed that id-RNAs were abundant or predominant HBV RNAs in many of liver and hepatocellular carcinoma tissues as compared to rd-RNAs, there is likely a mechanism favoring the egress of replication-derived RNAs. IMPORTANCE The presence of integrant-derived RNAs (id-RNAs) and 5'-human-HBV-3' transcripts derived from integrated hepatitis B virus (HBV) DNA in sera was demonstrated for the first time. Thus, sera of individuals chronically infected with HBV contained both replication-derived and integrant-transcribed HBV RNAs. The majority of serum HBV RNAs were the transcripts produced by HBV genome replication, which were associated with HBV virions and not with other types of extracellular vesicles. These and other above-mentioned findings advanced our understanding of the HBV life cycle. In addition, the study suggested a promising target area on the HBV genome to increase sensitivity of the detection of serum HBV RNAs and supported the idea that simultaneous detection of replication-derived RNAs (rd-RNAs) and relaxed circular DNA (rcDNA) in serum provides more adequate evaluation of (i) the HBV genome replication status and (ii) the durability and efficiency of the therapy with anti-HBV nucleos(t)ide analogs, which could be useful for improvement of the diagnostics and treatment of HBV-infected individuals.
Collapse
Affiliation(s)
- Igor Zaiets
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Stephan Menne
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| | - Steven A. Weinman
- Department of Internal Medicine, Division of Gastroenterology, Liver Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Severin O. Gudima
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
38
|
Huang Q, Xiao X, Zhuang X, Chen W, Huang Y, Liao J, Wang W, Wang Y, Lu L, Liu Z, Huang J. Peripheral Circulating Exosomal-miRNAs Potentially Mediate the Sensitivity to Interferon Treatment in Chronic Hepatitis B Virus Patients. Viral Immunol 2023; 36:209-221. [PMID: 36944116 DOI: 10.1089/vim.2022.0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Pegylated interferon alfa-2b (Peg-IFN α-2b), a first-line treatment for hepatitis B virus (HBV) infection, can significantly achieve HBsAg clearance in clinic. However, only 30-40% of patients had achieved HBsAg clearance after Peg-IFN α-2b administration. The biological targets and the underline mechanisms that distinguish sensitive and insensitive populations to interferon therapy are still unclear. In the present study, only 33.33% of patients achieved HBsAg loss after 48 weeks of Peg-IFN α-2b therapy. Thirty-six exosomal-microRNAs (miRNAs) in the sensitive group were identified that might induce sensitivity specifically, whereas 32 exosomal-miRNAs in the insensitive group were identified that might induce insensitive specifically. Among these miRNAs, five miRNAs (miR-425-5p, miR-8485, miR-619-5p, miR-181a-5p, and miR-484) might increase the sensitivity to Peg-IFN α-2b therapy by regulating key genes GSK3B, KRAS, FLT1, or GRB2, whereas, 13 miRNAs (miR-195-5p, miR-215-5p, miR-9-5p, miR-130a-3p, miR-214-3p, miR-149-5p, miR-429, miR-200b-3p, miR-200c-3p, miR-16-2-3p, miR-141-3p, miR-200a-3p, and miR-218-5p) might decrease the sensitivity to Peg-IFN α-2b therapy by regulating key genes, FGF2, GSK3B, PDGFRA, FGFR1, KRAS, FLT1, MYC, TGFB2, EFNA1, MAPK9, or GRB2. Furthermore, seven novel miRNAs, namely Novel_352, Novel_459, Novel_527, Novel_677, Novel_717, Novel_749, and Novel_801 were found to be downregulated specifically in the sensitive group, whereas, Novel_142 and Novel_664 were found to be downregulated specifically in the insensitive group. Our data indicate that the serum exosomal-miRNAs could be involved in regulating the sensitivity of chronic HBV (CHB) patients to Peg-IFN α-2b therapy, which might suggest potential novel therapeutic biomarkers and standard options for CHB patients. Clinical Trials.gov ID: NCT04035837.
Collapse
Affiliation(s)
- Qiuju Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Xin Xiao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuerong Zhuang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenli Chen
- Department of Infectious Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanfang Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinyao Liao
- Department of Infectious Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wensheng Wang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Wang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linlin Lu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Huang
- Department of Infectious Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
39
|
Doghish AS, Elballal MS, Elazazy O, Elesawy AE, Elrebehy MA, Shahin RK, Midan HM, Sallam AAM. The role of miRNAs in liver diseases: Potential therapeutic and clinical applications. Pathol Res Pract 2023; 243:154375. [PMID: 36801506 DOI: 10.1016/j.prp.2023.154375] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
MicroRNAs (miRNAs) are a class of short, non-coding RNAs that function post-transcriptionally to regulate gene expression by binding to particular mRNA targets and causing destruction of the mRNA or translational inhibition of the mRNA. The miRNAs control the range of liver activities, from the healthy to the unhealthy. Considering that miRNA dysregulation is linked to liver damage, fibrosis, and tumorigenesis, miRNAs are a promising therapeutic strategy for the evaluation and treatment of liver illnesses. Recent findings on the regulation and function of miRNAs in liver diseases are discussed, with an emphasis on miRNAs that are highly expressed or enriched in hepatocytes. Alcohol-related liver illness, acute liver toxicity, viral hepatitis, hepatocellular carcinoma, liver fibrosis, liver cirrhosis, and exosomes in chronic liver disease all emphasize the roles and target genes of these miRNAs. We briefly discuss the function of miRNAs in the etiology of liver diseases, namely in the transfer of information between hepatocytes and other cell types via extracellular vesicles. Here we offer some background on the use of miRNAs as biomarkers for the early prognosis, diagnosis, and assessment of liver diseases. The identification of biomarkers and therapeutic targets for liver disorders will be made possible by future research into miRNAs in the liver, which will also help us better understand the pathogeneses of liver diseases.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| |
Collapse
|
40
|
Rangel-Ramírez VV, González-Sánchez HM, Lucio-García C. Exosomes: from biology to immunotherapy in infectious diseases. Infect Dis (Lond) 2023; 55:79-107. [PMID: 36562253 DOI: 10.1080/23744235.2022.2149852] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Exosomes are extracellular vesicles derived from the endosomal compartment, which are released by all kinds of eukaryotic and prokaryotic organisms. These vesicles contain a variety of biomolecules that differ both in quantity and type depending on the origin and cellular state. Exosomes are internalized by recipient cells, delivering their content and thus contributing to cell-cell communication in health and disease. During infections exosomes may exert a dual role, on one hand, they can transmit pathogen-related molecules mediating further infection and damage, and on the other hand, they can protect the host by activating the immune response and reducing pathogen spread. Selective packaging of pathogenic components may mediate these effects. Recently, quantitative analysis of samples by omics technologies has allowed a deep characterization of the proteins, lipids, RNA, and metabolite cargoes of exosomes. Knowledge about the content of these vesicles may facilitate their therapeutic application. Furthermore, as exosomes have been detected in almost all biological fluids, pathogenic or host-derived components can be identified in liquid biopsies, making them suitable for diagnosis and prognosis. This review attempts to organize the recent findings on exosome composition and function during viral, bacterial, fungal, and protozoan infections, and their contribution to host defense or to pathogen spread. Moreover, we summarize the current perspectives and future directions regarding the potential application of exosomes for prophylactic and therapeutic purposes.
Collapse
Affiliation(s)
| | | | - César Lucio-García
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| |
Collapse
|
41
|
Basthi Mohan P, Rajpurohit S, Musunuri B, Bhat G, Lochan R, Shetty S. Exosomes in chronic liver disease. Clin Chim Acta 2023; 540:117215. [PMID: 36603656 DOI: 10.1016/j.cca.2022.117215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
Chronic liver disease (CLD) is the major cause of mortality and morbidity, particularly in developing countries. Although there has been a significant advancement in the identification and treatment of liver diseases over time, clinical results are not satisfactory in advanced liver disease. Thus, it is crucial to develop certain technology for early detection, and curative therapies and to investigate the molecular mechanisms behind CLD's pathogenesis. The study of exosomes in CLD is a rapidly developing field. They are structurally membrane-derived nano vesicles released by various cells. In CLD, exosomes released from injured hepatic cells affect intercellular communication, creating a microenvironment conducive to the illness's development. They also carry liver cell-specific proteins and miRNAs, which can be used as diagnostic biomarkers and treatment targets for various liver diseases. End-stage liver disease can only be treated by a liver transplant, however, the low availability of compatible organs, high expenses of treatment, and surgical complications significantly lower patient survival rates. Early diagnosis and therapeutic intervention of CLD positively affect the likelihood of curative treatment and high patient survival rates. Considering the possibility that exosomes could be employed as tools for disease diagnostics and clinical intervention, The current study briefly summarizes the roles of exosomes and their cargo in diagnosing and treating liver diseases.
Collapse
Affiliation(s)
- Pooja Basthi Mohan
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Siddheesh Rajpurohit
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Balaji Musunuri
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ganesh Bhat
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rajiv Lochan
- Lead Consultant- Liver transplant Surgeon, Manipal Hospital, Old Airport Road, Bangalore, and Adjunct Professor Manipal Academy of Higher Education, India
| | - Shiran Shetty
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
42
|
Gong J, Tu W, Liu J, Tian D. Hepatocytes: A key role in liver inflammation. Front Immunol 2023; 13:1083780. [PMID: 36741394 PMCID: PMC9890163 DOI: 10.3389/fimmu.2022.1083780] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Hepatocytes, the major parenchymal cells in the liver, are responsible for a variety of cellular functions including carbohydrate, lipid and protein metabolism, detoxification and immune cell activation to maintain liver homeotasis. Recent studies show hepatocytes play a pivotal role in liver inflammation. After receiving liver insults and inflammatory signals, hepatocytes may undergo organelle damage, and further respond by releasing mediators and expressing molecules that can act in the microenvironment as well as initiate a robust inflammatory response. In this review, we summarize how the hepatic organelle damage link to liver inflammation and introduce numerous hepatocyte-derived pro-inflammatory factors in response to chronic liver injury.
Collapse
Affiliation(s)
| | | | | | - Dean Tian
- *Correspondence: Jingmei Liu, ; Dean Tian,
| |
Collapse
|
43
|
Extracellular Vesicles and Viruses: Two Intertwined Entities. Int J Mol Sci 2023; 24:ijms24021036. [PMID: 36674550 PMCID: PMC9861478 DOI: 10.3390/ijms24021036] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Viruses share many attributes in common with extracellular vesicles (EVs). The cellular machinery that is used for EV production, packaging of substrates and secretion is also commonly manipulated by viruses for replication, assembly and egress. Viruses can increase EV production or manipulate EVs to spread their own genetic material or proteins, while EVs can play a key role in regulating viral infections by transporting immunomodulatory molecules and viral antigens to initiate antiviral immune responses. Ultimately, the interactions between EVs and viruses are highly interconnected, which has led to interesting discoveries in their associated roles in the progression of different diseases, as well as the new promise of combinational therapeutics. In this review, we summarize the relationships between viruses and EVs and discuss major developments from the past five years in the engineering of virus-EV therapies.
Collapse
|
44
|
Xu X, Zhang L, Liu J, Kong X, Yin Y, Jia Z, Zhang X, Peng B, Ji M, Pan W. Exosomal HBV-DNA for diagnosis and treatment monitoring of chronic hepatitis B. Open Life Sci 2023; 18:20220585. [PMID: 37077344 PMCID: PMC10106972 DOI: 10.1515/biol-2022-0585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/19/2023] [Accepted: 02/17/2023] [Indexed: 04/21/2023] Open
Abstract
This study examined exosomal hepatitis B virus (HBV)-DNA levels in chronic HBV infection (CHB). Patients were grouped according to the European Association for the Study of the Liver classification (1: HBV-DNA-positive CHB, normal alanine aminotransferase [ALT]; 2: HBV-DNA-positive CHB, elevated ALT; 3: HBV-DNA-negative HBeAb-positive CHB, normal ALT; 4: HBV-DNA-positive HBeAg-negative HBeAb-positive CHB, elevated ALT; 5: HBV-DNA-negative, HBcAb-positive; 6: HBV-negative, normal ALT). Exosomes were isolated, comparative analysis of exosomes and serum HBV-DNA. The HBV-DNA content was lower in exosomes than in serum for groups 1, 2, and 4 (all P < 0.05). In the groups negative for serum HBV-DNA (groups 3 and 5), the exosomal HBV-DNA levels were higher than the serum HBV-DNA levels (all P < 0.05). The exosomal and serum HBV-DNA levels were correlated in groups 2 (R 2 = 0.84) and 4 (R 2 = 0.98). The exosomal HBV-DNA levels were correlated with total bilirubin (R 2 = 0.94), direct bilirubin (R 2 = 0.82), and indirect bilirubin (R 2 = 0.81) in group 5 (all P < 0.05). In patients with CHB and negative for serum HBV-DNA, exosomal HBV-DNA was detectable and could be used to monitor the treatment effects. Exosomal HBV-DNA could be used in patients with a high suspicion of HBV infection but negative for serum HBV-DNA.
Collapse
Affiliation(s)
- Xu Xu
- Experimental Teaching Center for Pathogen Biology and Immunology & Department of Microbiology and Immunology, North Sichuan Medical College, Nanchong, Sichuan, 637100, China
- Emergency Department, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Li Zhang
- Department of Intensive Care Medicine, Affiliated Hospital of North Sichuan Medical College, Sichuan, 637000, China
| | - Jiamin Liu
- Experimental Teaching Center for Pathogen Biology and Immunology & Department of Microbiology and Immunology, North Sichuan Medical College, Nanchong, Sichuan, 637100, China
| | - Xiangxin Kong
- Experimental Teaching Center for Pathogen Biology and Immunology & Department of Microbiology and Immunology, North Sichuan Medical College, Nanchong, Sichuan, 637100, China
| | - Yu Yin
- Emergency Department, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Zhiwei Jia
- Emergency Department, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Xiaoqin Zhang
- Emergency Department, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Bin Peng
- School of Basic Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637100, China
| | - Min Ji
- People’s Hospital of Jianyang, Chengdu, Sichuan, 641400, China
| | - Wanlong Pan
- Experimental Teaching Center for Pathogen Biology and Immunology & Department of Microbiology and Immunology, North Sichuan Medical College, Nanchong, Sichuan, 637100, China
| |
Collapse
|
45
|
HEIDARI FATEMEH, SEYEDEBRAHIMI REIHANEH, YANG PIAO, FARSANI MOHSENESLAMI, ABABZADEH SHIMA, KALHOR NASER, MANOOCHEHRI HAMED, SHEYKHHASAN MOHSEN, AZIMZADEH MARYAM. Exosomes in viral infection: Effects for pathogenesis and treatment strategies. BIOCELL 2023; 47:2597-2608. [DOI: 10.32604/biocell.2023.043351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
46
|
Exosomes in HBV infection. Clin Chim Acta 2023; 538:65-69. [PMID: 36375524 DOI: 10.1016/j.cca.2022.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Exosomes have been identified as important mediators of intercellular communication in several physiological and pathological processes. Hepatitis B is caused by infection with the hepatitis B virus (HBV), which impairs hepatocytes, with chronic infection resulting in cirrhosis or liver cancer. We studied the roles and functions of exosomes in HBV infection and found that exosomes could promote HBV spread and development of HBV-related diseases. Exosomes could be used as potential biomarkers for HBV diagnosis. Furthermore, exosomes have potential applications in treatment for HBV infection via inhibition of HBV replication and transcription.
Collapse
|
47
|
Lei J, Yan T, Zhang L, Chen B, Cheng J, Gao X, Liu Z, Li Y, Zuo S, Lu Y. Comparison of hepatitis B virus reactivation in hepatocellular carcinoma patients who received tyrosine kinase inhibitor alone or together with programmed cell death protein-1 inhibitors. Hepatol Int 2022; 17:281-290. [PMID: 36580258 DOI: 10.1007/s12072-022-10450-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/04/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Programmed cell death protein-1 (PD-1) inhibitors plus tyrosine kinase inhibitor (TKI) have dramatically improved survival of patients with advanced hepatocellular carcinoma (HCC). However, the risk of hepatitis B virus (HBV) reactivation from these antitumor medications remains unclear. METHODS Patients receiving TKI monotherapy (TKI group) or TKI combined with PD-1 inhibitors (combination group) were included. The primary endpoint was HBV reactivation as defined by an increase in HBV DNA titer by at least 1 log (tenfold) from baseline. The secondary endpoints included tumor progression and overall survival. RESULTS Four hundred and ninety-nine patients met the inclusion criteria, including 296 patients in the TKI group and 203 patients in the combination group. The 3-, 6- and 12-month cumulative incidence rates of HBV reactivation in the TKI group vs. combination group were 7.8%, 12.8% and 21.3% vs. 9.9%, 19.2% and 30.0%, respectively (p = 0.02). The Cox proportional hazard model indicated that combination therapy (HR 1.41, 95% CI 1.00-1.99, p = 0.05), ALT > 40 U/ml (HR 1.50, 95% CI 1.05-2.16, p = 0.03), and tumor size > 5 cm (HR 1.58, 95% CI 1.10-2.28, p = 0.01) were independent risk factors for HBV reactivation. Compared with the HBV reactivation group, the progression-free survival and overall survival of patients in the HBV non-reactivation group were significantly prolonged (p < 0.001 and p = 0.001). CONCLUSIONS Patients who received TKI combined with PD-1 inhibitors had a greater risk for HBV reactivation, and those with HBV reactivation had a higher rate of tumor progression and shorter survival time, than those receiving TKI alone.
Collapse
Affiliation(s)
- Jin Lei
- Guizhou Medical University, Guiyang, China
| | - Tao Yan
- Comprehensive Liver Cancer Center, The 5th Medical Center of the PLA General Hospital, Beijing, China
| | - Linzhi Zhang
- Comprehensive Liver Cancer Center, The 5th Medical Center of the PLA General Hospital, Beijing, China
| | - Bowen Chen
- Peking University 302 Clinical Medical School, Beijing, China
| | - Jiamin Cheng
- Comprehensive Liver Cancer Center, The 5th Medical Center of the PLA General Hospital, Beijing, China
| | - Xiaoqiang Gao
- Guizhou Medical University, Guiyang, China.,Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zherui Liu
- Peking University 302 Clinical Medical School, Beijing, China
| | - Yinyin Li
- Comprehensive Liver Cancer Center, The 5th Medical Center of the PLA General Hospital, Beijing, China
| | - Shi Zuo
- Guizhou Medical University, Guiyang, China. .,Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Yinying Lu
- Guizhou Medical University, Guiyang, China. .,Comprehensive Liver Cancer Center, The 5th Medical Center of the PLA General Hospital, Beijing, China. .,Guangdong Key Laboratory of Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
| |
Collapse
|
48
|
Many Ways to Communicate-Crosstalk between the HBV-Infected Cell and Its Environment. Pathogens 2022; 12:pathogens12010029. [PMID: 36678377 PMCID: PMC9866324 DOI: 10.3390/pathogens12010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Chronic infection with the hepatitis B virus (HBV) affects an estimated 257 million people worldwide and can lead to liver diseases such as cirrhosis and liver cancer. Viral replication is generally considered not to be cytopathic, and although some HBV proteins may have direct carcinogenic effects, the majority of HBV infection-related disease is related to chronic inflammation resulting from disrupted antiviral responses and aberrant innate immune reactions. Like all cells, healthy and HBV-infected cells communicate with each other, as well as with other cell types, such as innate and adaptive immune cells. They do so by both interacting directly and by secreting factors into their environment. Such factors may be small molecules, such as metabolites, single viral proteins or host proteins, but can also be more complex, such as virions, protein complexes, and extracellular vesicles. The latter are small, membrane-enclosed vesicles that are exchanged between cells, and have recently gained a lot of attention for their potential to mediate complex communication and their potential for therapeutic repurposing. Here, we review how HBV infection affects the communication between HBV-infected cells and cells in their environment. We discuss the impact of these interactions on viral persistence in chronic infection, as well as their relation to HBV infection-related pathology.
Collapse
|
49
|
Mahmoudvand S, Shokri S, Nakhaie M, Jalilian FA, Mehri-Ghahfarrokhi A, Yarani R, Shojaeian A. Small extracellular vesicles as key players in cancer development caused by human oncogenic viruses. Infect Agent Cancer 2022; 17:58. [DOI: 10.1186/s13027-022-00471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Abstract
Background
Exosomes are the smallest group of extracellular vesicles in size from 30 to 150 nm, surrounded by a lipid bilayer membrane, and originate from multivesicular bodies secreted by different types of cells, such as virus-infected cells. The critical role of exosomes is information transfer among cells, representing a unique way for intercellular communication via a load of many kinds of molecules, including various signaling proteins and nucleic acids. In this review, we aimed to comprehensively investigate the role of exosomes in promoting human oncogenic viruses-associated cancers.
Methods
Our search was conducted for published researches between 2000 and 2022 by using several international databases includeing Scopus, PubMed, and Web of Science as well as Google scholar. We also reviewed additional evidence from relevant published articles.
Results
It has been shown that exosomes can create the conditions for viral spread in viral infections. Exosome secretion in a human tumor virus can switch on the cell signaling pathways by transferring exosome-encapsulated molecules, including viral oncoproteins, signal transduction molecules, and virus-encoded miRNAs, into various cells.
Conclusion
Given the role of exosomes in viruses-associated cancers, they can also be considered as molecular targets in diagnosis and treatment.
Collapse
|
50
|
Osna NA, Rasineni K, Ganesan M, Donohue TM, Kharbanda KK. Pathogenesis of Alcohol-Associated Liver Disease. J Clin Exp Hepatol 2022; 12:1492-1513. [PMID: 36340300 PMCID: PMC9630031 DOI: 10.1016/j.jceh.2022.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Excessive alcohol consumption is a global healthcare problem with enormous social, economic, and clinical consequences. While chronic, heavy alcohol consumption causes structural damage and/or disrupts normal organ function in virtually every tissue of the body, the liver sustains the greatest damage. This is primarily because the liver is the first to see alcohol absorbed from the gastrointestinal tract via the portal circulation and second, because the liver is the principal site of ethanol metabolism. Alcohol-induced damage remains one of the most prevalent disorders of the liver and a leading cause of death or transplantation from liver disease. Despite extensive research on the pathophysiology of this disease, there are still no targeted therapies available. Given the multifactorial mechanisms for alcohol-associated liver disease pathogenesis, it is conceivable that a multitherapeutic regimen is needed to treat different stages in the spectrum of this disease.
Collapse
Key Words
- AA, Arachidonic acid
- ADH, Alcohol dehydrogenase
- AH, Alcoholic hepatitis
- ALD, Alcohol-associated liver disease
- ALDH, Aldehyde dehydrogenase
- ALT, Alanine transaminase
- ASH, Alcohol-associated steatohepatitis
- AST, Aspartate transaminase
- AUD, Alcohol use disorder
- BHMT, Betaine-homocysteine-methyltransferase
- CD, Cluster of differentiation
- COX, Cycloxygenase
- CTLs, Cytotoxic T-lymphocytes
- CYP, Cytochrome P450
- CYP2E1, Cytochrome P450 2E1
- Cu/Zn SOD, Copper/zinc superoxide dismutase
- DAMPs, Damage-associated molecular patterns
- DC, Dendritic cells
- EDN1, Endothelin 1
- ER, Endoplasmic reticulum
- ETOH, Ethanol
- EVs, Extracellular vesicles
- FABP4, Fatty acid-binding protein 4
- FAF2, Fas-associated factor family member 2
- FMT, Fecal microbiota transplant
- Fn14, Fibroblast growth factor-inducible 14
- GHS-R1a, Growth hormone secretagogue receptor type 1a
- GI, GOsteopontinastrointestinal tract
- GSH Px, Glutathione peroxidase
- GSSG Rdx, Glutathione reductase
- GST, Glutathione-S-transferase
- GWAS, Genome-wide association studies
- H2O2, Hydrogen peroxide
- HA, Hyaluronan
- HCC, Hepatocellular carcinoma
- HNE, 4-hydroxynonenal
- HPMA, 3-hydroxypropylmercapturic acid
- HSC, Hepatic stellate cells
- HSD17B13, 17 beta hydroxy steroid dehydrogenase 13
- HSP 90, Heat shock protein 90
- IFN, Interferon
- IL, Interleukin
- IRF3, Interferon regulatory factor 3
- JAK, Janus kinase
- KC, Kupffer cells
- LCN2, Lipocalin 2
- M-D, Mallory–Denk
- MAA, Malondialdehyde-acetaldehyde protein adducts
- MAT, Methionine adenosyltransferase
- MCP, Macrophage chemotactic protein
- MDA, Malondialdehyde
- MIF, Macrophage migration inhibitory factor
- Mn SOD, Manganese superoxide dismutase
- Mt, Mitochondrial
- NK, Natural killer
- NKT, Natural killer T-lymphocytes
- OPN, Osteopontin
- PAMP, Pathogen-associated molecular patterns
- PNPLA3, Patatin-like phospholipase domain containing 3
- PUFA, Polyunsaturated fatty acid
- RIG1, Retinoic acid inducible gene 1
- SAH, S-adenosylhomocysteine
- SAM, S-adenosylmethionine
- SCD, Stearoyl-CoA desaturase
- STAT, Signal transduction and activator of transcription
- TIMP1, Tissue inhibitor matrix metalloproteinase 1
- TLR, Toll-like receptor
- TNF, Tumor necrosis factor-α
- alcohol
- alcohol-associated liver disease
- ethanol metabolism
- liver
- miRNA, MicroRNA
- p90RSK, 90 kDa ribosomal S6 kinase
Collapse
Affiliation(s)
- Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
| | - Karuna Rasineni
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
| | - Terrence M. Donohue
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
- Department of Internal Medicine, Omaha, NE, 68198, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|