1
|
Tso P, Bernier-Latmani J, Petrova TV, Liu M. Transport functions of intestinal lymphatic vessels. Nat Rev Gastroenterol Hepatol 2025; 22:127-145. [PMID: 39496888 DOI: 10.1038/s41575-024-00996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/06/2024]
Abstract
Lymphatic vessels are crucial for fluid absorption and the transport of peripheral immune cells to lymph nodes. However, in the small intestine, the lymphatic fluid is rich in diet-derived lipids incorporated into chylomicrons and gut-specific immune cells. Thus, intestinal lymphatic vessels have evolved to handle these unique cargoes and are critical for systemic dietary lipid delivery and metabolism. This Review covers mechanisms of lipid absorption from epithelial cells to the lymphatics as well as unique features of the gut microenvironment that affect these functions. Moreover, we discuss details of the intestinal lymphatics in gut immune cell trafficking and insights into the role of inter-organ communication. Lastly, we highlight the particularities of fat absorption that can be harnessed for efficient lipid-soluble drug distribution for novel therapies, including the ability of chylomicron-associated drugs to bypass first-pass liver metabolism for systemic delivery. In all, this Review will help to promote an understanding of intestinal lymphatic-systemic interactions to guide future research directions.
Collapse
Affiliation(s)
- Patrick Tso
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Min Liu
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
2
|
Legrand C, Vanneste D, Hego A, Sabatel C, Mollers K, Schyns J, Maréchal P, Abinet J, Tytgat A, Liégeois M, Polese B, Meunier M, Radermecker C, Fiévez L, Bureau F, Marichal T. Lung Interstitial Macrophages Can Present Soluble Antigens and Induce Foxp3 + Regulatory T Cells. Am J Respir Cell Mol Biol 2024; 70:446-456. [PMID: 38329817 DOI: 10.1165/rcmb.2023-0254oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/08/2024] [Indexed: 02/10/2024] Open
Abstract
Lung macrophages constitute a sophisticated surveillance and defense system that contributes to tissue homeostasis and host defense and allows the host to cope with the myriad of insults and antigens to which the lung mucosa is exposed. As opposed to alveolar macrophages, lung interstitial macrophages (IMs) express high levels of Type 2 major histocompatibility complex (MHC-II), a hallmark of antigen-presenting cells. Here, we showed that lung IMs, like dendritic cells, possess the machinery to present soluble antigens in an MHC-II-restricted way. Using ex vivo ovalbumin (OVA)-specific T cell proliferation assays, we found that OVA-pulsed IMs could trigger OVA-specific CD4+ T cell proliferation and Foxp3 expression through MHC-II-, IL-10-, and transforming growth factor β-dependent mechanisms. Moreover, we showed that IMs efficiently captured locally instilled antigens in vivo, did not migrate to the draining lymph nodes, and enhanced local interactions with CD4+ T cells in a model of OVA-induced allergic asthma. These results support that IMs can present antigens to CD4+ T cells and trigger regulatory T cells, which might attenuate lung immune responses and have functional consequences for lung immunity and T cell-mediated disorders.
Collapse
Affiliation(s)
| | | | | | - Catherine Sabatel
- Laboratory of Cellular and Molecular Immunology
- Faculty of Veterinary Medicine, University of Liège, Liège, Belgium; and
| | | | - Joey Schyns
- Laboratory of Cellular and Molecular Immunology
- Faculty of Veterinary Medicine, University of Liège, Liège, Belgium; and
| | - Pauline Maréchal
- Laboratory of Immunophysiology, and
- Faculty of Veterinary Medicine, University of Liège, Liège, Belgium; and
| | | | | | | | | | - Margot Meunier
- Laboratory of Immunophysiology, and
- Faculty of Veterinary Medicine, University of Liège, Liège, Belgium; and
| | - Coraline Radermecker
- Laboratory of Immunophysiology, and
- Faculty of Veterinary Medicine, University of Liège, Liège, Belgium; and
| | - Laurence Fiévez
- Laboratory of Cellular and Molecular Immunology
- Faculty of Veterinary Medicine, University of Liège, Liège, Belgium; and
| | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology
- Faculty of Veterinary Medicine, University of Liège, Liège, Belgium; and
| | - Thomas Marichal
- Laboratory of Immunophysiology, and
- Faculty of Veterinary Medicine, University of Liège, Liège, Belgium; and
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
3
|
Colombo SAP, Brown SL, Hepworth MR, Hankinson J, Granato F, Kitchen SJ, Hussell T, Simpson A, Cook PC, MacDonald AS. Comparative phenotype of circulating versus tissue immune cells in human lung and blood compartments during health and disease. DISCOVERY IMMUNOLOGY 2023; 2:kyad009. [PMID: 37545765 PMCID: PMC10403752 DOI: 10.1093/discim/kyad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023]
Abstract
The lung is a dynamic mucosal surface constantly exposed to a variety of immunological challenges including harmless environmental antigens, pollutants, and potentially invasive microorganisms. Dysregulation of the immune system at this crucial site is associated with a range of chronic inflammatory conditions including asthma and Chronic Pulmonary Obstructive Disease (COPD). However, due to its relative inaccessibility, our fundamental understanding of the human lung immune compartment is limited. To address this, we performed flow cytometric immune phenotyping of human lung tissue and matched blood samples that were isolated from 115 donors undergoing lung tissue resection. We provide detailed characterization of the lung mononuclear phagocyte and T cell compartments, demonstrating clear phenotypic differences between lung tissue cells and those in peripheral circulation. Additionally, we show that CD103 expression demarcates pulmonary T cells that have undergone recent TCR and IL-7R signalling. Unexpectedly, we discovered that the immune landscape from asthmatic or COPD donors was broadly comparable to controls. Our data provide a much-needed expansion of our understanding of the pulmonary immune compartment in both health and disease.
Collapse
Affiliation(s)
- Stefano A P Colombo
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Sheila L Brown
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Matthew R Hepworth
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Jenny Hankinson
- Institute of Translational Genomics, Helmholtz Zentrum München—German Research Center for Environmental Health, Neuherberg, Germany
| | - Felice Granato
- Department of Cardiothoracic Surgery, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Semra J Kitchen
- GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, UK
| | - Tracy Hussell
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Angela Simpson
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Peter C Cook
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Andrew S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
4
|
Schimpel C, Passegger C, Egger S, Tam-Amersdorfer C, Strobl H. A novel 3D cell culture model to study the human small intestinal immune landscape. Eur J Immunol 2023; 53:e2250131. [PMID: 36527196 DOI: 10.1002/eji.202250131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/21/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Several subsets of mononuclear phagocytes and DCs (MDC) populate the small intestine (SI), and these cells reportedly exert specialized functions in anti-microbial immunity and tolerance. Given the specialized phenotype of these cells, differing from other MDC family members, including their putative circulating blood precursors, local intestinal factors play key instructive roles in their differentiation. We designed an SI cell culture model composed of three intestinal epithelial cell (IEC) types, including absorptive enterocytes (E cells), antigen delivering microfold (M) cells, and mucus-producing goblet (G) cells plus T lymphocytes and soluble B cell-derived factors. This model was used to study the differentiation fate of CD34+ hematopoietic progenitor cell-derived monocyte/DC precursors. Progeny cells can be analyzed after a 3-week co-culture period, mimicking the physiologic turn-over time of intestinal MDC. A dominant monocyte differentiation pathway was suppressed, in favor of partial differentiation along DC and macrophage pathways, with low percentages of cells acquired DC or macrophage markers. Moreover, E and G cells play opposing roles in CX3CR1+ vs CD103dim cell differentiation, indicating that both together might counter-balance M/DC differentiation. Thus, SI epithelial cells suppress M/DC differentiation, supporting a key role for exogenous factors in M/DC differentiation.
Collapse
Affiliation(s)
- Christa Schimpel
- Medical University of Graz, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology and Pathophysiology, Graz, Austria
| | - Christina Passegger
- Medical University of Graz, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology and Pathophysiology, Graz, Austria
| | - Simone Egger
- Medical University of Graz, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology and Pathophysiology, Graz, Austria
| | - Carmen Tam-Amersdorfer
- Medical University of Graz, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology and Pathophysiology, Graz, Austria
| | - Herbert Strobl
- Medical University of Graz, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Immunology and Pathophysiology, Graz, Austria
| |
Collapse
|
5
|
Structure-function relationships of pectic polysaccharides from broccoli by-products with in vitro B lymphocyte stimulatory activity. Carbohydr Polym 2023; 303:120432. [PMID: 36657866 DOI: 10.1016/j.carbpol.2022.120432] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/18/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
To study structure-function relationships of pectic polysaccharides with their immunostimulatory activity, broccoli by-products were used. Pectic polysaccharides composed by 64 mol% uronic acids, 18 mol% Ara, and 10 mol% Gal, obtained by hot water extraction, activated B lymphocytes in vitro (25-250 μg/mL). To disclose active structural features, combinations of ethanol and chromatographic fractionation and modification of the polysaccharides were performed. Polysaccharides insoluble in 80 % ethanol (Et80) showed higher immunostimulatory activity than the pristine mixture, which was independent of molecular weight range (12-400 kDa) and removal of terminal or short Ara side chains. Chemical sulfation did not promote B lymphocyte activation. However, the action of pectin methylesterase and endo-polygalacturonase on hot water extracted polysaccharides produced an acidic fraction with a high immunostimulatory activity. The de-esterified homogalacturonan region seem to be an important core to confer pectic polysaccharides immunostimulatory activity. Therefore, agri-food by-products are a source of pectic polysaccharide functional food ingredients.
Collapse
|
6
|
Kheiri F, Rostami-Nejad M, Amani D, Sadeghi A, Moradi A, Aghamohammadi E, Sahebkar A, Zali MR. Expression of tolerogenic dendritic cells in the small intestinal tissue of patients with celiac disease. Heliyon 2022; 8:e12273. [PMID: 36578401 PMCID: PMC9791365 DOI: 10.1016/j.heliyon.2022.e12273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/15/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Tolerogenic dendritic cells (tolCDs) play an important role in the regulation of inflammation in autoimmune diseases such as celiac disease (CeD). Dendritic cells express CD207, CD11c, and CD103 on their surface. In addition to the receptors mentioned above, tolCDs can express the immune-regulating enzyme indoleamine 2,3-dioxygenase (IDO). This study aimed to determine the mRNA and protein expression of CD11c, CD103 and CD207 markers, and also IDO gene expression in intestinal tissues of CeD patients in comparison to the healthy individuals. Duodenal biopsies were collected from 60 CeD patients and 60 controls. Total RNA was extracted and gene expression analysis was performed using Real-time PCR SYBR® Green method. Additionally, biopsy specimens were paraffinized and protein expression was evaluated using immunohistochemistry (IHC) for expression of CD11c+, CD207+and CD103+. Gene expression levels of CD11c (P = 0.045), CD103 (P < 0.001), CD207 (P < 0.001) and IDO (P = 0.01) were significantly increased in CeD patients compared to the control group. However, only CD103 protein expression was found to be significantly higher in CeD patients in comparison to the control group (P < 0.001). The result of this study showed that the expresion levels of CD11c, CD103, CD207 and IDO markers were higher in CeD patients compared to the controls, indicating the effort of dendritic cells to counterbalance the gliadin-triggered abnormal immune responses in CeD patients.
Collapse
Affiliation(s)
- Farzaneh Kheiri
- Department of Immunology, School of Medical Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davar Amani
- Department of Immunology, School of Medical Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Moradi
- Taleghani Hospital, Pathology Department, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Aghamohammadi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Huang Q, Gao S, Yao Y, Wang Y, Li J, Chen J, guo C, Zhao D, Li X. Innate immunity and immunotherapy for hemorrhagic shock. Front Immunol 2022; 13:918380. [PMID: 36091025 PMCID: PMC9453212 DOI: 10.3389/fimmu.2022.918380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022] Open
Abstract
Hemorrhagic shock (HS) is a shock result of hypovolemic injury, in which the innate immune response plays a central role in the pathophysiology ofthe severe complications and organ injury in surviving patients. During the development of HS, innate immunity acts as the first line of defense, mediating a rapid response to pathogens or danger signals through pattern recognition receptors. The early and exaggerated activation of innate immunity, which is widespread in patients with HS, results in systemic inflammation, cytokine storm, and excessive activation of complement factors and innate immune cells, comprised of type II innate lymphoid cells, CD4+ T cells, natural killer cells, eosinophils, basophils, macrophages, neutrophils, and dendritic cells. Recently, compelling evidence focusing on the innate immune regulation in preclinical and clinical studies promises new treatment avenues to reverse or minimize HS-induced tissue injury, organ dysfunction, and ultimately mortality. In this review, we first discuss the innate immune response involved in HS injury, and then systematically detail the cutting-edge therapeutic strategies in the past decade regarding the innate immune regulation in this field; these strategies include the use of mesenchymal stem cells, exosomes, genetic approaches, antibody therapy, small molecule inhibitors, natural medicine, mesenteric lymph drainage, vagus nerve stimulation, hormones, glycoproteins, and others. We also reviewed the available clinical studies on immune regulation for treating HS and assessed the potential of immune regulation concerning a translation from basic research to clinical practice. Combining therapeutic strategies with an improved understanding of how the innate immune system responds to HS could help to identify and develop targeted therapeutic modalities that mitigate severe organ dysfunction, improve patient outcomes, and reduce mortality due to HS injury.
Collapse
Affiliation(s)
- Qingxia Huang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Song Gao
- Jilin Xiuzheng Pharmaceutical New Drug Development Co., Ltd., Changchun, China
| | - Yao Yao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yisa Wang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chen guo
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Daqing Zhao, ; Xiangyan Li,
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Daqing Zhao, ; Xiangyan Li,
| |
Collapse
|
8
|
Xiong Y, Xu G, Chen M, Ma H. Intestinal Uptake and Tolerance to Food Antigens. Front Immunol 2022; 13:906122. [PMID: 35757706 PMCID: PMC9226482 DOI: 10.3389/fimmu.2022.906122] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Food allergy is a growing concern due to its increasing world-wide incidence. Strict avoidance of allergens is a passive treatment strategy. Since the mechanisms responsible for the occurrence and development of food allergy have not yet been fully elucidated, effective individualized treatment options are lacking. In this review, we summarize the pathways through which food antigens enter the intestine and review the proposed mechanisms describing how the intestine acquires and tolerates food antigens. When oral tolerance is not established, food allergy occurs. In addition, we also discuss the contribution of commensal bacteria of the gut in shaping tolerance to food antigens in the intestinal tract. Finally, we propose that elucidating the mechanisms of intestinal uptake and tolerance of food antigens will provide additional clues for potential treatment options for food allergy.
Collapse
Affiliation(s)
- Yuhong Xiong
- Department of Pediatrics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, The Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Guifeng Xu
- Department of Pediatrics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mingwu Chen
- Department of Pediatrics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongdi Ma
- Department of Pediatrics, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, The Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
9
|
Tang XZ, Kreuk LSM, Cho C, Metzger RJ, Allen CDC. Bronchus-associated macrophages efficiently capture and present soluble inhaled antigens and are capable of local Th2 cell activation. eLife 2022; 11:63296. [PMID: 36173678 PMCID: PMC9560158 DOI: 10.7554/elife.63296] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
In allergic asthma, allergen inhalation leads to local Th2 cell activation and peribronchial inflammation. However, the mechanisms for local antigen capture and presentation remain unclear. By two-photon microscopy of the mouse lung, we established that soluble antigens in the bronchial airway lumen were efficiently captured and presented by a population of CD11c+ interstitial macrophages with high CX3CR1-GFP and MHC class II expression. We refer to these cells as Bronchus-Associated Macrophages (BAMs) based on their localization underneath the bronchial epithelium. BAMs were enriched in collagen-rich regions near some airway branchpoints, where inhaled antigens are likely to deposit. BAMs engaged in extended interactions with effector Th2 cells and promoted Th2 cytokine production. BAMs were also often in contact with dendritic cells (DCs). After exposure to inflammatory stimuli, DCs migrated to draining lymph nodes, whereas BAMs remained lung resident. We propose that BAMs act as local antigen presenting cells in the lung and also transfer antigen to DCs.
Collapse
Affiliation(s)
- Xin-Zi Tang
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States,Sandler Asthma Basic Research Center, University of California, San FranciscoSan FranciscoUnited States,Biomedical Sciences Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Lieselotte S M Kreuk
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States,Sandler Asthma Basic Research Center, University of California, San FranciscoSan FranciscoUnited States
| | - Cynthia Cho
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States,Sandler Asthma Basic Research Center, University of California, San FranciscoSan FranciscoUnited States
| | - Ross J Metzger
- Department of Anatomy, University of California, San FranciscoSan FranciscoUnited States
| | - Christopher D C Allen
- Cardiovascular Research Institute, University of California, San FranciscoSan FranciscoUnited States,Sandler Asthma Basic Research Center, University of California, San FranciscoSan FranciscoUnited States,Department of Anatomy, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
10
|
Connor RI, Brickley EB, Wieland-Alter WF, Ackerman ME, Weiner JA, Modlin JF, Bandyopadhyay AS, Wright PF. Mucosal immunity to poliovirus. Mucosal Immunol 2022; 15:1-9. [PMID: 34239028 PMCID: PMC8732262 DOI: 10.1038/s41385-021-00428-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/26/2021] [Accepted: 06/14/2021] [Indexed: 02/04/2023]
Abstract
A cornerstone of the global initiative to eradicate polio is the widespread use of live and inactivated poliovirus vaccines in extensive public health campaigns designed to prevent the development of paralytic disease and interrupt transmission of the virus. Central to these efforts is the goal of inducing mucosal immunity able to limit virus replication in the intestine. Recent clinical trials have evaluated new combined regimens of poliovirus vaccines, and demonstrated clear differences in their ability to restrict virus shedding in stool after oral challenge with live virus. Analyses of mucosal immunity accompanying these trials support a critical role for enteric neutralizing IgA in limiting the magnitude and duration of virus shedding. This review summarizes key findings in vaccine-induced intestinal immunity to poliovirus in infants, older children, and adults. The impact of immunization on development and maintenance of protective immunity to poliovirus and the implications for global eradication are discussed.
Collapse
Affiliation(s)
- Ruth I Connor
- Department of Pediatrics, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Elizabeth B Brickley
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | | | | | - Peter F Wright
- Department of Pediatrics, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
11
|
Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn's disease. Nat Microbiol 2021; 6:1493-1504. [PMID: 34811531 PMCID: PMC8622360 DOI: 10.1038/s41564-021-00983-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022]
Abstract
Secretory immunoglobulin A (sIgA) plays an important role in gut barrier protection by shaping the resident microbiota community, restricting the growth of bacterial pathogens and enhancing host protective immunity via immunological exclusion. Here, we found that a portion of the microbiota-driven sIgA response is induced by and directed towards intestinal fungi. Analysis of the human gut mycobiota bound by sIgA revealed a preference for hyphae, a fungal morphotype associated with virulence. Candida albicans was a potent inducer of IgA class-switch recombination among plasma cells, via an interaction dependent on intestinal phagocytes and hyphal programming. Characterization of sIgA affinity and polyreactivity showed that hyphae-associated virulence factors were bound by these antibodies and that sIgA influenced C. albicans morphotypes in the murine gut. Furthermore, an increase in granular hyphal morphologies in patients with Crohn's disease compared with healthy controls correlated with a decrease in antifungal sIgA antibody titre with affinity to two hyphae-associated virulence factors. Thus, in addition to its importance in gut bacterial regulation, sIgA targets the uniquely fungal phenomenon of hyphal formation. Our findings indicate that antifungal sIgA produced in the gut can play a role in regulating intestinal fungal commensalism by coating fungal morphotypes linked to virulence, thereby providing a protective mechanism that might be dysregulated in patients with Crohn's disease.
Collapse
|
12
|
Ijaz A, Veldhuizen EJA, Broere F, Rutten VPMG, Jansen CA. The Interplay between Salmonella and Intestinal Innate Immune Cells in Chickens. Pathogens 2021; 10:1512. [PMID: 34832668 PMCID: PMC8618210 DOI: 10.3390/pathogens10111512] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Salmonellosis is a common infection in poultry, which results in huge economic losses in the poultry industry. At the same time, Salmonella infections are a threat to public health, since contaminated poultry products can lead to zoonotic infections. Antibiotics as feed additives have proven to be an effective prophylactic option to control Salmonella infections, but due to resistance issues in humans and animals, the use of antimicrobials in food animals has been banned in Europe. Hence, there is an urgent need to look for alternative strategies that can protect poultry against Salmonella infections. One such alternative could be to strengthen the innate immune system in young chickens in order to prevent early life infections. This can be achieved by administration of immune modulating molecules that target innate immune cells, for example via feed, or by in-ovo applications. We aimed to review the innate immune system in the chicken intestine; the main site of Salmonella entrance, and its responsiveness to Salmonella infection. Identifying the most important players in the innate immune response in the intestine is a first step in designing targeted approaches for immune modulation.
Collapse
Affiliation(s)
- Adil Ijaz
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (A.I.); (E.J.A.V.); (F.B.); (V.P.M.G.R.)
| | - Edwin J. A. Veldhuizen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (A.I.); (E.J.A.V.); (F.B.); (V.P.M.G.R.)
| | - Femke Broere
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (A.I.); (E.J.A.V.); (F.B.); (V.P.M.G.R.)
| | - Victor P. M. G. Rutten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; (A.I.); (E.J.A.V.); (F.B.); (V.P.M.G.R.)
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, Pretoria 0110, South Africa
| | - Christine A. Jansen
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
13
|
Toll-Like Receptors as Drug Targets in the Intestinal Epithelium. Handb Exp Pharmacol 2021; 276:291-314. [PMID: 34783909 DOI: 10.1007/164_2021_563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Toll-like receptors (TLRs) receptors are responsible for initiation of inflammatory responses by their recognition of molecular patterns present in invading microorganisms (such as bacteria, viruses or fungi) or in molecules released following tissue damage in disease states. Expressed in the intestinal epithelium, they initiate an intracellular signalling cascade in response to molecular patterns resulting in the activation of transcription factors and the release of cytokines, chemokines and vasoactive molecules. Intestinal epithelial cells are exposed to microorganisms on a daily basis and form part of the primary defence against pathogens by using TLRs. TLRs and their accessory molecules are subject to tight regulation in these cells so as to not overreact or react in unnecessary circumstances. TLRs have more recently been associated with chronic inflammatory diseases as a result of inappropriate regulation, this can be damaging and lead to chronic inflammatory diseases such as inflammatory bowel disease (IBD). Targeting Toll-like receptors offers a potential therapeutic approach for IBD. In this review, the current knowledge on the TLRs is reviewed along with their association with intestinal diseases. Finally, compounds that target TLRs in animal models of IBD, clinic trials and their future merit as targets are discussed.
Collapse
|
14
|
Gwak SY, Kim SJ, Park J, Kim SH, Joe Y, Lee HN, Kim W, Muna IA, Na HK, Chung HT, Surh YJ. Potential Role of Heme Oxygenase-1 in the Resolution of Experimentally Induced Colitis through Regulation of Macrophage Polarization. Gut Liver 2021; 16:246-258. [PMID: 34737242 PMCID: PMC8924814 DOI: 10.5009/gnl210058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/01/2022] Open
Abstract
Background/Aims Heme oxygenase-1 (HO-1) plays a central role in cellular defense against inflammatory insults, and its induction in macrophages potentiates their efferocytic activity. In this study, we explored the potential role of macrophage HO-1 in the resolution of experimentally induced colitis. Methods To induce colitis, male C57BL/6 mice were treated with 2% dextran sulfate sodium (DSS) in the drinking water for 7 days. To investigate efferocytosis, apoptotic colon epithelial CCD 841 CoN cells were coincubated with bone marrow-derived macrophages (BMDMs). Results Administration of the HO-1 inhibitor zinc protoporphyrin IX (ZnPP) blunted the resolution of DSS-induced intestinal inflammation and expression of the proresolving M2 macrophage marker CD206. BMDMs treated with apoptotic colonic epithelial cells showed significantly elevated expression of HO-1 and its regulator Nrf2. Under the same experimental conditions, the proportion of CD206-expressing macrophages was also enhanced. ZnPP treatment abrogated the upregulation of CD206 expression in BMDMs engulfing apoptotic colonic epithelial cells. This result was verified with BMDMs isolated from HO-1-knockout mice. BMDMs, when stimulated with lipopolysaccharide, exhibited increased expression of CD86, a marker of M1 macrophages. Coculture of lipopolysaccharide-stimulated BMDMs with apoptotic colonic epithelial cell debris dampened the expression of CD86 as well as the pro-inflammatory cytokines in an HO-1-dependent manner. Genetic ablation as well as pharmacologic inhibition of HO-1 significantly reduced the proportion of efferocytic BMDMs expressing the scavenger receptor CD36. Conclusions HO-1 plays a key role in the resolution of experimentally induced colitis by modulating the polarization of macrophages.
Collapse
Affiliation(s)
- Shin-Young Gwak
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul, Korea
| | - Su-Jung Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Jeongmin Park
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Seung Hyeon Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Yeonsoo Joe
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Ha-Na Lee
- Laboratory of Immunology, Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD
| | - Wonki Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Ishrat Aklima Muna
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Hye-Kyung Na
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul, Korea
| | - Hun Taeg Chung
- Department of Biological Sciences, University of Ulsan, Ulsan, Korea
| | - Young-Joon Surh
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul, Korea.,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
15
|
Gershon MD, Margolis KG. The gut, its microbiome, and the brain: connections and communications. J Clin Invest 2021; 131:143768. [PMID: 34523615 PMCID: PMC8439601 DOI: 10.1172/jci143768] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Modern research on gastrointestinal behavior has revealed it to be a highly complex bidirectional process in which the gut sends signals to the brain, via spinal and vagal visceral afferent pathways, and receives sympathetic and parasympathetic inputs. Concomitantly, the enteric nervous system within the bowel, which contains intrinsic primary afferent neurons, interneurons, and motor neurons, also senses the enteric environment and controls the detailed patterns of intestinal motility and secretion. The vast microbiome that is resident within the enteric lumen is yet another contributor, not only to gut behavior, but to the bidirectional signaling process, so that the existence of a microbiota-gut-brain "connectome" has become apparent. The interaction between the microbiota, the bowel, and the brain now appears to be neither a top-down nor a bottom-up process. Instead, it is an ongoing, tripartite conversation, the outline of which is beginning to emerge and is the subject of this Review. We emphasize aspects of the exponentially increasing knowledge of the microbiota-gut-brain "connectome" and focus attention on the roles that serotonin, Toll-like receptors, and macrophages play in signaling as exemplars of potentially generalizable mechanisms.
Collapse
Affiliation(s)
| | - Kara Gross Margolis
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
16
|
Chen JY, Zhou JK, Pan W. Immunometabolism: Towards a Better Understanding the Mechanism of Parasitic Infection and Immunity. Front Immunol 2021; 12:661241. [PMID: 34122419 PMCID: PMC8191844 DOI: 10.3389/fimmu.2021.661241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/13/2021] [Indexed: 12/26/2022] Open
Abstract
As a relatively successful pathogen, several parasites can establish long-term infection in host. This “harmonious symbiosis” status relies on the “precise” manipulation of host immunity and metabolism, however, the underlying mechanism is still largely elusive. Immunometabolism is an emerging crossed subject in recent years. It mainly discusses the regulatory mechanism of metabolic changes on reprogramming the key transcriptional and post-transcriptional events related to immune cell activation and effect, which provides a novel insight for understanding how parasites regulate the infection and immunity in hosts. The present study reviewed the current research progress on metabolic reprogramming mechanism exploited by parasites to modulate the function in various immune cells, highlighting the future exploitation of key metabolites or metabolic events to clarify the underlying mechanism of anti-parasite immunity and design novel intervention strategies against parasitic infection.
Collapse
Affiliation(s)
- Jing-Yue Chen
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Ji-Kai Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
17
|
Margolis KG, Cryan JF, Mayer EA. The Microbiota-Gut-Brain Axis: From Motility to Mood. Gastroenterology 2021; 160:1486-1501. [PMID: 33493503 PMCID: PMC8634751 DOI: 10.1053/j.gastro.2020.10.066] [Citation(s) in RCA: 488] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/07/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
The gut-brain axis plays an important role in maintaining homeostasis. Many intrinsic and extrinsic factors influence signaling along this axis, modulating the function of both the enteric and central nervous systems. More recently the role of the microbiome as an important factor in modulating gut-brain signaling has emerged and the concept of a microbiota-gut-brain axis has been established. In this review, we highlight the role of this axis in modulating enteric and central nervous system function and how this may impact disorders such as irritable bowel syndrome and disorders of mood and affect. We examine the overlapping biological constructs that underpin these disorders with a special emphasis on the neurotransmitter serotonin, which plays a key role in both the gastrointestinal tract and in the brain. Overall, it is clear that although animal studies have shown much promise, more progress is necessary before these findings can be translated for diagnostic and therapeutic benefit in patient populations.
Collapse
Affiliation(s)
- Kara G. Margolis
- Department of Pediatrics, Morgan Stanley Children’s Hospital, Columbia University Irving Medical Center, New York, NY,Corresponding author:
| | - John F. Cryan
- Department of Anatomy & Neuroscience, University College Cork, Ireland, APC Microbiome Ireland, University College Cork, Ireland
| | - Emeran A. Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vachte and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
18
|
Rodriguez-Sillke Y, Visekruna A, Glauben R, Siegmund B, Steinhoff U. Recognition of food antigens by the mucosal and systemic immune system: Consequences for intestinal development and homeostasis. Int J Med Microbiol 2021; 311:151493. [PMID: 33652373 DOI: 10.1016/j.ijmm.2021.151493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022] Open
Abstract
The impact of nutrition on systemic and intestinal immune responses remains controversially discussed and yet not fully understood. The majority of studies investigating the effects of dietary antigens focused to understand how local and systemic unresponsiveness is induced by innocuous food antigens. Moreover, it has been shown that both, microbial and dietary antigens are essential for the normal development of the mucosal immune system. Based on experimental findings from animals and IBD patients, we propose a model how the intestinal immune system performs the balancing act between recognition and tolerance of dietary antigens at the same time: In the healthy gut, repetitive uptake of dietary antigens by Peyer's patches leads to increasing activation of CD4+ T cells till hyper-activated lymphocytes undergo apoptosis. In contrast to healthy controls, this mechanism was disturbed in Crohn's disease patients. This observation might help to better understand beneficial effects of dietary intervention therapy.
Collapse
Affiliation(s)
- Yasmina Rodriguez-Sillke
- Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Germany
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany
| | - Rainer Glauben
- Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Germany
| | - Britta Siegmund
- Medical Department for Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Germany
| | - Ulrich Steinhoff
- Institute for Medical Microbiology and Hygiene, Philipps University of Marburg, Marburg, Germany.
| |
Collapse
|
19
|
Lucerne KE, Kiraly DD. The role of gut-immune-brain signaling in substance use disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 157:311-370. [PMID: 33648673 DOI: 10.1016/bs.irn.2020.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Substance use disorders (SUDs) are debilitating neuropsychiatric conditions that exact enormous costs in terms of loss of life and individual suffering. While much progress has been made defining the neurocircuitry and intracellular signaling cascades that contribute to SUDs, these studies have yielded limited effective treatment options. This has prompted greater exploration of non-traditional targets in addiction. Emerging data suggest inputs from peripheral systems, such as the immune system and the gut microbiome, impact multiple neuropsychiatric diseases, including SUDs. Until recently the gut microbiome, peripheral immune system, and the CNS have been studied independently; however, current work shows the gut microbiome and immune system critically interact to modulate brain function. Additionally, the gut microbiome and immune system intimately regulate one another via extensive bidirectional communication. Accumulating evidence suggests an important role for gut-immune-brain communication in the pathogenesis of substance use disorders. Thus, a better understanding of gut-immune-brain signaling could yield important insight to addiction pathology and potential treatment options.
Collapse
Affiliation(s)
- Kelsey E Lucerne
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Drew D Kiraly
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
20
|
Kodama M, Kobayashi D, Abe K, Sahara R, Yamana T, Furukawa S, Yao T, Tamura T, Okano S. Epithelioid Cell Granulomas in Crohn's Disease Are Differentially Associated With Blood Vessels and Lymphatic Vessels: A Sequential Double Immunostaining Study. J Histochem Cytochem 2020; 68:553-560. [PMID: 32589075 DOI: 10.1369/0022155420939535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Crohn's disease (CD) is a gastrointestinal disorder of unknown etiology. CD-specific longitudinal ulcers show an association between disease pathogenesis and vasculature dysfunction. Granulomatous lymphangitis may also contribute to CD pathogenesis; meanwhile, vasculitis is the primary CD lesion. We investigated the association between granulomas and lymphatic and blood vessels to assess the role of vasculature in CD pathogenesis. Two small and large intestine specimens were obtained from four CD patients. From each specimen, 160 sequential sections were obtained and double immunohistochemical stained to label lymphatic and blood vessels in association with granulomas. We found that 289 of 342 granulomas (85%) were associated with a lymphatic vessel and 313 of 364 granulomas (86%) were associated with a blood vessel. Although intrablood vessel granulomas were not detected, intralymphatic vessel granulomas were. In the internal region of the granuloma, we found more blood vessels than lymphatic vessels. Hence, these results cumulatively demonstrate that CD epithelioid cell granulomas are differentially associated with lymphatic and blood vessels, suggesting both as essential for the formation and maintenance of these granulomas. Moreover, both lymphatic and blood vessels may participate in granulomatous inflammation in the primary CD lesions; however, additional studies with larger numbers of participants are required to validate our findings.
Collapse
Affiliation(s)
- Makoto Kodama
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University Hospital, Bunkyo-Ku, Tokyo, Japan.,Department of Pathology, Tokyo Yamate Medical Center, Shinjuku-ku, Tokyo, Japan
| | - Daisuke Kobayashi
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University Hospital, Bunkyo-Ku, Tokyo, Japan
| | - Keiko Abe
- Department of Pathology, Tokyo Yamate Medical Center, Shinjuku-ku, Tokyo, Japan
| | - Rikisaburo Sahara
- Department of Pathology, Tokyo Yamate Medical Center, Shinjuku-ku, Tokyo, Japan
| | - Tetsuo Yamana
- Department of Coloproctology Center, Tokyo Yamate Medical Center, Shinjuku-ku, Tokyo, Japan
| | - Satomi Furukawa
- Department of Coloproctology Center, Tokyo Yamate Medical Center, Shinjuku-ku, Tokyo, Japan
| | - Takashi Yao
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, Japan
| | - Tomoki Tamura
- Division of Surgical Pathology, Tokyo Medical and Dental University Hospital, Bunkyo-Ku, Tokyo, Japan
| | - Soh Okano
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo, Japan
| |
Collapse
|
21
|
Mowat AM. To respond or not to respond - a personal perspective of intestinal tolerance. Nat Rev Immunol 2019; 18:405-415. [PMID: 29491358 DOI: 10.1038/s41577-018-0002-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
For many years, the intestine was one of the poor relations of the immunology world, being a realm inhabited mostly by specialists and those interested in unusual phenomena. However, this has changed dramatically in recent years with the realization of how important the microbiota is in shaping immune function throughout the body, and almost every major immunology institution now includes the intestine as an area of interest. One of the most important aspects of the intestinal immune system is how it discriminates carefully between harmless and harmful antigens, in particular, its ability to generate active tolerance to materials such as commensal bacteria and food proteins. This phenomenon has been recognized for more than 100 years, and it is essential for preventing inflammatory disease in the intestine, but its basis remains enigmatic. Here, I discuss the progress that has been made in understanding oral tolerance during my 40 years in the field and highlight the topics that will be the focus of future research.
Collapse
Affiliation(s)
- Allan McI Mowat
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
22
|
Choi JY, Kim JH, Hossain FMA, Uyangaa E, Park SO, Kim B, Kim K, Eo SK. Indispensable Role of CX 3CR1 + Dendritic Cells in Regulation of Virus-Induced Neuroinflammation Through Rapid Development of Antiviral Immunity in Peripheral Lymphoid Tissues. Front Immunol 2019; 10:1467. [PMID: 31316515 PMCID: PMC6610490 DOI: 10.3389/fimmu.2019.01467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 06/11/2019] [Indexed: 12/14/2022] Open
Abstract
A coordinated host immune response mediated via chemokine network plays a crucial role in boosting defense mechanisms against pathogenic infections. The speed of Ag presentation and delivery by CD11c+ dendritic cells (DCs) to cognate T cells in lymphoid tissues may decide the pathological severity of the infection. Here, we investigated the role of CX3CR1 in the neuroinflammation induced by infection with Japanese encephalitis virus (JEV), a neurotrophic virus. Interestingly, CX3CR1 deficiency strongly enhanced susceptibility to JEV only after peripheral inoculation via footpad. By contrast, both CX3CR1+/+ and CX3CR1-/- mice showed comparable susceptibility to JEV following inoculation via intranasal and intraperitoneal routes. CX3CR1-/- mice exhibited lethal neuroinflammation after JEV inoculation via footpad route, showing high mortality, morbidity, pro-inflammatory cytokine expression, and uncontrolled CNS-infiltration of peripheral leukocytes including Ly-6Chi monocytes and Ly-6Ghi granulocytes. Furthermore, the absence of CX3CR1+CD11c+ DCs appeared to enhance susceptibility of CX3CR1-/- mice to JE after peripheral JEV inoculation. CX3CR1 ablation impaired the migration of CX3CR1+CD11c+ DCs from JEV-inoculated sites to draining lymph nodes (dLNs), resulting in decreased NK cell activation and JEV-specific CD4+/CD8+ T-cell responses. However, CX3CR1-competent mice showed rapid temporal expression of viral Ags in dLNs. Subsequently, JEV was rapidly cleared, with concomitant generation of antiviral NK cell activation and T-cell responses mediated by rapid migration of JEV Ag+CX3CR1+CD11c+ DCs. Using biallelic functional CX3CR1 expression system, the functional expression of CX3CR1 on CD11chi DCs appeared to be essentially required for inducing rapid and effective responses of NK cell activation and Ag-specific CD4+ T cells in dLNs. Strikingly, adoptive transfer of CX3CR1+CD11c+ DCs was found to completely restore the resistance of CX3CR1-/- recipients to JEV, as corroborated by the rapid delivery of JEV Ags in dLNs and attenuation of neuroinflammation in the CNS. Collectively, these results indicate that CX3CR1+CD11c+ DCs play an important role in generating rapid and effective responses of antiviral NK cell activation and Ag-specific T cells after peripheral inoculation with the virus, thereby resulting in conferring resistance to viral infection by reducing the peripheral viral burden.
Collapse
Affiliation(s)
- Jin Young Choi
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, South Korea
| | - Jin Hyoung Kim
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, South Korea
| | - Ferdaus Mohd Altaf Hossain
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, South Korea.,Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Erdenebelig Uyangaa
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, South Korea
| | - Seong Ok Park
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, South Korea
| | - Bumseok Kim
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, South Korea
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan-si, South Korea
| | - Seong Kug Eo
- Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Iksan, South Korea
| |
Collapse
|
23
|
Luo Q, Xu J, Huang C, Lei X, Cheng D, Liu W, Cheng A, Tang L, Fang J, Ou Y, Geng Y, Chen Z. Impacts of Duck-Origin Parvovirus Infection on Cherry Valley Ducklings From the Perspective of Gut Microbiota. Front Microbiol 2019; 10:624. [PMID: 30984145 PMCID: PMC6450226 DOI: 10.3389/fmicb.2019.00624] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/12/2019] [Indexed: 01/30/2023] Open
Abstract
Duck-origin goose parvovirus (D-GPV) is the causative agent of beak atrophy and dwarfism syndrome (BADS), characterized by growth retardation, skeletal dysplasia, and persistent diarrhea. However, the pathogenic mechanism of D-GPV remains undefined. Here, we first reported the gut microbiome diversity of D-GPV infected Cherry Valley ducks. In the investigation for the influence of D-GPV infection on gut microbiota through a period of infection, we found that D-GPV infection caused gut microbiota dysbiosis by reducing the prevalence of the dominant genera and decreasing microbial diversity. Furthermore, exfoliation of the intestinal epithelium, proliferation of lymphocytes, up-regulated mRNA expression of pro-inflammatory TNF-α, IL-1β, IL-6, IL-17A, and IL-22 and down-regulated mRNA expression of anti-inflammatory IL-10 and IL-4 occurred when D-GPV targeted in cecal epithelium. In addition, the content of short chain fatty acids (SCFAs) in cecal contents was significantly reduced after D-GPV infection. Importantly, the disorder of pro-inflammatory and anti-inflammatory cytokines was associated with the decrease of SCFAs-producing bacteria and the enrichment of opportunistic pathogens. Collectively, the decrease of SCFAs and the enrichment of pathogen-containing gut communities promoted intestinal inflammatory injury. These results may provide a new insight that target the gut microbiota to understand the progression of BADS disease and to research the pathogenic mechanism of D-GPV.
Collapse
Affiliation(s)
- Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chao Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinyu Lei
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dongjing Cheng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wentao Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li Tang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Fang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yangping Ou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yi Geng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
24
|
P. McKernan D. Toll-like receptors and immune cell crosstalk in the intestinal epithelium. AIMS ALLERGY AND IMMUNOLOGY 2019. [DOI: 10.3934/allergy.2019.1.13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
25
|
Pérez MM, Martins LMS, Dias MS, Pereira CA, Leite JA, Gonçalves ECS, de Almeida PZ, de Freitas EN, Tostes RC, Ramos SG, de Zoete MR, Ryffel B, Silva JS, Carlos D. Interleukin-17/interleukin-17 receptor axis elicits intestinal neutrophil migration, restrains gut dysbiosis and lipopolysaccharide translocation in high-fat diet-induced metabolic syndrome model. Immunology 2018; 156:339-355. [PMID: 30472727 DOI: 10.1111/imm.13028] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/17/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022] Open
Abstract
Sound evidence supports a role for interleukin-17 (IL-17) -producing γδ T cells and IL-17-producing helper T (Th17) cells in intestinal homeostasis, especially in intestinal barrier integrity. In the present study, we aimed to evaluate the role of IL-17 cytokine in the regulation of intestinal immunity and obesity-induced metabolic syndrome (MetS) in an experimental murine model. C57BL/6 wild-type (WT) mice and mice lacking the IL-17 cytokine receptor (IL-17RA-/- ) were fed either a control diet (CD) or a high-fat diet (HFD) for 9 weeks. Our data demonstrate that IL-17RA-/- mice are protected against obesity, but develop hyperglycemia, hyperinsulinemia and insulin resistance. In parallel, HFD-fed IL-17RA-/- mice display intense inflammation in the ileum compared with WT mice on the HFD. IL-17RA-/- mice fed the HFD exhibit impaired neutrophil migration to the intestinal mucosa and reduced gene expression of the CXCL-1 chemokine and CXCR-2 receptor in the ileum. Interestingly, the populations of neutrophils (CD11b+ Ly6G+ ) and anti-inflammatory macrophages (CD11b+ CX3CR1+ ) are increased in the mesenteric lymph nodes of these mice. IL-17RA-/- mice on the HFD also display increased commensal bacterial translocation into the bloodstream and elevated lipopolysaccharide (LPS) levels in the visceral adipose tissue (VAT). Metagenomic analysis of bacterial 16S gene revealed increased Proteobacteria and Bacteroidetes phyla, the main representatives of Gram-negative bacteria, and reduced Akkermansia muciniphila in the fecal samples of IL-17RA-/- mice fed the HFD. Together, these data indicate that the IL-17/IL-17R axis drives intestinal neutrophil migration, limits gut dysbiosis and attenuates LPS translocation to VAT, resulting in protection to MetS.
Collapse
Affiliation(s)
- Malena M Pérez
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Larissa M S Martins
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Murilo S Dias
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Camila A Pereira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jefferson A Leite
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Enrico C S Gonçalves
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Paula Z de Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Emanuelle N de Freitas
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Simone G Ramos
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marcel R de Zoete
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - Bernhard Ryffel
- Molecular Immunology, CNRS, INEM, UMR6218, University of Orleans, Orleans, France.,IDM, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - João S Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniela Carlos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
26
|
Hansen IS, Baeten DLP, den Dunnen J. The inflammatory function of human IgA. Cell Mol Life Sci 2018; 76:1041-1055. [PMID: 30498997 PMCID: PMC6513800 DOI: 10.1007/s00018-018-2976-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/23/2018] [Accepted: 11/22/2018] [Indexed: 12/21/2022]
Abstract
The prevailing concept regarding the immunological function of immunoglobulin A (IgA) is that it binds to and neutralizes pathogens to prevent infection at mucosal sites of the body. However, recently, it has become clear that in humans IgA is also able to actively contribute to the initiation of inflammation, both at mucosal and non-mucosal sites. This additional function of IgA is initiated by the formation of immune complexes, which trigger Fc alpha Receptor I (FcαRI) to synergize with various other receptors to amplify inflammatory responses. Recent findings have demonstrated that co-stimulation of FcαRI strongly affects pro-inflammatory cytokine production by various myeloid cells, including different dendritic cell subsets, macrophages, monocytes, and Kupffer cells. FcαRI-induced inflammation plays a crucial role in orchestrating human host defense against pathogens, as well as the generation of tissue-specific immunity. In addition, FcαRI-induced inflammation is suggested to be involved in the pathogenesis of various chronic inflammatory disorders, including inflammatory bowel disease, celiac disease, and rheumatoid arthritis. Combined, IgA-induced inflammation may be used to either promote inflammatory responses, e.g. in the context of cancer therapy, but may also provide new therapeutic targets to counteract chronic inflammation in the context of various chronic inflammatory disorders.
Collapse
Affiliation(s)
- Ivo S Hansen
- Amsterdam Rheumatology and immunology Center, Academic Medical Center (AMC), Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Dominique L P Baeten
- Amsterdam Rheumatology and immunology Center, Academic Medical Center (AMC), Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Jeroen den Dunnen
- Amsterdam Rheumatology and immunology Center, Academic Medical Center (AMC), Amsterdam, The Netherlands. .,Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Immunomodulatory effects of probiotics: Can they be used to treat allergies and autoimmune diseases? Maturitas 2018; 119:25-38. [PMID: 30502748 DOI: 10.1016/j.maturitas.2018.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/12/2022]
Abstract
As a person ages, physiological, immunological and gut microbiome changes collectively result in an array of chronic conditions. According to the 'hygiene hypothesis' the increasing prevalence of immune-mediated disorders may be related to intestinal dysbiosis, leading to immune dysfunction and associated conditions such as eczema, asthma, allergies and autoimmune diseases. Beneficial probiotic bacteria can be utilized by increasing their abundance within the gastrointestinal lumen, which in turn will modulate immune cells, such as, T helper (Th)-1, Th2, Th17, regulatory T (Treg) cells and B cells, which have direct relevance to human health and the pathogenesis of immune disorders. Here, we describe the cross-talk between probiotics and the gastrointestinal immune system, and their effects in relation to inflammatory bowel disease, multiple sclerosis, allergies and atopic dermatitis.
Collapse
|
28
|
Segal AW. The role of neutrophils in the pathogenesis of Crohn's disease. Eur J Clin Invest 2018; 48 Suppl 2:e12983. [PMID: 29931668 DOI: 10.1111/eci.12983] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022]
Abstract
Crohn's disease (CD) is caused by a trigger, almost certainly enteric infection by one of a multitude of organisms that allows faeces access to the tissues, at which stage the response of individuals predisposed to CD is abnormal. In CD the failure of acute inflammation results in the failure to recruit neutrophils to the inflammatory site, as a consequence of which the clearance of bacteria from the tissues is defective. The retained faecal products result in the characteristic chronic granulomatous inflammation and adaptive immune response. Impaired of digestion of bacteria and fungi by CGD neutrophils can result in a similar pathological and clinical picture. The neutrophils in CD are normal and their inadequate accumulation at sites of inflammation generally results from diminished secretion of proinflammatory cytokines by macrophages consequent upon disordered vesicle trafficking.
Collapse
|
29
|
Chen L, He Z, Iuga AC, Martins Filho SN, Faith JJ, Clemente JC, Deshpande M, Jayaprakash A, Colombel JF, Lafaille JJ, Sachidanandam R, Furtado GC, Lira SA. Diet Modifies Colonic Microbiota and CD4 + T-Cell Repertoire to Induce Flares of Colitis in Mice With Myeloid-Cell Expression of Interleukin 23. Gastroenterology 2018; 155:1177-1191.e16. [PMID: 29909020 PMCID: PMC6174107 DOI: 10.1053/j.gastro.2018.06.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/24/2018] [Accepted: 06/11/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Several studies have shown that signaling via the interleukin 23 (IL23) receptor is required for development of colitis. We studied the roles of IL23, dietary factors, alterations to the microbiota, and T cells in the development and progression of colitis in mice. METHODS All mice were maintained on laboratory diet 5053, unless otherwise noted. We generated mice that express IL23 in CX3CR1-positive myeloid cells (R23FR mice) upon cyclic administration of tamoxifen dissolved in diet 2019. Diets 2019 and 5053 have minor differences in the overall composition of protein, fat, fiber, minerals, and vitamins. CX3CR1CreER mice (FR mice) were used as controls. Some mice were given antibiotics, and others were raised in a germ-free environment. Intestinal tissues were collected and analyzed by histology and flow cytometry. Feces were collected and analyzed by 16S rDNA sequencing. Feces from C57/Bl6, R23FR, or FR mice were fed to FR and R23FR germ-free mice in microbiota transplant experiments. We also performed studies with R23FR/Rag-/-, R23FR/Mu-/-, and R23FR/Tcrd-/- mice. R23FR mice were given injections of antibodies against CD4 or CD8 to deplete T cells. Mesenteric lymph nodes and large intestine CD4+ cells from R23FR or FR mice in remission from colitis were transferred into Rag-/- mice. CD4+ cells were isolated from donor R23FR mice and recipient Rag-/- mice, and T-cell receptor sequences were determined. RESULTS Expression of IL23 led to development of a relapsing-remitting colitis that was dependent on the microbiota and CD4+ T cells. The relapses were caused by switching from the conventional diet used in our facility (diet 5053) to the diet 2019 and were not dependent on tamoxifen after the first cycle. The switch in the diet modified the microbiota but did not alter levels of IL23 in intestinal tissues compared with mice that remained on the conventional diet. Mesenteric lymph nodes and large intestine CD4+ cells from R23FR mice in remission, but not from FR mice, induced colitis after transfer into Rag-/- mice, but only when these mice were placed on the diet 2019. The CD4+ T-cell receptor repertoire of Rag-/- mice with colitis (fed the 2019 diet) was less diverse than that from donor mice and Rag-/- mice without colitis (fed the 5053 diet) because of expansion of dominant T-cell clones. CONCLUSIONS We developed mice that express IL23 in CX3CR1-positive myeloid cells (R23FR mice) and found that they are more susceptible to diet-induced colitis than mice that do not express IL23. The R23FR mice have a population of CD4+ T cells that becomes activated in response to dietary changes and alterations to the intestinal microbiota. The results indicate that alterations in the diet, intestinal microbiota, and IL23 signaling can contribute to pathogenesis of inflammatory bowel disease.
Collapse
Affiliation(s)
- Lili Chen
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhengxiang He
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alina Cornelia Iuga
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Sebastião N. Martins Filho
- Departamento de Patologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil,Department of Pathology and Laboratory Medicine, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Jeremiah J. Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jose C. Clemente
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Madhura Deshpande
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Jean-Frederic Colombel
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan J. Lafaille
- Department of Pathology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Ravi Sachidanandam
- Girihlet Inc. Oakland, CA 94609, USA,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Glaucia C. Furtado
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergio A. Lira
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
30
|
Mahanonda R, Champaiboon C, Subbalekha K, Sa‐Ard‐Iam N, Yongyuth A, Isaraphithakkul B, Rerkyen P, Charatkulangkun O, Pichyangkul S. Memory T cell subsets in healthy gingiva and periodontitis tissues. J Periodontol 2018; 89:1121-1130. [DOI: 10.1002/jper.17-0674] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/16/2018] [Accepted: 04/25/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Rangsini Mahanonda
- Department of PeriodontologyFaculty of DentistryChulalongkorn University Bangkok Thailand
- Immunology LaboratoryFaculty of DentistryChulalongkorn University Bangkok Thailand
- Research Unit for Immunopathological / Clinical Research in Periodontal DiseaseFaculty of DentistryChulalongkorn University Bangkok Thailand
| | | | - Keskanya Subbalekha
- Department of Oral Maxillofacial SurgeryFaculty of DentistryChulalongkorn University Bangkok Thailand
| | - Noppadol Sa‐Ard‐Iam
- Immunology LaboratoryFaculty of DentistryChulalongkorn University Bangkok Thailand
- Research Unit for Immunopathological / Clinical Research in Periodontal DiseaseFaculty of DentistryChulalongkorn University Bangkok Thailand
| | - Arsarn Yongyuth
- Department of PeriodontologyFaculty of DentistryChulalongkorn University Bangkok Thailand
| | | | - Pimprapa Rerkyen
- Immunology LaboratoryFaculty of DentistryChulalongkorn University Bangkok Thailand
- Research Unit for Immunopathological / Clinical Research in Periodontal DiseaseFaculty of DentistryChulalongkorn University Bangkok Thailand
| | - Orawan Charatkulangkun
- Department of PeriodontologyFaculty of DentistryChulalongkorn University Bangkok Thailand
| | - Sathit Pichyangkul
- Department of PeriodontologyFaculty of DentistryChulalongkorn University Bangkok Thailand
| |
Collapse
|
31
|
Sun Y, Qian J, Xu X, Tang Y, Xu W, Yang W, Jiang Y, Yang G, Ding Z, Cong Y, Wang C. Dendritic cell-targeted recombinantLactobacilli induce DC activation and elicit specific immune responses against G57 genotype of avian H9N2 influenza virus infection. Vet Microbiol 2018; 223:9-20. [PMID: 30173758 DOI: 10.1016/j.vetmic.2018.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/11/2018] [Accepted: 07/15/2018] [Indexed: 12/21/2022]
Abstract
H9N2 avian influenza viruses are of significance in poultry and public health for the past two decades. Vaccination plays an important role in preventing the infection in domestic poultry. Current H9N2 vaccines have not yet offered ideal protection and eliminated shedding of G57 genotype viruses responsible for H9N2 outbreaks during 2010-2013. Targeted vaccination is a promising strategy to improve vaccine effectiveness. Such a vaccine strategy can be achieved if it is targeted to dendritic cells (DCs) that directly elicit mucosal and adaptive immune responses against microbe challenge. For this purpose, we develop a DC-targeted mucosal vaccine for the oral delivery of the HA protein fused to a DCpep by using Lactobacillus plantarum as an antigen delivery system against G57 virus infection. It showed that Lactobacillus plantarum expressing HA-DCpep confers efficient protection against G57 H9N2 infection, due to have the potential to activate DCs by the TLR-induced NF-κB pathway, to promote DC migration by the CCR7-CCL19/CCL21 axis, thereby enhancing the presentation of immunogen to T and B lymphocytes, resulting in skewing T cells polarization towards Th1, Th2 and Treg cells and evoking more efficient mucosal and adaptive immunity responses. The presented oral mucosal vaccine strategy illustrates the feasibility and efficacy of antigen targeting to DCs through genetic fusion of vaccines to DC-targeting peptides and aids in the design and selection of indications that could be used with this oral vaccine platform against influenza.
Collapse
Affiliation(s)
- Yixue Sun
- Engineering Research Center of Jilin Province for Animals Probiotics, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jing Qian
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, China; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Xiaohong Xu
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, China; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Yubo Tang
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, China; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Wenzhang Xu
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, China; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Wentao Yang
- Engineering Research Center of Jilin Province for Animals Probiotics, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yanlong Jiang
- Engineering Research Center of Jilin Province for Animals Probiotics, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Guilian Yang
- Engineering Research Center of Jilin Province for Animals Probiotics, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhuang Ding
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, China; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China.
| | - Yanlong Cong
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, China; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China.
| | - Chunfeng Wang
- Engineering Research Center of Jilin Province for Animals Probiotics, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
32
|
A protocol for quantizing total bacterial 16S rDNA in plasma as a marker of microbial translocation in vivo. Cell Mol Immunol 2018; 15:937-939. [PMID: 29658510 DOI: 10.1038/cmi.2018.3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 12/19/2022] Open
|
33
|
Cardoso A, Gil Castro A, Martins AC, Carriche GM, Murigneux V, Castro I, Cumano A, Vieira P, Saraiva M. The Dynamics of Interleukin-10-Afforded Protection during Dextran Sulfate Sodium-Induced Colitis. Front Immunol 2018; 9:400. [PMID: 29545807 PMCID: PMC5837963 DOI: 10.3389/fimmu.2018.00400] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/13/2018] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease encompasses a group of chronic-inflammatory conditions of the colon and small intestine. These conditions are characterized by exacerbated inflammation of the organ that greatly affects the quality of life of patients. Molecular mechanisms counteracting this hyperinflammatory status of the gut offer strategies for therapeutic intervention. Among these regulatory molecules is the anti-inflammatory cytokine interleukin (IL)-10, as shown in mice and humans. Indeed, IL-10 signaling, particularly in macrophages, is essential for intestinal homeostasis. We sought to investigate the temporal profile of IL-10-mediated protection during chemical colitis and which were the underlying mechanisms. Using a novel mouse model of inducible IL-10 overexpression (pMT-10), described here, we show that mice preconditioned with IL-10 for 8 days before dextran sulfate sodium (DSS) administration developed a milder colitic phenotype. In IL-10-induced colitic mice, Ly6C cells isolated from the lamina propria showed a decreased inflammatory profile. Because our mouse model leads to transcription of the IL-10 transgene in the bone marrow and elevated seric IL-10 concentration, we investigated whether IL-10 could imprint immune cells in a long-lasting way, thus conferring sustained protection to colitis. We show that this was not the case, as IL-10-afforded protection was only observed if IL-10 induction immediately preceded DSS-mediated colitis. Thus, despite the protection afforded by IL-10 in colitis, novel strategies are required, specifically to achieve long-lasting protection.
Collapse
Affiliation(s)
- Ana Cardoso
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Department of Immunology, Unité Lymphopoièse, Institut Pasteur, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France.,INSERM U1223, Paris, France.,ICVS, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Antonio Gil Castro
- ICVS, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Ana Catarina Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Guilhermina M Carriche
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Valentine Murigneux
- Department of Immunology, Unité Intégrité du génome, immunité et cancer, Institut Pasteur, Paris, France.,Department of Genomes and Genetics, Unité Intégrité du génome, immunité et cancer, Institut Pasteur, Paris, France
| | - Isabel Castro
- ICVS, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Portugal
| | - Ana Cumano
- Department of Immunology, Unité Lymphopoièse, Institut Pasteur, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France.,INSERM U1223, Paris, France
| | - Paulo Vieira
- Department of Immunology, Unité Lymphopoièse, Institut Pasteur, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France.,INSERM U1223, Paris, France
| | - Margarida Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
34
|
Hansen IS, Krabbendam L, Bernink JH, Loayza-Puch F, Hoepel W, van Burgsteden JA, Kuijper EC, Buskens CJ, Bemelman WA, Zaat SAJ, Agami R, Vidarsson G, van den Brink GR, de Jong EC, Wildenberg ME, Baeten DLP, Everts B, den Dunnen J. FcαRI co-stimulation converts human intestinal CD103 + dendritic cells into pro-inflammatory cells through glycolytic reprogramming. Nat Commun 2018; 9:863. [PMID: 29491406 PMCID: PMC5830413 DOI: 10.1038/s41467-018-03318-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 02/06/2018] [Indexed: 02/06/2023] Open
Abstract
CD103+ dendritic cells (DC) are crucial for regulation of intestinal tolerance in humans. However, upon infection of the lamina propria this tolerogenic response is converted to an inflammatory response. Here we show that immunoglobulin A (IgA) immune complexes (IgA-IC), which are present after bacterial infection of the lamina propria, are important for the induction of inflammation by the human CD103+SIRPα+ DC subset. IgA-IC, by recognition through FcαRI, selectively amplify the production of proinflammatory cytokines TNF, IL-1β and IL-23 by human CD103+ DCs. These cells then enhance inflammation by promoting Th17 responses and activating human intestinal innate lymphoid cells 3. Moreover, FcαRI-induced cytokine production is orchestrated via upregulation of cytokine translation and caspase-1 activation, which is dependent on glycolytic reprogramming mediated by kinases Syk, PI3K and TBK1-IKKε. Our data suggest that the formation of IgA-IC in the human intestine provides an environmental cue for the conversion of a tolerogenic to an inflammatory response.
Collapse
Affiliation(s)
- Ivo S Hansen
- Amsterdam Rheumatology and Immunology Centre, Department of Clinical Immunology and Rheumatology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Experimental Immunology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Lisette Krabbendam
- Department of Experimental Immunology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jochem H Bernink
- Department of Experimental Immunology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Fabricio Loayza-Puch
- Division of Oncogenomics, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Willianne Hoepel
- Amsterdam Rheumatology and Immunology Centre, Department of Clinical Immunology and Rheumatology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Experimental Immunology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Johan A van Burgsteden
- Amsterdam Rheumatology and Immunology Centre, Department of Clinical Immunology and Rheumatology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Experimental Immunology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Elsa C Kuijper
- Department of Parasitology, Leiden University Medical Centre, University of Leiden, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Christianne J Buskens
- Department of Surgery, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Willem A Bemelman
- Department of Surgery, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Sebastiaan A J Zaat
- Department of Medical Microbiology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Reuven Agami
- Division of Oncogenomics, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, University of Amsterdam, Plesmanlaan 125, 1066 CX, Amsterdam, The Netherlands
| | - Gijs R van den Brink
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Esther C de Jong
- Department of Experimental Immunology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Manon E Wildenberg
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology and Hepatology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Dominique L P Baeten
- Amsterdam Rheumatology and Immunology Centre, Department of Clinical Immunology and Rheumatology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Experimental Immunology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Centre, University of Leiden, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Jeroen den Dunnen
- Amsterdam Rheumatology and Immunology Centre, Department of Clinical Immunology and Rheumatology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. .,Department of Experimental Immunology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
35
|
The Intricate Link among Gut "Immunological Niche," Microbiota, and Xenobiotics in Intestinal Pathology. Mediators Inflamm 2017; 2017:8390595. [PMID: 29118468 PMCID: PMC5651127 DOI: 10.1155/2017/8390595] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/06/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are diseases characterized by various degrees of inflammation involving the gastrointestinal tract. Ulcerative colitis and Crohn's disease are characterized by a dysregulated immune response leading to structural gut alterations in genetically predisposed individuals. Diverticular disease is characterized by abnormal immune response to normal gut microbiota. IBDs are linked to a lack of physiological tolerance of the mucosal immune system to resident gut microbiota and pathogens. The disruption of immune tolerance involves inflammatory pathways characterized by an unbalance between the anti-inflammatory regulatory T cells and the proinflammatory Th1/Th17 cells. The interaction among T cell subpopulations and their related cytokines, mediators of inflammation, gut microbiota, and the intestinal mucosa constitute the gut “immunological niche.” Several evidences have shown that xenobiotics, such as rifaximin, can positively modulate the inflammatory pathways at the site of gut immunological niche, acting as anti-inflammatory agents. Xenobiotics may interfere with components of the immunological niche, leading to activation of anti-inflammatory pathways and inhibition of several mediators of inflammation. In summary, xenobiotics may reduce disease-related gut mucosal alterations and clinical symptoms. Studying the complex interplay between gut immunological niche and xenobiotics will certainly open new horizons in the knowledge and therapy of intestinal pathologies.
Collapse
|
36
|
Barin JG, Talor MV, Diny NL, Ong S, Schaub JA, Gebremariam E, Bedja D, Chen G, Choi HS, Hou X, Wu L, Cardamone AB, Peterson DA, Rose NR, Čiháková D. Regulation of autoimmune myocarditis by host responses to the microbiome. Exp Mol Pathol 2017; 103:141-152. [PMID: 28822770 PMCID: PMC5721523 DOI: 10.1016/j.yexmp.2017.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 12/27/2022]
Abstract
The extensive, diverse communities that constitute the microbiome are increasingly appreciated as important regulators of human health and disease through inflammatory, immune, and metabolic pathways. We sought to elucidate pathways by which microbiota contribute to inflammatory, autoimmune cardiac disease. We employed an animal model of experimental autoimmune myocarditis (EAM), which results in inflammatory and autoimmune pathophysiology and subsequent maladaptive cardiac remodeling and heart failure. Antibiotic dysbiosis protected mice from EAM and fibrotic cardiac dysfunction. Additionally, mice derived from different sources with different microbiome colonization profiles demonstrated variable susceptibility to disease. Unexpectedly, it did not track with segmented filamentous bacteria (SFB)-driven Th17 programming of CD4+ T cells in the steady-state gut. Instead, we found disease susceptibility to track with presence of type 3 innate lymphoid cells (ILC3s). Ablating ILCs by antibody depletion or genetic tools in adoptive transfer variants of the EAM model demonstrated that ILCs and microbiome profiles contributed to the induction of CCL20/CCR6-mediated inflammatory chemotaxis to the diseased heart. From these data, we conclude that sensing of the microbiome by ILCs is an important checkpoint in the development of inflammatory cardiac disease processes through their ability to elicit cardiotropic chemotaxis.
Collapse
Affiliation(s)
- Jobert G Barin
- The Johns Hopkins University School of Medicine, Dept. of Pathology, Div. of Immunology, Baltimore, MD 21205, United States
| | - Monica V Talor
- The Johns Hopkins University School of Medicine, Dept. of Pathology, Div. of Immunology, Baltimore, MD 21205, United States
| | - Nicola L Diny
- The Johns Hopkins Bloomberg School of Public Health, The W. Harry Feinstone Dept. of Molecular Microbiology & Immunology, United States
| | - SuFey Ong
- The Johns Hopkins Bloomberg School of Public Health, The W. Harry Feinstone Dept. of Molecular Microbiology & Immunology, United States
| | - Julie A Schaub
- The Johns Hopkins University School of Medicine, Dept. of Pathology, Div. of Immunology, Baltimore, MD 21205, United States
| | - Elizabeth Gebremariam
- The Johns Hopkins University School of Medicine, Dept. of Pathology, Div. of Immunology, Baltimore, MD 21205, United States
| | - Djahida Bedja
- The Johns Hopkins University School of Medicine, Dept. of Cardiology, United States
| | - Guobao Chen
- The Johns Hopkins University School of Medicine, Dept. of Pathology, Div. of Immunology, Baltimore, MD 21205, United States
| | - Hee Sun Choi
- The Johns Hopkins University School of Medicine, Dept. of Pathology, Div. of Immunology, Baltimore, MD 21205, United States
| | - Xuezhou Hou
- The Johns Hopkins Bloomberg School of Public Health, The W. Harry Feinstone Dept. of Molecular Microbiology & Immunology, United States
| | - Lei Wu
- The Johns Hopkins Bloomberg School of Public Health, The W. Harry Feinstone Dept. of Molecular Microbiology & Immunology, United States
| | - Ashley B Cardamone
- The Johns Hopkins University School of Medicine, Dept. of Pathology, Div. of Immunology, Baltimore, MD 21205, United States
| | - Daniel A Peterson
- The Johns Hopkins University School of Medicine, Dept. of Pathology, Div. of Immunology, Baltimore, MD 21205, United States
| | - Noel R Rose
- Brigham & Women's Hospital, Harvard Medical School, Dept. of Pathology, Boston, MA 02115, United States
| | - Daniela Čiháková
- The Johns Hopkins University School of Medicine, Dept. of Pathology, Div. of Immunology, Baltimore, MD 21205, United States; The Johns Hopkins Bloomberg School of Public Health, The W. Harry Feinstone Dept. of Molecular Microbiology & Immunology, United States.
| |
Collapse
|
37
|
Perry T, Laffin M, Fedorak RN, Thiesen A, Dicken B, Madsen KL. Ileocolic resection is associated with increased susceptibility to injury in a murine model of colitis. PLoS One 2017; 12:e0184660. [PMID: 28922370 PMCID: PMC5603159 DOI: 10.1371/journal.pone.0184660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 08/28/2017] [Indexed: 12/28/2022] Open
Abstract
Ileocolic resection (ICR) is the most common intestinal resection performed for Crohn's disease, with recurrences commonly occurring at the site of the anastomosis. This study used an animal model of ICR in wild-type mice to examine immunologic changes that developed around the surgical anastomosis and how these changes impacted gut responses to minor acute injury. ICR was performed in adult 129S1/SvlmJ mice and results compared with mice receiving sham or no surgery. Dextran sodium sulfate was given either on post-operative day 9 or day 24 to evaluate immune responses in the intestine both immediately following surgery and after a period of healing. Fecal occult blood measurements and animal weights were taken daily. Cytokine levels were measured in ileal and colonic tissue. Bacterial load in the neo-terminal ileum was measured using qPCR. Immune cell populations in the intestinal tissue, mesenteric lymph nodes, and spleen were assessed using flow cytometry. Cytokine secretion in response to microbial products was measured in isolated mesenteric lymph nodes and spleen cells. ICR resulted in an initial elevation of inflammatory markers in the terminal ileum and colon followed by enhanced levels of bacterial growth in the neo-terminal ileum. Intestinal surgical resection resulted in the recruitment of innate immune cells into the colon that exhibited a non-responsiveness to microbial stimuli. DSS colitis phenotype was more severe in the ileocolic resection groups and this was associated with local and systemic immunosuppression as evidenced by a reduced cytokine responses to microbial stimuli. This study reveals the development of an immune non-responsiveness to microbial products following ileocolic resection that is associated with enhanced levels of bacterial growth in the neo-terminal ileum. These surgical-induced altered immune-microbial interactions in the intestine may contribute to disease recurrence at the surgical anastomosis site following ileocolic resections in patients with Crohn's disease.
Collapse
Affiliation(s)
- Troy Perry
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Laffin
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Richard N. Fedorak
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- The Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), University of Alberta, Edmonton, Alberta, Canada
| | - Aducio Thiesen
- Department of Laboratory Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Bryan Dicken
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Karen L. Madsen
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- The Centre of Excellence for Gastrointestinal Inflammation and Immunity Research (CEGIIR), University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
38
|
The inflammatory role of phagocyte apoptotic pathways in rheumatic diseases. Nat Rev Rheumatol 2017; 12:543-58. [PMID: 27549026 DOI: 10.1038/nrrheum.2016.132] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rheumatoid arthritis affects nearly 1% of the world's population and is a debilitating autoimmune condition that can result in joint destruction. During the past decade, inflammatory functions have been described for signalling molecules classically involved in apoptotic and non-apoptotic death pathways, including, but not limited to, Toll-like receptor signalling, inflammasome activation, cytokine production, macrophage polarization and antigen citrullination. In light of these remarkable advances in the understanding of inflammatory mechanisms of the death machinery, this Review provides a snapshot of the available evidence implicating death pathways, especially within the phagocyte populations of the innate immune system, in the perpetuation of rheumatoid arthritis and other rheumatic diseases. Elevated levels of signalling mediators of both extrinsic and intrinsic apoptosis, as well as the autophagy, are observed in the joints of patients with rheumatoid arthritis. Furthermore, risk polymorphisms are present in signalling molecules of the extrinsic apoptotic and autophagy death pathways. Although research into the mechanisms underlying these pathways has made considerable progress, this Review highlights areas where further investigation is particularly needed. This exploration is critical, as new discoveries in this field could lead to the development of novel therapies for rheumatoid arthritis and other rheumatic diseases.
Collapse
|
39
|
Zhou H, Wu L. The development and function of dendritic cell populations and their regulation by miRNAs. Protein Cell 2017; 8:501-513. [PMID: 28364278 PMCID: PMC5498339 DOI: 10.1007/s13238-017-0398-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/10/2016] [Indexed: 12/17/2022] Open
Abstract
Dendritic cells (DCs) are important immune cells linking innate and adaptive immune responses. DCs encounter various self and non-self antigens present in the environment and induce different types of antigen specific adaptive immune responses. DCs can be classified into lymphoid tissue-resident DCs, migratory DCs, non-lymphoid resident DCs, and monocyte derived DCs (moDCs). Recent work has also established that DCs consist of developmentally and functionally distinct subsets that differentially regulate T lymphocyte function. The development of different DC subsets has been found to be regulated by a network of different cytokines and transcriptional factors. Moreover, the response of DC is tightly regulated to maintain the homeostasis of immune system. MicroRNAs (miRNAs) are an important class of cellular regulators that modulate gene expression and thereby influence cell fate and function. In the immune system, miRNAs act at checkpoints during hematopoietic development and cell subset differentiation, they modulate effector cell function, and are implicated in the maintenance of homeostasis. DCs are also regulated by miRNAs. In the past decade, much progress has been made to understand the role of miRNAs in regulating the development and function of DCs. In this review, we summarize the origin and distribution of different mouse DC subsets in both lymphoid and non-lymphoid tissues. The DC subsets identified in human are also described. Recent progress on the function of miRNAs in the development and activation of DCs and their functional relevance to autoimmune diseases are discussed.
Collapse
Affiliation(s)
- Haibo Zhou
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University School of Medicine, Institute of Immunology Tsinghua University, Beijing, 100084, China
| | - Li Wu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University School of Medicine, Institute of Immunology Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
40
|
Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease. PLoS Genet 2017; 13:e1006641. [PMID: 28263993 PMCID: PMC5358891 DOI: 10.1371/journal.pgen.1006641] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 03/20/2017] [Accepted: 02/17/2017] [Indexed: 12/15/2022] Open
Abstract
The FANTOM5 consortium utilised cap analysis of gene expression (CAGE) to provide an unprecedented insight into transcriptional regulation in human cells and tissues. In the current study, we have used CAGE-based transcriptional profiling on an extended dense time course of the response of human monocyte-derived macrophages grown in macrophage colony-stimulating factor (CSF1) to bacterial lipopolysaccharide (LPS). We propose that this system provides a model for the differentiation and adaptation of monocytes entering the intestinal lamina propria. The response to LPS is shown to be a cascade of successive waves of transient gene expression extending over at least 48 hours, with hundreds of positive and negative regulatory loops. Promoter analysis using motif activity response analysis (MARA) identified some of the transcription factors likely to be responsible for the temporal profile of transcriptional activation. Each LPS-inducible locus was associated with multiple inducible enhancers, and in each case, transient eRNA transcription at multiple sites detected by CAGE preceded the appearance of promoter-associated transcripts. LPS-inducible long non-coding RNAs were commonly associated with clusters of inducible enhancers. We used these data to re-examine the hundreds of loci associated with susceptibility to inflammatory bowel disease (IBD) in genome-wide association studies. Loci associated with IBD were strongly and specifically (relative to rheumatoid arthritis and unrelated traits) enriched for promoters that were regulated in monocyte differentiation or activation. Amongst previously-identified IBD susceptibility loci, the vast majority contained at least one promoter that was regulated in CSF1-dependent monocyte-macrophage transitions and/or in response to LPS. On this basis, we concluded that IBD loci are strongly-enriched for monocyte-specific genes, and identified at least 134 additional candidate genes associated with IBD susceptibility from reanalysis of published GWA studies. We propose that dysregulation of monocyte adaptation to the environment of the gastrointestinal mucosa is the key process leading to inflammatory bowel disease. Macrophages are immune cells that form the first line of defense against pathogens, but also mediate tissue damage in inflammatory disease. Macrophages initiate inflammation by recognising and responding to components of bacterial cells. Macrophages of the wall of the gut are constantly replenished from the blood. Upon entering the intestine, newly-arrived cells modulate their response to stimuli derived from the bacteria in the wall of the gut. This process fails in chronic inflammatory bowel diseases (IBD). Both the major forms of IBD, Crohn’s disease and ulcerative colitis, run in families. The inheritance is complex, involving more than 200 different regions of the genome. We hypothesised that the genetic risk of IBD is associated specifically with altered regulation of genes that control the development of macrophages. In this study, we used the comprehensive transcriptome dataset produced by the FANTOM5 consortium to identify the sets of promoters and enhancers that are involved in adaptation of macrophages to the gut wall, their response to bacterial stimuli, and how their functions are integrated. A reanalysis of published genome-wide association data based upon regulated genes in monocytes as candidates strongly supports the view that susceptibility to IBD arises from a primary defect in macrophage differentiation.
Collapse
|
41
|
Zhou Z, Ding M, Huang L, Gilkeson G, Lang R, Jiang W. Toll-like receptor-mediated immune responses in intestinal macrophages; implications for mucosal immunity and autoimmune diseases. Clin Immunol 2016; 173:81-86. [PMID: 27620642 PMCID: PMC5148676 DOI: 10.1016/j.clim.2016.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/04/2016] [Accepted: 09/07/2016] [Indexed: 12/21/2022]
Abstract
Monocytes are precursors of macrophages and key players during inflammation and pathogen challenge in the periphery, whereas intestinal resident macrophages act as innate effector cells to engulf and clear bacteria, secrete cytokines, and maintain intestinal immunity and homeostasis. However, perturbation of toll-like receptor signaling pathway in intestinal macrophages has been associated with tolerance breakdown in autoimmune diseases. In the present review, we have summarized and discussed the role of toll-like receptor signals in human intestinal macrophages, and the role of human intestinal macrophages in keeping human intestinal immunity, homeostasis, and autoimmune diseases.
Collapse
Affiliation(s)
- Zejun Zhou
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston 29425, USA
| | - Miao Ding
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston 29425, USA
| | - Lei Huang
- The 302 Hospital of PLA, Treatment and Research Center for Infectious Diseases, Beijing 100039, China
| | - Gary Gilkeson
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston 29425, SC, USA
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 10020, China.
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston 29425, USA; Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston 29425, USA.
| |
Collapse
|
42
|
Liu M, Wang P, Zhao M, Liu DY. Intestinal Dendritic Cells Are Altered in Number, Maturity and Chemotactic Ability in Fulminant Hepatic Failure. PLoS One 2016; 11:e0166165. [PMID: 27832135 PMCID: PMC5104363 DOI: 10.1371/journal.pone.0166165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/23/2016] [Indexed: 01/01/2023] Open
Abstract
Fulminant hepatic failure (FHF) is defined as rapid acute liver injury, often complicated with spontaneous bacterial peritonitis (SBP). The precise onset of FHF with SBP is still unknown, but it is thought that SBP closely correlates with a weakened intestinal barrier. Dendritic cells (DCs) play a crucial role in forming the intestinal immune barrier, therefore the number, maturity and chemotactic ability of intestinal DCs were studied in FHF. Mouse intestinal and spleen DCs were isolated by magnetic-activated cell sorting (MACS) and surface markers of DCs, namely CD11c, CD74, CD83 and CD86, were identified using flow cytometry. Immunohistochemistry and Western blotting were performed to detect the distribution and expression of CC-chemokine receptor 7 (CCR7) and CC-chemokine receptor 9 (CCR9), as well as their ligands-CC-chemokine ligand 21 (CCL21) and CC-chemokine ligand 25 (CCL25). Real-time PCR was used to detect CCR7 and CCR9 mRNA, along with their ligands-CCL21 and CCL25 mRNA. Flow cytometry analysis showed that the markers CD74, CD83 and CD86 of CD11c+DCs were lower in the D-galactosamine (D-GalN) group and were significantly decreased in the FHF group, while there were no significant changes in the expression of these markers in the lipopolysaccharide (LPS) group. Immunohistochemistry results showed that staining for CCR7 and CCR9, as well as their ligands CCL21 and CCL25, was significantly weaker in the D-GalN and FHF groups compared with the normal saline (NS) group or the LPS group; the FHF group even showed completely unstained parts. Protein expression of CCR7 and CCR9, as well as their ligands- CCL21 and CCL25, was also lower in the D-GalN group and decreased even more significantly in the FHF group. At the gene level, CCR7 and CCR9, along with CCL21 and CCL25 mRNA expression, was lower in the D-GalN group and significantly decreased in the FHF group compared to the NS and LPS groups, consisting with the protein expression. Our study indicated that intestinal DCs were decreased in number, maturity and chemotactic ability in FHF and might contribute to a decreased function of the intestinal immune barrier in FHF.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- B7-2 Antigen/immunology
- B7-2 Antigen/metabolism
- Blotting, Western
- CD11c Antigen/immunology
- CD11c Antigen/metabolism
- Cell Count
- Chemokine CCL21/genetics
- Chemokine CCL21/immunology
- Chemokine CCL21/metabolism
- Chemokines, CC/genetics
- Chemokines, CC/immunology
- Chemokines, CC/metabolism
- Chemotaxis/immunology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Flow Cytometry
- Gene Expression/immunology
- Histocompatibility Antigens Class II/immunology
- Histocompatibility Antigens Class II/metabolism
- Immunoglobulins/immunology
- Immunoglobulins/metabolism
- Immunohistochemistry
- Intestines/immunology
- Liver Failure, Acute/genetics
- Liver Failure, Acute/immunology
- Liver Failure, Acute/metabolism
- Male
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mice, Inbred BALB C
- Receptors, CCR/genetics
- Receptors, CCR/immunology
- Receptors, CCR/metabolism
- Receptors, CCR7/genetics
- Receptors, CCR7/immunology
- Receptors, CCR7/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- CD83 Antigen
Collapse
Affiliation(s)
- Mei Liu
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Peng Wang
- The second department of urology, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - Min Zhao
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, China
| | - DY Liu
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang City, Liaoning Province, China
| |
Collapse
|
43
|
Løkka G, Koppang EO. Antigen sampling in the fish intestine. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:138-149. [PMID: 26872546 DOI: 10.1016/j.dci.2016.02.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 06/05/2023]
Abstract
Antigen uptake in the gastrointestinal tract may induce tolerance, lead to an immune response and also to infection. In mammals, most pathogens gain access to the host though the gastrointestinal tract, and in fish as well, this route seems to be of significant importance. The epithelial surface faces a considerable challenge, functioning both as a barrier towards the external milieu but simultaneously being the site of absorption of nutrients and fluids. The mechanisms allowing antigen uptake over the epithelial barrier play a central role for maintaining the intestinal homeostasis and regulate appropriate immune responses. Such uptake has been widely studied in mammals, but also in fish, a number of experiments have been reported, seeking to reveal cells and mechanisms involved in antigen sampling. In this paper, we review these studies in addition to addressing our current knowledge of the intestinal barrier in fish and its anatomical construction.
Collapse
Affiliation(s)
- Guro Løkka
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway.
| | - Erling Olaf Koppang
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Ullevålsveien 72, 0454 Oslo, Norway.
| |
Collapse
|
44
|
Tsai F, Perlman H, Cuda CM. The contribution of the programmed cell death machinery in innate immune cells to lupus nephritis. Clin Immunol 2016; 185:74-85. [PMID: 27780774 DOI: 10.1016/j.clim.2016.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/15/2016] [Accepted: 10/20/2016] [Indexed: 12/24/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic multi-factorial autoimmune disease initiated by genetic and environmental factors, which in combination trigger disease onset in susceptible individuals. Damage to the kidney as a consequence of lupus nephritis (LN) is one of the most prevalent and severe outcomes, as LN affects up to 60% of SLE patients and accounts for much of SLE-associated morbidity and mortality. As remarkable strides have been made in unlocking new inflammatory mechanisms associated with signaling molecules of programmed cell death pathways, this review explores the available evidence implicating the action of these pathways specifically within dendritic cells and macrophages in the control of kidney disease. Although advancements into the underlying mechanisms responsible for inducing cell death inflammatory pathways have been made, there still exist areas of unmet need. By understanding the molecular mechanisms by which dendritic cells and macrophages contribute to LN pathogenesis, we can improve their viability as potential therapeutic targets to promote remission.
Collapse
Affiliation(s)
- FuNien Tsai
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, 240 East Huron Street, Room M300, Chicago, IL 60611, USA.
| | - Harris Perlman
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, 240 East Huron Street, Room M300, Chicago, IL 60611, USA.
| | - Carla M Cuda
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, 240 East Huron Street, Room M300, Chicago, IL 60611, USA.
| |
Collapse
|
45
|
Abstract
The cause of Crohn’s disease (CD) has posed a conundrum for at least a century. A large body of work coupled with recent technological advances in genome research have at last started to provide some of the answers. Initially this review seeks to explain and to differentiate between bowel inflammation in the primary immunodeficiencies that generally lead to very early onset diffuse bowel inflammation in humans and in animal models, and the real syndrome of CD. In the latter, a trigger, almost certainly enteric infection by one of a multitude of organisms, allows the faeces access to the tissues, at which stage the response of individuals predisposed to CD is abnormal. Direct investigation of patients’ inflammatory response together with genome-wide association studies (GWAS) and DNA sequencing indicate that in CD the failure of acute inflammation and the clearance of bacteria from the tissues, and from within cells, is defective. The retained faecal products result in the characteristic chronic granulomatous inflammation and adaptive immune response. In this review I will examine the contemporary evidence that has led to this understanding, and look for explanations for the recent dramatic increase in the incidence of this disease.
Collapse
|
46
|
Abstract
The cause of Crohn's disease (CD) has posed a conundrum for at least a century. A large body of work coupled with recent technological advances in genome research have at last started to provide some of the answers. Initially this review seeks to explain and to differentiate between bowel inflammation in the primary immunodeficiencies that generally lead to very early onset diffuse bowel inflammation in humans and in animal models, and the real syndrome of CD. In the latter, a trigger, almost certainly enteric infection by one of a multitude of organisms, allows the faeces access to the tissues, at which stage the response of individuals predisposed to CD is abnormal. Direct investigation of patients' inflammatory response together with genome-wide association studies (GWAS) and DNA sequencing indicate that in CD the failure of acute inflammation and the clearance of bacteria from the tissues, and from within cells, is defective. The retained faecal products result in the characteristic chronic granulomatous inflammation and adaptive immune response. In this review I will examine the contemporary evidence that has led to this understanding, and look for explanations for the recent dramatic increase in the incidence of this disease.
Collapse
|
47
|
Daillère R, Vétizou M, Waldschmitt N, Yamazaki T, Isnard C, Poirier-Colame V, Duong CPM, Flament C, Lepage P, Roberti MP, Routy B, Jacquelot N, Apetoh L, Becharef S, Rusakiewicz S, Langella P, Sokol H, Kroemer G, Enot D, Roux A, Eggermont A, Tartour E, Johannes L, Woerther PL, Chachaty E, Soria JC, Golden E, Formenti S, Plebanski M, Madondo M, Rosenstiel P, Raoult D, Cattoir V, Boneca IG, Chamaillard M, Zitvogel L. Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects. Immunity 2016; 45:931-943. [PMID: 27717798 DOI: 10.1016/j.immuni.2016.09.009] [Citation(s) in RCA: 612] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 06/28/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022]
Abstract
The efficacy of the anti-cancer immunomodulatory agent cyclophosphamide (CTX) relies on intestinal bacteria. How and which relevant bacterial species are involved in tumor immunosurveillance, and their mechanism of action are unclear. Here, we identified two bacterial species, Enterococcus hirae and Barnesiella intestinihominis that are involved during CTX therapy. Whereas E. hirae translocated from the small intestine to secondary lymphoid organs and increased the intratumoral CD8/Treg ratio, B. intestinihominis accumulated in the colon and promoted the infiltration of IFN-γ-producing γδT cells in cancer lesions. The immune sensor, NOD2, limited CTX-induced cancer immunosurveillance and the bioactivity of these microbes. Finally, E. hirae and B. intestinihominis specific-memory Th1 cell immune responses selectively predicted longer progression-free survival in advanced lung and ovarian cancer patients treated with chemo-immunotherapy. Altogether, E. hirae and B. intestinihominis represent valuable "oncomicrobiotics" ameliorating the efficacy of the most common alkylating immunomodulatory compound.
Collapse
Affiliation(s)
- Romain Daillère
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, 94805, France; University of Paris-Saclay, Kremlin Bicêtre, 94270, France
| | - Marie Vétizou
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, 94805, France; University of Paris-Saclay, Kremlin Bicêtre, 94270, France
| | - Nadine Waldschmitt
- University Lille, CNRS, Inserm, CHRU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL, Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Takahiro Yamazaki
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, 94805, France
| | - Christophe Isnard
- Université de Caen Basse-Normandie, EA4655 U2RM (Équipe Antibio-Résistance), Caen, 14033, France; CHU de Caen, Service de Microbiologie, Caen, 14033, France
| | - Vichnou Poirier-Colame
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, 94805, France; University of Paris-Saclay, Kremlin Bicêtre, 94270, France
| | - Connie P M Duong
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, 94805, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, 94805, France
| | - Caroline Flament
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, 94805, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, 94805, France
| | - Patricia Lepage
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Maria Paula Roberti
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, 94805, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, 94805, France
| | - Bertrand Routy
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, 94805, France; University of Paris-Saclay, Kremlin Bicêtre, 94270, France
| | - Nicolas Jacquelot
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, 94805, France; University of Paris-Saclay, Kremlin Bicêtre, 94270, France
| | - Lionel Apetoh
- Lipids, Nutrition, Cancer, INSERM, U866, Dijon, 21078, France; Department of Medicine, Université de Bourgogne Franche-Comté, Dijon, 21078, France; Department of Oncology, Centre Georges François Leclerc, Dijon, 21000, France
| | - Sonia Becharef
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, 94805, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, 94805, France
| | - Sylvie Rusakiewicz
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, 94805, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, 94805, France
| | - Philippe Langella
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Harry Sokol
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France; AVENIR Team Gut Microbiota and Immunity, ERL, INSERM U 1157/UMR 7203, Faculté de Médecine, Saint-Antoine, Université Pierre et Marie Curie (UPMC), Paris, 75012, France; Service de Gastroentérologie, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris (APHP), Paris, 75012, France
| | - Guido Kroemer
- INSERM U848, 94805 Villejuif, France; Metabolomics Platform, Institut Gustave Roussy, Villejuif, 94805, France; Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, INSERM U 1138, Paris, 75006, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, 75015, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, 75006, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, 17176, Sweden
| | - David Enot
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; Metabolomics Platform, Institut Gustave Roussy, Villejuif, 94805, France
| | - Antoine Roux
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, 94805, France; University of Paris-Saclay, Kremlin Bicêtre, 94270, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, 75006, France
| | - Alexander Eggermont
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; University of Paris-Saclay, Kremlin Bicêtre, 94270, France
| | - Eric Tartour
- INSERM U970, Paris Cardiovascular Research Center, Université Paris-Descartes, Sorbonne Paris Cité, Paris, 75015, France; Service d'immunologie biologique, Hôpital Européen Georges Pompidou, Paris, 75015 France
| | - Ludger Johannes
- INSERM U1143, 75005 Paris, France; Institut Curie, PSL Research University, Endocytic Trafficking and Therapeutic Delivery group, Paris, 75248, France; CNRS UMR 3666, Paris, 75005, France
| | | | | | - Jean-Charles Soria
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; University of Paris-Saclay, Kremlin Bicêtre, 94270, France
| | - Encouse Golden
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Silvia Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Magdalena Plebanski
- Department of Immunology and Pathology, Monash University, Alfred Hospital Precinct, Melbourne, Prahran, Victoria 3181, Australia
| | - Mutsa Madondo
- Department of Immunology and Pathology, Monash University, Alfred Hospital Precinct, Melbourne, Prahran, Victoria 3181, Australia
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Didier Raoult
- AIX MARSEILLE UNIVERSITE, URMITE (Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes), UMR 7278, INSERM 1095, IRD 198, Faculté de Médecine, Marseille 13005, France
| | - Vincent Cattoir
- Université de Caen Basse-Normandie, EA4655 U2RM (Équipe Antibio-Résistance), Caen, 14033, France; CHU de Caen, Service de Microbiologie, Caen, 14033, France; CNR de la Résistance aux Antibiotiques, Laboratoire Associé Entérocoques, Caen, 14033, France
| | - Ivo Gomperts Boneca
- Institut Pasteur, Unit Biology and Genetics of the bacterial Cell Wall, Paris, 75015, France
| | - Mathias Chamaillard
- University Lille, CNRS, Inserm, CHRU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL, Centre d'Infection et d'Immunité de Lille, 59000 Lille, France
| | - Laurence Zitvogel
- Institut de Cancérologie Gustave Roussy Cancer Campus (GRCC), 114 rue Edouard Vaillant, Villejuif, 94805, France; Institut National de la Santé Et de la Recherche Medicale (INSERM), U1015, GRCC, Villejuif, 94805, France; University of Paris-Saclay, Kremlin Bicêtre, 94270, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, 94805, France.
| |
Collapse
|
48
|
Rossini V, Radulovic K, Riedel CU, Niess JH. Development of an Antigen-driven Colitis Model to Study Presentation of Antigens by Antigen Presenting Cells to T Cells. J Vis Exp 2016. [PMID: 27684040 DOI: 10.3791/54421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammation which affects the gastrointestinal tract (GIT). One of the best ways to study the immunological mechanisms involved during the disease is the T cell transfer model of colitis. In this model, immunodeficient mice (RAG(-/-) recipients) are reconstituted with naive CD4(+) T cells from healthy wild type hosts. This model allows examination of the earliest immunological events leading to disease and chronic inflammation, when the gut inflammation perpetuates but does not depend on a defined antigen. To study the potential role of antigen presenting cells (APCs) in the disease process, it is helpful to have an antigen-driven disease model, in which a defined commensal-derived antigen leads to colitis. An antigen driven-colitis model has hence been developed. In this model OT-II CD4(+) T cells, that can recognize only specific epitopes in the OVA protein, are transferred into RAG(-/-) hosts challenged with CFP-OVA-expressing E. coli. This model allows the examination of interactions between APCs and T cells in the lamina propria.
Collapse
Affiliation(s)
| | | | | | - Jan Hendrik Niess
- Division of Gastroenterology and Hepatology, University Hospital Basel;
| |
Collapse
|
49
|
MicroRNA-223 Regulates the Differentiation and Function of Intestinal Dendritic Cells and Macrophages by Targeting C/EBPβ. Cell Rep 2016; 13:1149-1160. [PMID: 26526992 DOI: 10.1016/j.celrep.2015.09.073] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 07/31/2015] [Accepted: 09/24/2015] [Indexed: 11/22/2022] Open
Abstract
Dendritic cells (DCs) and macrophages play important roles in maintaining intestinal homeostasis. However, the molecular mechanisms that regulate the differentiation and responses of intestinal DCs and macrophages remain poorly understood. Here, we have identified microRNA miR-223 as a key molecule for regulating these processes. Deficiency of miR-223 led to a significantly decreased number of intestinal CX3CR1(hi) macrophages at steady state. Both intestinal CX3CR1(hi) macrophages and CD103(+) conventional DCs (cDCs) in miR-223-deficient mice exhibited a strong pro-inflammatory phenotype. Moreover, miR-223-deficient monocytes gave rise to more monocyte-derived DCs (moDCs) and produced more pro-inflammatory cytokines upon stimulation. Using a mouse model of colitis, we demonstrated that the miR-223 deficiency resulted in more severe colitis. Target gene analysis further identified that the effects of miR-223 on DCs and macrophages were mediated by directly targeting C/EBPβ. Taken together, our study identifies a role for miR-223 as a critical regulator of intestinal homeostasis.
Collapse
|
50
|
Hang L, Blum AM, Kumar S, Urban JF, Mitreva M, Geary TG, Jardim A, Stevenson MM, Lowell CA, Weinstock JV. Downregulation of the Syk Signaling Pathway in Intestinal Dendritic Cells Is Sufficient To Induce Dendritic Cells That Inhibit Colitis. THE JOURNAL OF IMMUNOLOGY 2016; 197:2948-57. [PMID: 27559049 DOI: 10.4049/jimmunol.1600063] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 07/14/2016] [Indexed: 12/21/2022]
Abstract
Helminthic infections modulate host immunity and may protect people in less-developed countries from developing immunological diseases. In a murine colitis model, the helminth Heligmosomoides polygyrus bakeri prevents colitis via induction of regulatory dendritic cells (DCs). The mechanism driving the development of these regulatory DCs is unexplored. There is decreased expression of the intracellular signaling pathway spleen tyrosine kinase (Syk) in intestinal DCs from H. polygyrus bakeri-infected mice. To explore the importance of this observation, it was shown that intestinal DCs from DC-specific Syk(-/-) mice were powerful inhibitors of murine colitis, suggesting that loss of Syk was sufficient to convert these cells into their regulatory phenotype. DCs sense gut flora and damaged epithelium via expression of C-type lectin receptors, many of which signal through the Syk signaling pathway. It was observed that gut DCs express mRNA encoding for C-type lectin (CLEC) 7A, CLEC9A, CLEC12A, and CLEC4N. H. polygyrus bakeri infection downmodulated CLEC mRNA expression in these cells. Focusing on CLEC7A, which encodes for the dectin-1 receptor, flow analysis showed that H. polygyrus bakeri decreases dectin-1 expression on the intestinal DC subsets that drive Th1/Th17 development. DCs become unresponsive to the dectin-1 agonist curdlan and fail to phosphorylate Syk after agonist stimulation. Soluble worm products can block CLEC7A and Syk mRNA expression in gut DCs from uninfected mice after a brief in vitro exposure. Thus, downmodulation of Syk expression and phosphorylation in intestinal DCs could be important mechanisms through which helminths induce regulatory DCs that limit colitis.
Collapse
Affiliation(s)
- Long Hang
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Tufts Medical Center, Boston, MA 02111
| | - Arthur M Blum
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Tufts Medical Center, Boston, MA 02111
| | - Sangeeta Kumar
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Tufts Medical Center, Boston, MA 02111
| | - Joseph F Urban
- Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705
| | - Makedonka Mitreva
- Genome Institute, Washington University School of Medicine, St. Louis, MO 63108
| | - Timothy G Geary
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Armando Jardim
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Mary M Stevenson
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada; Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada; and
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143
| | - Joel V Weinstock
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, Tufts Medical Center, Boston, MA 02111;
| |
Collapse
|