1
|
Schloer S, Hennesen J, Rueschpler L, Zamzamy M, Flomm F, Ip WH, Pirosu A, Dobner T, Altfeld M. The host cell factor DDX3 mediates sex dimorphism in the IFNα response of plasmacytoid dendritic cells upon TLR activation. Pharmacol Res 2025; 216:107764. [PMID: 40354846 DOI: 10.1016/j.phrs.2025.107764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
During the course of viral infections, IFN-I producing pDCs are fundamental in establishing antiviral defense. However, little is known about the molecular mechanisms by which biological sex contributes to differences in IFN-I production by pDCs. Here, we aimed to identify X-chromosome-encoded proteins as a source of sex differences in IFN-I responses by pDCs. We identified the host-cell factor DDX3 as a key mediator for the sex dimorphism in the IFNα response. DDX3 was significantly higher expressed in female pDCs and was translocated together with IRF7 to the nucleus to orchestrate IFN-I transcription. DDX3 as driver of sex differences in the initial and chronic IFN-I response might serve as a novel target to limit IFN-I-mediated hyperactivation of immune cells.
Collapse
Affiliation(s)
- Sebastian Schloer
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, 20251, Hamburg, Germany; Research Department Virus Immunology, Leibniz Institute of Virology, 20251, Hamburg, Germany.
| | - Jana Hennesen
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251, Hamburg, Germany
| | - Lena Rueschpler
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, 20251, Hamburg, Germany; Research Department Virus Immunology, Leibniz Institute of Virology, 20251, Hamburg, Germany
| | - Mohamed Zamzamy
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, 20251, Hamburg, Germany; Research Department Virus Immunology, Leibniz Institute of Virology, 20251, Hamburg, Germany
| | - Felix Flomm
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251, Hamburg, Germany
| | - Wing Hang Ip
- Research Department Viral Transformation, Leibniz Institute of Virology, 20251, Hamburg, Germany
| | - Andrea Pirosu
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251, Hamburg, Germany
| | - Thomas Dobner
- Research Department Viral Transformation, Leibniz Institute of Virology, 20251, Hamburg, Germany
| | - Marcus Altfeld
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, 20251, Hamburg, Germany; Research Department Virus Immunology, Leibniz Institute of Virology, 20251, Hamburg, Germany.
| |
Collapse
|
2
|
Guo ZS, Lu MM, Liu DW, Zhou CY, Liu ZS, Zhang Q. Identification of amino acids metabolomic profiling in human plasma distinguishes lupus nephritis from systemic lupus erythematosus. Amino Acids 2024; 56:56. [PMID: 39292313 PMCID: PMC11410987 DOI: 10.1007/s00726-024-03418-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Lupus nephritis (LN) is an immunoinflammatory glomerulonephritis associated with renal involvement in systemic lupus erythematosus (SLE). Given the close relationship between plasma amino acids (AAs) and renal function, this study aimed to elucidate the plasma AA profiles in LN patients and identify key AAs and diagnostic patterns that distinguish LN patients from those with SLE and healthy controls. Participants were categorized into three groups: normal controls (NC), SLE, and LN. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was employed to quantify AA levels in human plasma. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were utilized to identify key AAs. The diagnostic capacity of the models was assessed using receiver operating characteristic (ROC) curve analysis and area under the ROC curve (AUC) values. Significant alterations in plasma AA profiles were observed in LN patients compared to the SLE and NC groups. The OPLS-DA model effectively separated LN patients from the SLE and NC groups. A joint model using histidine (His), lysine (Lys), and tryptophan (Trp) demonstrated exceptional diagnostic performance, achieving an AUC of 1.0 with 100% sensitivity, specificity, and accuracy in predicting LN. Another joint model comprising arginine (Arg), valine (Val), and Trp also exhibited robust predictive performance, with an AUC of 0.998, sensitivity of 93.80%, specificity of 100%, and accuracy of 95.78% in distinguishing between SLE and LN. The joint forecasting models showed excellent predictive capabilities in identifying LN and categorizing lupus disease status. This approach provides a novel perspective for the early identification, prevention, treatment, and management of LN based on variations in plasma AA levels.
Collapse
Affiliation(s)
- Zui-Shuang Guo
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P.R. China
| | - Man-Man Lu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P.R. China
| | - Dong-Wei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P.R. China
| | - Chun-Yu Zhou
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P.R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P.R. China
- Blood Purification Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China
| | - Zhang-Suo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P.R. China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P.R. China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P.R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P.R. China.
| | - Qing Zhang
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P.R. China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P.R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P.R. China.
| |
Collapse
|
3
|
Qiao J, Zhang SX, Chang MJ, Zhao R, Song S, Hao JW, Wang C, Hu JX, Gao C, Wang CH, Li XF. Deep stratification by transcriptome molecular characters for precision treatment of patients with systemic lupus erythematosus. Rheumatology (Oxford) 2023; 62:2574-2584. [PMID: 36308437 DOI: 10.1093/rheumatology/keac625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/18/2022] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVES To leverage the high clinical heterogeneity of systemic lupus erythematosus (SLE), we developed and validated a new stratification scheme by integrating genome-scale transcriptomic profiles to identify patient subtypes sharing similar transcriptomic markers and drug targets. METHODS A normalized compendium of transcription profiles was created from peripheral blood mononuclear cells (PBMCs) of 1046 SLE patients and 86 healthy controls (HCs), covering an intersection of 13 689 genes from six microarray datasets. Upregulated differentially expressed genes were subjected to functional and network analysis in which samples were grouped using unsupervised clustering to identify patient subtypes. Then, clustering stability was evaluated by the stratification of six integrated RNA-sequencing datasets using the same method. Finally, the Xgboost classifier was applied to the independent datasets to identify factors associated with treatment outcomes. RESULTS Based on 278 upregulated DEGs of the transcript profiles, SLE patients were classified into three subtypes (subtype A-C) each with distinct molecular and cellular signatures. Neutrophil activation-related pathways were markedly activated in subtype A (named NE-driving), whereas lymphocyte and IFN-related pathways were more enriched in subtype B (IFN-driving). As the most severe subtype, subtype C [NE-IFN-dual-driving (Dual-driving)] shared functional mechanisms with both NE-driving and IFN-driving, which was closely associated with clinical features and could be used to predict the responses of treatment. CONCLUSION We developed the largest cohesive SLE transcriptomic compendium for deep stratification using the most comprehensive microarray and RNA sequencing datasets to date. This result could guide future design of molecular diagnosis and the development of stratified therapy for SLE patients.
Collapse
Affiliation(s)
- Jun Qiao
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Min-Jing Chang
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Rong Zhao
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Shan Song
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Jia-Wei Hao
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Can Wang
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Jing-Xi Hu
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Cai-Hong Wang
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| | - Xiao-Feng Li
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
- Ministry of Education, Key Laboratory of Cellular Physiology at Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Pant H, Hercus TR, Tumes DJ, Yip KH, Parker MW, Owczarek CM, Lopez AF, Huston DP. Translating the biology of β common receptor-engaging cytokines into clinical medicine. J Allergy Clin Immunol 2023; 151:324-344. [PMID: 36424209 DOI: 10.1016/j.jaci.2022.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022]
Abstract
The family of cytokines that comprises IL-3, IL-5, and GM-CSF was discovered over 30 years ago, and their biological activities and resulting impact in clinical medicine has continued to expand ever since. Originally identified as bone marrow growth factors capable of acting on hemopoietic progenitor cells to induce their proliferation and differentiation into mature blood cells, these cytokines are also recognized as key mediators of inflammation and the pathobiology of diverse immunologic diseases. This increased understanding of the functional repertoire of IL-3, IL-5, and GM-CSF has led to an explosion of interest in modulating their functions for clinical management. Key to the successful clinical translation of this knowledge is the recognition that these cytokines act by engaging distinct dimeric receptors and that they share a common signaling subunit called β-common or βc. The structural determination of how IL-3, IL-5, and GM-CSF interact with their receptors and linking this to their differential biological functions on effector cells has unveiled new paradigms of cell signaling. This knowledge has paved the way for novel mAbs and other molecules as selective or pan inhibitors for use in different clinical settings.
Collapse
Affiliation(s)
- Harshita Pant
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Timothy R Hercus
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Damon J Tumes
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Kwok Ho Yip
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Michael W Parker
- Bio 21 Institute, The University of Melbourne, Melbourne, Australia; St Vincent's Institute of Medical Research, Melbourne, Australia
| | | | - Angel F Lopez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - David P Huston
- Texas A&M University School of Medicine, Houston, Tex; Houston Methodist Hospital and Research Institute, Houston, Tex.
| |
Collapse
|
5
|
Abstract
The β common chain (βc) cytokine family includes granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3) and IL-5, all of which use βc as key signaling receptor subunit. GM-CSF, IL-3 and IL-5 have specific roles as hematopoietic growth factors. IL-3 binds with high affinity to the IL-3 receptor α (IL-3Rα/CD123) and then associates with the βc subunit. IL-3 is mainly synthesized by different subsets of T cells, but is also produced by several other immune [basophils, dendritic cells (DCs), mast cells, etc.] and non-immune cells (microglia and astrocytes). The IL-3Rα is also expressed by immune (basophils, eosinophils, mast cells, DCs, monocytes, and megacaryocytes) and non-immune cells (endothelial cells and neuronal cells). IL-3 is the most important growth and activating factor for human and mouse basophils, primary effector cells of allergic disorders. IL-3-activated basophils and mast cells are also involved in different chronic inflammatory disorders, infections, and several types of cancer. IL-3 induces the release of cytokines (i.e., IL-4, IL-13, CXCL8) from human basophils and preincubation of basophils with IL-3 potentiates the release of proinflammatory mediators and cytokines from IgE- and C5a-activated basophils. IL-3 synergistically potentiates IL-33-induced mediator release from human basophils. IL-3 plays a pathogenic role in several hematologic cancers and may contribute to autoimmune and cardiac disorders. Several IL-3Rα/CD123 targeting molecules have shown some efficacy in the treatment of hematologic malignancies.
Collapse
|
6
|
Sjöwall J, Azharuddin M, Frodlund M, Zhang Y, Sandner L, Dahle C, Hinkula J, Sjöwall C. SARS-CoV-2 Antibody Isotypes in Systemic Lupus Erythematosus Patients Prior to Vaccination: Associations With Disease Activity, Antinuclear Antibodies, and Immunomodulatory Drugs During the First Year of the Pandemic. Front Immunol 2021; 12:724047. [PMID: 34512651 PMCID: PMC8430325 DOI: 10.3389/fimmu.2021.724047] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/04/2021] [Indexed: 12/23/2022] Open
Abstract
Objectives Impact of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic on individuals with arthritis has been highlighted whereas data on other rheumatic diseases, e.g., systemic lupus erythematosus (SLE), are scarce. Similarly to SLE, severe SARS-CoV-2 infection includes risks for thromboembolism, an unbalanced type I interferon response, and complement activation. Herein, SARS-CoV-2 antibodies in longitudinal samples collected prior to vaccination were analyzed and compared with SLE progression and antinuclear antibody (ANA) levels. Methods One hundred patients (83 women) with established SLE and a regular visit to the rheumatologist (March 2020 to January 2021) were included. All subjects donated blood and had done likewise prior to the pandemic. SARS-CoV-2 antibody isotypes (IgG, IgA, IgM) to the cell receptor-binding S1-spike outer envelope protein were detected by ELISA, and their neutralizing capacity was investigated. IgG-ANA were measured by multiplex technology. Results During the pandemic, 4% had PCR-confirmed infection but 36% showed SARS-CoV-2 antibodies of ≥1 isotype; IgA was the most common (30%), followed by IgM (9%) and IgG (8%). The antibodies had low neutralizing capacity and were detected also in prepandemic samples. Plasma albumin (p = 0.04) and anti-dsDNA (p = 0.003) levels were lower in patients with SARS-CoV-2 antibodies. Blood group, BMI, smoking habits, complement proteins, daily glucocorticoid dose, use of hydroxychloroquine, or self-reported coronavirus disease 2019 (COVID-19) symptoms (except fever, >38.5°C) did not associate with SARS-CoV-2 antibodies. Conclusion Our data from early 2021 indicate that a large proportion of Swedish SLE patients had serological signs of exposure to SARS-CoV-2 but apparently with a minor impact on the SLE course. Use of steroids and hydroxychloroquine showed no distinct effects, and self-reported COVID-19-related symptoms correlated poorly with all antibody isotypes.
Collapse
Affiliation(s)
- Johanna Sjöwall
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection/Infectious Diseases, Linköping University, Linköping, Sweden
| | - Mohammad Azharuddin
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Linköping University, Linköping, Sweden
| | - Martina Frodlund
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection/Rheumatology, Linköping University, Linköping, Sweden
| | - Yuming Zhang
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Linköping University, Linköping, Sweden
| | - Laura Sandner
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Linköping University, Linköping, Sweden
| | - Charlotte Dahle
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection/Clinical Immunology & Transfusion Medicine, Linköping University, Linköping, Sweden
| | - Jorma Hinkula
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Linköping University, Linköping, Sweden
| | - Christopher Sjöwall
- Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection/Rheumatology, Linköping University, Linköping, Sweden
| |
Collapse
|
7
|
Cui M, Li T, Yan X, Wang C, Shen Q, Ren H, Li L, Zhang R. Blood Genomics Identifies Three Subtypes of Systemic Lupus Erythematosus: "IFN-High," "NE-High," and "Mixed". Mediators Inflamm 2021; 2021:6660164. [PMID: 34305454 PMCID: PMC8270691 DOI: 10.1155/2021/6660164] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/29/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Systemic lupus erythematosus (SLE) is a systemic and multifactorial autoimmune disease, and its diverse clinical manifestations affect molecular diagnosis and drug benefits. Our study was aimed at defining the SLE subtypes based on blood transcriptome data, analyzing functional patterns, and elucidating drug benefits. METHODS Three data sets were used in this paper that were collected from the Gene Expression Omnibus (GEO) database, which contained two published data sets of pediatric and adult SLE patients (GSE65391, GSE49454) and public longitudinal data (GSE72754) from a cohort of SLE patients treated with IFN-α Kinoid (IFN-K). Based on disease activity scores and gene expression data, we defined a global SLE signature and merged three clustering algorithms to develop a single-sample subtype classifier (SSC). Systematic analysis of coexpression networks based on modules revealed the molecular mechanism for each subtype. RESULTS We identified 92 genes as a signature of the SLE subtypes and three intrinsic subsets ("IFN-high," "NE-high," and "mixed"), which varied in disease severity. We speculated that IFN-high might be due to the overproduction of interferons (IFNs) caused by viral infection, leading to the formation of autoantibodies. NE-high might primarily result from bacterial and fungal infections that stimulated neutrophils (NE) to produce neutrophil extracellular traps (NETs) and induced individual autoimmune responses. The mixed type contained both of these molecular mechanisms and showed an intrinsic connection. CONCLUSIONS Our research results indicated that identifying the molecular mechanism associated with different SLE subtypes would benefit the molecular diagnosis and stratified therapy. Moreover, repositioning of IFN-K based on subtypes also revealed an improved therapeutic effect, providing a new direction for disease treatment and drug development.
Collapse
Affiliation(s)
- Mintian Cui
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Taotao Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Xinwei Yan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Chao Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Qi Shen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Hongbiao Ren
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Liangshuang Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| | - Ruijie Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China
| |
Collapse
|
8
|
Ye H, Duan X, Yao M, Kang L, Li Y, Li S, Li B, Chen L. USP18 Mediates Interferon Resistance of Dengue Virus Infection. Front Microbiol 2021; 12:682380. [PMID: 34017322 PMCID: PMC8130619 DOI: 10.3389/fmicb.2021.682380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/07/2021] [Indexed: 01/15/2023] Open
Abstract
Previous studies demonstrated that dengue virus (DENV) infection developed resistance to type-I interferons (IFNα/β). The underlying mechanism remains unclear. USP18 is a negative regulator of IFNα/β signaling, and its expression level is significantly increased following DENV infection in cell lines and patients’ blood. Our previous study revealed that increased USP18 expression contributed to the IFN-α resistance of Hepatitis C Virus (HCV). However, the role of USP18 in DENV replication and resistance to IFN-α is elusive. In this current study, we aimed to explore the role of USP18 in DENV-2 replication and resistance to IFN-α. The level of USP18 was up-regulated by plasmid transfection and down-regulated by siRNA transfection in Hela cells. USP18, IFN-α, IFN-β expression, and DENV-2 replication were monitored by qRT-PCR and Western blot. The activation of the Jak/STAT signaling pathway was assessed at three levels: p-STAT1/p-STAT2 (Western blot), interferon-stimulated response element (ISRE) activity (Dual-luciferase assay), and interferon-stimulated genes (ISGs) expression (qRT-PCR). Our data showed that DENV-2 infection increased USP18 expression in Hela cells. USP18 overexpression promoted DENV-2 replication, while USP18 silence inhibited DENV-2 replication. Silence of USP18 potentiated the anti-DENV-2 activity of IFN-α through activation of the IFN-α-mediated Jak/STAT signaling pathway as shown by increased expression of p-STAT1/p-STAT2, enhanced ISRE activity, and elevated expression of some ISGs. Our data indicated that USP18 induced by DENV-2 infection is a critical host factor utilized by DENV-2 to confer antagonism on IFN-α.
Collapse
Affiliation(s)
- Haiyan Ye
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Min Yao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Lan Kang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Yujia Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Bin Li
- Joint - Laboratory of Transfusion-Transmitted Infectious Diseases Between Institute of Blood Transfusion and Nanning Blood Center, Nanning Blood Center, Nanning, China
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China.,Joint - Laboratory of Transfusion-Transmitted Infectious Diseases Between Institute of Blood Transfusion and Nanning Blood Center, Nanning Blood Center, Nanning, China.,Toronto General Research Institute, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Padariya M, Sznarkowska A, Kote S, Gómez-Herranz M, Mikac S, Pilch M, Alfaro J, Fahraeus R, Hupp T, Kalathiya U. Functional Interfaces, Biological Pathways, and Regulations of Interferon-Related DNA Damage Resistance Signature (IRDS) Genes. Biomolecules 2021; 11:622. [PMID: 33922087 PMCID: PMC8143464 DOI: 10.3390/biom11050622] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Interferon (IFN)-related DNA damage resistant signature (IRDS) genes are a subgroup of interferon-stimulated genes (ISGs) found upregulated in different cancer types, which promotes resistance to DNA damaging chemotherapy and radiotherapy. Along with briefly discussing IFNs and signalling in this review, we highlighted how different IRDS genes are affected by viruses. On the contrary, different strategies adopted to suppress a set of IRDS genes (STAT1, IRF7, OAS family, and BST2) to induce (chemo- and radiotherapy) sensitivity were deliberated. Significant biological pathways that comprise these genes were classified, along with their frequently associated genes (IFIT1/3, IFITM1, IRF7, ISG15, MX1/2 and OAS1/3/L). Major upstream regulators from the IRDS genes were identified, and different IFN types regulating these genes were outlined. Functional interfaces of IRDS proteins with DNA/RNA/ATP/GTP/NADP biomolecules featured a well-defined pharmacophore model for STAT1/IRF7-dsDNA and OAS1/OAS3/IFIH1-dsRNA complexes, as well as for the genes binding to GDP or NADP+. The Lys amino acid was found commonly interacting with the ATP phosphate group from OAS1/EIF2AK2/IFIH1 genes. Considering the premise that targeting IRDS genes mediated resistance offers an efficient strategy to resensitize tumour cells and enhances the outcome of anti-cancer treatment, this review can add some novel insights to the field.
Collapse
Affiliation(s)
- Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (A.S.); (S.K.); (M.G.-H.); (S.M.); (M.P.); (J.A.); (R.F.); (T.H.)
| | - Alicja Sznarkowska
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (A.S.); (S.K.); (M.G.-H.); (S.M.); (M.P.); (J.A.); (R.F.); (T.H.)
| | - Sachin Kote
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (A.S.); (S.K.); (M.G.-H.); (S.M.); (M.P.); (J.A.); (R.F.); (T.H.)
| | - Maria Gómez-Herranz
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (A.S.); (S.K.); (M.G.-H.); (S.M.); (M.P.); (J.A.); (R.F.); (T.H.)
| | - Sara Mikac
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (A.S.); (S.K.); (M.G.-H.); (S.M.); (M.P.); (J.A.); (R.F.); (T.H.)
| | - Magdalena Pilch
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (A.S.); (S.K.); (M.G.-H.); (S.M.); (M.P.); (J.A.); (R.F.); (T.H.)
| | - Javier Alfaro
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (A.S.); (S.K.); (M.G.-H.); (S.M.); (M.P.); (J.A.); (R.F.); (T.H.)
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Robin Fahraeus
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (A.S.); (S.K.); (M.G.-H.); (S.M.); (M.P.); (J.A.); (R.F.); (T.H.)
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- Department of Medical Biosciences, Building 6M, Umeå University, 901 85 Umeå, Sweden
- RECAMO, Masaryk Memorial Cancer Institute, Zlutykopec 7, 65653 Brno, Czech Republic
| | - Ted Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (A.S.); (S.K.); (M.G.-H.); (S.M.); (M.P.); (J.A.); (R.F.); (T.H.)
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland; (A.S.); (S.K.); (M.G.-H.); (S.M.); (M.P.); (J.A.); (R.F.); (T.H.)
| |
Collapse
|
10
|
Starokadomskyy P, Escala Perez-Reyes A, Burstein E. Immune Dysfunction in Mendelian Disorders of POLA1 Deficiency. J Clin Immunol 2021; 41:285-293. [PMID: 33392852 DOI: 10.1007/s10875-020-00953-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
POLA1 encodes the catalytic unit of DNA polymerase α, which together with the Primase complex launches the DNA replication process. While complete deficiency of this essential gene is presumed to be lethal, at least two conditions due to partial POLA1 deficiency have been described. The first genetic syndrome to be mapped to POLA1 was X-linked reticulate pigmentary disorder (XLPDR, MIM #301220), a rare syndrome characterized by skin hyperpigmentation, sterile multiorgan inflammation, recurrent infections, and distinct facial features. XLPDR has been shown to be accompanied by profound activation of type I interferon signaling, but unlike other interferonopathies, it is not associated with autoantibodies or classical autoimmunity. Rather, it is accompanied by marked Natural Killer (NK) cell dysfunction, which may explain the recurrent infections seen in this syndrome. To date, all XLPDR cases are caused by the same recurrent intronic mutation, which results in gene missplicing. Several hypomorphic mutations in POLA1, distinct from the XLPDR intronic mutation, have been recently reported and these mutations associate with a separate condition, van Esch-O'Driscoll syndrome (VEODS, MIM #301030). This condition results in growth retardation, microcephaly, hypogonadism, and in some cases, overlapping immunological features to those seen in XLPDR. This review summarizes our current understanding of the clinical manifestations of POLA1 gene mutations with an emphasis on its immunological consequences, as well as recent advances in understanding of its pathophysiologic basis and potential therapeutic options.
Collapse
Affiliation(s)
- Petro Starokadomskyy
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA.
| | - Andrea Escala Perez-Reyes
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA
| | - Ezra Burstein
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75235, USA. .,Department of Molecular Biology, UT Southwestern Medical Center, 5323 Harry Hines blvd, Dallas, TX, 75390-9151, USA.
| |
Collapse
|
11
|
Goulden B, Isenberg D. Anti-IFNαR Mabs for the treatment of systemic lupus erythematosus. Expert Opin Biol Ther 2020; 21:519-528. [PMID: 33085537 DOI: 10.1080/14712598.2021.1841164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION The type 1 interferon pathway is known to play a role in the immunopathology of systemic lupus erythematosus (SLE). As a result, biologic agents targeting this pathway have been developed and are currently being investigated in clinical trials. AREAS COVERED We review the biologic agents which have been developed to antagonize type I interferons in SLE. We focus on anifrolumab, a type I interferon receptor antagonist, and consider the complexities of defining efficacy in SLE clinical trials. EXPERT OPINION Anifrolumab shows promise as an addition to the SLE therapeutic armamentarium. Despite discordant results between its two phase III studies, there is a convincing suggestion of benefit in both trials to encourage the view that this approach might be effective. Data acquired thus far look particularly useful for cutaneous disease. We await data on its effect on renal, pulmonary, cardiac, and central nervous system involvement, on patient reported outcomes, and its safety and efficacy with long-term use.
Collapse
Affiliation(s)
- Bethan Goulden
- Rheumatology Department, University College London, London, UK
| | - David Isenberg
- Rheumatology Department, University College London, London, UK
| |
Collapse
|
12
|
Innate immune response in systemic autoimmune diseases: a potential target of therapy. Inflammopharmacology 2020; 28:1421-1438. [DOI: 10.1007/s10787-020-00762-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
|
13
|
Kang JA, Jeon YJ. Emerging Roles of USP18: From Biology to Pathophysiology. Int J Mol Sci 2020; 21:ijms21186825. [PMID: 32957626 PMCID: PMC7555095 DOI: 10.3390/ijms21186825] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic proteomes are enormously sophisticated through versatile post-translational modifications (PTMs) of proteins. A large variety of code generated via PTMs of proteins by ubiquitin (ubiquitination) and ubiquitin-like proteins (Ubls), such as interferon (IFN)-stimulated gene 15 (ISG15), small ubiquitin-related modifier (SUMO) and neural precursor cell expressed, developmentally downregulated 8 (NEDD8), not only provides distinct signals but also orchestrates a plethora of biological processes, thereby underscoring the necessity for sophisticated and fine-tuned mechanisms of code regulation. Deubiquitinases (DUBs) play a pivotal role in the disassembly of the complex code and removal of the signal. Ubiquitin-specific protease 18 (USP18), originally referred to as UBP43, is a major DUB that reverses the PTM of target proteins by ISG15 (ISGylation). Intriguingly, USP18 is a multifaceted protein that not only removes ISG15 or ubiquitin from conjugated proteins in a deconjugating activity-dependent manner but also acts as a negative modulator of type I IFN signaling, irrespective of its catalytic activity. The function of USP18 has become gradually clear, but not yet been completely addressed. In this review, we summarize recent advances in our understanding of the multifaceted roles of USP18. We also highlight new insights into how USP18 is implicated not only in physiology but also in pathogenesis of various human diseases, involving infectious diseases, neurological disorders, and cancers. Eventually, we integrate a discussion of the potential of therapeutic interventions for targeting USP18 for disease treatment.
Collapse
Affiliation(s)
- Ji An Kang
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Young Joo Jeon
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon 35015, Korea;
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Korea
- Correspondence: ; Tel.: +82-42-280-6766; Fax: +82-42-280-6769
| |
Collapse
|
14
|
Interaction of miR-181b and IFNA1 Polymorphisms on the Risk of Systemic Lupus Erythematosus. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4757065. [PMID: 32382553 PMCID: PMC7196983 DOI: 10.1155/2020/4757065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/16/2020] [Indexed: 12/23/2022]
Abstract
Introduction A previous work has discovered that chromosome 1q32 locus linked to the risk of systemic lupus erythematosus (SLE) and miR-181b located on the susceptibility site with downregulation inversely correlating to its target molecular interferon alpha 1 (IFNA1). The purpose of this study was to investigate the association of miR-181b and IFNA1 polymorphisms with IS risk. Methods The miR-181b rs322931, IFNA1 rs1332190, and rs10811543 were genotyped using a Multiplex SNaPshot assay. miR-181b expression levels in plasma of SLE patients and controls were analyzed using quantitative PCR. Results The rs322931 CT, CT/TT, and T allele exerted an increased trend of SLE risk (CT vs. CC: adjusted OR = 1.71, 95% CI 1.16-2.50, P = 0.01; CT/TT vs. CC: adjusted OR = 1.45, 95% CI 1.08-1.95, P = 0.01; T vs. C: adjusted OR = 1.38, 95% CI 1.07-1.79, P = 0.01). Combined genotypes of the rs322931 CT/TT+rs1332190 TT and the rs322931 CC+rs10811543 AG/AA also revealed an increased risk of SLE. Gene-gene interaction analysis showed that a three-locus model consisting of rs322931, rs1332190, and rs10811543 attributed an increased risk of SLE. Further genotype-phenotype analysis revealed that rs322931 CT/TT carriers displayed lower levels of miR-181b. Conclusions These findings indicate that the miR-181b rs322931 may be singly and jointly responsible for the etiology of SLE by altering miR-181b expression.
Collapse
|
15
|
Banga J, Srinivasan D, Sun CC, Thompson CD, Milletti F, Huang KS, Hamilton S, Song S, Hoffman AF, Qin YG, Matta B, LaPan M, Guo Q, Lu G, Li D, Qian H, Bolin DR, Liang L, Wartchow C, Qiu J, Downing M, Narula S, Fotouhi N, DeMartino JA, Tan SL, Chen G, Barnes BJ. Inhibition of IRF5 cellular activity with cell-penetrating peptides that target homodimerization. SCIENCE ADVANCES 2020; 6:eaay1057. [PMID: 32440537 PMCID: PMC7228753 DOI: 10.1126/sciadv.aay1057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 03/05/2020] [Indexed: 05/07/2023]
Abstract
The transcription factor interferon regulatory factor 5 (IRF5) plays essential roles in pathogen-induced immunity downstream of Toll-, nucleotide-binding oligomerization domain-, and retinoic acid-inducible gene I-like receptors and is an autoimmune susceptibility gene. Normally, inactive in the cytoplasm, upon stimulation, IRF5 undergoes posttranslational modification(s), homodimerization, and nuclear translocation, where dimers mediate proinflammatory gene transcription. Here, we report the rational design of cell-penetrating peptides (CPPs) that disrupt IRF5 homodimerization. Biochemical and imaging analysis shows that IRF5-CPPs are cell permeable, noncytotoxic, and directly bind to endogenous IRF5. IRF5-CPPs were selective and afforded cell type- and species-specific inhibition. In plasmacytoid dendritic cells, inhibition of IRF5-mediated interferon-α production corresponded to a dose-dependent reduction in nuclear phosphorylated IRF5 [p(Ser462)IRF5], with no effect on pIRF5 levels. These data support that IRF5-CPPs function downstream of phosphorylation. Together, data support the utility of IRF5-CPPs as novel tools to probe IRF5 activation and function in disease.
Collapse
Affiliation(s)
- Jaspreet Banga
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
| | | | - Chia-Chi Sun
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Cherrie D. Thompson
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
| | - Francesca Milletti
- Roche Innovation Center New York, 430 East 29th Street, New York, NY 10016, USA
| | - Kuo-Sen Huang
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Shannon Hamilton
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Su Song
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
| | - Ann F. Hoffman
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Yajuan Gu Qin
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Bharati Matta
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
| | - Margaret LaPan
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
| | - Qin Guo
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
| | - Gang Lu
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Dan Li
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
| | - Hong Qian
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - David R. Bolin
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Lena Liang
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Charles Wartchow
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Jin Qiu
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Michelle Downing
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Satwant Narula
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Nader Fotouhi
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Julie A. DeMartino
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
| | - Seng-Lai Tan
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
| | - Gang Chen
- Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA
- EMD Serono Research and Development Institute Inc., 45A Middlesex Turnpike, Billerica, MA 01821, USA
- Corresponding author. (B.J.B.); (G.C.)
| | - Betsy J. Barnes
- The Feinstein Institute for Medical Research, Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, 350 Community Dr., Manhasset, NY 11030, USA
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
- Corresponding author. (B.J.B.); (G.C.)
| |
Collapse
|
16
|
Whole-genome genotyping and resequencing reveal the association of a deletion in the complex interferon alpha gene cluster with hypothyroidism in dogs. BMC Genomics 2020; 21:307. [PMID: 32299354 PMCID: PMC7160888 DOI: 10.1186/s12864-020-6700-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/24/2020] [Indexed: 12/30/2022] Open
Abstract
Background Hypothyroidism is a common complex endocrinopathy that typically has an autoimmune etiology, and it affects both humans and dogs. Genetic and environmental factors are both known to play important roles in the disease development. In this study, we sought to identify the genetic risk factors potentially involved in the susceptibility to the disease in the high-risk Giant Schnauzer dog breed. Results By employing genome-wide association followed by fine-mapping (top variant p-value = 5.7 × 10− 6), integrated with whole-genome resequencing and copy number variation analysis, we detected a ~ 8.9 kbp deletion strongly associated (p-value = 0.0001) with protection against development of hypothyroidism. The deletion is located between two predicted Interferon alpha (IFNA) genes and it may eliminate functional elements potentially involved in the transcriptional regulation of these genes. Remarkably, type I IFNs have been extensively associated to human autoimmune hypothyroidism and general autoimmunity. Nonetheless, the extreme genomic complexity of the associated region on CFA11 warrants further long-read sequencing and annotation efforts in order to ascribe functions to the identified deletion and to characterize the canine IFNA gene cluster in more detail. Conclusions Our results expand the current knowledge on genetic determinants of canine hypothyroidism by revealing a significant link with the human counterpart disease, potentially translating into better diagnostic tools across species, and may contribute to improved canine breeding strategies.
Collapse
|
17
|
A Bayesian gene network reveals insight into the JAK-STAT pathway in systemic lupus erythematosus. PLoS One 2019; 14:e0225651. [PMID: 31790472 PMCID: PMC6886858 DOI: 10.1371/journal.pone.0225651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic, remitting, and relapsing, inflammatory disease involving multiple organs, which exhibits abnormalities of both the innate and adaptive immune responses. A limited number of transcriptomic studies have characterized the gene pathways involved in SLE in an attempt to identify the key pathogenic drivers of the disease. In order to further advance our understanding of the pathogenesis of SLE, we used a novel Bayesian network algorithm to hybridize knowledge- and data-driven methods, and then applied the algorithm to build an SLE gene network using transcriptomic data from 1,760 SLE patients’ RNA from the two tabalumab Phase III trials (ILLUMINATE-I & -II), the largest SLE RNA dataset to date. Further, based on the gene network, we carried out hub- and key driver-gene analyses for gene prioritization. Our analyses identified that the JAK-STAT pathway genes, including JAK2, STAT1, and STAT2, played essential roles in SLE pathogenesis, and reaffirmed the recent discovery of pathogenic relevance of JAK-STAT signaling in SLE. Additionally, we showed that other genes, such as IRF1, IRF7, PDIA4, FAM72C, TNFSF10, DHX58, SIGLEC1, and PML, may be also important in SLE and serve as potential therapeutic targets for SLE. In summary, using a hybridized network construction approach, we systematically investigated gene-gene interactions based on their transcriptomic profiles, prioritized genes based on their importance in the network structure, and revealed new insights into SLE activity.
Collapse
|
18
|
McKernan DP. Pattern recognition receptors as potential drug targets in inflammatory disorders. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 119:65-109. [PMID: 31997773 DOI: 10.1016/bs.apcsb.2019.09.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pattern recognition receptors (PRRs) are a key part of the innate immune system, the body's first line of defense against infection and tissue damage. This superfamily of receptors including Toll-like receptors (TLRs), NOD-like receptors (NLRs), C-type lectin-like receptors (CLRs) and RIG-like receptors (RLRs) are responsible for initiation of the inflammatory response by their recognition of molecular patterns present in invading microorganisms (such as bacteria, viruses or fungi) during infection or in molecules released following tissue damage during acute or chronic disease states (such as sepsis or arthritis). These receptors are widely expressed and located on the cell surface, in intracellular compartments or in the cytoplasm can detect a single or subset of molecules including lipoproteins, carbohydrates or nucleic acids. In response, they initiate an intracellular signaling cascade that culminates in the synthesis and release of cytokines, chemokines and vasoactive molecules. These steps are necessary to maintain tissue homeostasis and remove potentially dangerous pathogens. However, during extreme or acute responses or during chronic disease, this can be damaging and even lead to death. Therefore, it is thought that targeting such receptors may offer a therapeutic approach in chronic inflammatory diseases or in cases of acute infection leading to sepsis. Herein, the current knowledge on the molecular biology of PRRs is reviewed along with their association with inflammatory and infectious diseases. Finally, the testing of therapeutic compounds and their future merit as targets is discussed.
Collapse
|
19
|
Brohawn PZ, Streicher K, Higgs BW, Morehouse C, Liu H, Illei G, Ranade K. Type I interferon gene signature test–low and –high patients with systemic lupus erythematosus have distinct gene expression signatures. Lupus 2019; 28:1524-1533. [DOI: 10.1177/0961203319885447] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives Type I interferon (IFN) is implicated in systemic lupus erythematosus (SLE) pathogenesis. We aimed to identify type I IFN signaling-dependent and -independent molecular pathways in a large population of patients with SLE. Methods Baseline blood samples from adult patients with moderate to severe SLE from two Phase IIb studies (NCT01438489, n = 265; NCT01283139, n = 416) were profiled using whole transcriptome array analyses. Type I IFN gene signature (IFNGS) test status (high or low) was determined using a validated qualitative polymerase chain reaction–based test. IFN-type-specific signatures were developed by stimulating healthy blood with IFN-β, IFN-γ, IFN-λ, IFN-ω, or pooled IFN-α. These, and multiple literature-derived cell type and cytokine pathway signatures, were evaluated in individual and pooled study populations. A Fisher’s exact test was used for associations, adjusted for false discovery rate. Results Whole blood samples from IFNGS test–high patients were enriched versus IFNGS test–low patients for CD40L signaling ( Q < 0.001), CXC cytokine ( Q < 0.001), TLR8-mediated monocyte activation ( Q < 0.001), IgG ( Q < 0.001), major histocompatibility complex class I ( Q < 0.001), and plasma cell ( Q < 0.001) gene expression signatures. IFNGS test–low patients had significant enrichment of eosinophil ( Q < 0.001), IFN-γ-specific ( Q = 0.005), and T-cell or B-cell ( Q < 0.001) signatures. Similar enrichment profiles were demonstrated in patients with primary Sjögren’s syndrome, systemic sclerosis, and dermatomyositis. Conclusions IFNGS test–high patients overexpressed many gene signatures associated with SLE pathogenesis compared with IFNGS test–low patients, reflecting broad immune activation. These results provide new insights into the molecular heterogeneity underlying SLE pathogenesis, highlighting shared mechanisms beyond type I IFN, across several autoimmune diseases. Trial registration Clinicaltrials.gov: NCT01438489 and NCT01283139.
Collapse
Affiliation(s)
- PZ Brohawn
- AstraZeneca, Gaithersburg, Maryland, USA
| | | | - B W Higgs
- AstraZeneca, Gaithersburg, Maryland, USA
| | | | - H Liu
- AstraZeneca, Gaithersburg, Maryland, USA
| | - G Illei
- AstraZeneca, Gaithersburg, Maryland, USA
| | - K Ranade
- AstraZeneca, Gaithersburg, Maryland, USA
| |
Collapse
|
20
|
Davis SE, Khatua AK, Popik W. Nucleosomal dsDNA Stimulates APOL1 Expression in Human Cultured Podocytes by Activating the cGAS/IFI16-STING Signaling Pathway. Sci Rep 2019; 9:15485. [PMID: 31664093 PMCID: PMC6820523 DOI: 10.1038/s41598-019-51998-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/08/2019] [Indexed: 12/31/2022] Open
Abstract
APOL1 alleles G1 and G2 are associated with faster progression to lupus nephritis (LN)-associated end-stage renal disease (LN-ESRD) in African Americans. Increased levels of type I interferons (IFNs) and nucleosome-associated double-stranded DNA (dsDNA) fragments (nsDNA) are the hallmark of this disease. Here, we identify cyclic GMP-AMP synthase (cGAS) and interferon-inducible protein 16 (IFI16) as the major DNA sensors in human immortalized podocytes. We also show that nsDNA triggers the expression of APOL1 and IFNβ via IRF3 activation through the cGAS/IFI16-STING pathway. We demonstrate that maximal APOL1 expression also requires the activation of type I IFN receptor (IFNAR) and STAT1 signaling triggered by IFNβ produced in response to nsDNA, or by exogenous IFNβ. Finally, we show that STAT1 activation is sufficient to upregulate IFI16, subsequently boosting APOL1 expression through a positive feedback mechanism. Collectively, we find that nsDNA-induced APOL1 expression is mediated by both IFNβ-independent and dependent signaling pathways triggered by activation of the cGAS/IFI16-STING pathway. We propose that simultaneous inhibition of STING and the IFNAR-STAT1 pathway may attenuate IFI16 expression, reduce IFI16-cGAS cross-talk, and prevent excessive APOL1 expression in human podocytes in response to nsDNA.
Collapse
Affiliation(s)
- Shamara E Davis
- Meharry Medical College, Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, Nashville, TN, 37208, USA
| | - Atanu K Khatua
- Meharry Medical College, Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, Nashville, TN, 37208, USA
| | - Waldemar Popik
- Meharry Medical College, Center for AIDS Health Disparities Research, Department of Microbiology and Immunology, Nashville, TN, 37208, USA.
- Department of Internal Medicine, 1005 D. B. Todd Blvd, Nashville, TN, 37208, USA.
| |
Collapse
|
21
|
Nasonov EL, Avdeeva AS. IMMUNOINFLAMMATORY RHEUMATIC DISEASES ASSOCIATED WITH TYPE I INTERFERON: NEW EVIDENCE. ACTA ACUST UNITED AC 2019. [DOI: 10.14412/1995-4484-2019-452-461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Immunoinflammatory rheumatic diseases (IIRDs) are a large group of pathological conditions with impaired immunological tolerance to autogenous tissues, leading to inflammation and irreversible organ damage. The review discusses current ideas on the role of type I interferons in the immunopathogenesis of IIRDs, primarily systemic lupus erythematosus, and new possibilities for personalized therapy.
Collapse
Affiliation(s)
- E. L. Nasonov
- V.A. Nasonova Research Institute of Rheumatology;
I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | |
Collapse
|
22
|
Huang MW, Stock AD, Mike EV, Herlitz L, Kolbeck R, Putterman C. Anti-IFNAR treatment does not reverse neuropsychiatric disease in MRL/ lpr lupus mice. Lupus 2019; 28:1510-1523. [PMID: 31474191 DOI: 10.1177/0961203319872265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Many systemic lupus erythematosus patients display a type I interferon (IFN) signature, and IFNα levels positively correlate with disease severity. Previous studies blocking the type I IFN pathway systemically in lupus models showed some beneficial effects. However, its effects on neuropsychiatric manifestations have yet to be carefully assessed, even though IFNα has been associated with induction of depression. Our aim was to investigate whether disrupting the type I IFN pathway would attenuate the development of murine neuropsychiatric lupus. METHODS Female MRL/lpr mice were administered an antitype I IFN receptor (IFNAR) antibody or a control antibody intraperitoneally three times weekly for 12 weeks starting at age 4-5 weeks. Behavior was assessed during and at the end of the treatment schedule. RESULTS No significant differences were seen between the anti-IFNAR- and control-treated mice when assessing for depression-like behavior or cognitive dysfunction, although anti-IFNAR antibody-treated mice displayed significant decreases in levels of IFN-stimulated genes. Anti-IFNAR treatment also did not significantly improve brain histology, cellular infiltration, or blood-brain barrier integrity. CONCLUSIONS Surprisingly, our results showed no improvement in neuropsychiatric disease and suggest that the role of IFNAR signaling in the pathogenesis of neuropsychiatric lupus continues to need to be carefully assessed.
Collapse
Affiliation(s)
- M W Huang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - A D Stock
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - E V Mike
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - L Herlitz
- Department of Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - R Kolbeck
- Research and Early Development, Respiratory, Inflammation and Autoimmune, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - C Putterman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.,Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
23
|
RNA-seq analysis of molecular heterogeneity peripheral blood mononuclear cells in systemic lupus erythematosus. Chin Med J (Engl) 2019; 132:842-845. [PMID: 30897597 PMCID: PMC6595856 DOI: 10.1097/cm9.0000000000000164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
24
|
Schmidtke L, Schrick K, Saurin S, Käfer R, Gather F, Weinmann-Menke J, Kleinert H, Pautz A. The KH-type splicing regulatory protein (KSRP) regulates type III interferon expression post-transcriptionally. Biochem J 2019; 476:333-352. [PMID: 30578289 DOI: 10.1042/bcj20180522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
Type III interferons (IFNs) are the latest members of the IFN family. They play an important role in immune defense mechanisms, especially in antiviral responses at mucosal sites. Moreover, they control inflammatory reactions by modulating neutrophil and dendritic cell functions. Therefore, it is important to identify cellular mechanisms involved in the control of type III IFN expression. All IFN family members contain AU-rich elements (AREs) in the 3'-untranslated regions (3'-UTR) of their mRNAs that determine mRNA half-life and consequently the expressional level of these cytokines. mRNA stability is controlled by different proteins binding to these AREs leading to either stabilization or destabilization of the respective target mRNA. The KH-type splicing regulatory protein KSRP (also named KHSRP) is an important negative regulator of ARE-containing mRNAs. Here, we identify the interferon lambda 3 (IFNL3) mRNA as a new KSRP target by pull-down and immunoprecipitation experiments, as well as luciferase reporter gene assays. We characterize the KSRP-binding site in the IFNL3 3'-UTR and demonstrate that KSRP regulates the mRNA half-life of the IFNL3 transcript. In addition, we detect enhanced expression of IFNL3 mRNA in KSRP-/- mice, establishing a negative regulatory function of KSRP in type III IFN expression also in vivo Besides KSRP the RNA-binding protein AUF1 (AU-rich element RNA-binding protein 1) also seems to be involved in the regulation of type III IFN mRNA expression.
Collapse
Affiliation(s)
- Lisa Schmidtke
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Str. 67, 55101 Mainz, Germany
| | - Katharina Schrick
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Str. 67, 55101 Mainz, Germany
| | - Sabrina Saurin
- First Medical Department, University Medical Center of the Johannes Gutenberg-University, Langenbeck Str. 1, 55101 Mainz, Germany
| | - Rudolf Käfer
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Str. 67, 55101 Mainz, Germany
| | - Fabian Gather
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Str. 67, 55101 Mainz, Germany
| | - Julia Weinmann-Menke
- First Medical Department, University Medical Center of the Johannes Gutenberg-University, Langenbeck Str. 1, 55101 Mainz, Germany
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Str. 67, 55101 Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Str. 67, 55101 Mainz, Germany
| |
Collapse
|
25
|
A virus-encoded type I interferon decoy receptor enables evasion of host immunity through cell-surface binding. Nat Commun 2018; 9:5440. [PMID: 30575728 PMCID: PMC6303335 DOI: 10.1038/s41467-018-07772-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
Soluble cytokine decoy receptors are potent immune modulatory reagents with therapeutic applications. Some virus-encoded secreted cytokine receptors interact with glycosaminoglycans expressed at the cell surface, but the biological significance of this activity in vivo is poorly understood. Here, we show the type I interferon binding protein (IFNα/βBP) encoded by vaccinia and ectromelia viruses requires of this cell binding activity to confer full virulence to these viruses and to retain immunomodulatory activity. Expression of a variant form of the IFNα/βBP that inhibits IFN activity, but does not interact with cell surface glycosaminoglycans, results in highly attenuated viruses with a virulence similar to that of the IFNα/βBP deletion mutant viruses. Transcriptomics analysis and infection of IFN receptor-deficient mice confirmed that the control of IFN activity is the main function of the IFNα/βBP in vivo. We propose that retention of secreted cytokine receptors at the cell surface may largely enhance their immunomodulatory activity.
Collapse
|
26
|
Yoshikawa M, Nakayamada S, Kubo S, Nawata A, Kitanaga Y, Iwata S, Sakata K, Ma X, Wang SP, Nakano K, Saito K, Tanaka Y. Type I and II interferons commit to abnormal expression of chemokine receptor on B cells in patients with systemic lupus erythematosus. Clin Immunol 2018; 200:1-9. [PMID: 30576845 DOI: 10.1016/j.clim.2018.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/16/2018] [Accepted: 12/18/2018] [Indexed: 12/24/2022]
Abstract
Memory B cells are increased in systemic lupus erythematosus (SLE) cases, but the qualitative abnormalities and induction mechanism of these cells are unclear. Here, we subclassified B cells by their chemokine receptor expression and investigated their induction mechanism. The peripheral blood of patients with SLE showed higher levels of CXCR5- and CXCR3+ B cells. CXCR5-CXCR3+ B cell levels were elevated in patients with active SLE, which decreased with improving disease conditions. Interferon (IFN)-γ stimulation increased CXCR3 expression, whereas IFN-β stimulation reduced CXCR5 expression in B cells. Furthermore, CXCR5-CXCR3+ B cells were induced by a combination of IFN-β and IFN-γ stimulation. Renal tissue examination of patients with active lupus nephritis confirmed the presence of CD19+CXCR3+ B cells. Collectively, the results revealed qualitative abnormalities accompanying reduced CXCR5 expression via type I IFN and enhanced CXCR3 expression via type II IFN in SLE, suggesting their involvement in B cell infiltration into tissues and inflammatory pathogenesis.
Collapse
Affiliation(s)
- Maiko Yoshikawa
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan
| | - Shingo Nakayamada
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan
| | - Satoshi Kubo
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan
| | - Aya Nawata
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan
| | - Yukihiro Kitanaga
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan
| | - Shigeru Iwata
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan
| | - Kei Sakata
- Mitsubishi Tanabe Pharma Corporation, UK
| | - Xiaoxue Ma
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan; Department of Pediatrics, The First Hospital of China Medical University, Shenyang, China
| | - Sheau Pey Wang
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan
| | - Kazuhisa Nakano
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan
| | - Kazuyoshi Saito
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan.
| |
Collapse
|
27
|
Walsh SR, Bastin D, Chen L, Nguyen A, Storbeck CJ, Lefebvre C, Stojdl D, Bramson JL, Bell JC, Wan Y. Type I IFN blockade uncouples immunotherapy-induced antitumor immunity and autoimmune toxicity. J Clin Invest 2018; 129:518-530. [PMID: 30422820 DOI: 10.1172/jci121004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 11/06/2018] [Indexed: 12/27/2022] Open
Abstract
Despite its success in treating melanoma and hematological malignancies, adoptive cell therapy (ACT) has had only limited effects in solid tumors. This is due in part to a lack of specific antigen targets, poor trafficking and infiltration, and immunosuppression in the tumor microenvironment. In this study, we combined ACT with oncolytic virus vaccines (OVVs) to drive expansion and tumor infiltration of transferred antigen-specific T cells and demonstrated that the combination is highly potent for the eradication of established solid tumors. Consistent with other successful immunotherapies, this approach elicited severe autoimmune consequences when the antigen targeted was a self-protein. However, modulation of IFN-α/-β signaling, either by functional blockade or rational selection of an OVV backbone, ameliorated autoimmune side effects without compromising antitumor efficacy. Our study uncovers a pathogenic role for IFN-α/-β in facilitating autoimmune toxicity during cancer immunotherapy and presents a safe and powerful combinatorial regimen with immediate translational applications.
Collapse
Affiliation(s)
- Scott R Walsh
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Donald Bastin
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Lan Chen
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Andrew Nguyen
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Christopher J Storbeck
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Charles Lefebvre
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - David Stojdl
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Jonathan L Bramson
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - John C Bell
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Yonghong Wan
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
28
|
Porat A, Giat E, Kowal C, He M, Son M, Latz E, Ben-Zvi I, Al-Abed Y, Diamond B. DNA-Mediated Interferon Signature Induction by SLE Serum Occurs in Monocytes Through Two Pathways: A Mechanism to Inhibit Both Pathways. Front Immunol 2018; 9:2824. [PMID: 30619247 PMCID: PMC6297782 DOI: 10.3389/fimmu.2018.02824] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 11/15/2018] [Indexed: 02/05/2023] Open
Abstract
A primary mechanism for activation of innate immunity is recognition of damage or pathogen associated molecular patterns by pattern recognition receptors (PRRs). Nucleic acid is a damage associated molecular pattern molecule that when internalized into a monocyte and recognized by intracellular nucleic acid sensing toll like receptors will cause production of type 1 interferon. The process by which DNA or RNA is delivered into the cytosol of monocytes in systemic lupus erythematosus remains incompletely understood, and therapeutic approaches to prevent DNA-mediated monocyte activation are needed. We identified two mechanisms for internalization of DNA by monocytes. IgG-bound DNA was internalized by interacting with Fc gamma receptor IIa, while high-mobility group box-1 protein-bound DNA was internalized by interacting with the receptor for advanced glycation end products. Both pathways contribute to an inflammatory phenotype in monocytes exposed to serum from patients with SLE. Moreover, both of these pathways can be inhibited by a pentapeptide, DWEYS, which is a DNA mimetope. In one instance DWEYS directly competes with DNA for antibody binding and in the other DWEYS binds high-mobility group box-1 and blocks its interaction with RAGE. Our data highlight distinct pathways involved in nucleic acid enters monocytes in SLE, and identify a potential therapeutic to prevent nucleic acid internalization in SLE.
Collapse
Affiliation(s)
- Amit Porat
- Elmezzi Graduate School for Molecular Medicine, Manhasset, NY, United States.,Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Eitan Giat
- Elmezzi Graduate School for Molecular Medicine, Manhasset, NY, United States.,Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Czeslawa Kowal
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Mingzhu He
- Center for Molecular Innovation, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Myoungsun Son
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Eicke Latz
- Biomedical Centre (BMZ), Institute of Innate Immunity, 1G007 University Hospital, University of Bonn, Bonn, Germany
| | - Ilan Ben-Zvi
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Yousef Al-Abed
- Center for Molecular Innovation, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - Betty Diamond
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States
| |
Collapse
|
29
|
Merrill JT, Furie R, Werth VP, Khamashta M, Drappa J, Wang L, Illei G, Tummala R. Anifrolumab effects on rash and arthritis: impact of the type I interferon gene signature in the phase IIb MUSE study in patients with systemic lupus erythematosus. Lupus Sci Med 2018; 5:e000284. [PMID: 30588322 PMCID: PMC6280909 DOI: 10.1136/lupus-2018-000284] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/13/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022]
Abstract
Objective This post hoc analysis compared anifrolumab 300 mg every 4 weeks with placebo on rash and arthritis measures with different stringency in patients with moderate to severe SLE (phase IIb; MUSE; NCT01438489). Subgroups were analysed by type I interferon gene signature (IFNGS test–high or test–low). Methods Rash was measured with the SLE Disease Activity Index 2000 (SLEDAI-2K), British Isles Lupus Assessment Group (BILAG) Index and modified Cutaneous Lupus Erythematosus Disease Area and Severity Index (mCLASI). Arthritis was evaluated using SLEDAI-2K, BILAG and swollen and tender joint counts. Outcomes were measured at week 52. Results More anifrolumab-treated patients demonstrated resolution of rash by SLEDAI-2K versus placebo: 39/88 (44.3%) versus 13/88 (14.8%), OR (90% CI) 4.56 (2.48 to 8.39), p<0.001; improvement of BILAG: 48/82 (58.5%) versus 24/85 (28.2%), OR (90% CI) 3.59 (2.08 to 6.19), p<0.001; and ≥50% improvement by mCLASI: 57/92 (62.0%) versus 30/89 (33.7%), OR (90% CI) 3.31 (1.97 to 5.55), p<0.001. More anifrolumab-treated patients had improved arthritis by SLEDAI-2K versus placebo: 55/97 (56.7%) versus 42/99 (42.4%), OR (90% CI) 1.88 (1.16 to 3.04), p=0.032; and BILAG: 65/94 (69.1%) versus 47/95 (49.5%), OR (90% CI) 2.47 (1.48 to 4.12), p=0.003; and mean (SD) swollen and tender joint reductions: –5.5 (6.3) versus –3.4 (5.9), p=0.004. Comparable results were demonstrated in IFNGS test–high patients (n=151). In IFNGS test–low patients (n=50), substantial numerical differences in partial rash and arthritis responses were observed in anifrolumab-treated patients versus placebo, with statistical significance only for rash by BILAG in this small population. Conclusions Anifrolumab treatment was associated with improvements versus placebo in specific SLE features of arthritis and rash using measures of different stringency. Although driven by robust data in the prevalent IFNGS test–high population, further evaluation in IFNGS test–low patients is warranted.
Collapse
Affiliation(s)
- Joan T Merrill
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Richard Furie
- Division of Rheumatology, Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Great Neck, New York, USA
| | - Victoria P Werth
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Corporal Michael J. Crescenz VAMC, Philadelphia, Pennsylvania, USA
| | - Munther Khamashta
- Rheumatology Department, Dubai Hospital, Dubai, United Arab Emirates
| | - Jorn Drappa
- Research and Development, MedImmune, LLC, Gaithersburg, Maryland, USA
| | - Liangwei Wang
- Biometrics & Information Sciences, AstraZeneca, Gaithersburg, Maryland, USA
| | - Gabor Illei
- Clinical Development, MedImmune, LLC, Gaithersburg, Maryland, USA
| | - Raj Tummala
- Inflammation, Autoimmunity & Neuroscience, Global Medicines Development, AstraZeneca, Gaithersburg, Maryland, USA
| |
Collapse
|
30
|
Merrill JT, Furie R, Werth VP, Khamashta M, Drappa J, Wang L, Illei G, Tummala R. Anifrolumab effects on rash and arthritis: impact of the type I interferon gene signature in the phase IIb MUSE study in patients with systemic lupus erythematosus. Lupus Sci Med 2018; 5:e000284. [PMID: 30588322 DOI: 10.1136/lupus-2019-lsm.98] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/13/2018] [Accepted: 10/02/2018] [Indexed: 05/26/2023]
Abstract
OBJECTIVE This post hoc analysis compared anifrolumab 300 mg every 4 weeks with placebo on rash and arthritis measures with different stringency in patients with moderate to severe SLE (phase IIb; MUSE; NCT01438489). Subgroups were analysed by type I interferon gene signature (IFNGS test-high or test-low). METHODS Rash was measured with the SLE Disease Activity Index 2000 (SLEDAI-2K), British Isles Lupus Assessment Group (BILAG) Index and modified Cutaneous Lupus Erythematosus Disease Area and Severity Index (mCLASI). Arthritis was evaluated using SLEDAI-2K, BILAG and swollen and tender joint counts. Outcomes were measured at week 52. RESULTS More anifrolumab-treated patients demonstrated resolution of rash by SLEDAI-2K versus placebo: 39/88 (44.3%) versus 13/88 (14.8%), OR (90% CI) 4.56 (2.48 to 8.39), p<0.001; improvement of BILAG: 48/82 (58.5%) versus 24/85 (28.2%), OR (90% CI) 3.59 (2.08 to 6.19), p<0.001; and ≥50% improvement by mCLASI: 57/92 (62.0%) versus 30/89 (33.7%), OR (90% CI) 3.31 (1.97 to 5.55), p<0.001. More anifrolumab-treated patients had improved arthritis by SLEDAI-2K versus placebo: 55/97 (56.7%) versus 42/99 (42.4%), OR (90% CI) 1.88 (1.16 to 3.04), p=0.032; and BILAG: 65/94 (69.1%) versus 47/95 (49.5%), OR (90% CI) 2.47 (1.48 to 4.12), p=0.003; and mean (SD) swollen and tender joint reductions: -5.5 (6.3) versus -3.4 (5.9), p=0.004. Comparable results were demonstrated in IFNGS test-high patients (n=151). In IFNGS test-low patients (n=50), substantial numerical differences in partial rash and arthritis responses were observed in anifrolumab-treated patients versus placebo, with statistical significance only for rash by BILAG in this small population. CONCLUSIONS Anifrolumab treatment was associated with improvements versus placebo in specific SLE features of arthritis and rash using measures of different stringency. Although driven by robust data in the prevalent IFNGS test-high population, further evaluation in IFNGS test-low patients is warranted.
Collapse
Affiliation(s)
- Joan T Merrill
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Richard Furie
- Division of Rheumatology, Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Great Neck, New York, USA
| | - Victoria P Werth
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Corporal Michael J. Crescenz VAMC, Philadelphia, Pennsylvania, USA
| | - Munther Khamashta
- Rheumatology Department, Dubai Hospital, Dubai, United Arab Emirates
| | - Jorn Drappa
- Research and Development, MedImmune, LLC, Gaithersburg, Maryland, USA
| | - Liangwei Wang
- Biometrics & Information Sciences, AstraZeneca, Gaithersburg, Maryland, USA
| | - Gabor Illei
- Clinical Development, MedImmune, LLC, Gaithersburg, Maryland, USA
| | - Raj Tummala
- Inflammation, Autoimmunity & Neuroscience, Global Medicines Development, AstraZeneca, Gaithersburg, Maryland, USA
| |
Collapse
|
31
|
Association of IRF5 gene single nucleotide polymorphism with systemic lupus erythematosus susceptibility in Iranian population. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
32
|
Lombardi A, Tsomos E, Hammerstad SS, Tomer Y. Interferon alpha: The key trigger of type 1 diabetes. J Autoimmun 2018; 94:7-15. [PMID: 30115527 DOI: 10.1016/j.jaut.2018.08.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023]
Abstract
IFNα is a cytokine essential to a vast array of immunologic processes. Its induction early in the innate immune response provides a priming mechanism that orchestrates numerous subsequent pathways in innate and adaptive immunity. Despite its beneficial effects in viral infections IFNα has been reported to be associated with several autoimmune diseases including autoimmune thyroid disease, systemic lupus erythematosus, rheumatoid arthritis, primary biliary cholangitis, and recently emerged as a major cytokine that triggers Type 1 Diabetes. In this review, we dissect the role of IFNα in T1D, focusing on the potential pathophysiological mechanisms involved. Evidence from human and mouse studies indicates that IFNα plays a key role in enhancing islet expression of HLA-I in patients with T1D, thereby increasing autoantigen presentation and beta cell activation of autoreactive cytotoxic CD8 T-lymphocytes. The binding of IFNα to its receptor induces the secretion of chemokines, attracting monocytes, T lymphocytes, and NK cells to the infected tissue triggering autoimmunity in susceptible individuals. Furthermore, IFNα impairs insulin production through the induction of endoplasmic reticulum stress as well as by impairing mitochondrial function. Due to its central role in the early phases of beta cell death, targeting IFNα and its pathways in genetically predisposed individuals may represent a potential novel therapeutic strategy in the very early stages of T1D.
Collapse
Affiliation(s)
- Angela Lombardi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Effie Tsomos
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sara S Hammerstad
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Aker, Oslo, Norway; Department of Pediatrics, Oslo University Hospital, Ulleval, Oslo, Norway
| | - Yaron Tomer
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
33
|
Oliveira JJ, Karrar S, Rainbow DB, Pinder CL, Clarke P, Rubio García A, Al-Assar O, Burling K, Morris S, Stratton R, Vyse TJ, Wicker LS, Todd JA, Ferreira RC. The plasma biomarker soluble SIGLEC-1 is associated with the type I interferon transcriptional signature, ethnic background and renal disease in systemic lupus erythematosus. Arthritis Res Ther 2018; 20:152. [PMID: 30053827 PMCID: PMC6062988 DOI: 10.1186/s13075-018-1649-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/20/2018] [Indexed: 01/01/2023] Open
Abstract
Background The molecular heterogeneity of autoimmune and inflammatory diseases has been one of the main obstacles to the development of safe and specific therapeutic options. Here, we evaluated the diagnostic and clinical value of a robust, inexpensive, immunoassay detecting the circulating soluble form of the monocyte-specific surface receptor sialic acid binding Ig-like lectin 1 (sSIGLEC-1). Methods We developed an immunoassay to measure sSIGLEC-1 in small volumes of plasma/serum from systemic lupus erythematosus (SLE) patients (n = 75) and healthy donors (n = 504). Samples from systemic sclerosis patients (n = 99) were studied as an autoimmune control. We investigated the correlation between sSIGLEC-1 and both monocyte surface SIGLEC-1 and type I interferon-regulated gene (IRG) expression. Associations of sSIGLEC-1 with clinical features were evaluated in an independent cohort of SLE patients (n = 656). Results Plasma concentrations of sSIGLEC-1 strongly correlated with expression of SIGLEC-1 on the surface of blood monocytes and with IRG expression in SLE patients. We found ancestry-related differences in sSIGLEC-1 concentrations in SLE patients, with patients of non-European ancestry showing higher levels compared to patients of European ancestry. Higher sSIGLEC-1 concentrations were associated with lower serum complement component 3 and increased frequency of renal complications in European patients, but not with the SLE Disease Activity Index clinical score. Conclusions Our sSIGLEC-1 immunoassay provides a specific and easily assayed marker for monocyte–macrophage activation, and interferonopathy in SLE and other diseases. Further studies can extend its clinical associations and its potential use to stratify patients and as a secondary endpoint in clinical trials. Electronic supplementary material The online version of this article (10.1186/s13075-018-1649-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- João J Oliveira
- Department of Medical Genetics, JDRF/Wellcome Diabetes and Inflammation Laboratory, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Sarah Karrar
- Division of Genetics and Molecular Medicine and Division of Immunology, Infection and Inflammatory Disease, King's College London, Great Maze Pond, London, UK
| | - Daniel B Rainbow
- Department of Medical Genetics, JDRF/Wellcome Diabetes and Inflammation Laboratory, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.,JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Christopher L Pinder
- Division of Genetics and Molecular Medicine and Division of Immunology, Infection and Inflammatory Disease, King's College London, Great Maze Pond, London, UK
| | - Pamela Clarke
- Department of Medical Genetics, JDRF/Wellcome Diabetes and Inflammation Laboratory, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Arcadio Rubio García
- Department of Medical Genetics, JDRF/Wellcome Diabetes and Inflammation Laboratory, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.,JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Osama Al-Assar
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Keith Burling
- NIHR Cambridge Biomedical Research Centre, Core Biochemical Assay Laboratory, Cambridge, UK
| | - Sian Morris
- UCL Centre for Rheumatology and Connective Tissue Diseases, UCL Medical School, Royal Free Hospital Campus, Rowland Hill Street, London, UK
| | - Richard Stratton
- UCL Centre for Rheumatology and Connective Tissue Diseases, UCL Medical School, Royal Free Hospital Campus, Rowland Hill Street, London, UK
| | - Tim J Vyse
- Division of Genetics and Molecular Medicine and Division of Immunology, Infection and Inflammatory Disease, King's College London, Great Maze Pond, London, UK
| | - Linda S Wicker
- Department of Medical Genetics, JDRF/Wellcome Diabetes and Inflammation Laboratory, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.,JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Roosevelt Drive, Oxford, UK
| | - John A Todd
- Department of Medical Genetics, JDRF/Wellcome Diabetes and Inflammation Laboratory, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.,JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Ricardo C Ferreira
- Department of Medical Genetics, JDRF/Wellcome Diabetes and Inflammation Laboratory, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK. .,JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Roosevelt Drive, Oxford, UK.
| |
Collapse
|
34
|
Wijdeven RH, van Luijn MM, Wierenga-Wolf AF, Akkermans JJ, van den Elsen PJ, Hintzen RQ, Neefjes J. Chemical and genetic control of IFNγ-induced MHCII expression. EMBO Rep 2018; 19:embr.201745553. [PMID: 30021835 DOI: 10.15252/embr.201745553] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/05/2018] [Accepted: 06/24/2018] [Indexed: 01/05/2023] Open
Abstract
The cytokine interferon-γ (IFNγ) can induce expression of MHC class II (MHCII) on many different cell types, leading to antigen presentation to CD4+ T cells and immune activation. This has also been linked to anti-tumour immunity and graft-versus-host disease. The extent of MHCII upregulation by IFNγ is cell type-dependent and under extensive control of epigenetic regulators and signalling pathways. Here, we identify novel genetic and chemical factors that control this form of MHCII expression. Loss of the oxidative stress sensor Keap1, autophagy adaptor p62/SQSTM1, ubiquitin E3-ligase Cullin-3 and chromatin remodeller BPTF impair IFNγ-mediated MHCII expression. A similar phenotype is observed for arsenite, an oxidative stressor. Effects of the latter can be reversed by the inhibition of HDAC1/2, linking oxidative stress conditions to epigenetic control of MHCII expression. Furthermore, dimethyl fumarate, an antioxidant used for the treatment of several autoimmune diseases, impairs the IFNγ response by manipulating transcriptional control of MHCII We describe novel pathways and drugs related to oxidative conditions in cells impacting on IFNγ-mediated MHCII expression, which provide a molecular basis for the understanding of MHCII-associated diseases.
Collapse
Affiliation(s)
- Ruud H Wijdeven
- Department of Cell and Chemical Biology, LUMC, Leiden, The Netherlands
| | - Marvin M van Luijn
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Annet F Wierenga-Wolf
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jimmy J Akkermans
- Department of Cell and Chemical Biology, LUMC, Leiden, The Netherlands
| | | | - Rogier Q Hintzen
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, LUMC, Leiden, The Netherlands
| |
Collapse
|
35
|
Role of the β Common (βc) Family of Cytokines in Health and Disease. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028514. [PMID: 28716883 DOI: 10.1101/cshperspect.a028514] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The β common ([βc]/CD131) family of cytokines comprises granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-3, and IL-5, all of which use βc as their key signaling receptor subunit. This is a prototypic signaling subunit-sharing cytokine family that has unveiled many biological paradigms and structural principles applicable to the IL-2, IL-4, and IL-6 receptor families, all of which also share one or more signaling subunits. Originally identified for their functions in the hematopoietic system, the βc cytokines are now known to be truly pleiotropic, impacting on multiple cell types, organs, and biological systems, and thereby controlling the balance between health and disease. This review will focus on the emerging biological roles for the βc cytokines, our progress toward understanding the mechanisms of receptor assembly and signaling, and the application of this knowledge to develop exciting new therapeutic approaches against human disease.
Collapse
|
36
|
Yan S, Wang W, Gao G, Cheng M, Wang X, Wang Z, Ma X, Chai C, Xu D. Key genes and functional coexpression modules involved in the pathogenesis of systemic lupus erythematosus. J Cell Physiol 2018; 233:8815-8825. [PMID: 29806703 DOI: 10.1002/jcp.26795] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/30/2018] [Indexed: 02/06/2023]
Abstract
We performed a systematic review of genome-wide gene expression datasets to identify key genes and functional modules involved in the pathogenesis of systemic lupus erythematosus (SLE) at a systems level. Genome-wide gene expression datasets involving SLE patients were searched in Gene Expression Omnibus and ArrayExpress databases. Robust rank aggregation (RRA) analysis was used to integrate those public datasets and identify key genes associated with SLE. The weighted gene coexpression network analysis (WGCNA) was adapted to identify functional modules involved in SLE pathogenesis, and the gene ontology enrichment analysis was utilized to explore their functions. The aberrant expressions of several randomly selected key genes were further validated in SLE patients through quantitative real-time polymerase chain reaction. Fifteen genome-wide gene expression datasets were finally included, which involved a total of 1,778 SLE patients and 408 healthy controls. A large number of significantly upregulated or downregulated genes were identified through RRA analysis, and some of those genes were novel SLE gene signatures and their molecular roles in etiology of SLE remained vague. WGCNA further successfully identified six main functional modules involved in the pathogenesis of SLE. The most important functional module involved in SLE included 182 genes and mainly enriched in biological processes, including defense response to virus, interferon signaling pathway, and cytokine-mediated signaling pathway. This study identifies a number of key genes and functional coexpression modules involved in SLE, which provides deepening insights into the molecular mechanism of SLE at a systems level and also provides some promising therapeutic targets.
Collapse
Affiliation(s)
- Shushan Yan
- Department of Gastrointestinal and Anal Diseases Surgery, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Weijie Wang
- Department of Neurosurgery, The Affiliated Huaian First Hospital of Nanjing Medical University, Huai'an, China
| | - Guohong Gao
- Department of Ophthalmology, The Affiliated Hospital of Weifang Medical University, Clinical Medical Institute, Weifang Medical University, Weifang, China
| | - Min Cheng
- Department of Physiology, Weifang Medical University, Weifang, China
| | - Xiaodong Wang
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, Clinical Medical Institute, Weifang Medical University, Weifang, China
| | - Zengyan Wang
- Department of Surgery, Zhucheng People's Hospital, Weifang, China
| | - Xiufen Ma
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, Clinical Medical Institute, Weifang Medical University, Weifang, China
| | - Chunxiang Chai
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, Clinical Medical Institute, Weifang Medical University, Weifang, China
| | - Donghua Xu
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, Clinical Medical Institute, Weifang Medical University, Weifang, China
| |
Collapse
|
37
|
Taylor Meadows KR, Steinberg MW, Clemons B, Stokes ME, Opiteck GJ, Peach R, Scott FL. Ozanimod (RPC1063), a selective S1PR1 and S1PR5 modulator, reduces chronic inflammation and alleviates kidney pathology in murine systemic lupus erythematosus. PLoS One 2018; 13:e0193236. [PMID: 29608575 PMCID: PMC5880347 DOI: 10.1371/journal.pone.0193236] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 02/07/2018] [Indexed: 01/22/2023] Open
Abstract
Ozanimod (RPC1063) is a specific and potent small molecule modulator of the sphingosine 1-phosphate receptor 1 (S1PR1) and receptor 5 (S1PR5), which has shown therapeutic benefit in clinical trials of relapsing multiple sclerosis and ulcerative colitis. Ozanimod and its active metabolite, RP-101075, exhibit a similar specificity profile at the S1P receptor family in vitro and pharmacodynamic profile in vivo. The NZBWF1 mouse model was used in therapeutic dosing mode to assess the potential benefit of ozanimod and RP-101075 in an established animal model of systemic lupus erythematosus. Compared with vehicle-treated animals, ozanimod and RP-101075 reduced proteinuria over the duration of the study and serum blood urea nitrogen at termination. Additionally, ozanimod and RP-101075 reduced kidney disease in a dose-dependent manner, as measured by histological assessment of mesangial expansion, endo- and exo-capillary proliferation, interstitial infiltrates and fibrosis, glomerular deposits, and tubular atrophy. Further exploration into gene expression changes in the kidney demonstrate that RP-101075 also significantly reduced expression of fibrotic and immune-related genes in the kidneys. Of note, RP-101075 lowered the number of plasmacytoid dendritic cells, a major source of interferon alpha in lupus patients, and reduced all B and T cell subsets in the spleen. Given the efficacy demonstrated by ozanimod and its metabolite RP-101075 in the NZBWF1 preclinical animal model, ozanimod may warrant clinical evaluation as a potential treatment for systemic lupus erythematosus.
Collapse
Affiliation(s)
- Kristen R. Taylor Meadows
- Receptos, a wholly owned subsidiary of Celgene Corporation, San Diego, California, United States of America
- * E-mail:
| | - Marcos W. Steinberg
- Receptos, a wholly owned subsidiary of Celgene Corporation, San Diego, California, United States of America
| | - Bryan Clemons
- Receptos, a wholly owned subsidiary of Celgene Corporation, San Diego, California, United States of America
| | | | - Gregory J. Opiteck
- Receptos, a wholly owned subsidiary of Celgene Corporation, San Diego, California, United States of America
| | - Robert Peach
- Receptos, a wholly owned subsidiary of Celgene Corporation, San Diego, California, United States of America
| | - Fiona L. Scott
- Receptos, a wholly owned subsidiary of Celgene Corporation, San Diego, California, United States of America
| |
Collapse
|
38
|
Louis C, Burns C, Wicks I. TANK-Binding Kinase 1-Dependent Responses in Health and Autoimmunity. Front Immunol 2018; 9:434. [PMID: 29559975 PMCID: PMC5845716 DOI: 10.3389/fimmu.2018.00434] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/19/2018] [Indexed: 01/05/2023] Open
Abstract
The pathogenesis of autoimmune diseases, such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) is driven by genetic predisposition and environmental triggers that lead to dysregulated immune responses. These include the generation of pathogenic autoantibodies and aberrant production of inflammatory cytokines. Current therapies for RA and other autoimmune diseases reduce inflammation by targeting inflammatory mediators, most of which are innate response cytokines, resulting in generalized immunosuppression. Overall, this strategy has been very successful, but not all patients respond, responses can diminish over time and numerous side effects can occur. Therapies that target the germinal center (GC) reaction and/or antibody-secreting plasma cells (PC) potentially provide a novel approach. TANK-binding kinase 1 (TBK1) is an IKK-related serine/threonine kinase best characterized for its involvement in innate antiviral responses through the induction of type I interferons. TBK1 is also gaining attention for its roles in humoral immune responses. In this review, we discuss the role of TBK1 in immunological pathways involved in the development and maintenance of antibody responses, with particular emphasis on its potential relevance in the pathogenesis of humoral autoimmunity. First, we review the role of TBK1 in the induction of type I IFNs. Second, we highlight how TBK1 mediates inducible T cell co-stimulator signaling to the GC T follicular B helper population. Third, we discuss emerging evidence on the contribution of TBK1 to autophagic pathways and the potential implications for immune cell function. Finally, we discuss the therapeutic potential of TBK1 inhibition in autoimmunity.
Collapse
Affiliation(s)
- Cynthia Louis
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Chris Burns
- Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Ian Wicks
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Rheumatology Unit, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
39
|
Furie R, Wang L, Illei G, Drappa J. Systemic Lupus Erythematosus (SLE) Responder Index response is associated with global benefit for patients with SLE. Lupus 2018; 27:955-962. [DOI: 10.1177/0961203318758506] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- R Furie
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Great Neck, NY, USA
| | - L Wang
- MedImmune, LLC, Gaithersburg, MD, USA
| | - G Illei
- MedImmune, LLC, Gaithersburg, MD, USA
| | - J Drappa
- MedImmune, LLC, Gaithersburg, MD, USA
| |
Collapse
|
40
|
Baker KF, Isaacs JD. Novel therapies for immune-mediated inflammatory diseases: What can we learn from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn's disease and ulcerative colitis? Ann Rheum Dis 2018; 77:175-187. [PMID: 28765121 DOI: 10.1136/annrheumdis-2017-211555] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/31/2017] [Accepted: 07/01/2017] [Indexed: 01/11/2023]
Abstract
The past three decades have witnessed remarkable advances in our ability to target specific elements of the immune and inflammatory response, fuelled by advances in both biotechnology and disease knowledge. As well as providing superior treatments for immune-mediated inflammatory diseases (IMIDs), such therapies also offer unrivalled opportunities to study the underlying immunopathological basis of these conditions.In this review, we explore recent approaches to the treatment of IMIDs and the insights to pathobiology that they provide. We review novel biologic agents targeting the T-helper 17 axis, including therapies directed towards interleukin (IL)-17 (secukinumab, ixekizumab, bimekizumab), IL-17R (brodalumab), IL-12/23p40 (ustekinumab, briakinumab) and IL-23p19 (guselkumab, tildrakizumab, brazikumab, risankizumab, mirikizumab). We also present an overview of biologics active against type I and II interferons, including sifalumumab, rontalizumab, anifrolumab and fontolizumab. Emerging strategies to interfere with cellular adhesion processes involved in lymphocyte recruitment are discussed, including both integrin blockade (natalizumab, vedolizumab, etrolizumab) and sphingosine-1-phosphate receptor inhibition (fingolimod, ozanimod). We summarise the development and recent application of Janus kinase (JAK) inhibitors in the treatment of IMIDs, including first-generation pan-JAK inhibitors (tofacitinib, baricitinib, ruxolitinib, peficitinib) and second-generation selective JAK inhibitors (decernotinib, filgotinib, upadacitinib). New biologics targeting B-cells (including ocrelizumab, veltuzumab, tabalumab and atacicept) and the development of novel strategies for regulatory T-cell modulation (including low-dose IL-2 therapy and Tregitopes) are also discussed. Finally, we explore recent biotechnological advances such as the development of bispecific antibodies (ABT-122, COVA322), and their application to the treatment of IMIDs.
Collapse
Affiliation(s)
- Kenneth F Baker
- Musculoskeletal Research Group and Arthritis Research UK Centre of Excellence in Rheumatoid Arthritis Pathogenesis, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - John D Isaacs
- Musculoskeletal Research Group and Arthritis Research UK Centre of Excellence in Rheumatoid Arthritis Pathogenesis, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
41
|
Ferrero E. Using regulatory genomics data to interpret the function of disease variants and prioritise genes from expression studies. F1000Res 2018; 7:121. [PMID: 29568492 PMCID: PMC5850119 DOI: 10.12688/f1000research.13577.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2018] [Indexed: 12/15/2022] Open
Abstract
The identification of therapeutic targets is a critical step in the research and developement of new drugs, with several drug discovery programmes failing because of a weak linkage between target and disease. Genome-wide association studies and large-scale gene expression experiments are providing insights into the biology of several common diseases, but the complexity of transcriptional regulation mechanisms often limits our understanding of how genetic variation can influence changes in gene expression. Several initiatives in the field of regulatory genomics are aiming to close this gap by systematically identifying and cataloguing regulatory elements such as promoters and enhacers across different tissues and cell types. In this Bioconductor workflow, we will explore how different types of regulatory genomic data can be used for the functional interpretation of disease-associated variants and for the prioritisation of gene lists from gene expression experiments.
Collapse
Affiliation(s)
- Enrico Ferrero
- Computational Biology, GSK, Medicines Research Centre, Stevenage, SG1 2NY, UK
| |
Collapse
|
42
|
Type I IFN signature in childhood-onset systemic lupus erythematosus: a conspiracy of DNA- and RNA-sensing receptors? Arthritis Res Ther 2018; 20:4. [PMID: 29321042 PMCID: PMC5763828 DOI: 10.1186/s13075-017-1501-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Childhood-onset systemic lupus erythematosus (cSLE) is an incurable multi-systemic autoimmune disease. Interferon type I (IFN-I) plays a pivotal role in the pathogenesis of SLE. The objective of this study was to assess the prevalence of the IFN-I signature and the contribution of cytosolic nucleic acid receptors to IFN-I activation in a cohort of primarily white cSLE patients. METHODS The IFN-I score (positive or negative), as a measure of IFN-I activation, was assessed using real-time quantitative PCR (RT-PCR) expression values of IFN-I signature genes (IFI44, IFI44L, IFIT1, Ly6e, MxA, IFITM1) in CD14+ monocytes of cSLE patients and healthy controls (HCs). Innate immune receptor expression was determined by RT-PCR and flow cytometry. To clarify the contribution of RNA-binding RIG-like receptors (RLRs) and DNA-binding receptors (DBRs) to IFN-I activation, peripheral blood mononuclear cells (PBMCs) from patients were treated with BX795, a TANK-binding kinase 1 (TBK1) inhibitor blocking RLR and DBR pathways. RESULTS The IFN-I signature was positive in 57% of cSLE patients and 15% of the HCs. Upregulated gene expression of TLR7, RLRs (IFIH1, DDX58, DDX60, DHX58) and DBRs (ZBP-1, IFI16) was observed in CD14+ monocytes of the IFN-I-positive cSLE patients. Additionally, RIG-I and ZBP-1 protein expression was upregulated in these cells. Spontaneous IFN-I stimulated gene (ISG) expression in PBMCs from cSLE patients was inhibited by a TBK1-blocker. CONCLUSIONS IFN-I activation, assessed as ISG expression, in cSLE is associated with increased expression of TLR7, and RNA and DNA binding receptors, and these receptors contribute to IFN-I activation via TBK1 signaling. TBK1-blockers may therefore be a promising treatment target for SLE.
Collapse
|
43
|
Ando H, Abu Lila AS, Kawanishi M, Shimizu T, Okuhira K, Ishima Y, Ishida T. Reactivity of IgM antibodies elicited by PEGylated liposomes or PEGylated lipoplexes against auto and foreign antigens. J Control Release 2018; 270:114-119. [DOI: 10.1016/j.jconrel.2017.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/20/2017] [Accepted: 12/01/2017] [Indexed: 12/23/2022]
|
44
|
Furie RA, Mitrane M, Zhao E, Becker PM. Repository corticotropin injection in patients with persistently active SLE requiring corticosteroids: post hoc analysis of results from a two-part, 52-week pilot study. Lupus Sci Med 2017; 4:e000240. [PMID: 29344387 PMCID: PMC5761300 DOI: 10.1136/lupus-2017-000240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/29/2017] [Accepted: 11/11/2017] [Indexed: 12/17/2022]
Abstract
Objective Post hoc analyses evaluated the effectiveness and safety of repository corticotropin injection (RCI) in patients with persistently active SLE over 52 weeks. Methods Patients were initially randomised to 40 U daily or 80 U every other day RCI (n=26) or placebo (n=12) for the 8-week double-blind period. Completers entered the open-label extension (OLE; n=33) receiving 16, 40 or 80 U RCI 1–3 times/week and were followed through week 52. Outcomes included proportion of responders based on a novel index (resolution of joint or skin activity using hybrid Systemic Lupus Erythematosus Disease Activity Index (hSLEDAI) without any worsening British Isles Lupus Assessment Group (BILAG) scores in other organ systems) or revised novel index (using SLE Responder Index (SRI) definition of BILAG worsening (1A or 2B)), proportion of responders by SRI and changes in total hSLEDAI and BILAG scores. Adverse events and laboratory values were assessed. Results At week 52, 12.0% (3/25) RCI/RCI patients and 36.4% (4/11) placebo/RCI patients were responders using the novel index. The revised novel responder index demonstrated response rates of 48.0% (12/25) and 54.5% (6/11) in the RCI/RCI and placebo/RCI groups, respectively. Proportions of SRI responders were 40.0% (10/25) and 54.5% (6/11). In the RCI/RCI group, total hSLEDAI and BILAG scores declined from 10.0 and 15.7 at week 0 to 3.5 and 4.6 at week 52, respectively. Reductions in the placebo/RCI group on switching were observed (mean hSLEDAI: 9.1–3.3; BILAG: 13.5–2.6). Other disease activity endpoints also improved in both groups. No new safety signals were observed during the OLE. Conclusions RCI demonstrated durable effectiveness in patients with persistently active SLE despite moderate-dose corticosteroid therapy. Switching from placebo resulted in reduced disease activity during the OLE. These data provide the foundation for evaluation of RCI in a robustly powered study.
Collapse
Affiliation(s)
- Richard A Furie
- Hofstra Northwell School of Medicine, Northwell Health, Great Neck, New York, USA
| | | | - Enxu Zhao
- Mallinckrodt ARD Inc., Bedminster, New Jersey, USA
| | | |
Collapse
|
45
|
Davison LM, Jorgensen TN. New Treatments for Systemic Lupus Erythematosus on the Horizon: Targeting Plasmacytoid Dendritic Cells to Inhibit Cytokine Production. ACTA ACUST UNITED AC 2017; 8. [PMID: 29430334 PMCID: PMC5804747 DOI: 10.4172/2155-9899.1000534] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Patients with systemic lupus erythematosus (SLE) often have elevated levels of type I interferon (IFN, particularly IFNα), a cytokine that can drive many of the symptoms associated with this autoimmune disorder. Additionally, the presence of autoantibody-secreting plasma cells contributes to the systemic inflammation observed in SLE and IFNα supports the survival of these cells. Current therapies for SLE are limited to broad immunosuppression or B cell-targeting antibody-mediated depletion strategies, which do not eliminate autoantibody-secreting plasma cells. Recent clinical trials testing the efficacy of IFNα neutralization in SLE have delivered disappointing results, with primary endpoints not being met or with minimal improvements, while studies evaluating antibody therapy targeting the type I IFN receptor was more successful and is currently being tested in phase III clinical studies. As many studies have supported the idea that plasmacytoid dendritic cells (pDCs) are the main source of IFNα in SLE, specifically targeting pDCs in SLE represents a new therapeutic option. Murine models suggest pDC ablation effectively ameliorates or reduces lupus-like disease development in spontaneous models of lupus and pre-clinical and phase I clinical trials support the safety of such a therapy in humans. Here we review animal studies and the current status of clinical trials targeting IFNα, type I interferon receptor and pDCs in SLE.
Collapse
Affiliation(s)
- Laura M Davison
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Trine N Jorgensen
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
46
|
Touma Z, Gladman DD. Current and future therapies for SLE: obstacles and recommendations for the development of novel treatments. Lupus Sci Med 2017; 4:e000239. [PMID: 29344386 PMCID: PMC5761306 DOI: 10.1136/lupus-2017-000239] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/30/2017] [Accepted: 11/13/2017] [Indexed: 01/09/2023]
Abstract
SLE is a serious, debilitating autoimmune disease that affects various organs and body systems. Of all the heterogeneous autoimmune diseases, SLE is perhaps the most heterogeneous. Patients with SLE, who are primarily female, have diverse disease manifestations and severity. SLE is characterised by substantial concentrations of autoantibodies against nuclear antigens, which are thought to be caused by immune cell dysregulation. Until recently, several immunosuppressant agents were used to treat this disease. Efforts to develop drugs against targets potentially involved in disease mechanisms have resulted in the identification and use of BAFF (B-cell activating factor)/APRIL (a proliferation-inducing ligand) inhibitors to treat SLE. Drugs in late-stage development that focus on pathways that are dysregulated in SLE include those that target the interferon pathway, T-cell signalling and B-cell signalling. New therapeutic agents are still necessary because of the unmet medical needs associated with this disease, including insufficient disease control, poor health-related quality of life, comorbidities, toxicity of the majority of therapies and diminished survival. Despite the substantial long-term investment of research, clinical activity and resources for identifying new treatments for this disease, only one new therapy, the biological belimumab, has been approved in the past 50 years. Efforts to develop drugs to address these needs are challenged by problems associated with disease heterogeneity, variable disease mechanisms and trial design. This review provides an overview of current and future treatments, discusses challenges in the SLE drug development process and offers recommendations for overcoming these challenges.
Collapse
Affiliation(s)
- Zahi Touma
- Centre for Prognosis Studies in the Rheumatic Diseases, University of Toronto, Lupus Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Dafna D Gladman
- Centre for Prognosis Studies in the Rheumatic Diseases, University of Toronto, Lupus Clinic, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Bengtsson AA, Rönnblom L. Role of interferons in SLE. Best Pract Res Clin Rheumatol 2017; 31:415-428. [PMID: 29224681 DOI: 10.1016/j.berh.2017.10.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/07/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease that affects many different organ systems, with excessive production of type I interferons (IFNs) and autoantibodies against nucleic acids as hallmarks. Activation of the type I IFN system in SLE is due to continuous stimulation of plasmacytoid dendritic cells by endogenous nucleic acids, leading to sustained type I IFN production. This is reflected by an overexpression of type I IFN-regulated genes or an IFN signature. Type I IFNs have effects on both the innate and adaptive immune systems, which contribute to both loss of tolerance and the autoimmune disease process. In this review, we discuss the current understanding of IFNs in SLE, focusing on their regulation, the influence of genetic background, and environmental factors and therapies that are under development aiming to inhibit the type I IFN system in SLE.
Collapse
Affiliation(s)
- Anders A Bengtsson
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Rheumatology, 22185 Lund, Sweden.
| | - Lars Rönnblom
- Department of Medical Sciences, Science for Life Laboratory, Section of Rheumatology, Uppsala University, SE-751 85 Uppsala, Sweden.
| |
Collapse
|
48
|
Maglione PJ, Cols M, Cunningham-Rundles C. Dysregulation of Innate Lymphoid Cells in Common Variable Immunodeficiency. Curr Allergy Asthma Rep 2017; 17:77. [PMID: 28983810 DOI: 10.1007/s11882-017-0746-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immune deficiency. With widespread use of immunoglobulin replacement therapy, non-infectious complications, such as autoimmunity, chronic intestinal inflammation, and lung disease, have replaced infections as the major cause of morbidity and mortality in this immune deficiency. The pathogenic mechanisms that underlie the development of these complications in CVID are not known; however, there have been numerous associated laboratory findings. Among the most intriguing of these associations is elevation of interferon signature genes in CVID patients with inflammatory/autoimmune complications, as a similar gene expression profile is found in systemic lupus erythematosus and other chronic inflammatory diseases. Linked with this heightened interferon signature in CVID is an expansion of circulating IFN-γ-producing innate lymphoid cells. Innate lymphoid cells are key regulators of both protective and pathogenic immune responses that have been extensively studied in recent years. Further exploration of innate lymphoid cell biology in CVID may uncover key mechanisms underlying the development of inflammatory complications in these patients and may inspire much needed novel therapeutic approaches.
Collapse
Affiliation(s)
- Paul J Maglione
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1089, New York, NY, 10029, USA
| | - Montserrat Cols
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1089, New York, NY, 10029, USA.
| |
Collapse
|
49
|
Taher TE, Bystrom J, Ong VH, Isenberg DA, Renaudineau Y, Abraham DJ, Mageed RA. Intracellular B Lymphocyte Signalling and the Regulation of Humoral Immunity and Autoimmunity. Clin Rev Allergy Immunol 2017; 53:237-264. [PMID: 28456914 PMCID: PMC5597704 DOI: 10.1007/s12016-017-8609-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
B lymphocytes are critical for effective immunity; they produce antibodies and cytokines, present antigens to T lymphocytes and regulate immune responses. However, because of the inherent randomness in the process of generating their vast repertoire of antigen-specific receptors, B cells can also cause diseases through recognizing and reacting to self. Therefore, B lymphocyte selection and responses require tight regulation at multiple levels and at all stages of their development and activation to avoid diseases. Indeed, newly generated B lymphocytes undergo rigorous tolerance mechanisms in the bone marrow and, subsequently, in the periphery after their migration. Furthermore, activation of mature B cells is regulated through controlled expression of co-stimulatory receptors and intracellular signalling thresholds. All these regulatory events determine whether and how B lymphocytes respond to antigens, by undergoing apoptosis or proliferation. However, defects that alter regulated co-stimulatory receptor expression or intracellular signalling thresholds can lead to diseases. For example, autoimmune diseases can result from altered regulation of B cell responses leading to the emergence of high-affinity autoreactive B cells, autoantibody production and tissue damage. The exact cause(s) of defective B cell responses in autoimmune diseases remains unknown. However, there is evidence that defects or mutations in genes that encode individual intracellular signalling proteins lead to autoimmune diseases, thus confirming that defects in intracellular pathways mediate autoimmune diseases. This review provides a synopsis of current knowledge of signalling proteins and pathways that regulate B lymphocyte responses and how defects in these could promote autoimmune diseases. Most of the evidence comes from studies of mouse models of disease and from genetically engineered mice. Some, however, also come from studying B lymphocytes from patients and from genome-wide association studies. Defining proteins and signalling pathways that underpin atypical B cell response in diseases will help in understanding disease mechanisms and provide new therapeutic avenues for precision therapy.
Collapse
Affiliation(s)
- Taher E Taher
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jonas Bystrom
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Voon H Ong
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, University College London, London, UK
| | | | - Yves Renaudineau
- Immunology Laboratory, University of Brest Medical School, Brest, France
| | - David J Abraham
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, University College London, London, UK
| | - Rizgar A Mageed
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
50
|
Does type-I interferon drive systemic autoimmunity? Autoimmun Rev 2017; 16:897-902. [DOI: 10.1016/j.autrev.2017.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 05/11/2017] [Indexed: 12/27/2022]
|