1
|
Slominski RM, Raman C, Elmets C, Jetten AM, Slominski AT, Tuckey RC. The significance of CYP11A1 expression in skin physiology and pathology. Mol Cell Endocrinol 2021; 530:111238. [PMID: 33716049 PMCID: PMC8205265 DOI: 10.1016/j.mce.2021.111238] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022]
Abstract
CYP11A1, a member of the cytochrome P450 family, plays several key roles in the human body. It catalyzes the first and rate-limiting step in steroidogenesis, converting cholesterol to pregnenolone. Aside from the classical steroidogenic tissues such as the adrenals, gonads and placenta, CYP11A1 has also been found in the brain, gastrointestinal tract, immune systems, and finally the skin. CYP11A1 activity in the skin is regulated predominately by StAR protein and hence cholesterol levels in the mitochondria. However, UVB, UVC, CRH, ACTH, cAMP, and cytokines IL-1, IL-6 and TNFα can also regulate its expression and activity. Indeed, CYP11A1 plays several critical roles in the skin through its initiation of local steroidogenesis and specific metabolism of vitamin D, lumisterol, and 7-dehydrocholesterol. Products of these pathways regulate the protective barrier and skin immune functions in a context-dependent fashion through interactions with a number of receptors. Disturbances in CYP11A1 activity can lead to skin pathology.
Collapse
Affiliation(s)
- R M Slominski
- Department of Medicine, Division of Rheumatology, USA; Department of Dermatology, USA
| | - C Raman
- Department of Medicine, Division of Rheumatology, USA; Department of Dermatology, USA
| | - C Elmets
- Department of Dermatology, USA; Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, USA
| | - A M Jetten
- Cell Biology Section, Immunity, Inflammation, Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - A T Slominski
- Department of Dermatology, USA; VA Medical Center, Birmingham, AL, USA.
| | - R C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
2
|
Almeida L, Everts B. Fa(c)t checking: How fatty acids shape metabolism and function of macrophages and dendritic cells. Eur J Immunol 2021; 51:1628-1640. [PMID: 33788250 PMCID: PMC8359938 DOI: 10.1002/eji.202048944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/04/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022]
Abstract
In recent years there have been major advances in our understanding of the role of free fatty acids (FAs) and their metabolism in shaping the functional properties of macrophages and DCs. This review presents the most recent insights into how cell intrinsic FA metabolism controls DC and macrophage function, as well as the current evidence of the importance of various exogenous FAs (such as polyunsaturated FAs and their oxidation products—prostaglandins, leukotrienes, and proresolving lipid mediators) in affecting DC and macrophage biology, by modulating their metabolic properties. Finally, we explore whether targeted modulation of FA metabolism of myeloid cells to steer their function could hold promise in therapeutic settings.
Collapse
Affiliation(s)
- Luís Almeida
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
3
|
Hervé PL, Plaquet C, Assoun N, Oreal N, Gaulme L, Perrin A, Bouzereau A, Dhelft V, Labernardière JL, Mondoulet L, Sampson HA. Pre-Existing Humoral Immunity Enhances Epicutaneously-Administered Allergen Capture by Skin DC and Their Migration to Local Lymph Nodes. Front Immunol 2021; 12:609029. [PMID: 33868229 PMCID: PMC8044905 DOI: 10.3389/fimmu.2021.609029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
Due to its richness in antigen presenting cells, e.g., dendritic cells (DC), the skin has been identified as a promising route for immunotherapy and vaccination. Several years ago, a skin delivery system was developed based on epicutaneous patches allowing the administration of antigen through intact skin. Using mouse models, we have shown that epicutaneous allergen application leads to a rapid uptake and transport of allergen-positive cells to skin-draining lymph nodes (LN). This occurred primarily in animals previously sensitized to the same allergen. In that context, we sought to better understand the role of the specific preexisting immunity in allergen capture by skin DC and their subsequent migration to LN. Specifically, we investigated the role of humoral immunity induced by sensitization and the involvement of IgG Fc receptors (FcγR). Epicutaneous patches containing fluorescently-labeled ovalbumin (OVA) were applied to naïve mice that had previously received either sera or purified IgG isolated from OVA-sensitized mice. To investigate the involvement of FcγR, animals received 2.4G2 (anti-FcγRII/RIII) blocking antibody, 24 hours before patch application. Mice that received sera or purified IgG originating from OVA-sensitized mice showed an increase in the quantity of OVA-positive DC in skin and LN. Moreover, the blockade of FcγR reduced the number of OVA-positive DC in LN to a level similar to that observed in naïve animals. Overall, these results demonstrate that preexisting specific-IgG antibodies are involved in allergen capture by skin DC following EPIT through the involvement of antigen-specific IgG-FcγR.
Collapse
Affiliation(s)
| | - Camille Plaquet
- Research and Innovation, DBV Technologies, Montrouge, France
| | - Noémie Assoun
- Research and Innovation, DBV Technologies, Montrouge, France
| | - Nathalie Oreal
- Research and Innovation, DBV Technologies, Montrouge, France
| | - Laetitia Gaulme
- Research and Innovation, DBV Technologies, Montrouge, France
| | - Audrey Perrin
- Research and Innovation, DBV Technologies, Montrouge, France
| | | | | | | | - Lucie Mondoulet
- Research and Innovation, DBV Technologies, Montrouge, France
| | - Hugh A Sampson
- Research and Innovation, DBV Technologies, New York, NY, United States
| |
Collapse
|
4
|
Singh RK, Malosse C, Davies J, Malissen B, Kochba E, Levin Y, Birchall JC, Coulman SA, Mous J, McAteer MA, Dayan CM, Henri S, Wong FS. Using gold nanoparticles for enhanced intradermal delivery of poorly soluble auto-antigenic peptides. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2021; 32:102321. [PMID: 33184020 DOI: 10.1016/j.nano.2020.102321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/08/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022]
Abstract
Ultra-small 1-2 nm gold nanoparticles (NP) were conjugated with a poorly-soluble peptide auto-antigen, associated with type 1 diabetes, to modify the peptide pharmacokinetics, following its intradermal delivery. Peptide distribution was characterized, in vivo, after delivery using either conventional intradermal injection or a hollow microneedle device. The poorly-soluble peptide was effectively presented in distant lymph nodes (LN), spleen and draining LN when conjugated to the nanoparticles, whereas peptide alone was only presented in the draining LN. By contrast, nanoparticle conjugation to a highly-soluble peptide did not enhance in vivo distribution. Transfer of both free peptide and peptide-NPs from the skin to LN was reduced in mice lacking lymphoid homing receptor CCR7, suggesting that both are actively transported by migrating dendritic cells to LN. Collectively, these data demonstrate that intradermally administered ultra-small gold nanoparticles can widen the distribution of poorly-soluble auto-antigenic peptides to multiple lymphoid organs, thus enhancing their use as potential therapeutics.
Collapse
Affiliation(s)
- Ravinder K Singh
- Division of Infection & Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Camille Malosse
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Joanne Davies
- Division of Infection & Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France; Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, Marseille, France
| | | | - Yotam Levin
- NanoPass Technologies Ltd., Nes Ziona, Israel
| | - James C Birchall
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, UK
| | - Sion A Coulman
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, UK
| | - Jan Mous
- Midatech Pharma PLC, Cardiff, UK
| | | | - Colin M Dayan
- Division of Infection & Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, UK.
| | - Sandrine Henri
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - F Susan Wong
- Division of Infection & Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| |
Collapse
|
5
|
E-Cadherin is Dispensable to Maintain Langerhans Cells in the Epidermis. J Invest Dermatol 2020; 140:132-142.e3. [DOI: 10.1016/j.jid.2019.06.132] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/28/2019] [Accepted: 06/17/2019] [Indexed: 11/18/2022]
|
6
|
Blumberg L, Rupprecht CE. Improving human rabies post-exposure prophylaxis. THE LANCET. INFECTIOUS DISEASES 2019; 19:1273-1274. [PMID: 31570310 DOI: 10.1016/s1473-3099(19)30525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 07/31/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Lucille Blumberg
- National Institute for Communicable Diseases, Johannesburg, South Africa
| | | |
Collapse
|
7
|
Katagiri W, Lee JH, Tétrault M, Kang H, Jeong S, Evans CL, Yokomizo S, Santos S, Jones C, Hu S, Fakhri GE, Tsukada K, Choi HS, Kashiwagi S. Real-Time Imaging of Vaccine Biodistribution Using Zwitterionic NIR Nanoparticles. Adv Healthc Mater 2019; 8:e1900035. [PMID: 31165556 DOI: 10.1002/adhm.201900035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/06/2019] [Indexed: 12/16/2022]
Abstract
Efficient and timely delivery of vaccine antigens to the secondary lymphoid tissue is crucial to induce protective immune responses by vaccination. However, determining the longitudinal biodistribution of injected vaccines in the body has been a challenge. Here, the near-infrared (NIR) fluorescence imaging is reported that can efficiently enable the trafficking and biodistribution of vaccines in real time. Zwitterionic NIR fluorophores are conjugated on the surface of model vaccines and tracked the fate of bioconjugated vaccines after intradermal administration. Using an NIR fluorescence imaging system, it is possible to obtain time-course imaging of vaccine trafficking through the lymphatics, observing notable uptake in lymph nodes with minimal nonspecific tissue interactions. Flow cytometry analysis confirmed that the uptake in lymph nodes by antigen presenting cells was highly dependent on the hydrodynamic diameter of vaccines. These results demonstrate that the combination of a real-time NIR fluorescence imaging system and zwitterionic fluorophores is a powerful tool to determine the fate of vaccine antigens. Since such non-specific vaccine uptake causes serious adverse reactions, this method is not only useful for optimization of vaccine design, but also for safety evaluation of clinical vaccine candidates.
Collapse
Affiliation(s)
- Wataru Katagiri
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital 149 13th Street Charlestown MA 02129 USA
- Graduate School of Science and Technology Keio University 3‐14‐1 Hiyoshi Yokohama Kanagawa 223–8522 Japan
| | - Jeong Heong Lee
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital 149 13th Street Charlestown MA 02129 USA
| | - Marc‐André Tétrault
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital 149 13th Street Charlestown MA 02129 USA
| | - Homan Kang
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital 149 13th Street Charlestown MA 02129 USA
| | - Sinyoung Jeong
- Wellman Center for Photomedicine Department of Dermatology Massachusetts General Hospital 149 13th Street Charlestown MA 02129 USA
| | - Conor L. Evans
- Wellman Center for Photomedicine Department of Dermatology Massachusetts General Hospital 149 13th Street Charlestown MA 02129 USA
| | - Shinya Yokomizo
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital 149 13th Street Charlestown MA 02129 USA
- Department of Radiological Sciences Tokyo Metropolitan University 7‐2‐10 Higashi‐Ogu Arakawa Tokyo 116–8551 Japan
| | - Sheena Santos
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital 149 13th Street Charlestown MA 02129 USA
| | - Catherine Jones
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital 149 13th Street Charlestown MA 02129 USA
| | - Shuang Hu
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital 149 13th Street Charlestown MA 02129 USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital 149 13th Street Charlestown MA 02129 USA
| | - Kosuke Tsukada
- Graduate School of Science and Technology Keio University 3‐14‐1 Hiyoshi Yokohama Kanagawa 223–8522 Japan
| | - Hak Soo Choi
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital 149 13th Street Charlestown MA 02129 USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital 149 13th Street Charlestown MA 02129 USA
| |
Collapse
|
8
|
Conjugation of a peptide autoantigen to gold nanoparticles for intradermally administered antigen specific immunotherapy. Int J Pharm 2019; 562:303-312. [DOI: 10.1016/j.ijpharm.2019.03.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/06/2019] [Accepted: 03/18/2019] [Indexed: 01/11/2023]
|
9
|
Hayes AJ, Rane S, Scales HE, Meehan GR, Benson RA, Maroof A, Schroeder J, Tomura M, Gozzard N, Yates AJ, Garside P, Brewer JM. Spatiotemporal Modeling of the Key Migratory Events During the Initiation of Adaptive Immunity. Front Immunol 2019; 10:598. [PMID: 31024523 PMCID: PMC6460458 DOI: 10.3389/fimmu.2019.00598] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Abstract
Initiation of adaptive immunity involves distinct migratory cell populations coming together in a highly dynamic and spatially organized process. However, we lack a detailed spatiotemporal map of these events due to our inability to track the fate of cells between anatomically distinct locations or functionally identify cell populations as migratory. We used photo-convertible transgenic mice (Kaede) to spatiotemporally track the fate and composition of the cell populations that leave the site of priming and enter the draining lymph node to initiate immunity. We show that following skin priming, the lymph node migratory population is principally composed of cells recruited to the site of priming, with a minor contribution from tissue resident cells. In combination with the YAe/Eα system, we also show that the majority of cells presenting antigen are CD103+CD11b+ dendritic cells that were recruited to the site of priming during the inflammatory response. This population has previously only been described in relation to mucosal tissues. Comprehensive phenotypic profiling of the cells migrating from the skin to the draining lymph node by mass cytometry revealed that in addition to dendritic cells, the migratory population also included CD4+ and CD8+ T cells, B cells, and neutrophils. Taking our complex spatiotemporal data set, we then generated a model of cell migration that quantifies and describes the dynamics of arrival, departure, and residence times of cells at the site of priming and in the draining lymph node throughout the time-course of the initiation of adaptive immunity. In addition, we have identified the mean migration time of migratory dendritic cells as they travel from the site of priming to the draining lymph node. These findings represent an unprecedented, detailed and quantitative map of cell dynamics and phenotypes during immunization, identifying where, when and which cells to target for immunomodulation in autoimmunity and vaccination strategies.
Collapse
Affiliation(s)
- Alan J Hayes
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | - Sanket Rane
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom.,Department of Pathology and Cell Biology, Columbia University Medical Centre, New York, NY, United States
| | - Hannah E Scales
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | - Gavin R Meehan
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | - Robert A Benson
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | | | - Juliane Schroeder
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | - Michio Tomura
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | | | - Andrew J Yates
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom.,Department of Pathology and Cell Biology, Columbia University Medical Centre, New York, NY, United States
| | - Paul Garside
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| | - James M Brewer
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
10
|
Intravital imaging of skin infections. Cell Immunol 2019; 350:103913. [PMID: 30992120 DOI: 10.1016/j.cellimm.2019.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/11/2019] [Accepted: 04/01/2019] [Indexed: 11/23/2022]
Abstract
Intravital imaging of cutaneous immune responses has revealed intricate links between the skin's structural properties, the immune cells that reside therein, and the carefully orchestrated migratory dynamics that enable rapid sensing and subsequent elimination of skin pathogens. In particular, the development of 2-photon intravital microscopy (2P-IVM), which enables the excitation of fluorescent molecules within deep tissue with minimal light scattering and tissue damage, has proven an invaluable tool in the characterization of different cell subset's roles in skin infection. The ability to visualize cells, tissue structures, pathogens and track migratory dynamics at designated times following infection, or during inflammatory responses has been crucial in defining how immune responses in the skin are coordinated, either locally or in concert with circulating immune cells. Skin pathogens affect millions of people worldwide, and skin infections leading to cutaneous pathology have a considerable impact on the quality of life and longevity of people affected. In contrast, pathogens that infect the skin to later cause systemic illness, such as malaria parasites and a variety of arthropod-borne viruses, or infection in distant anatomical sites are a significant cause of morbidity and mortality worldwide. Here, we review recent advances and seminal studies that employed intravital imaging to characterize key immune response mechanisms in the context of viral, bacterial and parasitic skin infections, and provide insights on skin pathogens of global significance that would benefit from such investigative approaches.
Collapse
|
11
|
Criscuolo E, Caputo V, Diotti RA, Sautto GA, Kirchenbaum GA, Clementi N. Alternative Methods of Vaccine Delivery: An Overview of Edible and Intradermal Vaccines. J Immunol Res 2019; 2019:8303648. [PMID: 30949518 PMCID: PMC6425294 DOI: 10.1155/2019/8303648] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 01/26/2023] Open
Abstract
Vaccines are recognized worldwide as one of the most important tools for combating infectious diseases. Despite the tremendous value conferred by currently available vaccines toward public health, the implementation of additional vaccine platforms is also of key importance. In fact, currently available vaccines possess shortcomings, such as inefficient triggering of a cell-mediated immune response and the lack of protective mucosal immunity. In this regard, recent work has been focused on vaccine delivery systems, as an alternative to injectable vaccines, to increase antigen stability and improve overall immunogenicity. In particular, novel strategies based on edible or intradermal vaccine formulations have been demonstrated to trigger both a systemic and mucosal immune response. These novel vaccination delivery systems offer several advantages over the injectable preparations including self-administration, reduced cost, stability, and elimination of a cold chain. In this review, the latest findings and accomplishments regarding edible and intradermal vaccines are described in the context of the system used for immunogen expression, their molecular features and capacity to induce a protective systemic and mucosal response.
Collapse
Affiliation(s)
- E. Criscuolo
- Microbiology and Virology Unit, “Vita-Salute San Raffaele” University, Milan, Italy
| | - V. Caputo
- Microbiology and Virology Unit, “Vita-Salute San Raffaele” University, Milan, Italy
- Pomona Ricerca S.r.l., Turin, Italy
| | - R. A. Diotti
- Microbiology and Virology Unit, “Vita-Salute San Raffaele” University, Milan, Italy
- Pomona Ricerca S.r.l., Turin, Italy
| | - G. A. Sautto
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | | | - N. Clementi
- Microbiology and Virology Unit, “Vita-Salute San Raffaele” University, Milan, Italy
| |
Collapse
|
12
|
|
13
|
Arifuzzaman M, Mobley YR, Choi HW, Bist P, Salinas CA, Brown ZD, Chen SL, Staats HF, Abraham SN. MRGPR-mediated activation of local mast cells clears cutaneous bacterial infection and protects against reinfection. SCIENCE ADVANCES 2019; 5:eaav0216. [PMID: 30613778 PMCID: PMC6314830 DOI: 10.1126/sciadv.aav0216] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/27/2018] [Indexed: 05/22/2023]
Abstract
Mast cells (MCs) are strategically distributed at barrier sites and prestore various immunocyte-recruiting cytokines, making them ideal targets for selective activation to treat peripheral infections. Here, we report that topical treatment with mastoparan, a peptide MC activator (MCA), enhances clearance of Staphylococcus aureus from infected mouse skins and accelerates healing of dermonecrotic lesions. Mastoparan functions by activating connective tissue MCs (CTMCs) via the MRGPRX2 (Mas-related G protein-coupled receptor member X2) receptor. Peripheral CTMC activation, in turn, enhances recruitment of bacteria-clearing neutrophils and wound-healing CD301b+ dendritic cells. Consistent with MCs playing a master coordinating role, MC activation also augmented migration of various antigen-presenting dendritic cells to draining lymph nodes, leading to stronger protection against a second infection challenge. MCAs therefore orchestrate both the innate and adaptive immune arms, which could potentially be applied to combat peripheral infections by a broad range of pathogens.
Collapse
Affiliation(s)
- Mohammad Arifuzzaman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Yuvon R. Mobley
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Hae Woong Choi
- Department of Pathology, Duke University, Durham, NC 27710, USA
| | - Pradeep Bist
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore
| | | | - Zachary D. Brown
- Undergraduate Program in Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Swaine L. Chen
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Infectious Diseases Group, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Herman F. Staats
- Department of Pathology, Duke University, Durham, NC 27710, USA
- Department of Immunology, Duke University, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Soman N. Abraham
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
- Department of Pathology, Duke University, Durham, NC 27710, USA
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore
- Department of Immunology, Duke University, Durham, NC 27710, USA
- Corresponding author.
| |
Collapse
|
14
|
Silva-Vilches C, Ring S, Mahnke K. ATP and Its Metabolite Adenosine as Regulators of Dendritic Cell Activity. Front Immunol 2018; 9:2581. [PMID: 30473700 PMCID: PMC6237882 DOI: 10.3389/fimmu.2018.02581] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Adenosine (Ado) is a well-studied neurotransmitter, but it also exerts profound immune regulatory functions. Ado can (i) actively be released by various cells into the tissue environment and can (ii) be produced through the degradation of extracellular ATP by the concerted action of CD39 and CD73. In this sequence of events, the ectoenzyme CD39 degrades ATP into ADP and AMP, respectively, and CD73 catalyzes the last step leading to the production of Ado. Extracellular ATP acts as a “danger” signal and stimulates immune responses, i.e. by inflammasome activation. Its degradation product Ado on the other hand acts rather anti-inflammatory, as it down regulates functions of dendritic cells (DCs) and dampens T cell activation and cytokine secretion. Thus, the balance of proinflammatory ATP and anti-inflammatory Ado that is regulated by CD39+/CD73+ immune cells, is important for decision making on whether tolerance or immunity ensues. DCs express both ectoenzymes, enabling them to produce Ado from extracellular ATP by activity of CD73 and CD39 and thus allow dampening of the proinflammatory activity of adjacent leukocytes in the tissue. On the other hand, as most DCs express at least one out of four so far known Ado receptors (AdoR), DC derived Ado can also act back onto the DCs in an autocrine manner. This leads to suppression of DC functions that are normally involved in stimulating immune responses. Moreover, ATP and Ado production thereof acts as “find me” signal that guides cellular interactions of leukocytes during immune responses. In this review we will state the means by which Ado producing DCs are able to suppress immune responses and how extracellular Ado conditions DCs for their tolerizing properties.
Collapse
Affiliation(s)
- Cinthia Silva-Vilches
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, University Hospital, Heidelberg, Germany
| | - Sabine Ring
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, University Hospital, Heidelberg, Germany
| | - Karsten Mahnke
- Department of Dermatology, Ruprecht-Karls-University Heidelberg, University Hospital, Heidelberg, Germany
| |
Collapse
|
15
|
Zheng Z, Diaz-Arévalo D, Guan H, Zeng M. Noninvasive vaccination against infectious diseases. Hum Vaccin Immunother 2018; 14:1717-1733. [PMID: 29624470 PMCID: PMC6067898 DOI: 10.1080/21645515.2018.1461296] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The development of a successful vaccine, which should elicit a combination of humoral and cellular responses to control or prevent infections, is the first step in protecting against infectious diseases. A vaccine may protect against bacterial, fungal, parasitic, or viral infections in animal models, but to be effective in humans there are some issues that should be considered, such as the adjuvant, the route of vaccination, and the antigen-carrier system. While almost all licensed vaccines are injected such that inoculation is by far the most commonly used method, injection has several potential disadvantages, including pain, cross contamination, needlestick injury, under- or overdosing, and increased cost. It is also problematic for patients from rural areas of developing countries, who must travel to a hospital for vaccine administration. Noninvasive immunizations, including oral, intranasal, and transcutaneous administration of vaccines, can reduce or eliminate pain, reduce the cost of vaccinations, and increase their safety. Several preclinical and clinical studies as well as experience with licensed vaccines have demonstrated that noninvasive vaccine immunization activates cellular and humoral immunity, which protect against pathogen infections. Here we review the development of noninvasive immunization with vaccines based on live attenuated virus, recombinant adenovirus, inactivated virus, viral subunits, virus-like particles, DNA, RNA, and antigen expression in rice in preclinical and clinical studies. We predict that noninvasive vaccine administration will be more widely applied in the clinic in the near future.
Collapse
Affiliation(s)
- Zhichao Zheng
- a Key Laboratory of Oral Medicine , Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University , Guangzhou , Guangdong , China.,b Center of Emphasis in Infectious Diseases , Department of Biomedical Sciences , Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso , El Paso , Texas , USA
| | - Diana Diaz-Arévalo
- c Grupo Funcional de Inmunología , Fundación Instituto de Inmunología de Colombia-FIDIC, Faculty of Agricultural Sciences, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A, School of Medicine and Health Sciences, Universidad del Rosario , Bogotá , DC . Colombia
| | - Hongbing Guan
- a Key Laboratory of Oral Medicine , Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University , Guangzhou , Guangdong , China
| | - Mingtao Zeng
- a Key Laboratory of Oral Medicine , Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University , Guangzhou , Guangdong , China.,b Center of Emphasis in Infectious Diseases , Department of Biomedical Sciences , Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso , El Paso , Texas , USA
| |
Collapse
|
16
|
Nadafi R, Koning JJ, Veninga H, Stachtea XN, Konijn T, Zwiers A, Malmström A, den Haan JMM, Mebius RE, Maccarana M, Reijmers RM. Dendritic Cell Migration to Skin-Draining Lymph Nodes Is Controlled by Dermatan Sulfate and Determines Adaptive Immunity Magnitude. Front Immunol 2018; 9:206. [PMID: 29472931 PMCID: PMC5809438 DOI: 10.3389/fimmu.2018.00206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/24/2018] [Indexed: 11/13/2022] Open
Abstract
For full activation of naïve adaptive lymphocytes in skin-draining lymph nodes (LNs), presentation of peptide:MHC complexes by LN-resident and skin-derived dendritic cells (DCs) that encountered antigens (Ags) is an absolute prerequisite. To get to the nearest draining LN upon intradermal immunization, DCs need to migrate from the infection site to the afferent lymphatics, which can only be reached by traversing a collagen-dense network located in the dermis of the skin through the activity of proteolytic enzymes. Here, we show that mice with altered collagen fibrillogenesis resulting in thicker collagen fibers in the skin display a reduced DC migration to the draining LN upon immune challenge. Consequently, the initiation of the cellular and humoral immune response was diminished. Ag-specific CD8+ and CD4+ T cells as well as Ag-specific germinal center B cells and serum immunoglobulin levels were significantly decreased. Hence, we postulate that alterations to the production of extracellular matrix, as seen in various connective tissue disorders, may in the end affect the qualitative outcome of adaptive immunity.
Collapse
Affiliation(s)
- Reza Nadafi
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Jasper J Koning
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Henrike Veninga
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Xanthi N Stachtea
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tanja Konijn
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Antonie Zwiers
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Anders Malmström
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Marco Maccarana
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Rogier M Reijmers
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
17
|
Platteel ACM, Henri S, Zaiss DM, Sijts AJAM. Dissecting antigen processing and presentation routes in dermal vaccination strategies. Vaccine 2017; 35:7057-7063. [PMID: 29079107 DOI: 10.1016/j.vaccine.2017.10.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/20/2017] [Accepted: 10/13/2017] [Indexed: 11/26/2022]
Abstract
The skin is an attractive site for vaccination due to its accessibility and presence of immune cells surveilling this barrier. However, knowledge of antigen processing and presentation upon dermal vaccination is sparse. In this study we determined antigen processing routes that lead to CD8+ T cell activation following dermal DNA tattoo immunization, exploiting a model antigen that contains an immunoproteasome-dependent epitope. In agreement with earlier reports, we found that DNA tattoo immunization of wild type (WT) mice triggered vigorous responses to the immunoproteasome-dependent model epitope, whereas gene-deficient mice lacking the immunoproteasome subunits β5i/LMP7 and β2i/MECL1 failed to respond. Unexpectedly, dermal immunization both of irradiated bone marrow (BM) reconstituted mice in which the BM transplant was of WT origin, and of WT mice transplanted with immunoproteasome subunit-deficient BM induced a CD8+ T cell response to the immunoproteasome-dependent epitope, implying that both BM and host-derived cells contributed to processing of delivered model antigen. Depletion of radiation-resistant Langerhans cells (LC) from chimeric mice did not diminish tattoo-immunization induced CD8+ T cell responses in most mice, illustrating that LC were not responsible for antigen processing and CD8+ T cell priming in tattoo-immunized hosts. We conclude that both BM and non-BM-derived cells contribute to processing and cross-presentation of antigens delivered by dermal DNA tattoo immunization.
Collapse
Affiliation(s)
- Anouk C M Platteel
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sandrine Henri
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, 13288 Marseille, France
| | - Dietmar M Zaiss
- Centre for Immunity, Infection and Evolution, and the Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Alice J A M Sijts
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
18
|
Mueller SN. Spreading the load: Antigen transfer between migratory and lymph node-resident dendritic cells promotes T-cell priming. Eur J Immunol 2017; 47:1798-1801. [PMID: 28845904 DOI: 10.1002/eji.201747248] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/08/2017] [Accepted: 08/23/2017] [Indexed: 01/07/2023]
Abstract
Dendritic cells (DC) are specialized in the processing and presentation of antigen for the activation of lymphocytes. Multiple subsets of DCs exist with distinct functions and roles in the initiation of immune responses. DCs found within tissues acquire antigens or become infected by pathogens and migrate to local draining lymph nodes (LN) where they can directly stimulate T cells. These migratory DCs can also transfer antigens to LN-resident DCs and may indirectly enhance T cell priming. In this issue of the European Journal of Immunology, Gurevich et al. [Eur. J. Immunol. 2017. 47: 1802-1818] elegantly demonstrate the influence of the transfer of antigen from migratory DCs to resident DCs on the dynamics of CD8 T-cell priming in mice. Using both in vitro imaging to visualise antigen dissemination and intravital 2-photon microscopy to track T cell clustering with migratory and resident DCs, antigen-donor DC were found to efficiently distribute antigen to recipient DC. This process, which involved LFA-1, enhanced the recruitment of CD8+ T cells into the response and rescued priming when DCs were impaired in presentation capacity. Together, these findings shed light on the dynamics of the transfer of antigens between DCs in vivo for the efficient priming of cytotoxic T cell responses.
Collapse
Affiliation(s)
- Scott N Mueller
- Department of Microbiology and Immunology, the University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, the University of Melbourne, Melbourne, Australia
| |
Collapse
|
19
|
Strandt H, Pinheiro DF, Kaplan DH, Wirth D, Gratz IK, Hammerl P, Thalhamer J, Stoecklinger A. Neoantigen Expression in Steady-State Langerhans Cells Induces CTL Tolerance. THE JOURNAL OF IMMUNOLOGY 2017; 199:1626-1634. [PMID: 28739880 DOI: 10.4049/jimmunol.1602098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 06/26/2017] [Indexed: 12/22/2022]
Abstract
The skin hosts a variety of dendritic cells (DCs), which act as professional APC to control cutaneous immunity. Langerhans cells (LCs) are the only DC subset in the healthy epidermis. However, due to the complexity of the skin DC network, their relative contribution to either immune activation or immune tolerance is still not entirely understood. To specifically study the function of LCs in vivo, without altering the DC subset composition in the skin, we have generated transgenic mouse models for tamoxifen-inducible de novo expression of Ags in LCs but no other langerin+ DCs. Therefore, this system allows for LC-restricted Ag presentation to T cells. Presentation of nonsecreted OVA (GFPOVA) by steady-state LCs resulted in transient activation of endogenous CTL in transgenic mice. However, when these mice were challenged with OVA by gene gun immunization in the contraction phase of the primary CTL response they did not respond with a recall of CTL memory but, instead, with robust Ag-specific CTL tolerance. We found regulatory T cells (Tregs) enriched in the skin of tolerized mice, and depletion of Tregs or adoptive experiments revealed that Tregs were critically involved in CTL tolerance. By contrast, when OVA was presented by activated LCs, a recallable CTL memory response developed in transgenic mice. Thus, neoantigen presentation by epidermal LCs results in either robust CTL tolerance or CTL memory, and this decision-making depends on the activation state of the presenting LCs.
Collapse
Affiliation(s)
- Helen Strandt
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | | | - Daniel H Kaplan
- Department of Dermatology, University of Pittsburgh, Pittsburgh, PA 15261.,Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261
| | - Dagmar Wirth
- Helmholtz Centre of Infection Research, 38102 Braunschweig, Germany
| | - Iris Karina Gratz
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria.,Department of Dermatology, University of California, San Francisco, San Francisco, CA 94143; and
| | - Peter Hammerl
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Josef Thalhamer
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Angelika Stoecklinger
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria; .,EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology, University Hospital of the Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
20
|
Kim Y, Lee YS, Yang JY, Lee SH, Park YY, Kweon MN. The resident pathobiont Staphylococcus xylosus in Nfkbiz-deficient skin accelerates spontaneous skin inflammation. Sci Rep 2017; 7:6348. [PMID: 28740238 PMCID: PMC5524713 DOI: 10.1038/s41598-017-05740-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/01/2017] [Indexed: 01/05/2023] Open
Abstract
IκBζ, which is encoded by the Nfkbiz gene, is a member of the nuclear IκB family of proteins that act as transcriptional regulators via association with NF-κB. Nfkbiz-deficient (Nfkbiz -/-) mice develop spontaneous dermatitis; however, the underlying mechanism has yet to be elucidated. In our study, we found higher skin pathology scores and more serum IgE antibodies and trans-epidermal water loss in Nfkbiz -/- than in Nfkbiz-sufficient (Nfkbiz +/-) mice. There was also greater expansion of IFN-γ-, IL-17A-, and IL-22-secreting CD4+ T cells and of IL-17A-secreting γδ+ T cells in the skin of Nfkbiz -/- mice than in with Nfkbiz +/- mice. Pyrosequencing analysis showed decreased diversity of resident bacteria and markedly expanded Staphylococcus (S.) xylosus in the skin of Nfkbiz -/- mice. Oral administration of antibiotics including cephalexin and enrofloxacin ameliorated skin inflammation. Topical application of S. xylosus also resulted in the expansion of IL-17A-secreting CD4+ T cells along with high levels of pro-inflammatory cytokines and chemokines in the skin of Nfkbiz -/- mice. The expansion of commensal S. xylosus may be one cause of skin dysbiosis in Nfkbiz -/- mice and suggests that the Nfkbiz gene may play a regulatory role in the microbiota-skin immunity axis.
Collapse
Affiliation(s)
- Yeji Kim
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Korea
| | - Yong-Soo Lee
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Korea
| | - Jin-Young Yang
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Korea
| | - Su-Hyun Lee
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Korea
| | - Yun-Yong Park
- ASAN Institute for Life Science, Asan Medical Center, Seoul, Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Korea.
| |
Collapse
|
21
|
Morse K, Kimizuka Y, Chan MPK, Shibata M, Shimaoka Y, Takeuchi S, Forbes B, Nirschl C, Li B, Zeng Y, Bronson RT, Katagiri W, Shigeta A, Sîrbulescu RF, Chen H, Tan RYY, Tsukada K, Brauns T, Gelfand J, Sluder A, Locascio JJ, Poznansky MC, Anandasabapathy N, Kashiwagi S. Near-Infrared 1064 nm Laser Modulates Migratory Dendritic Cells To Augment the Immune Response to Intradermal Influenza Vaccine. THE JOURNAL OF IMMUNOLOGY 2017; 199:1319-1332. [PMID: 28710250 DOI: 10.4049/jimmunol.1601873] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 06/13/2017] [Indexed: 12/11/2022]
Abstract
Brief exposure of skin to near-infrared (NIR) laser light has been shown to augment the immune response to intradermal vaccination and thus act as an immunologic adjuvant. Although evidence indicates that the NIR laser adjuvant has the capacity to activate innate subsets including dendritic cells (DCs) in skin as conventional adjuvants do, the precise immunological mechanism by which the NIR laser adjuvant acts is largely unknown. In this study we sought to identify the cellular target of the NIR laser adjuvant by using an established mouse model of intradermal influenza vaccination and examining the alteration of responses resulting from genetic ablation of specific DC populations. We found that a continuous wave (CW) NIR laser adjuvant broadly modulates migratory DC (migDC) populations, specifically increasing and activating the Lang+ and CD11b-Lang- subsets in skin, and that the Ab responses augmented by the CW NIR laser are dependent on DC subsets expressing CCR2 and Langerin. In comparison, a pulsed wave NIR laser adjuvant showed limited effects on the migDC subsets. Our vaccination study demonstrated that the efficacy of the CW NIR laser is significantly better than that of the pulsed wave laser, indicating that the CW NIR laser offers a desirable immunostimulatory microenvironment for migDCs. These results demonstrate the unique ability of the NIR laser adjuvant to selectively target specific migDC populations in skin depending on its parameters, and highlight the importance of optimization of laser parameters for desirable immune protection induced by an NIR laser-adjuvanted vaccine.
Collapse
Affiliation(s)
- Kaitlyn Morse
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Yoshifumi Kimizuka
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Megan P K Chan
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Mai Shibata
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Yusuke Shimaoka
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Shu Takeuchi
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Benjamin Forbes
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Christopher Nirschl
- Department of Dermatology, Harvard Skin Disease Research Center, Brigham and Women's Hospital, Boston, MA 02115
| | - Binghao Li
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Yang Zeng
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | | | - Wataru Katagiri
- Graduate School of Fundamental Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan; and
| | - Ayako Shigeta
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Ruxandra F Sîrbulescu
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Huabiao Chen
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Rhea Y Y Tan
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Kosuke Tsukada
- Graduate School of Fundamental Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan; and
| | - Timothy Brauns
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Jeffrey Gelfand
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Ann Sluder
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Joseph J Locascio
- Alzheimer's Disease Research Center, Department of Neurology and Psychiatry, Massachusetts General Hospital, Boston, MA 02114
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129
| | - Niroshana Anandasabapathy
- Department of Dermatology, Harvard Skin Disease Research Center, Brigham and Women's Hospital, Boston, MA 02115
| | - Satoshi Kashiwagi
- Vaccine and Immunotherapy Center, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Charlestown, MA 02129;
| |
Collapse
|
22
|
Vandegrift R, Bateman AC, Siemens KN, Nguyen M, Wilson HE, Green JL, Van Den Wymelenberg KG, Hickey RJ. Cleanliness in context: reconciling hygiene with a modern microbial perspective. MICROBIOME 2017; 5:76. [PMID: 28705228 PMCID: PMC5513348 DOI: 10.1186/s40168-017-0294-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/28/2017] [Indexed: 05/04/2023]
Abstract
The concept of hygiene is rooted in the relationship between cleanliness and the maintenance of good health. Since the widespread acceptance of the germ theory of disease, hygiene has become increasingly conflated with sterilization. In reviewing studies across the hygiene literature (most often hand hygiene), we found that nearly all studies of hand hygiene utilize bulk reduction in bacterial load as a proxy for reduced transmission of pathogenic organisms. This treatment of hygiene may be insufficient in light of recent microbial ecology research, which has demonstrated that humans have intimate and evolutionarily significant relationships with a diverse assemblage of microorganisms (our microbiota). The human skin is home to a diverse and specific community of microorganisms, which include members that exist across the ecological spectrum from pathogen through commensal to mutualist. Most evidence suggests that the skin microbiota is likely of direct benefit to the host and only rarely exhibits pathogenicity. This complex ecological context suggests that the conception of hygiene as a unilateral reduction or removal of microbes has outlived its usefulness. As such, we suggest the explicit definition of hygiene as "those actions and practices that reduce the spread or transmission of pathogenic microorganisms, and thus reduce the incidence of disease."
Collapse
Affiliation(s)
- Roo Vandegrift
- Biology and the Built Environment Center, University of Oregon, Eugene, OR USA
- Institute of Ecology and Evolution, Department of Biological Sciences, University of Oregon, Eugene, OR USA
| | - Ashley C. Bateman
- Biology and the Built Environment Center, University of Oregon, Eugene, OR USA
- Institute of Ecology and Evolution, Department of Biological Sciences, University of Oregon, Eugene, OR USA
| | - Kyla N. Siemens
- Biology and the Built Environment Center, University of Oregon, Eugene, OR USA
- Institute of Ecology and Evolution, Department of Biological Sciences, University of Oregon, Eugene, OR USA
| | - May Nguyen
- Biology and the Built Environment Center, University of Oregon, Eugene, OR USA
- Energy Studies in Buildings Laboratory, Department of Architecture, University of Oregon, Eugene, OR USA
| | - Hannah E. Wilson
- Biology and the Built Environment Center, University of Oregon, Eugene, OR USA
- Institute of Ecology and Evolution, Department of Biological Sciences, University of Oregon, Eugene, OR USA
| | - Jessica L. Green
- Biology and the Built Environment Center, University of Oregon, Eugene, OR USA
- Institute of Ecology and Evolution, Department of Biological Sciences, University of Oregon, Eugene, OR USA
| | - Kevin G. Van Den Wymelenberg
- Biology and the Built Environment Center, University of Oregon, Eugene, OR USA
- Energy Studies in Buildings Laboratory, Department of Architecture, University of Oregon, Eugene, OR USA
| | - Roxana J. Hickey
- Biology and the Built Environment Center, University of Oregon, Eugene, OR USA
- Institute of Ecology and Evolution, Department of Biological Sciences, University of Oregon, Eugene, OR USA
| |
Collapse
|
23
|
Deckers J, Sichien D, Plantinga M, Van Moorleghem J, Vanheerswynghels M, Hoste E, Malissen B, Dombrowicz D, Guilliams M, De Bosscher K, Lambrecht BN, Hammad H. Epicutaneous sensitization to house dust mite allergen requires interferon regulatory factor 4-dependent dermal dendritic cells. J Allergy Clin Immunol 2017; 140:1364-1377.e2. [PMID: 28189772 DOI: 10.1016/j.jaci.2016.12.970] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/16/2016] [Accepted: 12/29/2016] [Indexed: 12/27/2022]
Abstract
BACKGROUND Exposure to allergens, such as house dust mite (HDM), through the skin often precedes allergic inflammation in the lung. It was proposed that TH2 sensitization through the skin occurs when skin barrier function is disrupted by, for example, genetic predisposition, mechanical damage, or the enzymatic activity of allergens. OBJECTIVE We sought to study how HDM applied to unmanipulated skin leads to TH2 sensitization and to study which antigen-presenting cells mediate this process. METHODS HDM was applied epicutaneously by painting HDM on unmanipulated ear skin or under an occlusive tape. HDM challenge was through the nose. Mouse strains lacking different dendritic cell (DC) populations were used, and 1-DER T cells carrying a transgenic T-cell receptor reactive to Der p 1 allergen were used as a readout for antigen presentation. The TH2-inducing capacity of sorted skin-derived DC subsets was determined by means of adoptive transfer to naive mice. RESULTS Epicutaneous HDM application led to TH2 sensitization and eosinophilic airway inflammation upon intranasal HDM challenge. Skin sensitization did not require prior skin damage or enzymatic activity within HDM extract, yet was facilitated by applying the allergen under an occlusive tape. Primary proliferation of 1-DER T cells occurred only in the regional skin-draining lymph nodes. Epicutaneous sensitization was found to be driven by 2 variants of interferon regulatory factor 4-dependent dermal type 2 conventional DC subsets and not by epidermal Langerhans cells. CONCLUSION These findings identify skin type 2 conventional DCs as crucial players in TH2 sensitization to common inhaled allergens that enter the body through the skin and can provoke features of allergic asthma.
Collapse
Affiliation(s)
- Julie Deckers
- VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine, Ghent University, Ghent, Belgium; Receptor Research Laboratories, Nuclear Receptor Lab, VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Dorine Sichien
- VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Maud Plantinga
- VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Justine Van Moorleghem
- VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Manon Vanheerswynghels
- VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Esther Hoste
- VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - David Dombrowicz
- INSERM U1011, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Martin Guilliams
- VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab, VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Hamida Hammad
- VIB Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine, Ghent University, Ghent, Belgium.
| |
Collapse
|
24
|
Scheiblhofer S, Strobl A, Hoepflinger V, Thalhamer T, Steiner M, Thalhamer J, Weiss R. Skin vaccination via fractional infrared laser ablation - Optimization of laser-parameters and adjuvantation. Vaccine 2017; 35:1802-1809. [PMID: 28117172 DOI: 10.1016/j.vaccine.2016.11.105] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 10/31/2016] [Accepted: 11/29/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Methods to deliver an antigen into the skin in a painless, defined, and reproducible manner are essential for transcutaneous immunization (TCI). Here, we employed an ablative fractional infrared laser (P.L.E.A.S.E. Professional) to introduce clinically relevant vaccines into the skin. To elicit the highest possible antibody titers with this system, we optimized different laser parameters, such as fluence and pore number per area, and tested various adjuvants. METHODS BALB/c mice were immunized with Hepatitis B surface antigen (HBsAg) by laser-microporation. Adjuvants used were alum, CRM197, monophosphoryl lipid A, heat-labile enterotoxin subunit B of E. coli (LT-B), and CpG ODN1826. The influence of different fluences (2.1 to 16.8J/cm2) and pore densities (5-15%) was investigated. Furthermore, immunogenicity of HBsAg and the commercially available conjugate vaccines ActHIB® and Menveo® applied via TCI was compared to standard i.m. injection. Antigen-specific antibody titers were assessed by luminometric ELISA. RESULTS Antibody titers against HBsAg were dependent on pore depth and peaked at a fluence of 8.4J/cm2. Immunogenicity was independent of pore density. Adjuvantation with alum significantly reduced antibody titers after TCI, whereas other adjuvants only induced marginal changes in total IgG titers. LT-B and CpG shifted the polarization of the immune response as indicated by decreased IgG1/IgG2a ratios. HBsAg/LT-B applied via TCI induced similar antibody titers compared to i.m. injection of HBsAg/alum. In contrast to i.m. injection, we observed a dose response from 5 to 20μg after TCI. Both, ActHIB® and Menveo® induced high antibody titers after TCI, which were comparable to i.m. injection. CONCLUSIONS Alum, the most commonly used adjuvant, is contraindicated for transcutaneous vaccination via laser-generated micropores. TCI with optimized laser parameters induces high antibody titers, which cannot be significantly increased by the tested adjuvants. Commercially available vaccines formulated without alum have the potential for successful TCI via laser-generated micropores, without the need for reformulation.
Collapse
Affiliation(s)
- Sandra Scheiblhofer
- University of Salzburg, Department of Molecular Biology, Hellbrunnerstr. 34, Salzburg, Austria
| | - Anna Strobl
- University of Salzburg, Department of Molecular Biology, Hellbrunnerstr. 34, Salzburg, Austria
| | - Veronika Hoepflinger
- University of Salzburg, Department of Molecular Biology, Hellbrunnerstr. 34, Salzburg, Austria
| | - Theresa Thalhamer
- University of Salzburg, Department of Molecular Biology, Hellbrunnerstr. 34, Salzburg, Austria
| | - Martin Steiner
- Pantec Biosolutions AG, Industriering 21, Ruggell, Liechtenstein
| | - Josef Thalhamer
- University of Salzburg, Department of Molecular Biology, Hellbrunnerstr. 34, Salzburg, Austria
| | - Richard Weiss
- University of Salzburg, Department of Molecular Biology, Hellbrunnerstr. 34, Salzburg, Austria.
| |
Collapse
|
25
|
Hapten-Specific T Cell-Mediated Skin Inflammation: Flow Cytometry Analysis of Mouse Skin Inflammatory Infiltrate. Methods Mol Biol 2017; 1559:21-36. [PMID: 28063034 DOI: 10.1007/978-1-4939-6786-5_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hapten-specific T cell-mediated skin inflammation also known as contact hypersensitivity (CHS) is characterized by a strong influx of CD8+ cytotoxic T cells within the skin upon reexposure of sensitized individuals to the same hapten. As many other leukocytes are also recruited during this elicitation phase, we attempted to revisit the skin infiltrate and characterize the inflammatory pattern. Recent improvement in the isolation in conventional as well as inflammatory dendritic cell and macrophage subsets from tissues and in the use of appropriate surface markers unraveling their heterogeneity should allow to determinate their specific functions in the CHS model. Here, we describe procedures to extract those cells from the skin and to analyze them by flow cytometry using a combination of appropriate surface markers allowing further transcriptomic analysis and functional assays.
Collapse
|
26
|
Nirschl CJ, Anandasabapathy N. Duality at the gate: Skin dendritic cells as mediators of vaccine immunity and tolerance. Hum Vaccin Immunother 2016; 12:104-16. [PMID: 26836327 DOI: 10.1080/21645515.2015.1066050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Since Edward Jenner's discovery that intentional exposure to cowpox could provide lifelong protection from smallpox, vaccinations have been a major focus of medical research. However, while the protective benefits of many vaccines have been successfully translated into the clinic, the cellular and molecular mechanisms that differentiate effective vaccines from sub-optimal ones are not well understood. Dendritic cells (DCs) are the gatekeepers of the immune system, and are ultimately responsible for the generation of adaptive immunity and lifelong protective memory through interactions with T cells. In addition to lymph node and spleen resident DCs, a number of tissue resident DC populations have been identified at barrier tissues, such as the skin, which migrate to the local lymph node (migDC). These populations have unique characteristics, and play a key role in the function of cutaneous vaccinations by shuttling antigen from the vaccination site to the draining lymph node, rapidly capturing freely draining antigens in the lymph node, and providing key stimuli to T cells. However, while migDCs are responsible for the generation of immunity following exposure to certain pathogens and vaccines, recent work has identified a tolerogenic role for migDCs in the steady state as well as during protein immunization. Here, we examine the roles and functions of skin DC populations in the generation of protective immunity, as well as their role as regulators of the immune system.
Collapse
Affiliation(s)
- Christopher J Nirschl
- a Department of Dermatology ; Harvard Skin Disease Research Center; Brigham and Women's Hospital ; Boston , MA USA
| | - Niroshana Anandasabapathy
- a Department of Dermatology ; Harvard Skin Disease Research Center; Brigham and Women's Hospital ; Boston , MA USA
| |
Collapse
|
27
|
Bollampalli VP, Nylén S, Rothfuchs AG. A CFSE-based Assay to Study the Migration of Murine Skin Dendritic Cells into Draining Lymph Nodes During Infection with Mycobacterium bovis Bacille Calmette-Guérin. J Vis Exp 2016. [PMID: 27768071 PMCID: PMC5092184 DOI: 10.3791/54620] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Dendritic cells (DCs) are important for initiating immune responses, in part through their ability to acquire and shuttle antigen to the draining lymph node (DLN). The mobilization of DCs to the DLN is complex and remains to be fully elucidated during infection. Herein described is the use of an innovative, simple assay that relies on the fluorochrome 5- and 6-carboxyfluorescein diacetate succinimidyl ester (CFSE) to track the migration of DCs during footpad infection with Mycobacterium bovis Bacille Calmette-Guérin (BCG) in C57BL/6 mice. This assay enables the characterization of skin DC sub-populations that actively relocate to the draining, popliteal LN in response to BCG. This protocol originates from a BCG model where migratory skin DCs were identified by flow cytometry. The assay is amiable to the study and identification of DCs or other cells that home to the popliteal LN after inoculation of microbes, their metabolites or other inflammatory stimuli in the footpad, and consequently to study factors that regulate the migration of these cells.
Collapse
Affiliation(s)
| | - Susanne Nylén
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet
| | | |
Collapse
|
28
|
Baptista MAP, Keszei M, Oliveira M, Sunahara KKS, Andersson J, Dahlberg CIM, Worth AJ, Liedén A, Kuo IC, Wallin RPA, Snapper SB, Eidsmo L, Scheynius A, Karlsson MCI, Bouma G, Burns SO, Forsell MNE, Thrasher AJ, Nylén S, Westerberg LS. Deletion of Wiskott-Aldrich syndrome protein triggers Rac2 activity and increased cross-presentation by dendritic cells. Nat Commun 2016; 7:12175. [PMID: 27425374 PMCID: PMC4960314 DOI: 10.1038/ncomms12175] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 06/08/2016] [Indexed: 11/22/2022] Open
Abstract
Wiskott-Aldrich syndrome (WAS) is caused by loss-of-function mutations in the WASp gene. Decreased cellular responses in WASp-deficient cells have been interpreted to mean that WASp directly regulates these responses in WASp-sufficient cells. Here, we identify an exception to this concept and show that WASp-deficient dendritic cells have increased activation of Rac2 that support cross-presentation to CD8(+) T cells. Using two different skin pathology models, WASp-deficient mice show an accumulation of dendritic cells in the skin and increased expansion of IFNγ-producing CD8(+) T cells in the draining lymph node and spleen. Specific deletion of WASp in dendritic cells leads to marked expansion of CD8(+) T cells at the expense of CD4(+) T cells. WASp-deficient dendritic cells induce increased cross-presentation to CD8(+) T cells by activating Rac2 that maintains a near neutral pH of phagosomes. Our data reveals an intricate balance between activation of WASp and Rac2 signalling pathways in dendritic cells.
Collapse
Affiliation(s)
- Marisa A. P. Baptista
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm 171 77, Sweden
- Institute for Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Marton Keszei
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Mariana Oliveira
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Karen K. S. Sunahara
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm 171 77, Sweden
- Experimental Physiopathology, Department of Sciences/Experimental Physiopatholgy, Medical School, University of São Paulo, São Paulo, Brazil
| | - John Andersson
- Department of Medicine Solna, Translational Immunology Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Carin I. M. Dahlberg
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Austen J. Worth
- University College London Institute of Child Health, London WC1N 1EH, UK
| | - Agne Liedén
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 76, Sweden
| | - I-Chun Kuo
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, The National University Health System, Singapore 119228, Singapore
| | - Robert P. A. Wallin
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Scott B. Snapper
- Gastroenterology Division, Children's Hospital, Harvard Medical School, Boston MA 02115, USA
| | - Liv Eidsmo
- Department of Medicine Solna, Dermatology and Venereology Unit, Karolinska Institutet, Stockholm 171 76, Sweden
| | - Annika Scheynius
- Department of Medicine Solna, Translational Immunology Unit, Karolinska Institutet and Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Mikael C. I. Karlsson
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Gerben Bouma
- University College London Institute of Child Health, London WC1N 1EH, UK
| | - Siobhan O. Burns
- University College London Institute of Child Health, London WC1N 1EH, UK
- Department of Immunology, Royal Free London NHS Foundation Trust, London NW3 2QG, UK
- University College London Institute of Immunity and Transplantation, London WC1E 6BT, UK
| | - Mattias N. E. Forsell
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm 171 77, Sweden
- Department of Clinical Microbiology, Division of Immunology, Umeå University, Umeå 901 87, Sweden
| | - Adrian J. Thrasher
- University College London Institute of Child Health, London WC1N 1EH, UK
| | - Susanne Nylén
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Lisa S. Westerberg
- Department of Microbiology Tumor and Cell biology, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
29
|
Barreiro O, Cibrian D, Clemente C, Alvarez D, Moreno V, Valiente Í, Bernad A, Vestweber D, Arroyo AG, Martín P, von Andrian UH, Sánchez Madrid F. Pivotal role for skin transendothelial radio-resistant anti-inflammatory macrophages in tissue repair. eLife 2016; 5. [PMID: 27304075 PMCID: PMC4961461 DOI: 10.7554/elife.15251] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/13/2016] [Indexed: 12/20/2022] Open
Abstract
Heterogeneity and functional specialization among skin-resident macrophages are incompletely understood. In this study, we describe a novel subset of murine dermal perivascular macrophages that extend protrusions across the endothelial junctions in steady-state and capture blood-borne macromolecules. Unlike other skin-resident macrophages that are reconstituted by bone marrow-derived progenitors after a genotoxic insult, these cells are replenished by an extramedullary radio-resistant and UV-sensitive Bmi1+ progenitor. Furthermore, they possess a distinctive anti-inflammatory transcriptional profile, which cannot be polarized under inflammatory conditions, and are involved in repair and remodeling functions for which other skin-resident macrophages appear dispensable. Based on all their properties, we define these macrophages as Skin Transendothelial Radio-resistant Anti-inflammatory Macrophages (STREAM) and postulate that their preservation is important for skin homeostasis. DOI:http://dx.doi.org/10.7554/eLife.15251.001 The skin forms an essential barrier that defends our body from external damage. For this reason, it is important to understand the complex mechanisms involved in healing wounds and maintaining healthy skin. This could allow us to find effective treatments for skin diseases such as atopic dermatitis and psoriasis. Immune cells called macrophages can protect the body in different ways depending on the signals they receive. Their protective roles include killing microbes that may cause disease, and helping to repair damaged tissues. Barreiro et al. have now investigated the roles of the macrophages in the skin by means of a number of complementary techniques, including a method called intravital microscopy that can image cells in a living organism. The experiments revealed that a division of labor exists among the macrophages that reside in the skin of mice. Some macrophages help to trigger inflammatory responses in the skin. These immune cells disappear after being exposed to ionizing radiation (such as that used to treat cancer) but can be replaced via a bone marrow transplant. Other macrophages that help to repair tissues can survive being exposed to ionizing radiation but cannot resist high levels of ultraviolet light. Both types of macrophages perform unique and essential roles, and both types are necessary for maintaining healthy skin. Barreiro et al. also discovered that the skin macrophages that help to repair tissues have the ability to move into blood vessels and take up substances from the blood. A question for future investigation is whether the macrophages perform this scavenging process to trigger a protective immune response in the nearby skin. DOI:http://dx.doi.org/10.7554/eLife.15251.002
Collapse
Affiliation(s)
- Olga Barreiro
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Danay Cibrian
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Cristina Clemente
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - David Alvarez
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Vanessa Moreno
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Íñigo Valiente
- Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Antonio Bernad
- Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Alicia G Arroyo
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Pilar Martín
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Ulrich H von Andrian
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States.,Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
| | - Francisco Sánchez Madrid
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
30
|
Didovic S, Opitz FV, Holzmann B, Förster I, Weighardt H. Requirement of MyD88 signaling in keratinocytes for Langerhans cell migration and initiation of atopic dermatitis-like symptoms in mice. Eur J Immunol 2016; 46:981-92. [DOI: 10.1002/eji.201545710] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 11/20/2015] [Accepted: 12/17/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Sonja Didovic
- Immunology and Environment; Life and Medical Sciences (LIMES) Institute; University of Bonn; Bonn Germany
- IUF Leibniz Research Institute for Environmental Medicine; Düsseldorf Germany
| | - Friederike V. Opitz
- Immunology and Environment; Life and Medical Sciences (LIMES) Institute; University of Bonn; Bonn Germany
- IUF Leibniz Research Institute for Environmental Medicine; Düsseldorf Germany
| | - Bernhard Holzmann
- Department of Surgery; Technische Universität München; Munich Germany
| | - Irmgard Förster
- Immunology and Environment; Life and Medical Sciences (LIMES) Institute; University of Bonn; Bonn Germany
| | - Heike Weighardt
- Immunology and Environment; Life and Medical Sciences (LIMES) Institute; University of Bonn; Bonn Germany
- IUF Leibniz Research Institute for Environmental Medicine; Düsseldorf Germany
| |
Collapse
|
31
|
Wang Y, Bugatti M, Ulland TK, Vermi W, Gilfillan S, Colonna M. Nonredundant roles of keratinocyte-derived IL-34 and neutrophil-derived CSF1 in Langerhans cell renewal in the steady state and during inflammation. Eur J Immunol 2015; 46:552-9. [PMID: 26634935 DOI: 10.1002/eji.201545917] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 11/02/2015] [Accepted: 11/30/2015] [Indexed: 12/27/2022]
Abstract
IL-34 and colony-stimulating factor 1 (CSF1) are two alternative ligands for the CSF1 receptor that play nonredundant roles in the development, survival, and function of tissue macrophages and Langerhans cells (LCs). In this study, we investigated the spatio-temporal production of IL-34 and its impact on skin LCs in the developing embryo and adult mice in the steady state and during inflammation using Il34(LacZ) reporter mice and newly generated inducible Il34-knockout mice. We found that IL-34 is produced in the developing skin epidermis of the embryo, where it promotes the final differentiation of LC precursors. In adult life, LCs required IL-34 to continually self-renew in the steady state. However, during UV-induced skin damage, LC regeneration depended on neutrophils infiltrating the skin, which produced large amounts of CSF1. We conclude that LCs require IL-34 when residing in fully differentiated and anatomically intact skin epidermis, but rely on neutrophil-derived CSF1 during inflammation. Our demonstration that neutrophils are an important source of CSF1 during skin inflammation may exemplify a mechanism through which neutrophils promote their subsequent replacement with mononuclear phagocytes.
Collapse
Affiliation(s)
- Yaming Wang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mattia Bugatti
- Department of Pathology, University of Brescia, Brescia, Italy
| | - Tyler K Ulland
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - William Vermi
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology, University of Brescia, Brescia, Italy
| | - Susan Gilfillan
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Marco Colonna
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
32
|
Mondoulet L, Dioszeghy V, Thébault C, Benhamou PH, Dupont C. Epicutaneous immunotherapy for food allergy as a novel pathway for oral tolerance induction. Immunotherapy 2015; 7:1293-305. [PMID: 26584421 DOI: 10.2217/imt.15.86] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Epicutaneous immunotherapy is a developing technique, aiming at desensitizing patients with food allergy with less risks that oral ingestion or injection could generate. Several clinical trials have been performed and are currently running, in milk and peanut allergy, assessing the safety of the technique and its efficacy. Preclinical models indicate a major role in the mechanisms of desensitization, for example, Tregs and epigenetic modifications.
Collapse
Affiliation(s)
- Lucie Mondoulet
- DBV Technologies, Green Square, 80/84 rue des Meuniers, Bagneux, France
| | - Vincent Dioszeghy
- DBV Technologies, Green Square, 80/84 rue des Meuniers, Bagneux, France
| | - Claude Thébault
- DBV Technologies, Green Square, 80/84 rue des Meuniers, Bagneux, France
| | | | - Christophe Dupont
- Université Paris Descartes - Hôpital Necker-Enfants Malades, 149 Rue de Sèvres, 75015 Paris, France
| |
Collapse
|
33
|
Clausen BE, Stoitzner P. Functional Specialization of Skin Dendritic Cell Subsets in Regulating T Cell Responses. Front Immunol 2015; 6:534. [PMID: 26557117 PMCID: PMC4617171 DOI: 10.3389/fimmu.2015.00534] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DC) are a heterogeneous family of professional antigen-presenting cells classically recognized as most potent inducers of adaptive immune responses. In this respect, Langerhans cells have long been considered to be prototypic immunogenic DC in the skin. More recently this view has considerably changed. The generation of in vivo cell ablation and lineage tracing models revealed the complexity of the skin DC network and, in particular, established the existence of a number of phenotypically distinct Langerin+ and negative DC populations in the dermis. Moreover, by now we appreciate that DC also exert important regulatory functions and are required for the maintenance of tolerance toward harmless foreign and self-antigens. This review summarizes our current understanding of the skin-resident DC system in the mouse and discusses emerging concepts on the functional specialization of the different skin DC subsets in regulating T cell responses. Special consideration is given to antigen cross-presentation as well as immune reactions toward contact sensitizers, cutaneous pathogens, and tumors. These studies form the basis for the manipulation of the human counterparts of the murine DC subsets to promote immunity or tolerance for the treatment of human disease.
Collapse
Affiliation(s)
- Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Patrizia Stoitzner
- Department of Dermatology and Venereology, Division of Experimental Dermatology, Medical University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
34
|
BCG Skin Infection Triggers IL-1R-MyD88-Dependent Migration of EpCAMlow CD11bhigh Skin Dendritic cells to Draining Lymph Node During CD4+ T-Cell Priming. PLoS Pathog 2015; 11:e1005206. [PMID: 26440518 PMCID: PMC4594926 DOI: 10.1371/journal.ppat.1005206] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/14/2015] [Indexed: 02/06/2023] Open
Abstract
The transport of antigen from the periphery to the draining lymph node (DLN) is critical for T-cell priming but remains poorly studied during infection with Mycobacterium bovis Bacille Calmette-Guérin (BCG). To address this we employed a mouse model to track the traffic of Dendritic cells (DCs) and mycobacteria from the BCG inoculation site in the skin to the DLN. Detection of BCG in the DLN was concomitant with the priming of antigen-specific CD4+ T cells at that site. We found EpCAMlow CD11bhigh migratory skin DCs to be mobilized during the transport of BCG to the DLN. Migratory skin DCs distributed to the T-cell area of the LN, co-localized with BCG and were found in close apposition to antigen-specific CD4+ T cells. Consequently, blockade of skin DC traffic into DLN dramatically reduced mycobacterial entry into DLN and muted T-cell priming. Interestingly, DC and mycobacterial entry into the DLN was dependent on IL-1R-I, MyD88, TNFR-I and IL-12p40. In addition, we found using DC adoptive transfers that the requirement for MyD88 in BCG-triggered migration was not restricted to the migrating DC itself and that hematopoietic expression of MyD88 was needed in part for full-fledged migration. Our observations thus identify a population of DCs that contribute towards the priming of CD4+ T cells to BCG infection by transporting bacilli into the DLN in an IL-1R-MyD88-dependent manner and reveal both DC-intrinsic and -extrinsic requirements for MyD88 in DC migration.
Collapse
|
35
|
Weber CS, Hainz K, Deressa T, Strandt H, Florindo Pinheiro D, Mittermair R, Pizarro Pesado J, Thalhamer J, Hammerl P, Stoecklinger A. Immune Reactions against Gene Gun Vaccines Are Differentially Modulated by Distinct Dendritic Cell Subsets in the Skin. PLoS One 2015; 10:e0128722. [PMID: 26030383 PMCID: PMC4452175 DOI: 10.1371/journal.pone.0128722] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/29/2015] [Indexed: 01/30/2023] Open
Abstract
The skin accommodates multiple dendritic cell (DC) subsets with remarkable functional diversity. Immune reactions are initiated and modulated by the triggering of DC by pathogen-associated or endogenous danger signals. In contrast to these processes, the influence of intrinsic features of protein antigens on the strength and type of immune responses is much less understood. Therefore, we investigated the involvement of distinct DC subsets in immune reactions against two structurally different model antigens, E. coli beta-galactosidase (betaGal) and chicken ovalbumin (OVA) under otherwise identical conditions. After epicutaneous administration of the respective DNA vaccines with a gene gun, wild type mice induced robust immune responses against both antigens. However, ablation of langerin+ DC almost abolished IgG1 and cytotoxic T lymphocytes against betaGal but enhanced T cell and antibody responses against OVA. We identified epidermal Langerhans cells (LC) as the subset responsible for the suppression of anti-OVA reactions and found regulatory T cells critically involved in this process. In contrast, reactions against betaGal were not affected by the selective elimination of LC, indicating that this antigen required a different langerin+ DC subset. The opposing findings obtained with OVA and betaGal vaccines were not due to immune-modulating activities of either the plasmid DNA or the antigen gene products, nor did the differential cellular localization, size or dose of the two proteins account for the opposite effects. Thus, skin-borne protein antigens may be differentially handled by distinct DC subsets, and, in this way, intrinsic features of the antigen can participate in immune modulation.
Collapse
Affiliation(s)
| | - Katrina Hainz
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Tekalign Deressa
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Helen Strandt
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | - Roberta Mittermair
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | - Josef Thalhamer
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Peter Hammerl
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
- Central Animal Laboratories, University of Salzburg, Salzburg, Austria
| | - Angelika Stoecklinger
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy, University of Salzburg, Salzburg, Austria
- * E-mail:
| |
Collapse
|
36
|
Kuan EL, Ivanov S, Bridenbaugh EA, Victora G, Wang W, Childs EW, Platt AM, Jakubzick CV, Mason RJ, Gashev AA, Nussenzweig M, Swartz MA, Dustin ML, Zawieja DC, Randolph GJ. Collecting lymphatic vessel permeability facilitates adipose tissue inflammation and distribution of antigen to lymph node-homing adipose tissue dendritic cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:5200-10. [PMID: 25917096 DOI: 10.4049/jimmunol.1500221] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/22/2015] [Indexed: 12/31/2022]
Abstract
Collecting lymphatic vessels (CLVs), surrounded by fat and endowed with contractile muscle and valves, transport lymph from tissues after it is absorbed into lymphatic capillaries. CLVs are not known to participate in immune responses. In this study, we observed that the inherent permeability of CLVs allowed broad distribution of lymph components within surrounding fat for uptake by adjacent macrophages and dendritic cells (DCs) that actively interacted with CLVs. Endocytosis of lymph-derived Ags by these cells supported recall T cell responses in the fat and also generated Ag-bearing DCs for emigration into adjacent lymph nodes (LNs). Enhanced recruitment of DCs to inflammation-reactive LNs significantly relied on adipose tissue DCs to maintain sufficient numbers of Ag-bearing DCs as the LN expanded. Thus, CLVs coordinate inflammation and immunity within adipose depots and foster the generation of an unexpected pool of APCs for Ag transport into the adjacent LN.
Collapse
Affiliation(s)
- Emma L Kuan
- Department of Gene and Cell Medicine, Graduate Program in Immunology and Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029
| | - Stoyan Ivanov
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Eric A Bridenbaugh
- Division of Lymphatic Biology, Department of Systems Biology and Translational Medicine, Cardiovascular Research Institute, Texas A&M Health Science Center College of Medicine, Temple, TX 76504
| | - Gabriel Victora
- Program in Molecular Pathogenesis, Skirball Institute for Biomolecular Medicine, The Helen L. and Martin S. Kimmel Center for Biology and Medicine, New York University School of Medicine, New York, NY 10016
| | - Wei Wang
- Division of Lymphatic Biology, Department of Systems Biology and Translational Medicine, Cardiovascular Research Institute, Texas A&M Health Science Center College of Medicine, Temple, TX 76504
| | - Ed W Childs
- Department of Surgery, Cardiovascular Research Institute, Texas A&M Health Science Center College of Medicine, Temple, TX 76504
| | - Andrew M Platt
- Department of Gene and Cell Medicine, Graduate Program in Immunology and Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029
| | | | - Robert J Mason
- Department of Medicine, National Jewish Health, Denver, CO 80206
| | - Anatoliy A Gashev
- Division of Lymphatic Biology, Department of Systems Biology and Translational Medicine, Cardiovascular Research Institute, Texas A&M Health Science Center College of Medicine, Temple, TX 76504
| | - Michel Nussenzweig
- Laboratory of Molecular Immunology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065; and
| | - Melody A Swartz
- Institute of Bioengineering, Swiss Federal Institute of Technology, Lausanne 1015, Switzerland
| | - Michael L Dustin
- Program in Molecular Pathogenesis, Skirball Institute for Biomolecular Medicine, The Helen L. and Martin S. Kimmel Center for Biology and Medicine, New York University School of Medicine, New York, NY 10016
| | - David C Zawieja
- Division of Lymphatic Biology, Department of Systems Biology and Translational Medicine, Cardiovascular Research Institute, Texas A&M Health Science Center College of Medicine, Temple, TX 76504
| | - Gwendalyn J Randolph
- Department of Gene and Cell Medicine, Graduate Program in Immunology and Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110;
| |
Collapse
|
37
|
Osborne S, Farrell J, Dearman RJ, MacIver K, Naisbitt DJ, Moots RJ, Edwards SW, Goebel A. Cutaneous immunopathology of long-standing complex regional pain syndrome. Eur J Pain 2015; 19:1516-26. [PMID: 25728589 DOI: 10.1002/ejp.685] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Both increased mast cells numbers and raised immune mediator concentrations indicate immune activation in the affected skin of patients with early complex regional pain syndrome (CRPS), but little is known about regional immune cell involvement in late-stage CRPS. The aim of the current study was to determine skin immune cell populations in long-standing CRPS. METHODS Using 6-mm skin punch biopsies from CRPS-affected and non-affected tissues, and a combination of chemical and immunofluorescence staining, we examined the density and function of key cell populations including mast cells, epidermal Langerhans cells (LCs) and tissue resident T-cells. RESULTS We found no significant differences in either overall immune cell infiltrates, or mast cell density between CRPS-affected and non-affected sub-epidermal tissue sections, contrasting recent findings in early CRPS by other groups. However, CD1a(+) LC densities in the epidermal layer were significantly decreased in affected compared to non-affected CRPS limbs (p < 0.01). T-cell clones isolated from CRPS-affected sub-epidermal tissues displayed a trend towards increased IL-13 production in ELISPOT assays when compared to T-cells isolated from non-affected areas, suggesting a Th2 bias. CONCLUSIONS Immune cell abnormalities are maintained in late-stage CRPS disease as manifest by changes in epidermal LC density and tissue resident T-cell phenotype.
Collapse
Affiliation(s)
- S Osborne
- Institute of Integrative Biology, University of Liverpool, UK
| | - J Farrell
- MRC Centre for Drug Safety Science and Institute of Translational Medicine, Department of Molecular and Clinical Pharmacology, University of Liverpool, UK
| | - R J Dearman
- Faculty of Life Sciences, University of Manchester, UK
| | - K MacIver
- Pain Research Institute, Department of Translational Medicine, Liverpool University, UK
| | - D J Naisbitt
- MRC Centre for Drug Safety Science and Institute of Translational Medicine, Department of Molecular and Clinical Pharmacology, University of Liverpool, UK
| | - R J Moots
- Rheumatology Research Group, Institute of Ageing and Chronic Disease, University of Liverpool, UK
| | - S W Edwards
- Institute of Integrative Biology, University of Liverpool, UK
| | - A Goebel
- Pain Research Institute, Department of Translational Medicine, Liverpool University, UK.,The Walton Centre NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
38
|
Dissolving Microneedle Delivery of Nanoparticle-Encapsulated Antigen Elicits Efficient Cross-Priming and Th1 Immune Responses by Murine Langerhans Cells. J Invest Dermatol 2015; 135:425-434. [DOI: 10.1038/jid.2014.415] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/17/2014] [Accepted: 08/26/2014] [Indexed: 12/19/2022]
|
39
|
Banchereau R, Baldwin N, Cepika AM, Athale S, Xue Y, Yu CI, Metang P, Cheruku A, Berthier I, Gayet I, Wang Y, Ohouo M, Snipes L, Xu H, Obermoser G, Blankenship D, Oh S, Ramilo O, Chaussabel D, Banchereau J, Palucka K, Pascual V. Transcriptional specialization of human dendritic cell subsets in response to microbial vaccines. Nat Commun 2014; 5:5283. [PMID: 25335753 PMCID: PMC4206838 DOI: 10.1038/ncomms6283] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/16/2014] [Indexed: 02/08/2023] Open
Abstract
The mechanisms by which microbial vaccines interact with human APCs remain elusive. Herein, we describe the transcriptional programs induced in human DCs by pathogens, innate receptor ligands and vaccines. Exposure of DCs to influenza, Salmonella enterica and Staphylococcus aureus allows us to build a modular framework containing 204 transcript clusters. We use this framework to characterize the responses of human monocytes, monocyte-derived DCs and blood DC subsets to 13 vaccines. Different vaccines induce distinct transcriptional programs based on pathogen type, adjuvant formulation and APC targeted. Fluzone, Pneumovax and Gardasil, respectively, activate monocyte-derived DCs, monocytes and CD1c+ blood DCs, highlighting APC specialization in response to vaccines. Finally, the blood signatures from individuals vaccinated with Fluzone or infected with influenza reveal a signature of adaptive immunity activation following vaccination and symptomatic infections, but not asymptomatic infections. These data, offered with a web interface, may guide the development of improved vaccines.
Collapse
Affiliation(s)
- Romain Banchereau
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Nicole Baldwin
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Alma-Martina Cepika
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Shruti Athale
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Yaming Xue
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Chun I Yu
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Patrick Metang
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Abhilasha Cheruku
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Isabelle Berthier
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Ingrid Gayet
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Yuanyuan Wang
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Marina Ohouo
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - LuAnn Snipes
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Hui Xu
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Gerlinde Obermoser
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Derek Blankenship
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Sangkon Oh
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| | - Octavio Ramilo
- Nationwide Children's Hospital, 700 Children's Drive, Columbus, Ohio 43205, USA
| | - Damien Chaussabel
- 1] Benaroya Research Institute, 1201 9th Avenue, Seattle, Washington 98101, USA [2] Sidra Medical and Research Center, Doha, Qatar
| | - Jacques Banchereau
- 1] Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA [2] Jackson Laboratory for Genomic Medicine, 263 Farmington Ave., Farmington, Connecticut 06030, USA
| | - Karolina Palucka
- 1] Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA [2] Jackson Laboratory for Genomic Medicine, 263 Farmington Ave., Farmington, Connecticut 06030, USA
| | - Virginia Pascual
- Baylor Institute for Immunology Research, 3434 Live Oak Street, Dallas, Texas 75204, USA
| |
Collapse
|
40
|
Skin thymic stromal lymphopoietin initiates Th2 responses through an orchestrated immune cascade. Nat Commun 2014; 4:2847. [PMID: 24284909 DOI: 10.1038/ncomms3847] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/30/2013] [Indexed: 01/06/2023] Open
Abstract
Thymic stromal lymphopoietin (TSLP) has emerged as a key initiator in Th2 immune responses, but the TSLP-driven immune cascade leading to Th2 initiation remains to be delineated. Here, by dissecting the cellular network triggered by mouse skin TSLP in vivo, we uncover that TSLP-promoted IL-4 induction in CD4(+) T cells in skin-draining lymph nodes is driven by an orchestrated 'DC-T-Baso-T' cascade, which represents a sequential cooperation of dendritic cells (DCs), CD4(+) T cells and basophils. Moreover, we reveal that TSLP-activated DCs prime naive CD4(+) T cells to produce IL-3 via OX40L signalling and demonstrate that the OX40L-IL-3 axis has a critical role in mediating basophil recruitment, CD4(+) T-cell expansion and Th2 priming. These findings thus add novel insights into the cellular network and signal axis underlying the initiation of Th2 immune responses.
Collapse
|
41
|
Binding of WIP to actin is essential for T cell actin cytoskeleton integrity and tissue homing. Mol Cell Biol 2014; 34:4343-54. [PMID: 25246631 DOI: 10.1128/mcb.00533-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Wiskott-Aldrich syndrome protein (WASp) is important for actin polymerization in T cells and for their migration. WASp-interacting protein (WIP) binds to and stabilizes WASp and also interacts with actin. Cytoskeletal and functional defects are more severe in WIP(-/-) T cells, which lack WASp, than in WASp(-/-) T cells, suggesting that WIP interaction with actin may be important for T cell cytoskeletal integrity and function. We constructed mice that lack the actin-binding domain of WIP (WIPΔABD mice). WIPΔABD associated normally with WASp but not F-actin. T cells from WIPΔABD mice had normal WASp levels but decreased cellular F-actin content, a disorganized actin cytoskeleton, impaired chemotaxis, and defective homing to lymph nodes. WIPΔABD mice exhibited a T cell intrinsic defect in contact hypersensitivity and impaired responses to cutaneous challenge with protein antigen. Adoptively transferred antigen-specific CD4(+) T cells from WIPΔABD mice had decreased homing to antigen-challenged skin of wild-type recipients. These findings show that WIP binding to actin, independently of its binding to WASp, is critical for the integrity of the actin cytoskeleton in T cells and for their migration into tissues. Disruption of WIP binding to actin could be of therapeutic value in T cell-driven inflammatory diseases.
Collapse
|
42
|
Morrot A, Rodrigues MM. Tissue signatures influence the activation of intrahepatic CD8(+) T cells against malaria sporozoites. Front Microbiol 2014; 5:440. [PMID: 25202304 PMCID: PMC4141441 DOI: 10.3389/fmicb.2014.00440] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/03/2014] [Indexed: 11/19/2022] Open
Abstract
Plasmodium sporozoites and liver stages express antigens that are targeted to the MHC-Class I antigen-processing pathway. After the introduction of Plasmodium sporozoites by Anopheles mosquitoes, bone marrow-derived dendritic cells in skin-draining lymph nodes are the first cells to cross-present parasite antigens and elicit specific CD8+ T cells. One of these antigens is the immunodominant circumsporozoite protein (CSP). The CD8+ T cell-mediated protective immune response against CSP is dependent on the interleukin loop involving IL-4 receptor expression on CD8+ cells and IL-4 secretion by CD4+ T cell helpers. In a few days, these CD8+ T cells re-circulate to secondary lymphoid organs and the liver. In the liver, the hepatic sinusoids are enriched with cells, such as dendritic, sinusoidal endothelial and Kupffer cells, that are able to cross-present MHC class I antigens to intrahepatic CD8+ T cells. Specific CD8+ T cells actively find infected hepatocytes and target intra-cellular parasites through mechanisms that are both interferon-γ-dependent and -independent. Immunity is mediated by CD8+ T effector or effector-memory cells and, when present in high numbers, these cells can provide sterilizing immunity. Human vaccination trials with recombinant formulations or attenuated sporozoites have yet to achieve the high numbers of specific effector T cells that are required for sterilizing immunity. In spite of the limited number of specific CD8+ T cells, attenuated sporozoites provided multiple times by the endovenous route provided a high degree of protective immunity. These observations highlight that CD8+ T cells may be useful for improving antibody-mediated protective immunity to pre-erythrocytic stages of malaria parasites.
Collapse
Affiliation(s)
- Alexandre Morrot
- Departamento de Imunologia, Instituro de Microbiologia, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Maurício M Rodrigues
- Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina São Paulo, Brazil
| |
Collapse
|
43
|
Pulit-Penaloza JA, Esser ES, Vassilieva EV, Lee JW, Taherbhai MT, Pollack BP, Prausnitz MR, Compans RW, Skountzou I. A protective role of murine langerin⁺ cells in immune responses to cutaneous vaccination with microneedle patches. Sci Rep 2014; 4:6094. [PMID: 25130187 PMCID: PMC4135340 DOI: 10.1038/srep06094] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/04/2014] [Indexed: 11/22/2022] Open
Abstract
Cutaneous vaccination with microneedle patches offers several advantages over more frequently used approaches for vaccine delivery, including improved protective immunity. However, the involvement of specific APC subsets and their contribution to the induction of immunity following cutaneous vaccine delivery is not well understood. A better understanding of the functions of individual APC subsets in the skin will allow us to target specific skin cell populations in order to further enhance vaccine efficacy. Here we use a Langerin-EGFP-DTR knock-in mouse model to determine the contribution of langerin+ subsets of skin APCs in the induction of adaptive immune responses following cutaneous microneedle delivery of influenza vaccine. Depletion of langerin+ cells prior to vaccination resulted in substantial impairment of both Th1 and Th2 responses, and decreased post-challenge survival rates, in mice vaccinated cutaneously but not in those vaccinated via the intramuscular route or in non-depleted control mice. Our results indicate that langerin+ cells contribute significantly to the induction of protective immune responses following cutaneous vaccination with a subunit influenza vaccine.
Collapse
Affiliation(s)
- Joanna A Pulit-Penaloza
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, 30322
| | - E Stein Esser
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, 30322
| | - Elena V Vassilieva
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, 30322
| | - Jeong Woo Lee
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332
| | - Misha T Taherbhai
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, 30322
| | - Brian P Pollack
- 1] Department of Veterans Affairs, Atlanta VA Medical Center, Decatur, Georgia 30033 [2] Department of Dermatology, Emory University, School of Medicine, Atlanta, Georgia 30322
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332
| | - Richard W Compans
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, 30322
| | - Ioanna Skountzou
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, 30322
| |
Collapse
|
44
|
Anandasabapathy N, Feder R, Mollah S, Tse SW, Longhi MP, Mehandru S, Matos I, Cheong C, Ruane D, Brane L, Teixeira A, Dobrin J, Mizenina O, Park CG, Meredith M, Clausen BE, Nussenzweig MC, Steinman RM. Classical Flt3L-dependent dendritic cells control immunity to protein vaccine. ACTA ACUST UNITED AC 2014; 211:1875-91. [PMID: 25135299 PMCID: PMC4144735 DOI: 10.1084/jem.20131397] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Protective immunity to protein vaccines is controlled by Flt3L-dependent classical LN-resident dendritic cells, and dampened by migratory dendritic cells. DCs are critical for initiating immunity. The current paradigm in vaccine biology is that DCs migrating from peripheral tissue and classical lymphoid-resident DCs (cDCs) cooperate in the draining LNs to initiate priming and proliferation of T cells. Here, we observe subcutaneous immunity is Fms-like tyrosine kinase 3 ligand (Flt3L) dependent. Flt3L is rapidly secreted after immunization; Flt3 deletion reduces T cell responses by 50%. Flt3L enhances global T cell and humoral immunity as well as both the numbers and antigen capture capacity of migratory DCs (migDCs) and LN-resident cDCs. Surprisingly, however, we find immunity is controlled by cDCs and actively tempered in vivo by migDCs. Deletion of Langerin+ DC or blockade of DC migration improves immunity. Consistent with an immune-regulatory role, transcriptomic analyses reveals different skin migDC subsets in both mouse and human cluster together, and share immune-suppressing gene expression and regulatory pathways. These data reveal that protective immunity to protein vaccines is controlled by Flt3L-dependent, LN-resident cDCs.
Collapse
Affiliation(s)
- Niroshana Anandasabapathy
- Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 Department of Dermatology/Harvard Skin Disease Research Center, Brigham and Women's Hospital, Boston, MA 02115
| | - Rachel Feder
- Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Shamim Mollah
- Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Sze-Wah Tse
- Department of Dermatology/Harvard Skin Disease Research Center, Brigham and Women's Hospital, Boston, MA 02115
| | - Maria Paula Longhi
- Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Saurabh Mehandru
- Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Ines Matos
- Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Cheolho Cheong
- Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Darren Ruane
- Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Lucas Brane
- Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Angela Teixeira
- Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Joseph Dobrin
- Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Olga Mizenina
- Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Chae Gyu Park
- Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Matthew Meredith
- Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Michel C Nussenzweig
- Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| | - Ralph M Steinman
- Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 Laboratory of Cellular Physiology and Immunology, Christopher H. Browne Center for Immunology and Immune Diseases, Hospital Informatics, and Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
| |
Collapse
|
45
|
Tracking and quantification of dendritic cell migration and antigen trafficking between the skin and lymph nodes. Sci Rep 2014; 4:6030. [PMID: 25112380 PMCID: PMC4129424 DOI: 10.1038/srep06030] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 07/23/2014] [Indexed: 01/19/2023] Open
Abstract
Skin-derived dendritic cells (DCs) play a crucial role in the maintenance of immune homeostasis due to their role in antigen trafficking from the skin to the draining lymph nodes (dLNs). To quantify the spatiotemporal regulation of skin-derived DCs in vivo, we generated knock-in mice expressing the photoconvertible fluorescent protein KikGR. By exposing the skin or dLN of these mice to violet light, we were able to label and track the migration and turnover of endogenous skin-derived DCs. Langerhans cells and CD103+DCs, including Langerin+CD103+dermal DCs (DDCs), remained in the dLN for 4–4.5 days after migration from the skin, while CD103−DDCs persisted for only two days. Application of a skin irritant (chemical stress) induced a transient >10-fold increase in CD103−DDC migration from the skin to the dLN. Tape stripping (mechanical injury) induced a long-lasting four-fold increase in CD103−DDC migration to the dLN and accelerated the trafficking of exogenous protein antigens by these cells. Both stresses increased the turnover of CD103−DDCs within the dLN, causing these cells to die within one day of arrival. Therefore, CD103−DDCs act as sentinels against skin invasion that respond with increased cellular migration and antigen trafficking from the skin to the dLNs.
Collapse
|
46
|
Wegscheid C, Karimi K, Tiegs G. Hepatic CD141⁺IFNλ⁺ DC subset: one against all? J Hepatol 2014; 60:9-11. [PMID: 24140762 DOI: 10.1016/j.jhep.2013.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/02/2013] [Accepted: 10/08/2013] [Indexed: 01/16/2023]
Affiliation(s)
- Claudia Wegscheid
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Khalil Karimi
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
47
|
Mittal D, Kassianos AJ, Tran LS, Bergot AS, Gosmann C, Hofmann J, Blumenthal A, Leggatt GR, Frazer IH. Indoleamine 2,3-dioxygenase activity contributes to local immune suppression in the skin expressing human papillomavirus oncoprotein e7. J Invest Dermatol 2013; 133:2686-2694. [PMID: 23652797 PMCID: PMC3779505 DOI: 10.1038/jid.2013.222] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/25/2013] [Accepted: 04/16/2013] [Indexed: 12/20/2022]
Abstract
Chronic infection of anogenital epithelium with human papillomavirus (HPV) promotes development of cancer. Many pathogens evoke immunosuppressive mechanisms to enable persistent infection. We have previously shown that grafted skin expressing HPV16 E7 oncoprotein from a keratin-14 promoter (K14E7) is not rejected by a syngeneic, immunocompetent host. In this study we show that indoleamine 2,3-dioxygenase (IDO) 1, an IFN-γ-inducible immunoregulatory molecule, is more highly expressed by langerin(-ve) dermal dendritic cells (DCs) from K14E7 skin than nontransgenic control skin. Furthermore, inhibiting IDO activity using 1-methyl-dl-tryptophan (1-D/L-MT) promotes K14E7 skin graft rejection. Increased IDO1 expression and activity in K14E7 skin requires IFN-γ and invariant natural killer T (iNKT) cells, both of which have been shown to negatively regulate T-cell effector function and suppress K14E7 graft rejection. Furthermore, DCs from K14E7 skin express higher levels of IFN-γ receptor (IFN-γR) than DCs from control skin. K14E7 transgenic skin recruits significantly higher numbers of DCs, independent of IFN-γ and IFN-γR expression. Consistent with these observations in a murine model, we found higher expression of IDO1 and IFN-γ but not IDO2 in the cervical epithelium of patients with HPV-associated cervical intraepithelial neoplasia (CIN) 2/3. Our data support a hypothesis that induction of IDO1 in HPV-infected skin contributes to evasion of host immunity.
Collapse
Affiliation(s)
- Deepak Mittal
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Andrew J Kassianos
- Kidney Research Laboratory, Queensland Health/Queensland Institute of Medical Research, Brisbane,Queensland, Australia
| | - Lee S Tran
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Anne-Sophie Bergot
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Christine Gosmann
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Janin Hofmann
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia; Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Graham R Leggatt
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Ian H Frazer
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia.
| |
Collapse
|
48
|
|
49
|
Gao Y, Nish SA, Jiang R, Hou L, Licona-Limón P, Weinstein JS, Zhao H, Medzhitov R. Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells. Immunity 2013; 39:722-32. [PMID: 24076050 DOI: 10.1016/j.immuni.2013.08.028] [Citation(s) in RCA: 363] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 07/29/2013] [Indexed: 12/16/2022]
Abstract
CD4⁺ T cell differentiation is regulated by specialized antigen-presenting cells. Dendritic cells (DCs) produce cytokines that promote naive CD4⁺ T cell differentiation into T helper 1 (Th1), Th17, and inducible T regulatory (iTreg) cells. However, the initiation of Th2 cell responses remains poorly understood, although it is likely that more than one mechanism might be involved. Here we have defined a specific DC subset that is involved in Th2 cell differentiation in vivo in response to a protease allergen, as well as infection with Nippostrongylus brasiliensis. We have demonstrated that this subset is controlled by the transcription factor interferon regulatory factor 4 (IRF4), which is required for their differentiation and Th2 cell-inducing function. IRF4 is known to control Th2 cell differentiation and Th2 cell-associated suppressing function in Treg cells. Our finding suggests that IRF4 also plays a role in DCs where it controls the initiation of Th2 cell responses.
Collapse
Affiliation(s)
- Yan Gao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nat Immunol 2013; 14:978-85. [DOI: 10.1038/ni.2680] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/02/2013] [Indexed: 12/13/2022]
|