1
|
Martinez-Marin D, Stroman GC, Fulton CJ, Pruitt K. Frizzled receptors: gatekeepers of Wnt signaling in development and disease. Front Cell Dev Biol 2025; 13:1599355. [PMID: 40376615 PMCID: PMC12078226 DOI: 10.3389/fcell.2025.1599355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/21/2025] [Indexed: 05/18/2025] Open
Abstract
Frizzled (FZD) receptors are a subset of G-protein-coupled receptors (GPCRs), the largest class of human cell surface receptors and a major target of FDA-approved drugs. Activated by Wnt ligands, FZDs regulate key cellular processes such as proliferation, differentiation, and polarity, positioning them at the intersection of developmental biology and disease, including cancer. Despite their significance, FZD signaling remains incompletely understood, particularly in distinguishing receptor-specific roles across canonical and non-canonical Wnt pathways. Challenges include defining ligand-receptor specificity, elucidating signal transduction mechanisms, and understanding the influence of post translational modifications and the cellular context. Structural dynamics, receptor trafficking, and non-canonical signaling contributions also remain areas of active investigation. Recent advances in structural biology, transcriptomics, and functional genomics are beginning to address these gaps, while emerging therapeutic approaches-such as small-molecule modulators and antibodies-highlight the potential of FZDs as drug targets. This review synthesizes current insights into FZD receptor biology, examines ongoing controversies, and outlines promising directions for future research and therapeutic development.
Collapse
Affiliation(s)
| | | | | | - Kevin Pruitt
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
2
|
Wang Y, Xia S, Teng W, Du Y, Xiao H, Wang G. Wnt-5a ameliorates sepsis-induced downregulation of renal AQP2 via the calcineurin signaling pathway. Clin Exp Nephrol 2025:10.1007/s10157-025-02664-1. [PMID: 40140207 DOI: 10.1007/s10157-025-02664-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND Aquaporin 2 (AQP2), a vasopressin-sensitive water channel in the renal collecting ducts, maintains body water homeostasis. Sepsis reduces AQP2 and vasopressin receptor 2 (V2R) levels, contributing to acute kidney injury. In a heritable nephrogenic diabetes insipidus mouse model with V2R mutation, Wnt-5a, a ligand for frizzled receptors (Fzds), enhances AQP2 expression and translocation through calcium/calmodulin/calcineurin signaling. However, the mechanism by which Wnt-5a reduces sepsis-induced AQP2 inhibition remains unclear. We assessed this mechanism and whether Wnt-5a alleviates sepsis-induced downregulation of renal AQP2. METHODS Our study used in vitro and in vivo approaches. To study AQP2 trafficking, lipopolysaccharide (LPS) was applied to mouse inner medullary collecting duct 3 (mIMCD3) cells in vitro; subsequently, phosphorylated AQP2 and apical AQP2 expression as well as calcineurin activity and its upstream regulators (endogenous Wnt-5a, Fzds, and intracellular calcium intensity) were examined. In vivo, cecal ligation and puncture (CLP) mice were used to assess AQP2 levels and urine osmolality as indicators of urinary concentration. RESULTS In mIMCD3 cells, LPS application was associated with reduced V2R expression, a vasopressin-irreversible reduction in AQP2, and increased Fzds turnover and Wnt-5a-stimulated intracellular calcium, enhancing calcineurin signaling. Subsequent application of Wnt-5a to LPS-exposed mIMCD3 cells prevented AQP2 reduction. Moreover, it increased phosphorylated AQP2 at residue Ser269 (Ser269-pAQP2) and decreased at Ser261-pAQP2 without affecting Ser256-pAQP2. These effects were reversed by the calcineurin inhibitor cyclosporin A. In CLP mice, Wnt-5a injection was associated with increased renal AQP2 and urine osmolality. CONCLUSION Wnt-5a attenuates sepsis-induced AQP2 downregulation through the calcineurin signaling pathway.
Collapse
Affiliation(s)
- Yuanlong Wang
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, No.95 Yongan Road, Beijing, 100050, China
| | - Shuai Xia
- Department of Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No.95 Yongan Road, Beijing, 100050, China
| | - Wei Teng
- Department of Radiology, Peking University Third Hospital, Peking University Health Science Center, No.49, Huayuan North Road, Beijing, 100191, China
| | - Yufan Du
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, No.95 Yongan Road, Beijing, 100050, China
| | - Hongli Xiao
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, No.95 Yongan Road, Beijing, 100050, China
| | - Guoxing Wang
- Department of Emergency Medicine, Beijing Friendship Hospital, Capital Medical University, No.95 Yongan Road, Beijing, 100050, China.
| |
Collapse
|
3
|
Saca VR, Huber T, Sakmar TP. G protein-coupled receptor-targeted proteolysis-targeting chimeras in cancer therapeutics. Mol Pharmacol 2025; 107:100013. [PMID: 40023512 DOI: 10.1016/j.molpha.2024.100013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/05/2024] [Indexed: 03/04/2025] Open
Abstract
G protein-coupled receptors (GPCRs) comprise a family of heptahelical membrane proteins that mediate intracellular and intercellular transmembrane signaling. Defects in GPCR signaling pathways are implicated in the pathophysiology of many diseases, including cardiovascular disease, endocrinopathies, immune disorders, and cancer. Although GPCRs are attractive drug targets, only a small number of Food and Drug Administration-approved anticancer therapeutics target GPCRs. Targeted protein degradation (TPD) technology allows for the direct modulation of the cellular expression level of a protein of interest. TPD methods such as proteolysis-targeting chimeras (PROTACs) use the ubiquitin-proteasome system to degrade a protein of interest selectively. Although the PROTAC system has not been widely applied to GPCRs and other membrane proteins, there is evidence that PROTACs or other TPD methods could be applied to the GPCRome. Current GPCR PROTACs show the feasibility of using PROTACs to degrade GPCRs; however, the degradation mechanism for some of these GPCR PROTACs is uncertain. Additional studies aimed at elucidating the degradation mechanism of GPCRs with PROTACs are necessary. Discovery of new allosteric intracellular small molecule binders of GPCRs will be required for the development of intracellularly oriented PROTACs. Promising early results in targeted degradation of GPCRs suggest that TPD drug discovery platforms will be useful in developing PROTACs targeting pathological GPCRs. SIGNIFICANCE STATEMENT: Aberrant signaling of G protein-coupled receptors (GPCRs) can contribute to the pathophysiology of cancer. Although GPCRs are generally highly attractive drug targets, many individual GPCRs are currently undrugged using traditional drug discovery approaches. Targeted protein degradation technologies, such as proteolysis-targeting chimeras, provide a new approach to drug discovery for targeting previously undruggable GPCRs relevant to the molecular pathophysiology of cancer.
Collapse
Affiliation(s)
- Victoria R Saca
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York; Tri-Institutional PhD Program in Chemical Biology, New York, New York
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York.
| |
Collapse
|
4
|
Hartmann H, Siddiqui GS, Bryant J, Robbins DJ, Weiss VL, Ahmed Y, Lee E. Wnt signalosomes: What we know that we do not know. Bioessays 2025; 47:e2400110. [PMID: 39520379 PMCID: PMC11755710 DOI: 10.1002/bies.202400110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Signaling through the Wnt/β-catenin pathway is relayed through three multiprotein complexes: (1) the membrane-associated signalosome, which includes the activated Wnt receptors, (2) the cytoplasmic destruction complex that regulates turnover of the transcriptional coactivator β-catenin, and (3) the nuclear enhanceosome that mediates pathway-specific transcription. Recent discoveries have revealed that Wnt receptor activities are tightly regulated to maintain proper tissue homeostasis and that aberrant receptor upregulation enhances Wnt signaling to drive tumorigenesis, highlighting the importance of signalosome control. These studies have focused on the detailed process by which Wnt ligands engage their coreceptors, LRP5/6 and Frizzled. However, the components that constitute the signalosome and the regulation of their assembly remain undefined. In this review, we discuss Wnt/β-catenin signalosome composition and the mechanisms that regulate signalosome assembly, including the role of biomolecular condensates and ubiquitylation. We also summarize the evidence for the presence of Wnt ligand-independent signalosome formation.
Collapse
Affiliation(s)
- Heather Hartmann
- Department of PathologyMicrobiology, and ImmunologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Ghalia Saad Siddiqui
- Department of Molecular and Systems BiologyGeisel School of MedicineDartmouth CollegeHanoverNew HampshireUSA
| | - Jamal Bryant
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - David J. Robbins
- Department of OncologyLombardi Comprehensive Cancer CenterGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Vivian L. Weiss
- Department of PathologyMicrobiology, and ImmunologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Yashi Ahmed
- Department of Molecular and Systems BiologyGeisel School of MedicineDartmouth CollegeHanoverNew HampshireUSA
| | - Ethan Lee
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
5
|
Nerubenko E, Ryazanov P, Kuritsyna N, Paltsev A, Ivanova O, Grineva E, Kostareva A, Dmitrieva R, Tsoy U. Cushing's Disease Manifestation in USP8-Mutated Corticotropinoma May Be Mediated by Interactions Between WNT Signaling and SST Trafficking. Int J Mol Sci 2024; 25:12886. [PMID: 39684597 DOI: 10.3390/ijms252312886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
In the current work, we aimed to evaluate the association of clinical data of Cushing's disease (CD) patients with USP8 mutation status and to study USP8-related molecular mechanisms connected to the regulation of corticotropinoma growth and activity. 35 CD patients were enrolled; the sequencing of exon 14 in USP8 revealed variants in eighteen adenomas, two of which were described for the first time in CD. USP8 variants were more common in women (94% vs. 76%; p = 0.001), and microadenomas and tumor recurrence were prevalent in the USP8-mutant group (44% vs. 29%; p = 0.04 and 44% vs. 22%; p = 0.0015). Preoperative ACTH and serum cortisol did not differ in the USP8-WT and USP8-mutant patients. All USP8-mutant adenomas were SST5-positive, and 73% of them were double-positive (SST5+/SST2+). A total of 50% of USP8-WT adenomas were double-negative (SST5-/SST2-), and 40% of them were SST5-positive. Analysis of transcriptome was performed for nine USP8-mutant and six USP8-WT adenomas and revealed the that the bidirectional dysregulation of Wnt signaling, including both the agonist RSPO2 and antagonist SFRP1, in the USP8-mutant corticotropinomas was downregulated. These alterations may indicate the existence of regulatory connections between USP8 enzyme activity, Wnt signaling, EGFR signaling and somatostatin receptors' trafficking, which can explain, at least in part, the clinical manifestations of CD in patients with corticotropinomas harboring USP8 variants.
Collapse
Affiliation(s)
- Elena Nerubenko
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| | - Pavel Ryazanov
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| | - Natalia Kuritsyna
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| | - Artem Paltsev
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| | - Oksana Ivanova
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| | - Elena Grineva
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| | - Anna Kostareva
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| | - Renata Dmitrieva
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| | - Uliana Tsoy
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| |
Collapse
|
6
|
Ensing J, Ide AD, Gilliland C, Tsurho V, Caza I, Stratman AN, Lanning NJ, Grainger S. The E3 Ubiquitin Ligase Trip12 attenuates Wnt9a/Fzd9b signaling during hematopoietic stem cell development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620301. [PMID: 39484584 PMCID: PMC11527353 DOI: 10.1101/2024.10.25.620301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Wnt signaling is essential for both the development and homeostasis of diverse cellular lineages, including hematopoietic stem cells. Organism-wide, Wnt signals are tightly regulated, as overactivation of the pathway can lead to tumorigenesis. Although numerous Wnt ligands and Frizzled (Fzd) receptors exist, how particular Wnt/Fzd pairings are established and how their signals are regulated is poorly understood. We have previously identified the requirements of the cognate pairing of Wnt9a and Fzd9b for early hematopoietic stem cell proliferation. However, the specific signals governing activation, but equally important, the molecular mechanisms required to turn the signal 'off,' are unknown. Here, we show that the E3 ubiquitin ligase Trip12 (thyroid hormone receptor interactor 12) is specifically required to ubiquitinate the third intracellular loop of Fzd9b at K437, targeting it for lysosomal degradation. In contrast to other ubiquitin ligases described to regulate the cell surface availability of multiple Fzds broadly, our data indicate that Trip12 is selective for Fzd9b. We further demonstrate that this occurs through ubiquitination at K437 of Fzd9b in the third intracellular loop, ultimately leading to a decrease in Fzd9b receptor availability and in Wnt9a/Fzd9b signaling that impacts hematopoietic stem cell proliferation in zebrafish. Our results point to specific mechanisms driving the availability of different Fzd receptors. Determining how particular Fzd abundance is regulated at the membrane will be critical to developing specific therapies for human intervention.
Collapse
Affiliation(s)
- Jessica Ensing
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID: SCR_021956
| | - Amber D. Ide
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID: SCR_021956
| | - Carla Gilliland
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID: SCR_021956
| | - Visakuo Tsurho
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID: SCR_021956
| | - Isabella Caza
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID: SCR_021956
| | - Amber N. Stratman
- Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA RRID: SCR_000343
| | - Nathan J. Lanning
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID: SCR_021956
| | - Stephanie Grainger
- Department of Cell Biology, Van Andel Institute, Grand Rapids, Michigan, 49503, USA RRID: SCR_021956
| |
Collapse
|
7
|
Zheng S, Sheng R. The emerging understanding of Frizzled receptors. FEBS Lett 2024; 598:1939-1954. [PMID: 38744670 DOI: 10.1002/1873-3468.14903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 05/16/2024]
Abstract
The Wnt signaling pathway is a huge network governing development and homeostasis, dysregulation of which is associated with a myriad of human diseases. The Frizzled receptor (FZD) family comprises receptors for Wnt ligands, which indispensably mediate Wnt signaling jointly with a variety of co-receptors. Studies of FZDs have revealed that 10 FZD subtypes play diverse roles in physiological processes. At the same time, dysregulation of FZDs is also responsible for various diseases, in particular human cancers. Enormous attention has been paid to the molecular understanding and targeted therapy of FZDs in the past decade. In this review, we summarize the latest research on FZD structure, function, regulation and targeted therapy, providing a basis for guiding future research in this field.
Collapse
Affiliation(s)
- Shaoqin Zheng
- College of Life and Health Science, Northeastern University, Shenyang, China
| | - Ren Sheng
- College of Life and Health Science, Northeastern University, Shenyang, China
| |
Collapse
|
8
|
Nag JK, Appasamy P, Malka H, Sedley S, Bar-Shavit R. New Target(s) for RNF43 Regulation: Implications for Therapeutic Strategies. Int J Mol Sci 2024; 25:8083. [PMID: 39125653 PMCID: PMC11311281 DOI: 10.3390/ijms25158083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Cancer cells depend on specific oncogenic pathways or present a genetic alteration that leads to a particular disturbance. Still, personalized and targeted biological therapy remains challenging, with current efforts generally yielding disappointing results. Carefully assessing onco-target molecular pathways can, however, potently assist with such efforts for the selection of patient populations that would best respond to a given drug treatment. RNF43, an E3 ubiquitin ligase that negatively regulates Wnt/frizzled (FZD) receptors by their ubiquitination, internalization, and degradation, controls a key pathway in cancer. Recently, additional target proteins of RNF43 were described, including p85 of the PI3K/AKT/mTOR signaling pathway and protease-activated receptor 2 (PAR2), a G-protein-coupled receptor that potently induces β-catenin stabilization, independent of Wnts. RNF43 mutations with impaired E3 ligase activity were found in several types of cancers (e.g., gastrointestinal system tumors and endometrial and ovarian cancer), pointing to a high dependency on FZD receptors and possibly PAR2 and the PI3K/AKT/mTOR signaling pathway. The development of drugs toward these targets is essential for improved treatment of cancer patients.
Collapse
Affiliation(s)
| | | | | | | | - Rachel Bar-Shavit
- Sharett Institute of Oncology, Hadassah Medical Center, Hebrew University, Jerusalem 91120, Israel; (J.K.N.); (P.A.); (H.M.); (S.S.)
| |
Collapse
|
9
|
Tsukiyama T. New insights in ubiquitin-dependent Wnt receptor regulation in tumorigenesis. In Vitro Cell Dev Biol Anim 2024; 60:449-465. [PMID: 38383910 PMCID: PMC11126518 DOI: 10.1007/s11626-024-00855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
Wnt signaling plays a crucial role in embryonic development and homeostasis maintenance. Delicate and sensitive fine-tuning of Wnt signaling based on the proper timings and positions is required to balance cell proliferation and differentiation and maintain individual health. Therefore, homeostasis is broken by tissue hypoplasia or tumor formation once Wnt signal dysregulation disturbs the balance of cell proliferation. The well-known regulatory mechanism of Wnt signaling is the molecular reaction associated with the cytoplasmic accumulation of effector β-catenin. In addition to β-catenin, most Wnt effector proteins are also regulated by ubiquitin-dependent modification, both qualitatively and quantitatively. This review will explain the regulation of the whole Wnt signal in four regulatory phases, as well as the different ubiquitin ligases and the function of deubiquitinating enzymes in each phase. Along with the recent results, the mechanism by which RNF43 negatively regulates the surface expression of Wnt receptors, which has recently been well understood, will be detailed. Many RNF43 mutations have been identified in pancreatic and gastrointestinal cancers and examined for their functional alteration in Wnt signaling. Several mutations facilitate or activate the Wnt signal, reversing the RNF43 tumor suppressor function into an oncogene. RNF43 may simultaneously play different roles in classical multistep tumorigenesis, as both wild-type and mutant RNF43 suppress the p53 pathway. We hope that the knowledge obtained from further research in RNF43 will be applied to cancer treatment in the future despite the fully unclear function of RNF43.
Collapse
Affiliation(s)
- Tadasuke Tsukiyama
- Department of Biochemistry, Graduate School of Medicine, Hokkaido University, 15NW7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.
| |
Collapse
|
10
|
Ng VH, Spencer Z, Neitzel LR, Nayak A, Loberg MA, Shen C, Kassel SN, Kroh HK, An Z, Anthony CC, Bryant JM, Lawson A, Goldsmith L, Benchabane H, Hansen AG, Li J, D'Souza S, Lebensohn AM, Rohatgi R, Weiss WA, Weiss VL, Williams C, Hong CC, Robbins DJ, Ahmed Y, Lee E. The USP46 complex deubiquitylates LRP6 to promote Wnt/β-catenin signaling. Nat Commun 2023; 14:6173. [PMID: 37798301 PMCID: PMC10556042 DOI: 10.1038/s41467-023-41836-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
The relative abundance of Wnt receptors plays a crucial role in controlling Wnt signaling in tissue homeostasis and human disease. While the ubiquitin ligases that ubiquitylate Wnt receptors are well-characterized, the deubiquitylase that reverses these reactions remains unclear. Herein, we identify USP46, UAF1, and WDR20 (USP46 complex) as positive regulators of Wnt signaling in cultured human cells. We find that the USP46 complex is similarly required for Wnt signaling in Xenopus and zebrafish embryos. We demonstrate that Wnt signaling promotes the association between the USP46 complex and cell surface Wnt coreceptor, LRP6. Knockdown of USP46 decreases steady-state levels of LRP6 and increases the level of ubiquitylated LRP6. In contrast, overexpression of the USP46 complex blocks ubiquitylation of LRP6 by the ubiquitin ligases RNF43 and ZNFR3. Size exclusion chromatography studies suggest that the size of the USP46 cytoplasmic complex increases upon Wnt stimulation. Finally, we show that USP46 is essential for Wnt-dependent intestinal organoid viability, likely via its role in LRP6 receptor homeostasis. We propose a model in which the USP46 complex increases the steady-state level of cell surface LRP6 and facilitates the assembly of LRP6 into signalosomes via a pruning mechanism that removes sterically hindering ubiquitin chains.
Collapse
Affiliation(s)
- Victoria H Ng
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Zachary Spencer
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, 03755, USA
| | - Leif R Neitzel
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Anmada Nayak
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Matthew A Loberg
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Chen Shen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Sara N Kassel
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Heather K Kroh
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Zhenyi An
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94158, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Christin C Anthony
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Jamal M Bryant
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Amanda Lawson
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Lily Goldsmith
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Hassina Benchabane
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, 03755, USA
| | - Amanda G Hansen
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
- STEMCELL Technologies, 1618 Station Street, Vancouver, BC, V6A 1B6, Canada
| | - Jingjing Li
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Starina D'Souza
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Andres M Lebensohn
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rajat Rohatgi
- Departments of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - William A Weiss
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94158, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Vivian L Weiss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Charles Williams
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Charles C Hong
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - David J Robbins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, 03755, USA.
| | - Ethan Lee
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
11
|
Mauri S, Bernardo G, Martinez A, Favaro M, Trevisan M, Cobraiville G, Fillet M, Caicci F, Whitworth AJ, Ziviani E. USP8 Down-Regulation Promotes Parkin-Independent Mitophagy in the Drosophila Brain and in Human Neurons. Cells 2023; 12:cells12081143. [PMID: 37190052 DOI: 10.3390/cells12081143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Stress-induced mitophagy, a tightly regulated process that targets dysfunctional mitochondria for autophagy-dependent degradation, mainly relies on two proteins, PINK1 and Parkin, which genes are mutated in some forms of familiar Parkinson's Disease (PD). Upon mitochondrial damage, the protein kinase PINK1 accumulates on the organelle surface where it controls the recruitment of the E3-ubiquitin ligase Parkin. On mitochondria, Parkin ubiquitinates a subset of mitochondrial-resident proteins located on the outer mitochondrial membrane, leading to the recruitment of downstream cytosolic autophagic adaptors and subsequent autophagosome formation. Importantly, PINK1/Parkin-independent mitophagy pathways also exist that can be counteracted by specific deubiquitinating enzymes (DUBs). Down-regulation of these specific DUBs can presumably enhance basal mitophagy and be beneficial in models in which the accumulation of defective mitochondria is implicated. Among these DUBs, USP8 is an interesting target because of its role in the endosomal pathway and autophagy and its beneficial effects, when inhibited, in models of neurodegeneration. Based on this, we evaluated autophagy and mitophagy levels when USP8 activity is altered. We used genetic approaches in D. melanogaster to measure autophagy and mitophagy in vivo and complementary in vitro approaches to investigate the molecular pathway that regulates mitophagy via USP8. We found an inverse correlation between basal mitophagy and USP8 levels, in that down-regulation of USP8 correlates with increased Parkin-independent mitophagy. These results suggest the existence of a yet uncharacterized mitophagic pathway that is inhibited by USP8.
Collapse
Affiliation(s)
- Sofia Mauri
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Greta Bernardo
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Aitor Martinez
- MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK
| | | | - Marta Trevisan
- Department of Molecular Medicine (DMM), University of Padova, 35121 Padova, Italy
| | - Gael Cobraiville
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), Quartier Hopital, University of Liege, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), Quartier Hopital, University of Liege, Avenue Hippocrate 15, 4000 Liege, Belgium
| | - Federico Caicci
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Alexander J Whitworth
- MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK
| | - Elena Ziviani
- Department of Biology, University of Padova, 35121 Padova, Italy
| |
Collapse
|
12
|
Craig SEL, Michalski MN, Williams BO. Got WNTS? Insight into bone health from a WNT perspective. Curr Top Dev Biol 2023; 153:327-346. [PMID: 36967199 DOI: 10.1016/bs.ctdb.2023.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
WNT signaling, essential for many aspects of development, is among the most commonly altered pathways associated with human disease. While initially studied in cancer, dysregulation of WNT signaling has been determined to be essential for skeletal development and the maintenance of bone health throughout life. In this review, we discuss the role of Wnt signaling in bone development and disease with a particular focus on two areas. First, we discuss the roles of WNT signaling pathways in skeletal development, with an emphasis on congenital and idiopathic skeletal syndromes and diseases that are associated with genetic variations in WNT signaling components. Next, we cover a topic that has long been an interest of our laboratory, how high and low levels of WNT signaling affects the establishment and maintenance of healthy bone mass. We conclude with a discussion of the status of WNT-based therapeutics in the treatment of skeletal disease.
Collapse
Affiliation(s)
- Sonya E L Craig
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Megan N Michalski
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Bart O Williams
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States.
| |
Collapse
|
13
|
Tang X, Bian J, Li Z. Post-Translational Modifications in GPCR Internalization. Am J Physiol Cell Physiol 2022; 323:C84-C94. [PMID: 35613355 DOI: 10.1152/ajpcell.00015.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors that serve as the most important drug targets. Classically, GPCR internalization has been considered to lead to receptor desensitization. However, many studies over the past decade have reported that internalized membrane receptors can trigger distinct signal activation. The "internalized activation" provides a completely new understanding for the receptor internalization, the mechanism of physiology/pathology and novel drug targets for precision medicine. GPCR internalization undergoes a series of strict regulations, especially by post-translational modifications (PTMs). Here, this review summarizes different PTMs in GPCR internalization and analyzes their significance in GPCR internalization dynamics, internalization routes, post-internalization fates and related diseases, which will offer new insights into the regulatory mechanism of GPCR signaling and novel drug targets for precision medicine.
Collapse
Affiliation(s)
- Xueqing Tang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Jingwei Bian
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Zijian Li
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China.,Department of Pharmacy, Peking University Third Hospital, Beijing, China
| |
Collapse
|
14
|
Mathieu J, Michel-Hissier P, Boucherit V, Huynh JR. The deubiquitinase USP8 targets ESCRT-III to promote incomplete cell division. Science 2022; 376:818-823. [PMID: 35587967 DOI: 10.1126/science.abg2653] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In many vertebrate and invertebrate organisms, gametes develop within groups of interconnected cells called germline cysts formed by several rounds of incomplete divisions. We found that loss of the deubiquitinase USP8 gene in Drosophila can transform incomplete divisions of germline cells into complete divisions. Conversely, overexpression of USP8 in germline stem cells is sufficient for the reverse transformation from complete to incomplete cytokinesis. The ESCRT-III proteins CHMP2B and Shrub/CHMP4 are targets of USP8 deubiquitinating activity. In Usp8 mutant sister cells, ectopic recruitment of ESCRT proteins at intercellular bridges causes cysts to break apart. A Shrub/CHMP4 variant that cannot be ubiquitinated does not localize at abscission bridges and cannot complete abscission. Our results uncover ubiquitination of ESCRT-III as a major switch between two types of cell division.
Collapse
Affiliation(s)
- Juliette Mathieu
- Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, CNRS, Inserm, Paris, France
| | - Pascale Michel-Hissier
- Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, CNRS, Inserm, Paris, France
| | - Virginie Boucherit
- Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, CNRS, Inserm, Paris, France
| | - Jean-René Huynh
- Center for Interdisciplinary Research in Biology, Collège de France, PSL Research University, CNRS, Inserm, Paris, France
| |
Collapse
|
15
|
Cho AR, Sul HJ, Kim YJ, Kim B, Zang DY. RNF43 R117fs mutant positively regulates Wnt/β-catenin signaling by failing to internalize FZD expressed on the cell surface. Sci Rep 2022; 12:7013. [PMID: 35487932 PMCID: PMC9054848 DOI: 10.1038/s41598-022-10868-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/14/2022] [Indexed: 11/27/2022] Open
Abstract
RING finger protein 43 (RNF43) encodes the transmembrane E3 ubiquitin ligase, which targets the Wnt receptor Frizzled (FZD). RNF43 mutations have been discovered in various human cancers including colon, pancreatic, stomach, ovarian, and liver cancers. Functional studies on RNF43 missense mutations have shown that they negatively regulate Wnt signaling; however, there are few functional studies on RNF43 frameshift mutations. In this study, we showed that R117fs and P441fs mutants enhanced Wnt/β-catenin signaling, whereas Q409fs and G659fs mutants retained the ability to suppress Wnt/β-catenin signaling. Specifically, R117fs was unable to ubiquitinate FZD5 due to lack of the RING domain, although it was able to interact with FZD5. Immunofluorescence showed that R117fs failed to internalize FZD5 expressed on the cell surface. We also showed that LGK974, a potent Wnt inhibitor, decreased the Wnt/β-catenin activity by R117fs and P441fs mutations. Together, these results demonstrate that RNF43 frameshift mutations retain normal functionality; thus, targeted anti-cancer therapy can be developed according to the mutation type of RNF43.
Collapse
Affiliation(s)
- A-Ri Cho
- Hallym Translational Research Institute, Hallym University Sacred Heart Hospital, Anyang-si, 14054, Republic of Korea
| | - Hee Jung Sul
- Hallym Translational Research Institute, Hallym University Sacred Heart Hospital, Anyang-si, 14054, Republic of Korea
| | - Yoo Jin Kim
- Hallym Translational Research Institute, Hallym University Sacred Heart Hospital, Anyang-si, 14054, Republic of Korea
| | - Bohyun Kim
- Hallym Translational Research Institute, Hallym University Sacred Heart Hospital, Anyang-si, 14054, Republic of Korea
| | - Dae Young Zang
- Hallym Translational Research Institute, Hallym University Sacred Heart Hospital, Anyang-si, 14054, Republic of Korea. .,Division of Hematology-Oncology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, 22, Gwanpyeong-ro 170, beon-gil, Dongan-gu, Anyang‑si, Gyeonggi‑do, 14068, Republic of Korea.
| |
Collapse
|
16
|
Molecular basis of ubiquitin-specific protease 8 autoinhibition by the WW-like domain. Commun Biol 2021; 4:1272. [PMID: 34750505 PMCID: PMC8576004 DOI: 10.1038/s42003-021-02802-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/22/2021] [Indexed: 12/26/2022] Open
Abstract
Ubiquitin-specific protease 8 (USP8) is a deubiquitinating enzyme involved in multiple membrane trafficking pathways. The enzyme activity is inhibited by binding to 14-3-3 proteins. Mutations in the 14-3-3-binding motif in USP8 are related to Cushing’s disease. However, the molecular basis of USP8 activity regulation remains unclear. This study identified amino acids 645–684 of USP8 as an autoinhibitory region, which might interact with the catalytic USP domain, as per the results of pull-down and single-molecule FRET assays performed in this study. In silico modelling indicated that the region forms a WW-like domain structure, plugs the catalytic cleft, and narrows the entrance to the ubiquitin-binding pocket. Furthermore, 14-3-3 inhibited USP8 activity partly by enhancing the interaction between the WW-like and USP domains. These findings provide the molecular basis of USP8 autoinhibition via the WW-like domain. Moreover, they suggest that the release of autoinhibition may underlie Cushing’s disease due to USP8 mutations. In order to advance our understanding of the regulation of Ubiquitin-specific protease 8 (USP8), which is known to play a role in Cushing’s Disease, Kakihara et al identify and characterise amino acids 645–684 of USP8, which serve as an autoinhibitory region. Their pull-down and single-molecule FRET analysis, as well as in silico modelling, suggest that the release of USP8 autoinhibition may underlie Cushing’s disease.
Collapse
|
17
|
Chaugule S, Kim JM, Yang YS, Knobeloch KP, He X, Shim JH. Deubiquitinating Enzyme USP8 Is Essential for Skeletogenesis by Regulating Wnt Signaling. Int J Mol Sci 2021; 22:10289. [PMID: 34638628 PMCID: PMC8508692 DOI: 10.3390/ijms221910289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022] Open
Abstract
Disturbance in a differentiation program of skeletal stem cells leads to indecorous skeletogenesis. Growing evidence suggests that a fine-tuning of ubiquitin-mediated protein degradation is crucial for skeletal stem cells to maintain their stemness and osteogenic potential. Here, we demonstrate that the deubiquitinating enzyme (DUB) ubiquitin-specific protease 8 (USP8) stabilizes the Wnt receptor frizzled 5 (FZD5) by preventing its lysosomal degradation. This pathway is essential for Wnt/β-catenin signaling and the differentiation of osteoprogenitors to mature osteoblasts. Accordingly, deletion of USP8 in osteoprogenitors (Usp8Osx) resulted in a near-complete blockade in skeletal mineralization, similar to that seen in mice with defective Wnt/β-catenin signaling. Likewise, transplanting USP8-deficient osteoprogenitors under the renal capsule in wild-type secondary hosts did not to induce bone formation. Collectively, this study unveils an essential role for the DUB USP8 in Wnt/β-catenin signaling in osteoprogenitors and osteogenesis during skeletal development.
Collapse
Affiliation(s)
- Sachin Chaugule
- Shim Lab, Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (S.C.); (J.-M.K.); (Y.-S.Y.)
| | - Jung-Min Kim
- Shim Lab, Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (S.C.); (J.-M.K.); (Y.-S.Y.)
| | - Yeon-Suk Yang
- Shim Lab, Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (S.C.); (J.-M.K.); (Y.-S.Y.)
| | - Klaus-Peter Knobeloch
- Institute of Neuropathology, Medical Faculty, University of Freiburg, 79106 Freiburg, Germany;
| | - Xi He
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Department of Neurology, Harvard Medical School, Boston, MA 02115, USA;
| | - Jae-Hyuck Shim
- Shim Lab, Division of Rheumatology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; (S.C.); (J.-M.K.); (Y.-S.Y.)
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
18
|
Pascual-Vargas P, Salinas PC. A Role for Frizzled and Their Post-Translational Modifications in the Mammalian Central Nervous System. Front Cell Dev Biol 2021; 9:692888. [PMID: 34414184 PMCID: PMC8369345 DOI: 10.3389/fcell.2021.692888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/04/2021] [Indexed: 12/02/2022] Open
Abstract
The Wnt pathway is a key signalling cascade that regulates the formation and function of neuronal circuits. The main receptors for Wnts are Frizzled (Fzd) that mediate diverse functions such as neurogenesis, axon guidance, dendritogenesis, synapse formation, and synaptic plasticity. These processes are crucial for the assembly of functional neuronal circuits required for diverse functions ranging from sensory and motor tasks to cognitive performance. Indeed, aberrant Wnt-Fzd signalling has been associated with synaptic defects during development and in neurodegenerative conditions such as Alzheimer's disease. New studies suggest that the localisation and stability of Fzd receptors play a crucial role in determining Wnt function. Post-translational modifications (PTMs) of Fzd are emerging as an important mechanism that regulates these Wnt receptors. However, only phosphorylation and glycosylation have been described to modulate Fzd function in the central nervous system (CNS). In this review, we discuss the function of Fzd in neuronal circuit connectivity and how PTMs contribute to their function. We also discuss other PTMs, not yet described in the CNS, and how they might modulate the function of Fzd in neuronal connectivity. PTMs could modulate Fzd function by affecting Fzd localisation and stability at the plasma membrane resulting in local effects of Wnt signalling, a feature particularly important in polarised cells such as neurons. Our review highlights the importance of further studies into the role of PTMs on Fzd receptors in the context of neuronal connectivity.
Collapse
Affiliation(s)
| | - Patricia C. Salinas
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
19
|
Feng D, Wang J, Yang W, Li J, Lin X, Zha F, Wang X, Ma L, Choi NT, Mii Y, Takada S, Huen MSY, Guo Y, Zhang L, Gao B. Regulation of Wnt/PCP signaling through p97/VCP-KBTBD7-mediated Vangl ubiquitination and endoplasmic reticulum-associated degradation. SCIENCE ADVANCES 2021; 7:7/20/eabg2099. [PMID: 33990333 PMCID: PMC8121430 DOI: 10.1126/sciadv.abg2099] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/25/2021] [Indexed: 05/12/2023]
Abstract
The four-pass transmembrane proteins Vangl1 and Vangl2 are dedicated core components of Wnt/planar cell polarity (Wnt/PCP) signaling that critically regulate polarized cell behaviors in many morphological and physiological processes. Here, we found that the abundance of Vangl proteins is tightly controlled by the ubiquitin-proteasome system through endoplasmic reticulum-associated degradation (ERAD). The key ERAD component p97/VCP directly binds to Vangl at a highly conserved VCP-interacting motif and recruits the E3 ligase KBTBD7 via its UBA-UBX adaptors to promote Vangl ubiquitination and ERAD. We found that Wnt5a/CK1 prevents Vangl ubiquitination and ERAD by inducing Vangl phosphorylation, which facilitates Vangl export from the ER to the plasma membrane. We also provide in vivo evidence that KBTBD7 regulates convergent extension during zebrafish gastrulation and functions as a tumor suppressor in breast cancer by promoting Vangl degradation. Our findings reveal a previously unknown regulatory mechanism of Wnt/PCP signaling through the p97/VCP-KBTBD7-mediated ERAD pathway.
Collapse
Affiliation(s)
- Di Feng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - Jin Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - Wei Yang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - Jingyu Li
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Xiaochen Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Fangzi Zha
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xiaolu Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Luyao Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Nga Ting Choi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| | - Yusuke Mii
- Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan
| | - Shinji Takada
- Exploratory Research Center on Life and Living Systems (ExCELLS) and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
| | - Michael S Y Huen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yusong Guo
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Liang Zhang
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Bo Gao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen, China
| |
Collapse
|
20
|
Tsukiyama T, Koo BK, Hatakeyama S. Post-translational Wnt receptor regulation: Is the fog slowly clearing?: The molecular mechanism of RNF43/ZNRF3 ubiquitin ligases is not yet fully elucidated and still controversial. Bioessays 2021; 43:e2000297. [PMID: 33569855 DOI: 10.1002/bies.202000297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/30/2022]
Abstract
Wnt signaling plays pivotal roles during our entire lives, from conception to death, through the regulation of morphogenesis in developing embryos and the maintenance of tissue homeostasis in adults. The regulation of Wnt signaling occurs on several levels: at the receptor level on the plasma membrane, at the β-catenin protein level in the cytoplasm, and through transcriptional regulation in the nucleus. Several recent studies have focused on the mechanisms of Wnt receptor regulation, following the discovery that the Wnt receptor frizzled (Fzd) is a target of the ubiquitin ligases, RNF43 and ZNRF3. RNF43 and ZNRF3 are homologous genes that are mutated in several cancers. The details underlying their mechanism of action continue to unfold, while at the same time raising many new questions. In this review, we discuss advances and controversies in our understanding of Wnt receptor regulation.
Collapse
Affiliation(s)
- Tadasuke Tsukiyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
21
|
Patwardhan A, Cheng N, Trejo J. Post-Translational Modifications of G Protein-Coupled Receptors Control Cellular Signaling Dynamics in Space and Time. Pharmacol Rev 2021; 73:120-151. [PMID: 33268549 PMCID: PMC7736832 DOI: 10.1124/pharmrev.120.000082] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family comprising >800 signaling receptors that regulate numerous cellular and physiologic responses. GPCRs have been implicated in numerous diseases and represent the largest class of drug targets. Although advances in GPCR structure and pharmacology have improved drug discovery, the regulation of GPCR function by diverse post-translational modifications (PTMs) has received minimal attention. Over 200 PTMs are known to exist in mammalian cells, yet only a few have been reported for GPCRs. Early studies revealed phosphorylation as a major regulator of GPCR signaling, whereas later reports implicated a function for ubiquitination, glycosylation, and palmitoylation in GPCR biology. Although our knowledge of GPCR phosphorylation is extensive, our knowledge of the modifying enzymes, regulation, and function of other GPCR PTMs is limited. In this review we provide a comprehensive overview of GPCR post-translational modifications with a greater focus on new discoveries. We discuss the subcellular location and regulatory mechanisms that control post-translational modifications of GPCRs. The functional implications of newly discovered GPCR PTMs on receptor folding, biosynthesis, endocytic trafficking, dimerization, compartmentalized signaling, and biased signaling are also provided. Methods to detect and study GPCR PTMs as well as PTM crosstalk are further highlighted. Finally, we conclude with a discussion of the implications of GPCR PTMs in human disease and their importance for drug discovery. SIGNIFICANCE STATEMENT: Post-translational modification of G protein-coupled receptors (GPCRs) controls all aspects of receptor function; however, the detection and study of diverse types of GPCR modifications are limited. A thorough understanding of the role and mechanisms by which diverse post-translational modifications regulate GPCR signaling and trafficking is essential for understanding dysregulated mechanisms in disease and for improving and refining drug development for GPCRs.
Collapse
Affiliation(s)
- Anand Patwardhan
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - Norton Cheng
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| | - JoAnn Trejo
- Department of Pharmacology and the Biomedical Sciences Graduate Program, School of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
22
|
Kaushal K, Ramakrishna S. Deubiquitinating Enzyme-Mediated Signaling Networks in Cancer Stem Cells. Cancers (Basel) 2020; 12:E3253. [PMID: 33158118 PMCID: PMC7694198 DOI: 10.3390/cancers12113253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) have both the capacity for self-renewal and the potential to differentiate and contribute to multiple tumor properties, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. Thus, CSCs are considered to be promising therapeutic targets for cancer therapy. The function of CSCs can be regulated by ubiquitination and deubiquitination of proteins related to the specific stemness of the cells executing various stem cell fate choices. To regulate the balance between ubiquitination and deubiquitination processes, the disassembly of ubiquitin chains from specific substrates by deubiquitinating enzymes (DUBs) is crucial. Several key developmental and signaling pathways have been shown to play essential roles in this regulation. Growing evidence suggests that overactive or abnormal signaling within and among these pathways may contribute to the survival of CSCs. These signaling pathways have been experimentally shown to mediate various stem cell properties, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation. In this review, we focus on the DUBs involved in CSCs signaling pathways, which are vital in regulating their stem-cell fate determination.
Collapse
Affiliation(s)
- Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea;
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea;
- College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
23
|
Chen M, Amado N, Tan J, Reis A, Ge M, Abreu JG, He X. TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis. eLife 2020; 9:e56793. [PMID: 32924931 PMCID: PMC7521923 DOI: 10.7554/elife.56793] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/11/2020] [Indexed: 12/28/2022] Open
Abstract
Wnt signaling through the Frizzled (FZD) family of serpentine receptors is essential for embryogenesis and homeostasis, and stringent control of the FZD protein level is critical for stem cell regulation. Through CRISPR/Cas9 genome-wide screening in human cells, we identified TMEM79/MATTRIN, an orphan multi-span transmembrane protein, as a specific inhibitor of Wnt/FZD signaling. TMEM79 interacts with FZD during biogenesis and promotes FZD degradation independent of ZNRF3/RNF43 ubiquitin ligases (R-spondin receptors). TMEM79 interacts with ubiquitin-specific protease 8 (USP8), whose activating mutations underlie human tumorigenesis. TMEM79 specifically inhibits USP8 deubiquitination of FZD, thereby governing USP8 substrate specificity and promoting FZD degradation. Tmem79 and Usp8 genes have a pre-bilaterian origin, and Tmem79 inhibition of Usp8 and Wnt signaling is required for anterior neural development and gastrulation in Xenopus embryos. TMEM79 is a predisposition gene for Atopic dermatitis, suggesting deregulation of Wnt/FZD signaling a possible cause for this most common yet enigmatic inflammatory skin disease.
Collapse
Affiliation(s)
- Maorong Chen
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Department of Neurology, Harvard Medical SchoolBostonUnited States
| | - Nathalia Amado
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Department of Neurology, Harvard Medical SchoolBostonUnited States
| | - Jieqiong Tan
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Department of Neurology, Harvard Medical SchoolBostonUnited States
| | - Alice Reis
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Mengxu Ge
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Department of Neurology, Harvard Medical SchoolBostonUnited States
| | - Jose Garcia Abreu
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Xi He
- F. M. Kirby Neurobiology Center, Boston Children’s Hospital, Department of Neurology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
24
|
Kitagawa T, Takiya S. Regulation of genes for ubiquitination and SUMO‐specific protease involved in larval development of the silkworm,
Bombyx mori. Dev Growth Differ 2020; 62:438-449. [DOI: 10.1111/dgd.12687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/26/2020] [Accepted: 05/30/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Tsuyuki Kitagawa
- Graduate School of Life Science Hokkaido University Sapporo Japan
| | - Shigeharu Takiya
- Graduate School of Life Science Hokkaido University Sapporo Japan
- Division of Biological Sciences and Center for Genome Dynamics Faculty of Science Hokkaido University Sapporo Japan
| |
Collapse
|
25
|
Nielsen CP, Jernigan KK, Diggins NL, Webb DJ, MacGurn JA. USP9X Deubiquitylates DVL2 to Regulate WNT Pathway Specification. Cell Rep 2020; 28:1074-1089.e5. [PMID: 31340145 PMCID: PMC6884140 DOI: 10.1016/j.celrep.2019.06.083] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 05/22/2019] [Accepted: 06/24/2019] [Indexed: 01/12/2023] Open
Abstract
The WNT signaling network is comprised of multiple receptors that relay various input signals via distinct transduction pathways to execute multiple complex and context-specific output processes. Integrity of the WNT signaling network relies on proper specification between canonical and noncanonical pathways, which presents a regulatory challenge given that several signal transducing elements are shared between pathways. Here, we report that USP9X, a deubiquitylase, and WWP1, an E3 ubiquitin ligase, regulate a ubiquitin rheostat on DVL2, a WNT signaling protein. Our findings indicate that USP9X-mediated deubiquitylation of DVL2 is required for canonical WNT activation, while increased DVL2 ubiquitylation is associated with localization to actin-rich projections and activation of the planar cell polarity (PCP) pathway. We propose that a WWP1-USP9X axis regulates a ubiquitin rheostat on DVL2 that specifies its participation in either canonical WNT or WNT-PCP pathways. These findings have important implications for therapeutic targeting of USP9X in human cancer. DVL2 is a signal transducing protein that participates in canonical and noncanonical WNT signaling relays. Here, Nielsen et al. report that the deubiquitylase USP9X and the E3 ubiquitin ligase WWP1 operate on DVL2 to establish a ubiquitin rheostat that contributes to WNT pathway specification in human breast cancer cells.
Collapse
Affiliation(s)
- Casey P Nielsen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Kristin K Jernigan
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Nicole L Diggins
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Donna J Webb
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37240, USA
| | - Jason A MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA.
| |
Collapse
|
26
|
Nam S, Cho KO. Wingless and Archipelago, a fly E3 ubiquitin ligase and a homolog of human tumor suppressor FBW7, show an antagonistic relationship in wing development. BMC DEVELOPMENTAL BIOLOGY 2020; 20:14. [PMID: 32594913 PMCID: PMC7322864 DOI: 10.1186/s12861-020-00217-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Archipelago (Ago) is a Drosophila homolog of mammalian F-box and WD repeat domain-containing 7 (FBW7, also known as FBXW7). In previous studies, FBW7 has been addressed as a tumor suppressor mediating ubiquitin-dependent proteolysis of several oncogenic proteins. Ubiquitination is a type of protein modification that directs protein for degradation as well as sorting. The level of beta-catenin (β-cat), an intracellular signal transducer in Wnt signaling pathway, is reduced upon overexpression of FBW7 in human cancer cell lines. Loss of function mutations in FBW7 and overactive Wnt signaling have been reported to be responsible for human cancers. RESULTS We found that Ago is important for the formation of shafts in chemosensory bristles at wing margin. This loss of shaft phenotype by knockdown of ago was rescued by knockdown of wingless (wg) whereas wing notching phenotype by knockdown of wg was rescued by knockdown of ago, establishing an antagonistic relationship between ago and wg. In line with this finding, knockdown of ago increased the level of Armadillo (Arm), a homolog of β-cat, in Drosophila tissue. Furthermore, knockdown of ago increased the level of Distal-less (Dll) and extracellular Wg in wing discs. In S2 cells, the amount of secreted Wg was increased by knockdown of Ago but decreased by Ago overexpression. Therefore, Ago plays a previously unidentified role in the inhibition of Wg secretion. Ago-overexpressing clones in wing discs exhibited accumulation of Wg in endoplasmic reticulum (ER), suggesting that Ago prevents Wg protein from moving to Golgi from ER. CONCLUSIONS We concluded that Ago plays dual roles in inhibiting Wg signaling. First, Ago decreases the level of Arm, by which Wg signaling is downregulated in Wg-responding cells. Second, Ago decreases the level of extracellular Wg by inhibiting movement of Wg from ER to Golgi in Wg-producing cells.
Collapse
Affiliation(s)
- Sujin Nam
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Kyung-Ok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
27
|
Sheng C, Wang Z, Yao C, Chen HM, Kan G, Wang D, Chen H, Chen S. CALML6 Controls TAK1 Ubiquitination and Confers Protection against Acute Inflammation. THE JOURNAL OF IMMUNOLOGY 2020; 204:3008-3018. [PMID: 32303555 DOI: 10.4049/jimmunol.1901042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 03/27/2020] [Indexed: 11/19/2022]
Abstract
Proper regulation of innate immune response is important for individual health. The NF-κB signaling pathway plays crucial roles in innate immunity and inflammation, and its aberrant activation is implicated in diverse diseases and disorders. In this study, we report that calmodulin-like 6 (CALML6), a member of the EF-hand protein family, is a negative regulator of the NF-κB signaling pathway. CALML6 attenuated TNF-stimulated phosphorylation of proteins downstream of TGF-β-activated kinase 1 (TAK1) and inhibited TAK1-induced NF-κB activation. Further studies showed that CALML6 interacted with TAK1 and recruited the deubiquitylating enzyme cylindromatosis to repress the K63-linked polyubiquitination of TAK1. CALML6 transgenic mice had higher tolerances to lethal LPS treatment in vivo. These findings suggest that CALML6 is a negative regulator of the NF-κB signaling pathway, which is important for maintaining the balance of the innate immune response.
Collapse
Affiliation(s)
- Chunjie Sheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China; and
| | - Ziyang Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China; and
| | - Chen Yao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China; and
| | - Hui-Ming Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China; and
| | - Guangyan Kan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China; and
| | - Dan Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China; and
| | - Hongyuan Chen
- Department of Pathogen Biology and Immunology, School of Basic Course, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, People's Republic of China
| | - Shuai Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China; and
| |
Collapse
|
28
|
Ubiquitin-specific protease 8 (USP8/UBPy): a prototypic multidomain deubiquitinating enzyme with pleiotropic functions. Biochem Soc Trans 2020; 47:1867-1879. [PMID: 31845722 PMCID: PMC6925526 DOI: 10.1042/bst20190527] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 01/07/2023]
Abstract
Protein modification by ubiquitin is one of the most versatile posttranslational regulations and counteracted by almost 100 deubiquitinating enzymes (DUBs). USP8 was originally identified as a growth regulated ubiquitin-specific protease and is like many other DUBs characterized by its multidomain architecture. Besides the catalytic domain, specific protein-protein interaction modules were characterized which contribute to USP8 substrate recruitment, regulation and targeting to distinct protein complexes. Studies in mice and humans impressively showed the physiological relevance and non-redundant function of USP8 within the context of the whole organism. USP8 knockout (KO) mice exhibit early embryonic lethality while induced deletion in adult animals rapidly causes lethal liver failure. Furthermore, T-cell specific ablation disturbs T-cell development and function resulting in fatal autoimmune inflammatory bowel disease. In human patients, somatic mutations in USP8 were identified as the underlying cause of adrenocorticotropic hormone (ACTH) releasing pituitary adenomas causing Cushing's disease (CD). Here we provide an overview of the versatile molecular, cellular and pathology associated function and regulation of USP8 which appears to depend on specific protein binding partners, substrates and the cellular context.
Collapse
|
29
|
Novellasdemunt L, Kucharska A, Jamieson C, Prange‐Barczynska M, Baulies A, Antas P, van der Vaart J, Gehart H, Maurice MM, Li VSW. NEDD4 and NEDD4L regulate Wnt signalling and intestinal stem cell priming by degrading LGR5 receptor. EMBO J 2020; 39:e102771. [PMID: 31867777 PMCID: PMC6996568 DOI: 10.15252/embj.2019102771] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022] Open
Abstract
The intestinal stem cell (ISC) marker LGR5 is a receptor for R-spondin (RSPO) that functions to potentiate Wnt signalling in the proliferating crypt. It has been recently shown that Wnt plays a priming role for ISC self-renewal by inducing RSPO receptor LGR5 expression. Despite its pivotal role in homeostasis, regeneration and cancer, little is known about the post-translational regulation of LGR5. Here, we show that the HECT-domain E3 ligases NEDD4 and NEDD4L are expressed in the crypt stem cell regions and regulate ISC priming by degrading LGR receptors. Loss of Nedd4 and Nedd4l enhances ISC proliferation, increases sensitivity to RSPO stimulation and accelerates tumour development in Apcmin mice with increased numbers of high-grade adenomas. Mechanistically, we find that both NEDD4 and NEDD4L negatively regulate Wnt/β-catenin signalling by targeting LGR5 receptor and DVL2 for proteasomal and lysosomal degradation. Our findings unveil the previously unreported post-translational control of LGR receptors via NEDD4/NEDD4L to regulate ISC priming. Inactivation of NEDD4 and NEDD4L increases Wnt activation and ISC numbers, which subsequently enhances tumour predisposition and progression.
Collapse
Affiliation(s)
| | - Anna Kucharska
- Stem Cell and Cancer Biology LaboratoryThe Francis Crick InstituteLondonUK
| | - Cara Jamieson
- Oncode Institute and Department of Cell BiologyCenter for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Anna Baulies
- Stem Cell and Cancer Biology LaboratoryThe Francis Crick InstituteLondonUK
| | - Pedro Antas
- Stem Cell and Cancer Biology LaboratoryThe Francis Crick InstituteLondonUK
| | - Jelte van der Vaart
- Hubrecht InstituteRoyal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) UtrechtUtrechtThe Netherlands
| | - Helmuth Gehart
- Hubrecht InstituteRoyal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre (UMC) UtrechtUtrechtThe Netherlands
| | - Madelon M Maurice
- Oncode Institute and Department of Cell BiologyCenter for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Vivian SW Li
- Stem Cell and Cancer Biology LaboratoryThe Francis Crick InstituteLondonUK
| |
Collapse
|
30
|
Poondla N, Chandrasekaran AP, Kim KS, Ramakrishna S. Deubiquitinating enzymes as cancer biomarkers: new therapeutic opportunities? BMB Rep 2019. [PMID: 30760385 PMCID: PMC6476481 DOI: 10.5483/bmbrep.2019.52.3.048] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cancer remains a life-threatening disease and accounts for the major mortality rates worldwide. The practice of using biomarkers for early detection, staging, and customized therapy may increase cancer patients’ survival. Deubiquitinating enzymes (DUBs) are a family of proteases that remove ubiquitin tags from proteins of interest undergoing proteasomal degradation. DUBs play several functional roles other than deubiquitination. One of the important roles of DUBs is regulation of tumor progression. Several reports have suggested that the DUB family members were highly-elevated in various cancer cells and tissues in different stages of cancer. These findings suggest that the DUBs could be used as drug targets in cancer therapeutics. In this review, we recapitulate the role of the DUB family members, including ubiquitin-specific protease, otubain protease, and important candidates from other family members. Our aim was to better understand the connection between DUB expression profiles and cancers to allow researchers to design inhibitors or gene therapies to improve diagnosis and prognosis of cancers.
Collapse
Affiliation(s)
- Naresh Poondla
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul 04763, Korea
| | - Arun Pandian Chandrasekaran
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul 04763, Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul 04763; College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul 04763; College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
31
|
von Stockum S, Sanchez-Martinez A, Corrà S, Chakraborty J, Marchesan E, Locatello L, Da Rè C, Cusumano P, Caicci F, Ferrari V, Costa R, Bubacco L, Rasotto MB, Szabo I, Whitworth AJ, Scorrano L, Ziviani E. Inhibition of the deubiquitinase USP8 corrects a Drosophila PINK1 model of mitochondria dysfunction. Life Sci Alliance 2019; 2:e201900392. [PMID: 30988163 PMCID: PMC6467245 DOI: 10.26508/lsa.201900392] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 02/02/2023] Open
Abstract
Aberrant mitochondrial dynamics disrupts mitochondrial function and contributes to disease conditions. A targeted RNA interference screen for deubiquitinating enzymes (DUBs) affecting protein levels of multifunctional mitochondrial fusion protein Mitofusin (MFN) identified USP8 prominently influencing MFN levels. Genetic and pharmacological inhibition of USP8 normalized the elevated MFN protein levels observed in PINK1 and Parkin-deficient models. This correlated with improved mitochondrial function, locomotor performance and life span, and prevented dopaminergic neurons loss in Drosophila PINK1 KO flies. We identified a novel target antagonizing pathologically elevated MFN levels, mitochondrial dysfunction, and dopaminergic neuron loss of a Drosophila model of mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Samantha Corrà
- Department of Biology, University of Padova, Padova, Italy
- Neurogenetics and Behavior of Drosophila Lab, Department of Biology, University of Padova, Padova, Italy
| | | | | | - Lisa Locatello
- Department of Biology, University of Padova, Padova, Italy
| | - Caterina Da Rè
- Department of Biology, University of Padova, Padova, Italy
- Neurogenetics and Behavior of Drosophila Lab, Department of Biology, University of Padova, Padova, Italy
| | - Paola Cusumano
- Department of Biology, University of Padova, Padova, Italy
- Neurogenetics and Behavior of Drosophila Lab, Department of Biology, University of Padova, Padova, Italy
| | | | - Vanni Ferrari
- Department of Biology, University of Padova, Padova, Italy
| | - Rodolfo Costa
- Department of Biology, University of Padova, Padova, Italy
- Neurogenetics and Behavior of Drosophila Lab, Department of Biology, University of Padova, Padova, Italy
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, Italy
| | | | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy
| | | | - Luca Scorrano
- Department of Biology, University of Padova, Padova, Italy
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Elena Ziviani
- Fondazione Ospedale San Camillo, IRCCS, Venezia, Italy
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
32
|
Sadler JBA, Lamb CA, Welburn CR, Adamson IS, Kioumourtzoglou D, Chi NW, Gould GW, Bryant NJ. The deubiquitinating enzyme USP25 binds tankyrase and regulates trafficking of the facilitative glucose transporter GLUT4 in adipocytes. Sci Rep 2019; 9:4710. [PMID: 30886164 PMCID: PMC6423145 DOI: 10.1038/s41598-019-40596-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/15/2019] [Indexed: 12/11/2022] Open
Abstract
Key to whole body glucose homeostasis is the ability of fat and muscle cells to sequester the facilitative glucose transporter GLUT4 in an intracellular compartment from where it can be mobilized in response to insulin. We have previously demonstrated that this process requires ubiquitination of GLUT4 while numerous other studies have identified several molecules that are also required, including the insulin-responsive aminopeptidase IRAP and its binding partner, the scaffolding protein tankyrase. In addition to binding IRAP, Tankyrase has also been shown to bind the deubiquinating enzyme USP25. Here we demonstrate that USP25 and Tankyrase interact, and colocalise with GLUT4 in insulin-sensitive cells. Furthermore depletion of USP25 from adipocytes reduces cellular levels of GLUT4 and concomitantly blunts the ability of insulin to stimulate glucose transport. Collectively, these data support our model that sorting of GLUT4 into its insulin-sensitive store involves a cycle of ubiquitination and subsequent deubiquitination.
Collapse
Affiliation(s)
- Jessica B A Sadler
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Christopher A Lamb
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Cassie R Welburn
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Iain S Adamson
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | - Nai-Wen Chi
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Gwyn W Gould
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Nia J Bryant
- Department of Biology, University of York, York, YO10 4HJ, UK.
| |
Collapse
|
33
|
Dores MR, Trejo J. Endo-lysosomal sorting of G-protein-coupled receptors by ubiquitin: Diverse pathways for G-protein-coupled receptor destruction and beyond. Traffic 2018; 20:101-109. [PMID: 30353650 DOI: 10.1111/tra.12619] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/14/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023]
Abstract
Ubiquitin is covalently attached to substrate proteins in the form of a single ubiquitin moiety or polyubiquitin chains and has been generally linked to protein degradation, however, distinct types of ubiquitin linkages are also used to control other critical cellular processes like cell signaling. Over forty mammalian G protein-coupled receptors (GPCRs) have been reported to be ubiquitinated, but despite the diverse and rich complexity of GPCR signaling, ubiquitin has been largely ascribed to receptor degradation. Indeed, GPCR ubiquitination targets the receptors for degradation by lysosome, which is mediated by the Endosomal Sorting Complexes Required for Transport (ESCRT) machinery, and the proteasome. This has led to the view that ubiquitin and ESCRTs primarily function as the signal to target GPCRs for destruction. Contrary to this conventional view, studies indicate that ubiquitination of certain GPCRs and canonical ubiquitin-binding ESCRTs are not required for receptor degradation and revealed that diverse and complex pathways exist to regulate endo-lysosomal sorting of GPCRs. In other studies, GPCR ubiquitination has been shown to drive signaling and not receptor degradation and further revealed novel insight into the mechanisms by which GPCRs trigger the activity of the ubiquitination machinery. Here, we discuss the diverse pathways by which ubiquitin controls GPCR endo-lysosomal sorting and beyond.
Collapse
Affiliation(s)
- Michael R Dores
- Department of Biology, Hofstra University, Hempstead, New York
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
34
|
Crespo-Yàñez X, Aguilar-Gurrieri C, Jacomin AC, Journet A, Mortier M, Taillebourg E, Soleilhac E, Weissenhorn W, Fauvarque MO. CHMP1B is a target of USP8/UBPY regulated by ubiquitin during endocytosis. PLoS Genet 2018; 14:e1007456. [PMID: 29933386 PMCID: PMC6033466 DOI: 10.1371/journal.pgen.1007456] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 07/05/2018] [Accepted: 05/30/2018] [Indexed: 11/29/2022] Open
Abstract
Integration and down-regulation of cell growth and differentiation signals rely on plasma membrane receptor endocytosis and sorting towards either recycling vesicles or degradative lysosomes via multivesicular bodies (MVB). In this process, the endosomal sorting complex-III required for transport (ESCRT-III) controls membrane deformation and scission triggering intraluminal vesicle (ILV) formation at early endosomes. Here, we show that the ESCRT-III member CHMP1B can be ubiquitinated within a flexible loop known to undergo conformational changes during polymerization. We demonstrate further that CHMP1B is deubiquitinated by the ubiquitin specific protease USP8 (syn. UBPY) and found fully devoid of ubiquitin in a ~500 kDa large complex that also contains its ESCRT-III partner IST1. Moreover, EGF stimulation induces the rapid and transient accumulation of ubiquitinated forms of CHMP1B on cell membranes. Accordingly, CHMP1B ubiquitination is necessary for CHMP1B function in both EGF receptor trafficking in human cells and wing development in Drosophila. Based on these observations, we propose that CHMP1B is dynamically regulated by ubiquitination in response to EGF and that USP8 triggers CHMP1B deubiquitination possibly favoring its subsequent assembly into a membrane-associated ESCRT-III polymer. In multicellular organisms, the interpretation and transmission of cell growth and differentiation signals strongly rely on plasma membrane receptors. Once activated by their ligands, these receptors activate downstream signaling cascades and are rapidly internalized into intracellular vesicles that fuse inside the cell to form the endosomal compartment. From there, the receptors are sorted towards either recycling vesicles or degradative lysosomes via multivesicular bodies. Receptors sorting therefore plays a crucial role in the integration and regulation of intracellular signals during development and numerous physio-pathological processes. It requires extensive membrane remodeling and scission events at the level of the endosomal compartment by so-called ESCRT proteins, including CHMP1B. In this study, we provide evidence for dynamic regulation of CHMP1B function and subcellular localization by ubiquitin linkage. We also show the contribution of the ubiquitin specific protease USP8 in this regulation, which is a known actor of intracellular trafficking and Cushing’s disease.
Collapse
Affiliation(s)
- Xènia Crespo-Yàñez
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
| | - Carmen Aguilar-Gurrieri
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, Grenoble, France
| | - Anne-Claire Jacomin
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
| | - Agnès Journet
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
| | - Magda Mortier
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
| | - Emmanuel Taillebourg
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
| | - Emmanuelle Soleilhac
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
| | - Winfried Weissenhorn
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, Grenoble, France
| | - Marie-Odile Fauvarque
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
- * E-mail:
| |
Collapse
|
35
|
Stratifin regulates stabilization of receptor tyrosine kinases via interaction with ubiquitin-specific protease 8 in lung adenocarcinoma. Oncogene 2018; 37:5387-5402. [PMID: 29880877 DOI: 10.1038/s41388-018-0342-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 04/09/2018] [Accepted: 05/10/2018] [Indexed: 12/12/2022]
Abstract
Previously we have reported that stratifin (SFN, 14-3-3 sigma) acts as a novel oncogene, accelerating the tumor initiation and progression of lung adenocarcinoma. Here, pull-down assay and LC-MS/MS analysis revealed that ubiquitin-specific protease 8 (USP8) specifically bound to SFN in lung adenocarcinoma cells. Both USP8 and SFN showed higher expression in human lung adenocarcinoma than in normal lung tissue, and USP8 expression was significantly correlated with SFN expression. Expression of SFN, but not of USP8, was associated with histological subtype, pathological stage, and poor prognosis. USP8 stabilizes receptor tyrosine kinases (RTKs) such as EGFR and MET by deubiquitination, contributing to the proliferative activity of many human cancers including non-small cell lung cancer. In vitro, USP8 binds to SFN and they co-localize at the early endosomes in lung adenocarcinoma cells. Moreover, USP8 or SFN knockdown leads to downregulation of tumor cellular proliferation and upregulation of apoptosis, p-EGFR or p-MET, which are related to the degradation pathway, and accumulation of ubiquitinated RTKs, leading to lysosomal degradation. Additionally, mutant USP8, which is unable to bind to SFN, reduces the expression of RTKs and p-STAT3. We also found that interaction with SFN is critical for USP8 to exert its autodeubiquitination function and avoid dephosphorylation by PP1. Our findings demonstrate that SFN enhances RTK stabilization through abnormal USP8 regulation in lung adenocarcinoma, suggesting that SFN could be a more suitable therapeutic target for lung adenocarcinoma than USP8.
Collapse
|
36
|
From intra- to extracellular vesicles: extracellular vesicles in developmental signalling. Essays Biochem 2018; 62:215-223. [DOI: 10.1042/ebc20180001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/02/2018] [Accepted: 03/06/2018] [Indexed: 12/12/2022]
Abstract
Signalling from cell-to-cell is fundamental for determining differentiation and patterning. This communication can occur between adjacent and distant cells. Extracellular vesicles (EVs) are membrane-based structures thought to facilitate the long-distance movement of signalling molecules. EVs have recently been found to allow the transport of two major developmental signalling pathways: Hedgehog and Wnt. These signalling molecules undergo crucial post-translational lipid modifications, which anchor them to membranes and impede their free release into the extracellular space. Preparation of these ligands in EVs involves intracellular vesicle sorting in an endocytosis-dependent recycling process before secretion. In the present review, we discuss the most recent advances with regard to EV involvement in developmental signalling at a distance. We focus on the role of the protein complexes involved in EV genesis, and provide a comprehensive perspective of the contribution of these complexes to intracellular vesicle sorting of developmental signals for their extracellular secretion, reception and transduction.
Collapse
|
37
|
Hanyaloglu AC. Advances in Membrane Trafficking and Endosomal Signaling of G Protein-Coupled Receptors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 339:93-131. [PMID: 29776606 DOI: 10.1016/bs.ircmb.2018.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The integration of GPCR signaling with membrane trafficking, as a single orchestrated system, is a theme increasingly evident with the growing reports of GPCR endosomal signaling. Once viewed as a mechanism to regulate cell surface heterotrimeric G protein signaling, the endocytic trafficking system is complex, highly compartmentalized, yet deeply interconnected with cell signaling. The organization of receptors into distinct plasma membrane signalosomes, biochemically distinct endosomal populations, endosomal microdomains, and its communication with distinct subcellular organelles such as the Golgi provides multiple unique signaling platforms that are critical for specifying receptor function physiologically and pathophysiologically. In this chapter I discuss our emerging understanding in the endocytic trafficking systems employed by GPCRs and their novel roles in spatial control of signaling. Given the extensive roles that GPCRs play in vivo, these evolving models are starting to provide mechanistic understanding of distinct diseases and provide novel therapeutic avenues that are proving to be viable targets.
Collapse
Affiliation(s)
- Aylin C Hanyaloglu
- Institute of Reproductive and Developmental Biology, Department of Surgery and Cancer, Imperial College London, London, United Kingdom.
| |
Collapse
|
38
|
Abstract
Wnt/β-catenin signaling is crucial for adult homeostasis and stem cell maintenance, and its dysregulation is strongly associated to cancer. Upon Wnt binding, Wnt receptors assemble into large complexes called signalosomes that provide a platform for interactions with downstream effector proteins. The assembly and regulation of these signalosomes remains largely elusive. Here, we use internally tagged Wnt ligands as a tool to isolate and analyze the composition and regulation of endogenous Wnt receptor complexes. We identify a positive regulator of Wnt signaling that facilitates signalosome formation by promoting intramembrane receptor interactions. Our results reveal that the assembly of multiprotein Wnt signalosomes proceeds along well-ordered steps and involves regulated intramembrane interactions. Wnt/β-catenin signaling controls development and adult tissue homeostasis by regulating cell proliferation and cell fate decisions. Wnt binding to its receptors Frizzled (FZD) and low-density lipoprotein-related 6 (LRP6) at the cell surface initiates a signaling cascade that leads to the transcription of Wnt target genes. Upon Wnt binding, the receptors assemble into large complexes called signalosomes that provide a platform for interactions with downstream effector proteins. The molecular basis of signalosome formation and regulation remains elusive, largely due to the lack of tools to analyze its endogenous components. Here, we use internally tagged Wnt3a proteins to isolate and characterize activated, endogenous Wnt receptor complexes by mass spectrometry-based proteomics. We identify the single-span membrane protein TMEM59 as an interactor of FZD and LRP6 and a positive regulator of Wnt signaling. Mechanistically, TMEM59 promotes the formation of multimeric Wnt–FZD assemblies via intramembrane interactions. Subsequently, these Wnt–FZD–TMEM59 clusters merge with LRP6 to form mature Wnt signalosomes. We conclude that the assembly of multiprotein Wnt signalosomes proceeds along well-ordered steps that involve regulated intramembrane interactions.
Collapse
|
39
|
Evolving View of Membrane Trafficking and Signaling Systems for G Protein-Coupled Receptors. ENDOCYTOSIS AND SIGNALING 2018; 57:273-299. [DOI: 10.1007/978-3-319-96704-2_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Haq S, Suresh B, Ramakrishna S. Deubiquitylating enzymes as cancer stem cell therapeutics. Biochim Biophys Acta Rev Cancer 2017; 1869:1-10. [PMID: 29054474 DOI: 10.1016/j.bbcan.2017.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/20/2017] [Accepted: 10/15/2017] [Indexed: 12/18/2022]
Abstract
The focus of basic and applied research on core stem cell transcription factors has paved the way to initial delineation of their characteristics, their regulatory mechanisms, and the applicability of their regulatory proteins for protein-induced pluripotent stem cells (protein-IPSC) generation and in further clinical settings. Striking parallels have been observed between cancer stem cells (CSCs) and stem cells. For the maintenance of stem cells and CSC pluripotency and differentiation, post translational modifications (i.e., ubiquitylation and deubiquitylation) are tightly regulated, as these modifications result in a variety of stem cell fates. The identification of deubiquitylating enzymes (DUBs) involved in the regulation of core stem cell transcription factors and CSC-related proteins might contribute to providing novel insights into the implications of DUB regulatory mechanisms for governing cellular reprogramming and carcinogenesis. Moreover, we propose the novel possibility of applying DUBs coupled with core transcription factors to improve protein-iPSC generation efficiency. Additionally, this review article further illustrates the potential of applying DUB inhibitors as a novel therapeutic intervention for targeting CSCs. Thus, defining DUBs as core pharmacological targets implies that future endeavors to develop their inhibitors may revolutionize our ability to regulate stem cell maintenance and differentiation, somatic cell reprogramming, and cancer stem cells.
Collapse
Affiliation(s)
- Saba Haq
- Department of Lifesciences, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Bharathi Suresh
- Department of Pharmacology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| |
Collapse
|
41
|
Kumari N, Jaynes PW, Saei A, Iyengar PV, Richard JLC, Eichhorn PJA. The roles of ubiquitin modifying enzymes in neoplastic disease. Biochim Biophys Acta Rev Cancer 2017; 1868:456-483. [PMID: 28923280 DOI: 10.1016/j.bbcan.2017.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/22/2022]
Abstract
The initial experiments performed by Rose, Hershko, and Ciechanover describing the identification of a specific degradation signal in short-lived proteins paved the way to the discovery of the ubiquitin mediated regulation of numerous physiological functions required for cellular homeostasis. Since their discovery of ubiquitin and ubiquitin function over 30years ago it has become wholly apparent that ubiquitin and their respective ubiquitin modifying enzymes are key players in tumorigenesis. The human genome encodes approximately 600 putative E3 ligases and 80 deubiquitinating enzymes and in the majority of cases these enzymes exhibit specificity in sustaining either pro-tumorigenic or tumour repressive responses. In this review, we highlight the known oncogenic and tumour suppressive effects of ubiquitin modifying enzymes in cancer relevant pathways with specific focus on PI3K, MAPK, TGFβ, WNT, and YAP pathways. Moreover, we discuss the capacity of targeting DUBs as a novel anticancer therapeutic strategy.
Collapse
Affiliation(s)
- Nishi Kumari
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Patrick William Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Azad Saei
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Genome Institute of Singapore, A*STAR, Singapore
| | | | | | - Pieter Johan Adam Eichhorn
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.
| |
Collapse
|
42
|
Mah KM, Weiner JA. Regulation of Wnt signaling by protocadherins. Semin Cell Dev Biol 2017; 69:158-171. [PMID: 28774578 PMCID: PMC5586504 DOI: 10.1016/j.semcdb.2017.07.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/21/2017] [Accepted: 07/28/2017] [Indexed: 12/23/2022]
Abstract
The ∼70 protocadherins comprise the largest group within the cadherin superfamily. Their diversity, the complexity of the mechanisms through which their genes are regulated, and their many critical functions in nervous system development have engendered a growing interest in elucidating the intracellular signaling pathways through which they act. Recently, multiple protocadherins across several subfamilies have been implicated as modulators of Wnt signaling pathways, and through this as potential tumor suppressors. Here, we review the extant data on the regulation by protocadherins of Wnt signaling pathways and components, and highlight some key unanswered questions that could shape future research.
Collapse
Affiliation(s)
- Kar Men Mah
- Department of Biology, The University of Iowa, Iowa City, IA, USA.
| | - Joshua A Weiner
- Department of Biology, The University of Iowa, Iowa City, IA, USA; Department of Psychiatry, The University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
43
|
Horner DS, Pasini ME, Beltrame M, Mastrodonato V, Morelli E, Vaccari T. ESCRT genes and regulation of developmental signaling. Semin Cell Dev Biol 2017; 74:29-39. [PMID: 28847745 DOI: 10.1016/j.semcdb.2017.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/06/2017] [Accepted: 08/18/2017] [Indexed: 11/30/2022]
Abstract
ESCRT (Endosomal Sorting Complex Required for Transport) proteins have been shown to control an increasing number of membrane-associated processes. Some of these, and prominently regulation of receptor trafficking, profoundly shape signal transduction. Evidence in fungi, plants and multiple animal models support the emerging concept that ESCRTs are main actors in coordination of signaling with the changes in cells and tissues occurring during development and homeostasis. Consistent with their pleiotropic function, ESCRTs are regulated in multiple ways to tailor signaling to developmental and homeostatic needs. ESCRT activity is crucial to correct execution of developmental programs, especially at key transitions, allowing eukaryotes to thrive and preventing appearance of congenital defects.
Collapse
Affiliation(s)
- David S Horner
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Maria E Pasini
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Monica Beltrame
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Valeria Mastrodonato
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Elena Morelli
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Thomas Vaccari
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy; IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy.
| |
Collapse
|
44
|
Pridgeon MG, Grohar PJ, Steensma MR, Williams BO. Wnt Signaling in Ewing Sarcoma, Osteosarcoma, and Malignant Peripheral Nerve Sheath Tumors. Curr Osteoporos Rep 2017. [PMID: 28647886 DOI: 10.1007/s11914-017-0377-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Wnt signaling plays a central role in development and homeostasis, and its dysregulation is a common event in many types of human cancer. Here we explore in detail the contributions of Wnt signaling to the initiation and maintenance of three types of saroma: Ewing sarcoma, osteosarcoma, and malignant peripheral nerve sheath tumors. This review provides an overview of the Wnt signaling pathway and explores in detail the current knowledge about its role in the initiation or maintenance of three tumor types: Ewing sarcoma, osteosarcoma, and malignant peripheral nerve sheath tumors. RECENT FINDINGS Recent work has assessed the role(s) of Wnt signaling within these cell types. This review provides an overview of the mechanistic insights that have been gained from a number of recent studies to set the foundation for potential therapeutic applications. Wnt signaling has emerged as a potentially critical pathway in maintaining the growth of these types of tumors. Given the fact that many new inhibitors of the pathway have recently or will soon enter Phase 1 clinical trials, it is likely that assessment of their activity in these tumor types will occur in human patients.
Collapse
Affiliation(s)
- Matthew G Pridgeon
- Grand Rapids Medical Education Partners, Grand Rapids, MI, USA
- Spectrum Health Cancer Center, Spectrum Health System, Grand Rapids, MI, USA
- Helen De Vos Children's Hospital, Grand Rapids, MI, USA
| | - Patrick J Grohar
- Spectrum Health Cancer Center, Spectrum Health System, Grand Rapids, MI, USA
- Helen De Vos Children's Hospital, Grand Rapids, MI, USA
- Department of Pediatrics, Michigan State University, Grand Rapids, MI, USA
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Matthew R Steensma
- Spectrum Health Cancer Center, Spectrum Health System, Grand Rapids, MI, USA
- Helen De Vos Children's Hospital, Grand Rapids, MI, USA
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA
- Department of Surgery, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Bart O Williams
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, MI, USA.
| |
Collapse
|
45
|
Norrin-induced Frizzled4 endocytosis and endo-lysosomal trafficking control retinal angiogenesis and barrier function. Nat Commun 2017; 8:16050. [PMID: 28675177 PMCID: PMC5500887 DOI: 10.1038/ncomms16050] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/17/2017] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis and blood–brain barrier formation are required for normal central nervous system (CNS) function. Both processes are controlled by Wnt or Norrin (NDP) ligands, Frizzled (FZD) receptors, and β-catenin-dependent signalling in vascular endothelial cells. In the retina, FZD4 and the ligand NDP are critical mediators of signalling and are mutated in familial exudative vitreoretinopathy. Here, we report that NDP is a potent trigger of FZD4 ubiquitination and induces internalization of the NDP receptor complex into the endo-lysosomal compartment. Inhibition of ubiquitinated cargo transport through the multivesicular body (MVB) pathway using a dominant negative ESCRT (endosomal sorting complexes required for transport) component VPS4 EQ strongly impairs NDP/FZD4 signalling in vitro and recapitulates CNS angiogenesis and blood-CNS-barrier defects caused by impaired vascular β-catenin signalling in mice. These findings provide evidence for an important role of FZD4 endocytosis in NDP/FZD4 signalling and in CNS vascular biology and disease. Multiple mechanisms regulate Wnt/ß-catenin signalling. Zhang et al. describe a novel regulatory pathway and show that the activator of canonical Wnt signalling, Norrin, triggers endocytosis of its receptor Frizzled4 by promoting Frizzled4 ubiquitination.
Collapse
|
46
|
Regulation of G Protein-Coupled Receptors by Ubiquitination. Int J Mol Sci 2017; 18:ijms18050923. [PMID: 28448471 PMCID: PMC5454836 DOI: 10.3390/ijms18050923] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/20/2017] [Accepted: 04/23/2017] [Indexed: 02/07/2023] Open
Abstract
G protein-coupled receptors (GPCRs) comprise the largest family of membrane receptors that control many cellular processes and consequently often serve as drug targets. These receptors undergo a strict regulation by mechanisms such as internalization and desensitization, which are strongly influenced by posttranslational modifications. Ubiquitination is a posttranslational modification with a broad range of functions that is currently gaining increased appreciation as a regulator of GPCR activity. The role of ubiquitination in directing GPCRs for lysosomal degradation has already been well-established. Furthermore, this modification can also play a role in targeting membrane and endoplasmic reticulum-associated receptors to the proteasome. Most recently, ubiquitination was also shown to be involved in GPCR signaling. In this review, we present current knowledge on the molecular basis of GPCR regulation by ubiquitination, and highlight the importance of E3 ubiquitin ligases, deubiquitinating enzymes and β-arrestins. Finally, we discuss classical and newly-discovered functions of ubiquitination in controlling GPCR activity.
Collapse
|
47
|
Qiu GZ, Sun W, Jin MZ, Lin J, Lu PG, Jin WL. The bad seed gardener: Deubiquitinases in the cancer stem-cell signaling network and therapeutic resistance. Pharmacol Ther 2017; 172:127-138. [DOI: 10.1016/j.pharmthera.2016.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Chen CH, He CW, Liao CP, Pan CL. A Wnt-planar polarity pathway instructs neurite branching by restricting F-actin assembly through endosomal signaling. PLoS Genet 2017; 13:e1006720. [PMID: 28384160 PMCID: PMC5398721 DOI: 10.1371/journal.pgen.1006720] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/20/2017] [Accepted: 03/29/2017] [Indexed: 02/01/2023] Open
Abstract
Spatial arrangement of neurite branching is instructed by both attractive and repulsive cues. Here we show that in C. elegans, the Wnt family of secreted glycoproteins specify neurite branching sites in the PLM mechanosensory neurons. Wnts function through MIG-1/Frizzled and the planar cell polarity protein (PCP) VANG-1/Strabismus/Vangl2 to restrict the formation of F-actin patches, which mark branching sites in nascent neurites. We find that VANG-1 promotes Wnt signaling by facilitating Frizzled endocytosis and genetically acts in a common pathway with arr-1/β-arrestin, whose mutation results in defective PLM branching and F-actin patterns similar to those in the Wnt, mig-1 or vang-1 mutants. On the other hand, the UNC-6/Netrin pathway intersects orthogonally with Wnt-PCP signaling to guide PLM branch growth along the dorsal-ventral axis. Our study provides insights for how attractive and repulsive signals coordinate to sculpt neurite branching patterns, which are critical for circuit connectivity.
Collapse
Affiliation(s)
- Chun-Hao Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Wei He
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chien-Po Liao
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Liang Pan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
49
|
Abstract
Newly synthesized transmembrane proteins undergo a series of steps to ensure that only the required amount of correctly folded protein is localized to the membrane. The regulation of protein quality and its abundance at the membrane are often controlled by ubiquitination, a multistep enzymatic process that results in the attachment of ubiquitin, or chains of ubiquitin to the target protein. Protein ubiquitination acts as a signal for sorting, trafficking, and the removal of membrane proteins via endocytosis, a process through which multiple ubiquitin ligases are known to specifically regulate the functions of a number of ion channels, transporters, and signaling receptors. Endocytic removal of these proteins through ubiquitin-dependent endocytosis provides a way to rapidly downregulate the physiological outcomes, and defects in such controls are directly linked to human pathologies. Recent evidence suggests that ubiquitination is also involved in the shedding of membranes and associated proteins as extracellular vesicles, thereby not only controlling the cell surface levels of some membrane proteins, but also their potential transport to neighboring cells. In this review, we summarize the mechanisms and functions of ubiquitination of membrane proteins and provide specific examples of ubiquitin-dependent regulation of membrane proteins.
Collapse
Affiliation(s)
- Natalie Foot
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Tanya Henshall
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| |
Collapse
|
50
|
Clague MJ, Urbé S. Integration of cellular ubiquitin and membrane traffic systems: focus on deubiquitylases. FEBS J 2017; 284:1753-1766. [PMID: 28064438 PMCID: PMC5484354 DOI: 10.1111/febs.14007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/29/2016] [Accepted: 01/06/2017] [Indexed: 12/17/2022]
Abstract
The cell is comprised of integrated multilevel protein networks or systems. The ubiquitin, protein homeostasis and membrane trafficking systems are highly integrated. Here, we look at the influence of reversible ubiquitylation on membrane trafficking and organelle dynamics. We review the regulation of endocytic sorting, selective autophagy and the secretory pathway by ubiquitin signals, with a particular focus on detailing the contribution of deubiquitylating enzymes.
Collapse
Affiliation(s)
- Michael J Clague
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, UK
| | - Sylvie Urbé
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, UK
| |
Collapse
|