1
|
Ramos-Alvarez I, Jensen RT. The Important Role of p21-Activated Kinases in Pancreatic Exocrine Function. BIOLOGY 2025; 14:113. [PMID: 40001881 PMCID: PMC11851965 DOI: 10.3390/biology14020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025]
Abstract
The p21-activated kinases (PAKs) are a conserved family of serine/threonine protein kinases, which are effectors for the Rho family GTPases, namely, Rac/Cdc42. PAKs are divided into two groups: group I (PAK1-3) and group II (PAK4-6). Both groups of PAKs have been well studied in apoptosis, protein synthesis, glucose homeostasis, growth (proliferation and survival) and cytoskeletal regulation, as well as in cell motility, proliferation and cycle control. However, little is known about the role of PAKs in the secretory tissues, including in exocrine tissue, such as the exocrine pancreas (except for islet function and pancreatic cancer growth). Recent studies have provided insights supporting the importance of PAKs in exocrine pancreas. This review summarizes the recent insights into the importance of PAKs in the exocrine pancreas by reviewing their presence and activation; the ability of GI hormones/neurotransmitters/GFs/post-receptor activators to activate them; the kinetics of their activation; the participation of exocrine-tissue PAKs in activating the main growth-signaling cascade; their roles in the stimulation of enzyme secretion; finally, their roles in pancreatitis. These insights suggest that PAKs could be more important in exocrine/secretory tissues than currently appreciated and that their roles should be explored in more detail in the future.
Collapse
Affiliation(s)
| | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20812-1804, USA;
| |
Collapse
|
2
|
Chen J, Ye W. Molecular mechanisms underlying Tao-Hong-Si-Wu decoction treating hyperpigmentation based on network pharmacology, Mendelian randomization analysis, and experimental verification. PHARMACEUTICAL BIOLOGY 2024; 62:296-313. [PMID: 38555860 PMCID: PMC11632782 DOI: 10.1080/13880209.2024.2330609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/26/2024] [Accepted: 03/02/2024] [Indexed: 04/02/2024]
Abstract
CONTEXT Hyperpigmentation, a common skin condition marked by excessive melanin production, currently has limited effective treatment options. OBJECTIVE This study explores the effects of Tao-Hong-Si-Wu decoction (THSWD) on hyperpigmentation and to elucidate the underlying mechanisms. MATERIALS AND METHODS We employed network pharmacology, Mendelian randomization, and molecular docking to identify THSWD's hub targets and mechanisms against hyperpigmentation. The Cell Counting Kit-8 (CCK-8) assay determined suitable THSWD treatment concentrations for PIG1 cells. These cells were exposed to graded concentrations of THSWD-containing serum (2.5%, 5%, 10%, 15%, 20%, 30%, 40%, and 50%) and treated with α-MSH (100 nM) to induce an in vitro hyperpigmentation model. Assessments included melanin content, tyrosinase activity, and Western blotting. RESULTS ALB, IL6, and MAPK3 emerged as primary targets, while quercetin, apigenin, and luteolin were the core active ingredients. The CCK-8 assay indicated that concentrations between 2.5% and 20% were suitable for PIG1 cells, with a 50% cytotoxicity concentration (CC50) of 32.14%. THSWD treatment significantly reduced melanin content and tyrosinase activity in α-MSH-induced PIG1 cells, along with downregulating MC1R and MITF expression. THSWD increased ALB and p-MAPK3/MAPK3 levels and decreased IL6 expression in the model cells. DISCUSSION AND CONCLUSION THSWD mitigates hyperpigmentation by targeting ALB, IL6, and MAPK3. This study paves the way for clinical applications of THSWD as a novel treatment for hyperpigmentation and offers new targeted therapeutic strategies.
Collapse
Affiliation(s)
- Jun Chen
- Department of Geriatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Wenyi Ye
- Department of Traditional Chinese Internal Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
3
|
Li Z, Schneikert J, Tripathi SR, Jin M, Bal G, Zuberbier T, Babina M. CREB Is Critically Implicated in Skin Mast Cell Degranulation Elicited via FcεRI and MRGPRX2. Cells 2024; 13:1681. [PMID: 39451199 PMCID: PMC11506305 DOI: 10.3390/cells13201681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Skin mast cells (MCs) mediate acute allergic reactions in the cutaneous environment and contribute to chronic dermatoses, including urticaria, and atopic or contact dermatitis. The cAMP response element binding protein (CREB), an evolutionarily well conserved transcription factor (TF) with over 4,000 binding sites in the genome, was recently found to form a feedforward loop with KIT, maintaining MC survival. The most selective MC function is degranulation with its acute release of prestored mediators. Herein, we asked whether CREB contributes to the expression and function of the degranulation-competent receptors FcεRI and MRGPRX2. Interference with CREB by pharmacological inhibition (CREBi, 666-15) or RNA interference only slightly affected the expression of these receptors, while KIT was strongly attenuated. Interestingly, MRGPRX2 surface expression moderately increased following CREB-knockdown, whereas MRGPRX2-dependent exocytosis simultaneously decreased. FcεRI expression and function were regulated consistently, although the effect was stronger at the functional level. Preformed MC mediators (tryptase, histamine, β-hexosaminidase) remained comparable following CREB attenuation, suggesting that granule synthesis did not rely on CREB function. Collectively, in contrast to KIT, FcεRI and MRGPRX2 moderately depend on unperturbed CREB function. Nevertheless, CREB is required to maintain MC releasability irrespective of stimulus, insinuating that CREB may operate by safeguarding the degranulation machinery. To our knowledge, CREB is the first factor identified to regulate MRGPRX2 expression and function in opposite direction. Overall, the ancient TF is an indispensable component of skin MCs, orchestrating not only survival and proliferation but also their secretory competence.
Collapse
Affiliation(s)
- Zhuoran Li
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (Z.L.); (J.S.); (S.R.T.); (M.J.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Jean Schneikert
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (Z.L.); (J.S.); (S.R.T.); (M.J.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Shiva Raj Tripathi
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (Z.L.); (J.S.); (S.R.T.); (M.J.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Manqiu Jin
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (Z.L.); (J.S.); (S.R.T.); (M.J.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Gürkan Bal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (Z.L.); (J.S.); (S.R.T.); (M.J.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Torsten Zuberbier
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (Z.L.); (J.S.); (S.R.T.); (M.J.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany; (Z.L.); (J.S.); (S.R.T.); (M.J.); (G.B.); (T.Z.)
- Institute of Allergology, Charité—Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
4
|
Liu Y, Li G, Guo Z, Zhang H, Wei B, He D. Transcriptome analysis of sexual dimorphism in dorsal down coloration in goslings. BMC Genomics 2024; 25:505. [PMID: 38778258 PMCID: PMC11110362 DOI: 10.1186/s12864-024-10394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND In day-old Hungarian white goose goslings, there is a noticeable difference in dorsal down coloration between males and females, with females having darker dorsal plumage and males having lighter plumage. The ability to autosex day-old goslings based on their dorsal down coloration is important for managing them efficiently and planning their nutrition in the poultry industry. The aim of this study was to determine the biological and genetic factors underlying this difference in dorsal down colorationthrough histological analysis, biochemical assays, transcriptomic profiling, and q‒PCR analysis. RESULTS Tissue analysis and biochemical assays revealed that compared with males, 17-day-old embryos and day-old goslings of female geese exhibited a greater density of melanin-containing feather follicles and a greater melanin concentration in these follicles during development. Both female and male goslings had lower melanin concentrations in their dorsal skin compared to 17-day-old embryos. Transcriptome analysis identified a set of differentially expressed genes (DEGs) (MC1R, TYR, TYRP1, DCT and MITF) associated with melanogenesis pathways that were downregulated or silenced specifically in the dorsal skin of day-old goslings compared to 17-day-old embryos, affecting melanin synthesis in feather follicles. Additionally, two key genes (MC1R and MITF) associated with feather coloration showed differences between males and females, with females having higher expression levels correlated with increased melanin synthesis and darker plumage. CONCLUSION The expression of multiple melanogenesis genes determines melanin synthesis in goose feather follicles. The dorsal down coloration of day-old Hungarian white goose goslings shows sexual dimorphism, likely due to differences in the expression of the MC1R and MITF genes between males and females. These results could help us better understand why male and female goslings exhibit different plumage patterns.
Collapse
Affiliation(s)
- Yi Liu
- Shanghai Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Science, Shanghai, China
| | - Guangquan Li
- Shanghai Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Science, Shanghai, China
| | - Zhanbao Guo
- Chinese Academy of Agricultural Sciences, Institute of Animal Sciences, Beijing, China
| | - Huiling Zhang
- Shandong Rongda Agricultural Development Co., Ltd, Shandong, China
| | - Baozhi Wei
- Shandong Rongda Agricultural Development Co., Ltd, Shandong, China
| | - Daqian He
- Shanghai Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Science, Shanghai, China.
| |
Collapse
|
5
|
In KR, Kang MA, Kim SD, Shin J, Kang SU, Park TJ, Kim SJ, Lee JS. Anhydrous Alum Inhibits α-MSH-Induced Melanogenesis by Down-Regulating MITF via Dual Modulation of CREB and ERK. Int J Mol Sci 2023; 24:14662. [PMID: 37834109 PMCID: PMC10572554 DOI: 10.3390/ijms241914662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Melanogenesis, the intricate process of melanin synthesis, is central to skin pigmentation and photoprotection and is regulated by various signaling pathways and transcription factors. To develop potential skin-whitening agents, we used B16F1 melanoma cells to investigate the inhibitory effects of anhydrous alum on melanogenesis and its underlying molecular mechanisms. Anhydrous alum (KAl(SO4)2) with high purity (>99%), which is generated through the heat-treatment of hydrated alum (KAl(SO4)2·12H2O) at 400 °C, potentiates a significant reduction in melanin content without cytotoxicity. Anhydrous alum downregulates the master regulator of melanogenesis, microphthalmia-associated transcription factor (MITF), which targets key genes involved in melanogenesis, thereby inhibiting α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis. Phosphorylation of the cAMP response element-binding protein, which acts as a co-activator of MITF gene expression, is attenuated by anhydrous alum, resulting in compromised MITF transcription. Notably, anhydrous alum promoted extracellular signal-regulated kinase phosphorylation, leading to the impaired nuclear localization of MITF. Overall, these results demonstrated the generation and mode of action of anhydrous alum in B16F1 cells, which constitutes a promising option for cosmetic or therapeutic use.
Collapse
Affiliation(s)
- Kyu-Ree In
- Department of Life Sciences, College of Natural Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Mi Ae Kang
- Department of Life Sciences, College of Natural Sciences, Ajou University, Suwon 16499, Republic of Korea
- Research Institute of Basic Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Su Dong Kim
- Graduate School of Clinical Pharmacy and Pharmaceutics, Ajou University, Suwon 16499, Republic of Korea
| | - Jinho Shin
- Department of Chemistry, College of Natural Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Sung Un Kang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea
| | - Tae Jun Park
- Department of Biomedical Science, The Graduate School, Ajou University, Suwon 16499, Republic of Korea
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Seung-Joo Kim
- Research Institute of Basic Sciences, Ajou University, Suwon 16499, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Jong-Soo Lee
- Department of Life Sciences, College of Natural Sciences, Ajou University, Suwon 16499, Republic of Korea
- Research Institute of Basic Sciences, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
6
|
Kim DH, Shin DW, Lim BO. Fermented Aronia melanocarpa Inhibits Melanogenesis through Dual Mechanisms of the PI3K/AKT/GSK-3β and PKA/CREB Pathways. Molecules 2023; 28:molecules28072981. [PMID: 37049743 PMCID: PMC10095632 DOI: 10.3390/molecules28072981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
UV light causes excessive oxidative stress and abnormal melanin synthesis, which results in skin hyperpigmentation disorders such as freckles, sunspots, and age spots. Much research has been carried out to discover natural plants for ameliorating these disorders. Aronia melanocarpa contains various polyphenolic compounds with antioxidative activities, but its effects on melanogenesis have not been fully elucidated. In this study, we investigated the inhibitory effect of fermented Aronia melanocarpa (FA) fermented with Monascus purpureus on melanogenesis and its underlying mechanism in the B16F10 melanoma cell line. Our results indicate that FA inhibited tyrosinase activity and melanogenesis in alpha-melanocyte-stimulating hormone (α-MSH)-induced B16F10 cells. FA significantly downregulated the PKA/CREB pathway, resulting in decreased protein levels of tyrosinase, TRP-1, and MITF. FA also inhibited the transcription of MITF by increasing the phosphorylation levels of both GSK3β and AKT. Interestingly, we demonstrated that these results were owing to the significant increase in gallic acid, a phenolic compound of Aronia melanocarpa produced after the fermentation of Monascus purpureus. Taken together, our research suggests that Aronia melanocarpa fermented with Monascus purpureus acts as a melanin inhibitor and can be used as a potential cosmetic or therapeutic for improving hyperpigmentation disorders.
Collapse
Affiliation(s)
- Da Hee Kim
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Dong Wook Shin
- College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea
- Correspondence: (D.W.S.); (B.O.L.); Tel.: +82-43-840-3693 (D.W.S.); +82-43-840-3570 (B.O.L.)
| | - Beong Ou Lim
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Correspondence: (D.W.S.); (B.O.L.); Tel.: +82-43-840-3693 (D.W.S.); +82-43-840-3570 (B.O.L.)
| |
Collapse
|
7
|
Chetty AK, Ha BH, Boggon TJ. Rho family GTPase signaling through type II p21-activated kinases. Cell Mol Life Sci 2022; 79:598. [PMID: 36401658 PMCID: PMC10105373 DOI: 10.1007/s00018-022-04618-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/07/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022]
Abstract
Signaling from the Rho family small GTPases controls a wide range of signaling outcomes. Key among the downstream effectors for many of the Rho GTPases are the p21-activated kinases, or PAK group. The PAK family comprises two types, the type I PAKs (PAK1, 2 and 3) and the type II PAKs (PAK4, 5 and 6), which have distinct structures and mechanisms of regulation. In this review, we discuss signal transduction from Rho GTPases with a focus on the type II PAKs. We discuss the role of PAKs in signal transduction pathways and selectivity of Rho GTPases for PAK family members. We consider the less well studied of the Rho GTPases and their PAK-related signaling. We then discuss the molecular basis for kinase domain recognition of substrates and for regulation of signaling. We conclude with a discussion of the role of PAKs in cross talk between Rho family small GTPases and the roles of PAKs in disease.
Collapse
Affiliation(s)
- Ashwin K Chetty
- Yale College, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Byung Hak Ha
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
8
|
Wang Y, Li M, Zeng J, Yang Y, Li Z, Hu S, Yang F, Wang N, Wang W, Tie J. MiR-585-5p impedes gastric cancer proliferation and metastasis by orchestrating the interactions among CREB1, MAPK1 and MITF. Front Immunol 2022; 13:1008195. [PMID: 36268034 PMCID: PMC9576935 DOI: 10.3389/fimmu.2022.1008195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most malignant and lethal cancers worldwide. Multiple microRNAs (miRNAs) have been identified as key regulators in the progression of GC. However, the underlying pathogenesis that miRNAs govern GC malignancy remains uncertain. Here, we identified a novel miR-585-5p as a key regulator in GC development. METHODS The expression of miR-585-5p in the context of GC tissue was detected by in situ hybridization for GC tissue microarray and assessed by H-scoring. The gain- and loss-of-function analyses comprised of Cell Counting Kit-8 assay and Transwell invasion and migration assay. The expression of downstream microphthalmia-associated transcription factor (MITF), cyclic AMP-responsive element-binding protein 1 (CREB1) and mitogen-activated protein kinase 1 (MAPK1) were examined by Immunohistochemistry, quantitative real-time PCR and western blot. The direct regulation between miR-585-5p and MITF/CREB1/MAPK1 were predicted by bioinformatic analysis and screened by luciferase reporter assay. The direct transcriptional activation of CREB1 on MITF was verified by luciferase reporter assay, chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assays (EMSAs). The interaction between MAPK1 and MITF was confirmed by co-immunoprecipitation (Co-IP) and immunofluorescent double-labelled staining. RESULTS MiR-585-5p is progressively downregulated in GC tissues and low miR-585-5p levels were strongly associated with poor clinical outcomes. Further gain- and loss-of-function analyses showed that miR-585-5p possesses strong anti-proliferative and anti-metastatic capacities in GC. Follow-up studies indicated that miR-585-5p targets the downstream molecules CREB1 and MAPK1 to regulate the transcriptional and post-translational regulation of MITF, respectively, thus controlling its expression and cancer-promoting activity. MiR-585-5p directly and negatively regulates MITF together with CREB1 and MAPK1. According to bioinformatic analysis, promotor reporter gene assays, ChIP and EMSAs, CREB1 binds to the promotor region to enhance transcriptional expression of MITF. Co-IP and immunofluorescent double-labelled staining confirmed interaction between MAPK1 and MITF. Protein immunoprecipitation revealed that MAPK1 enhances MITF activity via phosphorylation (Ser73). MiR-585-5p can not only inhibit MITF expression directly, but also hinder MITF expression and pro-cancerous activity in a CREB1-/MAPK1-dependent manner indirectly. CONCLUSIONS In conclusion, this study uncovered miR-585-5p impedes gastric cancer proliferation and metastasis by orchestrating the interactions among CREB1, MAPK1 and MITF.
Collapse
Affiliation(s)
- Yunwei Wang
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi’an, China
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Ming Li
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi’an, China
- Department of Gastroenterology, Xi’an People’s Hospital (Xi’an Fourth Hospital), Xi’an, China
| | - Jiaoxia Zeng
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yunshu Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Zengshan Li
- Department of Pathology, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Sijun Hu
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Fangfang Yang
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Na Wang
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Wenlan Wang
- Department of Aerospace Hygiene, School of Aerospace Medicine, Air Force Medical University, Xi’an, China
| | - Jun Tie
- State key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
9
|
Yuan Y, Zhang H, Li D, Li Y, Lin F, Wang Y, Song H, Liu X, Li F, Zhang J. PAK4 in cancer development: Emerging player and therapeutic opportunities. Cancer Lett 2022; 545:215813. [DOI: 10.1016/j.canlet.2022.215813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/02/2022]
|
10
|
Nam G, An SK, Park IC, Bae S, Lee JH. Daphnetin inhibits α-MSH-induced melanogenesis via PKA and ERK signaling pathways in B16F10 melanoma cells. Biosci Biotechnol Biochem 2022; 86:596-609. [PMID: 35325017 DOI: 10.1093/bbb/zbac016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/24/2022] [Indexed: 12/18/2022]
Abstract
Daphnetin is a dehydroxylated derivative of coumarin isolated from Daphne species. However, the effect of daphnetin on melanogenesis has not been elucidated. This study aims to investigate the inhibitory effect of daphnetin on melanogenesis in α-melanocyte stimulating hormone (α-MSH)-treated B16F10 cells and its potential mechanism. Melanin content analysis and cellular tyrosinase activity assay showed that daphnetin inhibited melanin biosynthesis in α-MSH-treated B16F10 cells. Immunoblotting and qRT-PCR also indicated that daphnetin suppressed the expression of microphthalmia-associated transcription factor, a mastering transcription factor of melanogenesis and its downstream melanogenic enzymes including tyrosinase and tyrosinase-related proteins. Moreover, daphnetin downregulated the phosphorylation of PKA, ERK, MSK1, and CREB. Additionally, daphnetin inhibited melanin synthesis in UVB-irradiated HaCaT conditioned medium system suggesting that daphnetin has potential as an antipigmentation activity in a physiological skin condition. Our data propose that daphnetin inhibits melanogenesis via modulating both the PKA/CREB and the ERK/MSK1/CREB pathways.
Collapse
Affiliation(s)
- Garam Nam
- Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| | - Sung Kwan An
- Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| | - In-Chul Park
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul, Republic of Korea
| | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jae Ho Lee
- Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Lee HJ, An S, Bae S, Lee JH. Diarylpropionitrile inhibits melanogenesis via protein kinase A/cAMP-response element-binding protein/microphthalmia-associated transcription factor signaling pathway in α-MSH-stimulated B16F10 melanoma cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:113-123. [PMID: 35203061 PMCID: PMC8890945 DOI: 10.4196/kjpp.2022.26.2.113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023]
Abstract
Diarylpropionitrile (DPN), a selective agonist for estrogen receptor β (ERβ), has been reported to regulate various hormonal responses through activation of ERβ in tissues including the mammary gland and brain. However, the effect of DPN on melanogenesis independent of ERβ has not been studied. The aim of this study is to examine the possibility of anti-melanogenic effect of DPN and its underlying mechanism. Melanin contents and cellular tyrosinase activity assay indicated that DPN inhibited melanin biosynthesis in alpha-melanocyte stimulating hormone-stimulated B16F10 melanoma cell line. However, DPN had no direct influence on in vitro tyrosinase catalytic activity. On the other hand, 17β-estradiol had no effect on inhibition of melanogenesis, suggesting that the DPN-mediated suppression of melanin production was not related with estrogen signaling pathway. Immunoblotting analysis showed that DPN down-regulated the expression of microphthalmia-associated transcription factor (MITF), a central transcription factor of melanogenesis and its down-stream genes including tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. Also, DPN attenuated the phosphorylation of protein kinase A (PKA) and cAMP-response element-binding protein (CREB). Additionally, DPN suppressed the melanin synthesis in UVB-irradiated HaCaT conditioned media culture system suggesting that DPN has potential as an anti-melanogenic activity in physiological conditions. Collectively, our data show that DPN inhibits melanogenesis via down-regulation of PKA/CREB/MITF signaling pathway.
Collapse
Affiliation(s)
- Hyun Jeong Lee
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Korea
| | - Sungkwan An
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Korea
| | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Korea
| | - Jae Ho Lee
- Department of Cosmetics Engineering, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
12
|
Song P, Zhao F, Li D, Qu J, Yao M, Su Y, Wang H, Zhou M, Wang Y, Gao Y, Li F, Zhao D, Zhang F, Rao Y, Xia M, Li H, Wang J, Cheng M. Synthesis of selective PAK4 inhibitors for lung metastasis of lung cancer and melanoma cells. Acta Pharm Sin B 2022; 12:2905-2922. [PMID: 35755272 PMCID: PMC9214071 DOI: 10.1016/j.apsb.2022.02.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/26/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
The p21 activated kinase 4 (PAK4) is serine/threonine protein kinase that is critical for cancer progression. Guided by X-ray crystallography and structure-based optimization, we report a novel subseries of C-3-substituted 6-ethynyl-1H-indole derivatives that display high potential and specificity towards group II PAKs. Among these inhibitors, compound 55 exhibited excellent inhibitory activity and kinase selectivity, displayed superior anti-migratory and anti-invasive properties against the lung cancer cell line A549 and the melanoma cell line B16. Compound 55 exhibited potent in vivo antitumor metastatic efficacy, with over 80% and 90% inhibition of lung metastasis in A549 or B16-BL6 lung metastasis models, respectively. Further mechanistic studies demonstrated that compound 55 mitigated TGF-β1-induced epithelial-mesenchymal transition (EMT).
Collapse
|
13
|
Kim HM, Oh S, Choi CH, Yang JY, Kim S, Kang D, Son KH, Byun K. Attenuation Effect of Radiofrequency Irradiation on UV-B-Induced Skin Pigmentation by Decreasing Melanin Synthesis and through Upregulation of Heat Shock Protein 70. Molecules 2021; 26:molecules26247648. [PMID: 34946730 PMCID: PMC8708156 DOI: 10.3390/molecules26247648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022] Open
Abstract
Excess melanin deposition in the skin causes cosmetic problems. HSP70 upregulation decreases microphthalmia-associated transcription factor (MITF) expression, which eventually decreases tyrosinase activity and melanogenesis. Ultraviolet (UV) radiation upregulates p53, which increases the melanocortin receptor (MC1R) and MITF. Furthermore, HSP70 decreases p53 and radiofrequency irradiation (RF) increases HSP70. We evaluated whether RF increased HSP70 and decreased p53, consequently decreasing the MITF/tyrosinase pathway and melanogenesis in UV-B radiated animal skin. Various RF combinations with 50, 100, and 150 ms and 5, 10, and 15 W were performed on the UV-B radiated mouse skin every 2 d for 28 d. When RF was performed with 100 ms/10 W, melanin deposition, evaluated by Fontana–Masson staining, decreased without skin crust formation in the UV-B radiated skin. Thus, we evaluated the effect of RF on decreasing melanogenesis in the HEMn and UV-B radiated skin at a setting of 100 ms/10 W. HSP70 expression was decreased in the UV-B radiated skin but was increased by RF. The expression of p53, MC1R, and MITF increased in the UV-B radiated skin but was decreased by RF. The expression of p53, MC1R, and MITF increased in the α-MSH treated HEMn but was decreased by RF. The decreasing effects of RF on p53, MC1R, CREB and MITF were higher than those of HSP70-overexpressed HEMn. The decreasing effect of RF on p53, MC1R, CREB, and MITF disappeared in the HSP70-silenced HEMn. MC1R, CREB, and MITF were not significantly decreased by the p53 inhibitor in α-MSH treated HEMn. RF induced a greater decrease in MC1R, CREB, and MITF than the p53 inhibitor. Therefore, RF may have decreased melanin synthesis by increasing HSP70 and decreasing p53, thus decreasing MC1R/CREB/MITF and tyrosinase activity.
Collapse
Affiliation(s)
- Hyoung Moon Kim
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea;
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.Y.)
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.Y.)
| | - Chang Hu Choi
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea;
| | - Jin Young Yang
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.Y.)
| | - Sunggeun Kim
- Jeisys Medical Inc., Seoul 08501, Korea; (S.K.); (D.K.)
| | - Donghwan Kang
- Jeisys Medical Inc., Seoul 08501, Korea; (S.K.); (D.K.)
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea;
- Correspondence: (K.H.S.); (K.B.)
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea;
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (J.Y.Y.)
- Correspondence: (K.H.S.); (K.B.)
| |
Collapse
|
14
|
Ajdary M, Farzan S, Razavi Y, Arabdolatabadi A, Haghparast A. Effects of Morphine on Serum Reproductive Hormone Levels and the Expression of Genes Involved in Fertility-related Pathways in Male Rats. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:153-164. [PMID: 34400949 PMCID: PMC8170771 DOI: 10.22037/ijpr.2019.112119.13544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effects of morphine on serum reproductive hormone levels and markers involved in fertility-related pathways were evaluated. A total of 30 male Wistar rats were divided into three groups (n = 10) and intraperitoneally administered the following substances for 20 days: two single daily doses of morphine (10 mg/kg; morphine group), saline (healthy saline), and intact group. After confirming the morphine dependence of the experimental groups, all the animals were sacrificed and their total testis tissue was extracted and stored at -80 °C until use. Male reproductive parameters (blood serum of testosterone, luteinizing hormone, and follicle-stimulating hormone) and using Q-PCR and western blot, we evaluated mRNA and protein expression of CREM, TBP, CREB1, HDAC1, and FOS involved in fertility-related pathways were analyzed and compared in the testis samples. The luteinizing hormone and testosterone levels were significantly lower in the morphine-administered group than in the saline and intact groups (P < 0.05). Moreover, the expressions of all five target genes were downregulated in the morphine group (P < 0.05). The protein expression of all five target proteins was downregulated in the morphine group (P < 0.05). We concluded that morphine could decrease the reproductive parameters in male rats.
Collapse
Affiliation(s)
- Marziyeh Ajdary
- Abadan Faculty of Medical Sciences, Abadan, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sina Farzan
- Department of Anesthesiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Razavi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Arabdolatabadi
- Young Researchers and Elite Club, Yazd Branch, Islamic Azad University, Yazd, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Won SY, You ST, Choi SW, McLean C, Shin EY, Kim EG. cAMP Response Element Binding-Protein- and Phosphorylation-Dependent Regulation of Tyrosine Hydroxylase by PAK4: Implications for Dopamine Replacement Therapy. Mol Cells 2021; 44:493-499. [PMID: 34238765 PMCID: PMC8334344 DOI: 10.14348/molcells.2021.2250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/29/2021] [Accepted: 05/13/2021] [Indexed: 01/23/2023] Open
Abstract
Parkinson's disease (PD) is characterized by a progressive loss of dopamine-producing neurons in the midbrain, which results in decreased dopamine levels accompanied by movement symptoms. Oral administration of l-3,4-dihydroxyphenylalanine (L-dopa), the precursor of dopamine, provides initial symptomatic relief, but abnormal involuntary movements develop later. A deeper understanding of the regulatory mechanisms underlying dopamine homeostasis is thus critically needed for the development of a successful treatment. Here, we show that p21-activated kinase 4 (PAK4) controls dopamine levels. Constitutively active PAK4 (caPAK4) stimulated transcription of tyrosine hydroxylase (TH) via the cAMP response element-binding protein (CREB) transcription factor. Moreover, caPAK4 increased the catalytic activity of TH through its phosphorylation of S40, which is essential for TH activation. Consistent with this result, in human midbrain tissues, we observed a strong correlation between phosphorylated PAK4S474, which represents PAK4 activity, and phosphorylated THS40, which reflects their enzymatic activity. Our findings suggest that targeting the PAK4 signaling pathways to restore dopamine levels may provide a new therapeutic approach in PD.
Collapse
Affiliation(s)
- So-Yoon Won
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Soon-Tae You
- Department of Neurosurgery, The Catholic University of Korea, St. Vincent’s Hospital, Suwon 16247, Korea
| | - Seung-Won Choi
- Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, Korea
| | - Catriona McLean
- Department of Pathology, The Alfred Hospital, Melbourne 3004, Australia
| | - Eun-Young Shin
- Department of Biochemistry, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| | - Eung-Gook Kim
- Department of Biochemistry, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| |
Collapse
|
16
|
Boudria R, Laurienté V, Oudar A, Harouna-Rachidi S, Dondi E, Le Roy C, Gardano L, Varin-Blank N, Guittat L. Regulatory interplay between Vav1, Syk and β-catenin occurs in lung cancer cells. Cell Signal 2021; 86:110079. [PMID: 34252536 DOI: 10.1016/j.cellsig.2021.110079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 01/15/2023]
Abstract
Vav1 exhibits two signal transducing properties as an adaptor protein and a regulator of cytoskeleton organization through its Guanine nucleotide Exchange Factor module. Although the expression of Vav1 is restricted to the hematopoietic lineage, its ectopic expression has been unraveled in a number of solid tumors. In this study, we show that in lung cancer cells, as such in hematopoietic cells, Vav1 interacts with the Spleen Tyrosine Kinase, Syk. Likewise, Syk interacts with β-catenin and, together with Vav1, regulates the phosphorylation status of β-catenin. Depletion of Vav1, Syk or β-catenin inhibits Rac1 activity and decreases cell migration suggesting the interplay of the three effectors to a common signaling pathway. This model is further supported by the finding that in turn, β-catenin regulates the transcription of Syk gene expression. This study highlights the elaborated connection between Vav1, Syk and β-catenin and the contribution of the trio to cell migration.
Collapse
Affiliation(s)
- Rofia Boudria
- INSERM, UMR 978, Bobigny, France; Labex Inflamex, Université Sorbonne Paris Nord, UFR SMBH, Bobigny, France
| | - Vanessa Laurienté
- INSERM, UMR 978, Bobigny, France; Labex Inflamex, Université Sorbonne Paris Nord, UFR SMBH, Bobigny, France
| | - Antonin Oudar
- INSERM, UMR 978, Bobigny, France; Labex Inflamex, Université Sorbonne Paris Nord, UFR SMBH, Bobigny, France
| | - Souleymane Harouna-Rachidi
- INSERM, UMR 978, Bobigny, France; Labex Inflamex, Université Sorbonne Paris Nord, UFR SMBH, Bobigny, France
| | - Elisabetta Dondi
- INSERM, UMR 978, Bobigny, France; Labex Inflamex, Université Sorbonne Paris Nord, UFR SMBH, Bobigny, France
| | - Christine Le Roy
- INSERM, UMR 978, Bobigny, France; Labex Inflamex, Université Sorbonne Paris Nord, UFR SMBH, Bobigny, France
| | - Laura Gardano
- INSERM, UMR 978, Bobigny, France; Labex Inflamex, Université Sorbonne Paris Nord, UFR SMBH, Bobigny, France
| | - Nadine Varin-Blank
- INSERM, UMR 978, Bobigny, France; Labex Inflamex, Université Sorbonne Paris Nord, UFR SMBH, Bobigny, France.
| | - Lionel Guittat
- INSERM, UMR 978, Bobigny, France; Labex Inflamex, Université Sorbonne Paris Nord, UFR SMBH, Bobigny, France.
| |
Collapse
|
17
|
Kang HW, Piao XM, Lee HY, Kim K, Seo SP, Ha YS, Kim YU, Kim WT, Kim YJ, Lee SC, Kim WJ, Shin EY, Kim EG, Yun SJ. Expression of phosphorylated p21-activated kinase 4 is associated with aggressive histologic characteristics and poor prognosis in patients with surgically treated renal cell carcinoma. Investig Clin Urol 2021; 62:399-407. [PMID: 34085786 PMCID: PMC8246022 DOI: 10.4111/icu.20200399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/21/2020] [Accepted: 01/21/2021] [Indexed: 01/18/2023] Open
Abstract
Purpose P21-activated kinase 4 (PAK4), a serine/threonine kinase that regulates a number of fundamental cellular processes, has been suggested as a prognostic factor for various human tumors. The aim of the present study was to evaluate the clinical implications of phospho-Ser474 PAK4 (pPAK4S474), an activated form of PAK4, in surgically treated renal cell carcinoma (RCC). Materials and Methods Samples from 131 patients with surgically treated RCC were immunostained to detect PAK4 and pPAK4S474. Expression of PAK4 and pPAK4S474 was compared with clinicopathological characteristics and survival after nephrectomy. Results PAK4 and pPAK4S474 were expressed predominantly in the nucleus. Overall, 57.3% (75/131) and 24.4% (29/119) of specimens exhibited high expression of pPAK4S474 and PAK4, respectively. High expression of pPAK4S474 was associated with adverse pathologic characteristics, including advanced tumor stage and grade (p=0.036 and p=0.002, respectively), whereas this association was not significant for PAK4 expression (each p>0.05). Kaplan-Meier estimates showed that high expression of pPAK4S474 was associated with shorter recurrence-free survival in a subgroup with localized RCC and with cancer-specific survival in the total RCC cohort (log-rank test: p=0.001 and p=0.005, respectively), whereas PAK4 expression was not. Multivariate Cox regression analysis identified that high pPAK4S474 expression was an independent predictor of recurrence in the subgroup with localized RCC. Conclusions pPAK4S474 may be a more accurate prognostic factor than total PAK4 in RCC patients. This marker would be useful for identifying patients with pathologically localized disease who may require further interventions.
Collapse
Affiliation(s)
- Ho Won Kang
- Department of Urology, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Xuan Mei Piao
- Department of Urology, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Hee Youn Lee
- Department of Urology, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Kyeong Kim
- Department of Urology, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Sung Pil Seo
- Department of Urology, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Yun Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Yeong Uk Kim
- Department of Urology, School of Medicine, Yeungnam University, Daegu, Korea
| | - Won Tae Kim
- Department of Urology, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Yong June Kim
- Department of Urology, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Sang Cheol Lee
- Department of Urology, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Wun Jae Kim
- Department of Urology, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Eun Young Shin
- Department of Biochemistry and Medical Research Center, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Eung Gook Kim
- Department of Biochemistry and Medical Research Center, College of Medicine, Chungbuk National University, Cheongju, Korea.
| | - Seok Joong Yun
- Department of Urology, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, Cheongju, Korea.
| |
Collapse
|
18
|
Williams NM, Obayomi AO, Diaz-Perez JA, Morrison BW. Monodactylous Longitudinal Melanonychia: A Sign of Bowen's Disease in Skin of Color. Skin Appendage Disord 2021; 7:306-310. [PMID: 34307479 DOI: 10.1159/000514221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/05/2021] [Indexed: 11/19/2022] Open
Abstract
Introduction Monodactylous longitudinal melanonychia (LM) may represent both benign and malignant dermatologic disorders. However, squamous cell carcinoma in situ (SCCis) is not commonly considered in this setting. Case Presentation In this report, we present 2 cases of SCCis of the nail matrix in patients with skin of color who presented with monodactylous LM involving the lateral aspect of the nail. Conclusion These cases suggest that SCCis should be included in the differential diagnosis for monodactylous LM, especially when involving the lateral nail plate in darker skin.
Collapse
Affiliation(s)
- Natalie M Williams
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Aderonke O Obayomi
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Julio A Diaz-Perez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Brian W Morrison
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
19
|
Xue L, Chang L, Li Y, Dong Y, He X. Stimulation of melanin synthesis by UVB is mediated by NO/cGMP/PKG cascade targeting PAK4 in vitro. In Vitro Cell Dev Biol Anim 2021; 57:280-289. [PMID: 33638135 DOI: 10.1007/s11626-021-00551-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
The coat color of mammals is primarily determined by the type, quantity, and distribution of melanin in the skin and hair. As an endogenous gas molecule, nitric oxide (NO) regulates tyrosinase production by modulating the cGMP-dependent protein kinase (PKG) pathway, which enhances melanin synthesis. However, some interrelationships have not been fully elucidated. In the present study, mouse melanocytes co-cultured with mouse keratinocytes in vitro, or as monocultures, were used as research models. The results indicated that ultraviolet B irradiation increased nitric oxide synthase (NOS) activity and NO production, and increased PKG, p21-activated kinase 4 (PAK4), and microphthalmia-associated transcription factor (MITF) levels, as well as tyrosinase (TYR), tyrosinase-related protein 1 and 2 expression, and melanin synthesis. During PKG inhibition, the expression of NO-regulated PAK4 and MITF was decreased. Pigment production was also affected, but remained higher than that in the control and NO inhibitor groups. These findings suggest that ultraviolet light regulates melanin production by activating the NO/cGMP/PKG pathway, which mediates the expression of PAK4, affecting melanin synthesis. On this basis, further elucidation of this regulatory network may improve our understanding of patterns of animal hair color formation.
Collapse
Affiliation(s)
- Linli Xue
- College of Veterinary Medicine, Shanxi Agricultural University, No. 1 Mingxian South Road, Jinzhong, Shanxi, 030801, People's Republic of China
| | - Lucheng Chang
- College of Veterinary Medicine, Shanxi Agricultural University, No. 1 Mingxian South Road, Jinzhong, Shanxi, 030801, People's Republic of China
| | - Yilei Li
- College of Veterinary Medicine, Shanxi Agricultural University, No. 1 Mingxian South Road, Jinzhong, Shanxi, 030801, People's Republic of China
| | - Yanjun Dong
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiaoyan He
- College of Veterinary Medicine, Shanxi Agricultural University, No. 1 Mingxian South Road, Jinzhong, Shanxi, 030801, People's Republic of China.
| |
Collapse
|
20
|
Cong C, Liang W, Zhang C, Wang Y, Yang Y, Wang X, Wang S, Huo D, Wang H, Wang D, Feng H. PAK4 suppresses motor neuron degeneration in hSOD1 G93A -linked amyotrophic lateral sclerosis cell and rat models. Cell Prolif 2021; 54:e13003. [PMID: 33615605 PMCID: PMC8016643 DOI: 10.1111/cpr.13003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/24/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons (MN). CREB pathway-mediated inhibition of apoptosis contributes to neuron protection, and PAK4 activates CREB signalling in diverse cell types. This study aimed to investigate PAK4's effect and mechanism of action in ALS. METHODS We analysed RNA levels by qRT-PCR, protein levels by immunofluorescence and Western blotting, and apoptosis by flow cytometry and TUNEL staining. Cell transfection was performed for in vitro experiment. Mice were injected intraspinally to evaluate PAK4 function in vivo experiment. Rotarod test was performed to measure motor function. RESULTS The expression and activation of PAK4 significantly decreased in the cell and mouse models of ALS as the disease progressed, which was caused by the negative regulation of miR-9-5p. Silencing of PAK4 increased the apoptosis of MN by inhibiting CREB-mediated neuroprotection, whereas overexpression of PAK4 protected MN from hSOD1G93A -induced degeneration by activating CREB signalling. The neuroprotective effect of PAK4 was markedly inhibited by CREB inhibitor. In ALS models, the PAK4/CREB pathway was inhibited, and cell apoptosis increased. In vivo experiments revealed that PAK4 overexpression in the spinal neurons of hSOD1G93A mice suppressed MN degeneration, prolonged survival and promoted the CREB pathway. CONCLUSIONS PAK4 protects MN from degeneration by activating the anti-apoptotic effects of CREB signalling, suggesting it may be a therapeutic target in ALS.
Collapse
Affiliation(s)
- Chaohua Cong
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Weiwei Liang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Chunting Zhang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Ying Wang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Yueqing Yang
- Department of Neurology, The Second Clinical College of Harbin Medical University, Harbin, China
| | - Xudong Wang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Shuyu Wang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Di Huo
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Hongyong Wang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Di Wang
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| | - Honglin Feng
- Department of Neurology, The First Clinical College of Harbin Medical University, Harbin, China
| |
Collapse
|
21
|
Zingiber mioga Extract Improves Moisturization and Depigmentation of Skin and Reduces Wrinkle Formation in UVB-Irradiated HRM-2 Hairless Mice. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11030976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Here, we investigated the effects of Zingiber mioga extracts (FSH-ZM) on the moisturization and depigmentation of skin as well as wrinkle formation in UVB-irradiated HRM-2 hairless mice. The mice were divided into six groups as follows: normal control (NC), UVB-irradiated control (C), positive control 1 (PC1, L-ascorbic acid 200 mg/kg b.w.), positive control 2 (PC2, Arbutin 200 mg/kg b.w.), Z100 (FSH-ZM 100 mg/kg b.w.), and Z200 (FSH-ZM 200 mg/kg b.w.). The experiment spanned a period of 6 weeks. We found that FSH-ZM led to an increase in the expression of hyaluronan synthase 2, fibrillin-1, and elastin mRNAs, and showed improved skin hydration in HRM-2 hairless mice compared to that in the UVB-irradiated control group. Furthermore, FSH-ZM also inhibited the expression of inflammatory cytokines and wrinkle forming factors generated by UVB and reduced the formation of wrinkles in the test group relative to that in the control group by increasing collagen synthesis. Moreover, we found that FSH-ZM decreased the expression of melanogenesis factors, which improved depigmentation in UVB-irradiated hairless mice. These results suggest that Zingiber mioga can potentially be utilized to develop products aimed at improving skin moisturization and depigmentation and reducing wrinkle formation.
Collapse
|
22
|
Bahraman AG, Jamshidzadeh A, Keshavarzi M, Arabnezhad MR, Mohammadi H, Mohammadi-Bardbori A. α-Melanocyte-Stimulating Hormone Triggers Melanogenesis Via Activation of the Aryl Hydrocarbon Receptor Pathway in B16F10 Mouse Melanoma Cells. Int J Toxicol 2021; 40:153-160. [PMID: 33438493 DOI: 10.1177/1091581820987548] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Melanin is a group of natural pigments that determines the human skin color and provides fundamental protection against the harmful impacts of physical and chemical stimuli. The aim of this study was to establish the regulatory role of aryl hydrocarbon receptor (AhR) in α-melanocyte-stimulating hormone (α-MSH) induced melanogenesis. In the present study, following knockdown of AhR, murine B16F10 cells were treated with α-MSH (200 nM) and tyrosinase activities, cellular melanin content, mRNA levels of several important genes involved in melanogenesis including AhR, CTNNB1, TYR2, and microphthalmia-associated transcription factor (MITF) were measured as endpoints. Exposure to α-MSH led to elevated expression of AhR, CTNNB1, MITF, and TYR in accordance with increased tyrosinase enzyme activity as well as a significant rise in the total melanin content. Our results suggest that AhR plays a regulatory role in α-MSH-stimulated melanogenesis.
Collapse
Affiliation(s)
- Ali Ghaffarian Bahraman
- Department of Pharmacology and Toxicology, School of Pharmacy, 48435Shiraz University of Medical Sciences, Shiraz, Fars, Iran.,Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Akram Jamshidzadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, 48435Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Majid Keshavarzi
- Department of Pharmacology and Toxicology, School of Pharmacy, 48435Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Mohammad-Reza Arabnezhad
- Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamidreza Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, 48435Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Afshin Mohammadi-Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, 48435Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| |
Collapse
|
23
|
Chen GL, Li R, Chen XX, Wang J, Cao S, Song R, Zhao MC, Li LM, Hannemmann N, Schett G, Qian C, Bozec A. Fra-2/AP-1 regulates melanoma cell metastasis by downregulating Fam212b. Cell Death Differ 2020; 28:1364-1378. [PMID: 33188281 DOI: 10.1038/s41418-020-00660-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022] Open
Abstract
Metastatic melanoma remains a challenging disease. Understanding the molecular mechanisms how melanoma becomes metastatic is therefore of interest. Herein we show that downregulation of the AP-1 transcription factor member Fra-2 in melanoma cells is associated with an aggressive melanoma phenotype in vitro and in vivo. In vitro, Fra-2 knockdown in melanoma cells promoted cell migration and invasion associated with increased Snail-1, Twist-1/2, and matrix metalloproteinase-2 (MMP-2) expression. In vivo, Fra-2 knockdown in a melanoma cell line led to increased metastasis into the lungs and liver. The increased metastatic potential of Fra-2 knockdown melanoma cells was likely due to an accelerated cell cycle transition and increased tissue angiogenesis. Using Fra-2 knockdown cell lines microarray analysis, we identified the protein Fam212b (family with sequence similarity 212 member B) as a downstream target of Fra-2. By additional knockdown of Fam212b in Fra-2 mutant cells, we mitigated the cell migration, invasion, and cell cycle transition phenotype induced by Fra-2 knockdown. Furthermore, Fam212b overexpression enhanced β-catenin pathway. Finally, Fam212b expression is correlated with increased melanoma metastasis and poor clinical outcomes in human patients. In summary, these findings reveal the Fra-2-Fam212b axis as a new pathway of melanoma metastasis, which can be in the future used as potential marker of the metastatic properties of melanoma.
Collapse
Affiliation(s)
- Guang-Liang Chen
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Li
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Rheumatology, Renji Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiao-Xiang Chen
- Department of Rheumatology, Renji Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Juan Wang
- Department of Rheumatology, Renji Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Shan Cao
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Rheumatology, Renji Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Rui Song
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Rheumatology, Renji Hospital, Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Ming-Chun Zhao
- Department of Pathology, Guilin People's Hospital, Guilin, Guangxi, China
| | - Li-Ming Li
- Department of Pediatric Surgery, Guigang People's Hospital, Guigang, Guangxi, China
| | - Nicole Hannemmann
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Cheng Qian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Aline Bozec
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
24
|
Mpilla GB, Philip PA, El-Rayes B, Azmi AS. Pancreatic neuroendocrine tumors: Therapeutic challenges and research limitations. World J Gastroenterol 2020; 26:4036-4054. [PMID: 32821069 PMCID: PMC7403797 DOI: 10.3748/wjg.v26.i28.4036] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/10/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic neuroendocrine tumors (PNETs) are known to be the second most common epithelial malignancy of the pancreas. PNETs can be listed among the slowest growing as well as the fastest growing human cancers. The prevalence of PNETs is deceptively low; however, its incidence has significantly increased over the past decades. According to the American Cancer Society's estimate, about 4032 (> 7% of all pancreatic malignancies) individuals will be diagnosed with PNETs in 2020. PNETs often cause severe morbidity due to excessive secretion of hormones (such as serotonin) and/or overall tumor mass. Patients can live for many years (except for those patients with poorly differentiated G3 neuroendocrine tumors); thus, the prevalence of the tumors that is the number of patients actually dealing with the disease at any given time is fairly high because the survival is much longer than pancreatic ductal adenocarcinoma. Due to significant heterogeneity, the management of PNETs is very complex and remains an unmet clinical challenge. In terms of research studies, modest improvements have been made over the past decades in the identification of potential oncogenic drivers in order to enhance the quality of life and increase survival for this growing population of patients. Unfortunately, the majority of systematic therapies approved for the management of advanced stage PNETs lack objective response or at most result in modest benefits in survival. In this review, we aim to discuss the broad challenges associated with the management and the study of PNETs.
Collapse
Affiliation(s)
- Gabriel Benyomo Mpilla
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Philip Agop Philip
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Bassel El-Rayes
- Department of Hematology Oncology, Emory Winship Institute, Atlanta, GA 30322, United States
| | - Asfar Sohail Azmi
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| |
Collapse
|
25
|
Xu Z, Li Y, Wang D, Wu D, Wang J, Chen L, Deng Y, Zhang J, Wu Z, Wan X, Liu Q, Huang H, Hu P, Zeng J, Zhou D. Mutated SASH1 promotes Mitf expression in a heterozygous mutated SASH1 knock‑in mouse model. Int J Mol Med 2020; 46:1118-1134. [PMID: 32582980 PMCID: PMC7387086 DOI: 10.3892/ijmm.2020.4652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/03/2020] [Indexed: 01/12/2023] Open
Abstract
The SAM and SH3 domain‑containing 1 (SASH1) genes have been identified as the causal genes of dyschromatosis universalis hereditaria (DUH); these genes cause the pathological phenotypes of DUH, and SASH1 variants have been shown to regulate the abnormal pigmentation phenotype in human skin in various genodermatoses. However, investigations into the mutated SASH1 gene have been limited to in vitro studies. In the present study, to recapitulate the molecular pathological phenotypes of individuals with DUH induced by SASH1 mutations, a heterozygous BALB/c mouse model, in which the human SASH1 c.1654 T>G (p. Tyr 551Asp, Y551D) mutation was knocked in was first generated. The in vivo functional experiments on Y551D SASH1 indicated that the increased expression of microphthalmia‑associated transcription factor (Mitf) was uniformly induced in the tails of heterozygous BALB/c mice, and an increased quantity of Mitf‑positive epithelial cells was also detected. An increased expression of Mitf‑ and Mitf‑positive cells was also demonstrated in the epithelial tissues of Y551D‑SASH1 affected individuals. In the present study, Mitf expression was also found to be increased by Y551D SASH1 in vitro. Taken together, these findings indicate that the upregulation of Mitf is the bona fide effector of the Y551D SASH1‑mediated melanogenesis signaling pathway in vivo. SASH1 may function as a scaffold molecule for the assembly of a SASH1‑Mitf molecular complex to regulate Mitf expression in the cell nucleus and thus to promote the hyperpigmented phenotype in the pathogenesis of DUH and other genodermatoses related to pigment abnormalities.
Collapse
Affiliation(s)
- Zexi Xu
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yadong Li
- Clinical College, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Dahong Wang
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Daoqiu Wu
- School of Clinical Laboratory Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jinyun Wang
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Lian Chen
- Clinical College, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yinqian Deng
- Clinical College, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jing Zhang
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Zhixiong Wu
- Clinical College, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Xin Wan
- Clinical College, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Qianfan Liu
- Clinical College, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Hai Huang
- School of Clinical Laboratory Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Pingsheng Hu
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jiawei Zeng
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Ding'an Zhou
- Clinical Research Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
26
|
Zhang J, Deng Y, Khoo BL. Fasting to enhance Cancer treatment in models: the next steps. J Biomed Sci 2020; 27:58. [PMID: 32370764 PMCID: PMC7201989 DOI: 10.1186/s12929-020-00651-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Short-term fasting (STF) is a technique to reduce nutrient intake for a specific period. Since metabolism plays a pivotal role in tumor progression, it can be hypothesized that STF can improve the efficacy of chemotherapy. Recent studies have demonstrated the efficacy of STF in cell and animal tumor models. However, large-scale clinical trials must be conducted to verify the safety and effectiveness of these diets. In this review, we re-examine the concept of how metabolism affects pathophysiological pathways. Next, we provided a comprehensive discussion of the specific mechanisms of STF on tumor progression, derived through studies carried out with tumor models. There are currently at least four active clinical trials on fasting and cancer treatment. Based on these studies, we highlight the potential caveats of fasting in clinical applications, including the onset of metabolic syndrome and other metabolic complications during chemotherapy, with a particular focus on the regulation of the epithelial to mesenchymal pathway and cancer heterogeneity. We further discuss the advantages and disadvantages of the current state-of-art tumor models for assessing the impact of STF on cancer treatment. Finally, we explored upcoming fasting strategies that could complement existing chemotherapy and immunotherapy strategies to enable personalized medicine. Overall, these studies have the potential for breakthroughs in cancer management.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Yanlin Deng
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong.
| |
Collapse
|
27
|
Ramos-Álvarez I, Lee L, Jensen RT. Group II p21-activated kinase, PAK4, is needed for activation of focal adhesion kinases, MAPK, GSK3, and β-catenin in rat pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2020; 318:G490-G503. [PMID: 31984786 PMCID: PMC7099487 DOI: 10.1152/ajpgi.00229.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/31/2023]
Abstract
PAK4 is the only member of the Group II p21-activated kinases (PAKs) present in rat pancreatic acinar cells and is activated by gastrointestinal hormones/neurotransmitters stimulating PLC/cAMP and by various pancreatic growth factors. However, little is known of the role of PAK4 activation in cellular signaling cascades in pancreatic acinar cells. In the present study, we examined the role of PAK4's participation in five different cholecystokinin-8 (CCK-8)-stimulated signaling pathways (PI3K/Akt, MAPK, focal adhesion kinase, GSK3, and β-catenin), which mediate many of its physiological acinar-cell effects, as well as effects in pathophysiological conditions. To define PAK4's role, the effect of two different PAK4 inhibitors, PF-3758309 and LCH-7749944, was examined under experimental conditions that only inhibited PAK4 activation and not activation of the other pancreatic PAK, Group I PAK2. The inhibitors' effects on activation of these five signaling cascades by both physiological and pathophysiological concentrations of CCK, as well as by 12-O-tetradecanoylphobol-13-acetate (TPA), a PKC-activator, were examined. CCK/TPA activation of focal adhesion kinases(PYK2/p125FAK) and the accompanying adapter proteins (paxillin/p130CAS), Mek1/2, and p44/42, but not c-Raf or other MAPKs (JNK/p38), were mediated by PAK4. Activation of PI3K/Akt/p70s6K was independent of PAK4, whereas GSK3 and β-catenin stimulation was PAK4-dependent. These results, coupled with recent studies showing PAK4 is important in pancreatic fluid/electrolyte/enzyme secretion and acinar cell growth, show that PAK4 plays an important role in different cellular signaling cascades, which have been shown to mediate numerous physiological and pathophysiological processes in pancreatic acinar cells.NEW & NOTEWORTHY In pancreatic acinar cells, cholecystokinin (CCK) or 12-O-tetradecanoylphobol-13-acetate (TPA) activation of focal adhesion kinases (p125FAK,PYK2) and its accompanying adapter proteins, p130CAS/paxillin; Mek1/2, p44/42, GSK3, and β-catenin are mediated by PAK4. PI3K/Akt/p70s6K, c-Raf, JNK, or p38 pathways are independent of PAK4 activation.
Collapse
Affiliation(s)
- Irene Ramos-Álvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Lingaku Lee
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Robert T Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
28
|
Abril-Rodriguez G, Torrejon DY, Liu W, Zaretsky JM, Nowicki TS, Tsoi J, Puig-Saus C, Baselga-Carretero I, Medina E, Quist MJ, Garcia AJ, Senapedis W, Baloglu E, Kalbasi A, Cheung-Lau G, Berent-Maoz B, Comin-Anduix B, Hu-Lieskovan S, Wang CY, Grasso CS, Ribas A. PAK4 inhibition improves PD-1 blockade immunotherapy. NATURE CANCER 2019; 1:46-58. [PMID: 34368780 PMCID: PMC8340852 DOI: 10.1038/s43018-019-0003-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/18/2019] [Indexed: 02/06/2023]
Abstract
Lack of tumor infiltration by immune cells is the main mechanism of primary resistance to programmed cell death protein 1 (PD-1) blockade therapies for cancer. It has been postulated that cancer cell-intrinsic mechanisms may actively exclude T cells from tumors, suggesting that the finding of actionable molecules that could be inhibited to increase T cell infiltration may synergize with checkpoint inhibitor immunotherapy. Here, we show that p21-activated kinase 4 (PAK4) is enriched in non-responding tumor biopsies with low T cell and dendritic cell infiltration. In mouse models, genetic deletion of PAK4 increased T cell infiltration and reversed resistance to PD-1 blockade in a CD8 T cell-dependent manner. Furthermore, combination of anti-PD-1 with the PAK4 inhibitor KPT-9274 improved anti-tumor response compared with anti-PD-1 alone. Therefore, high PAK4 expression is correlated with low T cell and dendritic cell infiltration and a lack of response to PD-1 blockade, which could be reversed with PAK4 inhibition.
Collapse
Affiliation(s)
- Gabriel Abril-Rodriguez
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Davis Y Torrejon
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wei Liu
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jesse M Zaretsky
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Theodore S Nowicki
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of California, Los Angeles, Los Angeles, USA
| | - Jennifer Tsoi
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Cristina Puig-Saus
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ignacio Baselga-Carretero
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Egmidio Medina
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael J Quist
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alejandro J Garcia
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | - Anusha Kalbasi
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Gardenia Cheung-Lau
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Beata Berent-Maoz
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Begoña Comin-Anduix
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Siwen Hu-Lieskovan
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Cun-Yu Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Catherine S Grasso
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Antoni Ribas
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Surgery, Division of Surgical Oncology, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
29
|
Mpilla G, Aboukameel A, Muqbil I, Kim S, Beydoun R, Philip PA, Mohammad RM, Kamgar M, Shidham V, Senapedis W, Baloglu E, Li J, Dyson G, Xue Y, El-Rayes B, Azmi AS. PAK4-NAMPT Dual Inhibition as a Novel Strategy for Therapy Resistant Pancreatic Neuroendocrine Tumors. Cancers (Basel) 2019; 11:1902. [PMID: 31795447 PMCID: PMC6966587 DOI: 10.3390/cancers11121902] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic neuroendocrine tumors (PNET) remain an unmet clinical need. In this study, we show that targeting both nicotinamide phosphoribosyltransferase (NAMPT) and p21-activated kinase 4 (PAK4) could become a synthetic lethal strategy for PNET. The expression of PAK4 and NAMPT was found to be higher in PNET tissue compared to normal cells. PAK4-NAMPT dual RNAi suppressed proliferation of PNET cell lines. Treatment with KPT-9274 (currently in a Phase I trial or analogs, PF3758309 (the PAK4 selective inhibitor) or FK866 (the NAMPT inhibitor)) suppressed the growth of PNET cell lines and synergized with the mammalian target of rapamycin (mTOR) inhibitors everolimus and INK-128. Molecular analysis of the combination treatment showed down-regulation of known everolimus resistance drivers. KPT-9274 suppressed NAD pool and ATP levels in PNET cell lines. Metabolomic profiling showed a statistically significant alteration in cellular energetic pathways. KPT-9274 given orally at 150 mg/kg 5 days/week for 4 weeks dramatically reduced PNET sub-cutaneous tumor growth. Residual tumor analysis demonstrated target engagement in vivo and recapitulated in vitro results. Our investigations demonstrate that PAK4 and NAMPT are two viable therapeutic targets in the difficult to treat PNET that warrant further clinical investigation.
Collapse
Affiliation(s)
- Gabriel Mpilla
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (G.M.); (A.A.); (S.K.); (P.A.P.); (R.M.M.); (M.K.); (J.L.); (G.D.)
| | - Amro Aboukameel
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (G.M.); (A.A.); (S.K.); (P.A.P.); (R.M.M.); (M.K.); (J.L.); (G.D.)
| | - Irfana Muqbil
- University of Detroit Mercy, Detroit, MI 48201, USA;
| | - Steve Kim
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (G.M.); (A.A.); (S.K.); (P.A.P.); (R.M.M.); (M.K.); (J.L.); (G.D.)
| | - Rafic Beydoun
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (R.B.); (V.S.)
| | - Philip A. Philip
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (G.M.); (A.A.); (S.K.); (P.A.P.); (R.M.M.); (M.K.); (J.L.); (G.D.)
| | - Ramzi M. Mohammad
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (G.M.); (A.A.); (S.K.); (P.A.P.); (R.M.M.); (M.K.); (J.L.); (G.D.)
| | - Mandana Kamgar
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (G.M.); (A.A.); (S.K.); (P.A.P.); (R.M.M.); (M.K.); (J.L.); (G.D.)
| | - Vinod Shidham
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (R.B.); (V.S.)
| | | | - Erkan Baloglu
- Karyopharm Therapeutics Inc., Newton, MA 02459, USA; (W.S.); (E.B.)
| | - Jing Li
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (G.M.); (A.A.); (S.K.); (P.A.P.); (R.M.M.); (M.K.); (J.L.); (G.D.)
| | - Gregory Dyson
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (G.M.); (A.A.); (S.K.); (P.A.P.); (R.M.M.); (M.K.); (J.L.); (G.D.)
| | - Yue Xue
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA; (Y.X.); (B.E.-R.)
| | - Bassel El-Rayes
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA; (Y.X.); (B.E.-R.)
| | - Asfar S. Azmi
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA; (G.M.); (A.A.); (S.K.); (P.A.P.); (R.M.M.); (M.K.); (J.L.); (G.D.)
| |
Collapse
|
30
|
Guo J, Wang T, Wu T, Zhang K, Yin W, Zhu M, Pang Y, Hao C, He Z, Cheng M, Liu Y, Zheng J, Gu J, Zhao D. Synthesis, bioconversion, pharmacokinetic and pharmacodynamic evaluation of N-isopropyl-oxy-carbonyloxymethyl prodrugs of CZh-226, a potent and selective PAK4 inhibitor. Eur J Med Chem 2019; 186:111878. [PMID: 31757524 DOI: 10.1016/j.ejmech.2019.111878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022]
Abstract
We have previously disclosed compound 3 (CZh-226), a potent and selective PAK4 inhibitor, but its development was delayed due to poor oral pharmacokinetics. In an attempt to improve this issue, we synthesised a series of prodrugs by masking its terminal nitrogen of the piperazine moiety. Most synthesised prodrugs of 3 have low or no inhibition of PAK4 activity. The stability of synthetic prodrugs was evaluated in PBS, SGF, SIF, rat plasma and liver S9 fraction. Of these, prodrug 19 was not only stable under both acidic and neutral conditions but also could be quickly converted to parent drug 3 in rat plasma and liver S9 fraction. Such effective conversion into parent drug 3 was observed in rats, providing higher exposure of 3 compared to its direct administration. When given via oral route at daily doses of 25 and 50 mg/kg, the prodrug 19 was effective and well tolerated in mouse model of HCT-116 and B16F10.
Collapse
Affiliation(s)
- Jing Guo
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Tingting Wang
- Research Institute of Translational Medicine, The First Bethune Hospital of Jilin University, Changchun, 130061, China; Research Center for Drug Metabolism, College of Life Science, Jilin University, Changchun, 130012, China
| | - Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Kehan Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Wenbo Yin
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Mingyue Zhu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yu Pang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chenzhou Hao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Jingkai Gu
- Research Institute of Translational Medicine, The First Bethune Hospital of Jilin University, Changchun, 130061, China; Research Center for Drug Metabolism, College of Life Science, Jilin University, Changchun, 130012, China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
31
|
Lajis AFB, Ariff AB. Discovery of new depigmenting compounds and their efficacy to treat hyperpigmentation: Evidence from in vitro study. J Cosmet Dermatol 2019; 18:703-727. [PMID: 30866156 DOI: 10.1111/jocd.12900] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
Human skin pigmentation is a result of constitutive and facultative pigmentation. Facultative pigmentation is frequently stimulated by UV radiation, pharmacologic drugs, and hormones whereby leads to the development of abnormal skin hyperpigmentation. To date, many state-of-art depigmenting compounds have been studied using in vitro model to treat hyperpigmentation problems for cosmetic dermatological applications; little attention has been made to compare the effectiveness of these depigmenting compounds and their mode of actions. In this present article, new and recent depigmenting compounds, their melanogenic pathway targets, and modes of action are reviewed. This article compares the effectiveness of these new depigmenting compounds to modulate several melanogenesis-regulatory enzymes and proteins such as tyrosinase (TYR), TYR-related protein-1 (TRP1), TYR-related protein-2 (TRP2), microphthalmia-associated transcription factor (MITF), extracellular signal-regulated kinase (ERK) and N-terminal kinases (JNK) and mitogen-activated protein kinase p38 (p38 MAPK). Other evidences from in vitro assays such as inhibition on melanosomal transfer, proteasomes, nitric oxide, and inflammation-induced melanogenesis are also highlighted. This article also reviews analytical techniques in different assays performed using in vitro model as well as their advantages and limitations. This article also provides an insight on recent finding and re-examination of some protocols as well as their effectiveness and reliability in the evaluation of depigmenting compounds. Evidence and support from related patents are also incorporated in this present article to give an overview on current patented technology, latest trends, and intellectual values of some depigmenting compounds and protocols, which are rarely highlighted in the literatures.
Collapse
Affiliation(s)
- Ahmad Firdaus B Lajis
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Bioprocessing and Biomanufacturing Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Arbakariya B Ariff
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Bioprocessing and Biomanufacturing Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
32
|
PAK4 signaling in health and disease: defining the PAK4-CREB axis. Exp Mol Med 2019; 51:1-9. [PMID: 30755582 PMCID: PMC6372590 DOI: 10.1038/s12276-018-0204-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/27/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023] Open
Abstract
p21-Activated kinase 4 (PAK4), a member of the PAK family, regulates a wide range of cellular functions, including cell adhesion, migration, proliferation, and survival. Dysregulation of its expression and activity thus contributes to the development of diverse pathological conditions. PAK4 plays a pivotal role in cancer progression by accelerating the epithelial–mesenchymal transition, invasion, and metastasis. Therefore, PAK4 is regarded as an attractive therapeutic target in diverse types of cancers, prompting the development of PAK4-specific inhibitors as anticancer drugs; however, these drugs have not yet been successful. PAK4 is essential for embryonic brain development and has a neuroprotective function. A long list of PAK4 effectors has been reported. Recently, the transcription factor CREB has emerged as a novel effector of PAK4. This finding has broad implications for the role of PAK4 in health and disease because CREB-mediated transcriptional reprogramming involves a wide range of genes. In this article, we review the PAK4 signaling pathways involved in prostate cancer, Parkinson’s disease, and melanogenesis, focusing in particular on the PAK4-CREB axis. An enzyme that regulates an important controller of gene expression may offer a therapeutic target for cancer and other diseases. cAMP response element-binding protein (CREB) interacts with various other proteins to switch a myriad of target genes on and off in different cells. A review by Eung-Gook Kim, Eun-Young Shin and colleagues at Chungbuk National University, Cheongju, South Korea, explores the interplay between CREB and an enzyme called p21-activated kinase 4 (PAK4) in human health and disease. PAK4, for example, has been shown to promote CREB’s gene-activating function in prostate cancer, and PAK4 overexpression is a feature of numerous other tumor types. Disruptions in PAK4-mediated regulation of CREB activity have also been observed in neurons affected by Parkinson’s disease. The authors see strong clinical promise in further exploring the biology of the PAK4-CREB pathway.
Collapse
|
33
|
Li L, Liang Y, Zhang D, Wang C, Pan N, Hong J, Xiao H, Xie Z. The 308-nm excimer laser stimulates melanogenesis via the wnt/β-Catenin signaling pathway in B16 cells. J DERMATOL TREAT 2019; 30:826-830. [PMID: 30661431 DOI: 10.1080/09546634.2019.1572861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: The mechanism of the 308-nm excimer laser in vitiligo treatment has not yet been adequately studied. In this study, we explored the role of the 308-nm excimer laser in treatment of vitiligo and the molecular mechanisms underlying melanin biosynthesis in melanocytes after 308-nm excimer laser radiation. Materials and methods: The B16 cells were irradiated at doses of 0 mJ/cm2, 100 mJ/cm2, 300 mJ/cm2 and 600 mJ/cm2 using a 308-nm excimer laser and then cultured for an additional 24, 48 or 72 hours. Melanogenesis and tyrosinase activity in cells were measured by biochemical methods. The expression of tyrosinase, MITF, Wnt3α and β-catenin was analyzed by Western blotting. Results: Cell irradiation with the 308-nm excimer laser not only significantly elevated the melanin content (p < .01) but also stimulated the activity of tyrosinase (p < .01). The expressions of tyrosinase and MITF were also significantly increased in cells after 308-nm excimer laser irradiation. We also defined the signaling pathway by which the 308-nm excimer laser stimulates melanin biosynthesis. Increased Wnt3α and β-catenin expression was observed by Western blot analysis. Conclusion: Activation of the Wnt/β-catenin pathway likely led to the activation of MITF and tyrosinase transcription, as well as, the subsequent induction of melanin synthesis.
Collapse
Affiliation(s)
- Lili Li
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region , Nanning , PR China
| | - Yanping Liang
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region , Nanning , PR China
| | - Donghong Zhang
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region , Nanning , PR China
| | - Chen Wang
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region , Nanning , PR China
| | - Nannan Pan
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region , Nanning , PR China
| | - Jiqiong Hong
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region , Nanning , PR China
| | - Hewei Xiao
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region , Nanning , PR China
| | - Zhi Xie
- Department of Dermatology, People's Hospital of Guangxi Zhuang Autonomous Region , Nanning , PR China
| |
Collapse
|
34
|
Ramos-Alvarez I, Lee L, Jensen RT. Cyclic AMP-dependent protein kinase A and EPAC mediate VIP and secretin stimulation of PAK4 and activation of Na +,K +-ATPase in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 2019; 316:G263-G277. [PMID: 30520694 PMCID: PMC6397337 DOI: 10.1152/ajpgi.00275.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 01/31/2023]
Abstract
Rat pancreatic acinar cells possess only the p21-activated kinase (PAKs), PAK4 of the group II PAK, and it is activated by gastrointestinal hormones/neurotransmitters stimulating PLC and by a number of growth factors. However, little is known generally of cAMP agents causing PAK4 activation, and there are no studies with gastrointestinal hormones/neurotransmitters activating cAMP cascades. In the present study, we examined the ability of VIP and secretin, which stimulate cAMP generation in pancreatic acini, to stimulate PAK4 activation, the signaling cascades involved, and their possible role in activating sodium-potassium adenosine triphosphatase (Na+,K+-ATPase). PAK4 activation was compared with activation of the well-established cAMP target, cyclic AMP response element binding protein (CREB). Secretin-stimulated PAK4 activation was inhibited by KT-5720 and PKA Type II inhibitor (PKI), protein kinase A (PKA) inhibitors, whereas VIP activation was inhibited by ESI-09 and HJC0197, exchange protein directly activated by cAMP (EPAC) inhibitors. In contrast, both VIP/secretin-stimulated phosphorylation of CREB (pCREB) via EPAC activation; however, it was inhibited by the p44/42 inhibitor PD98059 and the p38 inhibitor SB202190. The specific EPAC agonist 8-CPT-2- O-Me-cAMP as well 8-Br-cAMP and forskolin stimulated PAK4 activation. Secretin/VIP activation of Na+,K+-ATPase, was inhibited by PAK4 inhibitors (PF-3758309, LCH-7749944). These results demonstrate PAK4 is activated in pancreatic acini by stimulation of both VIP-/secretin-preferring receptors, as is CREB. However, they differ in their signaling cascades. Furthermore, PAK4 activation is needed for Na+,K+ATPase activation, which mediates pancreatic fluid secretion. These results, coupled with recent studies reporting PAKs are involved in both pancreatitis/pancreatic cancer growth/enzyme secretion, show that PAK4, similar to PAK2, likely plays an important role in both pancreatic physiological/pathological responses. NEW & NOTEWORTHY Pancreatic acini possess only the group II p21-activated kinase, PAK4, which is activated by PLC-stimulating agents/growth factors and is important in enzyme-secretion/growth/pancreatitis. Little information exists on cAMP-activating agents stimulating group II PAKs. We studied ability/effect of cyclic AMP-stimulating agents [vasoactive intestinal polypeptide (VIP), secretin] on PAK4 activity in rat pancreatic-acini. Both VIP/secretin activated PAK4/CREB, but the cAMP signaling cascades differed for EPAC, MAPK, and PKA pathways. Both hormones require PAK4 activation to stimulate sodium-potassium adenosine triphosphatase activity. This study shows PAK4 plays an important role in VIP-/secretin-stimulated pancreatic fluid secretion and suggests it plays important roles in pancreatic acinar physiological/pathophysiological responses mediated by cAMP-activating agents.
Collapse
Affiliation(s)
- Irene Ramos-Alvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Lingaku Lee
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - R T Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
35
|
Hu S, Huang J, Pei S, Ouyang Y, Ding Y, Jiang L, Lu J, Kang L, Huang L, Xiang H, Xiao R, Zeng Q, Chen J. Ganoderma lucidum polysaccharide inhibits UVB-induced melanogenesis by antagonizing cAMP/PKA and ROS/MAPK signaling pathways. J Cell Physiol 2018; 234:7330-7340. [PMID: 30362532 DOI: 10.1002/jcp.27492] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/06/2018] [Indexed: 12/30/2022]
Abstract
Ultraviolet (UV)-induced pigmentation is very common in clinical practice, but the current treatments are rarely effective, accompanied by some side effects. Ganoderma lucidum polysaccharide (GLP) is a natural antioxidant with no toxic side effects, which can antagonize UVB-induced fibroblast photo aging. The study aims to explore the role of GLP in inhibiting UVB-induced melanogenesis and its possible mechanism. The expression of melanogenesis genes such as microphthalmia-associated transcription factor (MITF), tyrosine (TYR), tyrosinase related protein 1 (TYRP1), tyrosinase related protein 2 (TYRP2), ras-related protein Rab-27A (Rab27A), and Myosin shows an upward trend after exposure of B16F10 and PIG1 cells to UVB irradiation, but GLP can downregulate the expression of genes related to UVB-induced melanogenesis. GLP can inhibit UVB-activated protein kinase A (PKA) and mitogen-activated protein kinase (MAPK) signaling pathways. Besides, GLP protects mitochondria from UVB damage and inhibits reactive oxygen species (ROS) production. Also, UVB-induced cyclic adenosine monophosphate (cAMP) can be inhibited. It has been found in the experiments of UVB-induced skin pigmentation in zebrafish that GLP is capable of inhibiting UVB-induced skin pigmentation. Meanwhile, it can greatly relieve erythema reaction in guinea pig skin caused by high-dosage UVB irradiation. In conclusion, this study shows that GLP can inhibit UVB-induced melanogenesis by antagonizing cAMP/PKA and ROS/MAPK signaling pathways and is a potential natural safe whitening sunscreen additive.
Collapse
Affiliation(s)
- Shuanghai Hu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shiyao Pei
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yujie Ouyang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yufang Ding
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianyun Lu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Kang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lihua Huang
- Central Laboratory, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Xiang
- Central Laboratory, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rong Xiao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
36
|
Ramos-Alvarez I, Jensen RT. P21-activated kinase 4 in pancreatic acinar cells is activated by numerous gastrointestinal hormones/neurotransmitters and growth factors by novel signaling, and its activation stimulates secretory/growth cascades. Am J Physiol Gastrointest Liver Physiol 2018; 315:G302-G317. [PMID: 29672153 PMCID: PMC6139648 DOI: 10.1152/ajpgi.00005.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 01/31/2023]
Abstract
p21-activated kinases (PAKs) are highly conserved serine/threonine protein kinases, which are divided into two groups: group-I (PAKs1-3) and group-II (PAKs4-6). In various tissues, Group-II PAKs play important roles in cytoskeletal dynamics and cell growth as well as neoplastic development/progression. However, little is known about Group-II PAK's role in a number of physiological events, including their ability to be activated by gastrointestinal (GI) hormones/neurotransmitters/growth factors (GFs). We used rat pancreatic acini to explore the ability of GI hormones/neurotransmitters/GFs to activate Group-II-PAKs and the signaling cascades involved. Only PAK4 was detected in pancreatic acini. PAK4 was activated by endothelin, secretagogues-stimulating phospholipase C (bombesin, CCK-8, and carbachol), by pancreatic GFs (insulin, insulin-like growth factor 1, hepatocyte growth factor, epidermal growth factor, basic fibroblast growth factor, and platelet-derived growth factor), and by postreceptor stimulants (12-O-tetradecanoylphobol-13-acetate and A23187 ). CCK-8 activation of PAK4 required both high- and low-affinity CCK1-receptor state activation. It was reduced by PKC-, Src-, p44/42-, or p38-inhibition but not with phosphatidylinositol 3-kinase-inhibitors and only minimally by thapsigargin. A protein kinase D (PKD)-inhibitor completely inhibited CCK-8-stimulated PKD-activation; however, stimulated PAK4 phosphorylation was only inhibited by 60%, demonstrating that it is both PKD-dependent and PKD-independent. PF-3758309 and LCH-7749944, inhibitors of PAK4, decreased CCK-8-stimulated PAK4 activation but not PAK2 activation. Each inhibited ERK1/2 activation and amylase release induced by CCK-8 or bombesin. These results show that PAK4 has an important role in modulating signal cascades activated by a number of GI hormones/neurotransmitters/GFs that have been shown to mediate both physiological/pathological responses in acinar cells. Therefore, in addition to the extensive studies on PAK4 in pancreatic cancer, PAK4 should also be considered an important signaling molecule for pancreatic acinar physiological responses and, in the future, should be investigated for a possible role in pancreatic acinar pathophysiological responses, such as in pancreatitis. NEW & NOTEWORTHY This study demonstrates that the only Group-II p21-activated kinase (PAK) in rat pancreatic acinar cells is PAK4, and thus differs from islets/pancreatic cancer. Both gastrointestinal hormones/neurotransmitters stimulating PLC and pancreatic growth factors activate PAK4. With cholecystokinin (CCK), activation is PKC-dependent/-independent, requires both CCK1-R affinity states, Src, p42/44, and p38 activation. PAK4 activation is required for CCK-mediated p42/44 activation/amylase release. These results show PAK4 plays an important role in mediating CCK physiological signal cascades and suggest it may be a target in pancreatic acinar diseases besides cancer.
Collapse
Affiliation(s)
- Irene Ramos-Alvarez
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - R T Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
37
|
LaPak KM, Vroom DC, Garg AA, Guan X, Hays JL, Song JW, Burd CE. Melanoma-associated mutants within the serine-rich domain of PAK5 direct kinase activity to mitogenic pathways. Oncotarget 2018; 9:25386-25401. [PMID: 29875996 PMCID: PMC5986637 DOI: 10.18632/oncotarget.25356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023] Open
Abstract
The overexpression and hyperactivity of p21-activated serine/threonine kinases (PAKs) is known to facilitate tumorigenesis; however, the contribution of cancer-associated PAK mutations to tumor initiation and progression remains unclear. Here, we identify p21-activated serine/threonine kinase 5 (PAK5) as the most frequently altered PAK family member in human melanoma. More than 60% of melanoma-associated PAK5 gene alterations are missense mutations, and distribution of these variants throughout the protein coding sequence make it difficult to distinguish oncogenic drivers from passengers. To address this issue, we stably introduced the five most common melanoma-associated PAK5 missense mutations into human immortalized primary melanocytes (hMELTs). While expression of these mutants did not promote single-cell migration or induce temozolomide resistance, a subset of variants drove aberrant melanocyte proliferation. These mitogenic mutants, PAK5 S364L and D421N, clustered within an unstructured, serine-rich domain of the protein and inappropriately activated ERK and PKA through kinase-independent and -dependent mechanisms, respectively. Together, our findings establish the ability of mutant PAK5 to enhance PKA and MAPK signaling in melanocytes and localize the engagement of mitogenic pathways to a serine-rich region of PAK5.
Collapse
Affiliation(s)
- Kyle M LaPak
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Dennis C Vroom
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Ayush A Garg
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA
| | - Xiangnan Guan
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - John L Hays
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA
| | - Christin E Burd
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA.,Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
38
|
Sesamol Inhibited Melanogenesis by Regulating Melanin-Related Signal Transduction in B16F10 Cells. Int J Mol Sci 2018; 19:ijms19041108. [PMID: 29642438 PMCID: PMC5979541 DOI: 10.3390/ijms19041108] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/05/2022] Open
Abstract
Melanin is synthesized through a series of interactions catalyzed by melanogenic enzymes such as tyrosinase, dopachrome tautomerase (tyrosinase-related protein-2; TRP-2), and tyrosinase-related protein-1 (TRP-1). Tyrosinase plays a key role in catalysing the initial and limiting steps of melanogenesis. The melanin that results from melanogenesis has the protective effect of absorbing ultraviolet radiation. However, overproduction of melanin, in addition to altering the appearance of skin, may lead to skin disorders such as melasma, solar lentigo, and postinflammatory hyperpigmentation. Previous studies have revealed that sesamol is a strong antioxidant and a free radical scavenger. In this study, we investigated the effects of sesamol on the regulation of melanogenesis and related mechanisms in B16F10 cells. The results indicated that sesamol inhibited tyrosinase activity and melanogenesis induced by α-melanocyte-stimulating hormone (α-MSH) in B16F10 melanoma cells. Sesamol decreased the protein level of melanocortin 1 receptor (MC1R), microphthalmia-associated transcription factor (MITF), tyrosinase, and TRP-1 by downregulating cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathways that had been activated by α-MSH. Sesamol increased glycogen synthase kinase 3 beta (GSK3β), protein kinase B (AKT), and extracellular signal-related kinase (ERK) phosphorylation, thus inhibiting the transcription of MITF. Sesamol also inhibited melanin synthesis and tyrosinase expression by modulating ERK, phosphoinositide 3-kinase (PI3K)/AKT, p38, and c-Jun amino-terminal kinase (JNK) signalling pathways. These results indicate that sesamol acted as a potent depigmenting agent.
Collapse
|
39
|
Azimi A, Caramuta S, Seashore-Ludlow B, Boström J, Robinson JL, Edfors F, Tuominen R, Kemper K, Krijgsman O, Peeper DS, Nielsen J, Hansson J, Egyhazi Brage S, Altun M, Uhlen M, Maddalo G. Targeting CDK2 overcomes melanoma resistance against BRAF and Hsp90 inhibitors. Mol Syst Biol 2018; 14:e7858. [PMID: 29507054 PMCID: PMC5836539 DOI: 10.15252/msb.20177858] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/15/2018] [Accepted: 02/01/2018] [Indexed: 12/19/2022] Open
Abstract
Novel therapies are undergoing clinical trials, for example, the Hsp90 inhibitor, XL888, in combination with BRAF inhibitors for the treatment of therapy-resistant melanomas. Unfortunately, our data show that this combination elicits a heterogeneous response in a panel of melanoma cell lines including PDX-derived models. We sought to understand the mechanisms underlying the differential responses and suggest a patient stratification strategy. Thermal proteome profiling (TPP) identified the protein targets of XL888 in a pair of sensitive and unresponsive cell lines. Unbiased proteomics and phosphoproteomics analyses identified CDK2 as a driver of resistance to both BRAF and Hsp90 inhibitors and its expression is regulated by the transcription factor MITF upon XL888 treatment. The CDK2 inhibitor, dinaciclib, attenuated resistance to both classes of inhibitors and combinations thereof. Notably, we found that MITF expression correlates with CDK2 upregulation in patients; thus, dinaciclib would warrant consideration for treatment of patients unresponsive to BRAF-MEK and/or Hsp90 inhibitors and/or harboring MITF amplification/overexpression.
Collapse
Affiliation(s)
- Alireza Azimi
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Stefano Caramuta
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Brinton Seashore-Ludlow
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Johan Boström
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan L Robinson
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Fredrik Edfors
- Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Rainer Tuominen
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kristel Kemper
- Division of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Oscar Krijgsman
- Division of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daniel S Peeper
- Division of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Johan Hansson
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Suzanne Egyhazi Brage
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Altun
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mathias Uhlen
- Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Gianluca Maddalo
- Science for Life Laboratory, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
40
|
Goldstein NB, Koster MI, Jones KL, Gao B, Hoaglin LG, Robinson SE, Wright MJ, Birlea SI, Luman A, Lambert KA, Shellman YG, Fujita M, Robinson WA, Roop DR, Norris DA, Birlea SA. Repigmentation of Human Vitiligo Skin by NBUVB Is Controlled by Transcription of GLI1 and Activation of the β-Catenin Pathway in the Hair Follicle Bulge Stem Cells. J Invest Dermatol 2017; 138:657-668. [PMID: 29054607 DOI: 10.1016/j.jid.2017.09.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/17/2017] [Accepted: 09/21/2017] [Indexed: 12/22/2022]
Abstract
Vitiligo repigmentation is a complex process in which the melanocyte-depleted interfollicular epidermis is repopulated by melanocyte precursors from hair follicle bulge that proliferate, migrate, and differentiate into mature melanocytes on their way to the epidermis. The strongest stimulus for vitiligo repigmentation is narrow-band UVB (NBUVB), but how the hair follicle melanocyte precursors are activated by UV light has not been extensively studied. To better understand this process, we developed an application that combined laser capture microdissection and subsequent whole transcriptome RNA sequencing of hair follicle bulge melanocyte precursors and compared their gene signatures to that of regenerated mature epidermal melanocytes from NBUVB-treated vitiligo skin. Using this strategy, we found up-regulation of TNC, GJB6, and THBS1 in the hair follicle bulge melanocytes and of TYR in the epidermal melanocytes of the NBUVB-treated vitiligo skin. We validated these results by quantitative real-time-PCR using NBUVB-treated vitiligo skin and untreated normal skin. We also identified that GLI1, a candidate stem cell-associated gene, is significantly up-regulated in the melanocytes captured from NBUVB-treated vitiligo bulge compared with untreated vitiligo bulge. These signals are potential key players in the activation of bulge melanocyte precursors during vitiligo repigmentation.
Collapse
Affiliation(s)
| | - Maranke I Koster
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado Aurora, Colorado, USA
| | - Kenneth L Jones
- Department of Hematology, University of Colorado, Aurora, Colorado, USA; Department of Pediatrics, University of Colorado, Aurora, Colorado, USA
| | - Bifeng Gao
- Sequencing and Microarray Core, University of Colorado, Aurora, Colorado, USA
| | - Laura G Hoaglin
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado Aurora, Colorado, USA
| | | | - Michael J Wright
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA
| | - Smaranda I Birlea
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA
| | - Abigail Luman
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA
| | - Karoline A Lambert
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA
| | - Yiqun G Shellman
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado Aurora, Colorado, USA; Denver Department of Veterans Affairs Medical Center, Denver, Colorado, USA
| | | | - Dennis R Roop
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado Aurora, Colorado, USA
| | - David A Norris
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado Aurora, Colorado, USA; Denver Department of Veterans Affairs Medical Center, Denver, Colorado, USA
| | - Stanca A Birlea
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA; Gates Center for Regenerative Medicine, University of Colorado Aurora, Colorado, USA.
| |
Collapse
|
41
|
Mamat N, Dou J, Lu X, Eblimit A, Haji Akber A. Isochlorogenic acid A promotes melanin synthesis in B16 cell through the β-catenin signal pathway. Acta Biochim Biophys Sin (Shanghai) 2017; 49:800-807. [PMID: 28910976 DOI: 10.1093/abbs/gmx072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Indexed: 01/07/2023] Open
Abstract
Isochlorogenic acid A, also called 3,5-dicaffeoylquinic acid (3,5-diCQA), is a widespread phenolic compound in the plant. Recent studies have shown that it has antioxidant and anti-inflammatory activity. In addition, oxidative stress and inflammation induced by solar ultraviolet radiation is a very significant reason for skin depigmentation. Therefore, in this study, we evaluated the effect of 3,5-diCQA on B16 cells and explored its molecular mechanism. Results showed that 3,5-diCQA upregulated intracellular melanin production in a time- and dose-dependent manner. Tyrosinase (TYR) activity was also increased after treatment with 3,5-diCQA in a dose-dependent manner. Expressions of TYR, TYR-related protein1, TYR-related protein2, and microphthalmia-associated transcription factor were upregulated in a dose-dependent manner after 48 h of treatment with 3,5-diCQA. Results also showed that 3,5-diCQA promoted the phosphorylation of Akt at Thr308 and glycogen synthase kinase-3β at Ser 9. Moreover, 3,5-diCQA increased the content of β-catenin in cell cytoplasm and nucleus by reducing the content of phosphorylated β-catenin (p-β-catenin). All these results suggest that 3,5-diCQA may mediate the acceleration of melanin synthesis by the β-catenin signal pathway.
Collapse
Affiliation(s)
- Nuramina Mamat
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Urumqi 830011, China
- University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Jun Dou
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Urumqi 830011, China
| | - Xueying Lu
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Urumqi 830011, China
| | - Aiden Eblimit
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aisa Haji Akber
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Urumqi 830011, China
| |
Collapse
|
42
|
Abstract
p21-Activated kinase 1 (PAK1) has attracted much attention as a potential therapeutic target due to its central role in many oncogenic signaling pathways, its frequent dysregulation in cancers and neurological disorders, and its tractability as a target for small-molecule inhibition. To date, several PAK1-targeting compounds have been developed as preclinical agents, including one that has been evaluated in a clinical trial. A series of ATP-competitive inhibitors, allosteric inhibitors and peptide inhibitors with distinct biochemical and pharmacokinetic properties represent useful laboratory tools for studies on the role of PAK1 in biology and in disease contexts, and could lead to promising therapeutic agents. Given the central role of PAK1 in vital signaling pathways, future clinical development of PAK1 inhibitors will require careful investigation of their safety and efficacy.
Collapse
|
43
|
Nam JH, Min JH, Kim WK, Yim S, Kim WS. Melanogenesis inhibition in mice using a low-fluence 1064-nm Q-switched neodymium-doped yttrium aluminum garnet laser: a pilot study. Lasers Med Sci 2017; 32:1063-1069. [PMID: 28429191 DOI: 10.1007/s10103-017-2208-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 04/06/2017] [Indexed: 01/13/2023]
Abstract
A low-fluence 1064-nm Q-switched neodymium-doped yttrium aluminum garnet laser, or laser toning, has yielded favorable outcomes in various benign pigmented disorders. However, the exact mechanism of action of laser toning has not been fully elucidated. We sought to determine the inhibitory effect of laser toning on melanogenesis and to assess how laser passes influence the outcomes. To produce perceptible pigmentation, nine HRM-2 melanin-possessing hairless mice were treated with ultraviolet (UV) B radiation on the dorsal skin. This was followed by zero, two, four, or six passes of laser toning twice in 2 weeks on each designated quadrant. The spectrophotometric values and pigmentation-related protein expressions were measured. Pigment changes were found in the mice skin using the Fontana-Masson stain for histopathological analysis. Four- and six-pass laser toning significantly improved the lightness compared to that in the unirradiated control (p < 0.002). The Fontana-Masson stain showed that melanin was considerably decreased in laser-irradiated skin. As the number of laser passes increased, the expression of tyrosinase decreased (p < 0.008). The following parameters also decreased in proportion to the number of laser passes: MITF, TRP-1, TRP-2, p-ERK, and p-Akt. In contrast, TGF-β increased in proportion to the number of laser passes. However, the changes in these six proteins were not statistically significant. Our study demonstrates that laser toning improves skin pigmentation with increased number of passes in a dose-dependent manner. This effect is mediated by tyrosinase inhibition.
Collapse
Affiliation(s)
- Jae-Hui Nam
- Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Joon Hong Min
- Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Wang-Kyun Kim
- College of Pharmacy, Yonsei University, Incheon, South Korea
| | - Sunmin Yim
- Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Won-Serk Kim
- Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea. .,Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
44
|
Bai M, Zhang M, Long F, Yu N, Zeng A, Zhao R. Circulating microRNA-194 regulates human melanoma cells via PI3K/AKT/FoxO3a and p53/p21 signaling pathway. Oncol Rep 2017; 37:2702-2710. [PMID: 28358423 PMCID: PMC5428795 DOI: 10.3892/or.2017.5537] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/07/2017] [Indexed: 12/18/2022] Open
Abstract
In the present study, we analyzed the role of microRNA-194 circulating regulated human melanoma cell growth. We found that microRNA-194 expression was markedly suppressed in human melanoma patients, compared with negative control group. Next, disease-free survival (DFS) and overall survival (OS) of high expression in human melanoma patients was higher than those of low expression in human melanoma patients. MicroRNA-194 overexpression inhibited cell proliferation, induced apoptosis, increased caspase-3/-9 activities and promoted Bax/Bcl-2 of human melanoma cells. Furthermore, microRNA-194 overexpression also suppressed PI3K/AKT/FoxO3a signaling pathway and induced p53/p21 signaling pathway. PI3K inhibitor, suppressed PI3K, phosphorylation-AKT, FoxO3a protein expression and increased the effects of microRNA-194 overexpression on cell growth, apoptosis, caspase-3/-9 activities and Bax/Bcl-2 protein expression of human melanoma cells through the induction of p53/p21 signaling pathway. Taken together, these data indicate that circulating microRNA-194 regulated human melanoma cells via PI3K/AKT/FoxO3a and p53/p21 signaling pathway.
Collapse
Affiliation(s)
- Ming Bai
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Mingzi Zhang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Fei Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Nanze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Ang Zeng
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| | - Ru Zhao
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|
45
|
Oh CT, Kwon TR, Choi EJ, Kim SR, Seok J, Mun SK, Yoo KH, Choi YS, Choi SY, Kim BJ. Inhibitory effect of 660-nm LED on melanin synthesis inin vitroandin vivo. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2016; 33:49-57. [DOI: 10.1111/phpp.12276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 01/04/2023]
Affiliation(s)
- Chang Taek Oh
- Department of Dermatology; Chung-Ang University College of Medicine; Seoul Korea
- Department of Medicine; Graduate School; Chung-Ang University; Seoul Korea
| | - Tae-Rin Kwon
- Department of Dermatology; Chung-Ang University College of Medicine; Seoul Korea
| | - Eun Ja Choi
- Department of Dermatology; Chung-Ang University College of Medicine; Seoul Korea
| | - Soon Re Kim
- Department of Dermatology; Chung-Ang University College of Medicine; Seoul Korea
| | - Joon Seok
- Department of Dermatology; Chung-Ang University College of Medicine; Seoul Korea
| | - Seog Kyun Mun
- Department of Otorhinolaryngology; Chung-Ang University College of Medicine; Seoul Korea
| | - Kwang Ho Yoo
- Department of Dermatology; College of Medicine; Catholic Kwandong University; International St. Mary's Hospital; Incheon Korea
| | - Yeon Shik Choi
- Medical IT Convergence Research Center; Korea Electronics Technology Institute; Gyeonggi-do Korea
| | - Sun Young Choi
- Department of Dermatology; Chung-Ang University College of Medicine; Seoul Korea
| | - Beom Joon Kim
- Department of Dermatology; Chung-Ang University College of Medicine; Seoul Korea
- Department of Medicine; Graduate School; Chung-Ang University; Seoul Korea
| |
Collapse
|
46
|
Nicholas NS, Pipili A, Lesjak MS, Ameer SM, Geh JLC, Healy C, Ross ADM, Parsons M, Nestle FO, Lacy KE, Wells CM. PAK4 suppresses PDZ-RhoGEF activity to drive invadopodia maturation in melanoma cells. Oncotarget 2016; 7:70881-70897. [PMID: 27765920 PMCID: PMC5342596 DOI: 10.18632/oncotarget.12282] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/14/2016] [Indexed: 01/19/2023] Open
Abstract
Cancer cells are thought to use actin rich invadopodia to facilitate matrix degradation. Formation and maturation of invadopodia requires the co-ordained activity of Rho-GTPases, however the molecular mechanisms that underlie the invadopodia lifecycle are not fully elucidated. Previous work has suggested a formation and disassembly role for Rho family effector p-21 activated kinase 1 (PAK1) however, related family member PAK4 has not been explored. Systematic analysis of isoform specific depletion using in vitro and in vivo invasion assays revealed there are differential invadopodia-associated functions. We consolidated a role for PAK1 in the invadopodia formation phase and identified PAK4 as a novel invadopodia protein that is required for successful maturation. Furthermore, we find that PAK4 (but not PAK1) mediates invadopodia maturation likely via inhibition of PDZ-RhoGEF. Our work points to an essential role for both PAKs during melanoma invasion but provides a significant advance in our understanding of differential PAK function.
Collapse
Affiliation(s)
- Nicole S. Nicholas
- Division of Cancer Studies, New Hunts House, Guy's Campus, King's College London, London, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre, Guy's and St Thomas's Hospital and King's College London, London, UK
| | - Aikaterini Pipili
- Division of Cancer Studies, New Hunts House, Guy's Campus, King's College London, London, UK
- National Institute for Health Research (NIHR) Biomedical Research Centre, Guy's and St Thomas's Hospital and King's College London, London, UK
| | - Michaela S. Lesjak
- Division of Cancer Studies, New Hunts House, Guy's Campus, King's College London, London, UK
| | - Simon M. Ameer
- Division of Cancer Studies, New Hunts House, Guy's Campus, King's College London, London, UK
| | - Jenny L. C. Geh
- Department of Plastic and Reconstructive Surgery, Guy's and St Thomas' Hospital, London, UK
| | - Ciaran Healy
- Department of Plastic and Reconstructive Surgery, Guy's and St Thomas' Hospital, London, UK
| | | | - Maddy Parsons
- Randall Division, New Hunts House, Guy's Campus, King's College London, London, UK
| | - Frank O. Nestle
- National Institute for Health Research (NIHR) Biomedical Research Centre, Guy's and St Thomas's Hospital and King's College London, London, UK
- St Johns Institute of Dermatology, Guy's Hospital, London, UK
| | - Katie E. Lacy
- National Institute for Health Research (NIHR) Biomedical Research Centre, Guy's and St Thomas's Hospital and King's College London, London, UK
- St Johns Institute of Dermatology, Guy's Hospital, London, UK
| | - Claire M. Wells
- Division of Cancer Studies, New Hunts House, Guy's Campus, King's College London, London, UK
| |
Collapse
|
47
|
Be Tu PT, Nguyen BCQ, Tawata S, Yun CY, Kim EG, Maruta H. The serum/PDGF-dependent "melanogenic" role of the minute level of the oncogenic kinase PAK1 in melanoma cells proven by the highly sensitive kinase assay. Drug Discov Ther 2016; 10:314-322. [PMID: 27746419 DOI: 10.5582/ddt.2016.01062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We previously demonstrated that the oncogenic kinase PAK4, which both melanomas and normal melanocytes express at a very high level, is essential for their melanogenesis. In the present study, using the highly sensitive "Macaroni-Western" (IP-ATP-Glo) kinase assay, we investigated the melanogenic potential of another oncogenic kinase PAK1, which melanoma (B16F10) cells express only at a very minute level. After transfecting melanoma cells with PAK1-shRNA for silencing PAK1 gene, melanin content, tyrosinase activity, and kinase activity of PAK1 were compared between the wild-type and transfectants. We found that (i) PAK1 is significantly activated by melanogenic hormones such as IBMX (3-isobutyl-1-methyl xanthine) and α-MSH (melanocyte-stimulating hormone), (ii) silencing the endogenous PAK1 gene in melanoma cells through PAK1-specific shRNA reduces both melanin content and tyrosinase activity in the presence of both serum and melanogenic hormones to the basal level, (iii) the exogenously added wild-type PAK1 in the melanoma cells boosts the α-MSH-inducible melanin level by several folds without affecting the basal, and (iv) α-MSH/IBMX-induced melanogenesis hardly takes place in the absence of either serum or PAK1, clearly indicating that PAK1 is essential mainly for serum- and α-MSH/IBMX-dependent melanogenesis, but not the basal, in melanoma cells. The outcome of this study might provide the first scientific basis for explaining why a wide variety of herbal PAK1-blockers such as CAPE (caffeic acid phenethyl ester), curcumin and shikonin in cosmetics are useful for skin-whitening.
Collapse
|
48
|
Downregulation of melanogenesis: drug discovery and therapeutic options. Drug Discov Today 2016; 22:282-298. [PMID: 27693716 DOI: 10.1016/j.drudis.2016.09.016] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/11/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023]
Abstract
Melanin, primarily responsible in humans for hair, eye and skin pigmentation, is produced by melanocytes through a process called melanogenesis. However, the abnormal accumulation of melanin causes dermatological problems such as café-au-lait macules ephelides (freckles), solar lentigo (age spots) and melasma, as well as cancer and vitiligo. Hence the regulation of melanogenesis is very important for treating hyperpigmentary disorders. Numerous antimelanogenic agents that target tyrosinase activity and/or stability, melanosome maturation, transfer and trafficking, or melanogenesis-related signaling pathways have been developed. This article reviews recent advances in research and development of human tyrosinase and melanogenesis-related signaling pathway inhibitors. Attempts have been made to provide a complete description of the mechanism of action of inhibitors on various melanogenesis signaling pathways.
Collapse
|
49
|
Kim YM, Cho SE, Seo YK. The activation of melanogenesis by p-CREB and MITF signaling with extremely low-frequency electromagnetic fields on B16F10 melanoma. Life Sci 2016; 162:25-32. [PMID: 27543340 DOI: 10.1016/j.lfs.2016.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/28/2016] [Accepted: 08/14/2016] [Indexed: 10/21/2022]
Abstract
Melanin in the skin determines the skin color, and decreased melanin causes many hypopigmentation disorders and increased damage to skin by ultraviolet B (UVB) light irradiation. Here, we stimulate melanogenesis in B16F10 melanoma cells by using specific frequencies of ELF-EMFs. In this study, we focus on the melanogenesis of EMF-ELFs and find that 60-75Hz ELF-EMFs upregulate melanin synthesis by stimulated expression of tyrosinase and TRP-1 through inhibition of phosphorylation ERK, activation of CREB, and MITF up-regulation in B16F10 melanoma cells. The results show that 60-75Hz ELF-EMFs significantly increase secreted melanin, cellular melanin content, and tyrosinase activity, and the cell mitochondria activity, cell viability, and cell membrane condition are unchanged. Furthermore, the protein expression level of MITF and p-CREB signaling pathway are significantly increased. Moreover, 60Hz ELF-EMFs reduce the phosphorylate of ERK in B16F10 melanoma cells. These findings indicate that stimulation of melanogenesis by using ELF-EMFs has therapeutic potential for treating hypopigmentation disorders such as vitiligo.
Collapse
Affiliation(s)
- Yu-Mi Kim
- Department of Medical Biotechnology (BK21 Plus team), Dongguk University, Seoul 100-715, Republic of Korea
| | - Sang-Eun Cho
- Department of Medical Biotechnology (BK21 Plus team), Dongguk University, Seoul 100-715, Republic of Korea
| | - Young-Kwon Seo
- Department of Medical Biotechnology (BK21 Plus team), Dongguk University, Seoul 100-715, Republic of Korea.
| |
Collapse
|
50
|
Sun L, Pan S, Yang Y, Sun J, Liang D, Wang X, Xie X, Hu J. Toll-like receptor 9 regulates melanogenesis through NF-κB activation. Exp Biol Med (Maywood) 2016; 241:1497-504. [PMID: 27075928 DOI: 10.1177/1535370216642529] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/01/2016] [Indexed: 12/22/2022] Open
Abstract
Toll-like receptors play essential roles in the modulation of melanogenesis, which has been implicated in the pathogenesis of hyper- or hypopigmentation-related diseases. However, little is currently known regarding the role of TLR9 in human melanocytes. TLR9 recognizes unmethylated cytosine-phosphate-guanine motif-containing oligodeoxynucleotides, and cytosine-phosphate-guanine ODN2006 acts as an hTLR9 agonist. The aim of the present study was to investigate the effect of cytosine-phosphate-guanine ODN2006 on melanogenesis in the human melanocyte cells. MTT assay and enzyme-linked immunosorbent assay indicated that ODN2006 stimulation (0, 1, 5, 10 µM) dose-dependently reduced cell viability and promoted the production of TNF-α, IL-6, and IL-8 in PIG1 melanocytes. The mRNA and protein levels of PMEL and TYRosinase were elevated at 6 h, and then decreased 24 h later, but were significantly augmented 72 h later following ODN2006 stimulation; whereas, TLR9 expressions were time-dependently increased in PIG1 melanocytes. Moreover, ultraviolet B irradiation combined with ODN2006 stimulation induced much more significant enhancement of PMEL, TYRosinase, and TLR9 mRNA and protein after three days in PIG1 melanocytes, and the similar results were obtained using the primary human melanocytes. The expression of TLR9 protein was down-regulated by TLR9 siRNA transfection. ODN2006 had an additive effect on ultraviolet B-induced melanogenesis and PMEL expression, as well as NF-κB activation, which could be blocked by TLR9 knockdown, the NF-κB specific inhibitor PDTC, or the TBK1 inhibitor BX795. Collectively, we concluded that TLR9 regulates melanogenesis through NF-κB activation, suggesting that TLR9 may play a role in microbial-induced melanogenesis.
Collapse
Affiliation(s)
- Lijun Sun
- Shaanxi Provincial Key Laboratory of Infectious and Immunological Diseases, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Shengjun Pan
- Department of Nursing, Huanghuai University, Zhumadian 463000, China
| | - Yuejin Yang
- Kaifeng Center for Disease Control and Prevention, Kaifeng 475004, China
| | - Jingying Sun
- Shaanxi Provincial Key Laboratory of Infectious and Immunological Diseases, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Daoyan Liang
- Shaanxi Provincial Key Laboratory of Infectious and Immunological Diseases, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Xin Wang
- Shaanxi Provincial Key Laboratory of Infectious and Immunological Diseases, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, China Department of Translational Medicine, Institute of Integrated Medical Information, Xi'an 710016, China
| | - Jun Hu
- Shaanxi Provincial Key Laboratory of Infectious and Immunological Diseases, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| |
Collapse
|