1
|
Kotton CN, Kumar D, Manuel O, Chou S, Hayden RT, Danziger-Isakov L, Asberg A, Tedesco-Silva H, Humar A. The Fourth International Consensus Guidelines on the Management of Cytomegalovirus in Solid Organ Transplantation. Transplantation 2025:00007890-990000000-01056. [PMID: 40200403 DOI: 10.1097/tp.0000000000005374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Affiliation(s)
- Camille N Kotton
- Transplant and Immunocompromised Host Service, Infectious Diseases Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Deepali Kumar
- Division of Infectious Diseases, Department of Medicine, Ajmera Transplant Center and University of Toronto, Toronto, ON, Canada
| | - Oriol Manuel
- Infectious Diseases Service and Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland
| | - Sunwen Chou
- Division of Infectious Diseases, Oregon Health and Science University, Portland, OR
| | - Randall T Hayden
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN
| | - Lara Danziger-Isakov
- Department of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Anders Asberg
- Department of Transplantation Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
| | | | - Atul Humar
- Division of Infectious Diseases, Department of Medicine, Ajmera Transplant Center and University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Ptak L, Meyers RO, Radko‐Ganz O, McDowell KA, Jorgenson M, Chilsen M, Mandelbrot D, Galipeau J, Parajuli S. A Phase I Study Evaluating Safety and Tolerability of Viral-Specific T Cells Against BK-Virus in Adult Kidney Transplant Recipients. J Med Virol 2025; 97:e70357. [PMID: 40249038 PMCID: PMC12007393 DOI: 10.1002/jmv.70357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Abstract
BK polyomavirus (BKPyV) poses a significant threat to kidney transplant recipients (KTR). Current management primarily involves reducing immunosuppression, which increases the risk of rejection. Cell-based immunotherapy with virus-specific T cells (VST) has emerged as an alternative approach for treating BKPyV in KTRs. This single-center phase I, open-label trial enrolled KTRs with persistent BKPyV-DNAemia and BKPyV nephropathy (BKPyVAN) (NCT05042076) despite being on lower immunosuppression. BK-specific T cells were isolated from leukapheresis products from compatible donors. Patients were treated with VST therapy and followed for 52 weeks. Safety and tolerability were the primary focus of this trial. Three patients completed the trial. No grade III or IV adverse events, acute rejections, or graft versus host disease were reported. All patients tolerated the therapy well, with no significant safety concerns observed during the follow-up period. BK-VST demonstrated promising safety and tolerability profiles in this small cohort of kidney transplant recipients with severe BK infections. These findings suggest that VST therapy may offer a safe adjunctive treatment option for BKPyV infections post-transplantation. Larger studies are needed to confirm these preliminary results and assess long-term efficacy in treating BKPyV infections and preserving graft function in kidney transplant recipients.
Collapse
Affiliation(s)
- Lucy Ptak
- Division of Nephrology, Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Ross O. Meyers
- Division of Pharmacy Professional DevelopmentUniversity of Wisconsin‐Madison School of PharmacyMadisonWisconsinUSA
- Program for Advanced Cell TherapyUniversity of Wisconsin Hospital and Clinics and School of Medicine and Public HealthMadisonWisconsinUSA
| | - Olga Radko‐Ganz
- Division of Pharmacy Professional DevelopmentUniversity of Wisconsin‐Madison School of PharmacyMadisonWisconsinUSA
- Program for Advanced Cell TherapyUniversity of Wisconsin Hospital and Clinics and School of Medicine and Public HealthMadisonWisconsinUSA
- University of Wisconsin Carbone Cancer CenterMadisonWisconsinUSA
| | - Kimberly A. McDowell
- Program for Advanced Cell TherapyUniversity of Wisconsin Hospital and Clinics and School of Medicine and Public HealthMadisonWisconsinUSA
| | - Margaret Jorgenson
- Department of PharmacyUniversity of Wisconsin Hospital and ClinicsMadisonWisconsinUSA
| | - Maggie Chilsen
- Clinical Trial InstituteUniversity of Wisconsin‐ School of Medicine and Public HealthMadisonWisconsinUSA
| | - Didier Mandelbrot
- Division of Nephrology, Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Jacques Galipeau
- Program for Advanced Cell TherapyUniversity of Wisconsin Hospital and Clinics and School of Medicine and Public HealthMadisonWisconsinUSA
- University of Wisconsin Carbone Cancer CenterMadisonWisconsinUSA
- Division of Hematology and Oncology, Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Sandesh Parajuli
- Division of Nephrology, Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| |
Collapse
|
3
|
Neller MA, Ambalathingal GR, Hamad N, Sasadeusz J, Pearson R, Holmes-Liew CL, Singhal D, Tunbridge M, Ng WY, Sharplin K, Moore A, Deambrosis D, Soosay-Raj T, McNaughton P, Whyte M, Fraser C, Grigg A, Kliman D, Bajel A, Cummins K, Dowling M, Yeoh ZH, Harrison SJ, Khot A, Tan S, Roos I, Koo RM, Dohrmann S, Ritchie D, Wainstein B, McCleary K, Nelson A, Gardiner B, Inam S, Badoux X, Ma K, Toro C, Hanna D, Hughes D, Conyers R, Cole T, Wang SS, Chee L, Fleming J, Irish A, Purtill D, Cooney J, Shaw P, Tey SK, Hunt S, Subramonia Pillai E, John G, Ng M, Ramachandran S, Hopkins P, Chambers D, Campbell S, Francis R, Isbel N, Marlton P, Reddiex H, Matthews KK, Voogt M, Panikkar A, Beagley L, Rehan S, Best S, Raju J, Le Texier L, Crooks P, Solomon M, Lekieffre L, Srihari S, Smith C, Khanna R. Compassionate access to virus-specific T cells for adoptive immunotherapy over 15 years. Nat Commun 2024; 15:10339. [PMID: 39627190 PMCID: PMC11615211 DOI: 10.1038/s41467-024-54595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024] Open
Abstract
Adoptive T-cell immunotherapy holds great promise for the treatment of viral complications in immunocompromised patients resistant to standard anti-viral strategies. We present a retrospective analysis of 78 patients from 19 hospitals across Australia and New Zealand, treated over the last 15 years with "off-the-shelf" allogeneic T cells directed to a combination of Epstein-Barr virus (EBV), cytomegalovirus (CMV), BK polyomavirus (BKV), John Cunningham virus (JCV) and/or adenovirus (AdV) under the Australian Therapeutic Goods Administration's Special Access Scheme. Most patients had severe post-transplant viral complications, including drug-resistant end-organ CMV disease, BKV-associated haemorrhagic cystitis and EBV-driven post-transplant lymphoproliferative disorder. Adoptive immunotherapy is well tolerated with few adverse effects. Importantly, 46/71 (65%) patients show definitive clinical improvement including reduction in viral load, clinical symptoms and complete resolution of end-organ disease. In addition, seven high-risk patients remain disease free. Based on this long-term encouraging clinical experience, we propose that a dedicated nationally funded centre for anti-viral cellular therapies should be considered to provide T cell therapies for critically ill patients for compassionate use.
Collapse
Affiliation(s)
- Michelle A Neller
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - George R Ambalathingal
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Nada Hamad
- Department of Haematology, St Vincent's Hospital, School of Clinical Medicine, University of New South Wales and School of Medicine, University of Notre Dame, Sydney, New South Wales, Australia
| | - Joe Sasadeusz
- Department of Haematology, St Vincent's Hospital, School of Clinical Medicine, University of New South Wales and School of Medicine, University of Notre Dame, Sydney, New South Wales, Australia
| | - Rebecca Pearson
- Department of Haematology, St Vincent's Hospital, School of Clinical Medicine, University of New South Wales and School of Medicine, University of Notre Dame, Sydney, New South Wales, Australia
| | | | - Deepak Singhal
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | | | - Wei Yang Ng
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Kirsty Sharplin
- Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Andrew Moore
- Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - David Deambrosis
- Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Trisha Soosay-Raj
- Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Peter McNaughton
- Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Morag Whyte
- Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Chris Fraser
- Queensland Children's Hospital, South Brisbane, Queensland, Australia
| | - Andrew Grigg
- Austin Hospital, Heidelberg, Victoria, Australia
| | - David Kliman
- Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Ashish Bajel
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Katherine Cummins
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Mark Dowling
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Zhi Han Yeoh
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Simon J Harrison
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Amit Khot
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Sarah Tan
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Izanne Roos
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Ray Mun Koo
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Sara Dohrmann
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - David Ritchie
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Victoria, Australia
- Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Brynn Wainstein
- Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Karen McCleary
- Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Adam Nelson
- Sydney Children's Hospital, Randwick, New South Wales, Australia
| | | | - Shafqat Inam
- The Alfred Hospital, Melbourne, Victoria, Australia
| | - Xavier Badoux
- St George Public Hospital, Kogarah, New South Wales, Australia
| | - Kris Ma
- Westmead Hospital, Westmead, New South Wales, Australia
| | - Claudia Toro
- Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Diane Hanna
- Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - David Hughes
- Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Rachel Conyers
- Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | - Theresa Cole
- Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | | | - Lynette Chee
- Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| | | | - Ashley Irish
- Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Duncan Purtill
- Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Julian Cooney
- Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Peter Shaw
- The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Siok-Keen Tey
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Stewart Hunt
- Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | | | - George John
- Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Michelle Ng
- Perth Children's Hospital, Nedlands, Western Australia, Australia
| | | | - Peter Hopkins
- The Prince Charles Hospital, Chermside, Queensland, Australia
- The University of Queensland Medical School, Herston, Queensland, Australia
| | - Daniel Chambers
- The Prince Charles Hospital, Chermside, Queensland, Australia
| | - Scott Campbell
- Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Ross Francis
- Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Nicole Isbel
- Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Paula Marlton
- Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Hilary Reddiex
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Katherine K Matthews
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Meggie Voogt
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Archana Panikkar
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Leone Beagley
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Sweera Rehan
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Shannon Best
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Jyothy Raju
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Laetitia Le Texier
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Pauline Crooks
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Matthew Solomon
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Lea Lekieffre
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Sriganesh Srihari
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Corey Smith
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Rajiv Khanna
- Queensland Immunology Research Centre, Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| |
Collapse
|
4
|
Ruiz-Arabi E, Torre-Cisneros J, Aguilera V, Alonso R, Berenguer M, Bestard O, Bodro M, Cantisán S, Carratalà J, Castón JJ, Cordero E, Facundo C, Fariñas MC, Fernández-Alonso M, Fernández-Ruiz M, Fortún J, García-Cosío MD, Herrera S, Iturbe-Fernández D, Len O, López-Medrano F, López-Oliva MO, Los-Arcos I, Marcos MÁ, Martín-Dávila P, Monforte V, Muñoz P, Navarro D, Páez-Vega A, Pérez AB, Redondo N, Álvarez R R, Rodríguez-Benot A, Rodríguez-Goncer I, San-Juan R, Sánchez-Céspedes J, Valerio M, Vaquero JM, Viasus D, Vidal E, Aguado JM. Management of cytomegalovirus in adult solid organ transplant patients: GESITRA-IC-SEIMC, CIBERINFEC, and SET recommendations update. Transplant Rev (Orlando) 2024; 38:100875. [PMID: 39168020 DOI: 10.1016/j.trre.2024.100875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/23/2024]
Abstract
Cytomegalovirus (CMV) infection remains a significant challenge in solid organ transplantation (SOT). The last international consensus guidelines on the management of CMV in SOT were published in 2018, highlighting the need for revision to incorporate recent advances, notably in cell-mediated immunity monitoring, which could alter the current standard of care. A working group including members from the Group for the Study of Infection in Transplantation and the Immunocompromised Host (GESITRA-IC) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) and the Spanish Society of Transplantation (SET), developed consensus-based recommendations for managing CMV infection in SOT recipients. Recommendations were classified based on evidence strength and quality using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. The final recommendations were endorsed through a consensus meeting and approved by the expert panel.
Collapse
Affiliation(s)
- Elisa Ruiz-Arabi
- Service of Infectious Diseases, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research (IMIBIC), Cordoba, Spain
| | - Julian Torre-Cisneros
- Service of Infectious Diseases, Reina Sofia University Hospital. Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Córdoba, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Victoria Aguilera
- Hepatology and Liver Transplantation Unit, Hospital Universitario La Fe-IIS La Fe Valencia, CiberEHD and University of Valencia, Spain
| | - Rodrigo Alonso
- Lung Transplant Unit, Pneumology Service, Instituto de Investigación Hospital 12 de Octubre (imas12), University Hospital 12 de Octubre, Madrid, Spain
| | - Marina Berenguer
- Hepatology and Liver Transplantation Unit, Hospital Universitario La Fe-IIS La Fe Valencia, CiberEHD and University of Valencia, Spain
| | - Oriol Bestard
- Department of Nephrology and Kidney Transplantation, Vall d'Hebron University Hospital-VHIR, Barcelona, Spain
| | - Marta Bodro
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Department of Infectious Diseases, Hospital Clinic-IDIBAPS, University of Barcelona, Spain
| | - Sara Cantisán
- Service of Infectious Diseases, Reina Sofia University Hospital. Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Córdoba, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Carratalà
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Department of Infectious Diseases, Bellvitge University Hospital-IDIBELL, University of Barcelona, Spain
| | - Juan José Castón
- Service of Infectious Diseases, Reina Sofia University Hospital. Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Córdoba, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Elisa Cordero
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unit of Infectious Diseases, Microbiology and Parasitology, Instituto de Biomedicina de Sevilla (IBiS), Virgen del Rocío University Hospital, Junta de Andalucía, CSIC, Universidad de Sevilla, Sevilla, Spain; Departament of Medicine, Faculty of Medicine, Universidad de Sevilla, Spain
| | - Carme Facundo
- Department of Nephrology, Fundacio Puigvert, Institut de Recerca Sant Pau (IR Sant Pau), RICORS 2024 (Kidney Disease), Barcelona, Spain
| | - María Carmen Fariñas
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Department of Infectious Diseases, Hospital Universitario Marqués de Valdecilla-IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Mirian Fernández-Alonso
- Microbiology Service, Clínica Universidad de Navarra, IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Mario Fernández-Ruiz
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unit of Infectious Diseases, University Hospital "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Jesús Fortún
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Service of Infectious Diseases, Ramón y Cajal University Hospital, IRYCIS, Madrid, Spain
| | - Maria Dolores García-Cosío
- Department of Cardiology, University Hospital "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), CIBERCV, Madrid, Spain
| | - Sabina Herrera
- Department of Infectious Diseases, Hospital Clinic-IDIBAPS, University of Barcelona, Spain
| | - David Iturbe-Fernández
- Department of Pneumology, University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Oscar Len
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Department of Infectious Diseases, Vall d'Hebron for Solid Organ Transplantation Research Group, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Francisco López-Medrano
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unit of Infectious Diseases, University Hospital "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | | | - Ibai Los-Arcos
- Department of Infectious Diseases, Vall d'Hebron for Solid Organ Transplantation Research Group, Vall d'Hebron University Hospital, Barcelona, Spain
| | - María Ángeles Marcos
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Microbiology, Hospital Clinic, University of Barcelona, ISGlobal Barcelona Institute for Global Health, Barcelona, Spain
| | - Pilar Martín-Dávila
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Service of Infectious Diseases, Ramón y Cajal University Hospital, IRYCIS, Madrid, Spain
| | - Víctor Monforte
- Lung Transplant Program, Department of Pulmonology, Hospital Universitari Vall d'Hebron, Barcelona, Spain; CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Muñoz
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitario Gregorio Marañon, Departamento de Medicina, Universidad Complutense, Madrid, Spain
| | - David Navarro
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain. Department of Microbiology School of Medicine, University of Valencia, Spain
| | - Aurora Páez-Vega
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain
| | - Ana Belén Pérez
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Microbiology Unit, Hospital Universitario Reina Sofía-Maimonides Institute for Biomedical Research (IMIBIC), Cordoba, Spain
| | - Natalia Redondo
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unit of Infectious Diseases, University Hospital "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | | | | | - Isabel Rodríguez-Goncer
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unit of Infectious Diseases, University Hospital "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Rafael San-Juan
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unit of Infectious Diseases, University Hospital "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Javier Sánchez-Céspedes
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unit of Infectious Diseases, Microbiology and Parasitology, Instituto de Biomedicina de Sevilla (IBiS), Virgen del Rocío University Hospital, Junta de Andalucía, CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Maricela Valerio
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain; Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitario Gregorio Marañon, Departamento de Medicina, Universidad Complutense, Madrid, Spain
| | - José Manuel Vaquero
- Unit of Pneumology, Thoracic Surgery, and Lung Transplant, Reina Sofía University Hospital, Cordoba, Spain
| | - Diego Viasus
- Division of Health Sciences, Faculty of Medicine, Universidad del Norte, Hospital Universidad del Norte, Barranquilla, Colombia
| | - Elisa Vidal
- Service of Infectious Diseases, Reina Sofia University Hospital. Maimonides Institute for Biomedical Research (IMIBIC), University of Cordoba, Córdoba, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - José María Aguado
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Unit of Infectious Diseases, University Hospital "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
5
|
Hardinger KL, Brennan DC. Cytomegalovirus Treatment in Solid Organ Transplantation: An Update on Current Approaches. Ann Pharmacother 2024; 58:1122-1133. [PMID: 38501850 DOI: 10.1177/10600280241237534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
OBJECTIVE The article reviews the safety and efficacy of treatments for cytomegalovirus (CMV) in solid organ transplantation. DATA SOURCES A literature review was conducted in PubMed, MEDLINE, and Clinicaltrials.gov from database inception through January 2024, using terms CMV, therapy, and solid organ transplantation. STUDY SELECTION AND DATA EXTRACTION Clinical trials, meta-analyses, cohort studies, case reports, and guidelines were included. Letters to the editor, reviews, and commentaries were excluded. DATA SYNTHESIS After abstract screening and full-text review of 728 citations for eligibility, 53 were included. Valganciclovir and intravenous ganciclovir are drugs of choice for CMV management and, until recently, the availability of alternative options has been restricted due to toxicity. For instance, foscarnet and cidofovir serve as second-line agents due to potential bone marrow and renal toxicity. In patients with refractory or resistant CMV, maribavir, a novel oral agent, has proven efficacy and a lower adverse effect profile. However, in refractory or resistant CMV, foscarnet and cidofovir are preferred in invasive disease (CMV gastritis, CMV retinitis, and CMV encephalitis), high viral loads, and inability to tolerate oral preparations. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE Consensus guidelines have not been revised since approval of novel antivirals in solid organ transplantation. Valganciclovir and ganciclovir remain drugs of choice for initial CMV therapy. Foscarnet, cidofovir, and maribavir are treatments for refractory or resistant-CMV. CONCLUSIONS Selection of CMV antiviral treatment should be determined by patient-specific factors, including severity of illness, resistant or refractory disease, dose-limiting adverse effects, and the preferred route of administration.
Collapse
Affiliation(s)
- Karen L Hardinger
- Division of Pharmacy Practice and Administration, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Daniel C Brennan
- Johns Hopkins Comprehensive Transplant Center, Baltimore, MD, USA
| |
Collapse
|
6
|
Schweitzer L, Muranski P. Virus-specific T cell therapy to treat refractory viral infections in solid organ transplant recipients. Am J Transplant 2024; 24:1558-1566. [PMID: 38857784 DOI: 10.1016/j.ajt.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Solid organ transplant recipients require ongoing immunosuppression to prevent acute rejection, which puts them at risk of opportunistic infections. Viral infections are particularly challenging to prevent and treat as many establish latency and thus cannot be eliminated, whereas targets for small molecule antiviral medications are limited. Resistance to antivirals and unacceptable toxicity also complicate treatment. Virus-specific T cell therapies aim to restore host-specific immunity to opportunistic viruses that is lacking due to ongoing immunosuppressive therapy. This minireview will provide a state-of-the-art update of the current virus-specific T cell pipeline and translational research that is likely to lead to further treatment options for viral infections in solid organ transplant recipients.
Collapse
Affiliation(s)
- Lorne Schweitzer
- Department of Medicine, Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York, USA; Columbia Center for Translational Immunology, New York, New York, USA
| | - Pawel Muranski
- Department of Medicine, Division of Hematology, Columbia University Irving Medical Center, New York, New York, USA; Columbia Center for Translational Immunology, New York, New York, USA.
| |
Collapse
|
7
|
Martins P, D’Souza RCJ, Skarne N, Lekieffre L, Horsefield S, Ranjankumar M, Li X, Le TT, Smith F, Smith C, Burrows J, Day BW, Khanna R. EphA3 CAR T cells are effective against glioblastoma in preclinical models. J Immunother Cancer 2024; 12:e009403. [PMID: 39111832 PMCID: PMC11308892 DOI: 10.1136/jitc-2024-009403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Adoptive T-cell therapy targeting antigens expressed in glioblastoma has emerged as a potential therapeutic strategy to prevent or delay recurrence and prolong overall survival in this aggressive disease setting. Ephrin receptor A3 (EphA3), which is highly expressed in glioblastoma; in particular, on the tumor vasculature and brain cancer stem cells, is an ideal target for immune-based therapies. METHODS We have designed an EphA3-targeted chimeric antigen receptor (CAR) using the single chain variable fragment of a novel monoclonal antibody, and assessed its therapeutic potential against EphA3-expressing patient-derived glioblastoma neurospheres, organoids and xenografted glioblastoma tumors in immunodeficient mice. RESULTS In vitro expanded EphA3 CAR T cells from healthy individuals efficiently recognize and kill EphA3-positive glioblastoma cells in vitro. Furthermore, these effector cells demonstrated curative efficacy in an orthotopic xenograft model of glioblastoma. EphA3 CAR T cells were equally effective in targeting patient-derived neurospheres and infiltrate, disaggregate, and induce apoptosis in glioblastoma-derived organoids. CONCLUSIONS This study provides compelling evidence supporting the therapeutic potential of EphA3 CAR T-cell therapy against glioblastoma by targeting EphA3 associated with brain cancer stem cells and the tumor vasculature. The ability to target patient-derived glioblastoma underscores the translational significance of this EphA3 CAR T-cell therapy in the pursuit of effective and targeted glioblastoma treatment strategies.
Collapse
Affiliation(s)
- Paulo Martins
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- The University of Queensland, Brisbane, Queensland, Australia
| | | | - Niclas Skarne
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Lea Lekieffre
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Shane Horsefield
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- The University of Queensland, Brisbane, Queensland, Australia
| | | | - Xiang Li
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Thuy T Le
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Fiona Smith
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Corey Smith
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Jacqueline Burrows
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Bryan W Day
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Sid Faithfull Brain Cancer Laboratory, Brisbane, Queensland, Australia
| | - Rajiv Khanna
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Obermaier B, Braun C, Hensen L, Ahmad O, Faul C, Lang P, Bethge W, Lengerke C, Vogel W. Adenovirus- and cytomegalovirus-specific adoptive T-cell therapy in the context of hematologic cell transplant or HIV infection - A single-center experience. Transpl Infect Dis 2024; 26:e14296. [PMID: 38830809 DOI: 10.1111/tid.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/17/2024] [Accepted: 05/05/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Reactivation of viral infections, in particular cytomegalovirus (CMV) and adenovirus (ADV), cause morbidity and non-relapse-mortality in states of immune deficiency, especially after allogeneic hematopoietic cell transplantation (allo-HCT). Against the background of few available pharmacologic antiviral agents, limited by toxicities and resistance, adoptive transfer of virus-specific T-cells (VST) is a promising therapeutic approach. METHODS We conducted a single-center retrospective analysis of adult patients treated with ADV- or CMV-specific T-cells in 2012-2022. Information was retrieved by review of electronic health records. Primary outcome was a response to VST by decreasing viral load or clinical improvement. Secondary outcomes included overall survival and safety of VST infusion, in particular association with graft-versus-host disease (GVHD). RESULTS Ten patients were included, of whom four were treated for ADV, five for CMV, and one for ADV-CMV-coinfection. Cells were derived from stem cell donors (6/10) or third-party donors (4/10). Response criteria were met by six of 10 patients (4/4 ADV, 2/5 CMV, and 0/1 ADV-CMV). Overall survival was 40%. No infusion related adverse events were documented. Aggravation of GVHD after adoptive immunotherapy was observed in two cases, however in temporal association with a conventional donor lymphocyte infusion and a stem cell boost, respectively. CONCLUSION In this cohort, CMV- and ADV-specific T-cell therapy appear to be safe and effective. We describe the first reported case of virus-specific T-cell therapy for CMV reactivation not associated with transplantation but with advanced HIV infection. This encourages further evaluation of adoptive immunotherapy beyond the context of allo-HCT.
Collapse
Affiliation(s)
- Benedikt Obermaier
- Department of Hematology, Oncology, Clinical Immunology, and Rheumatology, Center for Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Christiane Braun
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Luca Hensen
- Department of Hematology, Oncology, Clinical Immunology, and Rheumatology, Center for Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Osama Ahmad
- Department of Hematology, Oncology, Clinical Immunology, and Rheumatology, Center for Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Christoph Faul
- Department of Hematology, Oncology, Clinical Immunology, and Rheumatology, Center for Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Peter Lang
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany
| | - Wolfgang Bethge
- Department of Hematology, Oncology, Clinical Immunology, and Rheumatology, Center for Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Claudia Lengerke
- Department of Hematology, Oncology, Clinical Immunology, and Rheumatology, Center for Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
| | - Wichard Vogel
- Department of Hematology, Oncology, Clinical Immunology, and Rheumatology, Center for Internal Medicine, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
9
|
Menschikowski H, Bednar C, Kübel S, Hermann M, Bauer L, Thomas M, Cordsmeier A, Ensser A. Evaluation of Bispecific T-Cell Engagers Targeting Murine Cytomegalovirus. Viruses 2024; 16:869. [PMID: 38932161 PMCID: PMC11209133 DOI: 10.3390/v16060869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Human cytomegalovirus is a ubiquitous herpesvirus that, while latent in most individuals, poses a great risk to immunocompromised patients. In contrast to directly acting traditional antiviral drugs, such as ganciclovir, we aim to emulate a physiological infection control using T cells. For this, we constructed several bispecific T-cell engager (BiTE) constructs targeting different viral glycoproteins of the murine cytomegalovirus and evaluated them in vitro for their efficacy. To isolate the target specific effect without viral immune evasion, we established stable reporter cell lines expressing the viral target glycoprotein B, and the glycoprotein complexes gN-gM and gH-gL, as well as nano-luciferase (nLuc). First, we evaluated binding capacities using flow cytometry and established killing assays, measuring nLuc-release upon cell lysis. All BiTE constructs proved to be functional mediators for T-cell recruitment and will allow a proof of concept for this treatment option. This might pave the way for strikingly safer immunosuppression in vulnerable patient groups.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Armin Ensser
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (H.M.); (S.K.); (M.H.); (A.C.)
| |
Collapse
|
10
|
Abstract
Cytomegalovirus (CMV) is one of the most common infections occurring after solid organ transplantation. This high burden of disease, which incurs sizeable morbidity, may be worsening with the proportion of high-risk D+/R- solid organ transplantation recipients increasing in some regions globally. Cohort studies continue to support either universal prophylaxis or preemptive therapy as effective prevention strategies. Letermovir prophylaxis was noninferior to valganciclovir in adult high-risk D+/R- kidney transplant recipients with fewer drug-related adverse events in a recent clinical trial and has now been approved for such use in some regions. Maribavir preemptive therapy failed to demonstrate noninferiority when compared with valganciclovir in hematopoietic stem cell transplant recipients but looked promising for safety. Donor matching could be useful in prevention CMV disease with a survival advantage demonstrated in seronegative recipients waiting up to 30 mo for a seronegative kidney. Immune-guided prophylaxis resulted in fewer CMV infection episodes in lung transplant recipients when compared with fixed-duration prophylaxis in a recent clinical trial. For treatment of refractory or resistant CMV infection, maribavir was more efficacious and better tolerated when compared with investigator-initiated therapy in its registration trial for this condition. Further research regarding best treatment and prophylaxis of resistant or refractory CMV infection is needed to reflect best clinical practice choices. Optimal use of immune globulin or CMV-specific T cells for prevention or treatment of CMV disease remains undefined. Standardized definitions for the design of CMV clinical trials have been developed. In this review, we highlight recent updates in the field from data published since 2018.
Collapse
Affiliation(s)
- Adam G Stewart
- Centre for Clinical Research, Faculty of Medicine, University of Queensland, Royal Brisbane and Women's Hospital Campus, Brisbane, QLD, Australia
| | - Camille N Kotton
- Transplant and Immunocompromised Host Infectious Diseases, Infectious Diseases Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Green A, Rubinstein JD, Grimley M, Pfeiffer T. Virus-Specific T Cells for the Treatment of Systemic Infections Following Allogeneic Hematopoietic Cell and Solid Organ Transplantation. J Pediatric Infect Dis Soc 2024; 13:S49-S57. [PMID: 38417086 DOI: 10.1093/jpids/piad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/25/2023] [Indexed: 03/01/2024]
Abstract
Viral infections are a major source of morbidity and mortality in the context of immune deficiency and immunosuppression following allogeneic hematopoietic cell (allo-HCT) and solid organ transplantation (SOT). The pharmacological treatment of viral infections is challenging and often complicated by limited efficacy, the development of resistance, and intolerable side effects. A promising strategy to rapidly restore antiviral immunity is the adoptive transfer of virus-specific T cells (VST). This therapy involves the isolation and ex vivo expansion or direct selection of antigen-specific T cells from healthy seropositive donors, followed by infusion into the patient. This article provides a practical guide to VST therapy by reviewing manufacturing techniques, donor selection, and treatment indications. The safety and efficacy data of VSTs gathered in clinical trials over nearly 30 years is summarized. Current challenges and limitations are discussed, as well as opportunities for further research and development.
Collapse
Affiliation(s)
- Abby Green
- Department of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeremy D Rubinstein
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Michael Grimley
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Thomas Pfeiffer
- Department of Pediatrics, Division of Hematology/Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
12
|
Schreiber B, Tripathi S, Nikiforow S, Chandraker A. Adoptive Immune Effector Cell Therapies in Cancer and Solid Organ Transplantation: A Review. Semin Nephrol 2024; 44:151498. [PMID: 38555223 DOI: 10.1016/j.semnephrol.2024.151498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Cancer is one of the most devastating complications of kidney transplantation and constitutes one of the leading causes of morbidity and mortality among solid organ transplantation (SOT) recipients. Immunosuppression, although effective in preventing allograft rejection, inherently inhibits immune surveillance against oncogenic viral infections and malignancy. Adoptive cell therapy, particularly immune effector cell therapy, has long been a modality of interest in both cancer and transplantation, though has only recently stepped into the spotlight with the development of virus-specific T-cell therapy and chimeric antigen receptor T-cell therapy. Although these modalities are best described in hematopoietic cell transplantation and hematologic malignancies, their potential application in the SOT setting may hold tremendous promise for those with limited therapeutic options. In this review, we provide a brief overview of the development of adoptive cell therapies with a focus on virus-specific T-cell therapy and chimeric antigen receptor T-cell therapy. We also describe the current experience of these therapies in the SOT setting as well as the challenges in their application and future directions in their development.
Collapse
Affiliation(s)
- Brittany Schreiber
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Sudipta Tripathi
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Sarah Nikiforow
- Division of Medical Oncology, Department of Medicine, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Anil Chandraker
- Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Division of Renal Medicine, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA.
| |
Collapse
|
13
|
Yadav R, El Kossi M, Belal D, Sharma A, Halawa A. Post-transplant malignancy: Focusing on virus-associated etiologies, pathogenesis, evidence-based management algorithms, present status of adoptive immunotherapy and future directions. World J Meta-Anal 2023; 11:317-339. [DOI: 10.13105/wjma.v11.i7.317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/23/2023] [Accepted: 10/08/2023] [Indexed: 12/14/2023] Open
Abstract
Modern immunosuppression has led to a decrease in rejection rates and improved survival rates after solid organ transplantation. Increasing the potency of immunosuppression promotes post-transplant viral infections and associated cancers by impairing immune response against viruses and cancer immunoediting. This review reflects the magnitude, etiology and immunological characteristics of various virus-related post-transplant malignancies, emphasizing the need for future research. A multidisciplinary and strategic approach may serve best but overall literature evidence targeting it is sparse. However, the authors attempted to provide a more detailed update of the literature consensus for the prevention, diagnosis, management and surveillance of post-transplant viral infections and associated malignancies, with a focus on the current role of adoptive immunotherapy and the way forward. In order to achieve long-term patient and graft survival as well as superior post-transplant outcomes, collaborative research on holistic care of organ recipients is imperative.
Collapse
Affiliation(s)
- Rahul Yadav
- Department of Urology, Kidney Transplant and Robotic Uro-oncology, Tender Palm Super Speciality Hospital, Lucknow 226010, Uttar Pradesh, India
- Department of Urology and Kidney Transplant, Charak Hospital and Research Centre, Lucknow 226003, Uttar Pradesh, India
| | - Mohsen El Kossi
- Department of Nephrology, Doncaster Royal Infirmary, Doncaster DN2 5LT, United Kingdom
| | - Dawlat Belal
- Department of Nephrology and Medicine, Kasr El-Ainy School of Medicine, Cairo University, Cairo 11562, Egypt
| | - Ajay Sharma
- Department of Transplant Surgery, Royal Liverpool University Hospitals, Liverpool L7 8XP, United Kingdom
| | - Ahmed Halawa
- Department of Transplantation, Sheffield Teaching Hospitals, Sheffield S57AU, United Kingdom
| |
Collapse
|
14
|
Doss KM, Heldman MR, Limaye AP. Updates in Cytomegalovirus Prevention and Treatment in Solid Organ Transplantation. Infect Dis Clin North Am 2023:S0891-5520(23)00083-1. [PMID: 37989636 PMCID: PMC11102935 DOI: 10.1016/j.idc.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
The authors summarize recent updates in the prevention and management of cytomegalovirus (CMV) in solid organ transplant (SOT) recipients with a focus on CMV seronegative recipients of organs from seropositive donors (CMV D+/R-) who are at highest risk of CMV infection and disease. They discuss advantages of preemptive therapy for CMV disease prevention in CMV D+/R- liver transplant recipients, letermovir for CMV prophylaxis, and updates in the development of monoclonal antibodies and vaccines as immune-based preventative strategies. They review the roles of maribavir and virus-specific T cells for management of resistant or refractory CMV infection in SOT recipients.
Collapse
Affiliation(s)
- Kathleen M Doss
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Madeleine R Heldman
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC, USA
| | - Ajit P Limaye
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
15
|
Walti CS, Khanna N, Avery RK, Helanterä I. New Treatment Options for Refractory/Resistant CMV Infection. Transpl Int 2023; 36:11785. [PMID: 37901297 PMCID: PMC10600348 DOI: 10.3389/ti.2023.11785] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023]
Abstract
Despite advances in monitoring and treatment, cytomegalovirus (CMV) infections remain one of the most common complications after solid organ transplantation (SOT). CMV infection may fail to respond to standard first- and second-line antiviral therapies with or without the presence of antiviral resistance to these therapies. This failure to respond after 14 days of appropriate treatment is referred to as "resistant/refractory CMV." Limited data on refractory CMV without antiviral resistance are available. Reported rates of resistant CMV are up to 18% in SOT recipients treated for CMV. Therapeutic options for treating these infections are limited due to the toxicity of the agent used or transplant-related complications. This is often the challenge with conventional agents such as ganciclovir, foscarnet and cidofovir. Recent introduction of new CMV agents including maribavir and letermovir as well as the use of adoptive T cell therapy may improve the outcome of these difficult-to-treat infections in SOT recipients. In this expert review, we focus on new treatment options for resistant/refractory CMV infection and disease in SOT recipients, with an emphasis on maribavir, letermovir, and adoptive T cell therapy.
Collapse
Affiliation(s)
- Carla Simone Walti
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Biomedicine and Clinical Research, University and University Hospital of Basel, Basel, Switzerland
| | - Nina Khanna
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Biomedicine and Clinical Research, University and University Hospital of Basel, Basel, Switzerland
| | - Robin K. Avery
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Ilkka Helanterä
- Department of Transplantation and Liver Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Cheng J, Huang J, Cao W, Huang L, Mao X, Chen L, Zhou J, Wang N. Case Report: Fatal cytomegalovirus pneumonia after CAR-T cell therapy in the long-term follow-up. Front Immunol 2023; 14:1226148. [PMID: 37849765 PMCID: PMC10577281 DOI: 10.3389/fimmu.2023.1226148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction The rapidly developed CAR-T cell therapy has a unique profile of side effects, which perhaps has not been totally realized and understood, especially the late-phase toxicity. CMV is prevalent world-wide and establishes a life-long latency infection. It can lead to life-threatening complications in immunocompromised host, and little is known about CMV disease in patients after CAR-T cell therapy. Here, we report a patient who developed possible CMV-pneumonia three months after anti-CD19 and anti-CD22 CAR-T cell therapy for relapsed B-ALL, contributing to the understanding of severe side-effects mediated by virus infection or reactivation in patients receiving CAR-T cell infusion. Case presentation A 21-year old male patient with relapsed B-ALL received anti-CD19/22 CAR-T cell therapy, and achieved complete remission 2 weeks after the infusion. However, three months later, the patient was hospitalized again with a 10-day history of fever and cough and a 3-day history of palpitations and chest tightness. He was diagnosed with possible CMV pneumonia. Under treatment with antiviral medicine (ganciclovir/penciclovir), intravenous gamma globulin and methylprednisolone and the use of BiPAP ventilator, his symptoms improved, but after removing penciclovir his symptoms went out of control, and the patient died of respiratory failure 22 days after admission. Conclusion CMV infection/reactivation can occur in patients long after receiving anti-CD19/22 CAR-T cell therapy, and induce fatal pneumonia, which reminds us of the late side effects associated with immunosuppression after CAR-T cell infusion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Na Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
17
|
Msallam R, Redegeld FA. Mast cells-fetal mast cells crosstalk with maternal interfaces during pregnancy: Friend or foe? Pediatr Allergy Immunol 2023; 34:e13943. [PMID: 37102389 DOI: 10.1111/pai.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 04/28/2023]
Abstract
Mast cells (MC) are hematopoietic immune cells that play a major role during allergic reactions in adults by releasing a myriad of vasoactive and inflammatory mediators. MC seed all vascularized tissues and are most prominent in organs with a barrier function such as skin, lungs, and intestines. These secreted molecules cause mild symptoms such as localized itchiness and sneezing to life-threatening symptoms (i.e., anaphylactic shock). Presently, despite the extensive research on Th2-mediated immune responses in allergic diseases in adults, we are still unable to determine the mechanisms of the role of MC in developing pediatric allergic (PA) disorders. In this review, we will summarize the most recent findings on the origin of MC and discuss the underappreciated contribution of MC in the sensitization phase to maternal antibodies during pregnancy in allergic reactions and other diseases such as infectious diseases. Then, we will lay out potential MC-dependent therapeutic strategies to be considered in future investigations to understand the remaining gaps in MC research for a better quality of life for these young patients.
Collapse
Affiliation(s)
- Rasha Msallam
- Next Gen of Immunology (NGIg) Consultancy, Dubai, UAE
| | - Frank A Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
18
|
Ouellette CP. Adoptive Immunotherapy for Prophylaxis and Treatment of Cytomegalovirus Infection. Viruses 2022; 14:v14112370. [PMID: 36366468 PMCID: PMC9694397 DOI: 10.3390/v14112370] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 01/31/2023] Open
Abstract
Cytomegalovirus (CMV), a member of the Herpesviridae family, is frequent among hematopoietic cell transplant (HCT) and solid organ transplant (SOT) recipients in absence of antiviral prophylaxis, and is a major cause of morbidity and mortality in these vulnerable populations. Antivirals such ganciclovir, valganciclovir, and foscarnet are the backbone therapies, however drug toxicity and antiviral resistance may render these agents suboptimal in treatment. Newer therapies such as letermovir and maribavir have offered additional approaches for antiviral prophylaxis as well as treatment of drug resistant CMV infection, though may be limited by cost, drug intolerance, or toxicity. Adoptive immunotherapy, the transfer of viral specific T-cells (VSTs), offers a new approach in treatment of drug-resistant or refractory viral infections, with early clinical trials showing promise with respect to efficacy and safety. In this review, we will discuss some of the encouraging results and challenges of widespread adoption of VSTs in care of immunocompromised patients, with an emphasis on the clinical outcomes for treatment and prophylaxis of CMV infection among high-risk patient populations.
Collapse
Affiliation(s)
- Christopher P Ouellette
- Division of Pediatric Infectious Diseases and Host Defense Program, Nationwide Children's Hospital, Columbus, OH 43205, USA
| |
Collapse
|
19
|
Cytomegalovirus and other herpesviruses after hematopoietic cell and solid organ transplantation: From antiviral drugs to virus-specific T cells. Transpl Immunol 2022; 71:101539. [PMID: 35051589 DOI: 10.1016/j.trim.2022.101539] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/13/2022]
Abstract
Herpesviruses can either cause primary infection or may get reactivated after both hematopoietic cell and solid organ transplantations. In general, viral infections increase post-transplant morbidity and mortality. Prophylactic, preemptive, or therapeutically administered antiviral drugs may be associated with serious side effects and may induce viral resistance. Virus-specific T cells represent a valuable addition to antiviral treatment, with high rates of response and minimal side effects. Even low numbers of virus-specific T cells manufactured by direct selection methods can reconstitute virus-specific immunity after transplantation and control viral replication. Virus-specific T cells belong to the advanced therapy medicinal products, and their production is regulated by appropriate legislation; also, strict safety regulations are required to minimize their side effects.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Current immunosuppressive regimens used in kidney transplantation are sometimes ineffective and carry significant risks of morbidity and mortality. Cellular therapies are a promising alternative to prolong graft survival while minimizing treatment toxicity. We review the recently published breakthrough studies using cell therapies in kidney transplantation. RECENT FINDINGS The reviewed phase I and II trials showed that cell therapies are feasible and safe in kidney transplantation, sometimes associated with less infectious complications than traditional regimens. Regulatory T cells and macrophages were added to the induction regimen, allowing for lower immunosuppressive drug doses without higher rejection risk. Regulatory T cells are also a treatment for subclinical rejection on the 6 months biopsy. Other strategies, like bone marrow-derived mesenchymal cells, genetically modified regulatory T cells, and chimerism-based tolerance are also really promising. In addition, to improve graft tolerance, cell therapy could be used to prevent or treat viral infection after transplantation. SUMMARY Emerging data underline that cell therapy is a feasible and safe treatment in kidney transplantation. Although the evidence points to a benefit for transplant recipients, studies with standardized protocols, representative control groups, and longer follow-up are needed to answer the question definitively and guide future research.
Collapse
Affiliation(s)
- Simon Leclerc
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Caroline Lamarche
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
21
|
Saeed H, Thoendel M, Razonable RR. Individualized management of cytomegalovirus in solid organ transplant recipients. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021. [DOI: 10.1080/23808993.2021.1964951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Huma Saeed
- Division of Infectious Diseases, Department of Medicine and the William J Von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, United States
| | - Matthew Thoendel
- Division of Infectious Diseases, Department of Medicine and the William J Von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, United States
| | - Raymund R Razonable
- Division of Infectious Diseases, Department of Medicine and the William J Von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
22
|
García-Ríos E, Nuévalos M, Mancebo FJ, Pérez-Romero P. Is It Feasible to Use CMV-Specific T-Cell Adoptive Transfer as Treatment Against Infection in SOT Recipients? Front Immunol 2021; 12:657144. [PMID: 33968058 PMCID: PMC8104120 DOI: 10.3389/fimmu.2021.657144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
During the last decade, many studies have demonstrated the role of CMV specific T-cell immune response on controlling CMV replication and dissemination. In fact, it is well established that transplanted patients lacking CMV-specific T-cell immunity have an increased occurrence of CMV replication episodes and CMV-related complications. In this context, the use of adoptive transfer of CMV-specific T-cells has been widely investigated and applied to Hematopoietic Stem Cell Transplant patients and may be useful as a therapeutic alternative, to reconstitute the CMV specific T-cell response and to control CMV viremia in patients receiving a transplantation. However, only few authors have explored the use of T-cell adoptive transfer in SOT recipients. We propose a novel review in which we provide an overview of the impact of using CMV-specific T-cell adoptive transfer on the control of CMV infection in SOT recipients, the different approaches to stimulate, isolate and expand CMV-specific T-cells developed over the years and a discussion of the possible use of CMV adoptive cellular therapy in this SOT population. Given the timeliness and importance of this topic, we believe that such an analysis will provide important insights into CMV infection and its treatment/prevention.
Collapse
Affiliation(s)
- Estéfani García-Ríos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Marcos Nuévalos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Francisco J Mancebo
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| | - Pilar Pérez-Romero
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Spain
| |
Collapse
|
23
|
Amini L, Wagner DL, Rössler U, Zarrinrad G, Wagner LF, Vollmer T, Wendering DJ, Kornak U, Volk HD, Reinke P, Schmueck-Henneresse M. CRISPR-Cas9-Edited Tacrolimus-Resistant Antiviral T Cells for Advanced Adoptive Immunotherapy in Transplant Recipients. Mol Ther 2021; 29:32-46. [PMID: 32956624 PMCID: PMC7791012 DOI: 10.1016/j.ymthe.2020.09.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
Viral infections, such as with cytomegalovirus (CMV), remain a major risk factor for mortality and morbidity of transplant recipients because of their requirement for lifelong immunosuppression (IS). Antiviral drugs often cause toxicity and sometimes fail to control disease. Thus, regeneration of the antiviral immune response by adoptive antiviral T cell therapy is an attractive alternative. Our recent data, however, show only short-term efficacy in some solid organ recipients, possibly because of malfunction in transferred T cells caused by ongoing IS. We developed a vector-free clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-based good manufacturing practice (GMP)-compliant protocol that efficiently targets and knocks out the gene for the adaptor protein FK506-binding protein 12 (FKBP12), required for the immunosuppressive function of tacrolimus. This was achieved by transient delivery of ribonucleoprotein complexes into CMV-specific T cells by electroporation. We confirmed the tacrolimus resistance of our gene-edited T cell products in vitro and demonstrated performance comparable with non-tacrolimus-treated unmodified T cells. The alternative calcineurin inhibitor cyclosporine A can be administered as a safety switch to shut down tacrolimus-resistant T cell activity in case of adverse effects. Furthermore, we performed safety assessments as a prerequisite for translation to first-in-human applications.
Collapse
Affiliation(s)
- Leila Amini
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Dimitrios Laurin Wagner
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Uta Rössler
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Ghazaleh Zarrinrad
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Einstein Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Livia Felicitas Wagner
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Tino Vollmer
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Désirée Jacqueline Wendering
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Uwe Kornak
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Petra Reinke
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (B-CRT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany.
| |
Collapse
|
24
|
Abstract
INTRODUCTION Cytomegalovirus (CMV) infection is widely prevalent but mostly harmless in immunocompetent individuals. In the post hematopoietic stem cell transplant (HSCT) setting unrestricted viral replication can cause end-organ damage (CMV disease) and, in a small proportion, mortality. Current management strategies are based on sensitive surveillance programmes, with the more recent introduction of an effective prophylactic antiviral drug, letermovir, but all aim to bridge patients until reconstitution of endogenous immunity is sufficient to constrain viral replication. AREAS COVERED Over the past 25 years, the adoptive transfer of CMV-specific T-cells has developed from the first proof of concept transfer of CD 8 + T-cell clones, to the development of 'off the shelf' third party derived Viral-Specific T-cells (VSTs). In this review, we cover the current management of CMV, and discuss the developments in CMV adoptive cellular therapy. EXPERT OPINION Due to the adoption of letermovir as a prophylaxis in standard therapy, the incidence of CMV reactivation is likely to decrease, and any widely adopted cellular therapy needs to be economically competitive. Current clinical trials will help to identify the patients most likely to gain the maximum benefit from any form of cell therapy.
Collapse
Affiliation(s)
- Lorna Neill
- Department of Haematology, University College London Hospitals NHS Foundation Trust, London, UK
| | | |
Collapse
|
25
|
Limaye AP, Babu TM, Boeckh M. Progress and Challenges in the Prevention, Diagnosis, and Management of Cytomegalovirus Infection in Transplantation. Clin Microbiol Rev 2020; 34:34/1/e00043-19. [PMID: 33115722 PMCID: PMC7920732 DOI: 10.1128/cmr.00043-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hosts with compromised or naive immune systems, such as individuals living with HIV/AIDS, transplant recipients, and fetuses, are at the highest risk for complications from cytomegalovirus (CMV) infection. Despite substantial progress in prevention, diagnostics, and treatment, CMV continues to negatively impact both solid-organ transplant (SOT) and hematologic cell transplant (HCT) recipients. In this article, we summarize important developments in the field over the past 10 years and highlight new approaches and remaining challenges to the optimal control of CMV infection and disease in transplant settings.
Collapse
Affiliation(s)
- Ajit P Limaye
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Tara M Babu
- Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
- Department of Infectious Diseases, Overlake Medical Center, Bellevue, Washington, USA
| | - Michael Boeckh
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
26
|
Kaminski H, Marsères G, Cosentino A, Guerville F, Pitard V, Fournié JJ, Merville P, Déchanet-Merville J, Couzi L. Understanding human γδ T cell biology toward a better management of cytomegalovirus infection. Immunol Rev 2020; 298:264-288. [PMID: 33091199 DOI: 10.1111/imr.12922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/28/2022]
Abstract
Cytomegalovirus (CMV) infection is responsible for significant morbidity and mortality in immunocompromised patients, namely solid organ and hematopoietic cell transplant recipients, and can induce congenital infection in neonates. There is currently an unmet need for new management and treatment strategies. Establishment of an anti-CMV immune response is critical in order to control CMV infection. The two main human T cells involved in HCMV-specific response are αβ and non-Vγ9Vδ2 T cells that belong to γδ T cell compartment. CMV-induced non-Vγ9Vδ2 T cells harbor a specific clonal expansion and a phenotypic signature, and display effector functions against CMV. So far, only two main molecular mechanisms underlying CMV sensing have been identified. Non-Vγ9Vδ2 T cells can be activated either by stress-induced surface expression of the γδT cell receptor (TCR) ligand annexin A2, or by a multimolecular stress signature composed of the γδTCR ligand endothelial protein C receptor and co-stimulatory signals such as the ICAM-1-LFA-1 axis. All this basic knowledge can be harnessed to improve the clinical management of CMV infection in at-risk patients. In particular, non-Vγ9Vδ2 T cell monitoring could help better stratify the risk of infection and move forward a personalized medicine. Moreover, recent advances in cell therapy protocols open the way for a non-Vγ9Vδ2 T cell therapy in immunocompromised patients.
Collapse
Affiliation(s)
- Hannah Kaminski
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France.,Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | - Gabriel Marsères
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France
| | - Anaïs Cosentino
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France.,Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | - Florent Guerville
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France.,CHU Bordeaux, Pôle de gérontologie, Bordeaux, Bordeaux, France
| | - Vincent Pitard
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse (CRCT), UMR1037 INSERM, Université Toulouse III: Paul-Sabatier, ERL5294 CNRS, Université de Toulouse, Toulouse, France
| | - Pierre Merville
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France.,Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | | | - Lionel Couzi
- ImmunoConcEpT UMR 5164, CNRS, Bordeaux University, Bordeaux, France.,Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| |
Collapse
|
27
|
Impact of CMV Reactivation, Treatment Approaches, and Immune Reconstitution in a Nonmyeloablative Tolerance Induction Protocol in Cynomolgus Macaques. Transplantation 2020; 104:270-279. [PMID: 31385931 DOI: 10.1097/tp.0000000000002893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cytomegalovirus (CMV) infection is a serious complication in immunosuppressed patients, specifically transplant recipients. Here, we describe the development and use of an assay to monitor the incidence and treatment of CMV viremia in a Cynomolgus macaque model of bone marrow transplantation (BMT) for tolerance induction. We address the correlation between the course of viremia and immune reconstitution. METHODS Twenty-one animals received a nonmyeloablative conditioning regimen. Seven received cyclosporine A for 28 days and 14 received rapamycin. A CMV polymerase chain reaction assay was developed and run twice per week to monitor viremia. Nineteen recipients were CMV seropositive before BMT. Immune reconstitution was monitored through flow cytometry and CMV viremia was tracked via quantitative polymerase chain reaction. RESULTS Recipients developed CMV viremia during the first month post-BMT. Two animals developed uncontrollable CMV disease. CMV reactivation occurred earlier in cyclosporine A-treated animals compared with those receiving rapamycin. Post-BMT, T-cell counts remained significantly lower compared with pretransplant levels until CMV reactivation, at which point they increased during the viremic phase and approached pretransplant levels 3 months post-BMT. Management of CMV required treatment before viremia reached 10 000 copies/mL; otherwise clinical symptoms were observed. High doses of ganciclovir resolved the viremia, which could subsequently be controlled with valganciclovir. CONCLUSIONS We developed an assay to monitor CMV in Cynomolgus macaques. CMV reactivation occurred in 100% of seropositive animals in this model. Rapamycin delayed CMV reactivation and ganciclovir treatment was effective at high doses. As in humans, CD8 T cells proliferated during CMV viremia.
Collapse
|
28
|
Yuste JR, López-Díaz de Cerio A, Rifón J, Moreno C, Panizo M, Inogés S. Adoptive T-cell therapy with CD45RA-depleted donor in the treatment of cytomegalovirus disease in immunocompromised non-transplant patients. Antivir Ther 2020; 24:313-319. [PMID: 30912764 DOI: 10.3851/imp3307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
Cytomegalovirus (CMV) infections can induce severe complications in immunosuppressed patients. Currently, ganciclovir represents the preferred treatment option; however, in patients with resistance or toxicity related to ganciclovir, the therapeutic options are limited.Cellular immunity plays an important role in the control of viral infections. Adoptive T-cell therapy can contribute to recovering immunological function in immunosuppressed patients. Selective T-cell depletion targeting CD45RA enhances early T-cell recovery and can represent a salvage therapy. In this study, an immunocompromised non-transplanted patient with CMV disease and toxicity to conventional therapy was successfully treated by adoptive transfer of CD45RA-depleted T-cells.
Collapse
Affiliation(s)
- Jose R Yuste
- Division of Infectious Diseases, Clínica Universidad de Navarra, Pamplona, Spain.,Department of Internal Medicine, Clínica Universidad de Navarra, Pamplona, Spain
| | - Ascensión López-Díaz de Cerio
- Immunology and Immunotherapy Department, Clínica Universidad de Navarra, Pamplona, Spain.,Hematology Service and Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
| | - Jose Rifón
- Hematology Service and Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
| | - Cristina Moreno
- Immunology and Immunotherapy Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - María Panizo
- Division of Infectious Diseases, Clínica Universidad de Navarra, Pamplona, Spain
| | - Susana Inogés
- Immunology and Immunotherapy Department, Clínica Universidad de Navarra, Pamplona, Spain.,Hematology Service and Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
29
|
Smith C, Corvino D, Beagley L, Rehan S, Neller MA, Crooks P, Matthews KK, Solomon M, Le Texier L, Campbell S, Francis RS, Chambers D, Khanna R. T cell repertoire remodeling following post-transplant T cell therapy coincides with clinical response. J Clin Invest 2020; 129:5020-5032. [PMID: 31415240 DOI: 10.1172/jci128323] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/08/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUNDImpaired T cell immunity in transplant recipients is associated with infection-related morbidity and mortality. We recently reported the successful use of adoptive T cell therapy (ACT) against drug-resistant/recurrent cytomegalovirus in solid-organ transplant recipients.METHODSIn the present study, we used high-throughput T cell receptor Vβ sequencing and T cell functional profiling to delineate the impact of ACT on T cell repertoire remodeling in the context of pretherapy immunity and ACT products.RESULTSThese analyses indicated that a clinical response was coincident with significant changes in the T cell receptor Vβ landscape after therapy. This restructuring was associated with the emergence of effector memory T cells in responding patients, while nonresponders displayed dramatic pretherapy T cell expansions with minimal change following ACT. Furthermore, immune reconstitution included both adoptively transferred clonotypes and endogenous clonotypes not detected in the ACT products.CONCLUSIONThese observations demonstrate that immune control following ACT requires significant repertoire remodeling, which may be impaired in nonresponders because of the preexisting immune environment. Immunological interventions that can modulate this environment may improve clinical outcomes.TRIAL REGISTRATIONAustralian New Zealand Clinical Trial Registry, ACTRN12613000981729.FUNDINGThis study was supported by funding from the National Health and Medical Research Council, Australia (APP1132519 and APP1062074).
Collapse
Affiliation(s)
- Corey Smith
- QIMR Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Dillon Corvino
- QIMR Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Leone Beagley
- QIMR Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sweera Rehan
- QIMR Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Michelle A Neller
- QIMR Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Pauline Crooks
- QIMR Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Katherine K Matthews
- QIMR Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Matthew Solomon
- QIMR Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Laetitia Le Texier
- QIMR Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Scott Campbell
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,School of Clinical Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Ross S Francis
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,School of Clinical Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Daniel Chambers
- School of Clinical Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Queensland Lung Transplant Service, The Prince Charles Hospital, Brisbane, Queensland, Australia
| | - Rajiv Khanna
- QIMR Centre for Immunotherapy and Vaccine Development, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,School of Clinical Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
30
|
Lim EY, Jackson SE, Wills MR. The CD4+ T Cell Response to Human Cytomegalovirus in Healthy and Immunocompromised People. Front Cell Infect Microbiol 2020; 10:202. [PMID: 32509591 PMCID: PMC7248300 DOI: 10.3389/fcimb.2020.00202] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
While CD8+ T cells specific for human cytomegalovirus (HCMV) have been extensively studied in both healthy HCMV seropositive carriers and patients undergoing immunosuppression, studies on the CD4+ T cell response to HCMV had lagged behind. However, over the last few years there has been a significant advance in our understanding of the importance and contribution that CMV-specific CD4+ T cells make, not only to anti-viral immunity but also in the potential maintenance of latently infected cells. During primary infection with HCMV in adults, CD4+ T cells are important for the resolution of symptomatic disease, while persistent shedding of HCMV into urine and saliva is associated with a lack of HCMV specific CD4+ T cell response in young children. In immunosuppressed solid organ transplant recipients, a delayed appearance of HCMV-specific CD4+ T cells is associated with prolonged viremia and more severe clinical disease, while in haematopoietic stem cell transplant recipients, it has been suggested that HCMV-specific CD4+ T cells are required for HCMV-specific CD8+ T cells to exert their anti-viral effects. In addition, adoptive T-cell immunotherapy in transplant patients has shown that the presence of HCMV-specific CD4+ T cells is required for the maintenance of HCMV-specific CD8+ T cells. HCMV is a paradigm for immune evasion. The presence of viral genes that down-regulate MHC class II molecules and the expression of viral IL-10 both limit antigen presentation to CD4+ T cells, underlining the important role that this T cell subset has in antiviral immunity. This review will discuss the antigen specificity, effector function, phenotype and direct anti-viral properties of HCMV specific CD4+ T cells, as well as reviewing our understanding of the importance of this T cell subset in primary infection and long-term carriage in healthy individuals. In addition, their role and importance in congenital HCMV infection and during immunosuppression in both solid organ and haemopoietic stem cell transplantation is considered.
Collapse
Affiliation(s)
| | | | - Mark R. Wills
- Division of Infectious Diseases, Department of Medicine, Addenbrookes Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
31
|
Heinemann NC, Tischer-Zimmermann S, Wittke TC, Eigendorf J, Kerling A, Framke T, Melk A, Heuft HG, Blasczyk R, Maecker-Kolhoff B, Eiz-Vesper B. High-intensity interval training in allogeneic adoptive T-cell immunotherapy - a big HIT? J Transl Med 2020; 18:148. [PMID: 32238166 PMCID: PMC7114817 DOI: 10.1186/s12967-020-02301-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/14/2020] [Indexed: 11/12/2022] Open
Abstract
Background Adoptive transfer of virus-specific T cells (VSTs) represents a prophylactic and curative approach for opportunistic viral infections and reactivations after transplantation. However, inadequate frequencies of circulating memory VSTs in the T-cell donor’s peripheral blood often result in insufficient enrichment efficiency and purity of the final T-cell product, limiting the effectiveness of this approach. Methods This pilot study was designed as a cross-over trial and compared the effect of a single bout (30 min) of high-intensity interval training (HIT) with that of 30 min of continuous exercise (CONT) on the frequency and function of circulating donor VSTs. To this end, we used established immunoassays to examine the donors’ cellular immune status, in particular, with respect to the frequency and specific characteristics of VSTs restricted against Cytomegalovirus (CMV)-, Epstein–Barr-Virus (EBV)- and Adenovirus (AdV)-derived antigens. T-cell function, phenotype, activation and proliferation were examined at different time points before and after exercise to identify the most suitable time for T-cell donation. The clinical applicability was determined by small-scale T-cell enrichment using interferon- (IFN-) γ cytokine secretion assay and virus-derived overlapping peptide pools. Results HIT proved to be the most effective exercise program with up to fivefold higher VST response. In general, donors with a moderate fitness level had higher starting and post-exercise frequencies of VSTs than highly fit donors, who showed significantly lower post-exercise increases in VST frequencies. Both exercise programs boosted the number of VSTs against less immunodominant antigens, specifically CMV (IE-1), EBV (EBNA-1) and AdV (Hexon, Penton), compared to VSTs against immunodominant antigens with higher memory T-cell frequencies. Conclusion This study demonstrates that exercise before T-cell donation has a beneficial effect on the donor’s cellular immunity with respect to the proportion of circulating functionally active VSTs. We conclude that a single bout of HIT exercise 24 h before T-cell donation can significantly improve manufacturing of clinically applicable VSTs. This simple and economical adjuvant treatment proved to be especially efficient in enhancing virus-specific memory T cells with low precursor frequencies.
Collapse
Affiliation(s)
- Nele Carolin Heinemann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Sabine Tischer-Zimmermann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,Integrated Research and Treatment Center (IFB-Tx), Hannover Medical School, Hannover, Germany
| | | | - Julian Eigendorf
- Department of Sports Medicine, Hannover Medical School, Hannover, Germany
| | - Arno Kerling
- Department of Sports Medicine, Hannover Medical School, Hannover, Germany
| | - Theodor Framke
- Department of Biometry, Hannover Medical School, Hannover, Germany
| | - Anette Melk
- Department of Pediatric Kidney, Liver and Metabolic Disease, Hannover Medical School, Hannover, Germany
| | - Hans-Gert Heuft
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,Integrated Research and Treatment Center (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,Integrated Research and Treatment Center (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Britta Maecker-Kolhoff
- Integrated Research and Treatment Center (IFB-Tx), Hannover Medical School, Hannover, Germany.,Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany. .,Integrated Research and Treatment Center (IFB-Tx), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
32
|
Haidar G, Boeckh M, Singh N. Cytomegalovirus Infection in Solid Organ and Hematopoietic Cell Transplantation: State of the Evidence. J Infect Dis 2020; 221:S23-S31. [PMID: 32134486 PMCID: PMC7057778 DOI: 10.1093/infdis/jiz454] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This review focuses on recent advances in the field of cytomegalovirus (CMV). The 2 main strategies for CMV prevention are prophylaxis and preemptive therapy. Prophylaxis effectively prevents CMV infection after solid organ transplantation (SOT) but is associated with high rates of neutropenia and delayed-onset postprophylaxis disease. In contrast, preemptive therapy has the advantage of leading to lower rates of CMV disease and robust humoral and T-cell responses. It is widely used in hematopoietic cell transplant recipients but is infrequently utilized after SOT due to logistical considerations, though these may be overcome by novel methods to monitor CMV viremia using self-testing platforms. We review recent developments in CMV immune monitoring, vaccination, and monoclonal antibodies, all of which have the potential to become part of integrated strategies that rely on viral load monitoring and immune responses. We discuss novel therapeutic options for drug-resistant or refractory CMV infection, including maribavir, letermovir, and adoptive T-cell transfer. We also explore the role of donor factors in transmitting CMV after SOT. Finally, we propose a framework with which to approach CMV prevention in the foreseeable future.
Collapse
Affiliation(s)
- Ghady Haidar
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Michael Boeckh
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Medicine, University of Washington, Seattle, Washington
| | - Nina Singh
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
33
|
El Helou G, Razonable RR. Safety considerations with current and emerging antiviral therapies for cytomegalovirus infection in transplantation. Expert Opin Drug Saf 2019; 18:1017-1030. [PMID: 31478398 DOI: 10.1080/14740338.2019.1662787] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Human cytomegalovirus (HCMV) is a major contributor of morbidity and mortality, and its management is essential for the successful outcome of solid organ and hematopoietic stem cell transplantation. Areas covered: This review discusses the safety profiles of currently available and emerging antiviral drugs and the other strategies for HCMV prevention and treatment after transplantation. Expert opinion: Strategies for management of HCMV rely largely on the use of antiviral agents that inhibit viral DNA polymerase (ganciclovir/valganciclovir, foscarnet, and cidofovir/brincidofovir) and viral terminase complex (letermovir), with different types and degrees of adverse effects. An investigational agent, maribavir, exerts its anti-CMV effect through UL97 inhibition, and its safety profile is under clinical evaluation. In choosing the antiviral medication to use, it is important to consider these safety profiles in addition to overall efficacy. In addition to antiviral drugs, reduction of immunosuppression is often generally needed in the management of HCMV infection, but with a potential risk of allograft rejection or graft-versus-host disease. The use of HCMV-specific or non-specific intravenous immunoglobulins remains debated, while adoptive HCMV-specific T cell therapy remains investigational, and associated with unique set of adverse effects.
Collapse
Affiliation(s)
- Guy El Helou
- Division of Infectious Diseases, Department of Medicine, and William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic College of Medicine and Science , Rochester , MN , USA
| | - Raymund R Razonable
- Division of Infectious Diseases, Department of Medicine, and William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic College of Medicine and Science , Rochester , MN , USA
| |
Collapse
|
34
|
Girmenia C, Lazzarotto T, Bonifazi F, Patriarca F, Irrera G, Ciceri F, Aversa F, Citterio F, Cillo U, Cozzi E, Gringeri E, Baldanti F, Cavallo R, Clerici P, Barosi G, Grossi P. Assessment and prevention of cytomegalovirus infection in allogeneic hematopoietic stem cell transplant and in solid organ transplant: A multidisciplinary consensus conference by the Italian GITMO, SITO, and AMCLI societies. Clin Transplant 2019; 33:e13666. [PMID: 31310687 DOI: 10.1111/ctr.13666] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
Cytomegalovirus (CMV) remains a major cause of morbidity and mortality in allogeneic hematopoietic stem cell transplantation (allo-HSCT) and solid organ transplantation (SOT) recipients. In view of the uncertainties on the assessment and prevention of CMV infection in both transplant procedures, three Italian scientific societies for HSCT and SOT and for Clinical Microbiology appointed a panel of experts to compose a framework of recommendations. Recommendations were derived from a comprehensive analysis of the scientific literature and from a multidisciplinary consensus conference process. The lack of adequate clinical trials focused on certain diagnostic procedures, and antiviral intervention forced the panel to use the methods of consensus for shaping some recommendations. Recommendations concerning the two types of transplant were given for the following issues: assessment of pretransplant CMV serostatus, immunological monitoring after transplant, CMV prophylaxis with antivirals, CMV preemptive strategy, and CMV prophylaxis with immunoglobulin infusion and with adoptive immunotherapy. The questions raised by and the recommendations resulting from this consensus conference project may contribute to the improvement of certain crucial aspects of the management of CMV infections in allo-HSCT and in SOT populations.
Collapse
Affiliation(s)
- Corrado Girmenia
- Dipartimento di Ematologia, Oncologia e Dermatologia, Azienda Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Tiziana Lazzarotto
- Department of Specialized, Experimental, and Diagnostic Medicine, Operative Unit of Clinical Microbiology, St. Orsola-Malpighi Polyclinic, University of Bologna, Bologna, Italy
| | - Francesca Bonifazi
- Institute of Hematology "L. and A. Seragnoli", University Hospital, Bologna, Italy
| | | | - Giuseppe Irrera
- Divisione di Ematologia Centro Unico Regionale TMO e Terapie Emato-Oncologiche Sovramassimali "A. Neri" Ospedale Bianchi-Melacrino-Morelli, Reggio Calabria, Italy
| | - Fabio Ciceri
- IRCCS San Raffaele Scientific Institute, University Vita-Salute San Raffaele, Milano, Italy
| | - Franco Aversa
- Hematology and BMT Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Franco Citterio
- Kidney Transplantation, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | | | - Emanuele Cozzi
- Transplant Immunology Unit, University of Padua, Padova, Italy
| | - Enrico Gringeri
- Hepatobiliary Surgery and Liver Transplantation Unit, Department of Surgical Oncological and Gastroenterological Sciences, University of Padova, Padova, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Italy
| | - Rossana Cavallo
- Department of Public Health and Pediatrics, Laboratory of Microbiology and Virology, Città della Salute e della Scienza Hospital, University of Turin, Turin, Italy
| | - Pierangelo Clerici
- Unità Operativa di Microbiologia, ASST-Ovest Milanese, Ospedale di Legnano, Legnano-MI, Italy
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, IRCC Policlinico S. Matteo Foundation, Pavia, Italy
| | - Paolo Grossi
- Section of Infectious and Tropical Diseases, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
35
|
Amini L, Vollmer T, Wendering DJ, Jurisch A, Landwehr-Kenzel S, Otto NM, Jürchott K, Volk HD, Reinke P, Schmueck-Henneresse M. Comprehensive Characterization of a Next-Generation Antiviral T-Cell Product and Feasibility for Application in Immunosuppressed Transplant Patients. Front Immunol 2019; 10:1148. [PMID: 31191530 PMCID: PMC6546853 DOI: 10.3389/fimmu.2019.01148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/07/2019] [Indexed: 11/13/2022] Open
Abstract
Viral infections have a major impact on morbidity and mortality of immunosuppressed solid organ transplant (SOT) patients because of missing or failure of adequate pharmacologic antiviral treatment. Adoptive antiviral T-cell therapy (AVTT), regenerating disturbed endogenous T-cell immunity, emerged as an attractive alternative approach to combat severe viral complications in immunocompromised patients. AVTT is successful in patients after hematopoietic stem cell transplantation where T-cell products (TCPs) are manufactured from healthy donors. In contrast, in the SOT setting TCPs are derived from/applied back to immunosuppressed patients. We and others demonstrated feasibility of TCP generation from SOT patients and first clinical proof-of-concept trials revealing promising data. However, the initial efficacy is frequently lost long-term, because of limited survival of transferred short-lived T-cells indicating a need for next-generation TCPs. Our recent data suggest that Rapamycin treatment during TCP manufacture, conferring partial inhibition of mTOR, might improve its composition. The aim of this study was to confirm these promising observations in a setting closer to clinical challenges and to deeply characterize the next-generation TCPs. Using cytomegalovirus (CMV) as model, our next-generation Rapamycin-treated (Rapa-)TCP showed consistently increased proportions of CD4+ T-cells as well as CD4+ and CD8+ central-memory T-cells (TCM). In addition, Rapamycin sustained T-cell function despite withdrawal of Rapamycin, showed superior T-cell viability and resistance to apoptosis, stable metabolism upon activation, preferential expansion of TCM, partial conversion of other memory T-cell subsets to TCM and increased clonal diversity. On transcriptome level, we observed a gene expression profile denoting long-lived early memory T-cells with potent effector functions. Furthermore, we successfully applied the novel protocol for the generation of Rapa-TCPs to 19/19 SOT patients in a comparative study, irrespective of their history of CMV reactivation. Moreover, comparison of paired TCPs generated before/after transplantation did not reveal inferiority of the latter despite exposition to maintenance immunosuppression post-SOT. Our data imply that the Rapa-TCPs, exhibiting longevity and sustained T-cell memory, are a reasonable treatment option for SOT patients. Based on our success to manufacture Rapa-TCPs from SOT patients under maintenance immunosuppression, now, we seek ultimate clinical proof of efficacy in a clinical study.
Collapse
Affiliation(s)
- Leila Amini
- Institute for Medical Immunology, Charité University Medicine Berlin, Berlin, Germany.,Renal and Transplant Research Unit, Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Tino Vollmer
- Institute for Medical Immunology, Charité University Medicine Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Desiree J Wendering
- Institute for Medical Immunology, Charité University Medicine Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité University Medicine Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Anke Jurisch
- Institute for Medical Immunology, Charité University Medicine Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany
| | - Sybille Landwehr-Kenzel
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies, Charité University Medicine Berlin, Berlin, Germany.,Department for Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité University Medicine Berlin, Berlin, Germany
| | - Natalie Maureen Otto
- Renal and Transplant Research Unit, Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Karsten Jürchott
- Institute for Medical Immunology, Charité University Medicine Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- Institute for Medical Immunology, Charité University Medicine Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Petra Reinke
- Renal and Transplant Research Unit, Department of Nephrology and Internal Intensive Care, Charité University Medicine Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Michael Schmueck-Henneresse
- Institute for Medical Immunology, Charité University Medicine Berlin, Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité University Medicine Berlin, Berlin, Germany.,Berlin Center for Advanced Therapies, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
36
|
Razonable RR, Humar A. Cytomegalovirus in solid organ transplant recipients-Guidelines of the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13512. [PMID: 30817026 DOI: 10.1111/ctr.13512] [Citation(s) in RCA: 447] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/11/2019] [Indexed: 12/11/2022]
Abstract
Cytomegalovirus (CMV) is one of the most common opportunistic infections that affect the outcome of solid organ transplantation. This updated guideline from the American Society of Transplantation Infectious Diseases Community of Practice provides evidence-based and expert recommendations for screening, diagnosis, prevention, and treatment of CMV in solid organ transplant recipients. CMV serology to detect immunoglobulin G remains as the standard method for pretransplant screening of donors and transplant candidates. Antiviral prophylaxis and preemptive therapy are the mainstays of CMV prevention. The lack of a widely applicable viral load threshold for diagnosis and preemptive therapy is highlighted, as a result of variability of CMV nucleic acid testing, even in the contemporary era when calibrators are standardized. Valganciclovir and intravenous ganciclovir remain as drugs of choice for CMV management. Strategies for managing drug-resistant CMV infection are presented. There is an increasing use of CMV-specific cell-mediated immune assays to stratify the risk of CMV infection after solid organ transplantation, but their role in optimizing CMV prevention and treatment efforts has yet to be demonstrated. Specific issues related to pediatric transplant recipients are discussed.
Collapse
Affiliation(s)
| | - Atul Humar
- University Health Network, Toronto, Ontario, Canada.,Transplant Institute, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
The Third International Consensus Guidelines on the Management of Cytomegalovirus in Solid-organ Transplantation. Transplantation 2019; 102:900-931. [PMID: 29596116 DOI: 10.1097/tp.0000000000002191] [Citation(s) in RCA: 799] [Impact Index Per Article: 133.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite recent advances, cytomegalovirus (CMV) infections remain one of the most common complications affecting solid organ transplant recipients, conveying higher risks of complications, graft loss, morbidity, and mortality. Research in the field and development of prior consensus guidelines supported by The Transplantation Society has allowed a more standardized approach to CMV management. An international multidisciplinary panel of experts was convened to expand and revise evidence and expert opinion-based consensus guidelines on CMV management including prevention, treatment, diagnostics, immunology, drug resistance, and pediatric issues. Highlights include advances in molecular and immunologic diagnostics, improved understanding of diagnostic thresholds, optimized methods of prevention, advances in the use of novel antiviral therapies and certain immunosuppressive agents, and more savvy approaches to treatment resistant/refractory disease. The following report summarizes the updated recommendations.
Collapse
|
38
|
Majeed A, Latif A, Kapoor V, Sohail A, Florita C, Georgescu A, Zangeneh T. Resistant Cytomegalovirus Infection in Solid-organ Transplantation: Single-center Experience, Literature Review of Risk Factors, and Proposed Preventive Strategies. Transplant Proc 2018; 50:3756-3762. [PMID: 30586840 DOI: 10.1016/j.transproceed.2018.02.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 02/17/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Cytomegalovirus (CMV) infection causes morbidity and mortality in solid-organ transplant recipients. Drug-resistant CMV is an emerging problem with poor survival outcomes and limited therapeutic options. In this study we comprehensively address the issue of drug resistance in CMV when compared with standard therapies, such as ganciclovir (GCV) and foscarnet. METHODS We conducted a retrospective review of adult patients diagnosed with CMV after solid-organ transplant at our center between 2013 and 2017, and identified 7 resistant CMV cases. To study risk factors in the published literature, we performed an extensive database search. RESULTS All patients had documented UL97 mutations, and 3 patients harbored both UL97 and UL54 mutations. For cases with increasing viral load or failure to achieve clinical improvement despite optimal therapy, genetic resistance testing was carried out. Patients received GCV and foscarnet combination therapy. As an adjunct, CMV immunoglobulin, cidofovir, and leflunomide were added. Risk factors, including donor+/recipient- serostatus, persistent high viral replication, prolonged therapeutic GCV exposure (>2.5 months), and allograft rejection, were assessed. CONCLUSION Patients at risk, especially those with D+/R- serostatus, should be judiciously monitored for resistance. Prolonged intravenous GCV exposure increases the risk for development of drug resistance. Therefore, precise guidelines are required for prevention of long-term GCV/VGCV exposure. Investigation regarding interferon-gamma release assay and adoptive transfer of T cells in diagnosed CMV patients is warranted to improve future prophylactic and management strategies against CMV, with a potential to reduce the requirement for available toxic antiviral drugs.
Collapse
Affiliation(s)
- A Majeed
- Division of Infectious Diseases, Department of Medicine, University of Arizona, Tucson, Arizona.
| | - A Latif
- Department of Medicine, University of Arizona, Tucson, Arizona
| | - V Kapoor
- Department of Medicine, University of Arizona, Tucson, Arizona
| | - A Sohail
- Department of Medicine, University of Arizona, Tucson, Arizona
| | - C Florita
- Division of Infectious Diseases, Department of Medicine, University of Arizona, Tucson, Arizona
| | - A Georgescu
- Division of Infectious Diseases, Department of Medicine, University of Arizona, Tucson, Arizona
| | - T Zangeneh
- Division of Infectious Diseases, Department of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
39
|
Pardieck IN, Beyrend G, Redeker A, Arens R. Cytomegalovirus infection and progressive differentiation of effector-memory T cells. F1000Res 2018; 7. [PMID: 30345004 PMCID: PMC6173108 DOI: 10.12688/f1000research.15753.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2018] [Indexed: 12/22/2022] Open
Abstract
Primary cytomegalovirus (CMV) infection leads to strong innate and adaptive immune responses against the virus, which prevents serious disease. However, CMV infection can cause serious morbidity and mortality in individuals who are immunocompromised. The adaptive immune response to CMV is characterized by large populations of effector-memory (EM) T cells that are maintained lifelong, a process termed memory inflation. Recent findings indicate that infection with CMV leads to continuous differentiation of CMV-specific EM-like T cells and that high-dose infection accelerates this progression. Whether measures that counteract CMV infection, such as anti-viral drugs, targeting of latently infected cells, adoptive transfer of CMV-specific T cells, and vaccination strategies, are able to impact the progressive differentiation of CMV-specific EM-like cells is discussed.
Collapse
Affiliation(s)
- Iris N Pardieck
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333ZA, Leiden, The Netherlands
| | - Guillaume Beyrend
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333ZA, Leiden, The Netherlands
| | - Anke Redeker
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333ZA, Leiden, The Netherlands
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333ZA, Leiden, The Netherlands
| |
Collapse
|
40
|
Meesing A, Razonable RR. Pharmacologic and immunologic management of cytomegalovirus infection after solid organ and hematopoietic stem cell transplantation. Expert Rev Clin Pharmacol 2018; 11:773-788. [DOI: 10.1080/17512433.2018.1501557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Atibordee Meesing
- Division of Infectious Diseases and the William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic College of Medicine and Science, Rochester, MI, USA
| | - Raymund R. Razonable
- Division of Infectious Diseases and the William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic College of Medicine and Science, Rochester, MI, USA
| |
Collapse
|
41
|
Meesing A, Razonable RR. New Developments in the Management of Cytomegalovirus Infection After Transplantation. Drugs 2018; 78:1085-1103. [PMID: 29961185 DOI: 10.1007/s40265-018-0943-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cytomegalovirus (CMV) continues to be one of the most important pathogens that universally affect solid organ and allogeneic hematopoietic stem cell transplant recipients. Lack of effective CMV-specific immunity is the common factor that predisposes to the risk of CMV reactivation and clinical disease after transplantation. Antiviral drugs are the cornerstone for prevention and treatment of CMV infection and disease. Over the years, the CMV DNA polymerase inhibitor, ganciclovir (and valganciclovir), have served as the backbone for management, while foscarnet and cidofovir are reserved for the management of CMV infection that is refractory or resistant to ganciclovir treatment. In this review, we highlight the role of the newly approved drug, letermovir, a viral terminase inhibitor, for CMV prevention after allogeneic hematopoietic stem cell transplantation. Advances in immunologic monitoring may allow for an individualized approach to management of CMV after transplantation. Specifically, the potential role of CMV-specific T-cell measurements in guiding the need for the treatment of asymptomatic CMV infection and the duration of treatment of CMV disease is discussed. The role of adoptive immunotherapy, using ex vivo-generated CMV-specific T cells, is highlighted. This article provides a review of novel drugs, tests, and strategies in optimizing our current approaches to prevention and treatment of CMV in transplant recipients.
Collapse
Affiliation(s)
- Atibordee Meesing
- Division of Infectious Diseases, Mayo Clinic, Mayo Clinic College of Medicine and Science, Marian Hall 5, 200 First Street SW, Rochester, MN, 55905, USA
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Raymund R Razonable
- Division of Infectious Diseases, Mayo Clinic, Mayo Clinic College of Medicine and Science, Marian Hall 5, 200 First Street SW, Rochester, MN, 55905, USA.
- William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| |
Collapse
|
42
|
Viral infections in solid organ transplant recipients: novel updates and a review of the classics. Curr Opin Infect Dis 2018; 30:579-588. [PMID: 28984642 DOI: 10.1097/qco.0000000000000409] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW To summarize new discoveries in viral pathogenesis and novel therapeutic and prophylactic strategies in organ transplant recipients. RECENT FINDINGS For decades, prophylaxis of cytomegalovirus (CMV) has been the standard preventive strategy, but new clinical trials are expected to determine the advantages of preemptive therapy over prophylaxis. Novel anti-CMV agents, such as maribavir and letermovir, are being studied for the treatment of resistant/refractory CMV as alternatives to foscarnet and cidofovir. CMV immune monitoring may offer individualized management plans. Epstein-Barr virus infections in transplant recipients are difficult to prevent and treat, though recent data suggest possible merit to pretransplant rituximab among high-risk transplant recipients. We review the groundbreaking HIV-to-HIV organ transplant trials, which are expected to revolutionize the care of HIV-infected individuals. Finally, we review topical developments in human herpesvirus 8, Zika virus, RNA respiratory viruses, adenovirus, norovirus, and polyoma viruses in organ transplantation. SUMMARY Ongoing trials to optimize CMV prophylaxis and treatment, and outcomes of HIV-to-HIV organ transplantation in the United States, have significant implications to optimize management of these viruses in transplant recipients. Assessment of new antivirals and antiviral strategies, such as adoptive immunotherapy, is warranted for refractory viral infections.
Collapse
|
43
|
Proff J, Brey CU, Ensser A, Holter W, Lehner M. Turning the tables on cytomegalovirus: targeting viral Fc receptors by CARs containing mutated CH2-CH3 IgG spacer domains. J Transl Med 2018; 16:26. [PMID: 29422056 PMCID: PMC5804023 DOI: 10.1186/s12967-018-1394-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/22/2018] [Indexed: 01/09/2023] Open
Abstract
Background During infection with human cytomegalovirus (HCMV) several viral proteins occur on cell surfaces in high quantity. We thus pursue an HLA-independent approach for immunotherapy of HCMV using chimeric antigen receptors (CARs) and bispecific BiTE® antibody constructs. In this context, HCMV-encoded proteins that mediate viral immune evasion and bind human IgG might represent particularly attractive target antigens. Unlike in observations of similar approaches for HIV and hepatitis B and C viruses, however, HCMV-infected cells develop a striking resistance to cytotoxic effector functions at later stages of the replication cycle. In our study we therefore wanted to test two hypotheses: (1) CAR T cells can efficiently inhibit HCMV replication independently from cytotoxic effector functions, and (2) HCMV can be targeted by CH2–CH3 IgG spacer domains that contain mutations previously reported to prevent exhaustion and to rescue CAR T cell function in vivo. Methods Replication of GFP-encoding recombinant HCMV in fibroblasts in the presence and absence of supernatants from T cell co-cultures plus/minus cytokine neutralizing antibodies was analyzed by flow cytometry. CARs with wild type and mutated CH2–CH3 domains were expressed in human T cells by mRNA electroporation, and the function of the CARs was assessed by quantifying T cell cytokine secretion. Results We confirm and extend previous evidence of antiviral cytokine effects and demonstrate that CAR T cells strongly block HCMV replication in fibroblasts mainly by combined secretion of IFN-γ and TNF. Furthermore, we show that fibroblasts infected with HCMV strains AD169 and Towne starting from day 3 have a high capacity for binding of human IgG1 and also strongly activate T cells expressing a CAR with CH2–CH3 domain. Importantly, we further show that mutations in the CH2–CH3 domain of IgG1 and IgG4, which were previously reported to rescue CAR T cell function by abrogating interaction with endogenous Fc receptors (FcRs), still enable recognition of FcRs encoded by HCMV. Conclusions Our findings identify HCMV-encoded FcRs as an attractive additional target for HCMV immunotherapy by CARs and possibly bispecific antibodies. The use of specifically mutated IgG domains that bind to HCMV-FcRs without recognizing endogenous FcRs may supersede screening for novel binders directed against individual HCMV-FcRs. Electronic supplementary material The online version of this article (10.1186/s12967-018-1394-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia Proff
- Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Charlotte U Brey
- Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Armin Ensser
- Institute for Clinical and Molecular Virology, Universitätsklinikum Erlangen, Schlossgarten 4, 91054, Erlangen, Germany
| | - Wolfgang Holter
- Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria.,St. Anna Kinderspital, Department of Pediatrics, Medical University of Vienna, Kinderspitalgasse 6, 1090, Vienna, Austria
| | - Manfred Lehner
- Children's Cancer Research Institute, Zimmermannplatz 10, 1090, Vienna, Austria. .,St. Anna Kinderspital, Department of Pediatrics, Medical University of Vienna, Kinderspitalgasse 6, 1090, Vienna, Austria.
| |
Collapse
|
44
|
Targeting Human-Cytomegalovirus-Infected Cells by Redirecting T Cells Using an Anti-CD3/Anti-Glycoprotein B Bispecific Antibody. Antimicrob Agents Chemother 2017; 62:AAC.01719-17. [PMID: 29038280 PMCID: PMC5740302 DOI: 10.1128/aac.01719-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/10/2017] [Indexed: 02/06/2023] Open
Abstract
The host immune response to human cytomegalovirus (HCMV) is effective against HCMV reactivation from latency, though not sufficient to clear the virus. T cells are primarily responsible for the control of viral reactivation. When the host immune system is compromised, as in transplant recipients with immunosuppression, HCMV reactivation and progressive infection can cause serious morbidity and mortality. Adoptive T cell therapy is effective for the control of HCMV infection in transplant recipients. However, it is a highly personalized therapeutic regimen and is difficult to implement in routine clinical practice. In this study, we explored a bispecific-antibody strategy to direct non-HCMV-specific T cells to recognize and exert effector functions against HCMV-infected cells. Using a knobs-into-holes strategy, we constructed a bispecific antibody in which one arm is specific for CD3 and can trigger T cell activation, while the other arm, specific for HCMV glycoprotein B (gB), recognizes and marks HCMV-infected cells based on the expression of viral gB on their surfaces. We showed that this bispecific antibody was able to redirect T cells with specificity for HCMV-infected cells in vitro In the presence of HCMV infection, the engineered antibody was able to activate T cells with no HCMV specificity for cytokine production, proliferation, and the expression of phenotype markers unique to T cell activation. These results suggested the potential of engineered bispecific antibodies, such as the construct described here, as prophylactic or therapeutic agents against HCMV reactivation and infection.
Collapse
|
45
|
Abstract
Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) infections following allogeneic hematopoietic stem cell transplantation (HSCT) are a major cause of morbidity and mortality. Early clinical trials demonstrate that adoptive transfer of donor-derived virus-specific T cells to restore virus-specific immunity is an effective strategy to control CMV and EBV infection after HSCT, conferring protection in 70%-90% of patients. The field has evolved rapidly to develop solutions to some of the manufacturing challenges identified in early clinical studies, such as prolonged in vitro culture, optimization of the purity of the virus-specific T cell product, the potential limitations of targeting a single viral antigen, and how to manage the patient with a virus-naive donor. This Review both discusses the seminal early studies and explores cutting-edge novel technologies that broaden the feasibility of and the scope for delivering virus-specific T cells to patients after HSCT.
Collapse
Affiliation(s)
- Claire Roddie
- Department of Haematology, University College London Cancer Institute, London, United Kingdom.,Department of Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Karl S Peggs
- Department of Haematology, University College London Cancer Institute, London, United Kingdom.,Department of Haematology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
46
|
Fishman JA. Infection in Organ Transplantation. Am J Transplant 2017; 17:856-879. [PMID: 28117944 DOI: 10.1111/ajt.14208] [Citation(s) in RCA: 492] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/09/2017] [Indexed: 01/25/2023]
Abstract
The prevention, diagnosis, and management of infectious disease in transplantation are major contributors to improved outcomes in organ transplantation. The risk of serious infections in organ recipients is determined by interactions between the patient's epidemiological exposures and net state of immune suppression. In organ recipients, there is a significant incidence of drug toxicity and a propensity for drug interactions with immunosuppressive agents used to maintain graft function. Thus, every effort must be made to establish specific microbiologic diagnoses to optimize therapy. A timeline can be created to develop a differential diagnosis of infection in transplantation based on common patterns of infectious exposures, immunosuppressive management, and antimicrobial prophylaxis. Application of quantitative molecular microbial assays and advanced antimicrobial therapies have advanced care. Pathogen-specific immunity, genetic polymorphisms in immune responses, and dynamic interactions between the microbiome and the risk of infection are beginning to be explored. The role of infection in the stimulation of alloimmune responses awaits further definition. Major hurdles include the shifting worldwide epidemiology of infections, increasing antimicrobial resistance, suboptimal assays for the microbiologic screening of organ donors, and virus-associated malignancies. Transplant infectious disease remains a key to the clinical and scientific investigation of organ transplantation.
Collapse
Affiliation(s)
- J A Fishman
- Transplant Infectious Disease and Immunocompromised Host Program and MGH Transplant Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
47
|
Khairallah C, Déchanet-Merville J, Capone M. γδ T Cell-Mediated Immunity to Cytomegalovirus Infection. Front Immunol 2017; 8:105. [PMID: 28232834 PMCID: PMC5298998 DOI: 10.3389/fimmu.2017.00105] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/20/2017] [Indexed: 12/28/2022] Open
Abstract
γδ T lymphocytes are unconventional immune cells, which have both innate- and adaptive-like features allowing them to respond to a wide spectrum of pathogens. For many years, we and others have reported on the role of these cells in the immune response to human cytomegalovirus in transplant patients, pregnant women, neonates, immunodeficient children, and healthy people. Indeed, and as described for CD8+ T cells, CMV infection leaves a specific imprint on the γδ T cell compartment: (i) driving a long-lasting expansion of oligoclonal γδ T cells in the blood of seropositive individuals, (ii) inducing their differentiation into effector/memory cells expressing a TEMRA phenotype, and (iii) enhancing their antiviral effector functions (i.e., cytotoxicity and IFNγ production). Recently, two studies using murine CMV (MCMV) have corroborated and extended these observations. In particular, they have illustrated the ability of adoptively transferred MCMV-induced γδ T cells to protect immune-deficient mice against virus-induced death. In vivo, expansion of γδ T cells is associated with the clearance of CMV infection as well as with reduced cancer occurrence or leukemia relapse risk in kidney transplant patients and allogeneic stem cell recipients, respectively. Taken together, all these studies show that γδ T cells are important immune effectors against CMV and cancer, which are life-threatening diseases affecting transplant recipients. The ability of CMV-induced γδ T cells to act independently of other immune cells opens the door to the development of novel cellular immunotherapies that could be particularly beneficial for immunocompromised transplant recipients.
Collapse
Affiliation(s)
| | | | - Myriam Capone
- Immunoconcept, CNRS UMR 5164, Bordeaux University, Bordeaux, France
| |
Collapse
|
48
|
Ambrose T, Sharkey LM, Louis-Auguste J, Rutter CS, Duncan S, English S, Gkrania-Klotsas E, Carmichael A, Woodward JM, Russell N, Massey D, Butler A, Middleton S. Cytomegalovirus Infection and Rates of Antiviral Resistance Following Intestinal and Multivisceral Transplantation. Transplant Proc 2017; 48:492-6. [PMID: 27109985 DOI: 10.1016/j.transproceed.2015.09.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/03/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cytomegalovirus (CMV) disease is a common and clinically significant complication following intestinal or multivisceral transplantation. CMV disease is more common in cases of serologic mismatch between donor and recipient. Though in some cases it may be asymptomatic, in the immunosuppressed population it often manifests with evidence of systemic infection or end-organ disease. METHODS We conducted a retrospective review of all patients undergoing intestinal or multivisceral transplantation over 8 years at our institution. RESULTS Forty-eight transplantations were performed, with 40% of the patients (19/48) having ≥1 episode of CMV viremia, which rose to 90% in the "donor-positive, recipient-negative" (DPRN) serologic mismatch group. The median time to 1st episode following transplantation was 22.3 weeks (range, 1-78) and median duration of each episode was 4.9 weeks (range, 1.6-37.4). Six of the 19 viremic patients (31.6%) developed virologic resistance with 4 of these occurring in the DPRN group. Four of the 6 patients with drug-resistant CMV died with CMV viremia. All patients with drug resistance acquired ganciclovir resistance; these patients were more challenging to manage with second-line toxicity-limited treatments, including foscarnet, cidofovir, and leflunomide. CMV immunoglobulin has been used and we briefly discuss the use of CMV-specific adoptive T-lymphocyte transfer in the management of 1 case. CONCLUSIONS Post-transplantation CMV disease continues to be challenging to manage, and there is little consensus on optimal management strategies in this patient group, with a significant requirement for novel therapies; these may be pharmacologic or cell based. Extensive multidisciplinary discussion is important for most cases, but particularly for those patients who acquire virologic resistance.
Collapse
Affiliation(s)
- T Ambrose
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - L M Sharkey
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - J Louis-Auguste
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - C S Rutter
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - S Duncan
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - S English
- Department of Clinical Virology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - E Gkrania-Klotsas
- Department of Infectious Diseases, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - A Carmichael
- Department of Infectious Diseases, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - J M Woodward
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - N Russell
- Department of Transplant Surgery, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - D Massey
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - A Butler
- Department of Transplant Surgery, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - S Middleton
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge, United Kingdom.
| |
Collapse
|
49
|
Smith CJ, Quinn M, Snyder CM. CMV-Specific CD8 T Cell Differentiation and Localization: Implications for Adoptive Therapies. Front Immunol 2016; 7:352. [PMID: 27695453 PMCID: PMC5023669 DOI: 10.3389/fimmu.2016.00352] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/31/2016] [Indexed: 01/09/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous virus that causes chronic infection and, thus, is one of the most common infectious complications of immune suppression. Adoptive transfer of HCMV-specific T cells has emerged as an effective method to reduce the risk for HCMV infection and/or reactivation by restoring immunity in transplant recipients. However, the CMV-specific CD8+ T cell response is comprised of a heterogenous mixture of subsets with distinct functions and localization, and it is not clear if current adoptive immunotherapy protocols can reconstitute the full spectrum of CD8+ T cell immunity. The aim of this review is to briefly summarize the role of these T cell subsets in CMV immunity and to describe how current adoptive immunotherapy practices might affect their reconstitution in patients. The bulk of the CMV-specific CD8+ T cell population is made up of terminally differentiated effector T cells with immediate effector function and a short life span. Self-renewing memory T cells within the CMV-specific population retain the capacity to expand and differentiate upon challenge and are important for the long-term persistence of the CD8+ T cell response. Finally, mucosal organs, which are frequent sites of CMV reactivation, are primarily inhabited by tissue-resident memory T cells, which do not recirculate. Future work on adoptive transfer strategies may need to focus on striking a balance between the formation of these subsets to ensure the development of long lasting and protective immune responses that can access the organs affected by CMV disease.
Collapse
Affiliation(s)
- Corinne J Smith
- Department of Microbiology and Immunology, Thomas Jefferson University , Philadelphia, PA , USA
| | - Michael Quinn
- Department of Microbiology and Immunology, Thomas Jefferson University , Philadelphia, PA , USA
| | - Christopher M Snyder
- Department of Microbiology and Immunology, Thomas Jefferson University , Philadelphia, PA , USA
| |
Collapse
|
50
|
Prophylactic and therapeutic adenoviral vector-based multivirus-specific T-cell immunotherapy for transplant patients. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16058. [PMID: 27606351 PMCID: PMC4997746 DOI: 10.1038/mtm.2016.58] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 01/03/2023]
Abstract
Viral infections including cytomegalovirus, Epstein-Barr virus, adenovirus, and BK virus
are a common and predictable problem in transplant recipients. While cellular immune
therapies have been successfully used to tackle infectious complications in transplant
recipients, manufacturing immunotherapies to address the multitude of possible pathogens
can be technically challenging and labor-intensive. Here we describe a novel adenoviral
antigen presentation platform (Ad-MvP) as a tool for rapid generation of
multivirus-specific T-cells in a single step. Ad-MvP encodes 32 CD8+ T-cell epitopes from
cytomegalovirus, Epstein-Barr virus, adenovirus, and BK virus as a contiguous polyepitope.
We demonstrate that Ad-MvP vector can be successfully used for rapid in vitro
expansion of multivirus-specific T-cells from transplant recipients and in vivo
priming of antiviral T-cell immunity. Most importantly, using an in vivo murine
model of Epstein-Barr virus-induced lymphoma, we also show that adoptive immunotherapy
with Ad-MvP expanded autologous and allogeneic multivirus-specific T-cells is highly
effective in controlling Epstein-Barr virus tumor outgrowth and improving overall
survival. We propose that Ad-MvP has wide ranging therapeutic applications in greatly
facilitating in vivo priming of antiviral T-cells, the generation of third-party
T-cell banks as “off-the-shelf” therapeutics as well as autologous T-cell
therapies for transplant patients.
Collapse
|