1
|
Liu J, Chen Z, Teng Z, Tan Y, Qin Y, Chen H, Liu M, Chen J, Wu H, Chen G, Huang J. Chronic inflammation response as a key factor in polycystic ovary syndrome among patients with bipolar disorder. J Affect Disord 2025; 377:264-274. [PMID: 39988136 DOI: 10.1016/j.jad.2025.02.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND This study aimed to investigate serum inflammatory factor levels of polycystic ovary syndrome (PCOS) in female patients with bipolar disorder (BD) to explore the related inflammatory molecular mechanisms preliminarily. METHODS The study recruited 72 female drug-naïve patients with BD and 98 female healthy controls (HCs). Demographic information, menstrual cycles, sex hormone levels, and ovarian ultrasound data were collected from them. Additionally, their serum inflammatory factor levels and the proteomics of peripheral blood mononuclear cells were analyzed. RESULTS The levels of interleukin (IL)-8 and IL-13 were significantly higher in patients with BD than in HCs (p < 0.05), and the IL-8 level was higher in BD patients with PCOS than in those without (adjusted p = 0.07). Bioinformatics analysis revealed that downregulated genes with significant differences between the two groups were all involved in immune-inflammatory-related pathways, and the expression of downregulated genes BTN3A2, MAP2K5, JCHAIN-B, and DMAP1 showed substantial differences and consistent trends between the two groups. CONCLUSION IL-8-related chronic inflammatory response is closely associated with PCOS in BD patients, and genes such as BTN3A2 may mediate this chronic inflammatory response by negatively regulating the abnormal differentiation of T helper 17 cells, serving as one of the mechanisms underlying its pathogenesis.
Collapse
Affiliation(s)
- Jieyu Liu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhuohui Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Xiangya Road, Changsha 410008, China
| | - Ziwei Teng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yan Tan
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yue Qin
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Haiyu Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Minghui Liu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jindong Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Haishan Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Gong Chen
- Department of Anesthesiology, The Maternal and Child Health Hospital of Hunan Province, Changsha 410010, Hunan, China.
| | - Jing Huang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Department of Psychiatry, The Third Peoples Hospital of Tongren, Tongren 554300, Guizhou, China.
| |
Collapse
|
2
|
Balan I, Lopez AG, Morrow AL. Multiplex Immunoassay for Biomarker Profiling of Whole Blood Cell Lysates and Supernatants and Pathogen Response in Neat Whole Blood Cultures. Methods Protoc 2025; 8:46. [PMID: 40407473 PMCID: PMC12101426 DOI: 10.3390/mps8030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/26/2025] Open
Abstract
Replicating in vivo conditions is essential for understanding immune responses and measuring immune biomarkers in blood. Sampling immune biomarkers in plasma or serum often fails to detect disease-relevant signals, possibly because these markers are sequestered in immune cells or extracellular vesicles. Furthermore, traditional whole blood cultures using external media may not accurately mimic the physiological environment of blood cells. To address these limitations, we developed a strategy using whole blood cell lysates and supernatants to optimize biomarker detection. Additionally, we employed neat whole blood culture methods, preserving the natural cellular and biochemical environment to assess sensitivity to immune modulators, such as lipopolysaccharide (LPS). This cost-effective approach minimizes variability and contamination risks. By utilizing Luminex multiplex immunoassays, we profiled immune biomarkers with higher sensitivity and efficiency than traditional ELISAs. Blood samples from individuals with high alcohol consumption validated our method by assessing biomarker levels before and after LPS stimulation, providing insights into intracellular responses and inflammatory pathways. This method enhances our understanding of inflammatory processes in blood cells, demonstrating the advantages of cell lysates, supernatants, and advanced multiplex assays in immunological research.
Collapse
Affiliation(s)
- Irina Balan
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Alejandro G. Lopez
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Psychiatry, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Mitra S, Jang HJ, Kuncheria A, Kang SW, Choi JM, Shim JS, Lee C, Ranchod P, Jindra P, Ramineni M, Patel M, Ripley RT, Groth SS, Blackmon SH, Burt BM, Lee HS. Soluble mesothelin-related peptide as a prognosticator in pleural mesothelioma patients receiving checkpoint immunotherapy. J Thorac Cardiovasc Surg 2025; 169:1082-1095.e4. [PMID: 39395787 PMCID: PMC11949723 DOI: 10.1016/j.jtcvs.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/27/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Immune checkpoint therapy (ICT) has significantly impacted the treatment of malignant pleural mesothelioma (MPM). Despite some promising results from combination therapies, nearly half of MPM patients do not benefit, underscoring the urgent need for reliable predictive biomarkers. This study assesses the prognostic value of serum soluble mesothelin-related peptide (SMRP) and PD-L1 levels in MPM patients receiving ICT. METHODS We conducted a retrospective analysis of 125 MPM patients treated with ICT by measuring pre-ICT serum levels of SMRP and PD-L1. We also examined the correlation of these serum levels with tumor mRNA expressions of mesothelin and PD-L1. Both univariable and multivariable Cox regression analyses were used to determine independent prognosticators for overall survival (OS). A prospective ICT clinical trial and our historical cohort were included for validation. RESULTS Seventy-seven patients (62%) were treated with either anti-PD-(L)1 monotherapy, and the remaining 38% received combination ICT. Higher pre-ICT SMRP levels were observed in epithelioid MPM compared to nonepithelioid MPM. Serum PD-L1 levels did not differ significantly between the different histologic groups. Univariable analysis identified durable clinical benefit, development of immune-related adverse events, and SMRP levels as significantly associated with OS. Multivariable analysis confirmed SMRP as an independent prognostic factor, with lower levels (≤1.35 nmol/L) correlating with improved OS. The association of high SMRP with worse prognosis was validated in the prospective ICT clinical trial cohort and not in our historical cohort treated without ICT. CONCLUSIONS SMRP is a promising serum biomarker for predicting survival in MPM patients treated with ICT and warrants prospective investigation.
Collapse
Affiliation(s)
- Sonali Mitra
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Hee-Jin Jang
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Allen Kuncheria
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Sung Wook Kang
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Jong Min Choi
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Ji Seon Shim
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Claire Lee
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Priyanka Ranchod
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Peter Jindra
- Immune Evaluation Laboratory, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Maheshwari Ramineni
- Department of Pathology, Baylor College of Medicine, Houston, Tex; Dan L Ducan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Tex
| | - Meera Patel
- Dan L Ducan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Tex; Division of Hemato-Oncology, Department of Medicine, Baylor College of Medicine, Houston, Tex
| | - R Taylor Ripley
- Dan L Ducan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Tex; David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Shawn S Groth
- Dan L Ducan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Tex; David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Shanda H Blackmon
- Dan L Ducan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Tex; David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Bryan M Burt
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex; Division of Thoracic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, Calif.
| | - Hyun-Sung Lee
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex; Division of Hemato-Oncology, Department of Medicine, Baylor College of Medicine, Houston, Tex; David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex.
| |
Collapse
|
4
|
Liu Y, Liu X, Che P, Wang Y, Piao Z, Wang Y, Cai L, Xing M, Xu Y, Sun W, Wang Y, Zhang N. A cytometric bead array for the measurement of plasma biomarker levels in patients with Alzheimer's disease. Sci Rep 2025; 15:9767. [PMID: 40118895 PMCID: PMC11928653 DOI: 10.1038/s41598-024-83919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/18/2024] [Indexed: 03/24/2025] Open
Abstract
Identifying plasma biomarkers for Alzheimer's disease (AD) has garnered strong interest. In this study, a cytometric bead array (CBA) method for measuring the levels of amyloid-β (Aβ) peptides and phosphorylated tau (P-tau) was evaluated. Fifty patients with cognitive impairment (CI) and 22 cognitively unimpaired (CU) controls were recruited. CI patients were classified into Aβ + and Aβ - groups according to amyloid positron emission tomography (PET) scan results. Biomarker levels in the plasma of all participants and in the cerebrospinal fluid (CSF) of 28 CI patients were measured via CBA. Plasma P-tau181 levels were greatest in the Aβ + CI group and showed excellent performance in differentiating Aβ + CI patients from CU controls. The plasma and CSF levels of P-tau181 were correlated with each other and had similar diagnostic performance for distinguishing between Aβ + CI patients and Aβ- CI patients. Overall, CBA is a potential cost-effective method for measuring plasma biomarkers, particularly P-tau181, in AD patients.
Collapse
Affiliation(s)
- Ye Liu
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Tianjin Neurological Institute, Ministry of Education, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xin Liu
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
- Department of Neurology, Affiliated Hospital of Hebei University, Hebei, China
| | - Ping Che
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Yu Wang
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Zhiyan Piao
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Ying Wang
- PET/CT Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Cai
- PET/CT Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengya Xing
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Yanwei Xu
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Wenhao Sun
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Yue Wang
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Nan Zhang
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
- Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Tianjin Neurological Institute, Ministry of Education, Variations and Regeneration of Nervous System, Tianjin, China.
| |
Collapse
|
5
|
Chen S, Nguyen TD, Lee KZ, Liu D. Ex vivo T cell differentiation in adoptive immunotherapy manufacturing: Critical process parameters and analytical technologies. Biotechnol Adv 2024; 77:108434. [PMID: 39168355 DOI: 10.1016/j.biotechadv.2024.108434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 08/01/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Adoptive immunotherapy shows great promise as a treatment for cancer and other diseases. Recent evidence suggests that the therapeutic efficacy of these cell-based therapies can be enhanced by the enrichment of less-differentiated T cell subpopulations in the therapeutic product, giving rise to a need for advanced manufacturing technologies capable of enriching these subpopulations through regulation of T cell differentiation. Studies have shown that modifying certain critical process control parameters, such as cytokines, metabolites, amino acids, and culture environment, can effectively manipulate T cell differentiation in ex vivo cultures. Advanced process analytical technologies (PATs) are crucial for monitoring these parameters and the assessment of T cell differentiation during culture. In this review, we examine such critical process parameters and PATs, with an emphasis on their impact on enriching less-differentiated T cell population. We also discuss the limitations of current technologies and advocate for further efforts from the community to establish more stringent critical process parameters (CPPs) and develop more at-line/online PATs that are specific to T cell differentiation. These advancements will be essential to enable the manufacturing of more efficacious adoptive immunotherapy products.
Collapse
Affiliation(s)
- Sixun Chen
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, 138668, Singapore
| | - Tan Dai Nguyen
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, 138668, Singapore
| | - Kang-Zheng Lee
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, 138668, Singapore
| | - Dan Liu
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, 138668, Singapore.
| |
Collapse
|
6
|
Charlès LM, von Reiterdank IF, Lancia HH, Shamlou AA, Berkane Y, Rosales I, Mink van der Molen AB, Coert J, Cetrulo CL, Lellouch AG, Uygun K. Effect of Subnormothermic Machine Perfusion on the Preservation of Vascularized Composite Allografts After Prolonged Warm Ischemia. Transplantation 2024; 108:2222-2232. [PMID: 38722685 PMCID: PMC11518650 DOI: 10.1097/tp.0000000000005035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
BACKGROUND Warm ischemia time (WIT) and ischemia-reperfusion injury are limiting factors for vascularized composite allograft (VCA) transplantation. Subnormothermic machine perfusion (SNMP) has demonstrated the potential to extend WIT in organ transplantation. This study evaluates the effect of SNMP on VCA viability after prolonged WIT. METHODS Rat hindlimbs underwent WIT for 30, 45, 60, 120, 150, or 210 min, followed by 3-h SNMP. Monitoring of perfusion parameters and outflow determined the maximum WIT compatible with limb viability after SNMP. Thereafter, 2 groups were assessed: a control group with inbred transplantation (Txp) after 120 min of WIT and an experimental group that underwent WIT + SNMP + Txp. Graft appearance, blood gas, cytokine levels, and histology were assessed for 21 d. RESULTS Based on potassium levels, the limit of WIT compatible with limb viability after SNMP is 120 min. Before this limit, SNMP reduces potassium and lactate levels of WIT grafts to the same level as fresh grafts. In vivo, the control group presented 80% graft necrosis, whereas the experimental group showed no necrosis, had better healing ( P = 0.0004), and reduced histological muscle injury ( P = 0.012). Results of blood analysis revealed lower lactate, potassium levels, and calcium levels ( P = 0.048) in the experimental group. Both groups presented an increase in interleukin (IL)-10 and IL-1b/IL-1F2 with a return to baseline after 7 to 14 d. CONCLUSIONS Our study establishes the limit of WIT compatible with VCA viability and demonstrates the effectiveness of SNMP in restoring a graft after WIT ex vivo and in vivo, locally and systemically.
Collapse
Affiliation(s)
- Laura M. Charlès
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Shriners Children’s Boston, Boston, MA, USA
| | - Irina Filz von Reiterdank
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Shriners Children’s Boston, Boston, MA, USA
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hyshem H Lancia
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Shriners Children’s Boston, Boston, MA, USA
| | - Austin Alana Shamlou
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Shriners Children’s Boston, Boston, MA, USA
| | - Yanis Berkane
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Shriners Children’s Boston, Boston, MA, USA
- Department of Plastic, Reconstructive and Aesthetic Surgery, Rennes University Hospital Center (CHU de Rennes), Rennes University, Rennes, France
| | - Ivy Rosales
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Aebele B. Mink van der Molen
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J.H Coert
- Department of Plastic, Reconstructive and Hand Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Curtis L Cetrulo
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Shriners Children’s Boston, Boston, MA, USA
| | - Alexandre G Lellouch
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
- Shriners Children’s Boston, Boston, MA, USA
| | - Korkut Uygun
- Harvard Medical School, Boston, MA
- Shriners Children’s Boston, Boston, MA, USA
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
7
|
Zhang H, Hu F, Peng O, Huang Y, Hu G, Ashraf U, Cen M, Wang X, Xu Q, Zou C, Wu Y, Zhu B, Li W, Li Q, Li C, Xue C, Cao Y. Multi-Omics Analysis by Machine Learning Identified Lysophosphatidic Acid as a Biomarker and Therapeutic Target for Porcine Reproductive and Respiratory Syndrome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402025. [PMID: 38976572 PMCID: PMC11425916 DOI: 10.1002/advs.202402025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/16/2024] [Indexed: 07/10/2024]
Abstract
As a significant infectious disease in livestock, porcine reproductive and respiratory syndrome (PRRS) imposes substantial economic losses on the swine industry. Identification of diagnostic markers and therapeutic targets has been a focal challenge in PPRS prevention and control. By integrating metabolomic and lipidomic serum analyses of clinical pig cohorts through a machine learning approach with in vivo and in vitro infection models, lysophosphatidic acid (LPA) is discovered as a serum metabolic biomarker for PRRS virus (PRRSV) clinical diagnosis. PRRSV promoted LPA synthesis by upregulating the autotaxin expression, which causes innate immunosuppression by dampening the retinoic acid-inducible gene I (RIG-I) and type I interferon responses, leading to enhanced virus replication. Targeting LPA demonstrated protection against virus infection and associated disease outcomes in infected pigs, indicating that LPA is a novel antiviral target against PRRSV. This study lays a foundation for clinical prevention and control of PRRSV infections.
Collapse
Affiliation(s)
- Hao Zhang
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Fangyu Hu
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ouyang Peng
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yihui Huang
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guangli Hu
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Usama Ashraf
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, 94305, USA
| | - Meifeng Cen
- Bioinformatics and Omics Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaojuan Wang
- Bioinformatics and Omics Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qiuping Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Chuangchao Zou
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yu Wu
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd, Yunfu, 527439, China
| | - Bibo Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qunhui Li
- Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Wen's Foodstuff Group Co. Ltd, Yunfu, 527439, China
| | - Chujun Li
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chunyi Xue
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yongchang Cao
- Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
8
|
Gounaridi MI, Souvaliotis N, Vontetsianos A, Chynkiamis N, Lampsas S, Theofilis P, Anastasiou A, Goliopoulou A, Tzima I, Katsarou O, Bakakos P, Vavouranakis M, Koulouris N, Siasos G, Oikonomou E. The Impact of Cardiopulmonary Rehabilitation on Ventriculoarterial Coupling in Post-Coronavirus Disease-2019 Patients. J Cardiopulm Rehabil Prev 2024; 44:361-368. [PMID: 39185908 DOI: 10.1097/hcr.0000000000000885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
PURPOSE Coronavirus disease-2019 (COVID-19) affects the cardiovascular system even after the acute phase of the disease. Cardiopulmonary rehabilitation may improve post-COVID-19 symptoms. This study aims to evaluate the impact of a cardiopulmonary rehabilitation program after acute COVID-19 on arterial stiffness, left ventricular function, and ventriculoarterial coupling (VAC). METHODS Forty-eight adults were examined 1 (T0) and 3-mo (T1) following recovery from COVID-19 and randomized 1:1 to participate or not in a 3-mo rehabilitation program. Matched subjects were enrolled as a non-COVID-19 group. Arterial stiffness was evaluated by carotid-femoral pulse wave velocity (PWV). Left ventricular (LV) systolic performance was evaluated with global longitudinal strain (GLS). The PWV/LV-GLS ratio was calculated as an index of VAC. High-sensitivity C reactive protein (hs-CRP) was measured. RESULTS At T0, convalescent patients with COVID-19 had impaired PWV ( P = .001) and reduced VAC ( P = .001) compared to non-COVID-19 subjects. PWV (8.15 ± 1.37 to 6.55 ± 0.98 m/sec, P < .001) and LV-GLS (-19.67 ± 1.98 to -21.3 ± 1.93%, P < .001) improved only in convalescent patients with COVID-19 undergoing rehabilitation. Similarly, VAC was only improved in the rehabilitation group (-0.42 ± 0.11 to -0.31 ± 0.06 m · sec -1 ·% -1 , P < .001). A significant improvement in VO 2max was noted after rehabilitation (15.70 [13.05, 21.45] to 18.30 [13.95, 23.75] ml · kg -1 · min -1 , P = .01). Finally, hs-CRP was improved in both groups with a significantly greater improvement in the rehabilitation group. CONCLUSION A 3-mo rehabilitation program in convalesced patients with COVID-19 enhances the recovery of arterial stiffness, left ventricular function, and VAC, highlighting the beneficial mechanisms of rehabilitation in this patient population.
Collapse
Affiliation(s)
- Maria-Ioanna Gounaridi
- Author Affiliations: Department of Cardiology, "Sotiria" Chest Disease Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece (Drs Gounaridi, Souvaliotis, Lampsas, Anastasiou, Goliopoulou, Tzima, Katsarou, Vavouranakis, Siasos, and Oikonomou); Rehabilitation Unit-1st Respiratory Medicine Department, "Sotiria" Chest Disease Hospital, National and Kapodistrian University of Athens, Greece (Dr Vontetsianos, Chynkiamis, Bakakos, and Koulouris); 1st Department of Cardiology, "Hippokration" General Hospital of Athens, National and Kapodistrian University of Athens, Medical School, Athens, Greece (Dr Theofilis)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhu C, Cheng Y, Tang Y, Wu H, Liu Z. Changes of aqueous humor cytokine profiles of patients with high intraocular pressure after PPV for retinal detachment. Sci Rep 2024; 14:13044. [PMID: 38844441 PMCID: PMC11156964 DOI: 10.1038/s41598-024-61913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
High intraocular pressure (IOP) is one of the early complications after pars plana vitrectomy (PPV), which may cause glaucoma and poor visual prognosis secondary to surgery. Proliferative vitreoretinopathy (PVR) is one of the complications of retinal detachment (RD) and is the main reason for the poor prognosis, which is related to different kinds of cytokines. It's essential for the basic mechanism to analyze the relative aqueous humor cytokine profiles with IOP after PPV for RD. In this study, we have collected the aqueous humor of 16 patients and qualified 27 cytokines using Luminex and compared biomarkers with the high IOP group and the normal group. As a result, the concentrations of VEGF, IL-6, FGF2, and G-CSF upregulated significantly (P < 0.05), while VEGFR2 downregulated significantly (P < 0.05) in the high IOP group. IL-6 was positively correlated with high IOP (r = 0.561, P = 0.041). Meanwhile, the concentrations of IL-6 (r = 0.543, P = 0.03), IL-5 (r = 0.576, P = 0.019), IL-15 (r = 0.614, P = 0.011), IL-4 (r = 0.517, P = 0.04), ICAM-1 (r = 0.611, P = 0.012), and G-CSF (r = 0.636, P = 0.008) were significantly associated with preoperative PVR classification, and the aqueous humor levels of IL-4 (r = 0.567, P = 0.022), HGF (r = 0.701, P = 0.005), and MCP-1 (r = 0.565, P = 0.035) are significant relative to laser points. Hence, cytokines might potentially be the therapeutic target of high IOP after PPV.
Collapse
Affiliation(s)
- Chenchen Zhu
- Eye Center of Second Hospital, Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130041, China
| | - Yan Cheng
- Eye Center of Second Hospital, Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130041, China
| | - Yi Tang
- Eye Center of Second Hospital, Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130041, China
| | - Hong Wu
- Eye Center of Second Hospital, Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130041, China.
| | - Zaoxia Liu
- Eye Center of Second Hospital, Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, 130041, China.
| |
Collapse
|
10
|
Obi A, Rothenberg-Lausell C, Levit S, Del Duca E, Guttman-Yassky E. Proteomic alterations in patients with atopic dermatitis. Expert Rev Proteomics 2024; 21:247-257. [PMID: 38753434 DOI: 10.1080/14789450.2024.2350938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/31/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Atopic Dermatitis (AD) is the most common inflammatory skin disease with a complex and multifactorial pathogenesis. The use of proteomics in understanding AD has yielded the discovery of novel biomarkers and may further expand therapeutic options. AREAS COVERED This review summarizes the most recent proteomic studies and the methodologies used in AD. It describes novel biomarkers that may monitor disease course and therapeutic response. The review also highlights skin and blood biomarkers characterizing different AD phenotypes and differentiates AD from other inflammatory skin disorders. A literature search was conducted by querying Scopus, Google Scholar, Pubmed/Medline, and Clinicaltrials.gov up to June 2023. EXPERT OPINION The integration of proteomics into research efforts in atopic dermatitis has broadened our understanding of the molecular profile of AD through the discovery of new biomarkers. In addition, proteomics may contribute to the development of targeted treatments ultimately improving personalized medicine. An increasing number of studies are utilizing proteomics to explore this heterogeneous disease.
Collapse
Affiliation(s)
- Ashley Obi
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Camille Rothenberg-Lausell
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sophia Levit
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ester Del Duca
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma Guttman-Yassky
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Yadav D, Ostrea EM, Cheng CT, Kisseih E, Maddipati KR, Thomas RL. Effect of docosahexaenoic acid and olive oil supplementation on pup weight in alcohol-exposed pregnant rats. Front Pediatr 2024; 12:1334285. [PMID: 38638591 PMCID: PMC11024321 DOI: 10.3389/fped.2024.1334285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024] Open
Abstract
Background Low birth weight has been observed in offspring of alcoholic mothers due likely to unresolved inflammation and oxidative injury. Dietary lipids play a role in inflammation and its resolution. The primary objective was to investigate the effect of DHA and olive oil on the birth weight of pups born to alcohol-exposed dams. Methods Pregnant rats were randomized to the control or three treatment (alcohol) groups. From gestational days (GD) 8-19, the control group received daily olive oil and malto/dextrose, whereas groups 2 and 3 received olive oil and low-dose alcohol or high-dose alcohol, respectively. Group 4 received daily DHA and high-dose alcohol. The dam's blood was collected on GD 15 and 20 for cytokine analysis. Dams were sacrificed on GD 20. The mean birth weight of pups was compared by one-way ANOVA with post hoc Duncan's test. Results There was a significant increase in the pups' mean birth weight in the high-dose alcohol/DHA and high-dose alcohol/olive oil. Higher pro-inflammatory cytokines (IL-1β and IL-12p70) were noted in the alcohol-exposed dams. Conclusions DHA and olive oil supplementation in alcohol-exposed pregnant rats significantly increased their pups' birth weight despite having high pro-inflammatory cytokines. The mechanism of this effect remains to be determined.
Collapse
Affiliation(s)
- Deepak Yadav
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Enrique M. Ostrea
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Charlie T. Cheng
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Esther Kisseih
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Krishna R. Maddipati
- Bioactive Lipids Research Program, Wayne State University School of Medicine, Detroit, MI, United States
| | - Ronald L. Thomas
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
12
|
Neumair J, Kröger M, Stütz E, Jerin C, Chaker AM, Schmidt-Weber CB, Seidel M. Flow-Based CL-SMIA for the Quantification of Protein Biomarkers from Nasal Secretions in Comparison with Sandwich ELISA. BIOSENSORS 2023; 13:670. [PMID: 37504069 PMCID: PMC10377473 DOI: 10.3390/bios13070670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
Protein biomarkers in nasal secretions can be used as a measure to differentiate between allergies, airway diseases and infections for non-invasive diagnostics. The point-of-care quantification of biomarker levels using flow-based microarray facilitates precise and rapid diagnosis and displays the potential for targeted and effective treatment. For the first time, we developed a flow-based chemiluminescence sandwich microarray immunoassay (CL-SMIA) for the quantification of nasal interferon-beta (IFN-β) on the Microarray Chip Reader-Research (MCR-R). Polycarbonate foils are used as a cost-effective surface for immobilizing capture antibodies. By using a commercially available set of anti-human IFN-β antibodies, the CL-SMIA can be compared directly to an enzyme-linked immunosorbent assay (ELISA) performed in microtiter plates concerning the bioanalytical performance and economic issues. Pre-incubation of the sample with detection antibodies facilitates the lower consumption of detection antibodies, as this allows for a longer interaction time between the antibody and the biomarker. The direct injection of pre-incubated samples into the microarray chips eliminates the adsorption of proteins in the tubing as well as the contamination of the tubing and valves of the MCR-R with clinical samples. The small flow cell allows for a low sample volume of 50 μL. The limit of detection of 4.53 pg mL-1 was slightly increased compared to a sandwich ELISA performed on microtiter plates which were 1.60 pg mL-1. The possibility to perform the CL-SMIA in a multiplexed mode makes it a promising assay for the rapid and cost-effective non-invasive detection of biomarkers in nasal secretions.
Collapse
Affiliation(s)
- Julia Neumair
- Chair of Analytical Chemistry and Water Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Marie Kröger
- Chair of Analytical Chemistry and Water Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Evamaria Stütz
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Member of the German Center of Lung Research (DZL), 80802 Munich, Germany
| | - Claudia Jerin
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Member of the German Center of Lung Research (DZL), 80802 Munich, Germany
| | - Adam M Chaker
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Member of the German Center of Lung Research (DZL), 80802 Munich, Germany
- TUM School of Medicine, Department of Otorhinolaryngology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, Member of the German Center of Lung Research (DZL), 80802 Munich, Germany
| | - Michael Seidel
- Chair of Analytical Chemistry and Water Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
13
|
Petphong V, Kosoltanapiwat N, Limkittikul K, Maneekan P, Chatchen S, Jittmittraphap A, Sriburin P, Chattanadee S, Leaungwutiwong P. Detection of Anti-ZIKV NS1 IgA, IgM, and Combined IgA/IgM and Identification of IL-4 and IL-10 as Potential Biomarkers for Early ZIKV and DENV Infections in Hyperendemic Regions, Thailand. Trop Med Infect Dis 2023; 8:tropicalmed8050284. [PMID: 37235332 DOI: 10.3390/tropicalmed8050284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The frequency of Zika virus (ZIKV)-specific IgA and IgM and the cytokine expression profile of ZIKV-infected patients in hyperendemic areas remain unclear. This study investigated the rates of ZIKV non-structural protein 1 (NS1)-specific IgA and IgM and evaluated serum cytokine levels of ZIKV and Dengue virus (DENV) cases in Thailand to identify potential diagnostic biomarkers, elucidate the immunity against ZIKV and DENV, and investigate the association between cytokine levels and ZIKV symptoms. Low rates of positivity for ZIKV NS1-specific IgA and IgM were detected in our study. ZIKV NS1 IgA/M (11%, 11/101) in combination was more frequently detected than ZIKV NS1 IgM (2%, 2/101) or ZIKV NS1 IgA (4%, 4/96) alone, especially in acute ZIKV cases with previous DENV exposure (14%, 10/72). Cytokine analysis showed that both ZIKV and DENV infections induced polyfunctional immunity, and the latter triggered more prolonged responses. The existence of significant differences in IL-4 and IL-10 levels between acute ZIKV and acute DENV cases suggested that IL-4 (p = 0.0176) and IL-10 (p = 0.0003) may represent biomarkers for acute ZIKV and acute DENV infections, respectively. Analysis of the association between increased cytokine levels and ZIKV symptoms indicated that CXCL10 (p = 0.0029) was associated with exanthema, while IL-5 (p = 0.0496) was linked to headache. The detection of ZIKV NS1 IgA and IgM in combination may enhance the diagnosis of early ZIKV infection, particularly when levels of IgM or IgA alone are low or undetectable. IL-4 and IL-10 may serve as targets for the development of diagnostic tools to detect ZIKV and DENV infections early, respectively, in flavivirus-endemic regions.
Collapse
Affiliation(s)
- Vajee Petphong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Kriengsak Limkittikul
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pannamas Maneekan
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Supawat Chatchen
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Akanitt Jittmittraphap
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pimolpachr Sriburin
- Department of Tropical Pediatrics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Siriporn Chattanadee
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pornsawan Leaungwutiwong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
14
|
Zhou L, Liu L, Chang MA, Ma C, Chen W, Chen P. Spatiotemporal dissection of tumor microenvironment via in situ sensing and monitoring in tumor-on-a-chip. Biosens Bioelectron 2023; 225:115064. [PMID: 36680970 PMCID: PMC9918721 DOI: 10.1016/j.bios.2023.115064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Real-time monitoring in the tumor microenvironment provides critical insights of cancer progression and mechanistic understanding of responses to cancer treatments. However, clinical challenges and significant questions remain regarding assessment of limited clinical tissue samples, establishment of validated, controllable pre-clinical cancer models, monitoring of static versus dynamic markers, and the translation of insights gained from in vitro tumor microenvironments to systematic investigation and understanding in clinical practice. State-of-art tumor-on-a-chip strategies will be reviewed herein, and emerging real-time sensing and monitoring platforms for on-chip analysis of tumor microenvironment will also be examined. The integration of the sensors with tumor-on-a-chip platforms to provide spatiotemporal information of the tumor microenvironment and the associated challenges will be further evaluated. Though optimal integrated systems for in situ monitoring are still in evolution, great promises lie ahead that will open new paradigm for rapid, comprehensive analysis of cancer development and assist clinicians with powerful tools to guide the diagnosis, prognosis and treatment course in cancer.
Collapse
Affiliation(s)
- Lang Zhou
- Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Lunan Liu
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA; Department of Biomedical Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Muammar Ali Chang
- Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Chao Ma
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA; Department of Biomedical Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA; Department of Biomedical Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Pengyu Chen
- Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
15
|
Gounaridi MI, Vontetsianos A, Oikonomou E, Theofilis P, Chynkiamis N, Lampsas S, Anastasiou A, Papamikroulis GA, Katsianos E, Kalogeras K, Pesiridis T, Tsatsaragkou A, Vavuranakis M, Koulouris N, Siasos G. The Role of Rehabilitation in Arterial Function Properties of Convalescent COVID-19 Patients. J Clin Med 2023; 12:2233. [PMID: 36983234 PMCID: PMC10056228 DOI: 10.3390/jcm12062233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/25/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023] Open
Abstract
Coronavirus disease (COVID-19) is a respiratory disease, although arterial function involvement has been documented. We assess the impact of a post-acute COVID-19 rehabilitation program on endothelium-dependent vasodilation and arterial wall properties. We enrolled 60 convalescent patients from COVID-19 and one-month post-acute disease, who were randomized at a 1:1 ratio in a 3-month cardiopulmonary rehabilitation program (study group) or not (control group). Endothelium-dependent vasodilation was evaluated by flow-mediated dilation (FMD), and arterial wall properties were evaluated by carotid-femoral pulse wave velocity (cf-PWV) and augmentation index (AIx) at 1 month and at 4 months post-acute disease. FMD was significantly improved in both the study (6.2 ± 1.8% vs. 8.6 ± 2.4%, p < 0.001) and control groups (5.9 ± 2.2% vs. 6.6 ± 1.8%, p = 0.009), but the improvement was significantly higher in the study group (rehabilitation) (p < 0.001). PWV was improved in the study group (8.2 ± 1.3 m/s vs. 6.6 ± 1.0 m/s, p < 0.001) but not in the control group (8.9 ± 1.8 m/s vs. 8.8 ± 1.9 m/s, p = 0.74). Similarly, AIx was improved in the study group (25.9 ± 9.8% vs. 21.1 ± 9.3%, p < 0.001) but not in the control group (27.6 ± 9.2% vs. 26.2 ± 9.8 m/s, p = 0.15). Convalescent COVID-19 subjects of the study group (rehabilitation) with increased serum levels of circulating IL-6 had a greater reduction in FMD. Conclusively, a 3-month cardiopulmonary post-acute COVID-19 rehabilitation program improves recovery of endothelium-dependent vasodilation and arteriosclerosis.
Collapse
Affiliation(s)
- Maria Ioanna Gounaridi
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Angelos Vontetsianos
- Rehabilitation Unit, 1st Respiratory Medicine Department, Sotiria Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Panagiotis Theofilis
- 1st Department of Cardiology, Hippokration General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Chynkiamis
- Rehabilitation Unit, 1st Respiratory Medicine Department, Sotiria Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Stamatios Lampsas
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Artemis Anastasiou
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgios Angelos Papamikroulis
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efstratios Katsianos
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Theodoros Pesiridis
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Aikaterini Tsatsaragkou
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Koulouris
- Rehabilitation Unit, 1st Respiratory Medicine Department, Sotiria Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
16
|
Stolzer C, Müller M, Gosau M, Henningsen A, Fuest S, Aavani F, Smeets R. Do Titanium Dioxide Particles Stimulate Macrophages to Release Proinflammatory Cytokines and Increase the Risk for Peri-implantitis? J Oral Maxillofac Surg 2023; 81:308-317. [PMID: 36442535 DOI: 10.1016/j.joms.2022.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/09/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE Titanium dioxide (TiO2) particles detached from titanium dental implants by tribocorrosion can be phagocytosed by macrophages, releasing various proinflammatory cytokines at the implant sites that may trigger peri-implantitis. The study objective was to measure the association between peri-implantitis and the presence of non-allergy-related proinflammatory cytokines associated with TiO2 particles. METHODS The investigators implemented a retrospective cross-sectional study and enrolled a sample of 60 subjects from a dental practice. Subjects were excluded if the plaque index was grade 3 (Silness and Löe). The predictor variable was a positive or negative TiO2 stimulation test, an in vitro macrophage proinflammatory response test. The outcome variable was peri-implantitis status defined as present or absent. Three groups were considered: control group with 20 patients without dental implants (group 1), 2 groups of patients with titanium dental implants, one without peri-implantitis (group 2), and the other with peri-implantitis (group 3) (n = 20 each). For patients with implants, depth of the gingival pockets of the implants were measured, and existing bleeding and suppuration were determined to assess peri-implantitis. Radiographs were taken if one or more factors applied to confirm the diagnosis of peri-implantitis. Further covariates were age, sex, duration of implant wear, and number of implants which were analyzed descriptively. Inferential analyses were undertaken using χ2 test, Kruskal-Wallis-, Wilcoxon-two-sample tests, and logistic regressions. RESULTS The sample was composed of 35 female and 25 male patients with a mean age of 54.2 years (standard deviation = 14.76). The overall TiO2 stimulation test positivity frequency was 28.3% and were 30.0%, 5.0%, and 50.0% in the control, implants without peri-implantitis, and implants with peri-implantitis groups. No statistically significant differences could be seen in the frequencies of the TiO2 stimulation test results between control group and combined groups 2 and 3 (P-value = .84). The risk for positive TiO2 patients with a titanium implant of developing peri-implantitis was statistically significant and higher compared to negative TiO2 patients (odds ratio, 19.0 with 95% confidence interval [2.12,170.38]; P-value< .01). CONCLUSIONS The data in this study showed a statistically significant relationship between a positive TiO2 stimulation test and peri-implantitis. Further studies with larger numbers of subjects are recommended to confirm this result.
Collapse
Affiliation(s)
- Carolin Stolzer
- Consultant, Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Martin Gosau
- Professor, Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anders Henningsen
- Assistant Professor, Consultant, Division of Regenerative Orofacial Medicine, Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Fuest
- Research Assistant, Division of Regenerative Orofacial Medicine, Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Farzaneh Aavani
- Research Assistant, Division of Regenerative Orofacial Medicine, Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Professor, Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
17
|
Roesner C, Goeller M, Raaz-Schrauder D, Dey D, Kilian T, Achenbach S, Marwan M, Bittner DO. Differences of inflammatory cytokine profile in patients with vulnerable plaque: A coronary CTA study. Atherosclerosis 2022; 350:25-32. [DOI: 10.1016/j.atherosclerosis.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 03/24/2022] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
|
18
|
Liu C, Chu D, Kalantar‐Zadeh K, George J, Young HA, Liu G. Cytokines: From Clinical Significance to Quantification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004433. [PMID: 34114369 PMCID: PMC8336501 DOI: 10.1002/advs.202004433] [Citation(s) in RCA: 392] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/26/2021] [Indexed: 05/24/2023]
Abstract
Cytokines are critical mediators that oversee and regulate immune and inflammatory responses via complex networks and serve as biomarkers for many diseases. Quantification of cytokines has significant value in both clinical medicine and biology as the levels provide insights into physiological and pathological processes and can be used to aid diagnosis and treatment. Cytokines and their clinical significance are introduced from the perspective of their pro- and anti-inflammatory effects. Factors affecting cytokines quantification in biological fluids, native levels in different body fluids, sample processing and storage conditions, sensitivity to freeze-thaw, and soluble cytokine receptors are discussed. In addition, recent advances in in vitro and in vivo assays, biosensors based on different signal outputs and intracellular to extracellular protein expression are summarized. Various quantification platforms for high-sensitivity and reliable measurement of cytokines in different scenarios are discussed, and commercially available cytokine assays are compared. A discussion of challenges in the development and advancement of technologies for cytokine quantification that aim to achieve real-time multiplex cytokine analysis for point-of-care situations applicable for both biomedical research and clinical practice are discussed.
Collapse
Affiliation(s)
- Chao Liu
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Dewei Chu
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | | | - Jacob George
- Storr Liver CentreWestmead Institute of Medical ResearchUniversity of Sydney and Department of Gastroenterology and HepatologyWestmead HospitalWestmeadNSW2145Australia
| | - Howard A. Young
- Laboratory of Cancer ImmunometabolismCenter for Cancer ResearchNational Cancer Institute at FrederickFrederickMD21702USA
| | - Guozhen Liu
- School of Life and Health SciencesThe Chinese University of Hong KongShenzhen518172P. R. China
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
19
|
Pérez DJ, Patiño EB, Orozco J. Electrochemical Nanobiosensors as Point‐of‐Care Testing Solution to Cytokines Measurement Limitations. ELECTROANAL 2021. [DOI: 10.1002/elan.202100237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- David J. Pérez
- Max Planck Tandem Group in Nanobioengineering University of Antioquia Complejo Ruta N Calle 67, N° 52–20 050010 Medellín Colombia
- Grupo de Bioquímica Estructural de Macromoléculas Chemistry Institute University of Antioquia Lab 1–314 Calle 67, N° 53–108 050010 Medellín Colombia
| | - Edwin B. Patiño
- Grupo de Bioquímica Estructural de Macromoléculas Chemistry Institute University of Antioquia Lab 1–314 Calle 67, N° 53–108 050010 Medellín Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering University of Antioquia Complejo Ruta N Calle 67, N° 52–20 050010 Medellín Colombia
| |
Collapse
|
20
|
Liu YK, Gao H, Jin SB, Tu WJ, Chen YJ. Association of neonatal blood levels of brain-derived neurotrophic factor with development of autism spectrum disorder: a systematic review and meta-analysis. World J Pediatr 2021; 17:164-170. [PMID: 33650030 DOI: 10.1007/s12519-021-00415-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/07/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Our goal was to evaluate the association between neonatal blood brain-derived neurotrophic factor (BDNF) level and autism spectrum disorder (ASD) diagnosis later in life. METHODS MEDLINE and Web of Science databases were searched from inception until September 16, 2020. Reference lists of all relevant articles also were reviewed. Mean blood BDNF concentrations, standard deviations, sample sizes, and other data needed for calculation of effect sizes were extracted by two independent investigators. The quality of the included studies was appraised using the Newcastle-Ottawa Scale for case-control studies. Data were pooled using the random-effects model. RESULTS Five case-control studies involving 1341 cases and 3395 controls were included in the meta-analysis. The meta-analysis of all included studies showed no significant difference in blood BDNF levels between neonates diagnosed with ASD later in life and healthy controls [standardized mean difference (SMD) = 0.261; 95% confidence interval (CI) - 0.052 to 0.573; P = 0.102], with high level of heterogeneity (Q = 64.346; I2 = 93.784; P < 0.001). A subgroup analysis by assay type showed decreased blood BDNF levels in ASDs compared to controls (SMD = - 0.070; 95% CI - 0.114 to - 0.026; P = 0.002), with high level of homogeneity (Q = 0.894; I2 = 0.000; P = 0.827). No evidence of publication bias was observed. CONCLUSIONS Neonates diagnosed with ASD later in life have decreased blood levels of BDNF measured by double-antibody immunoassay. More studies are warranted to facilitate a more robust conclusion.
Collapse
Affiliation(s)
- Ya-Kun Liu
- Department of General Surgery, Beijing Children's Hospital, Capital Medical University, No.56 Nanlishi St, Beijing, 100045, China
| | - Hua Gao
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, No. 107 West Wenhua St, Jinan, 250000, China
| | - Shao-Bin Jin
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, No. 107 West Wenhua St, Jinan, 250000, China
| | - Wen-Jun Tu
- Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College, No. 238 Baidi St, Tianjin, 300192, China
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University, Shandong Academy of Medical Sciences, No. 619 Changcheng St, Taian, 271000, China
| | - Ya-Jun Chen
- Department of General Surgery, Beijing Children's Hospital, Capital Medical University, No.56 Nanlishi St, Beijing, 100045, China.
| |
Collapse
|
21
|
Laurini E, Aulic S, Marson D, Fermeglia M, Pricl S. Cationic Dendrimers for siRNA Delivery: An Overview of Methods for In Vitro/In Vivo Characterization. Methods Mol Biol 2021; 2282:209-244. [PMID: 33928579 DOI: 10.1007/978-1-0716-1298-9_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This chapter reviews the different techniques for analyzing the chemical-physical properties, transfection efficiency, cytotoxicity, and stability of covalent cationic dendrimers (CCDs) and self-assembled cationic dendrons (ACDs) for siRNA delivery in the presence and absence of their nucleic cargos. On the basis of the reported examples, a standard essential set of techniques is described for each step of a siRNA/nanovector (NV) complex characterization process: (1) analysis of the basic chemical-physical properties of the NV per se; (2) characterization of the morphology, size, strength, and stability of the siRNA/NV ensemble; (3) characterization and quantification of the cellular uptake and release of the siRNA fragment; (4) in vitro and (5) in vivo experiments for the evaluation of the corresponding gene silencing activity; and (6) assessment of the intrinsic toxicity of the NV and the siRNA/NV complex.
Collapse
Affiliation(s)
- Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy.
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), Department of Engineering and Architecture, University of Trieste, Trieste, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
22
|
Qiu B, Liu Q, Li Z, Song H, Xu D, Ji Y, Jiang Y, Tian D, Wang J. Evaluation of cytokines as a biomarker to distinguish active tuberculosis from latent tuberculosis infection: a diagnostic meta-analysis. BMJ Open 2020; 10:e039501. [PMID: 33033030 PMCID: PMC7542925 DOI: 10.1136/bmjopen-2020-039501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES With a marginally effective vaccine and no significant breakthroughs in new treatments, a sensitive and specific method to distinguish active tuberculosis from latent tuberculosis infection (LTBI) would allow for early diagnosis and limit the spread of the pathogen. The analysis of multiple cytokine profiles provides the possibility to differentiate the two diseases. DESIGN Systematic review and meta-analysis. DATA SOURCES PubMed, Cochrane Library, Clinical Key and EMBASE databases were searched on 31 December 2019. ELIGIBILITY CRITERIA We included case-control studies, cohort studies and randomised controlled trials considering IFN-γ, TNF-α, IP-10, IL-2, IL-10, IL-12 and VEGF as biomarkers to distinguish active tuberculosis and LTBI. DATA EXTRACTION AND SYNTHESIS Two students independently extracted data and assessed the risk of bias. Diagnostic OR, sensitivity, specificity, positive and negative likelihood ratios and area under the curve (AUC) together with 95% CI were used to estimate the diagnostic value. RESULTS Of 1315 records identified, 14 studies were considered eligible. IL-2 had the highest sensitivity (0.84, 95% CI: 0.72 to 0.92), while VEGF had the highest specificity (0.87, 95% CI: 0.73 to 0.94). The highest AUC was observed for VEGF (0.85, 95% CI: 0.81 to 0.88), followed by IFN-γ (0.84, 95% CI: 0.80 to 0.87) and IL-2 (0.84, 95% CI: 0.81 to 0.87). CONCLUSION Cytokines, such as IL-2, IFN-γ and VEGF, can be utilised as promising biomarkers to distinguish active tuberculosis from LTBI. PROSPERO REGISTRATION NUMBER CRD42020170725.
Collapse
Affiliation(s)
- Beibei Qiu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiao Liu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhongqi Li
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Huan Song
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dian Xu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ye Ji
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yan Jiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Dan Tian
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianming Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Gao Y, Li J, Li J, Hu C, Zhang L, Yan J, Li L, Zhang L. Tetrahydroxy stilbene glycoside alleviated inflammatory damage by mitophagy via AMPK related PINK1/Parkin signaling pathway. Biochem Pharmacol 2020; 177:113997. [PMID: 32353422 DOI: 10.1016/j.bcp.2020.113997] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative brain disorder with complex pathogenesis. The fibrillar peptide β-amyloid (Aβ) has a chief function in the pathogenesis of AD. Emerging evidence has indicated that there is a tight relationship between inflammation, mitochondrial dysfunction and Aβ formation. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG) is one of the main active components extracted from Polygonum multiflorum. Recent research corroborated the beneficial roles of TSG in alleviating the learning and memory of AD models. Unfortunately, the underlying mechanism of TSG remains poorly elucidated. The purpose of the present study was to investigate the effects of TSG on LPS/ATP and Aβ25-35-induced inflammation in microglia and neurons and its underlying molecular mechanisms. Our results found that treatment with TSG significantly attenuated the secretion of inflammatory cytokines, reduced NLRP3 inflammasome, and regulated mitophagy. TSG efficiently alleviated LPS-induced inflammatory response by inhibiting the NLRP3 signaling pathway both in microglia and neuron. Meanwhile, TSG promoted autophagy involved in the AMPK/PINK1/Parkin signaling pathway, which may contribute to the protective activity. Additional mechanistic investigations to evaluate the dependence of the neuroprotective role of TSG on PINK1 revealed that a lack of PINK1 inhibited autophagy, especially mitophagy in microglia. Importantly, knockdown of PINK1 or Parkin by siRNA or CRISPR/Cas9 system abolished the protective effects of TSG. In conclusion, these phenomena suggested that TSG prevented LPS/ATP and Aβ-induced inflammation via AMPK/PINK1/Parkin-dependent enhancement of mitophagy. We found the neuroprotective effect of TSG, suggesting it may be beneficial for AD prevention and treatment by suppressing the activation of inflammation.
Collapse
Affiliation(s)
- Yan Gao
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Juntong Li
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jianping Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chaoying Hu
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Li Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Jiaqing Yan
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China.
| |
Collapse
|
24
|
Chami VDO, Nunes L, Capelli Júnior J. Expression of cytokines in gingival crevicular fluid associated with tooth movement induced by aligners: a pilot study. Dental Press J Orthod 2019; 23:41-46. [PMID: 30427492 PMCID: PMC6266320 DOI: 10.1590/2177-6709.23.5.041-046.oar] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 02/17/2018] [Indexed: 12/21/2022] Open
Abstract
Introduction: The search for more aesthetic and comfortable orthodontic devices has led to an increase in the use of clear aligners. Objective: To increase knowledge on biological mechanisms of orthodontic tooth movement using Invisalign aligners. Methods: This study included 11 patients with a mean age of 23.6 ± 4.8 years. Cases planning included alignment and leveling of lower incisors using Invisalign aligners. Gingival crevicular fluid samples were collected from the lower incisors on the day of delivery of aligner number 1 (T0) and after 1 (T24h), 7 (T7d), and 21 (T21d) days. During the observation period of the study, the patients used only the aligner number 1. Levels of nine cytokines were quantified using Luminex’s multi-analysis technology. Non-parametric tests were used for comparisons between cytokine expression levels over time. Results: Cytokine expression levels remained constant after 21 days of orthodontic activation, except those of MIP-1β, which presented a statistical difference between T24h and T21d with a decrease in the concentration levels. IL-8, GM-CSF, IL-1β, MIP-1β, and TNF-α showed the highest concentrations over time. Conclusions: The different behavior in the levels of the investigated cytokines indicates a role of these biomarkers in the tissue remodeling induced by Invisalign.
Collapse
Affiliation(s)
- Vitória de Oliveira Chami
- Universidade Federal de Santa Maria, Programa de Pós-Graduação em Ciências Odontológicas (Santa Maria/RS, Brazil)
| | - Livia Nunes
- Universidade do Estado do Rio de Janeiro, Programa de Pós-Graduação em Odontologia (Rio de Janeiro/RJ, Brazil)
| | - Jonas Capelli Júnior
- Universidade do Estado do Rio de Janeiro, Departamento de Odontologia Preventiva e Comunitária (Rio de Janeiro/RJ, Brazil)
| |
Collapse
|
25
|
Abstract
Background The purpose of this study was to analyze tear inflammatory cytokines of different subclasses of dry eye disease (DED) patients using Luminex technology. Material/Methods Forty-five DED patients including 20 Sjogren syndrome aqueous tear deficiency (SS-ATD) patients, 20 non-Sjogren syndrome aqueous tear deficiency (NSS-ATD) patients, 15 meibomian gland dysfunction (MGD) patients, and 15 normal participants were enrolled in this study. Concentrations of 11 inflammatory cytokines in tear samples of study participants were measured by Luminex assay; ELISA assay was further applied for validation. Results The levels of cytokines were mostly increased (TNF-α, IL-1α, IL-1β, IL-6, IL-8, IL-12P70, IL-13, IFN-γ, and MIP-1α) in DED patients compared with normal participants. And the levels of TNF-α, IL-6, IL-8, and IL-12P70 were significantly elevated in tears of the patient groups compared to tears of participants in the normal group (P<0.05). Statistical differences were also observed among the patient groups (SS-ATD, NSS-ATD, and MGD) for the level of IL-8 and TNF-α. The results of ELISA assay demonstrated the consistence with Luminex assay, confirming the practicality of Luminex technology for the analysis of multiple cytokines in DED patient tears. Conclusions The levels of inflammatory cytokines were mostly elevated in DED patients, and statistical differences of some cytokines were also found between SS-ATD, NSS-ATD, and MGD groups, suggesting that inflammatory cytokines could be potential supplements for the diagnosis of DED subclasses and therapeutic targets for DED patients.
Collapse
Affiliation(s)
- Hailan Zhao
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China (mainland)
| | - Qiushi Li
- Department of Ophthalmology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Mingxia Ye
- Department of Ophthalmology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China (mainland)
| | - Jie Yu
- Department of Ophthalmology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
26
|
Balne PK, Au VB, Tong L, Ghosh A, Agrawal M, Connolly J, Agrawal R. Bead Based Multiplex Assay for Analysis of Tear Cytokine Profiles. J Vis Exp 2017. [PMID: 29053687 DOI: 10.3791/55993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tear film is a complex mixture of lipids, proteins and minerals which covers the external surface of the eye, thereby providing lubrication, nutrition and protection to the underlying cells. Analysis of tears is an emerging area for the identification of biomarkers for the prediction, diagnosis, and prognosis of various ocular diseases. Tears are easily accessible and their collection is non-invasive. Therefore, advancing technologies are gaining prominence for identification of multiple analytes in tears to study changes in protein or metabolite composition and its association with pathological conditions. Tear cytokines are ideal biomarkers for studying the health of the ocular surface and also help in understanding the mechanisms of different ocular surface disorders like dry eye disease and vernal conjunctivitis. Bead based multiplex assays have the capability of detecting multiple analytes in a small amount of sample with a higher sensitivity. Here we describe a standardized protocol of tear sample collection, extraction and analysis of cytokine profiling using a bead based multiplex assay.
Collapse
Affiliation(s)
- Praveen Kumar Balne
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital; Singapore Eye Research Institute (SERI)
| | | | | | | | | | | | - Rupesh Agrawal
- National Healthcare Group Eye Institute, Tan Tock Seng Hospital;
| |
Collapse
|
27
|
Datta N, Devaney SG, Busuttil RW, Azari K, Kupiec-Weglinski JW. Prolonged Cold Ischemia Time Results in Local and Remote Organ Dysfunction in a Murine Model of Vascularized Composite Transplantation. Am J Transplant 2017; 17:2572-2579. [PMID: 28371289 DOI: 10.1111/ajt.14290] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/01/2017] [Accepted: 03/19/2017] [Indexed: 01/25/2023]
Abstract
Vascularized composite allotransplantation (VCA) is a viable reconstructive option for complex tissue defects. Although grafts with a large muscular component may be uniquely susceptible to ischemia-reperfusion (I/R) syndrome, the safe cold ischemia time in VCA has not been established. We investigated the effects of cold ischemia on innate immune response and recipient survival in a murine orthotopic hindlimb transplantation model. Surprisingly, mice receiving grafts exposed to 6 h or longer of cold storage demonstrated reduced survival and massive elevations in serum creatinine, blood urea nitrogen, and creatine kinase, compared with 1 h of cold storage recipients. This was accompanied by progressive increase in macrophage and neutrophil cell infiltration in muscle biopsy specimens, altered platelet endothelial cell adhesion molecule-1 expression, and ultimate renal injury. Multiplex immunoassay analysis identified 21 cytokines in serum and 18 cytokines in muscle biopsy specimens that are likely essential in the complex response to I/R-triggered injury in VCA. In conclusion, this study, in a mouse model of orthotopic hindlimb transplantation, is the first to document that prolonged cold ischemia triggers progressive I/R injury with vascular endothelial damage and may lead to irrecoverable local and remote organ damage. These experimental findings are important in guiding future therapies for human VCA recipients.
Collapse
Affiliation(s)
- Neha Datta
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - S G Devaney
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - R W Busuttil
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - K Azari
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - J W Kupiec-Weglinski
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at University of California, Los Angeles, CA
| |
Collapse
|
28
|
Fianco G, Mongiardi MP, Levi A, De Luca T, Desideri M, Trisciuoglio D, Del Bufalo D, Cinà I, Di Benedetto A, Mottolese M, Gentile A, Centonze D, Ferrè F, Barilà D. Caspase-8 contributes to angiogenesis and chemotherapy resistance in glioblastoma. eLife 2017; 6. [PMID: 28594322 PMCID: PMC5464770 DOI: 10.7554/elife.22593] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 04/30/2017] [Indexed: 12/15/2022] Open
Abstract
Caspase-8 is a key player in extrinsic apoptosis and its activity is often downregulated in cancer. However, human Caspase-8 expression is retained in some tumors, including glioblastoma (GBM), suggesting that it may support cancer growth in these contexts. GBM, the most aggressive of the gliomas, is characterized by extensive angiogenesis and by an inflammatory microenvironment that support its development and resistance to therapies. We have recently shown that Caspase-8 sustains neoplastic transformation in vitro in human GBM cell lines. Here, we demonstrate that Caspase-8, through activation of NF-kB, enhances the expression and secretion of VEGF, IL-6, IL-8, IL-1beta and MCP-1, leading to neovascularization and increased resistance to Temozolomide. Importantly, the bioinformatics analysis of microarray gene expression data derived from a set of high-grade human gliomas, shows that high Caspase-8 expression levels correlate with a worse prognosis. DOI:http://dx.doi.org/10.7554/eLife.22593.001 Cancer cells are different to normal cells in various ways. Most cancer cells, for example, delete or switch off the gene for a protein called Caspase-8. This is because this protein is best known for promoting cell death and stopping tumor cells from growing. However, some cancers keep the gene for Caspase-8 switched on including glioblastoma, the most aggressive type of brain cancer in adults. This begged the question whether this protein may in fact promote the development of tumors under certain circumstances. Glioblastomas are often highly resistant to chemotherapy and can communicate with nearby cells using proteins called cytokines to promote the formation of new blood vessels. The new blood vessel allows the tumor to readily spread into healthy brain tissue, which in turn makes it difficult for surgeons to remove all the cancerous cells. As a result, glioblastomas almost always return after surgery, and so there is strong need for new effective treatments for this type of cancer. Fianco et al. have now investigated whether Caspase-8 helps glioblastomas to grow and form new blood vessels. One common method to study human cancer cells is to inject them into mice and watch how they grow, because these experiments mimic how tumors develop in the human body. When mice were injected with human glioblastoma cells with experimentally reduced levels of Caspase-8, the cells grew poorly and did not form as many new blood vessels as unaltered glioblastoma cells. Further experiments showed that, when grown in the laboratory, glioblastoma cells with less Caspase-8 were more sensitive to a chemotherapeutic drug called temozolomide. These findings confirm that Caspase-8 does boost the growth and drug resistance of at least one cancer. When Fianco et al. analyzed clinical data from patients affected by glioblastoma, they also observed that those patients with high levels of Caspase-8 often had the worse outcomes. Previous studies conducted in white blood cells showed that Caspase-8 activated a protein complex called NF-kB, which in turn led to the cells releasing cytokines. Fianco et al. have now verified that Caspase-8 promotes NF-kB activity also in glioblastoma cells, and that this causes the cancer cells to release more cytokines. As such, these findings reveal a clear link between Caspase-8 and the formation of new blood vessels by glioblastomas. Future studies are now needed to understand why Caspase-8 promotes cell death in some cancers but the formation of new blood vessels in others. Indeed, Caspase-8 might become a target for new anticancer drugs if it is possible to inhibit its cancer-boosting activity without interfering with its ability to promote cell death. DOI:http://dx.doi.org/10.7554/eLife.22593.002
Collapse
Affiliation(s)
- Giulia Fianco
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.,Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Maria Patrizia Mongiardi
- Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Andrea Levi
- Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Teresa De Luca
- Preclinical Models and New Therapeutic Agents Unit, Research, Advanced Diagnostics and Technological Innovation Department, Regina Elena National Cancer Institute, Rome, Italy
| | - Marianna Desideri
- Preclinical Models and New Therapeutic Agents Unit, Research, Advanced Diagnostics and Technological Innovation Department, Regina Elena National Cancer Institute, Rome, Italy
| | - Daniela Trisciuoglio
- Preclinical Models and New Therapeutic Agents Unit, Research, Advanced Diagnostics and Technological Innovation Department, Regina Elena National Cancer Institute, Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, Research, Advanced Diagnostics and Technological Innovation Department, Regina Elena National Cancer Institute, Rome, Italy
| | - Irene Cinà
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| | - Anna Di Benedetto
- Pathology Department, Regina Elena National Cancer Institute, Rome, Italy
| | - Marcella Mottolese
- Pathology Department, Regina Elena National Cancer Institute, Rome, Italy
| | - Antonietta Gentile
- Multiple Sclerosis Clinical and Research Center, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Unit of Neurology and of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli (IS), Italy
| | - Diego Centonze
- Multiple Sclerosis Clinical and Research Center, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Unit of Neurology and of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli (IS), Italy
| | - Fabrizio Ferrè
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Daniela Barilà
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.,Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
29
|
Belobrajdic DP, Wei J, Bird AR. A rat model for determining the postprandial response to foods. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1529-1532. [PMID: 27404497 DOI: 10.1002/jsfa.7896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/03/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The use of small animal models for studying postprandial changes in circulating nutrients, hormones and metabolic biomarkers is hampered by the limited quantity of blood that can be withdrawn for analysis. Here, we describe the development of an unrestrained, meal-fed rat model, having a permanent or temporary vascular cannula that permits repeated blood sampling. The applicability and performance of the model were evaluated in a series of experiments on acute glycaemic and insulinaemic responses to carbohydrate-based test meals. RESULTS A test food containing 0.4 g carbohydrate raised blood glucose by 1.5 mmol L-1 . Postprandial blood glucose levels peaked at 15 min and returned to baseline at 180 min, whereas they remained elevated for longer when the test meal contained 1.25 g carbohydrate. The glycaemic response tended (P = 0.063) to be higher when the meal tolerance test was conducted at the start rather than the end of the dark period, but the insulinaemic response was unaffected. The magnitude of the glycaemic response was less for blood collected from the caudal vein compared to that from the jugular vein. Both cannulation strategies were equally effective in enabling return of red blood cells, thus preserving blood volume. CONCLUSION This improved small animal model affords new opportunities to screen foods for nutrient bioavailability and explore metabolic mechanisms mediating responses to food consumption. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Jiangqin Wei
- CSIRO Health and Biosecurity, Adelaide, SA, 5000, Australia
| | - Anthony R Bird
- CSIRO Health and Biosecurity, Adelaide, SA, 5000, Australia
| |
Collapse
|
30
|
Petersen PS, Wolf RM, Lei X, Peterson JM, Wong GW. Immunomodulatory roles of CTRP3 in endotoxemia and metabolic stress. Physiol Rep 2016; 4:4/5/e12735. [PMID: 26997632 PMCID: PMC4823594 DOI: 10.14814/phy2.12735] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
C1q/TNF‐related protein 3 (CTRP3) is a secreted hormone that modulates hepatic glucose and lipid metabolism. Its circulating levels are reduced in human and rodent models of obesity, a metabolic state accompanied by chronic low‐grade inflammation. Recent studies have demonstrated an anti‐inflammatory role for recombinant CTRP3 in attenuating LPS‐induced systemic inflammation, and its deficiency markedly exacerbates inflammation in a mouse model of rheumatoid arthritis. We used genetic mouse models to explore the immunomodulatory function of CTRP3 in response to acute (LPS challenge) and chronic (high‐fat diet) inflammatory stimuli. In a sublethal dose of LPS challenge, neither CTRP3 deficiency nor its overexpression in transgenic mice had an impact on IL‐1β, IL‐6, TNF‐α, or MIP‐2 induction at the serum protein or mRNA levels, contrary to previous findings based on recombinant CTRP3 administration. In a metabolic context, we measured 71 serum cytokine levels in wild‐type and CTRP3 transgenic mice fed a high‐fat diet or a matched control low‐fat diet. On a low‐fat diet, CTRP3 transgenic mice had elevated circulating levels of multiple chemokines (CCL11, CXCL9, CXCL10, CCL17, CX3CL1, CCL22 and sCD30). However, when obesity was induced with a high‐fat diet, CTRP3 transgenic mice had lower circulating levels of IL‐5, TNF‐α, sVEGF2, and sVEGFR3, and a higher level of soluble gp130. Contingent upon the metabolic state, CTRP3 overexpression altered chemokine levels in lean mice, and attenuated systemic inflammation in the setting of obesity and insulin resistance. These results highlight a context‐dependent immunomodulatory role for CTRP3.
Collapse
Affiliation(s)
- Pia S Petersen
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Risa M Wolf
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xia Lei
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jonathan M Peterson
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - G William Wong
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
31
|
Bizari L, da Silva Santos AF, Foss NT, Marchini JS, Suen VMM. Parenteral nutrition in short bowel syndrome patients, regardless of its duration, increases serum proinflammatory cytokines. Nutr Res 2016; 36:751-5. [DOI: 10.1016/j.nutres.2016.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 01/08/2016] [Accepted: 01/25/2016] [Indexed: 12/12/2022]
|
32
|
Carter JM, Lin A, Clotilde L, Lesho M. Rapid, Multiplexed Characterization of Shiga Toxin-Producing Escherichia coli (STEC) Isolates Using Suspension Array Technology. Front Microbiol 2016; 7:439. [PMID: 27242670 PMCID: PMC4873620 DOI: 10.3389/fmicb.2016.00439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/18/2016] [Indexed: 01/03/2023] Open
Abstract
Molecular methods have emerged as the most reliable techniques to detect and characterize pathogenic Escherichia coli. These molecular techniques include conventional single analyte and multiplex PCR, PCR followed by microarray detection, pulsed-field gel electrophoresis (PFGE), and whole genome sequencing. The choice of methods used depends upon the specific needs of the particular study. One versatile method involves detecting serogroup-specific markers by hybridization or binding to encoded microbeads in a suspension array. This molecular serotyping method has been developed and adopted for investigating E. coli outbreaks. The major advantages of this technique are the ability to simultaneously serotype E. coli and detect the presence of virulence and pathogenicity markers. Here, we describe the development of a family of multiplex molecular serotyping methods for Shiga toxin-producing E. coli, compare their performance to traditional serotyping methods, and discuss the cost-benefit balance of these methods in the context of various food safety objectives.
Collapse
Affiliation(s)
- John M. Carter
- Pacific West Area – Western Regional Research Center – Produce Safety and Microbiology Research, Agricultural Research Service, United States Department of Agriculture, Albany, CAUSA
| | - Andrew Lin
- ORA/PA-FO/SAN-LB – Office of Global Regulatory Operations and Policy – Oceans, Reefs & Aquariums – Food and Drug Administration, United States Department of Health and Human Services, Alameda, CAUSA
| | | | | |
Collapse
|