1
|
Hendershot LM. A BiP-centric View of Endoplasmic Reticulum Functions and of My Career. J Mol Biol 2025; 437:169052. [PMID: 40024435 DOI: 10.1016/j.jmb.2025.169052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
After completing my post-doctoral training at the University of Alabama, Birmingham and a brief period on the faculty there, I joined the Department of Tumor Cell Biology at St. Jude Children's Research Hospital in 1987 as an Assistant Member and started my independent research program. For the following 37 years, I led a relatively small basic research group comprised at various times of post-doctoral fellows, graduate students, undergraduate students, and research technicians; many of whom I am still in contact. Last year I closed the lab and transitioned to an emeritus position at St. Jude. I continue to maintain several research collaborations covering areas of research that have long been dear to my heart. My post-doctoral studies on BiP revealed that it controlled immunoglobulin assembly and transport, and as such, played a critical role in the fidelity of the immune response. My lab continued to define BiP's functions in protein folding and subunit assembly, as well as, in degradation of proteins that failed to mature properly using biochemical, cell-based, and biophysical analyses. Several ER localized co-factors that regulate the activity of BiP and allow it to contribute to its multiple ER functions were identified by our group. These include DnaJ family members and nucleotide change factors. Through a variety of collaborative studies, we pursued BiP's functions in maintaining the permeability barrier of the translocon, contributing to ER calcium stores, and regulating the up-stream transducers of the UPR, a stress response that is activated by the accumulation of unfolded proteins in the ER.
Collapse
Affiliation(s)
- Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| |
Collapse
|
2
|
Montoya MR, Quanrud GM, Mei L, Moñtano JL, Hong C, Genereux JC. Factors affecting protein recovery during Hsp40 affinity profiling. Anal Bioanal Chem 2024; 416:4249-4260. [PMID: 38850318 PMCID: PMC11271386 DOI: 10.1007/s00216-024-05362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 06/10/2024]
Abstract
The identification and quantification of misfolded proteins from complex mixtures is important for biological characterization and disease diagnosis, but remains a major bioanalytical challenge. We have developed Hsp40 Affinity Profiling as a bioanalytical approach to profile protein stability in response to cellular stress. In this assay, we ectopically introduce the Hsp40 FlagDNAJB8H31Q into cells and use quantitative proteomics to determine how protein affinity for DNAJB8 changes in the presence of cellular stress, without regard for native clients. Herein, we evaluate potential approaches to improve the performance of this bioanalytical assay. We find that although intracellular crosslinking increases recovery of protein interactors, this is not enough to overcome the relative drop in DNAJB8 recovery. While the J-domain promotes Hsp70 association, it does not affect the yield of protein association with DNAJB8 under basal conditions. By contrast, crosslinking and J-domain ablation both substantially increase relative protein interactor recovery with the structurally distinct Class B Hsp40 DNAJB1 but are completely compensated by poorer yield of DNAJB1 itself. Cellular thermal stress promotes increased affinity between DNAJB8H31Q and interacting proteins, as expected for interactions driven by recognition of misfolded proteins. DNAJB8WT does not demonstrate such a property, suggesting that under stress misfolded proteins are handed off to Hsp70. Hence, we find that DNAJB8H31Q is still our most effective recognition element for the recovery of destabilized client proteins following cellular stress.
Collapse
Affiliation(s)
- Maureen R Montoya
- Department of Chemistry, University of California, 501 Big Springs Rd, Riverside, CA, 92521, USA
| | - Guy M Quanrud
- Department of Chemistry, University of California, 501 Big Springs Rd, Riverside, CA, 92521, USA
| | - Liangyong Mei
- Department of Chemistry, University of North Florida, Jacksonville, FL, USA
| | - José L Moñtano
- Department of Chemistry, University of California, 501 Big Springs Rd, Riverside, CA, 92521, USA
| | - Caleb Hong
- Department of Chemistry, University of California, 501 Big Springs Rd, Riverside, CA, 92521, USA
| | - Joseph C Genereux
- Department of Chemistry, University of California, 501 Big Springs Rd, Riverside, CA, 92521, USA.
| |
Collapse
|
3
|
Hendershot LM, Buck TM, Brodsky JL. The Essential Functions of Molecular Chaperones and Folding Enzymes in Maintaining Endoplasmic Reticulum Homeostasis. J Mol Biol 2024; 436:168418. [PMID: 38143019 PMCID: PMC12015986 DOI: 10.1016/j.jmb.2023.168418] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
It has been estimated that up to one-third of the proteins encoded by the human genome enter the endoplasmic reticulum (ER) as extended polypeptide chains where they undergo covalent modifications, fold into their native structures, and assemble into oligomeric protein complexes. The fidelity of these processes is critical to support organellar, cellular, and organismal health, and is perhaps best underscored by the growing number of disease-causing mutations that reduce the fidelity of protein biogenesis in the ER. To meet demands encountered by the diverse protein clientele that mature in the ER, this organelle is populated with a cadre of molecular chaperones that prevent protein aggregation, facilitate protein disulfide isomerization, and lower the activation energy barrier of cis-trans prolyl isomerization. Components of the lectin (glycan-binding) chaperone system also reside within the ER and play numerous roles during protein biogenesis. In addition, the ER houses multiple homologs of select chaperones that can recognize and act upon diverse peptide signatures. Moreover, redundancy helps ensure that folding-compromised substrates are unable to overwhelm essential ER-resident chaperones and enzymes. In contrast, the ER in higher eukaryotic cells possesses a single member of the Hsp70, Hsp90, and Hsp110 chaperone families, even though several homologs of these molecules reside in the cytoplasm. In this review, we discuss specific functions of the many factors that maintain ER quality control, highlight some of their interactions, and describe the vulnerabilities that arise from the absence of multiple members of some chaperone families.
Collapse
Affiliation(s)
- Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| | - Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| |
Collapse
|
4
|
Melnyk A, Lang S, Sicking M, Zimmermann R, Jung M. Co-chaperones of the Human Endoplasmic Reticulum: An Update. Subcell Biochem 2023; 101:247-291. [PMID: 36520310 DOI: 10.1007/978-3-031-14740-1_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In mammalian cells, the rough endoplasmic reticulum (ER) plays central roles in the biogenesis of extracellular plus organellar proteins and in various signal transduction pathways. For these reasons, the ER comprises molecular chaperones, which are involved in import, folding, assembly, export, plus degradation of polypeptides, and signal transduction components, such as calcium channels, calcium pumps, and UPR transducers plus adenine nucleotide carriers/exchangers in the ER membrane. The calcium- and ATP-dependent ER lumenal Hsp70, termed immunoglobulin heavy-chain-binding protein or BiP, is the central player in all these activities and involves up to nine different Hsp40-type co-chaperones, i.e., ER membrane integrated as well as ER lumenal J-domain proteins, termed ERj or ERdj proteins, two nucleotide exchange factors or NEFs (Grp170 and Sil1), and NEF-antagonists, such as MANF. Here we summarize the current knowledge on the ER-resident BiP/ERj chaperone network and focus on the interaction of BiP with the polypeptide-conducting and calcium-permeable Sec61 channel of the ER membrane as an example for BiP action and how its functional cycle is linked to ER protein import and various calcium-dependent signal transduction pathways.
Collapse
Affiliation(s)
- Armin Melnyk
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany
| | - Sven Lang
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany
| | - Mark Sicking
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany
| | - Richard Zimmermann
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany.
| | - Martin Jung
- Medical Biochemistry & Molecular Biology, Saarland University, Homburg, Germany
| |
Collapse
|
5
|
Liu P, Zu F, Chen H, Yin X, Tan X. Exosomal DNAJB11 promotes the development of pancreatic cancer by modulating the EGFR/MAPK pathway. Cell Mol Biol Lett 2022; 27:87. [PMID: 36209075 PMCID: PMC9548179 DOI: 10.1186/s11658-022-00390-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignant tumor with invasive and metastatic characteristics and poor prognosis. Intracellular protein homeostasis is associated with invasion and metastasis of pancreatic cancer, but the specific molecular mechanism remains unclear. Our previous studies have revealed that DNAJB11, a key protein in protein homeostasis, is secreted by exosomes in the supernatant of dissociated pancreatic cancer cells with high metastasis. The results from transcriptome sequencing and co-immunoprecipitation (Co-IP)-based liquid chromatography with tandem mass spectrometry (LC–MS/MS) showed that depletion of DNAJB11 levels could increase HSPA5 expression and induce endoplasmic reticulum stress through the PRKR-like endoplasmic reticulum kinase signaling pathway in pancreatic cancer cells. Furthermore, exosomal DNAJB11 promoted cell development of PC cells in vitro and in vivo. In addition, exosomal DNAJB11 could regulate the expression of EGFR and activate the downstream MAPK signaling pathway. Clinical blood samples were collected to evaluate the potential of exosome DNAJB11 as a diagnostic biomarker and therapeutic target for the treatment of pancreatic cancer. This study could provide a new theoretical basis and potential molecular targets for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Peng Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Diagnostic and Therapeutic Center of Pancreatic Diseases of Liaoning Province, Shenyang, 110004, China
| | - Fuqiang Zu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Diagnostic and Therapeutic Center of Pancreatic Diseases of Liaoning Province, Shenyang, 110004, China
| | - Hui Chen
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiaoli Yin
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Xiaodong Tan
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China. .,Diagnostic and Therapeutic Center of Pancreatic Diseases of Liaoning Province, Shenyang, 110004, China.
| |
Collapse
|
6
|
Amankwah YS, Collins P, Fleifil Y, Unruh E, Ruiz Márquez KJ, Vitou K, Kravats AN. Grp94 works upstream of BiP in protein remodeling under heat stress. J Mol Biol 2022; 434:167762. [PMID: 35905823 DOI: 10.1016/j.jmb.2022.167762] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/28/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Hsp90 and Hsp70 are highly conserved molecular chaperones that promote the proper folding and activation of substrate proteins that are often referred to as clients. The two chaperones functionally collaborate to fold specific clients in an ATP-dependent manner. In eukaryotic cytosol, initial client folding is done by Hsp70 and its co-chaperones, followed by a direct transfer of client refolding intermediates to Hsp90 for final client processing. However, the mechanistic details of collaboration of organelle specific Hsp70 and Hsp90 are lacking. This work investigates the collaboration of the endoplasmic reticulum (ER) Hsp70 and Hsp90, BiP and Grp94 respectively, in protein remodeling using in vitro refolding assays. We show that under milder denaturation conditions, BiP collaborates with its co-chaperones to refold misfolded proteins in an ATP-dependent manner. Grp94 does not play a major role in this refolding reaction. However, under stronger denaturation conditions that favor aggregation, Grp94 works in an ATP-independent manner to bind and hold misfolded clients in a folding competent state for subsequent remodeling by the BiP system. We also show that the collaboration of Grp94 and BiP is not simply a reversal of the eukaryotic refolding mechanism since a direct interaction of Grp94 and BiP is not required for client transfer. Instead, ATP binding but not hydrolysis by Grp94 facilitates the release of the bound client, which is then picked up by the BiP system for subsequent refolding in a Grp94-independent manner.
Collapse
Affiliation(s)
- Yaa S Amankwah
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | - Preston Collins
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | - Yasmeen Fleifil
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | - Erin Unruh
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | | | - Katherine Vitou
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056
| | - Andrea N Kravats
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056.
| |
Collapse
|
7
|
Wiseman RL, Mesgarzadeh JS, Hendershot LM. Reshaping endoplasmic reticulum quality control through the unfolded protein response. Mol Cell 2022; 82:1477-1491. [PMID: 35452616 PMCID: PMC9038009 DOI: 10.1016/j.molcel.2022.03.025] [Citation(s) in RCA: 214] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 01/09/2023]
Abstract
Endoplasmic reticulum quality control (ERQC) pathways comprising chaperones, folding enzymes, and degradation factors ensure the fidelity of ER protein folding and trafficking to downstream secretory environments. However, multiple factors, including tissue-specific secretory proteomes, environmental and genetic insults, and organismal aging, challenge ERQC. Thus, a key question is: how do cells adapt ERQC to match the diverse, ever-changing demands encountered during normal physiology and in disease? The answer lies in the unfolded protein response (UPR), a signaling mechanism activated by ER stress. In mammals, the UPR comprises three signaling pathways regulated downstream of the ER membrane proteins IRE1, ATF6, and PERK. Upon activation, these UPR pathways remodel ERQC to alleviate cellular stress and restore ER function. Here, we describe how UPR signaling pathways adapt ERQC, highlighting their importance for maintaining ER function across tissues and the potential for targeting the UPR to mitigate pathologies associated with protein misfolding diseases.
Collapse
Affiliation(s)
- R. Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037,To whom correspondences should be addressed: Linda Hendershot, ; R. Luke Wiseman,
| | - Jaleh S. Mesgarzadeh
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Linda M. Hendershot
- Department of Tumor Biology, St Jude Children’s Research Hospital, Memphis, TN 38105,To whom correspondences should be addressed: Linda Hendershot, ; R. Luke Wiseman,
| |
Collapse
|
8
|
Ricci D, Gidalevitz T, Argon Y. The special unfolded protein response in plasma cells. Immunol Rev 2021; 303:35-51. [PMID: 34368957 DOI: 10.1111/imr.13012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022]
Abstract
The high rate of antibody production places considerable metabolic and folding stress on plasma cells (PC). Not surprisingly, they rely on the unfolded protein response (UPR), a universal signaling, and transcriptional network that monitors the health of the secretory pathway and mounts cellular responses to stress. Typically, the UPR utilizes three distinct stress sensors in the ER membrane, each regulating a subset of targets to re-establish homeostasis. PC use a specialized UPR scheme-they preemptively trigger the UPR via developmental signals and suppress two of the sensors, PERK and ATF6, relying on IRE1 alone. The specialized PC UPR program is tuned to the specific needs at every stage of development-from early biogenesis of secretory apparatus, to massive immunoglobulin expression later. Furthermore, the UPR in PC integrates with other pathways essential in a highly secretory cell-mTOR pathway that ensures efficient synthesis, autophagosomes that recycle components of the synthetic machinery, and apoptotic signaling that controls cell fate in the face of excessive folding stress. This specialized PC program is not shared with other secretory cells, for reasons yet to be defined. In this review, we give a perspective into how and why PC need such a unique UPR program.
Collapse
Affiliation(s)
- Daniela Ricci
- Department of Pathology and Lab Medicine, The Childrens' Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - Tali Gidalevitz
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Yair Argon
- Department of Pathology and Lab Medicine, The Childrens' Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Sicking M, Lang S, Bochen F, Roos A, Drenth JPH, Zakaria M, Zimmermann R, Linxweiler M. Complexity and Specificity of Sec61-Channelopathies: Human Diseases Affecting Gating of the Sec61 Complex. Cells 2021; 10:1036. [PMID: 33925740 PMCID: PMC8147068 DOI: 10.3390/cells10051036] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/14/2022] Open
Abstract
The rough endoplasmic reticulum (ER) of nucleated human cells has crucial functions in protein biogenesis, calcium (Ca2+) homeostasis, and signal transduction. Among the roughly one hundred components, which are involved in protein import and protein folding or assembly, two components stand out: The Sec61 complex and BiP. The Sec61 complex in the ER membrane represents the major entry point for precursor polypeptides into the membrane or lumen of the ER and provides a conduit for Ca2+ ions from the ER lumen to the cytosol. The second component, the Hsp70-type molecular chaperone immunoglobulin heavy chain binding protein, short BiP, plays central roles in protein folding and assembly (hence its name), protein import, cellular Ca2+ homeostasis, and various intracellular signal transduction pathways. For the purpose of this review, we focus on these two components, their relevant allosteric effectors and on the question of how their respective functional cycles are linked in order to reconcile the apparently contradictory features of the ER membrane, selective permeability for precursor polypeptides, and impermeability for Ca2+. The key issues are that the Sec61 complex exists in two conformations: An open and a closed state that are in a dynamic equilibrium with each other, and that BiP contributes to its gating in both directions in cooperation with different co-chaperones. While the open Sec61 complex forms an aqueous polypeptide-conducting- and transiently Ca2+-permeable channel, the closed complex is impermeable even to Ca2+. Therefore, we discuss the human hereditary and tumor diseases that are linked to Sec61 channel gating, termed Sec61-channelopathies, as disturbances of selective polypeptide-impermeability and/or aberrant Ca2+-permeability.
Collapse
Affiliation(s)
- Mark Sicking
- Department of Medical Biochemistry & Molecular Biology, Saarland University, D-66421 Homburg, Germany;
| | - Sven Lang
- Department of Medical Biochemistry & Molecular Biology, Saarland University, D-66421 Homburg, Germany;
| | - Florian Bochen
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, D-66421 Homburg, Germany; (F.B.); (M.L.)
| | - Andreas Roos
- Department of Neuropediatrics, Essen University Hospital, D-45147 Essen, Germany;
| | - Joost P. H. Drenth
- Department of Molecular Gastroenterology and Hepatology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Muhammad Zakaria
- Department of Genetics, Hazara University, Mansehra 21300, Pakistan;
| | - Richard Zimmermann
- Department of Medical Biochemistry & Molecular Biology, Saarland University, D-66421 Homburg, Germany;
| | - Maximilian Linxweiler
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, D-66421 Homburg, Germany; (F.B.); (M.L.)
| |
Collapse
|
10
|
Adams BM, Canniff NP, Guay KP, Hebert DN. The Role of Endoplasmic Reticulum Chaperones in Protein Folding and Quality Control. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:27-50. [PMID: 34050861 PMCID: PMC9185992 DOI: 10.1007/978-3-030-67696-4_3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Molecular chaperones assist the folding of nascent chains in the cell. Chaperones also aid in quality control decisions as persistent chaperone binding can help to sort terminal misfolded proteins for degradation. There are two major molecular chaperone families in the endoplasmic reticulum (ER) that assist proteins in reaching their native structure and evaluating the fidelity of the maturation process. The ER Hsp70 chaperone, BiP, supports adenine nucleotide-regulated binding to non-native proteins that possess exposed hydrophobic regions. In contrast, the carbohydrate-dependent chaperone system involving the membrane protein calnexin and its soluble paralogue calreticulin recognize a specific glycoform of an exposed hydrophilic protein modification for which the composition is controlled by a series of glycosidases and transferases. Here, we compare and contrast the properties, mechanisms of action and functions of these different chaperones systems that work in parallel, as well as together, to assist a large variety of substrates that traverse the eukaryotic secretory pathway.
Collapse
Affiliation(s)
- Benjamin M Adams
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Nathan P Canniff
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Kevin P Guay
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Amherst, MA, USA
| | - Daniel N Hebert
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA.
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Amherst, MA, USA.
| |
Collapse
|
11
|
Mei L, Montoya MR, Quanrud GM, Tran M, Villa-Sharma A, Huang M, Genereux JC. Bait Correlation Improves Interactor Identification by Tandem Mass Tag-Affinity Purification-Mass Spectrometry. J Proteome Res 2020; 19:1565-1573. [PMID: 32138514 DOI: 10.1021/acs.jproteome.9b00825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The quantitative multiplexing capacity of isobaric tandem mass tags (TMT) has increased the throughput of affinity purification mass spectrometry (AP-MS) to characterize protein interaction networks of immunoprecipitated bait proteins. However, variable bait levels between replicates can convolute interactor identification. We compared the Student's t-test and Pearson's R correlation as methods to generate t-statistics and assessed the significance of interactors following TMT-AP-MS. Using a simple linear model of protein recovery in immunoprecipitates to simulate reporter ion ratio distributions, we found that correlation-derived t-statistics protect against bait variance while robustly controlling type I errors (false positives). We experimentally determined the performance of these two approaches for determining t-statistics under two experimental conditions: irreversible prey association to the Hsp40 mutant DNAJB8H31Q followed by stringent washing, and reversible association to 14-3-3ζ with gentle washing. Correlation-derived t-statistics performed at least as well as Student's t-statistics for each sample and with substantial improvement in performance for experiments with high bait-level variance. Deliberately varying bait levels over a large range fails to improve selectivity but does increase the robustness between runs. The use of correlation-derived t-statistics should improve identification of interactors using TMT-AP-MS. Data are available via ProteomeXchange with identifier PXD016613.
Collapse
Affiliation(s)
- Liangyong Mei
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Maureen R Montoya
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Guy M Quanrud
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Minh Tran
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Athena Villa-Sharma
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ming Huang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Joseph C Genereux
- Department of Chemistry, University of California, Riverside, California 92521, United States.,Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| |
Collapse
|
12
|
Hanafusa K, Wada I, Hosokawa N. SDF2-like protein 1 (SDF2L1) regulates the endoplasmic reticulum localization and chaperone activity of ERdj3 protein. J Biol Chem 2019; 294:19335-19348. [PMID: 31624144 DOI: 10.1074/jbc.ra119.009603] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/01/2019] [Indexed: 11/06/2022] Open
Abstract
Molecular chaperones facilitate protein folding by associating with nascent polypeptides, thereby preventing protein misfolding and aggregation. Endoplasmic reticulum (ER) chaperone BiP, the sole HSP70 chaperone in the ER, is regulated by HSP40 chaperones, including ER-resident protein ERdj3 (DNAJB11). ERdj3 lacks an ER retrieval signal, is secreted under ER stress conditions, and functions as a chaperone in the extracellular space, but how its secretion is regulated remains unclear. We recently showed that ERdj3 forms a complex with ER-resident stromal cell-derived factor 2 (SDF2) and SDF2L1 (SDF2-like protein 1) and thereby prevents protein aggregation during the BiP chaperone cycle. However, the contribution of the ERdj3-SDF2L1 complex to protein quality control is poorly understood. Here, we analyzed the intracellular localization and chaperone activity of ERdj3 in complex with SDF2L1. We found that ERdj3 was retained in the ER by associating with SDF2/SDF2L1. In vitro analyses revealed that the ERdj3 dimer incorporated two SDF2L1 molecules; otherwise, ERdj3 alone formed a homotetramer. The ERdj3-SDF2L1 complex suppressed ER protein aggregation, and this suppression did not require substrate transfer to BiP. The ERdj3-SDF2L1 complex inhibited aggregation of denatured GSH S-transferase (GST) in vitro and maintained GST in a soluble oligomeric state. Both in cellulo and in vitro, the chaperone activities of the ERdj3-SDF2L1 complex were higher than those of ERdj3 alone. These findings suggest that, under normal conditions, ERdj3 functions as an ER chaperone in complex with SDF2/SDF2L1 but is secreted into the extracellular space when it cannot form this complex.
Collapse
Affiliation(s)
- Ken Hanafusa
- Laboratory of Molecular and Cellular Biology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Ikuo Wada
- Department of Cell Sciences, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Nobuko Hosokawa
- Laboratory of Molecular and Cellular Biology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
13
|
Liu Q, Liang C, Zhou L. Structural and functional analysis of the Hsp70/Hsp40 chaperone system. Protein Sci 2019; 29:378-390. [PMID: 31509306 DOI: 10.1002/pro.3725] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022]
Abstract
As one of the most abundant and highly conserved molecular chaperones, the 70-kDa heat shock proteins (Hsp70s) play a key role in maintaining cellular protein homeostasis (proteostasis), one of the most fundamental tasks for every living organism. In this role, Hsp70s are inextricably linked to many human diseases, most notably cancers and neurodegenerative diseases, and are increasingly recognized as important drug targets for developing novel therapeutics for these diseases. Hsp40s are a class of essential and universal partners for Hsp70s in almost all aspects of proteostasis. Thus, Hsp70s and Hsp40s together constitute one of the most important chaperone systems across all kingdoms of life. In recent years, we have witnessed significant progress in understanding the molecular mechanism of this chaperone system through structural and functional analysis. This review will focus on this recent progress, mainly from a structural perspective.
Collapse
Affiliation(s)
- Qinglian Liu
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Ce Liang
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Lei Zhou
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
14
|
Huang Y, Arora K, Mun KS, Yang F, Moon C, Yarlagadda S, Jegga A, Weaver T, Naren AP. Targeting DNAJB9, a novel ER luminal co-chaperone, to rescue ΔF508-CFTR. Sci Rep 2019; 9:9808. [PMID: 31285458 PMCID: PMC6614449 DOI: 10.1038/s41598-019-46161-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 06/19/2019] [Indexed: 01/30/2023] Open
Abstract
The molecular mechanism of Endoplasmic Reticulum-associated degradation (ERAD) of Cystic fibrosis transmembrane-conductance regulator (CFTR) is largely unknown. Particularly, it is unknown what ER luminal factor(s) are involved in ERAD. Herein, we used ProtoArray to identify an ER luminal co-chaperone, DNAJB9, which can directly interact with CFTR. For both WT- and ΔF508 (deletion of phenylalanine at position 508, the most common CF-causing mutant)-CFTR, knockdown of DNAJB9 by siRNA increased their expression levels on the cell surface and, consequently, upregulated their function. Furthermore, genetic ablation of DNAJB9 in WT mice increased CFTR expression and enhanced CFTR-dependent fluid secretion in enteroids. Importantly, DNAJB9 deficiency upregulated enteroids' fluid secretion in CF mice (homozygous for ΔF508), and silencing one allele of DNAJB9 is sufficient to rescue ΔF508-CFTR in vitro and in vivo, suggesting that DNAJB9 may be a rate-limiting factor in CFTR ERAD pathway. Our studies identified the first ER luminal co-chaperone involved in CFTR ERAD, and DNAJB9 could be a novel therapeutic target for CF.
Collapse
Affiliation(s)
- Yunjie Huang
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States
| | - Kavisha Arora
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States
| | - Kyu Shik Mun
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States
| | - Fanmuyi Yang
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States
| | - ChangSuk Moon
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States
| | - Sunitha Yarlagadda
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States
| | - Anil Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States
| | - Timothy Weaver
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States
| | - Anjaparavanda P Naren
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States.
| |
Collapse
|
15
|
Trcka F, Durech M, Vankova P, Chmelik J, Martinkova V, Hausner J, Kadek A, Marcoux J, Klumpler T, Vojtesek B, Muller P, Man P. Human Stress-inducible Hsp70 Has a High Propensity to Form ATP-dependent Antiparallel Dimers That Are Differentially Regulated by Cochaperone Binding. Mol Cell Proteomics 2019; 18:320-337. [PMID: 30459217 PMCID: PMC6356074 DOI: 10.1074/mcp.ra118.001044] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/09/2018] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic protein homeostasis (proteostasis) is largely dependent on the action of highly conserved Hsp70 molecular chaperones. Recent evidence indicates that, apart from conserved molecular allostery, Hsp70 proteins have retained and adapted the ability to assemble as functionally relevant ATP-bound dimers throughout evolution. Here, we have compared the ATP-dependent dimerization of DnaK, human stress-inducible Hsp70, Hsc70 and BiP Hsp70 proteins, showing that their dimerization propensities differ, with stress-inducible Hsp70 being predominantly dimeric in the presence of ATP. Structural analyses using hydrogen/deuterium exchange mass spectrometry, native electrospray ionization mass spectrometry and small-angle X-ray scattering revealed that stress-inducible Hsp70 assembles in solution as an antiparallel dimer with the intermolecular interface closely resembling the ATP-bound dimer interfaces captured in DnaK and BiP crystal structures. ATP-dependent dimerization of stress-inducible Hsp70 is necessary for its efficient interaction with Hsp40, as shown by experiments with dimerization-deficient mutants. Moreover, dimerization of ATP-bound Hsp70 is required for its participation in high molecular weight protein complexes detected ex vivo, supporting its functional role in vivo As human cytosolic Hsp70 can interact with tetratricopeptide repeat (TPR) domain containing cochaperones, we tested the interaction of Hsp70 ATP-dependent dimers with Chip and Tomm34 cochaperones. Although Chip associates with intact Hsp70 dimers to form a larger complex, binding of Tomm34 disrupts the Hsp70 dimer and this event plays an important role in Hsp70 activity regulation. In summary, this study provides structural evidence of robust ATP-dependent antiparallel dimerization of human inducible Hsp70 protein and suggests a novel role of TPR domain cochaperones in multichaperone complexes involving Hsp70 ATP-bound dimers.
Collapse
Affiliation(s)
- Filip Trcka
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Michal Durech
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Pavla Vankova
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic;; Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague, Czech Republic
| | - Josef Chmelik
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic;; Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague, Czech Republic
| | - Veronika Martinkova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Jiri Hausner
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic;; Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague, Czech Republic
| | - Alan Kadek
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic;; Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague, Czech Republic
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Tomas Klumpler
- CEITEC-Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Borivoj Vojtesek
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Petr Muller
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic;.
| | - Petr Man
- BioCeV - Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prumyslova 595, 252 50 Vestec, Czech Republic;; Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague, Czech Republic;.
| |
Collapse
|
16
|
Pobre KFR, Poet GJ, Hendershot LM. The endoplasmic reticulum (ER) chaperone BiP is a master regulator of ER functions: Getting by with a little help from ERdj friends. J Biol Chem 2018; 294:2098-2108. [PMID: 30563838 DOI: 10.1074/jbc.rev118.002804] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The endoplasmic reticulum (ER) represents the entry point into the secretory pathway where nascent proteins encounter a specialized environment for their folding and maturation. Inherent to these processes is a dedicated quality-control system that detects proteins that fail to mature properly and targets them for cytosolic degradation. An imbalance in protein folding and degradation can result in the accumulation of unfolded proteins in the ER, resulting in the activation of a signaling cascade that restores proper homeostasis in this organelle. The ER heat shock protein 70 (Hsp70) family member BiP is an ATP-dependent chaperone that plays a critical role in these processes. BiP interacts with specific ER-localized DnaJ family members (ERdjs), which stimulate BiP's ATP-dependent substrate interactions, with several ERdjs also binding directly to unfolded protein clients. Recent structural and biochemical studies have provided detailed insights into the allosteric regulation of client binding by BiP and have enhanced our understanding of how specific ERdjs enable BiP to perform its many functions in the ER. In this review, we discuss how BiP's functional cycle and interactions with ERdjs enable it to regulate protein homeostasis in the ER and ensure protein quality control.
Collapse
Affiliation(s)
- Kristine Faye R Pobre
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Greg J Poet
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Linda M Hendershot
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
17
|
Schäfer M, Granato DC, Krossa S, Bartels AK, Yokoo S, Düsterhöft S, Koudelka T, Scheidig AJ, Tholey A, Paes Leme AF, Grötzinger J, Lorenzen I. GRP78 protects a disintegrin and metalloprotease 17 against protein-disulfide isomerase A6 catalyzed inactivation. FEBS Lett 2017; 591:3567-3587. [PMID: 28949004 DOI: 10.1002/1873-3468.12858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
The shedding of ectodomains is a crucial mechanism in many physiological and pathological events. A disintegrin and metalloprotease-17 (ADAM17) is a key sheddase involved in essential processes, such as development, regeneration, and immune defense. ADAM17 exists in two conformations which differ in their disulfide connection in the membrane-proximal domain (MPD). Protein-disulfide isomerases (PDIs) on the cell surface convert the open MPD into a rigid closed form, which corresponds to inactive ADAM17. ADAM17 is expressed in its open activatable form in the endoplasmic reticulum (ER) and consequently must be protected against ER-resident PDI activity. Here, we show that the chaperone 78-kDa glucose-regulated protein (GRP78) protects the MPD against PDI-dependent disulfide-bond isomerization by binding to this domain and, thereby, preventing ADAM17 inhibition.
Collapse
Affiliation(s)
- Miriam Schäfer
- Institute of Biochemistry, Christian-Albrechts University, Kiel, Germany
| | - Daniela C Granato
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
| | - Sebastian Krossa
- Department of Structural Biology, Institute of Zoology, Kiel, Germany
| | | | - Sami Yokoo
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
| | | | - Tomas Koudelka
- Division of Systematic Proteome Research, Institute for Experimental Medicine, Christian-Albrechts University, Kiel, Germany
| | - Axel J Scheidig
- Department of Structural Biology, Institute of Zoology, Kiel, Germany
| | - Andreas Tholey
- Division of Systematic Proteome Research, Institute for Experimental Medicine, Christian-Albrechts University, Kiel, Germany
| | - Adriana F Paes Leme
- Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, CNPEM, Campinas, Brazil
| | - Joachim Grötzinger
- Institute of Biochemistry, Christian-Albrechts University, Kiel, Germany
| | - Inken Lorenzen
- Institute of Biochemistry, Christian-Albrechts University, Kiel, Germany.,Department of Structural Biology, Institute of Zoology, Kiel, Germany
| |
Collapse
|
18
|
Neurons Export Extracellular Vesicles Enriched in Cysteine String Protein and Misfolded Protein Cargo. Sci Rep 2017; 7:956. [PMID: 28424476 PMCID: PMC5430488 DOI: 10.1038/s41598-017-01115-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/27/2017] [Indexed: 12/20/2022] Open
Abstract
The fidelity of synaptic transmission depends on the integrity of the protein machinery at the synapse. Unfolded synaptic proteins undergo refolding or degradation in order to maintain synaptic proteostasis and preserve synaptic function, and buildup of unfolded/toxic proteins leads to neuronal dysfunction. Many molecular chaperones contribute to proteostasis, but one in particular, cysteine string protein (CSPα), is critical for proteostasis at the synapse. In this study we report that exported vesicles from neurons contain CSPα. Extracellular vesicles (EV’s) have been implicated in a wide range of functions. However, the functional significance of neural EV’s remains to be established. Here we demonstrate that co-expression of CSPα with the disease-associated proteins, polyglutamine expanded protein 72Q huntingtinex°n1 or superoxide dismutase-1 (SOD-1G93A) leads to the cellular export of both 72Q huntingtinex°n1 and SOD-1G93A via EV’s. In contrast, the inactive CSPαHPD-AAA mutant does not facilitate elimination of misfolded proteins. Furthermore, CSPα-mediated export of 72Q huntingtinex°n1 is reduced by the polyphenol, resveratrol. Our results indicate that by assisting local lysosome/proteasome processes, CSPα-mediated removal of toxic proteins via EVs plays a central role in synaptic proteostasis and CSPα thus represents a potential therapeutic target for neurodegenerative diseases.
Collapse
|
19
|
Ajit Tamadaddi C, Sahi C. J domain independent functions of J proteins. Cell Stress Chaperones 2016; 21:563-70. [PMID: 27145962 PMCID: PMC4908003 DOI: 10.1007/s12192-016-0697-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/04/2016] [Accepted: 04/25/2016] [Indexed: 01/19/2023] Open
Abstract
Heat shock proteins of 40 kDa (Hsp40s), also called J proteins, are obligate partners of Hsp70s. Via their highly conserved and functionally critical J domain, J proteins interact and modulate the activity of their Hsp70 partners. Mutations in the critical residues in the J domain often result in the null phenotype for the J protein in question. However, as more J proteins have been characterized, it is becoming increasingly clear that a significant number of J proteins do not "completely" rely on their J domains to carry out their cellular functions, as previously thought. In some cases, regions outside the highly conserved J domain have become more important making the J domain dispensable for some, if not for all functions of a J protein. This has profound effects on the evolution of such J proteins. Here we present selected examples of J proteins that perform J domain independent functions and discuss this in the context of evolution of J proteins with dispensable J domains and J-like proteins in eukaryotes.
Collapse
Affiliation(s)
- Chetana Ajit Tamadaddi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India.
| |
Collapse
|
20
|
Inoue T, Tsai B. The Grp170 nucleotide exchange factor executes a key role during ERAD of cellular misfolded clients. Mol Biol Cell 2016; 27:1650-62. [PMID: 27030672 PMCID: PMC4865321 DOI: 10.1091/mbc.e16-01-0033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 01/23/2023] Open
Abstract
When a protein misfolds in the endoplasmic reticulum (ER), it retrotranslocates to the cytosol and is degraded by the proteasome via a pathway called ER-associated degradation (ERAD). To initiate ERAD, ADP-BiP is often recruited to the misfolded client, rendering it soluble and translocation competent. How the misfolded client is subsequently released from BiP so that it undergoes retrotranslocation, however, remains enigmatic. Here we demonstrate that the ER-resident nucleotide exchange factor (NEF) Grp170 plays an important role during ERAD of the misfolded glycosylated client null Hong Kong (NHK). As a NEF, Grp170 triggers nucleotide exchange of BiP to generate ATP-BiP. ATP-BiP disengages from NHK, enabling it to retrotranslocate to the cytosol. We demonstrate that Grp170 binds to Sel1L, an adapter of the transmembrane Hrd1 E3 ubiquitin ligase postulated to be the retrotranslocon, and links this interaction to Grp170's function during ERAD. More broadly, Grp170 also promotes degradation of the nonglycosylated transthyretin (TTR) D18G misfolded client. Our findings thus establish a general function of Grp170 during ERAD and suggest that positioning this client-release factor at the retrotranslocation site may afford a mechanism to couple client release from BiP and retrotranslocation.
Collapse
Affiliation(s)
- Takamasa Inoue
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48103
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48103
| |
Collapse
|
21
|
Ellgaard L, McCaul N, Chatsisvili A, Braakman I. Co- and Post-Translational Protein Folding in the ER. Traffic 2016; 17:615-38. [PMID: 26947578 DOI: 10.1111/tra.12392] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/26/2016] [Accepted: 03/03/2016] [Indexed: 12/19/2022]
Abstract
The biophysical rules that govern folding of small, single-domain proteins in dilute solutions are now quite well understood. The mechanisms underlying co-translational folding of multidomain and membrane-spanning proteins in complex cellular environments are often less clear. The endoplasmic reticulum (ER) produces a plethora of membrane and secretory proteins, which must fold and assemble correctly before ER exit - if these processes fail, misfolded species accumulate in the ER or are degraded. The ER differs from other cellular organelles in terms of the physicochemical environment and the variety of ER-specific protein modifications. Here, we review chaperone-assisted co- and post-translational folding and assembly in the ER and underline the influence of protein modifications on these processes. We emphasize how method development has helped advance the field by allowing researchers to monitor the progression of folding as it occurs inside living cells, while at the same time probing the intricate relationship between protein modifications during folding.
Collapse
Affiliation(s)
- Lars Ellgaard
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas McCaul
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Anna Chatsisvili
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
22
|
Genereux JC, Wiseman RL. Regulating extracellular proteostasis capacity through the unfolded protein response. Prion 2016; 9:10-21. [PMID: 25946012 DOI: 10.1080/19336896.2015.1011887] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The extracellular aggregation of proteins into proteotoxic oligomers and amyloid fibrils is implicated in the onset and pathology of numerous diseases referred to as amyloid diseases. All of the proteins that aggregate extracellularly in association with amyloid disease pathogenesis originate in the endoplasmic reticulum (ER) and are secreted through the secretory pathway. Disruptions in ER protein homeostasis or proteostasis (i.e., ER stress) can facilitate the aberrant secretion of misfolded protein conformations to the extracellular space and exacerbate pathologic protein aggregation into proteotoxic species. Activation of an ER stress-responsive signaling pathway, the Unfolded Protein Response (UPR), restores ER proteostasis through the transcriptional regulation of ER proteostasis pathways. In contrast, the functional role for the UPR in regulating extracellular proteostasis during ER stress is poorly defined. We recently identified ERdj3 as a UPR-regulated secreted chaperone that increases extracellular proteostasis capacity in response to ER stress, revealing a previously-unanticipated direct mechanism by which the UPR impacts extracellular proteostasis. Here, we discuss the functional implications of ERdj3 secretion on extracellular proteostasis maintenance and define the mechanisms by which ERdj3 secretion coordinates intra- and extracellular proteostasis environments during ER stress.
Collapse
Affiliation(s)
- Joseph C Genereux
- a Department of Molecular & Experimental Medicine; Department of Chemical Physiology ; The Scripps Research Institute ; La Jolla , CA USA
| | | |
Collapse
|
23
|
Sin O, Nollen EAA. Regulation of protein homeostasis in neurodegenerative diseases: the role of coding and non-coding genes. Cell Mol Life Sci 2015; 72:4027-47. [PMID: 26190021 PMCID: PMC4605983 DOI: 10.1007/s00018-015-1985-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/10/2015] [Accepted: 07/02/2015] [Indexed: 12/20/2022]
Abstract
Protein homeostasis is fundamental for cell function and survival, because proteins are involved in all aspects of cellular function, ranging from cell metabolism and cell division to the cell's response to environmental challenges. Protein homeostasis is tightly regulated by the synthesis, folding, trafficking and clearance of proteins, all of which act in an orchestrated manner to ensure proteome stability. The protein quality control system is enhanced by stress response pathways, which take action whenever the proteome is challenged by environmental or physiological stress. Aging, however, damages the proteome, and such proteome damage is thought to be associated with aging-related diseases. In this review, we discuss the different cellular processes that define the protein quality control system and focus on their role in protein conformational diseases. We highlight the power of using small organisms to model neurodegenerative diseases and how these models can be exploited to discover genetic modulators of protein aggregation and toxicity. We also link findings from small model organisms to the situation in higher organisms and describe how some of the genetic modifiers discovered in organisms such as worms are functionally conserved throughout evolution. Finally, we demonstrate that the non-coding genome also plays a role in maintaining protein homeostasis. In all, this review highlights the importance of protein and RNA homeostasis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Olga Sin
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Centre Groningen, 9700 AD, Groningen, The Netherlands
- Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, 4099-003, Porto, Portugal
| | - Ellen A A Nollen
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Centre Groningen, 9700 AD, Groningen, The Netherlands.
| |
Collapse
|
24
|
A nucleotide exchange factor promotes endoplasmic reticulum-to-cytosol membrane penetration of the nonenveloped virus simian virus 40. J Virol 2015; 89:4069-79. [PMID: 25653441 DOI: 10.1128/jvi.03552-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The nonenveloped simian polyomavirus (PyV) simian virus 40 (SV40) hijacks the endoplasmic reticulum (ER) quality control machinery to penetrate the ER membrane and reach the cytosol, a critical infection step. During entry, SV40 traffics to the ER, where host-induced conformational changes render the virus hydrophobic. The hydrophobic virus binds and integrates into the ER lipid bilayer to initiate membrane penetration. However, prior to membrane transport, the hydrophobic SV40 recruits the ER-resident Hsp70 BiP, which holds the virus in a transport-competent state until it is ready to cross the ER membrane. Here we probed how BiP disengages from SV40 to enable the virus to penetrate the ER membrane. We found that nucleotide exchange factor (NEF) Grp170 induces nucleotide exchange of BiP and releases SV40 from BiP. Importantly, this reaction promotes SV40 ER-to-cytosol transport and infection. The human BK PyV also relies on Grp170 for successful infection. Interestingly, SV40 mobilizes a pool of Grp170 into discrete puncta in the ER called foci. These foci, postulated to represent the ER membrane penetration site, harbor ER components, including BiP, known to facilitate viral ER-to-cytosol transport. Our results thus identify a nucleotide exchange activity essential for catalyzing the most proximal event before ER membrane penetration of PyVs. IMPORTANCE PyVs are known to cause debilitating human diseases. During entry, this virus family, including monkey SV40 and human BK PyV, hijacks ER protein quality control machinery to breach the ER membrane and access the cytosol, a decisive infection step. In this study, we pinpointed an ER-resident factor that executes a crucial role in promoting ER-to-cytosol membrane penetration of PyVs. Identifying a host factor that facilitates entry of the PyV family thus provides additional therapeutic targets to combat PyV-induced diseases.
Collapse
|
25
|
Abstract
In mammalian cells, the rough endoplasmic reticulum or ER plays a central role in the biogenesis of most extracellular plus many organellar proteins and in cellular calcium homeostasis. Therefore, this organelle comprises molecular chaperones that are involved in import, folding/assembly, export, and degradation of polypeptides in millimolar concentrations. In addition, there are calcium channels/pumps and signal transduction components present in the ER membrane that affect and are affected by these processes. The ER lumenal Hsp70, termed immunoglobulin-heavy chain binding protein or BiP, is the central player in all these activities and involves up to seven different co-chaperones, i.e. ER-membrane integrated as well as ER-lumenal Hsp40s, which are termed ERj or ERdj, and two nucleotide exchange factors.
Collapse
|
26
|
Genereux JC, Qu S, Zhou M, Ryno LM, Wang S, Shoulders MD, Kaufman RJ, Lasmézas CI, Kelly JW, Wiseman RL. Unfolded protein response-induced ERdj3 secretion links ER stress to extracellular proteostasis. EMBO J 2014; 34:4-19. [PMID: 25361606 DOI: 10.15252/embj.201488896] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Unfolded Protein Response (UPR) indirectly regulates extracellular proteostasis through transcriptional remodeling of endoplasmic reticulum (ER) proteostasis pathways. This remodeling attenuates secretion of misfolded, aggregation-prone proteins during ER stress. Through these activities, the UPR has a critical role in preventing the extracellular protein aggregation associated with numerous human diseases. Here, we demonstrate that UPR activation also directly influences extracellular proteostasis through the upregulation and secretion of the ER HSP40 ERdj3/DNAJB11. Secreted ERdj3 binds misfolded proteins in the extracellular space, substoichiometrically inhibits protein aggregation, and attenuates proteotoxicity of disease-associated toxic prion protein. Moreover, ERdj3 can co-secrete with destabilized, aggregation-prone proteins in a stable complex under conditions where ER chaperoning capacity is overwhelmed, preemptively providing extracellular chaperoning of proteotoxic misfolded proteins that evade ER quality control. This regulated co-secretion of ERdj3 with misfolded clients directly links ER and extracellular proteostasis during conditions of ER stress. ERdj3 is, to our knowledge, the first metazoan chaperone whose secretion into the extracellular space is regulated by the UPR, revealing a new mechanism by which UPR activation regulates extracellular proteostasis.
Collapse
Affiliation(s)
- Joseph C Genereux
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Song Qu
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Minghai Zhou
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, FL, USA
| | - Lisa M Ryno
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Shiyu Wang
- Degenerative Disease Research Program, Sanford Burnham Medical Research Institute, La Jolla, CA, USA
| | | | - Randal J Kaufman
- Degenerative Disease Research Program, Sanford Burnham Medical Research Institute, La Jolla, CA, USA
| | - Corinne I Lasmézas
- Department of Infectious Diseases, The Scripps Research Institute, Jupiter, FL, USA
| | - Jeffery W Kelly
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - R Luke Wiseman
- Department of Molecular & Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
27
|
Otero JH, Lizák B, Feige MJ, Hendershot LM. Dissection of structural and functional requirements that underlie the interaction of ERdj3 protein with substrates in the endoplasmic reticulum. J Biol Chem 2014; 289:27504-12. [PMID: 25143379 DOI: 10.1074/jbc.m114.587147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
ERdj3, a mammalian endoplasmic reticulum (ER) Hsp40/DnaJ family member, binds unfolded proteins, transfers them to BiP, and concomitantly stimulates BiP ATPase activity. However, the requirements for ERdj3 binding to and release from substrates in cells are not well understood. We found that ERdj3 homodimers that cannot stimulate the ATPase activity of BiP (QPD mutants) bound to unfolded ER proteins under steady state conditions in much greater amounts than wild-type ERdj3. This was due to reduced release from these substrates as opposed to enhanced binding, although in both cases dimerization was strictly required for substrate binding. Conversely, heterodimers consisting of one wild-type and one mutant ERdj3 subunit bound substrates at levels comparable with wild-type ERdj3 homodimers, demonstrating that release requires only one protomer to be functional in stimulating BiP ATPase activity. Co-expressing wild-type ERdj3 and a QPD mutant, which each exclusively formed homodimers, revealed that the release rate of wild-type ERdj3 varied according to the relative half-lives of substrates, suggesting that ERdj3 release is an important step in degradation of unfolded client proteins in the ER. Furthermore, pulse-chase experiments revealed that the binding of QPD mutant homodimers remained constant as opposed to increasing, suggesting that ERdj3 does not normally undergo reiterative binding cycles with substrates.
Collapse
Affiliation(s)
- Joel H Otero
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Beata Lizák
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Matthias J Feige
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Linda M Hendershot
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|
28
|
Athanasiou D, Bevilacqua D, Aguila M, McCulley C, Kanuga N, Iwawaki T, Chapple JP, Cheetham ME. The co-chaperone and reductase ERdj5 facilitates rod opsin biogenesis and quality control. Hum Mol Genet 2014; 23:6594-606. [PMID: 25055872 PMCID: PMC4240209 DOI: 10.1093/hmg/ddu385] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mutations in rhodopsin, the light-sensitive protein of rod cells, are the most common cause of autosomal dominant retinitis pigmentosa (ADRP). Many rod opsin mutations, such as P23H, lead to misfolding of rod opsin with detrimental effects on photoreceptor function and viability. Misfolded P23H rod opsin and other mutations in the intradiscal domain are characterized by the formation of an incorrect disulphide bond between C185 and C187, as opposed to the correct and highly conserved C110–C187 disulphide bond. Therefore, we tested the hypothesis that incorrect disulphide bond formation might be a factor that affects the biogenesis of rod opsin by studying wild-type (WT) or P23H rod opsin in combination with amino acid substitutions that prevent the formation of incorrect disulphide bonds involving C185. These mutants had altered traffic dynamics, suggesting a requirement for regulation of disulphide bond formation/reduction during rod opsin biogenesis. Here, we show that the BiP co-chaperone and reductase protein ERdj5 (DNAJC10) regulates this process. ERdj5 overexpression promoted the degradation, improved the endoplasmic reticulum mobility and prevented the aggregation of P23H rod opsin. ERdj5 reduction by shRNA delayed rod opsin degradation and promoted aggregation. The reductase and co-chaperone activity of ERdj5 were both required for these effects on P23H rod opsin. Furthermore, mutations in these functional domains acted as dominant negatives that affected WT rod opsin biogenesis. Collectively, these data identify ERdj5 as a member of the proteostasis network that regulates rod opsin biogenesis and supports a role for disulphide bond formation/reduction in rod opsin biogenesis and disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Takao Iwawaki
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma 371-8511, Japan and
| | - J Paul Chapple
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | | |
Collapse
|
29
|
Srivastava R, Deng Y, Howell SH. Stress sensing in plants by an ER stress sensor/transducer, bZIP28. FRONTIERS IN PLANT SCIENCE 2014; 5:59. [PMID: 24616727 PMCID: PMC3935173 DOI: 10.3389/fpls.2014.00059] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/05/2014] [Indexed: 05/19/2023]
Abstract
Two classes of ER stress sensors are known in plants, membrane-associated basic leucine zipper (bZIP) transcription factors and RNA splicing factors. ER stress occurs under adverse environmental conditions and results from the accumulation of misfolded or unfolded proteins in the ER lumen. One of the membrane-associated transcription factors activated by heat and ER stress agents is bZIP28. In its inactive form, bZIP28 is a type II membrane protein with a single pass transmembrane domain, residing in the ER. bZIP28's N-terminus, containing a transcriptional activation domain, is oriented towards the cytoplasm and its C-terminal tail is inserted into the ER lumen. In response to stress, bZIP28 exits the ER and moves to the Golgi where it is proteolytically processed, liberating its cytosolic component which relocates to the nucleus to upregulate stress-response genes. bZIP28 is thought to sense stress through its interaction with the major ER chaperone, binding immunoglobulin protein (BIP). Under unstressed conditions, BIP binds to intrinsically disordered regions in bZIP28's lumen-facing tail and retains it in the ER. A truncated form of bZIP28, without its C-terminal tail is not retained in the ER but migrates constitutively to the nucleus. Upon stress, BIP releases bZIP28 allowing it to exit the ER. One model to account for the release of bZIP28 by BIP is that BIP is competed away from bZIP28 by the accumulation of misfolded proteins in the ER. However, other forces such as changes in energy charge levels, redox conditions or interaction with DNAJ proteins may also promote release of bZIP28 from BIP. Movement of bZIP28 from the ER to the Golgi is assisted by the interaction of elements of the COPII machinery with the cytoplasmic domain of bZIP28. Thus, the mobilization of bZIP28 in response to stress involves the dissociation of factors that retain it in the ER and the association of factors that mediate its further organelle-to-organelle movement.
Collapse
Affiliation(s)
- Renu Srivastava
- Plant Sciences Institute, Iowa State UniversityAmes, IA, USA
| | - Yan Deng
- Plant Sciences Institute, Iowa State UniversityAmes, IA, USA
| | - Stephen H. Howell
- Plant Sciences Institute, Iowa State UniversityAmes, IA, USA
- Department of Genetics, Development and Cell Biology, Iowa State UniversityAmes, IA, USA
- *Correspondence: Stephen H. Howell, Plant Sciences Institute, 1035A Roy J. Carver Co-Laboratory, Iowa State University, Ames, IA 50011, USA e-mail:
| |
Collapse
|
30
|
Liebrand TWH, Kombrink A, Zhang Z, Sklenar J, Jones AME, Robatzek S, Thomma BPHJ, Joosten MHAJ. Chaperones of the endoplasmic reticulum are required for Ve1-mediated resistance to Verticillium. MOLECULAR PLANT PATHOLOGY 2014; 15:109-17. [PMID: 24015989 PMCID: PMC6638731 DOI: 10.1111/mpp.12071] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The tomato receptor-like protein (RLP) Ve1 mediates resistance to the vascular fungal pathogen Verticillium dahliae. To identify the proteins required for Ve1 function, we transiently expressed and immunopurified functional Ve1-enhanced green fluorescent protein (eGFP) from Nicotiana benthamiana leaves, followed by mass spectrometry. This resulted in the identification of peptides originating from the endoplasmic reticulum (ER)-resident chaperones HSP70 binding proteins (BiPs) and a lectin-type calreticulin (CRT). Knock-down of the different BiPs and CRTs in tomato resulted in compromised Ve1-mediated resistance to V. dahliae in most cases, showing that these chaperones play an important role in Ve1 functionality. Recently, it has been shown that one particular CRT is required for the biogenesis of the RLP-type Cladosporium fulvum resistance protein Cf-4 of tomato, as silencing of CRT3a resulted in a reduced pool of complex glycosylated Cf-4 protein. In contrast, knock-down of the various CRTs in N. benthamiana or N. tabacum did not result in reduced accumulation of mature complex glycosylated Ve1 protein. Together, this study shows that the BiP and CRT ER chaperones differentially contribute to Cf-4- and Ve1-mediated immunity.
Collapse
Affiliation(s)
- Thomas W H Liebrand
- Laboratory of Phytopathology, Wageningen University, 6708 PB, Wageningen, the Netherlands; Centre for BioSystems Genomics, 6700 AB, Wageningen, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ohta M, Takaiwa F. Emerging features of ER resident J-proteins in plants. PLANT SIGNALING & BEHAVIOR 2014; 9:e28194. [PMID: 24614601 PMCID: PMC4091193 DOI: 10.4161/psb.28194] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 05/18/2023]
Abstract
J-proteins are co-chaperone components of the HSP70 system. J-proteins stimulate Hsp70ATPase activity, which is responsible for stabilizing the interaction of Hsp70 with client proteins. J-proteins are localized in various intracellular compartments including the cytoplasm, mitochondria and endoplasmic reticulum (ER). Five types of ER resident J-proteins (ERdjs) have been found in plants (P58, ERdj2, ERdj2A, ERdj3B and ERdj7). Rice OsERdj3A is located in the vacuoleand protein storage vacuoles (PSV, PB-II) under conditions of ER stress. J-proteins that are localized to the vacuole or lysosome are not found in mammals and yeast, suggesting that the presence of OsERdj3A in the vacuole is plant-specific and one of the features unique to plant ERdjs. In this review, we summarize the current state of knowledge andrecent research advancements regarding plant ERdjs, and compare mammalian and yeast ERdjs with plant ERdjs.
Collapse
|
32
|
Fritz JM, Dong M, Apsley KS, Martin EP, Na CL, Sitaraman S, Weaver TE. Deficiency of the BiP cochaperone ERdj4 causes constitutive endoplasmic reticulum stress and metabolic defects. Mol Biol Cell 2013; 25:431-40. [PMID: 24336520 PMCID: PMC3923636 DOI: 10.1091/mbc.e13-06-0319] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The BiP cochaperone ERdj4 removes misfolded proteins from the ER lumen by associating with ERAD machinery. Global deficiency of ERdj4 results in widespread constitutive ER stress, decreased survival, and metabolic derangements in mice. These findings indicate that the chaperone activity of ERdj4 is important for ER homeostasis in vivo. Endoplasmic reticulum–localized DnaJ 4 (ERdj4) is an immunoglobulin-binding protein (BiP) cochaperone and component of the endoplasmic reticulum–associated degradation (ERAD) pathway that functions to remove unfolded/misfolded substrates from the ER lumen under conditions of ER stress. To elucidate the function of ERdj4 in vivo, we disrupted the ERdj4 locus using gene trap (GT) mutagenesis, leading to hypomorphic expression of ERdj4 in mice homozygous for the trapped allele (ERdj4GT/GT). Approximately half of ERdj4GT/GT mice died perinatally associated with fetal growth restriction, reduced hepatic glycogen stores, and hypoglycemia. Surviving adult mice exhibited evidence of constitutive ER stress in multiple cells/tissues, including fibroblasts, lung, kidney, salivary gland, and pancreas. Elevated ER stress in pancreatic β cells of ERdj4GT/GT mice was associated with β cell loss, hypoinsulinemia, and glucose intolerance. Collectively these results suggest an important role for ERdj4 in maintaining ER homeostasis during normal fetal growth and postnatal adaptation to metabolic stress.
Collapse
Affiliation(s)
- Jill M Fritz
- Perinatal Institute, Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, and University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | | | | | | | | | | | | |
Collapse
|
33
|
Teter K. Toxin instability and its role in toxin translocation from the endoplasmic reticulum to the cytosol. Biomolecules 2013; 3:997-1029. [PMID: 24970201 PMCID: PMC4030972 DOI: 10.3390/biom3040997] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 12/21/2022] Open
Abstract
AB toxins enter a host cell by receptor-mediated endocytosis. The catalytic A chain then crosses the endosome or endoplasmic reticulum (ER) membrane to reach its cytosolic target. Dissociation of the A chain from the cell-binding B chain occurs before or during translocation to the cytosol, and only the A chain enters the cytosol. In some cases, AB subunit dissociation is facilitated by the unique physiology and function of the ER. The A chains of these ER-translocating toxins are stable within the architecture of the AB holotoxin, but toxin disassembly results in spontaneous or assisted unfolding of the isolated A chain. This unfolding event places the A chain in a translocation-competent conformation that promotes its export to the cytosol through the quality control mechanism of ER-associated degradation. A lack of lysine residues for ubiquitin conjugation protects the exported A chain from degradation by the ubiquitin-proteasome system, and an interaction with host factors allows the cytosolic toxin to regain a folded, active state. The intrinsic instability of the toxin A chain thus influences multiple steps of the intoxication process. This review will focus on the host-toxin interactions involved with A chain unfolding in the ER and A chain refolding in the cytosol.
Collapse
Affiliation(s)
- Ken Teter
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA.
| |
Collapse
|
34
|
Gidalevitz T, Stevens F, Argon Y. Orchestration of secretory protein folding by ER chaperones. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:2410-24. [PMID: 23507200 PMCID: PMC3729627 DOI: 10.1016/j.bbamcr.2013.03.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/27/2013] [Accepted: 03/01/2013] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum is a major compartment of protein biogenesis in the cell, dedicated to production of secretory, membrane and organelle proteins. The secretome has distinct structural and post-translational characteristics, since folding in the ER occurs in an environment that is distinct in terms of its ionic composition, dynamics and requirements for quality control. The folding machinery in the ER therefore includes chaperones and folding enzymes that introduce, monitor and react to disulfide bonds, glycans, and fluctuations of luminal calcium. We describe the major chaperone networks in the lumen and discuss how they have distinct modes of operation that enable cells to accomplish highly efficient production of the secretome. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
Affiliation(s)
- Tali Gidalevitz
- Department of Biology, Drexel University, Drexel University, 418 Papadakis Integrated Science Bldg, 3245 Chestnut Street, Philadelphia, PA 19104
| | | | - Yair Argon
- Division of Cell Pathology, Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia and the University of Pennsylvania, 3615 Civic Center Blvd., Philadelphia, PA 19104, USA, , Phone: 267-426-5131, Fax: 267-426-5165)
| |
Collapse
|
35
|
ERdj5 is the ER reductase that catalyzes the removal of non-native disulfides and correct folding of the LDL receptor. Mol Cell 2013; 50:793-804. [PMID: 23769672 PMCID: PMC3906653 DOI: 10.1016/j.molcel.2013.05.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 04/03/2013] [Accepted: 05/08/2013] [Indexed: 02/08/2023]
Abstract
ERdj5 is a member of the protein disulfide isomerase family of proteins localized to the endoplasmic reticulum (ER) of mammalian cells. To date, only a limited number of substrates for ERdj5 are known. Here we identify a number of endogenous substrates that form mixed disulfides with ERdj5, greatly expanding its client repertoire. ERdj5 previously had been thought to exclusively reduce disulfides in proteins destined for dislocation to the cytosol for degradation. However, we demonstrate here that for one of the identified substrates, the low-density lipoprotein receptor (LDLR), ERdj5 is required not for degradation, but rather for efficient folding. Our results demonstrate that the crucial role of ERdj5 is to reduce non-native disulfides formed during productive folding and that this requirement is dependent on its interaction with BiP. Hence, ERdj5 acts as the ER reductase, both preparing misfolded proteins for degradation and catalyzing the folding of proteins that form obligatory non-native disulfides. Several endogenous substrates for ERdj5 have been identified ERdj5 is required for efficient folding and secretion, but not degradation, of LDLR Knockdown of ERdj5 prevents the removal of non-native disulfides ERdj5 needs to interact with BiP to carry out its function during protein folding
Collapse
|
36
|
Srivastava R, Deng Y, Shah S, Rao AG, Howell SH. BINDING PROTEIN is a master regulator of the endoplasmic reticulum stress sensor/transducer bZIP28 in Arabidopsis. THE PLANT CELL 2013; 25:1416-29. [PMID: 23624714 PMCID: PMC3663277 DOI: 10.1105/tpc.113.110684] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/28/2013] [Accepted: 04/10/2013] [Indexed: 05/18/2023]
Abstract
BINDING PROTEIN (BiP) is a major chaperone in the endoplasmic reticulum (ER) lumen, and this study shows that BiP binds to the C-terminal tail of the stress sensor/transducer bZIP28, a membrane-associated transcription factor, retaining it in the ER under unstressed conditions. In response to ER stress, BiP dissociates from bZIP28, allowing it to be mobilized from the ER to the Golgi where it is proteolytically processed and released to enter the nucleus. Under unstressed conditions, BiP binds to bZIP28 as it binds to other client proteins, through its substrate binding domain. BiP dissociates from bZIP28 even when bZIP28's exit from the ER or its release from the Golgi is blocked. Both BiP1 and BiP3 bind bZIP28, and overexpression of either BiP detains bZIP28 in the ER under stress conditions. A C-terminally truncated mutant of bZIP28 eliminating most of the lumenal domain does not bind BiP and is not retained in the ER under unstressed conditions. BiP binding sites in the C-terminal tail of bZIP28 were identified in a phage display system. BiP was found to bind to intrinsically disordered regions on bZIP28's lumen-facing tail. Thus, the dissociation of BiP from the C-terminal tail of bZIP28 is a major switch that activates one arm of the unfolded protein response signaling pathway in plants.
Collapse
Affiliation(s)
- Renu Srivastava
- Plant Sciences Institute, Iowa State University, Ames, Iowa 50011
| | - Yan Deng
- Plant Sciences Institute, Iowa State University, Ames, Iowa 50011
| | - Shweta Shah
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Aragula Gururaj Rao
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Stephen H. Howell
- Plant Sciences Institute, Iowa State University, Ames, Iowa 50011
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011
- Address correspondence to
| |
Collapse
|
37
|
Abstract
Co-chaperones regulate chaperone activities and are likely to impact a protein-folding environment as much as the chaperone itself. As co-chaperones are expressed substoichiometrically, the ability of co-chaperones to encounter a chaperone is crucial for chaperone activity. ERdj3, an abundant soluble endoplasmic reticulum (ER) co-chaperone of the Hsp70 BiP, stimulates the ATPase activity of BiP to increase BiP's affinity for client (or substrate) proteins. We investigated ERdj3 availability, how ERdj3 levels impact BiP availability, and the significance of J proteins for regulating BiP binding of clients in living cells. FRAP analysis revealed that overexpressed ERdj3-sfGFP dramatically decreases BiP-GFP mobility in a client-dependent manner. By contrast, ERdj3-GFP mobility remains low regardless of client protein levels. Native gels and co-immunoprecipitations established that ERdj3 associates with a large complex including Sec61α. Translocon binding probably ensures rapid encounters between emerging nascent peptides and stimulates BiP activity in the crucial early stages of secretory protein folding. Importantly, mutant BiP exhibited significantly increased mobility when it could not interact with any ERdjs. Thus, ERdjs appear to play the dual roles of increasing BiP affinity for clients and regulating delivery of clients to BiP. Our data suggest that BiP engagement of clients is enhanced in ER subdomains enriched in ERdj proteins.
Collapse
Affiliation(s)
- Feng Guo
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
38
|
Baaklini I, Wong MJH, Hantouche C, Patel Y, Shrier A, Young JC. The DNAJA2 substrate release mechanism is essential for chaperone-mediated folding. J Biol Chem 2012; 287:41939-54. [PMID: 23091061 DOI: 10.1074/jbc.m112.413278] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
DNAJA1 (DJA1/Hdj2) and DNAJA2 (DJA2) are the major J domain partners of human Hsp70/Hsc70 chaperones. Although they have overall similarity with the well characterized type I co-chaperones from yeast and bacteria, they are biologically distinct, and their functional mechanisms are poorly characterized. We identified DJA2-specific activities in luciferase folding and repression of human ether-a-go-go-related gene (HERG) trafficking that depended on its expression levels in cells. Mutations in different internal domains of DJA2 abolished these effects. Using purified proteins, we addressed the mechanistic defects. A mutant lacking the region between the zinc finger motifs (DJA2-Δm2) was able to bind substrate similar to wild type but was incapable of releasing substrate during its transfer to Hsc70. The equivalent mutation in DJA1 also abolished its substrate release. A DJA2 mutant (DJA-221), which had its C-terminal dimerization region replaced by that of DJA1, was inactive but retained its ability to release substrate. The release mechanism required the J domain and ATP hydrolysis by Hsc70, although the nucleotide dependence diverged between DJA2 and DJA1. Limited proteolysis suggested further conformational differences between the two wild-type co-chaperones and the mutants. Our results demonstrate an essential role of specific DJA domains in the folding mechanism of Hsc70.
Collapse
Affiliation(s)
- Imad Baaklini
- Department of Biochemistry, McGill University and Groupe de Recherche Axé sur la Structure des Protéines, Montreal, Quebec H3G 0B1, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Xu G, Li S, Xie K, Zhang Q, Wang Y, Tang Y, Liu D, Hong Y, He C, Liu Y. Plant ERD2-like proteins function as endoplasmic reticulum luminal protein receptors and participate in programmed cell death during innate immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:57-69. [PMID: 22595145 DOI: 10.1111/j.1365-313x.2012.05053.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The hypersensitive response (HR), a form of programmed cell death (PCD), is a tightly regulated innate immune response in plants that is hypothesized to restrict pathogen growth and disease development. Although considerable efforts have been made to understand HR PCD, it remains unknown whether the retrograde pathway from the Golgi to the endoplasmic reticulum (ER) is involved. Here we provide direct genetic evidence that two Nicotiana benthamiana homologs, ERD2a and ERD2b, function as ER luminal protein receptors and participate in HR PCD. Virus-induced gene silencing (VIGS) of ERD2a and/or ERD2b caused escape of ER-resident proteins from the ER, and resulted in plants that were more sensitive to ER stress. Silencing of ERD2b delayed HR PCD induced by the non-host pathogens Xanthomonas oryzae pv. oryzae and Pseudomonas syringae pv. tomato DC3000. However, both silencing of ERD2a and co-silencing of ERD2a and ERD2b exacerbated HR PCD. Individual and combined suppression of ERD2a and ERD2b exaggerated R gene-mediated cell death. Nevertheless, silencing of ERD2a and/or ERD2b had no detectable effects on bacterial growth. Furthermore, VIGS of several putative ligands of ERD2a/2b, including the ER quality control (ERQC) component genes BiP, CRT3 and UGGT, had different effects on HR PCD induced by different pathogens. This indicates that immunity-related cell death pathways are separate with respect to the genetic requirements for these ERQC components. These results suggest that ERD2a and ERD2b function as ER luminal protein receptors to ensure ERQC and alleviate ER stress, thus affecting HR PCD during the plant innate immune response.
Collapse
Affiliation(s)
- Guoyong Xu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Overexpression of CHOP alone and in combination with chaperones is effective in improving antibody production in mammalian cells. Appl Microbiol Biotechnol 2012; 97:2531-9. [PMID: 22926643 DOI: 10.1007/s00253-012-4365-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/09/2012] [Accepted: 08/12/2012] [Indexed: 10/28/2022]
Abstract
Secretory capacities including folding and assembly are believed to be limiting factors in the establishment of mammalian cell lines producing high levels of recombinant therapeutic proteins. To achieve industrial success, it is also important to improve protein folding, assembly, and secretory processes in combination with increasing transcription and translation. Here, we identified the expression of CHOP/Gadd153 and GRP78, which are unfolded protein response (UPR)-related genes, correlated with recombinant antibody production in stable CHO cells. Subsequently, CHOP overexpression resulted in increasing recombinant antibody production in some mammalian cell lines, and in addition a threefold further enhancement was obtained by combining expression with UPR-related genes or ER chaperones in transient assays. Overexpression of CHOP had no effect on the biochemical characteristics of the product. These results suggest overexpression of CHOP and its combinations may be an effective method to efficiently select a single cell line with a high level of antibody production in the development of cell lines for manufacturing.
Collapse
|
41
|
Liebrand TW, Smit P, Abd-El-Haliem A, de Jonge R, Cordewener JH, America AH, Sklenar J, Jones AM, Robatzek S, Thomma BP, Tameling WI, Joosten MH. Endoplasmic reticulum-quality control chaperones facilitate the biogenesis of Cf receptor-like proteins involved in pathogen resistance of tomato. PLANT PHYSIOLOGY 2012; 159:1819-33. [PMID: 22649272 PMCID: PMC3425215 DOI: 10.1104/pp.112.196741] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/24/2012] [Indexed: 05/04/2023]
Abstract
Cf proteins are receptor-like proteins (RLPs) that mediate resistance of tomato (Solanum lycopersicum) to the foliar pathogen Cladosporium fulvum. These transmembrane immune receptors, which carry extracellular leucine-rich repeats that are subjected to posttranslational glycosylation, perceive effectors of the pathogen and trigger a defense response that results in plant resistance. To identify proteins required for the functionality of these RLPs, we performed immunopurification of a functional Cf-4-enhanced green fluorescent protein fusion protein transiently expressed in Nicotiana benthamiana, followed by mass spectrometry. The endoplasmic reticulum (ER) heat shock protein70 binding proteins (BiPs) and lectin-type calreticulins (CRTs), which are chaperones involved in ER-quality control, were copurifying with Cf-4-enhanced green fluorescent protein. The tomato and N. benthamiana genomes encode four BiP homologs and silencing experiments revealed that these BiPs are important for overall plant viability. For the three tomato CRTs, virus-induced gene silencing targeting the plant-specific CRT3a gene resulted in a significantly compromised Cf-4-mediated defense response and loss of full resistance to C. fulvum. We show that upon knockdown of CRT3a the Cf-4 protein accumulated, but the pool of Cf-4 protein carrying complex-type N-linked glycans was largely reduced. Together, our study on proteins required for Cf function reveals an important role for the CRT ER chaperone CRT3a in the biogenesis and functionality of this type of RLP involved in plant defense.
Collapse
Affiliation(s)
- Thomas W.H. Liebrand
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | - Patrick Smit
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | | | - Ronnie de Jonge
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | - Jan H.G. Cordewener
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | - Antoine H.P. America
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | - Jan Sklenar
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | - Alexandra M.E. Jones
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | - Silke Robatzek
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | - Bart P.H.J. Thomma
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | - Wladimir I.L. Tameling
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands (T.W.H.L., P.S., A.A.-E.-H., R.d.J., B.P.H.J.T., W.I.L.T., M.H.A.J.J.)
- Plant Research International, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands (J.H.G.C., A.H.P.A.)
- Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom (J.S., A.M.E.J., S.R.); and
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands (T.W.H.L., J.H.G.C., A.H.P.A., B.P.H.J.T., M.H.A.J.J.)
| | | |
Collapse
|
42
|
Jansen G, Määttänen P, Denisov AY, Scarffe L, Schade B, Balghi H, Dejgaard K, Chen LY, Muller WJ, Gehring K, Thomas DY. An interaction map of endoplasmic reticulum chaperones and foldases. Mol Cell Proteomics 2012; 11:710-23. [PMID: 22665516 DOI: 10.1074/mcp.m111.016550] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chaperones and foldases in the endoplasmic reticulum (ER) ensure correct protein folding. Extensive protein-protein interaction maps have defined the organization and function of many cellular complexes, but ER complexes are under-represented. Consequently, chaperone and foldase networks in the ER are largely uncharacterized. Using complementary ER-specific methods, we have mapped interactions between ER-lumenal chaperones and foldases and describe their organization in multiprotein complexes. We identify new functional chaperone modules, including interactions between protein-disulfide isomerases and peptidyl-prolyl cis-trans-isomerases. We have examined in detail a novel ERp72-cyclophilin B complex that enhances the rate of folding of immunoglobulin G. Deletion analysis and NMR reveal a conserved surface of cyclophilin B that interacts with polyacidic stretches of ERp72 and GRp94. Mutagenesis within this highly charged surface region abrogates interactions with its chaperone partners and reveals a new mechanism of ER protein-protein interaction. This ability of cyclophilin B to interact with different partners using the same molecular surface suggests that ER-chaperone/foldase partnerships may switch depending on the needs of different substrates, illustrating the flexibility of multichaperone complexes of the ER folding machinery.
Collapse
Affiliation(s)
- Gregor Jansen
- Department of Biochemistry, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lai CW, Otero JH, Hendershot LM, Snapp E. ERdj4 protein is a soluble endoplasmic reticulum (ER) DnaJ family protein that interacts with ER-associated degradation machinery. J Biol Chem 2012; 287:7969-78. [PMID: 22267725 DOI: 10.1074/jbc.m111.311290] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Protein localization within cells regulates accessibility for interactions with co-factors and substrates. The endoplasmic reticulum (ER) BiP co-factor ERdj4 is up-regulated by ER stress and has been implicated in ER-associated degradation (ERAD) of multiple unfolded secretory proteins. Several other ERdj family members tend to interact selectively with nascent proteins, presumably because those ERdj proteins associate with the Sec61 translocon that facilitates entry of nascent proteins into the ER. How ERdj4 selects and targets terminally misfolded proteins for destruction remains poorly understood. In this study, we determined properties of ERdj4 that might aid in this function. ERdj4 was reported to retain its signal sequence and to be resistant to mild detergent extraction, suggesting that it was an integral membrane protein. However, live cell photobleaching analyses of GFP-tagged ERdj4 revealed that the protein exhibits diffusion coefficients uncommonly high for an ER integral membrane protein and more similar to the mobility of a soluble luminal protein. Biochemical characterization established that the ERdj4 signal sequence is cleaved to yield a soluble protein. Importantly, we found that both endogenous and overexpressed ERdj4 associate with the integral membrane protein, Derlin-1. Our findings now directly link ERdj4 to the ERAD machinery and suggest a model in which ERjd4 could help recruit clients from throughout the ER to ERAD sites.
Collapse
Affiliation(s)
- Chunwei Walter Lai
- Department of Anatomy & Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
44
|
Emerging role of ER quality control in plant cell signal perception. Protein Cell 2012; 3:10-6. [PMID: 22259121 DOI: 10.1007/s13238-012-2004-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 12/26/2011] [Indexed: 12/13/2022] Open
Abstract
The endoplasmic reticulum quality control (ER-QC) is a conserved mechanism in surveillance of secreted signaling factors during cell-to-cell communication in eukaryotes. Recent data show that the ER-QC plays important roles in diverse cell-to-cell signaling processes during immune response, vegetative and reproductive development in plants. Pollen tube guidance is a precisely guided cell-cell communication process between the male and female gametophytes during plant reproduction. Recently, the female signal has been identified as small secreted peptides, but how the pollen tube responds to this signal is still unclear. In this review, we intend to summarize the role of ER-QC in plants and discuss the recent advances regarding our understanding of the mechanism of pollen tube response to the female signals.
Collapse
|
45
|
Abstract
The endoplasmic reticulum (ER) uses an elaborate surveillance system called the ER quality control (ERQC) system. The ERQC facilitates folding and modification of secretory and membrane proteins and eliminates terminally misfolded polypeptides through ER-associated degradation (ERAD) or autophagic degradation. This mechanism of ER protein surveillance is closely linked to redox and calcium homeostasis in the ER, whose balance is presumed to be regulated by a specific cellular compartment. The potential to modulate proteostasis and metabolism with chemical compounds or targeted siRNAs may offer an ideal option for the treatment of disease.
Collapse
|
46
|
Structural and functional interactions between the cholera toxin A1 subunit and ERdj3/HEDJ, a chaperone of the endoplasmic reticulum. Infect Immun 2011; 79:4739-47. [PMID: 21844235 DOI: 10.1128/iai.05503-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholera toxin (CT) is endocytosed and transported by vesicle carriers to the endoplasmic reticulum (ER). The catalytic CTA1 subunit then crosses the ER membrane and enters the cytosol, where it interacts with its Gsα target. The CTA1 membrane transversal involves the ER chaperone BiP, but few other host proteins involved with CTA1 translocation are known. BiP function is regulated by ERdj3, an ER-localized Hsp40 chaperone also known as HEDJ. ERdj3 can also influence protein folding and translocation by direct substrate binding. In this work, structural and functional assays were used to examine the putative interaction between ERdj3 and CTA1. Cell-based assays demonstrated that expression of a dominant negative ERdj3 blocks CTA1 translocation into the cytosol and CT intoxication. Binding assays with surface plasmon resonance demonstrated that monomeric ERdj3 interacts directly with CTA1. This interaction involved the A1(2) subdomain of CTA1 and was further dependent upon the overall structure of CTA1: ERdj3 bound to unfolded but not folded conformations of the isolated CTA1 subunit. This was consistent with the chaperone function of ERdj3, as was the ability of ERdj3 to mask the solvent-exposed hydrophobic residues of CTA1. Our data identify ERdj3 as a host protein involved with the CT intoxication process and provide new molecular details regarding CTA1-chaperone interactions.
Collapse
|
47
|
Svärd M, Biterova EI, Bourhis JM, Guy JE. The crystal structure of the human co-chaperone P58(IPK). PLoS One 2011; 6:e22337. [PMID: 21799829 PMCID: PMC3143134 DOI: 10.1371/journal.pone.0022337] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 06/24/2011] [Indexed: 12/02/2022] Open
Abstract
P58IPK is one of the endoplasmic reticulum- (ER-) localised DnaJ (ERdj) proteins which interact with the chaperone BiP, the mammalian ER ortholog of Hsp70, and are thought to contribute to the specificity and regulation of its diverse functions. P58IPK, expression of which is upregulated in response to ER stress, has been suggested to act as a co-chaperone, binding un- or misfolded proteins and delivering them to BiP. In order to give further insights into the functions of P58IPK, and the regulation of BiP by ERdj proteins, we have determined the crystal structure of human P58IPK to 3.0 Å resolution using a combination of molecular replacement and single wavelength anomalous diffraction. The structure shows the human P58IPK monomer to have a very elongated overall shape. In addition to the conserved J domain, P58IPK contains nine N-terminal tetratricopeptide repeat motifs, divided into three subdomains of three motifs each. The J domain is attached to the C-terminal end via a flexible linker, and the structure shows the conserved Hsp70-binding histidine-proline-aspartate (HPD) motif to be situated on the very edge of the elongated protein, 100 Å from the putative binding site for unfolded protein substrates. The residues that comprise the surface surrounding the HPD motif are highly conserved in P58IPK from other organisms but more varied between the human ERdj proteins, supporting the view that their regulation of different BiP functions is facilitated by differences in BiP-binding.
Collapse
Affiliation(s)
- Maria Svärd
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ekaterina I. Biterova
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jean-Marie Bourhis
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jodie E. Guy
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
48
|
Structural basis of an ERAD pathway mediated by the ER-resident protein disulfide reductase ERdj5. Mol Cell 2011; 41:432-44. [PMID: 21329881 DOI: 10.1016/j.molcel.2011.01.021] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 11/17/2010] [Accepted: 12/14/2010] [Indexed: 11/23/2022]
Abstract
ER-associated degradation (ERAD) is an ER quality-control process that eliminates terminally misfolded proteins. ERdj5 was recently discovered to be a key ER-resident PDI family member protein that accelerates ERAD by reducing incorrect disulfide bonds in misfolded glycoproteins recognized by EDEM1. We here solved the crystal structure of full-length ERdj5, thereby revealing that ERdj5 contains the N-terminal J domain and six tandem thioredoxin domains that can be divided into the N- and C-terminal clusters. Our systematic biochemical analyses indicated that two thioredoxin domains that constitute the C-terminal cluster form the highly reducing platform that interacts with EDEM1 and reduces EDEM1-recruited substrates, leading to their facilitated degradation. The pulse-chase experiment further provided direct evidence for the sequential movement of an ERAD substrate from calnexin to the downstream EDEM1-ERdj5 complex, and then to the retrotranslocation channel, probably through BiP. We present a detailed molecular view of how ERdj5 mediates ERAD in concert with EDEM1.
Collapse
|
49
|
Marcinowski M, Höller M, Feige MJ, Baerend D, Lamb DC, Buchner J. Substrate discrimination of the chaperone BiP by autonomous and cochaperone-regulated conformational transitions. Nat Struct Mol Biol 2011; 18:150-8. [PMID: 21217698 DOI: 10.1038/nsmb.1970] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 11/01/2010] [Indexed: 01/13/2023]
Abstract
The endoplasmic reticulum is the site of folding, assembly and quality control for proteins of the secretory pathway. The ATP-regulated Hsp70 chaperone BiP (heavy chain-binding protein), together with cochaperones, has important roles in all of these processes. The functional cycle of Hsp70s is determined by conformational transitions that are required for substrate binding and release. Here, we used the intrinsically disordered C(H)1 domain of antibodies as an authentic substrate protein and analyzed the conformational cycle of BiP by single-molecule and ensemble Förster resonance energy transfer (FRET) measurements. Nucleotide binding resulted in concerted domain movements of BiP. Conformational transitions of the lid domain allowed BiP to discriminate between peptide and protein substrates. A major BiP cochaperone in antibody folding, ERdj3, modulated the conformational space of BiP in a nucleotide-dependent manner, placing the lid subdomain in an open, protein-accepting state.
Collapse
|
50
|
Protein Quality Control, Retention, and Degradation at the Endoplasmic Reticulum. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 292:197-280. [DOI: 10.1016/b978-0-12-386033-0.00005-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|