1
|
Wu XQ, Wan JW, Yang ZN, Liu HJ, Chang Y, Peng SB, Niu XT, Kong YD, Li M, Chen XM, Wang GQ. Protection of glutamine: The NF-κB/MLCK/MLC2 signaling pathway mediated by tight junction affects oxidative stress, inflammation and apoptosis in snakehead (Channa argus). FISH & SHELLFISH IMMUNOLOGY 2025; 158:110131. [PMID: 39826630 DOI: 10.1016/j.fsi.2025.110131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/27/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Lipopolysaccharide (LPS) destroys intestinal mechanical barrier and causes apoptosis by triggering oxidative stress and inflammatory responses. Glutamine (Gln) can maintain normal intestinal function under various stressed or pathological conditions. Thereby, this study aims to evaluate the protection of glutamine on intestinal health of snakehead (Channa argus), specifically regarding the NF-κB/MLCK/MLC2 signaling pathway mediated by tight junction affecting oxidative stress, inflammation and apoptosis. In this work, a model of intestinal tight junction injury in intestine of snakehead was constructed by injecting 4 mg/mL LPS into anus for 96 h. Before constructing the model, fish were treated with different levels of alanyl-glutamine (Ala-Gln) (0 %, 0.3 %, 0.6 %, 0.9 %, 1.2 % and 1.5 %) for 56 days. Microstructure and ultra microstructure showed that LPS-induced obvious intestinal damage and tight connection destruction, while Gln effectively alleviated these phenomena. In addition, results also showed that Gln can effectively inhibit LPS-induced damage to intestinal tight junction (zo-1, occludin, claudin5, claudin1, nf-κb p65, mlck and mlc2), alleviate oxidative stress (nrf2, sod, gsh, gpx and cat), ameliorate intestinal inflammation (tnf-α, il-1β, il-8, tlr5 and tlr2), thereby reduce apoptosis (p38mapk, caspase9, caspase8, caspase3 and bax). Crucially, the above results were related to NF-κB/MLCK/MLC2 signaling pathway mediated by tight junction. In conclusion, Gln has a good protective effect on LPS-induced intestinal injury in northern snakehead, providing a new perspective for regulating fish intestinal health.
Collapse
Affiliation(s)
- Xue-Qin Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Ji-Wu Wan
- Fisheries Technology Extension Station of Jilin Province, Changchun, 130012, China
| | - Zhi-Nan Yang
- Fisheries Technology Extension Station of Jilin Province, Changchun, 130012, China
| | - Hong-Jian Liu
- Fisheries Technology Extension Station of Jilin Province, Changchun, 130012, China
| | - Yue Chang
- Fisheries Technology Extension Station of Jilin Province, Changchun, 130012, China
| | - Si-Bo Peng
- Jilin Academy of Fishery Sciences, Changchun, 130033, China
| | - Xiao-Tian Niu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yi-di Kong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Min Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiu-Mei Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Gui-Qin Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
2
|
Wang Q, Im Y, Park J, Lee HL, Ryu DG, Kim H. Eisenia bicyclis Extract Ameliorates Colitis in In Vitro and In Vivo Models Through Modulation of mTOR Axis and Gut Microbiota Composition. Foods 2025; 14:714. [PMID: 40077417 PMCID: PMC11899094 DOI: 10.3390/foods14050714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease of the colon that is associated with dysbiosis in the gut microbiota. Eisenia bicyclis, a marine alga, is known for its anti-inflammatory, antioxidant, and gut microbiota-modulating properties. This study explored the mechanisms by which a 70% ethanol extract of E. bicyclis may alleviate UC, through both in vitro and in vivo experiments. LC-MS/MS analysis revealed eckol, 7-phloroeckol, dieckol, phlorofucofuroeckol A, and fucofuroeckol as key phenolic compounds present in the extract. The administration of E. bicyclis significantly improved symptoms in a dextran sulfate sodium (DSS)-induced colitis mouse model by reducing intestinal shortening, splenomegaly, and histological scores. Both cell and animal studies demonstrated that E. bicyclis suppressed the release of inflammatory cytokines, downregulated the mRNA expression of genes related to the mTOR pathway, and reduced the p-mTOR/mTOR ratio. Microbiota analysis revealed that, while the Firmicutes/Bacteroidetes ratio was elevated in UC mice, E. bicyclis administration normalized this imbalance, with a notable increase in the abundance of beneficial probiotics such as Bifidobacterium bifidum. In conclusion, a phenolic-rich extract of E. bicyclis demonstrates significant potential as a dietary supplement to prevent and mitigate UC by modulating both the mTOR signaling pathway and gut microbiota composition.
Collapse
Affiliation(s)
- Qunzhe Wang
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea; (Q.W.); (Y.I.); (J.P.)
- BK21 FOUR Program: Precision Nutrition Program for Future Global Leaders, Pusan National University, Busan 46241, Republic of Korea
| | - Yuri Im
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea; (Q.W.); (Y.I.); (J.P.)
| | - Jumin Park
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea; (Q.W.); (Y.I.); (J.P.)
- BK21 FOUR Program: Precision Nutrition Program for Future Global Leaders, Pusan National University, Busan 46241, Republic of Korea
| | - Hye Lim Lee
- Department of Internal Medicine, Medical Research Institute, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea;
| | - Dae Gon Ryu
- Department of Internal Medicine, Medical Research Institute, Pusan National University School of Medicine and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea;
| | - Hyemee Kim
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Republic of Korea; (Q.W.); (Y.I.); (J.P.)
| |
Collapse
|
3
|
Seegobin N, Abdalla Y, Li G, Murdan S, Shorthouse D, Basit AW. Optimising the production of PLGA nanoparticles by combining design of experiment and machine learning. Int J Pharm 2024; 667:124905. [PMID: 39491656 DOI: 10.1016/j.ijpharm.2024.124905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is a widely used biodegradable polymer in drug delivery and nanoparticle (NP) formulation due to its controlled drug release properties and safety profiles. Among the methods available for NP production, nanoprecipitation is distinguished by its simplicity and scalability. However, it requires careful optimisation to achieve the desired NP characteristics, making the process potentially lengthy and costly. This study aimed to assess and compare the predictive performance of Design of Experiments (DOE) and Machine Learning (ML) models for the optimisation of PLGA nanoparticle size and zeta potential produced by nanoprecipitation. Various ML methods were employed to predict particle size, with Extreme Gradient Boosting (XGBoost) identified as the best performing. The key finding is that integrating ML with DOE provides deeper insights into the dataset than either method alone. While ML outperformed DOE in predictive performance, as evidenced by lower root mean squared error values and higher coefficients of determination, both methods struggled to accurately predict zeta potential, generating models with high errors. However, ML proved more effective in identifying the parameters that most significantly influence NP size, even with a smaller DOE dataset. Combining DOE datasets with ML for parameter importance was particularly advantageous in situations where data is limited, offering superior predictive power and the potential to streamline experimental design and optimisation. These results suggest that the synergistic use of ML and DOE can lead to more robust feature analysis and improved optimisation outcomes, particularly for NP size. This integrated approach can enhance the accuracy of predictions and supports more efficient experimental design, streamlining nanoparticle production processes, especially under resource-constrained conditions.
Collapse
Affiliation(s)
- Nidhi Seegobin
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Youssef Abdalla
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Ge Li
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Sudaxshina Murdan
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - David Shorthouse
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
4
|
Seegobin N, McCoubrey LE, Vignal C, Waxin C, Abdalla Y, Fan Y, Awad A, Murdan S, Basit AW. Dual action tofacitinib-loaded PLGA nanoparticles alleviate colitis in an IBD mouse model. Drug Deliv Transl Res 2024:10.1007/s13346-024-01736-1. [PMID: 39527394 DOI: 10.1007/s13346-024-01736-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Inflammatory bowel disease (IBD) affects over 7 million people worldwide and significant side effects are associated with current therapies such as tofacitinib citrate (TFC), which is linked to increased risks of malignancy and congestive heart issues. To mitigate these systemic adverse effects, localised drug delivery via nano-sized carriers to inflamed gut tissues represents a promising approach. Herein, we aimed to optimise the synthesis of nanoparticles (NPs) using a low molecular weight grade of Poly(lactic-co-glycolic acid) (PLGA) 50:50 loaded with TFC. This approach leverages the dual anti-inflammatory action of TFC and the local production of anti-inflammatory short-chain fatty acids from the degradation of PLGA by colonic gut microbiota. NPs were produced by nanoprecipitation and characterised for their drug release profile in vitro. The efficacy of the enhanced PLGA-TFC NPs was then tested in a C57BL/6 DSS colitis mouse model. The release profile of TFC from the enhanced PLGA NPs showed a 40% burst release within the first hour, followed by up to 80% drug release in the colonic environment. Notably, the degradation of PLGA by colonic gut microbiota did not significantly influence TFC release. In the mouse model, neither PLGA NPs alone nor TFC alone showed significant effects on weight loss compared to the TFC-loaded PLGA NPs, emphasising the enhanced efficacy potential of the combined formulation. Altogether, these results suggest a promising role of NP delivery systems in enhancing TFC efficacy, marking a significant step towards reducing dosage and associated side effects in IBD treatment. This study underscores the potential of PLGA-TFC NPs in providing targeted and effective therapy for IBD.
Collapse
Affiliation(s)
- Nidhi Seegobin
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, 29-39 Brunswick Square, London, UK
| | - Laura E McCoubrey
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, 29-39 Brunswick Square, London, UK
- Drug Product Development, GSK R&D, Ware, SG12 0GX, UK
| | - Cécile Vignal
- Univ. Lille, Inserm, CHU Lille, UMR1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France
| | - Christophe Waxin
- Univ. Lille, Inserm, CHU Lille, UMR1286 - INFINITE - Institute for Translational Research in Inflammation, 59000, Lille, France
| | - Youssef Abdalla
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, 29-39 Brunswick Square, London, UK
| | - Yue Fan
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, 29-39 Brunswick Square, London, UK
| | - Atheer Awad
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, 29-39 Brunswick Square, London, UK
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK
| | - Sudaxshina Murdan
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, 29-39 Brunswick Square, London, UK
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, WC1N 1AX, 29-39 Brunswick Square, London, UK.
| |
Collapse
|
5
|
Ouboter LF, Lindelauf C, Jiang Q, Schreurs M, Abdelaal TR, Luk SJ, Barnhoorn MC, Hueting WE, Han-Geurts IJ, Peeters KCMJ, Holman FA, Koning F, van der Meulen-de Jong AE, Pascutti MF. Activated HLA-DR+CD38+ Effector Th1/17 Cells Distinguish Crohn's Disease-associated Perianal Fistulas from Cryptoglandular Fistulas. Inflamm Bowel Dis 2024; 30:2146-2161. [PMID: 38776553 PMCID: PMC11812577 DOI: 10.1093/ibd/izae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Indexed: 05/25/2024]
Abstract
BACKGROUND Perianal fistulas are a debilitating complication of Crohn's disease (CD). Due to unknown reasons, CD-associated fistulas are in general more difficult to treat than cryptoglandular fistulas (non-CD-associated). Understanding the immune cell landscape is a first step towards the development of more effective therapies for CD-associated fistulas. In this work, we characterized the composition and spatial localization of disease-associated immune cells in both types of perianal fistulas by high-dimensional analyses. METHODS We applied single-cell mass cytometry (scMC), spectral flow cytometry (SFC), and imaging mass cytometry (IMC) to profile the immune compartment in CD-associated perianal fistulas and cryptoglandular fistulas. An exploratory cohort (CD fistula, n = 10; non-CD fistula, n = 5) was analyzed by scMC to unravel disease-associated immune cell types. SFC was performed on a second fistula cohort (CD, n = 10; non-CD, n = 11) to comprehensively phenotype disease-associated T helper (Th) cells. IMC was used on a third cohort (CD, n = 5) to investigate the spatial distribution/interaction of relevant immune cell subsets. RESULTS Our analyses revealed that activated HLA-DR+CD38+ effector CD4+ T cells with a Th1/17 phenotype were significantly enriched in CD-associated compared with cryptoglandular fistulas. These cells, displaying features of proliferation, regulation, and differentiation, were also present in blood, and colocalized with other CD4+ T cells, CCR6+ B cells, and macrophages in the fistula tracts. CONCLUSIONS Overall, proliferating activated HLA-DR+CD38+ effector Th1/17 cells distinguish CD-associated from cryptoglandular perianal fistulas and are a promising biomarker in blood to discriminate between these 2 fistula types. Targeting HLA-DR and CD38-expressing CD4+ T cells may offer a potential new therapeutic strategy for CD-related fistulas.
Collapse
Affiliation(s)
- Laura F Ouboter
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ciska Lindelauf
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Qinyue Jiang
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Mette Schreurs
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tamim R Abdelaal
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Bioinformatics Lab, Delft University of Technology, Delft, the Netherlands
- Systems and Biomedical Engineering Department, Faculty of Engineering Cairo University, Giza, Egypt
| | - Sietse J Luk
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marieke C Barnhoorn
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Willem E Hueting
- Department of Surgery, Alrijne hospital, Leiderdorp, the Netherlands
| | | | - Koen C M J Peeters
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Fabian A Holman
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Frits Koning
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | |
Collapse
|
6
|
Brandon KD, Frank WE, Stroka KM. Junctions at the crossroads: the impact of mechanical cues on endothelial cell-cell junction conformations and vascular permeability. Am J Physiol Cell Physiol 2024; 327:C1073-C1086. [PMID: 39129490 PMCID: PMC11481987 DOI: 10.1152/ajpcell.00605.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Cells depend on precisely regulating barrier function within the vasculature to maintain physiological stability and facilitate essential substance transport. Endothelial cells achieve this through specialized adherens and tight junction protein complexes, which govern paracellular permeability across vascular beds. Adherens junctions, anchored by vascular endothelial (VE)-cadherin and associated catenins to the actin cytoskeleton, mediate homophilic adhesion crucial for barrier integrity. In contrast, tight junctions composed of occludin, claudin, and junctional adhesion molecule A interact with Zonula Occludens proteins, reinforcing intercellular connections essential for barrier selectivity. Endothelial cell-cell junctions exhibit dynamic conformations during development, maturation, and remodeling, regulated by local biochemical and mechanical cues. These structural adaptations play pivotal roles in disease contexts such as chronic inflammation, where junctional remodeling contributes to increased vascular permeability observed in conditions from cancer to cardiovascular diseases. Conversely, the brain microvasculature's specialized junctional arrangements pose challenges for therapeutic drug delivery due to their unique molecular compositions and tight organization. This commentary explores the molecular mechanisms underlying endothelial cell-cell junction conformations and their implications for vascular permeability. By highlighting recent advances in quantifying junctional changes and understanding mechanotransduction pathways, we elucidate how physical forces from cellular contacts and hemodynamic flow influence junctional dynamics.
Collapse
Affiliation(s)
- Ken D Brandon
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
| | - William E Frank
- Department of Biology, University of Puerto Rico in Ponce, Ponce, Puerto Rico
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, United States
- Biophysics Program, University of Maryland, College Park, Maryland, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, Maryland, United States
| |
Collapse
|
7
|
Ariturk LA, Cilingir S, Kolgazi M, Elmas M, Arbak S, Yapislar H. Docosahexaenoic acid (DHA) alleviates inflammation and damage induced by experimental colitis. Eur J Nutr 2024; 63:2801-2813. [PMID: 39105785 PMCID: PMC11490523 DOI: 10.1007/s00394-024-03468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/05/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are chronic gastrointestinal disorders associated with significant morbidity and complications. This study investigates the therapeutic potential of docosahexaenoic acid (DHA) in a trinitrobenzene sulfonic acid (TNBS) induced colitis model, focusing on inflammation, oxidative stress, and intestinal membrane permeability. METHODS Wistar albino rats were divided into Control, Colitis, and Colitis + DHA groups (n = 8-10/group). The Colitis and Colitis + DHA groups received TNBS intrarectally, while the Control group received saline. DHA (600 mg/kg/day) or saline was administered via gavage for six weeks. Macroscopic and microscopic evaluations of colon tissues were conducted. Parameters including occludin and ZO-1 expressions, myeloperoxidase (MPO) activity, malondialdehyde (MDA), glutathione (GSH), total antioxidant status (TAS), total oxidant status (TOS), Interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α) levels were measured in colon tissues. RESULTS Colitis induction led to significantly higher macroscopic and microscopic damage scores, elevated TOS levels, reduced occludin and ZO-1 intensity, decreased mucosal thickness, and TAS levels compared to the Control group (p < 0.001). DHA administration significantly ameliorated these parameters (p < 0.001). MPO, MDA, TNF-α, and IL-6 levels were elevated in the Colitis group but significantly reduced in the DHA-treated group (p < 0.001 for MPO, MDA; p < 0.05 for TNF-α and IL-6). CONCLUSION DHA demonstrated antioxidant and anti-inflammatory effects by reducing reactive oxygen species production, enhancing TAS capacity, preserving GSH content, decreasing proinflammatory cytokine levels, preventing neutrophil infiltration, reducing shedding in colon epithelium, and improving gland structure and mucosal membrane integrity. DHA also upregulated the expressions of occludin and ZO-1, critical for barrier function. Thus, DHA administration may offer a therapeutic strategy or supplement to mitigate colitis-induced adverse effects.
Collapse
Affiliation(s)
- Leman Arslan Ariturk
- Faculty of Medicine, Department of Physiology, Marmara University, Istanbul, Turkey
| | - Sumeyye Cilingir
- Faculty of Medicine, Department of Physiology, Acibadem Mehmet Ali Adinlar University, Istanbul, Turkey
| | - Meltem Kolgazi
- Faculty of Medicine, Department of Physiology, Acibadem Mehmet Ali Adinlar University, Istanbul, Turkey
| | - Merve Elmas
- Faculty of Medicine, Department of Histology&Embriology, Acibadem Mehmet Ali Adinlar University, Istanbul, Turkey
| | - Serap Arbak
- Faculty of Medicine, Department of Histology&Embriology, Acibadem Mehmet Ali Adinlar University, Istanbul, Turkey
| | - Hande Yapislar
- Faculty of Medicine, Department of Physiology, Acibadem Mehmet Ali Adinlar University, Istanbul, Turkey.
| |
Collapse
|
8
|
Covello C, Becherucci G, Di Vincenzo F, Del Gaudio A, Pizzoferrato M, Cammarota G, Gasbarrini A, Scaldaferri F, Mentella MC. Parenteral Nutrition, Inflammatory Bowel Disease, and Gut Barrier: An Intricate Plot. Nutrients 2024; 16:2288. [PMID: 39064731 PMCID: PMC11279609 DOI: 10.3390/nu16142288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Malnutrition poses a critical challenge in inflammatory bowel disease, with the potential to detrimentally impact medical treatment, surgical outcomes, and general well-being. Parenteral nutrition is crucial in certain clinical scenarios, such as with patients suffering from short bowel syndrome, intestinal insufficiency, high-yielding gastrointestinal fistula, or complete small bowel obstruction, to effectively manage malnutrition. Nevertheless, research over the years has attempted to define the potential effects of parenteral nutrition on the intestinal barrier and the composition of the gut microbiota. In this narrative review, we have gathered and analyzed findings from both preclinical and clinical studies on this topic. Based on existing evidence, there is a clear correlation between short- and long-term parenteral nutrition and negative effects on the intestinal system. These include mucosal atrophic damage and immunological and neuroendocrine dysregulation, as well as alterations in gut barrier permeability and microbiota composition. However, the mechanistic role of these changes in inflammatory bowel disease remains unclear. Therefore, further research is necessary to effectively address the numerous gaps and unanswered questions pertaining to these issues.
Collapse
Affiliation(s)
- Carlo Covello
- Gastroenterology Department, Centro di Malattie dell’Apparato Digerente (CEMAD), Center for Diagnosis and Treatment of Digestive Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (F.D.V.); (A.D.G.); (A.G.)
| | - Guia Becherucci
- UOS Malattie Infiammatorie Croniche Intestinali, Centro di Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.B.); (F.S.)
| | - Federica Di Vincenzo
- Gastroenterology Department, Centro di Malattie dell’Apparato Digerente (CEMAD), Center for Diagnosis and Treatment of Digestive Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (F.D.V.); (A.D.G.); (A.G.)
| | - Angelo Del Gaudio
- Gastroenterology Department, Centro di Malattie dell’Apparato Digerente (CEMAD), Center for Diagnosis and Treatment of Digestive Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (F.D.V.); (A.D.G.); (A.G.)
| | - Marco Pizzoferrato
- UOC Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (G.C.)
| | - Giovanni Cammarota
- UOC Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (M.P.); (G.C.)
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Gastroenterology Department, Centro di Malattie dell’Apparato Digerente (CEMAD), Center for Diagnosis and Treatment of Digestive Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (F.D.V.); (A.D.G.); (A.G.)
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Franco Scaldaferri
- UOS Malattie Infiammatorie Croniche Intestinali, Centro di Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (G.B.); (F.S.)
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Chiara Mentella
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- UOC di Nutrizione Clinica, Dipartimento Scienze Mediche e Chirurgiche Addominali ed Endocrino-Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
9
|
Wan C, Ji T, Wang L, Wu Q, Chen Q, Wang Y, Li Y, He F, Liu W, Zhong W, Wang B. Exploring the molecular mechanisms and shared gene signatures between celiac disease and ulcerative colitis based on bulk RNA and single-cell sequencing: Experimental verification. Int Immunopharmacol 2024; 133:112059. [PMID: 38615385 DOI: 10.1016/j.intimp.2024.112059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/31/2023] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Many immune-mediated diseases have the common genetic basis, as an autoimmune disorder, celiac disease (CeD) primarily affects the small intestine, and is caused by the ingestion of gluten in genetically susceptible individuals. As for ulcerative colitis (UC), which most likely involves a complex interplay between some components of the commensal microbiota and other environmental factors in its origin. These two autoimmune diseases share a specific target organ, the bowel. The etiology and immunopathogenesis of both conditions characterized by chronic intestinal inflammation, ulcerative colitis and celiac disease, are not completely understood. Both are complex diseases with genetics and the environmental factors contributing to dysregulation of innate and adaptive immune responses, leading to chronic inflammation and disease. This study is designed to further clarify the relationship between UC and CeD. The GEO database was used to download gene expression profiles for CeD (GSE112102) and UC (GSE75214). The GSEA KEGG pathway analysis revealed that immune-related pathways were significantly associated with both diseases. Further, we screened 187 shared differentially expressed genes (DEGs) of the two diseases. Gene Ontology (GO) and WikiPathways were carried out to perform the biological process and pathway enrichment analysis. Subsequently, based on the DEGs, the least absolute shrinkage and selection operator (LASSO) analysis was performed to screen for the diagnostic biomarkers of the diseases. Moreover, single-cell RNA-sequencing (RNA-seq) data from five colonic propria with UC showed that REG4 expression was present in Goblet cell, Enteroendocrine cell, and Epithelial. Finally, our work identified REG4 is the shared gene of UC and CeD via external data validation, cellular experiments, and immunohistochemistry. In conclusion, our study elucidated that abnormal immune response could be the common pathogenesis of UC and CeD, and REG4 might be a key potential biomarker and therapeutic target for the comorbidity of these two diseases.
Collapse
Affiliation(s)
- Changshan Wan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Tao Ji
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China; Department of Gastroenterology, Linyi People's Hospital, Shandong 276000, China
| | - Liwei Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Qiuyan Wu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Qiuyu Chen
- Department of Gastroenterology, Tianjin First Central Hospital of Tianjin Medical University, Tianjin 300192, China
| | - Yali Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Yaqian Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China
| | - Fengming He
- Department of Clinical Laboratory Medicine, Shanxi Medical University, Taiyuan 030600, Shanxi, China
| | - Wentian Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China.
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China.
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin 300052, China.
| |
Collapse
|
10
|
Sofield CE, Anderton RS, Gorecki AM. Mind over Microplastics: Exploring Microplastic-Induced Gut Disruption and Gut-Brain-Axis Consequences. Curr Issues Mol Biol 2024; 46:4186-4202. [PMID: 38785524 PMCID: PMC11120006 DOI: 10.3390/cimb46050256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
As environmental plastic waste degrades, it creates an abundance of diverse microplastic particles. Consequently, microplastics contaminate drinking water and many staple food products, meaning the oral ingestion of microplastics is an important exposure route for the human population. Microplastics have long been considered inert, however their ability to promote microbial dysbiosis as well as gut inflammation and dysfunction suggests they are more noxious than first thought. More alarmingly, there is evidence for microplastics permeating from the gut throughout the body, with adverse effects on the immune and nervous systems. Coupled with the now-accepted role of the gut-brain axis in neurodegeneration, these findings support the hypothesis that this ubiquitous environmental pollutant is contributing to the rising incidence of neurodegenerative diseases, like Alzheimer's disease and Parkinson's disease. This comprehensive narrative review explores the consequences of oral microplastic exposure on the gut-brain-axis by considering current evidence for gastrointestinal uptake and disruption, immune activation, translocation throughout the body, and neurological effects. As microplastics are now a permanent feature of the global environment, understanding their effects on the gut, brain, and whole body will facilitate critical further research and inform policy changes aimed at reducing any adverse consequences.
Collapse
Affiliation(s)
- Charlotte E. Sofield
- School of Health Sciences, University of Notre Dame Australia, Fremantle, WA 6160, Australia; (C.E.S.); (R.S.A.)
| | - Ryan S. Anderton
- School of Health Sciences, University of Notre Dame Australia, Fremantle, WA 6160, Australia; (C.E.S.); (R.S.A.)
- Institute for Health Research, University of Notre Dame Australia, Fremantle, WA 6160, Australia
| | - Anastazja M. Gorecki
- School of Health Sciences, University of Notre Dame Australia, Fremantle, WA 6160, Australia; (C.E.S.); (R.S.A.)
| |
Collapse
|
11
|
Xu J, Xu H, Guo X, Zhao H, Wang J, Li J, He J, Huang H, Huang C, Zhao C, Li Y, Zhou Y, Peng Y, Nie Y. Pretreatment with an antibiotics cocktail enhances the protective effect of probiotics by regulating SCFA metabolism and Th1/Th2/Th17 cell immune responses. BMC Microbiol 2024; 24:91. [PMID: 38500062 PMCID: PMC10946100 DOI: 10.1186/s12866-024-03251-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Probiotics are a potentially effective therapy for inflammatory bowel disease (IBD); IBD is linked to impaired gut microbiota and intestinal immunity. However, the utilization of an antibiotic cocktail (Abx) prior to the probiotic intervention remains controversial. This study aims to identify the effect of Abx pretreatment from dextran sulfate sodium (DSS)-induced colitis and to evaluate whether Abx pretreatment has an enhanced effect on the protection of Clostridium butyricum Miyairi588 (CBM) from colitis. RESULTS The inflammation, dysbiosis, and dysfunction of gut microbiota as well as T cell response were both enhanced by Abx pretreatment. Additionally, CBM significantly alleviated the DSS-induced colitis and impaired gut epithelial barrier, and Abx pretreatment could enhance these protective effects. Furthermore, CBM increased the benefit bacteria abundance and short-chain fatty acids (SCFAs) level with Abx pretreatment. CBM intervention after Abx pretreatment regulated the imbalance of cytokines and transcription factors, which corresponded to lower infiltration of Th1 and Th17 cells, and increased Th2 cells. CONCLUSIONS Abx pretreatment reinforced the function of CBM in ameliorating inflammation and barrier damage by increasing beneficial taxa, eliminating pathogens, and inducing a protective Th2 cell response. This study reveals a link between Abx pretreatment, microbiota, and immune response changes in colitis, which provides a reference for the further application of Abx pretreatment before microbiota-based intervention.
Collapse
Affiliation(s)
- Jing Xu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Haoming Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Xue Guo
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Hailan Zhao
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiaqi Wang
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Jianhong Li
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Jie He
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Hongli Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Chen Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Chong Zhao
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Yingfei Li
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Youlian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| | - Yao Peng
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| | - Yuqiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Johnson-Martínez JP, Diener C, Levine AE, Wilmanski T, Suskind DL, Ralevski A, Hadlock J, Magis AT, Hood L, Rappaport N, Gibbons SM. Generally-healthy individuals with aberrant bowel movement frequencies show enrichment for microbially-derived blood metabolites associated with reduced kidney function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.04.531100. [PMID: 36945445 PMCID: PMC10028848 DOI: 10.1101/2023.03.04.531100] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Bowel movement frequency (BMF) has been linked to changes in the composition of the human gut microbiome and to many chronic conditions, like metabolic disorders, neurodegenerative diseases, chronic kidney disease (CKD), and other intestinal pathologies like irritable bowel syndrome and inflammatory bowel disease. Lower BMF (constipation) can lead to compromised intestinal barrier integrity and a switch from saccharolytic to proteolytic fermentation within the microbiota, giving rise to microbially-derived toxins that may make their way into circulation and cause damage to organ systems. However, the connections between BMF, gut microbial metabolism, and the early-stage development and progression of chronic disease remain underexplored. Here, we examined the phenotypic impact of BMF variation in a cohort of generally-healthy, community dwelling adults with detailed clinical, lifestyle, and multi-omic data. We showed significant differences in microbially-derived blood plasma metabolites, gut bacterial genera, clinical chemistries, and lifestyle factors across BMF groups that have been linked to inflammation, cardiometabolic health, liver function, and CKD severity and progression. We found that the higher plasma levels of 3-indoxyl sulfate (3-IS), a microbially-derived metabolite associated with constipation, was in turn negatively associated with estimated glomerular filtration rate (eGFR), a measure of kidney function. Causal mediation analysis revealed that the effect of BMF on eGFR was significantly mediated by 3-IS. Finally, we identify self-reported diet, lifestyle, and psychological factors associated with BMF variation, which indicate several common-sense strategies for mitigating constipation and diarrhea. Overall, we suggest that aberrant BMF is an underappreciated risk factor in the development of chronic diseases, even in otherwise healthy populations.
Collapse
Affiliation(s)
- Johannes P. Johnson-Martínez
- Institute for Systems Biology, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | - Anne E. Levine
- Institute for Systems Biology, Seattle, WA 98109, USA
- Seattle Children’s Hospital, Seattle, WA 98105, USA
| | | | | | | | | | | | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Phenome Health, Seattle, WA 98109
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Noa Rappaport
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Sean M. Gibbons
- Institute for Systems Biology, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- eScience Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Kandouz M. Cell Death, by Any Other Name…. Cells 2024; 13:325. [PMID: 38391938 PMCID: PMC10886887 DOI: 10.3390/cells13040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Studies trying to understand cell death, this ultimate biological process, can be traced back to a century ago. Yet, unlike many other fashionable research interests, research on cell death is more alive than ever. New modes of cell death are discovered in specific contexts, as are new molecular pathways. But what is "cell death", really? This question has not found a definitive answer yet. Nevertheless, part of the answer is irreversibility, whereby cells can no longer recover from stress or injury. Here, we identify the most distinctive features of different modes of cell death, focusing on the executive final stages. In addition to the final stages, these modes can differ in their triggering stimulus, thus referring to the initial stages. Within this framework, we use a few illustrative examples to examine how intercellular communication factors in the demise of cells. First, we discuss the interplay between cell-cell communication and cell death during a few steps in the early development of multicellular organisms. Next, we will discuss this interplay in a fully developed and functional tissue, the gut, which is among the most rapidly renewing tissues in the body and, therefore, makes extensive use of cell death. Furthermore, we will discuss how the balance between cell death and communication is modified during a pathological condition, i.e., colon tumorigenesis, and how it could shed light on resistance to cancer therapy. Finally, we briefly review data on the role of cell-cell communication modes in the propagation of cell death signals and how this has been considered as a potential therapeutic approach. Far from vainly trying to provide a comprehensive review, we launch an invitation to ponder over the significance of cell death diversity and how it provides multiple opportunities for the contribution of various modes of intercellular communication.
Collapse
Affiliation(s)
- Mustapha Kandouz
- Department of Pathology, School of Medicine, Wayne State University, 540 East Canfield Avenue, Detroit, MI 48201, USA;
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
14
|
Abubaker S, Miri S, Mottawea W, Hammami R. Microbial Extracellular Vesicles in Host-Microbiota Interactions. Results Probl Cell Differ 2024; 73:475-520. [PMID: 39242390 DOI: 10.1007/978-3-031-62036-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Extracellular vesicles have emerged as key players in cellular communication, influencing various physiological processes and pathophysiological progression, including digestion, immune response, and tissue repairs. Recently, a class of EVs derived from microbial communities has gained significant attention due to their pivotal role in intercellular communication and their potential as biomarkers and biotherapeutic agents. Microbial EVs are membrane-bound molecules encapsulating bioactive metabolites that modulate host physiological and pathological processes. This chapter discusses the evolving history of microbiota-produced EVs, including their discovery, characterization, current research status, and their diverse mechanisms of interaction with other microbes and hosts. This review also highlights the importance of EVs in health and disease and discusses recent research that shows promising results for the therapeutic potential of EVs.
Collapse
Affiliation(s)
- Sarah Abubaker
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Saba Miri
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Walid Mottawea
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Riadh Hammami
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
15
|
Zhao DD, Gai YD, Li C, Fu ZZ, Yin DQ, Xie M, Dai JY, Wang XX, Li YX, Wu GF, Feng Y, Hu JM, Lin SM, Yang JC. Dietary taurine effect on intestinal barrier function, colonic microbiota and metabolites in weanling piglets induced by LPS. Front Microbiol 2023; 14:1259133. [PMID: 38188568 PMCID: PMC10770862 DOI: 10.3389/fmicb.2023.1259133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Diarrhea in piglets is one of the most important diseases and a significant cause of death in piglets. Preliminary studies have confirmed that taurine reduces the rate and index of diarrhea in piglets induced by LPS. However, there is still a lack of relevant information on the specific target and mechanism of action of taurine. Therefore, we investigated the effects of taurine on the growth and barrier functions of the intestine, microbiota composition, and metabolite composition of piglets induced by LPS. Eighteen male weaned piglets were randomly divided into the CON group (basal diet + standard saline injection), LPS group (basal diet + LPS-intraperitoneal injection), and TAU + LPS group (basal diet + 0.3% taurine + LPS-intraperitoneal injection). The results show that taurine significantly increased the ADG and decreased the F/G (p < 0.05) compared with the group of CON. The group of TAU + LPS significantly improved colonic villous damage (p < 0.05). The expression of ZO-1, Occludin and Claudin-1 genes and proteins were markedly up-regulated (p < 0.05). Based on 16s rRNA sequencing analysis, the relative abundance of Lactobacilluscae and Firmicutes in the colon was significantly higher in the LPS + TAU group compared to the LPS group (p < 0.05). Four metabolites were significantly higher and one metabolite was significantly lower in the TAU + LPS group compared to the LPS group (p < 0.01). The above results show that LPS disrupts intestinal microorganisms and metabolites in weaned piglets and affects intestinal barrier function. Preventive addition of taurine enhances beneficial microbiota, modulates intestinal metabolites, and strengthens the intestinal mechanical barrier. Therefore, taurine can be used as a feed additive to prevent intestinal damage by regulating intestinal microorganisms and metabolites.
Collapse
Affiliation(s)
- Dong-dong Zhao
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ye-dan Gai
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chen Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Zi-zheng Fu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - De-Qi Yin
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Mingxin Xie
- Animal Husbandry and Veterinary College, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, China
| | - Jing-yuan Dai
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Xin-xin Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yan-xi Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Gao-feng Wu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ying Feng
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jian-min Hu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Shu-mei Lin
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Jian-cheng Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
16
|
Bi Z, Chen J, Chang X, Li D, Yao Y, Cai F, Xu H, Cheng J, Hua Z, Zhuang H. ADT-OH improves intestinal barrier function and remodels the gut microbiota in DSS-induced colitis. Front Med 2023; 17:972-992. [PMID: 37507636 DOI: 10.1007/s11684-023-0990-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 01/31/2023] [Indexed: 07/30/2023]
Abstract
Owing to the increasing incidence and prevalence of inflammatory bowel disease (IBD) worldwide, effective and safe treatments for IBD are urgently needed. Hydrogen sulfide (H2S) is an endogenous gasotransmitter and plays an important role in inflammation. To date, H2S-releasing agents are viewed as potential anti-inflammatory drugs. The slow-releasing H2S donor 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-OH), known as a potent therapeutic with chemopreventive and cytoprotective properties, has received attention recently. Here, we reported its anti-inflammatory effects on dextran sodium sulfate (DSS)-induced acute (7 days) and chronic (30 days) colitis. We found that ADT-OH effectively reduced the DSS-colitis clinical score and reversed the inflammation-induced shortening of colon length. Moreover, ADT-OH reduced intestinal inflammation by suppressing the nuclear factor kappa-B pathway. In vivo and in vitro results showed that ADT-OH decreased intestinal permeability by increasing the expression of zonula occludens-1 and occludin and blocking increases in myosin II regulatory light chain phosphorylation and epithelial myosin light chain kinase protein expression levels. In addition, ADT-OH restored intestinal microbiota dysbiosis characterized by the significantly increased abundance of Muribaculaceae and Alistipes and markedly decreased abundance of Helicobacter, Mucispirillum, Parasutterella, and Desulfovibrio. Transplanting ADT-OH-modulated microbiota can alleviate DSS-induced colitis and negatively regulate the expression of local and systemic proinflammatory cytokines. Collectively, ADT-OH is safe without any short-term (5 days) or long-term (30 days) toxicological adverse effects and can be used as an alternative therapeutic agent for IBD treatment.
Collapse
Affiliation(s)
- Zhiqian Bi
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jia Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiaoyao Chang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Dangran Li
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yingying Yao
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Fangfang Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Huangru Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jian Cheng
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, China.
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
17
|
Francis KL, Alonge KM, Pacheco MC, Hu SJ, Krutzsch CA, Morton GJ, Schwartz MW, Scarlett JM. Diabetes exacerbates inflammatory bowel disease in mice with diet-induced obesity. World J Gastroenterol 2023; 29:4991-5004. [PMID: 37731997 PMCID: PMC10507503 DOI: 10.3748/wjg.v29.i33.4991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/22/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND The increased prevalence of inflammatory bowel disease (IBD) among patients with obesity and type 2 diabetes suggests a causal link between these diseases, potentially involving the effect of hyperglycemia to disrupt intestinal barrier integrity. AIM To investigate whether the deleterious impact of diabetes on the intestinal barrier is associated with increased IBD severity in a murine model of colitis in mice with and without diet-induced obesity. METHODS Mice were fed chow or a high-fat diet and subsequently received streptozotocin to induce diabetic-range hyperglycemia. Six weeks later, dextran sodium sulfate was given to induce colitis. In select experiments, a subset of diabetic mice was treated with the antidiabetic drug dapagliflozin prior to colitis onset. Endpoints included both clinical and histological measures of colitis activity as well as histochemical markers of colonic epithelial barrier integrity. RESULTS In mice given a high-fat diet, but not chow-fed animals, diabetes was associated with significantly increased clinical colitis activity and histopathologic markers of disease severity. Diabetes was also associated with a decrease in key components that regulate colonic epithelial barrier integrity (colonic mucin layer content and epithelial tight junction proteins) in diet-induced obese mice. Each of these effects of diabetes in diet-induced obese mice was ameliorated by restoring normoglycemia. CONCLUSION In obese mice, diabetes worsened clinical and pathologic outcomes of colitis via mechanisms that are reversible with treatment of hyperglycemia. Hyperglycemia-induced intestinal barrier dysfunction offers a plausible mechanism linking diabetes to increased colitis severity. These findings suggest that effective diabetes management may decrease the clinical severity of IBD.
Collapse
Affiliation(s)
- Kendra L Francis
- Department of Pediatric Gastroenterology and Hepatology, Seattle Children’s Hospital, Seattle, WA 98105, United States
- Diabetes Institute, University of Washington, Seattle, WA 98109, United States
| | - Kimberly M Alonge
- Diabetes Institute, University of Washington, Seattle, WA 98109, United States
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, United States
| | - Maria Cristina Pacheco
- Department of Laboratory Medicine and Pathology, Seattle Children's Hospital, Seattle, WA 98105, United States
| | - Shannon J Hu
- Diabetes Institute, University of Washington, Seattle, WA 98109, United States
| | - Cody A Krutzsch
- Diabetes Institute, University of Washington, Seattle, WA 98109, United States
| | - Gregory J Morton
- Diabetes Institute, University of Washington, Seattle, WA 98109, United States
| | - Michael W Schwartz
- Diabetes Institute, University of Washington, Seattle, WA 98109, United States
| | - Jarrad M Scarlett
- Department of Pediatric Gastroenterology and Hepatology, Seattle Children’s Hospital, Seattle, WA 98105, United States
- Diabetes Institute, University of Washington, Seattle, WA 98109, United States
| |
Collapse
|
18
|
Xia R, Zhang Q, Xia D, Hao Q, Ding Q, Ran C, Yang Y, Cao A, Zhang Z, Zhou Z. The direct and gut microbiota-mediated effects of dietary bile acids on the improvement of gut barriers in largemouth bass ( Micropterus salmoides). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:32-42. [PMID: 37234949 PMCID: PMC10208797 DOI: 10.1016/j.aninu.2023.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/29/2022] [Accepted: 03/15/2023] [Indexed: 05/28/2023]
Abstract
Fish gut barrier damage under intensive culture model is a significant concern for aquaculture industry. This study aimed to investigate the effects of bile acids (BAs) on gut barriers in Micropterus salmoides. A germ-free (GF) zebrafish model was employed to elucidate the effects of the direct stimulation of BAs and the indirect regulations mediated by the gut microbiota on gut barrier functions. Four diets were formulated with BAs supplemented at 0, 150, 300 and 450 mg/kg, and these 4 diets were defined as control, BA150, BA300 and BA450, respectively. After 5 weeks of feeding experiment, the survival rate of fish fed with BA300 diet was increased (P < 0.05). Histological analysis revealed an improvement of gut structural integrity in the BA150 and BA300 groups. Compared with the control group, the expression of genes related to chemical barrier (mucin, lysozyme and complement 1) and physical barrier (occludin and claudin-4) was increased in the BA150 and BA300 groups (P < 0.05), and the expression of genes related to immunological barrier (interleukin [IL]-6, tumor growth factor β, IL-10, macrophage galactose-type lectin and immunoglobulin M [IgM]) was significantly increased in the BA300 group (P < 0.05), but the expression of genes related to chemical barrier (hepcidin) and immunological barrier (IL-1β, tumor necrosis factor-α, IL-6 and arginase) was significantly decreased in the BA450 group (P < 0.05). Gut microbiota composition analysis revealed that the abundance of Firmicutes was augmented prominently in the BA150 and BA300 groups (P < 0.05), while that of Actinobacteriota and Proteobacteria showed a downward trend in the BA150 and BA300 groups (P > 0.05). The results of the gut microbiota transferring experiment demonstrated an upregulation of gut barrier-related genes, including immunoglobulin Z/T (IgZ/T), IL-6, IL-1β and IL-10, by the gut microbiota transferred from the BA300 group compared with the control (P < 0.05). Feeding the BA300 diet directly to GF zebrafish resulted in enhanced expression of IgM, IgZ/T, lysozyme, occludin-2, IL-6 and IL-10 (P < 0.05). In conclusion, BAs can improve the gut barriers of fish through both direct and indirect effects mediated by the gut microbiota.
Collapse
Affiliation(s)
- Rui Xia
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingshuang Zhang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dongmei Xia
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qiang Hao
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Norway-China Joint Lab on Fish Gut Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Qianwen Ding
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Norway-China Joint Lab on Fish Gut Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Aizhi Cao
- Shandong Longchang Animal Health Care Co., Ltd., Jinan 251100, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Jiangxi 330000, China
| |
Collapse
|
19
|
Meyer F, Wendling D, Demougeot C, Prati C, Verhoeven F. Cytokines and intestinal epithelial permeability: A systematic review. Autoimmun Rev 2023; 22:103331. [PMID: 37030338 DOI: 10.1016/j.autrev.2023.103331] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/03/2023] [Indexed: 04/10/2023]
Abstract
BACKGROUND The intestinal mucosa is composed of a well-organized epithelium, acting as a physical barrier to harmful luminal contents, while simultaneously ensuring absorption of physiological nutrients and solutes. Increased intestinal permeability has been described in various chronic diseases, leading to abnormal activation of subepithelial immune cells and overproduction of inflammatory mediators. This review aimed to summarize and evaluate the effects of cytokines on intestinal permeability. METHODS A systematic review of the literature was performed in the Medline, Cochrane and Embase databases, up to 01/04/2022, to identify published studies assessing the direct effect of cytokines on intestinal permeability. We collected data on the study design, the method of assessment of intestinal permeability, the type of intervention and the subsequent effect on gut permeability. RESULTS A total of 120 publications were included, describing a total of 89 in vitro and 44 in vivo studies. TNFα, IFNγ or IL-1β were the most frequently studied cytokines, inducing an increase in intestinal permeability through a myosin light-chain-mediated mechanism. In situations associated with intestinal barrier disruption, such as inflammatory bowel diseases, in vivo studies showed that anti-TNFα treatment decreased intestinal permeability while achieving clinical recovery. In contrast to TNFα, IL-10 decreased permeability in conditions associated with intestinal hyperpermeability. For some cytokines (e.g. IL-17, IL-23), results are conflicting, with both an increase and a decrease in gut permeability reported, depending on the study model, methodology, or the studied conditions (e.g. burn injury, colitis, ischemia, sepsis). CONCLUSION This systematic review provides evidence that intestinal permeability can be directly influenced by cytokines in numerous conditions. The immune environment probably plays an important role, given the variability of their effect, according to different conditions. A better understanding of these mechanisms could open new therapeutic perspectives for disorders associated with gut barrier dysfunction.
Collapse
Affiliation(s)
- Frédéric Meyer
- PEPITE EA4267, Université de Franche-Comté, F-25000 Besançon, France; Department of rheumatology, University Hospital Besançon, F-25000 Besançon, France
| | - Daniel Wendling
- Department of rheumatology, University Hospital Besançon, F-25000 Besançon, France; EA 4266, EPILAB, Université de Franche-Comté, F-25000 Besançon, France
| | - Céline Demougeot
- PEPITE EA4267, Université de Franche-Comté, F-25000 Besançon, France
| | - Clément Prati
- PEPITE EA4267, Université de Franche-Comté, F-25000 Besançon, France; Department of rheumatology, University Hospital Besançon, F-25000 Besançon, France
| | - Frank Verhoeven
- PEPITE EA4267, Université de Franche-Comté, F-25000 Besançon, France; Department of rheumatology, University Hospital Besançon, F-25000 Besançon, France.
| |
Collapse
|
20
|
Tang S, Zhong W, Li T, Li Y, Song G. Isochlorogenic acid A alleviates dextran sulfate sodium-induced ulcerative colitis in mice through STAT3/NF-кB pathway. Int Immunopharmacol 2023; 118:109989. [PMID: 36958213 DOI: 10.1016/j.intimp.2023.109989] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/25/2023]
Abstract
Isochlorogenic acid A (ICGA-A) is a dicaffeoylquinic acid widely found in various medicinal plants or vegetables, such as Lonicerae japonicae Flos and chicory, and multiple properties of ICGA-A have been reported. However, the therapeutic effect of ICGA-A on colitis is not clear, and thus were investigated in our present study, as well as the underlying mechanisms. Here we found that ICGA-A alleviated clinical symptoms of dextran sodium sulfate (DSS) induced colitis model mice, including disease activity index (DAI) and histological damage. In addition, DSS-induced inflammation was significantly attenuated in mice given ICGA-A supplementation. ICGA-A reduced the fraction of neutrophils in peripheral blood and the infiltration of neutrophils and macrophages in colon tissue, and reduced pro-inflammatory cytokine production and tight junctions in mouse models. Furthermore, ICGA-A down-regulated expression of STAT3 and up-regulated the protein level of IκBα. Our in vitro studies confirmed that ICGA-A inhibited the mRNA expression of pro-inflammatory cytokines. ICGA-A blocked the phosphorylation of STAT3, p65, and IκBα, suppressed the expression STAT3 and p65. In addition, the present study also demonstrated that ICGA-A had no obvious toxicity on normal cells and organs. Taken together, we conclude that ICGA-A mitigates experimental ulcerative colitis (UC) at least in part by inhibiting the STAT3/NF-кB signaling pathways. Hence, ICGA-A may be a promising and effective drug for treating UC.
Collapse
Affiliation(s)
- Shaoshuai Tang
- Fisheries College of Jimei University, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Wei Zhong
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Tingting Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Yuanyue Li
- Fisheries College of Jimei University, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China.
| | - Gang Song
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
21
|
Investigation into the anti-inflammatory mechanism of coffee leaf extract in LPS-induced Caco-2/U937 co-culture model through cytokines and NMR-based untargeted metabolomics analyses. Food Chem 2023; 404:134592. [DOI: 10.1016/j.foodchem.2022.134592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/15/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2022]
|
22
|
d’Angelo M, Brandolini L, Catanesi M, Castelli V, Giorgio C, Alfonsetti M, Tomassetti M, Zippoli M, Benedetti E, Cesta MC, Colagioia S, Cocchiaro P, Cimini A, Allegretti M. Differential Effects of Nonsteroidal Anti-Inflammatory Drugs in an In Vitro Model of Human Leaky Gut. Cells 2023; 12:cells12050728. [PMID: 36899865 PMCID: PMC10001324 DOI: 10.3390/cells12050728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The intestinal barrier is the main contributor to gut homeostasis. Perturbations of the intestinal epithelium or supporting factors can lead to the development of intestinal hyperpermeability, termed "leaky gut". A leaky gut is characterized by loss of epithelial integrity and reduced function of the gut barrier, and is associated with prolonged use of Non-Steroidal Anti-Inflammatories. The harmful effect of NSAIDs on intestinal and gastric epithelial integrity is considered an adverse effect that is common to all drugs belonging to this class, and it is strictly dependent on NSAID properties to inhibit cyclo-oxygenase enzymes. However, different factors may affect the specific tolerability profile of different members of the same class. The present study aims to compare the effects of distinct classes of NSAIDs, such as ketoprofen (K), Ibuprofen (IBU), and their corresponding lysine (Lys) and, only for ibuprofen, arginine (Arg) salts, using an in vitro model of leaky gut. The results obtained showed inflammatory-induced oxidative stress responses, and related overloads of the ubiquitin-proteasome system (UPS) accompanied by protein oxidation and morphological changes to the intestinal barrier, many of these effects being counteracted by ketoprofen and ketoprofen lysin salt. In addition, this study reports for the first time a specific effect of R-Ketoprofen on the NFkB pathway that sheds new light on previously reported COX-independent effects, and that may account for the observed unexpected protective effect of K on stress-induced damage on the IEB.
Collapse
Affiliation(s)
- Michele d’Angelo
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Laura Brandolini
- Dompé Farmaceutici S.p.A., via Campo di Pile snc, 67100 L’Aquila, Italy
| | - Mariano Catanesi
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Vanessa Castelli
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Cristina Giorgio
- Dompé Farmaceutici S.p.A., via De Amicis 95, 80131 Napoli, Italy
| | - Margherita Alfonsetti
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Mara Tomassetti
- Dompé Farmaceutici S.p.A., via De Amicis 95, 80131 Napoli, Italy
| | - Mara Zippoli
- Dompé Farmaceutici S.p.A., via De Amicis 95, 80131 Napoli, Italy
| | - Elisabetta Benedetti
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | | | - Sandro Colagioia
- Dompé Farmaceutici S.p.A., via Campo di Pile snc, 67100 L’Aquila, Italy
| | | | - Annamaria Cimini
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Dept. of Biology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: (A.C.); (M.A.)
| | - Marcello Allegretti
- Dompé Farmaceutici S.p.A., via Campo di Pile snc, 67100 L’Aquila, Italy
- Correspondence: (A.C.); (M.A.)
| |
Collapse
|
23
|
Molecular Mechanisms of Hyperoxia-Induced Neonatal Intestinal Injury. Int J Mol Sci 2023; 24:ijms24054366. [PMID: 36901800 PMCID: PMC10002283 DOI: 10.3390/ijms24054366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Oxygen therapy is important for newborns. However, hyperoxia can cause intestinal inflammation and injury. Hyperoxia-induced oxidative stress is mediated by multiple molecular factors and leads to intestinal damage. Histological changes include ileal mucosal thickness, intestinal barrier damage, and fewer Paneth cells, goblet cells, and villi, effects which decrease the protection from pathogens and increase the risk of necrotizing enterocolitis (NEC). It also causes vascular changes with microbiota influence. Hyperoxia-induced intestinal injuries are influenced by several molecular factors, including excessive nitric oxide, the nuclear factor-κB (NF-κB) pathway, reactive oxygen species, toll-like receptor-4, CXC motif ligand-1, and interleukin-6. Nuclear factor erythroid 2-related factor 2 (Nrf2) pathways and some antioxidant cytokines or molecules including interleukin-17D, n-acetylcysteine, arginyl-glutamine, deoxyribonucleic acid, cathelicidin, and health microbiota play a role in preventing cell apoptosis and tissue inflammation from oxidative stress. NF-κB and Nrf2 pathways are essential to maintain the balance of oxidative stress and antioxidants and prevent cell apoptosis and tissue inflammation. Intestinal inflammation can lead to intestinal damage and death of the intestinal tissue, such as in NEC. This review focuses on histologic changes and molecular pathways of hyperoxia-induced intestinal injuries to establish a framework for potential interventions.
Collapse
|
24
|
Microbiota-dependent presence of murine enteric glial cells requires myeloid differentiation primary response protein 88 signaling. J Biosci 2023. [DOI: 10.1007/s12038-023-00325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
25
|
The Potential Therapeutic Role of Lactobacillaceae rhamnosus for Treatment of Inflammatory Bowel Disease. Foods 2023; 12:foods12040692. [PMID: 36832767 PMCID: PMC9955806 DOI: 10.3390/foods12040692] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a heterogeneous group of diseases associated with chronic inflammation of the intestinal tract, and is highly prevalent worldwide. Although its origin is not yet fully understood, new evidence emphasizes that environmental factors, especially dietary factors and intestinal microbiota disorders are key triggers of IBD. Probiotics, such as Lactobacillaceae spp., play an essential role in human health as they exert beneficial effects on the composition of the human gastrointestinal microbial community and immune system. Probiotic-based therapies have been shown to be effective in alleviating IBD. Among these, Lactobacillaceae rhamnosus is one of the most widely used strains. L. rhamnosus is widely present in the intestines of healthy individuals; it regulates the intestinal immune system and reduces inflammation through a variety of mechanisms. The purpose of this study was to identify scientific evidence related to L. rhamnosus and IBD, review and summarize the results, and discuss the possible mechanisms of action as a starting point for future research on IBD treatment.
Collapse
|
26
|
Cartwright IM, Colgan SP. The hypoxic tissue microenvironment as a driver of mucosal inflammatory resolution. Front Immunol 2023; 14:1124774. [PMID: 36742292 PMCID: PMC9890178 DOI: 10.3389/fimmu.2023.1124774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
On the backdrop of all acute inflammatory processes lies the activation of the resolution response. Recent years have witnessed an emerging interest in defining molecular factors that influence the resolution of inflammation. A keystone feature of the mucosal inflammatory microenvironment is hypoxia. The gastrointestinal tract, particularly the colon, exists in a state of physiological hypoxia and during active inflammation, this hypoxic state is enhanced as a result of infiltrating leukocyte oxygen consumption and the activation of oxygen consuming enzymes. Most evidence suggests that mucosal hypoxia promotes the active resolution of inflammation through a variety of mechanisms, including extracellular acidification, purine biosynthesis/salvage, the generation of specialized pro-resolving lipid mediators (ie. resolvins) and altered chemokine/cytokine expression. It is now appreciated that infiltrating innate immune cells (neutrophils, eosinophils, macrophages) have an important role in molding the tissue microenvironment to program an active resolution response. Structural or functional dysregulation of this inflammatory microenvironment can result in the loss of tissue homeostasis and ultimately progression toward chronicity. In this review, we will discuss how inflammatory hypoxia drives mucosal inflammatory resolution and its impact on other microenvironmental factors that influence resolution.
Collapse
Affiliation(s)
- Ian M. Cartwright
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, United States
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Sean P. Colgan
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, United States
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| |
Collapse
|
27
|
Fang X, Nong K, Wang Z, Jin Y, Gao F, Zeng Q, Wang X, Zhang H. Human cathelicidin LL-37 exerts amelioration effects against EHEC O157:H7 infection regarding inflammation, enteric dysbacteriosis, and impairment of gut barrier function. Peptides 2023; 159:170903. [PMID: 36370932 DOI: 10.1016/j.peptides.2022.170903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 infection impairs intestinal barrier function, causing intestinal inflammation and enteric dysbacteriosis. The human cathelicidin LL-37 can regulate excessive inflammatory responses, barrier function, and balance the intestinal microbial community; however, little is known about its effects on inflammation, intestinal barrier function, and microbiota disorders in EHEC O157:H7-infected mice. In this study, we investigated the protective effect of LL-37 against EHEC O157:H7 infection and elucidated the underlying mechanism using a mouse model. LL-37 treatment was found to inhibit body weight loss, restore edema and destruction of the intestinal villi, and significantly reduce epithelial apoptosis (P < 0.05) in EHEC O157:H7-infected mice. Furthermore, inflammatory infiltration of macrophages and neutrophils into the jejunum and colon was significantly decreased (P < 0.05). LL-37 significantly downregulated the production of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) (P < 0.05) and upregulated the anti-inflammatory cytokine (IL-10) during EHEC O157:H7 infection. LL-37 increased the expression of tight junction proteins (ZO-1, ZO-2, claudin-1, and occludin), which are associated with intestinal barrier function, and had a positive effect on EHEC O157:H7-induced microbial disorders, particularly in terms of the inflammation-related microbiota. LL-37 also significantly decreased the E. coli load in the liver and spleen (P < 0.01) and restored the structure of the liver and kidney. Taken together, LL-37 conferred protection in a EHEC O157:H7-induced mouse model by reducing intestinal inflammation, enhancing intestinal barrier function, and restoring the balance of the intestinal microbiota, which indicates the therapeutic potential of LL-37 against pathogen infection.
Collapse
Affiliation(s)
- Xin Fang
- College of Animal Science and Technology of Hainan University, Haikou, Hainan 570228, China
| | - Keyi Nong
- College of Animal Science and Technology of Hainan University, Haikou, Hainan 570228, China
| | - Zihan Wang
- College of Animal Science and Technology of Hainan University, Haikou, Hainan 570228, China
| | - Yuanli Jin
- College of Animal Science and Technology of Hainan University, Haikou, Hainan 570228, China
| | - Feng Gao
- College of Animal Science and Technology of Hainan University, Haikou, Hainan 570228, China
| | - Qiuyu Zeng
- College of Animal Science and Technology of Hainan University, Haikou, Hainan 570228, China
| | - Xuemei Wang
- College of Animal Science and Technology of Hainan University, Haikou, Hainan 570228, China
| | - Haiwen Zhang
- College of Animal Science and Technology of Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
28
|
Mukhopadhyay S, Ray P, Aich P. A comparative analysis of gut microbial dysbiosis by select antibiotics and DSS to understand the effects of perturbation on the host immunity and metabolism. Life Sci 2022; 312:121212. [PMID: 36414091 DOI: 10.1016/j.lfs.2022.121212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/21/2022]
Abstract
AIMS Balanced gut microbial composition of the host plays a crucial role in maintaining harmony among various physiological processes to maintain physiological homeostasis. Immunity and metabolism are the two physiologies mainly controlled by the gut microbiota. Reports suggested that gut microbial composition and diversity alteration are the leading causes of the host's healthy homeostasis alteration or a diseased state. The extent of gut perturbation depends on the perturbing agents' strength, chemical nature, and mode of action. In the current report, we have studied the effects of different perturbing agents on gut microbial dysbiosis and its impact on host immunity and metabolism. MATERIALS AND METHODS We studied the perturbation of gut microbial composition and diversity using next-generation sequencing and further investigated the changes in host immune and metabolic responses. KEY FINDINGS Enrichment or abolition of a particular phylum or genus depended on the perturbing agents. In the current study, treatment with neomycin yielded an increase in the Bacteroidetes phylum. Vancomycin treatment caused a significant rise in Verrucomicrobia and Proteobacteria phyla. The treatment with AVNM and DSS caused a substantial increase in the Proteobacteria phylum. The gut microbial diversity was also lowest in AVNM treated group. The altered gut microbial composition ultimately altered the immune responses at localized and systemic levels of the host. Gut dysbiosis also changed the systemic level of SCFAs. SIGNIFICANCE This study will help us understand how the enrichment of a particular phylum and genus maintains the host's immune responses and metabolism.
Collapse
Affiliation(s)
- Sohini Mukhopadhyay
- School of Biological Sciences, National Institute of Science Education and Research (NISER), P.O.-Bhimpur-Padanpur, Jatni-752050 District-Khurdha, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Pratikshya Ray
- School of Biological Sciences, National Institute of Science Education and Research (NISER), P.O.-Bhimpur-Padanpur, Jatni-752050 District-Khurdha, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Palok Aich
- School of Biological Sciences, National Institute of Science Education and Research (NISER), P.O.-Bhimpur-Padanpur, Jatni-752050 District-Khurdha, Odisha, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
29
|
He Y, Li Z, Xu T, Luo D, Chi Q, Zhang Y, Li S. Polystyrene nanoplastics deteriorate LPS-modulated duodenal permeability and inflammation in mice via ROS drived-NF-κB/NLRP3 pathway. CHEMOSPHERE 2022; 307:135662. [PMID: 35830933 DOI: 10.1016/j.chemosphere.2022.135662] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The widespread occurrence of nanoplastics (NPs), has markedly affected the ecosystem and has become a global threat to animals and human health. There is growing evidence showing that polystyrene nanoparticles (PSNPs) exposure induced enteritis and the intestinal barrier disorder. Lipopolysaccharide (LPS) can trigger the inflammation burden of various tissues. Whether PSNPs deteriorate LPS-induced intestinal damage via ROS drived-NF-κB/NLRP3 pathway is remains unknown. In this study, PSNPs exposure/PSNPs and LPS co-exposure mice model were duplicated by intraperitoneal injection. The results showed that exposure to PSNPs/LPS caused duodenal inflammation and increased permeability. We evaluated the change of duodenum structure, oxidative stress parameters, inflammatory factors, and tight junction protein in the duodenum. We found that PSNPs/LPS could aggravate the production of ROS and oxidative stress in cells, activate NF-κB/NLRP3 pathway, decrease the expression tight junction proteins (ZO-1, Claudin 1, and Occludin) levels, promote inflammatory factors (TNF-α, IL-6, and IFN-γ) expressions. Duodenal oxidative stress and inflammation in PS + LPS group were more serious than those in single exposure group, which could be alleviated by NF-kB inhibitor QNZ. Collectively, the results verified that PSNPs deteriorated LPS-induced inflammation and increasing permeability in mice duodenum via ROS drived-NF-κB/NLRP3 pathway. The current study indicated the relationship and molecular mechanism between PSNPs and intestinal injury, providing novel insights into the adverse effects of PSNPs exposure on mammals and humans.
Collapse
Affiliation(s)
- Yujiao He
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhe Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Xu
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Dongliu Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qianru Chi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yiming Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
30
|
Fuladi S, McGuinness S, Khalili-Araghi F. Role of TM3 in claudin-15 strand flexibility: A molecular dynamics study. Front Mol Biosci 2022; 9:964877. [PMID: 36250014 PMCID: PMC9557151 DOI: 10.3389/fmolb.2022.964877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Claudins are cell-cell adhesion proteins within tight junctions that connect epithelial cells together. Claudins polymerize into a network of strand-like structures within the membrane of adjoining cells and create ion channels that control paracellular permeability to water and small molecules. Tight junction morphology and barrier function is tissue specific and regulated by claudin subtypes. Here, we present a molecular dynamics study of claudin-15 strands within lipid membranes and the role of a single-point mutation (A134P) on the third transmembrane helix (TM3) of claudin-15 in determining the morphology of the strand. Our results indicate that the A134P mutation significantly affects the lateral flexibility of the strands, increasing the persistence length of claudin-15 strands by a factor of three. Analyses of claudin-claudin contact in our μsecond-long trajectories show that the mutation does not alter the intermolecular contacts (interfaces) between claudins. However, the dynamics and frequency of interfacial contacts are significantly affected. The A134P mutation introduces a kink in TM3 of claudin-15 similar to the one observed in claudin-3 crystal structure. The kink on TM3 skews the rotational flexibility of the claudins in the strands and limits their fluctuation in one direction. This asymmetric movement in the context of the double rows reduces the lateral flexibility of the strand and leads to higher persistence lengths of the mutant.
Collapse
Affiliation(s)
- Shadi Fuladi
- Department of Physics, University of Illinois at Chicago, Chicago, IL, United States
| | - Sarah McGuinness
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
| | | |
Collapse
|
31
|
Sun R, Niu H, Sun M, Miao X, Jin X, Xu X, Yanping C, Mei H, Wang J, Da L, Su Y. Effects of Bacillus subtilis natto JLCC513 on Gut Microbiota and Intestinal Barrier Function in obese Rats. J Appl Microbiol 2022; 133:3634-3644. [PMID: 36036228 DOI: 10.1111/jam.15797] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/23/2022] [Accepted: 08/23/2022] [Indexed: 11/28/2022]
Abstract
AIMS This study aimed to investigate the effects of Bacillus subtilis natto JLCC513(JLCC513)on gut microbiota, inflammation and intestinal barrier function in high-fat-diet (HFD) rats. METHODS AND RESULTS Sprague-Dawley (SD) rats were fed HFD for 16 weeks, and treated with JLCC513 in 9th weeks. The oral administration of JLCC513 decreased body weight, and reduced the inflammation level in HFD rats. Pathologically, JLCC513 prevented the detachment of ileal villus and increased the villus height in rat. Mechanistically, Western blot analysis showed that the protein levels of tight junction (TJ) proteins involved in intestinal barrier function, including zonula occludens-1 (ZO-1), occludin and claudin-1, were increased after JLCC513 treatment. Meanwhile, JLCC513 treatment also decreased the protein levels of toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-κB) and NOD-like receptor protein 3 (NLRP3), indicating inhibition of the TLR4/NF-κB/NLRP3 pathway. Furthermore, fecal analysis showed that JLCC513 increased the abundance of Lactobacillus and Oscillospira and the ratio of Firmicutes/Bacteroidetes (F/B), and decreased the levels of Blautia and C_Clostridium. CONCLUSIONS JLCC513 alleviated intestinal barrier dysfunction by inhibiting TLR4/NF-κB/NLRP3 pathway and regulating gut microbiota disorders. SIGNIFICANCE AND IMPACT OF STUDY Our study might provide new treatment strategies for the obesity and metabolic diseases.
Collapse
Affiliation(s)
- Ruiyue Sun
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China.,Department of Food Science and Engineering, Agricultural College, Yanbian University, Yanji, 133000, Jilin, China
| | - Honghong Niu
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China
| | - Mubai Sun
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China
| | - Xinyu Miao
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China
| | - Xin Jin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130033, Jilin, China
| | - Xifei Xu
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China.,Department of Food Science and Engineering, Agricultural College, Yanbian University, Yanji, 133000, Jilin, China
| | - Chi Yanping
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China
| | - Hua Mei
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China
| | - Jinghui Wang
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China
| | - Li Da
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China
| | - Ying Su
- Institute of Agro-product Process, Academy of Agricultural Science, Changchun, 130033, Jilin, Jilin, China
| |
Collapse
|
32
|
Lee YH, Kim H, Nam S, Chu JR, Kim JH, Lim JS, Kim SE, Sung MK. Protective Effects of High-Fat Diet against Murine Colitis in Association with Leptin Signaling and Gut Microbiome. Life (Basel) 2022; 12:life12070972. [PMID: 35888062 PMCID: PMC9323536 DOI: 10.3390/life12070972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/19/2022] [Accepted: 06/24/2022] [Indexed: 04/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic intestinal-tract inflammation with dysregulated immune responses, which are partly attributable to dysbiosis. Given that diet plays a critical role in IBD pathogenesis and progression, we elucidated the effects of a high-fat diet (HFD) feeding on IBD development in relation to immune dysfunction and the gut microbiota. Five-week-old male C57BL/6J mice were fed either a normal diet (ND) or HFD for 14 weeks. The animals were further divided into ND, ND+ dextran sulfate sodium (DSS), HFD, and HFD+DSS treatment groups. The HFD+DSS mice exhibited lower body weight loss, lower disease activity index, longer colon length, and increased tight-junction protein expression and goblet-cell proportions compared with the ND+DSS mice. The T helper (h)1 and Th17 cell populations and pro-inflammatory cytokines involved in colitis pathogenesis were significantly more reduced in the HFD+DSS mice than in the ND+DSS mice. The HFD+DSS mice showed significantly increased serum leptin concentrations, colonic leptin receptor expression, enhanced anti-apoptotic AKT expression, and reduced pro-apoptotic MAPK and Bax expression compared with the ND+DSS mice, suggesting the involvement of the leptin-mediated pathway in intestinal epithelial cell apoptosis. The alterations in the gut-microbiota composition in the HFD+DSS group were the opposite of those in the ND+DSS group and rather similar to those of the ND group, indicating that the protective effects of HFD feeding against DSS-induced colitis are associated with changes in gut-microbiota composition. Overall, HFD feeding ameliorates DSS-induced colitis and colonic mucosal damage by reinforcing colonic barrier function and regulating immune responses in association with changes in gut-microbiota composition.
Collapse
Affiliation(s)
- Yun-Ha Lee
- Department of Food and Nutrition, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-H.L.); (H.K.); (J.-R.C.)
| | - Hyeyoon Kim
- Department of Food and Nutrition, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-H.L.); (H.K.); (J.-R.C.)
| | - Sorim Nam
- Division of Biological Sciences and Cellular Heterogeneity Research Center, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (S.N.); (J.-S.L.)
| | - Jae-Ryang Chu
- Department of Food and Nutrition, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-H.L.); (H.K.); (J.-R.C.)
| | - Jung-Hwan Kim
- Department of Pharmacology, School of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Korea;
| | - Jong-Seok Lim
- Division of Biological Sciences and Cellular Heterogeneity Research Center, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (S.N.); (J.-S.L.)
| | - Sung-Eun Kim
- Department of Food and Nutrition, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-H.L.); (H.K.); (J.-R.C.)
- Correspondence: (S.-E.K.); (M.-K.S.); Tel.: +82-2-2077-7722 (S.-E.K.); +82-2-710-9395 (M.-K.S.)
| | - Mi-Kyung Sung
- Department of Food and Nutrition, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-H.L.); (H.K.); (J.-R.C.)
- Correspondence: (S.-E.K.); (M.-K.S.); Tel.: +82-2-2077-7722 (S.-E.K.); +82-2-710-9395 (M.-K.S.)
| |
Collapse
|
33
|
Khalifa A, Sheikh A, Ibrahim HIM. Bacillus amyloliquefaciens Enriched Camel Milk Attenuated Colitis Symptoms in Mice Model. Nutrients 2022; 14:1967. [PMID: 35565934 PMCID: PMC9101272 DOI: 10.3390/nu14091967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
Fermented camel's milk has various health beneficial prebiotics and probiotics. This study aimed to evaluate the preventive efficacy of Bacillus amyloliquefaciens enriched camel milk (BEY) in 2-, 4- and 6-Trinitrobenzenesulfonic acid (TNBS)-induced colitis mice models. To this end, the immune modulatory effects of Bacillus amyloliquefaciens (BA) on TNF-α challenged HT29 colon cells were estimated using the cell proliferation and cytokines ELISA method. BEY was prepared using the incubation method and nutritional value was quantified by comparing it to commercial yogurt. Furthermore, TNBS-induced colitis was established and the level of disease index, pathological scores, and inflammatory markers of BEY-treated mice using macroscopic and microscopic examinations, qPCR and immunoblot were investigated. The results demonstrate that BA is non-toxic to HT29 colon cells and balanced the inflammatory cytokines. BEY reduced the colitis disease index, and improved the body weight and colon length of the TNBS-induced mice. Additionally, Myeloperoxidase (MPO) and pro-inflammatory cytokines (IL1β, IL6, IL8 and TNF-α) were attenuated by BEY treatment. Moreover, the inflammatory progress mRNA and protein markers nuclear factor kappa B (NFκB), phosphatase and tensin homolog (PTEN), proliferating cell nuclear antigen (PCNA), cyclooxygenase-2 (COX-2) and occludin were significantly down-regulated by BEY treatment. Interestingly, significant suppression of PCNA was observed in colonic tissues using the immunohistochemical examination. Treatment with BEY increased the epigenetic (microRNA217) interactions with PCNA. In conclusion, the BEY clearly alleviated the colitis symptoms and in the future could be used to formulate a probiotic-based diet for the host gut health and control the inflammatory bowel syndrome in mammals.
Collapse
Affiliation(s)
- Ashraf Khalifa
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Abdullah Sheikh
- Camel Research Center, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
| | - Hairul Islam Mohamed Ibrahim
- Biological Science Department, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Molecular Biology Division, Pondicherry Centre for Biological Sciences and Educational Trust, Kottakuppam 605104, India
| |
Collapse
|
34
|
Bai B, Li H, Han L, Mei Y, Hu C, Mei Q, Xu J, Liu X. Molecular mechanism of the TGF‑β/Smad7 signaling pathway in ulcerative colitis. Mol Med Rep 2022; 25:116. [PMID: 35137923 PMCID: PMC8855156 DOI: 10.3892/mmr.2022.12632] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 12/03/2021] [Indexed: 11/10/2022] Open
Abstract
Aberrant TGF‑β/Smad7 signaling has been reported to be an important mechanism underlying the pathogenesis of ulcerative colitis. Therefore, the present study aimed to investigate the effects of a number of potential anti‑colitis agents on intestinal epithelial permeability and the TGF‑β/Smad7 signaling pathway in an experimental model of colitis. A mouse model of colitis was first established before anti‑TNF‑α and 5‑aminosalicyclic acid (5‑ASA) were administered intraperitoneally and orally, respectively. Myeloperoxidase (MPO) activity, histological index (HI) of the colon and the disease activity index (DAI) scores were then detected in each mouse. Transmission electron microscopy (TEM), immunohistochemical and functional tests, including Evans blue (EB) and FITC‑dextran (FD‑4) staining, were used to evaluate intestinal mucosal permeability. The expression of epithelial phenotype markers E‑cadherin, occludin, zona occludens (ZO‑1), TGF‑β and Smad7 were measured. In addition, epithelial myosin light chain kinase (MLCK) expression and activity were measured. Anti‑TNF‑α and 5‑ASA treatments was both found to effectively reduce the DAI score and HI, whilst decreasing colonic MPO activity, plasma levels of FD‑4 and EB permeation of the intestine. Furthermore, anti‑TNF‑α and 5‑ASA treatments decreased MLCK expression and activity, reduced the expression of Smad7 in the small intestine epithelium, but increased the expression of TGF‑β. In mice with colitis, TEM revealed partial epithelial injury in the ileum, where the number of intercellular tight junctions and the expression levels of E‑cadherin, ZO‑1 and occludin were decreased, all of which were alleviated by anti‑TNF‑α and 5‑ASA treatment. In conclusion, anti‑TNF‑α and 5‑ASA both exerted protective effects on intestinal epithelial permeability in an experimental mouse model of colitis. The underlying mechanism may be mediated at least in part by the increase in TGF‑β expression and/or the reduction in Smad7 expression, which can inhibit epithelial MLCK activity and in turn reduce mucosal permeability during the pathogenesis of ulcerative colitis.
Collapse
Affiliation(s)
- Bingqing Bai
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- The Key Laboratory of Digestive Diseases of Anhui Province, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Huihui Li
- The Key Laboratory of Digestive Diseases of Anhui Province, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Gastroenterology, Fuyang Cancer Hospital, Fuyang, Anhui 236010, P.R. China
| | - Liang Han
- The Key Laboratory of Digestive Diseases of Anhui Province, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Gastroenterology, Hangzhou Ninth People's Hospital, Hangzhou, Zhejiang 311225, P.R. China
| | - Yongyu Mei
- The Key Laboratory of Digestive Diseases of Anhui Province, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- Department of Gastroenterology, Wuhu Second People's Hospital, Wuhu, Anhui 241000, P.R. China
| | - Cui Hu
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- The Key Laboratory of Digestive Diseases of Anhui Province, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Qiao Mei
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- The Key Laboratory of Digestive Diseases of Anhui Province, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jianming Xu
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- The Key Laboratory of Digestive Diseases of Anhui Province, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Xiaochang Liu
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
- The Key Laboratory of Digestive Diseases of Anhui Province, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
35
|
Varani J, McClintock SD, Aslam MN. Cell-Matrix Interactions Contribute to Barrier Function in Human Colon Organoids. Front Med (Lausanne) 2022; 9:838975. [PMID: 35360746 PMCID: PMC8960989 DOI: 10.3389/fmed.2022.838975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
The importance of cell-matrix adhesion to barrier control in the colon is unclear. The goals of the present study were to: (i) determine if disruption of colon epithelial cell interactions with the extracellular matrix alters permeability control measurement and (ii) determine if increasing the elaboration of protein components of cell-matrix adhesion complexes can mitigate the effects of cell-matrix disruption. Human colon organoids were interrogated for transepithelial electrical resistance (TEER) under control conditions and in the presence of Aquamin®, a multi-mineral product. A function-blocking antibody directed at the C-terminal region of the laminin α chain was used in parallel. The effects of Aquamin® on cell-matrix adhesion protein expression were determined in a proteomic screen and by Western blotting. Aquamin® increased the expression of multiple basement membrane, hemidesmosomal and focal adhesion proteins as well as keratin 8 and 18. TEER values were higher in the presence of Aquamin® than they were under control conditions. The blocking antibody reduced TEER values under both conditions but was most effective in the absence of Aquamin®, where expression of cell-matrix adhesion proteins was lower to begin with. These findings provide evidence that cell-matrix interactions contribute to barrier control in the colon.
Collapse
|
36
|
Mukhopadhyay S, Saha S, Chakraborty S, Prasad P, Ghosh A, Aich P. Differential colitis susceptibility of Th1- and Th2-biased mice: A multi-omics approach. PLoS One 2022; 17:e0264400. [PMID: 35263357 PMCID: PMC8906622 DOI: 10.1371/journal.pone.0264400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/09/2022] [Indexed: 01/08/2023] Open
Abstract
The health and economic burden of colitis is increasing globally. Understanding the role of host genetics and metagenomics is essential to establish the molecular basis of colitis pathogenesis. In the present study, we have used a common composite dose of DSS to compare the differential disease severity response in C57BL/6 (Th1 biased) and BALB/c (Th2 biased) mice with zero mortality rates. We employed multi-omics approaches and developed a newer vector analysis approach to understand the molecular basis of the disease pathogenesis. In the current report, comparative transcriptomics, metabonomics, and metagenomics analyses revealed that the Th1 background of C57BL/6 induced intense inflammatory responses throughout the treatment period. On the contrary, the Th2 background of BALB/c resisted severe inflammatory responses by modulating the host’s inflammatory, metabolic, and gut microbial profile. The multi-omics approach also helped us discover some unique metabolic and microbial markers associated with the disease severity. These biomarkers could be used in diagnostics.
Collapse
Affiliation(s)
- Sohini Mukhopadhyay
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, Khurdha, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Subha Saha
- Institute of Life Sciences, NALCO Square, Bhubaneswar, Odisha, India
| | - Subhayan Chakraborty
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Khurdha, Odisha, India
| | - Punit Prasad
- Institute of Life Sciences, NALCO Square, Bhubaneswar, Odisha, India
| | - Arindam Ghosh
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Khurdha, Odisha, India
| | - Palok Aich
- School of Biological Sciences, National Institute of Science Education and Research (NISER), HBNI, Khurdha, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| |
Collapse
|
37
|
Chen R, Pang X, Li L, Zeng Z, Chen M, Zhang S. Ubiquitin-specific proteases in inflammatory bowel disease-related signalling pathway regulation. Cell Death Dis 2022; 13:139. [PMID: 35145062 PMCID: PMC8831562 DOI: 10.1038/s41419-022-04566-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
The exact pathogenesis of inflammatory bowel disease (IBD), a chronic gastrointestinal inflammatory disease comprising Crohn’s disease and ulcerative colitis, remains unclear. Studies on ubiquitination, which regulates the degradation of inflammation signalling pathway molecules, and deubiquitination have provided novel insights. Targeting the ubiquitin-specific protease (USP) family of deubiquitinases elucidates IBD signalling pathway mechanisms and possibly, IBD therapeutic solutions. Here, we characterised USPs as chief regulators of pro-inflammatory signalling pathways, including nuclear factor-κB and transforming growth factor-β; analysed the relationship between USPs and IBD pathogenesis in terms of genetic susceptibility, intestinal epithelial barrier, immunity, and gut microbiota; and discussed future research prospects.
Collapse
Affiliation(s)
- Rirong Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaobai Pang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Li Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shenghong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
38
|
Ojo BA, VanDussen KL, Rosen MJ. The Promise of Patient-Derived Colon Organoids to Model Ulcerative Colitis. Inflamm Bowel Dis 2022; 28:299-308. [PMID: 34251431 PMCID: PMC8804507 DOI: 10.1093/ibd/izab161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Physiologic, molecular, and genetic findings all point to impaired intestinal epithelial function as a key element in the multifactorial pathogenesis of ulcerative colitis (UC). The lack of epithelial-directed therapies is a conspicuous weakness of our UC therapeutic armamentarium. However, a critical barrier to new drug discovery is the lack of preclinical human models of UC. Patient tissue-derived colon epithelial organoids (colonoids) are primary epithelial stem cell-derived in vitro structures capable of self-organization and self-renewal that hold great promise as a human preclinical model for UC drug development. Several single and multi-tissue systems for colonoid culture have been developed, including 3-dimensional colonoids grown in a gelatinous extracellular matrix, 2-dimensional polarized monolayers, and colonoids on a chip that model luminal and blood flow and nutrient delivery. A small number of pioneering studies suggest that colonoids derived from UC patients retain some disease-related transcriptional and epigenetic changes, but they also raise questions regarding the persistence of inflammatory transcriptional programs in culture over time. Additional research is needed to fully characterize the extent to which and under what conditions colonoids accurately model disease-associated epithelial molecular and functional aberrations. With further advancement and standardization of colonoid culture methodology, colonoids will likely become an important tool for realizing precision medicine in UC.
Collapse
Affiliation(s)
- Babajide A Ojo
- Divisions of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States
| | - Kelli L VanDussen
- Divisions of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States
- Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Michael J Rosen
- Divisions of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| |
Collapse
|
39
|
Chen TT, Lv JJ, Chen L, Gao YW, Liu LP. Role of heparinase in the gastrointestinal dysfunction of sepsis (Review). Exp Ther Med 2022; 23:119. [PMID: 34970342 PMCID: PMC8713170 DOI: 10.3892/etm.2021.11042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022] Open
Abstract
Heparinase (HPA) is a β-D glucuronidase that belongs to the endoglycosidase enzyme family, and plays an important role in numerous pathological and physiological processes, including inflammation, angiogenesis and tumor metastasis. When the expression of HPA is abnormally high, the side chain of heparin sulfate proteoglycans degrades, destroying the cell barrier and leading to the occurrence and development of inflammation, with systemic inflammation occurring in severe cases. Sepsis is a major cause of mortality in critically ill patients. In sepsis, the gastrointestinal tract is the first and most frequently involved target organ, which often leads to gastrointestinal dysfunction. HPA overexpression has been determined to accelerate sepsis progression and gastrointestinal dysfunction; thus, it was hypothesized that HPA may play an important role and may serve as an index for the diagnosis of gastrointestinal dysfunction in sepsis. HPA inhibitors may therefore become applicable as targeted drugs for the treatment of gastrointestinal dysfunction in patients with sepsis. The present review mainly discussed the role of HPA in gastrointestinal dysfunction of sepsis.
Collapse
Affiliation(s)
- Ting-Ting Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jia-Jun Lv
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Ling Chen
- Department of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Department of Emergency, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yu-Wei Gao
- Department of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Department of Emergency, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Li-Ping Liu
- Department of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Department of Emergency, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
40
|
Rusticeanu M, Zimmer V, Lammert F. Visualising and quantifying intestinal permeability -where do we stand. Ann Hepatol 2022; 23:100266. [PMID: 33045414 DOI: 10.1016/j.aohep.2020.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/20/2020] [Accepted: 09/20/2020] [Indexed: 02/04/2023]
Abstract
Intestinal permeability is getting more and more attention in gastrointestinal research. Although well recognized, its exact role in health and disease is yet to be defined. There are many methods of quantifying intestinal permeability, but most of them fail to deliver tangible information about the morphological integrity of the intestinal barrier. In this review we aim to describe imaging options for the assessment of intestinal barrier integrity and their potential relevance for clinical practice. Our focus is on confocal laser endomicroscopy, which is at this time the only method for visualizing not only functional but also morphological aspects of the gut barrier in vivo.
Collapse
Affiliation(s)
- Monica Rusticeanu
- Department of Medicine, Krankenhaus Vilshofen, Krankenhausstrasse 32, 94474 Vislhofen an der Donau, Germany.
| | - Vincent Zimmer
- Department of Medicine, Marienhausklinik St. Josef Kohlhof, Klinikweg 1-5, 66539 Neunkirchen, Germany; Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.
| |
Collapse
|
41
|
Guanylin ligand protects the intestinal immune barrier by activating the guanylate cyclase-C signaling pathway. Acta Histochem 2022; 124:151811. [PMID: 34920371 DOI: 10.1016/j.acthis.2021.151811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 11/20/2022]
Abstract
Inflammatory bowel disease (IBD) impacts patient quality of life significantly. The dysfunction of intestinal immune barrier is closely associated with IBD. The guanylate cyclase-C (GC-C) signaling pathway activated by the guanylin (Gn) ligand is involved in the occurrence and development of IBD. However, how it regulates the intestinal immune barrier is still unclear. To investigate the effect of the GC-C pathway on intestinal mucosal immunity and provide experimental basis for seeking new therapeutic strategies for IBD, we focused on Caco-2 cells and intestinal intra-epithelial lymphocytes (IELs), which displayed inflammatory responses induced by lipopolysaccharide (LPS). GC-C activity was modulated by transfection with Gn overexpression or GC-C shRNA plasmid. Levels of Gn, GC-C, and CFTR; transepithelial electrical resistance (TER); paracellula r permeability; and levels of IL-2, IFN-γ, and secretory IgA (sIgA) were examined. The study found that after stimulation with LPS, Gn, GC-C, CFTR, TER, and sIgA levels were all significantly reduced, IL-2 and IFN-γ levels as well as paracellular permeability were significantly increased. These indicators changed inversely and significantly after transfection with the Gn overexpression vector. Compared to the vector controls, GC-C-silenced cells displayed significantly decreased levels of GC-C, CFTR, and TER and increased levels of IL-2, IFN-γ, and paracellular permeability stimulated by LPS. The results show that Gn ligand can protect the intestinal immune barrier by activating the GC-C signaling pathway, which may be helpful for the development of new treatments for IBD. DATA AVAILABILITY STATEMENT: The data used to support the findings of this study are available from the corresponding author upon request.
Collapse
|
42
|
Kaminsky LW, Al-Sadi R, Ma TY. IL-1β and the Intestinal Epithelial Tight Junction Barrier. Front Immunol 2021; 12:767456. [PMID: 34759934 PMCID: PMC8574155 DOI: 10.3389/fimmu.2021.767456] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelial tight junction (TJ) barrier controls the paracellular permeation of contents from the intestinal lumen into the intestinal tissue and systemic circulation. A defective intestinal TJ barrier has been implicated as an important pathogenic factor in inflammatory diseases of the gut including Crohn's disease, ulcerative colitis, necrotizing enterocolitis, and celiac disease. Previous studies have shown that pro-inflammatory cytokines, which are produced during intestinal inflammation, including interleukin-1β (IL-1β), tumor necrosis factor-α, and interferon-γ, have important intestinal TJ barrier-modulating actions. Recent studies have shown that the IL-1β-induced increase in intestinal TJ permeability is an important contributing factor of intestinal inflammation. The IL-1β-induced increase in intestinal TJ permeability is mediated by regulatory signaling pathways and activation of nuclear transcription factor nuclear factor-κB, myosin light chain kinase gene activation, and post-transcriptional occludin gene modulation by microRNA and contributes to the intestinal inflammatory process. In this review, the regulatory role of IL-1β on intestinal TJ barrier, the intracellular mechanisms that mediate the IL-1β modulation of intestinal TJ permeability, and the potential therapeutic targeting of the TJ barrier are discussed.
Collapse
Affiliation(s)
- Lauren W Kaminsky
- Section of Allergy, Asthma, and Immunology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Rana Al-Sadi
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Thomas Y Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
43
|
Otuya DO, Gavgiotaki E, Carlson CJ, Shi SQ, Lee AJ, Krall AA, Chung A, Grant CG, Bhat NM, Choy P, Giddings SL, Gardecki JA, Thiagarajah JR, Rowe SM, Tearney GJ. Minimally Invasive Image-Guided Gut Transport Function Measurement Probe. FRONTIERS IN PHYSICS 2021; 9:735645. [PMID: 36382063 PMCID: PMC9648666 DOI: 10.3389/fphy.2021.735645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Diseases such as celiac disease, environmental enteric dysfunction, infectious gastroenteritis, type II diabetes and inflammatory bowel disease are associated with increased gut permeability. Dual sugar absorption tests, such as the lactulose to rhamnose ratio (L:R) test, are the current standard for measuring gut permeability. Although easy to administer in adults, the L:R test has a number of drawbacks. These include an inability to assess for spatial heterogeneity in gut permeability that may distinguish different disease severity or pathology, additional sample collection for immunoassays, and challenges in carrying out the test in certain populations such as infants and small children. Here, we demonstrate a minimally invasive probe for real-time localized gut permeability evaluation through gut potential difference (GPD) measurement. MATERIALS AND METHODS The probe has an outer diameter of 1.2 mm diameter and can be deployed in the gut of unsedated subjects via a transnasal introduction tube (TNIT) that is akin to an intestinal feeding tube. The GPD probe consists of an Ag/AgCl electrode, an optical probe and a perfusion channel all housed within a transparent sheath. Lactated Ringer's (LR) solution is pumped through the perfusion channel to provide ionic contact between the electrodes and the gut lining. The optical probe captures non-scanning (M-mode) OCT images to confirm electrode contact with the gut lining. A separate skin patch probe is placed over an abraded skin area to provide reference for the GPD measurements. Swine studies were conducted to validate the GPD probe. GPD in the duodenum was modulated by perfusing 45 ml of 45 mM glucose. RESULTS GPD values of -13.1 ± 2.8 mV were measured in the duodenum across four swine studies. The change in GPD in the duodenum with the addition of glucose was -10.5 ± 2.4 mV (p < 0.001). M-mode OCT images provided electrode-tissue contact information, which was vital in ascertaining the probe's proximity to the gut mucosa. CONCLUSION We developed and demonstrated a minimally invasive method for investigating gastrointestinal permeability consisting of an image guided GPD probe that can be used in unsedated subjects.
Collapse
Affiliation(s)
- David O. Otuya
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Evangelia Gavgiotaki
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Camella J. Carlson
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
| | - Serena Q. Shi
- University of Pennsylvania, Philadelphia, MA, United States
| | - Ariel J. Lee
- Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Alexander A. Krall
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
| | - Anita Chung
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
| | - Catriona G. Grant
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
| | - Nitasha M. Bhat
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
| | - Peter Choy
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
| | - Sarah L. Giddings
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
| | - Joseph A. Gardecki
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Jay R. Thiagarajah
- Harvard Medical School, Boston, MA, United States
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital, Boston, MA, United States
| | - Steven M. Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Gregory Fleming James Cystic Fibrosis Research Center, Birmingham, AL, United States
| | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
- Harvard-MIT Division of Health Sciences and Technology (HST), Boston, MA, United States
| |
Collapse
|
44
|
Liu W, Luo X, Tang J, Mo Q, Zhong H, Zhang H, Feng F. A bridge for short-chain fatty acids to affect inflammatory bowel disease, type 1 diabetes, and non-alcoholic fatty liver disease positively: by changing gut barrier. Eur J Nutr 2021; 60:2317-2330. [PMID: 33180143 DOI: 10.1007/s00394-020-02431-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE In previous studies, short-chain fatty acids (SCFAs) have been found to regulate gut microbiota and change gut barrier status, and the potential positive effects of SCFAs on inflammatory bowel disease (IBD), type 1 diabetes mellitus (T1D), and non-alcoholic fatty liver disease (NAFLD) have also been found, but the role of SCFAs in these three diseases is not clear. This review aims to summarize existing evidence on the effects of SCFAs on IBD, T1D, and NHFLD, and correlates them with gut barrier and gut microbiota (gut microbiota barrier). METHODS A literature search in PubMed, Web of Science, Springer, and Wiley Online Library up to October 2020 was conducted for all relevant studies published. RESULTS This is a retrospective review of 150 applied research articles or reviews. The destruction of gut barrier may promote the development of IBD, T1D, and NAFLD. SCFAs seem to maintain the gut barrier by promoting the growth of intestinal epithelial cells, strengthening the intestinal tight connection, and regulating the activities of gut microbiota and immune cells, which might result possible beneficial effects on the above three diseases at a certain dose. CONCLUSIONS Influencing gut barrier health may be a bridge for SCFAs (especially butyrate) to have positive effects on IBD, T1D, and NAFLD. It is expected that this article can provide new ideas for the subsequent research on the treatment of diseases by SCFAs and help SCFAs be better applied to precise and personalized treatment.
Collapse
Affiliation(s)
- Wangxin Liu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, 310058, China
| | - Xianliang Luo
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, 310058, China
| | - Jun Tang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, 310058, China
| | - Qiufen Mo
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, 310058, China
| | - Hao Zhong
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, 310058, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, 310058, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang University, No. 866, Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
45
|
Su X, Wei J, Qi H, Jin M, Zhang Q, Zhang Y, Zhang C, Yang R. LRRC19 Promotes Permeability of the Gut Epithelial Barrier Through Degrading PKC-ζ and PKCι/λ to Reduce Expression of ZO1, ZO3, and Occludin. Inflamm Bowel Dis 2021; 27:1302-1315. [PMID: 33501933 DOI: 10.1093/ibd/izaa354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND A dysfunctional gut epithelial barrier allows the augmented permeation of endotoxins, luminal antigens, and bacteria into the bloodstream, causing disease. The maintenance of gut epithelial barrier integrity may be regulated by multiple factors. Herein we analyze the role of leucine-rich repeat-containing protein 19 (LRRC19) in regulating the permeability of the gut epithelial barrier. METHODS We utilized Lrrc19 knockout (KO) mice and clinical samples through transmission electron, intestinal permeability assay, Western blot, and immunofluorescence staining to characterize the role of LRRC19 in the permeability of the gut epithelial barrier. RESULTS We found that LRRC19, which is expressed in gut epithelial cells, impairs gut barrier function. Transmission electron micrographs revealed a tighter junction and narrower gaps in the colon epithelium cells in LRRC19 KO mice. There were lower levels of serum lipopolysaccharide and 4 kDa-fluorescein isothiocyanate-dextran after gavage in LRRC19 KO mice than in wild-type mice. We found that LRRC19 could reduce the expression of zonula occludens (ZO)-1, ZO-3, and occludin in the colonic epithelial cells. The decreased expression of ZO-1, ZO-3, and occludin was dependent on degrading protein kinase C (PKC) ζ and PKCι/λ through K48 ubiquitination by LRRC19. The expression of LRRC19 was also negatively correlated with ZO-1, ZO-3, occludin, PKCζ, and PKCι/λ in human colorectal cancers. CONCLUSIONS The protein LRRC19 can promote the permeability of the gut epithelial barrier through degrading PKC ζ and PKCι/λ to reduce the expression of ZO-1, ZO-3, and occludin.
Collapse
Affiliation(s)
- Xiaomin Su
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Jianmei Wei
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Houbao Qi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Mengli Jin
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Qianjing Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Rongcun Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
46
|
Cheng W, Wang Z, Xiong Y, Wu Z, Tan X, Yang Y, Zhang H, Zhu X, Wei H, Tao S. N-(3-oxododecanoyl)-homoserine lactone disrupts intestinal barrier and induces systemic inflammation through perturbing gut microbiome in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146347. [PMID: 34030388 DOI: 10.1016/j.scitotenv.2021.146347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/16/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
As a quorum sensing signal molecule, N-(3-oxododecanoyl)-homoserine lactone (3OC12) regulate the population behavior of microorganisms. Many studies have proved that 3OC12 harm the physiological function of host intestinal epithelial cells. However, the detrimental effects of 3OC12 on intestinal health need verification in animals. Besides, the role of gut microbiome in 3OC12-induced intestinal damage also needs further understanding. In our study, 3OC12 was first administered to specific pathogen-free (SPF) mice, then the fecal microbiome of SPF mice was transplanted into germ-free (GF) mice to reveal the effects of 3OC12 on intestinal health and regulatory mechanisms of the intestinal microbiome. 3OC12 treatment significantly decreased body weight, shortened colonic length, disrupted the morphology of the colonic epithelium and increased the histopathological score of the colon in SPF mice. The levels of diamine peroxidase, d-lactate, TNF-α, IL-1β, and IL-8 were found to be significantly elevated in the serum of 3OC12 mice, while the levels of IL-10 were significantly reduced. Besides, the fecal microbial community of mice was also altered in the 3OC12-treated SPF mice. The results of fecal microbial transplantation (FMT) experiment showed that the phenotypes in SPF mice were almost reproduced in GF mice, manifested by body weight loss, colon damage and changed in serum chemical markers. More importantly, a joint analysis of fecal microbes in SPF and GF mice revealed Feature14_Elizabethkingia spp. was common differential bacteria in the feces of two kinds of mice treated with and without FMT. Our results demonstrated that 3OC12 challenge led to systemic inflammation and body weight loss in mice by disrupting intestinal barrier function, in which gut microbiome played a key role. These findings increased our understanding of the mechanism of intestinal injury caused by 3CO12, providing new ideas for the prevention and therapy of diseases caused by bacterial infection from the perspective of intestinal microbiome.
Collapse
Affiliation(s)
- Wei Cheng
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yi Xiong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhifeng Wu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Tan
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yapeng Yang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hang Zhang
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Zhu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Wei
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiyu Tao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
47
|
Cao XY, Ni JH, Wang X, Feng GZ, Li HD, Bao WL, Wang YR, You KY, Weng HB, Shen XY. Total glucosides of Paeony restores intestinal barrier function through inhibiting Lyn/Snail signaling pathway in colitis mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 87:153590. [PMID: 34033998 DOI: 10.1016/j.phymed.2021.153590] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/12/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is an autoimmune disease. The pathogenesis of IBD is complicated and intestinal mucosal barrier damage is considered as the trigger factor for the initiation and recurrence of IBD. Total Glucosides of Paeony (TGP) has shown good inhibitory effects on immune-inflammation in clinic studies. However, its effect and mechanism on IBD are largely unknown. PURPOSE The purpose of this study is to evaluate the effect and mechanism of TGP on IBD. STUDY DESIGN DSS-induced colitis mouse model was used. TGP was given by gavage. Caco-2 cells were stimulated by outer membrane vesicles (OMV) to establish an in vitro model. METHODS C57BL/6 mice were divided into normal control group, model group, mesalazine group, paeoniflorin (PA) group, high-dose group of TGP, and low-dose group of TGP. The model was induced with 2.5% DSS for 7 days, and TGP was intragastrically administered for 10 days. The therapeutic effect of TGP was evaluated by symptoms, histochemical analysis, RT-qPCR and ELISA. The mechanism was explored by intestinal permeability, Western blot and immunofluorescence in vivo and in vitro. RESULTS Our results showed that TGP could significantly improve the symptoms and pathological changes, with reduced levels of TNF-α, IL-17A, IL-23 and IFN-γ in the colon tissues and serum under a dose-dependent manner. TGP also reduced the intestinal permeability and restored the protein expression of tight junction and adherens junction proteins of intestinal epithelial cells in vivo and in vitro. Furthermore, TGP could inhibit the expression of p-Lyn and Snail and prevent Snail nuclear localization, thereby maintaining tight and adherens junctions. CONCLUSION TGP effectively improves the symptoms of DSS-induced colitis in mice, protects the intestinal epithelial barrier by inhibiting the Lyn/Snail signaling pathway, and maybe a promise therapeutic agent for IBD treatment.
Collapse
Affiliation(s)
- Xin-Yue Cao
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jia-Hui Ni
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xu Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Gui-Ze Feng
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Hai-Dong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Wei-Lian Bao
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yi-Rui Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Ke-Yuan You
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Hong-Bo Weng
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Xiao-Yan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
48
|
Langlois L, Akhtar N, Tam KC, Dixon B, Reid G. Fishing for the right probiotic: Host-microbe interactions at the interface of effective aquaculture strategies. FEMS Microbiol Rev 2021; 45:6284803. [PMID: 34037775 DOI: 10.1093/femsre/fuab030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Effective aquaculture management strategies are paramount to global food security. Growing demands stimulate the intensification of production and create the need for practices that are both economically viable and environmentally sustainable. Importantly, pathogenic microbes continue to be detrimental to fish growth and survival. In terms of host health, the intestinal mucosa and its associated consortium of microbes have a critical role in modulating fitness and present an attractive opportunity to promote health at this interface. In light of this, the administration of probiotic microorganisms is being considered as a means to restore and sustain health in fish. Current evidence suggests that certain probiotic strains might be able to augment immunity, enhance growth rate, and protect against infection in salmonids, the most economically important family of farmed finfish. This review affirms the relevance of host-microbe interactions in salmonids in light of emerging evidence, with an emphasis on intestinal health. In addition, the current understanding of the mode of action of probiotics in salmonid fish is discussed, along with delivery systems that can effectively carry the living microbes.
Collapse
Affiliation(s)
- Luana Langlois
- Canadian Centre for Human Microbiome and Probiotics Research, Lawson Health Research Institute, 268 Grosvenor St, N6A 4V2, London, Ontario, Canada.,Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond St, N6A 5C1, London, Ontario, Canada
| | - Nadeem Akhtar
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, N2L 3G1, Waterloo, Ontario, Canada.,Department of Biology, University of Waterloo, 200 University Avenue W, N2L 3G1, Waterloo, Ontario, Canada
| | - Kam C Tam
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, N2L 3G1, Waterloo, Ontario, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Avenue W, N2L 3G1, Waterloo, Ontario, Canada
| | - Gregor Reid
- Canadian Centre for Human Microbiome and Probiotics Research, Lawson Health Research Institute, 268 Grosvenor St, N6A 4V2, London, Ontario, Canada.,Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond St, N6A 5C1, London, Ontario, Canada.,Department of Surgery, The University of Western Ontario, St. Joseph's Health Care London, 268 Grosvenor St, N6A 4V2, London, Ontario, Canada
| |
Collapse
|
49
|
Lu Y, Ding H, Jiang X, Zhang H, Ma A, Hu Y, Li Z. Effects of the extract from peanut meal fermented with Bacillus natto and Monascus on lipid metabolism and intestinal barrier function of hyperlipidemic mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2561-2569. [PMID: 33063356 DOI: 10.1002/jsfa.10884] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/03/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Hyperlipidemia is one of the metabolic disorders that poses a great threat to human health. This study is aimed at investigating the potential hypolipidemic properties of extract from peanut meal fermented with Bacillus natto and Monascus in mice fed with a high-fat diet. Herein, 60 male C57BL/6J mice were randomly divided into six groups: four control groups, comprised of a normal group, a model (M) group, a positive control group (atorvastatin 10 mg kg-1 ), and a nonfermented peanut meal extract group (150 mg kg-1 ), and two experimental groups, comprised of a fermented peanut meal extract low-dose group (50 mg kg-1 ) and a fermented peanut meal extract high-dose group (FH, 150 mg kg-1 ). RESULTS Body weight (P = 0.001) and levels of serum total cholesterol (P = 0.007), triacylglycerol (P = 0.040), low-density lipoprotein cholesterol (P < 0.001), and leptin (P < 0.001) were remarkably decreased in the FH group, whereas the serum high-density lipoprotein cholesterol levels were increased (P < 0.001) by 78.3% compared with the M group. Ileum tissue stained with hematoxylin and eosin showed that the ileal villus detachments in mice were improved, and the villus height was increased by supplementation with extract from fermented peanut meal. Moreover, the expressions of intestinal ZO-1 (P = 0.003) and occludin (P = 0.013) were elevated in the FH group, compared with the M group. CONCLUSION Extract of peanut meal fermented by B. natto and Monascus can effectively improve hyperlipidemia caused by a high-fat diet in mice, via regulating leptin and blood lipid levels, and protect the intestinal mucosal barrier, which provides evidence for its anti-hyperlipidemia effects and is a research basis for potential industrial development. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yaqian Lu
- School of Public Health, Medical College, Qingdao University, Qingdao, China
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Haoyue Ding
- School of Public Health, Medical College, Qingdao University, Qingdao, China
| | - Xiaoyang Jiang
- School of Public Health, Medical College, Qingdao University, Qingdao, China
| | - Huiwen Zhang
- School of Public Health, Medical College, Qingdao University, Qingdao, China
| | - Aiguo Ma
- School of Public Health, Medical College, Qingdao University, Qingdao, China
| | - Yingfen Hu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Zichao Li
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
50
|
Spalinger MR, Sayoc-Becerra A, Ordookhanian C, Canale V, Santos AN, King SJ, Krishnan M, Nair MG, Scharl M, McCole DF. The JAK Inhibitor Tofacitinib Rescues Intestinal Barrier Defects Caused by Disrupted Epithelial-macrophage Interactions. J Crohns Colitis 2021; 15:471-484. [PMID: 32909045 PMCID: PMC7944512 DOI: 10.1093/ecco-jcc/jjaa182] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Loss-of-function variants in protein tyrosine phosphatase non-receptor type-2 [PTPN2] promote susceptibility to inflammatory bowel diseases [IBD]. PTPN2 regulates Janus-kinase [JAK] and signal transducer and activator of transcription [STAT] signalling, while protecting the intestinal epithelium from inflammation-induced barrier disruption. The pan-JAK inhibitor tofacitinib is approved to treat ulcerative colitis, but its effects on intestinal epithelial cell-macrophage interactions and on barrier properties are unknown. We aimed to determine if tofacitinib can rescue disrupted epithelial-macrophage interaction and barrier function upon loss of PTPN2. METHODS Human Caco-2BBe intestinal epithelial cells [IECs] and THP-1 macrophages expressing control or PTPN2-specific shRNA were co-cultured with tofacitinib or vehicle. Transepithelial electrical resistance and 4 kDa fluorescein-dextran flux were measured to assess barrier function. Ptpn2fl/fl and Ptpn2-LysMCre mice, which lack Ptpn2 in myeloid cells, were treated orally with tofacitinib citrate twice daily to assess the in vivo effect on the intestinal epithelial barrier. Colitis was induced via administration of 1.5% dextran sulphate sodium [DSS] in drinking water. RESULTS Tofacitinib corrected compromised barrier function upon PTPN2 loss in macrophages and/or IECs via normalisation of: [i] tight junction protein expression; [ii] excessive STAT3 signalling; and [iii] IL-6 and IL-22 secretion. In Ptpn2-LysMCre mice, tofacitinib reduced colonic pro-inflammatory macrophages, corrected underlying permeability defects, and prevented the increased susceptibility to DSS colitis. CONCLUSIONS PTPN2 loss in IECs or macrophages compromises IEC-macrophage interactions and reduces epithelial barrier integrity. Both of these events were corrected by tofacitinib in vitro and in vivo. Tofacitinib may have greater therapeutic efficacy in IBD patients harbouring PTPN2 loss-of-function mutations.
Collapse
Affiliation(s)
| | - Anica Sayoc-Becerra
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Christ Ordookhanian
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Vinicius Canale
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Alina N Santos
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Stephanie J King
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Moorthy Krishnan
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Meera G Nair
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Michael Scharl
- Department for Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Declan F McCole
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| |
Collapse
|