1
|
Zhang H, Song Q, Shang K, Li Y, Jiang L, Yang L. Tspan protein family: focusing on the occurrence, progression, and treatment of cancer. Cell Death Discov 2024; 10:187. [PMID: 38649381 PMCID: PMC11035590 DOI: 10.1038/s41420-024-01961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
The Tetraspanins (Tspan) protein family, also known as the tetraspanin family, contains 33 family members that interact with other protein molecules such as integrins, adhesion molecules, and T cell receptors by forming dimers or heterodimers. The Tspan protein family regulates cell proliferation, cell cycle, invasion, migration, apoptosis, autophagy, tissue differentiation, and immune response. More and more studies have shown that Tspan proteins are involved in tumorigenesis, epithelial-mesenchymal transition, thrombosis, tumor stem cell, and exosome signaling. Some drugs and microRNAs can inhibit Tspan proteins, thus providing new strategies for tumor therapy. An in-depth understanding of the functions and regulatory mechanisms of the Tspan protein family, which can promote or inhibit tumor development, will provide new strategies for targeted interventions in the future.
Collapse
Affiliation(s)
- Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Qinghang Song
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Kaiwen Shang
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Ya Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Liangqian Jiang
- Department of Medical Genetics, Linyi People's Hospital, Linyi, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
2
|
Malla R, Marni R, Chakraborty A. Exploring the role of CD151 in the tumor immune microenvironment: Therapeutic and clinical perspectives. Biochim Biophys Acta Rev Cancer 2023; 1878:188898. [PMID: 37094754 DOI: 10.1016/j.bbcan.2023.188898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023]
Abstract
CD151 is a transmembrane protein implicated in tumor progression and has been shown to regulate various cellular and molecular mechanisms contributing to malignancy. More recently, the role of CD151 in the tumor immune microenvironment (TIME) has gained attention as a potential target for cancer therapy. This review aims to explore the role of CD151 in the TIME, focusing on the therapeutic and clinical perspectives. The role of CD151 in regulating the interactions between tumor cells and the immune system will be discussed, along with the current understanding of the molecular mechanisms underlying these interactions. The current state of the development of CD151-targeted therapies and the potential clinical applications of these therapies will also be reviewed. This review provides an overview of the current knowledge on the role of CD151 in the TIME and highlights the potential of CD151 as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Laboratory, Dept of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India.
| | - Rakshmita Marni
- Cancer Biology Laboratory, Dept of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | | |
Collapse
|
3
|
Herwig J, Skuza S, Sachs W, Sachs M, Failla AV, Rune G, Meyer TN, Fester L, Meyer-Schwesinger C. Thrombospondin Type 1 Domain-Containing 7A Localizes to the Slit Diaphragm and Stabilizes Membrane Dynamics of Fully Differentiated Podocytes. J Am Soc Nephrol 2019; 30:824-839. [PMID: 30971456 DOI: 10.1681/asn.2018090941] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/20/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND About 3%-5% of adults with membranous nephropathy have autoantibodies directed against thrombospondin type 1 domain-containing 7A (THSD7A), a podocyte-expressed transmembrane protein. However, the temporal and spatial expression of THSD7A and its biologic function for podocytes are unknown, information that is needed to understand the effects of THSD7A autoantibodies in this disease. METHODS Using a variety of microscopic techniques, we analyzed THSD7A localization in postnatal, adult, and autoantibody-injected mice as well as in human podocytes. We also analyzed THSD7A function in human podocytes using confocal microscopy; Western blotting; and adhesion and migration assays. RESULTS We found that THSD7A expression begins on glomerular vascularization with slit diaphragm formation in development. THSD7A localizes to the basal aspect of foot processes, closely following the meanders of the slit diaphragm in human and mice. Autoantibodies binding to THSD7A localize to the slit diaphragm. In human podocytes, THSD7A expression is accentuated at filopodia and thin arborized protrusions, an expression pattern associated with decreased membrane activity of cytoskeletal regulators. We also found that, phenotypically, THSD7A expression in human podocytes is associated not only with increases in cell size, enhanced adhesion, and reduced detachment from collagen type IV-coated plates but also, with decreased ability to migrate. CONCLUSIONS Our findings suggest that THSD7A functions as a foot process protein involved in the stabilization of the slit diaphragm of mature podocytes and that autoantibodies to THSD7A, on the basis of their localization, might structurally and functionally alter the slit diaphragm's permeability to protein.
Collapse
Affiliation(s)
| | - Sinah Skuza
- Institutes of Cellular and Integrative Physiology and
| | - Wiebke Sachs
- Institutes of Cellular and Integrative Physiology and
| | - Marlies Sachs
- Institutes of Cellular and Integrative Physiology and
| | - Antonio Virgilio Failla
- University Microscopy Imaging Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and
| | | | - Tobias N Meyer
- Department of Internal Medicine, Nephrology, Asklepios Klinikum Barmbek, Hamburg, Germany
| | | | | |
Collapse
|
4
|
Zhao K, Wang Z, Hackert T, Pitzer C, Zöller M. Tspan8 and Tspan8/CD151 knockout mice unravel the contribution of tumor and host exosomes to tumor progression. J Exp Clin Cancer Res 2018; 37:312. [PMID: 30541597 PMCID: PMC6292129 DOI: 10.1186/s13046-018-0961-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The tetraspanins Tspan8 and CD151 promote metastasis, exosomes (Exo) being suggested to be important in the crosstalk between tumor and host. The contribution of Tspan8 and CD151 to host versus tumor-derived exosome (TEX) activities being not defined, we approached the questions using 3-methylcholanthrene-induced (MCA) tumors from wt, Tspan8ko, CD151ko and Tspan8/CD151 (db)ko mice, implanted into tetraspanin-competent and deficient hosts. METHODS Tumor growth and dissemination, hematopoiesis and angiogenesis were surveyed in wild type (wt), Tspan8ko, CD151ko and dbko mice bearing tetraspanin-competent and -deficient MCA tumors. In vitro studies using tumor cells, bone marrow cells (BMC) and endothelial cells (EC) elaborated the mechanism of serum (s)Exo- and TEX-induced target modulation. RESULTS Tumors grew in autochthonous and syngeneic hosts differing in Tspan8- and/or CD151-competence. However, Tspan8ko- and/or CD151ko-tumor cell dissemination and settlement in metastatic organs was significantly reduced in the autochthonous host, and less severely in the wt-host. Impaired wt-MCA tumor dissemination in the ko-host confirmed a contribution of host- and tumor-Tspan8/-CD151 to tumor cell dissemination, delivery of sExo and TEX being severely impaired by a Tspan8ko/CD151ko. Coculturing tumor cells, BMC and EC with sExo and TEX revealed minor defects in epithelial mesenchymal transition and apoptosis resistance of ko tumors. Strongly reduced migratory and invasive capacity of Tspan8ko/CD151ko-MCA relies on distorted associations with integrins and CAM and missing Tspan8/CD151-promoted recruitment of proteases. The defects, differing between Tspan8ko- and CD151ko-MCA, were rescued by wt-TEX and, less efficiently Tspan8ko- and CD151ko-TEX. Minor defects in hematopoietic progenitor maturation were based on the missing association of hematopoietic growth factors /- receptors with CD151 and, less pronounced, Tspan8. Rescue of impaired angiogenesis in ko mice by wt-sExo and promotion of angiogenesis by TEX depended on the association of Tspan8 and CD151 with GPCR and RTK in EC and tumor cells. CONCLUSIONS Tspan8-/CD151-TEX play central roles in tumor progression. Tspan8-/CD151-sExo and TEX contribute by stimulating angiogenesis. Tspan8 and CD151 fulfill these tasks by associating with function-relevant proteins, the additive impact of Tspan8 and CD151 relying on differences in preferred associations. The distinct Tspan8 and CD151 contributions suggest a blockade of TEX-Tspan8 and -CD151 promising for therapeutic intervention.
Collapse
Affiliation(s)
- Kun Zhao
- Pancreas Section, University Hospital of Surgery, Ruprecht-Karls-University, Heidelberg, Germany
| | - Zhe Wang
- Pancreas Section, University Hospital of Surgery, Ruprecht-Karls-University, Heidelberg, Germany
- Present Address: Department of Oncology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong, China
| | - Thilo Hackert
- Pancreas Section, University Hospital of Surgery, Ruprecht-Karls-University, Heidelberg, Germany
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, Institute of Pharmacology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Margot Zöller
- Pancreas Section, University Hospital of Surgery, Ruprecht-Karls-University, Heidelberg, Germany
| |
Collapse
|
5
|
Souho T, Lamboni L, Xiao L, Yang G. Cancer hallmarks and malignancy features: Gateway for improved targeted drug delivery. Biotechnol Adv 2018; 36:1928-1945. [DOI: 10.1016/j.biotechadv.2018.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/22/2018] [Accepted: 08/01/2018] [Indexed: 12/13/2022]
|
6
|
Sadej R, Lu X, Turczyk L, Novitskaya V, Lopez-Clavijo AF, Kordek R, Potemski P, Wakelam MJO, Romanska-Knight H, Berditchevski F. CD151 regulates expression of FGFR2 in breast cancer cells via PKC-dependent pathways. J Cell Sci 2018; 131:jcs220640. [PMID: 30257985 DOI: 10.1242/jcs.220640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/17/2018] [Indexed: 11/20/2022] Open
Abstract
Expression of the tetraspanin CD151 is frequently upregulated in epithelial malignancies and correlates with poor prognosis. Here, we report that CD151 is involved in regulation of the expression of fibroblast growth factor receptor 2 (FGFR2). Depletion of CD151 in breast cancer cells resulted in an increased level of FGFR2. Accordingly, an inverse correlation between CD151 and FGFR2 was observed in breast cancer tissues. CD151-dependent regulation of the FGFR2 expression relies on post-transcriptional mechanisms involving HuR (also known as ELAVL1), a multifunctional RNA-binding protein, and the assembly of processing bodies (P-bodies). Depletion of CD151 correlated with inhibition of PKC, a well-established downstream target of CD151. Accordingly, the levels of dialcylglycerol species were decreased in CD151-negative cells, and inhibition of PKC resulted in the increased expression of FGFR2. Whereas expression of FGFR2 itself did not correlate with any of the clinicopathological data, we found that FGFR2-/CD151+ patients were more likely to have developed lymph node metastasis. Conversely, FGFR2-/CD151- patients demonstrated better overall survival. These results illustrate functional interdependency between CD151 complexes and FGFR2, and suggest a previously unsuspected role of CD151 in breast tumorigenesis.
Collapse
Affiliation(s)
- Rafal Sadej
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdańsk, Poland
| | - Xiaohong Lu
- Institute of Cancer and Genomic Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Lukasz Turczyk
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdańsk, Poland
| | - Vera Novitskaya
- Institute of Cancer and Genomic Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | - Radzisław Kordek
- Department of Pathology and Chemotherapy, Medical University of Łódź, 92-213 Łódź, Poland
| | - Piotr Potemski
- Department of Pathology and Chemotherapy, Medical University of Łódź, 92-213 Łódź, Poland
| | | | - Hanna Romanska-Knight
- Department of Pathology and Chemotherapy, Medical University of Łódź, 92-213 Łódź, Poland
| | - Fedor Berditchevski
- Institute of Cancer and Genomic Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
7
|
Lai H, Zhao X, Qin Y, Ding Y, Chen R, Li G, Labrie M, Ding Z, Zhou J, Hu J, Ma D, Fang Y, Gao Q. FAK-ERK activation in cell/matrix adhesion induced by the loss of apolipoprotein E stimulates the malignant progression of ovarian cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:32. [PMID: 29458390 PMCID: PMC5819228 DOI: 10.1186/s13046-018-0696-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 02/02/2018] [Indexed: 12/30/2022]
Abstract
Background Extracellular matrix (ECM) is a mediator of tumor progression. However, whether the alterations of the intraperitoneal ECM prior to tumor establishment affects the malignant progression of ovarian cancer remains elusive. Methods Apolipoprotein (ApoE) knock-out mice was used to analyze the intraperitoneal ECM alterations by quantification of the major components of ECM. ID8 cells were implanted in vivo to generate allografts and human ovarian cancer cell lines were characterized in vitro to assess the effects of ECM alterations on the malignant progression of ovarian cancer. Adhesion assay, immunochemistry, cytokines profile, proliferation assay, transwell invasion assay and western blot were used to determine the malignant phenotype of ovarian cancer cells. Results ApoE loss induced increased ECM deposition, which stimulated the adhesions of ovarian cancer cells. The adhesion-mediated focal adhesion kinase (FAK) signaling enhanced the invasive behaviors of ovarian cancer cells through activation of a ERK-MMP linkage. This ECM-induced signaling cascade was further confirmed in human ovarian cancer cell lines in vitro. Furthermore, reversal of the ECM accumulation with BAPN or abrogation of adhesion-induced ERK activation in ovarian cancer cells with MEK inhibitors (MEKi) was found to effectively delay ovarian cancer progression. Conclusions These findings identify the FAK-ERK activation in cell/matrix adhesion in the malignant progression of ovarian cancer and the efficiency of BAPN or MEKi for tumor suppression, providing an impetus for further studies to explore the possibility of new anticancer therapeutic combinations. Electronic supplementary material The online version of this article (10.1186/s13046-018-0696-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huiling Lai
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - Xuejiao Zhao
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - Yu Qin
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - Yi Ding
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - Ruqi Chen
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - Guannan Li
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - Marilyne Labrie
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, TX77030, Houston, USA
| | - Zhiyong Ding
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, TX77030, Houston, USA
| | - Jianfeng Zhou
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - Junbo Hu
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - Ding Ma
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - Yong Fang
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, 430030, People's Republic of China.
| | - Qinglei Gao
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
8
|
Zhao K, Erb U, Hackert T, Zöller M, Yue S. Distorted leukocyte migration, angiogenesis, wound repair and metastasis in Tspan8 and Tspan8/CD151 double knockout mice indicate complementary activities of Tspan8 and CD51. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:379-391. [DOI: 10.1016/j.bbamcr.2017.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/21/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023]
|
9
|
Wang Z, Wang C, Zhou Z, Sun M, Zhou C, Chen J, Yin F, Wang H, Lin B, Zuo D, Li S, Feng L, Duan Z, Cai Z, Hua Y. CD151-mediated adhesion is crucial to osteosarcoma pulmonary metastasis. Oncotarget 2018; 7:60623-60638. [PMID: 27556355 PMCID: PMC5312406 DOI: 10.18632/oncotarget.11380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 07/26/2016] [Indexed: 01/28/2023] Open
Abstract
CD151, a tetraspanin family protein involved in cell-cell and cell-extracellular matrix interaction, is differentially expressed in osteosarcoma cell membranes. Thus, this study aimed to investigate the role of CD151 in osteosarcoma metastasis. We analyzed CD151 expression in patient tissue samples using immunohistochemistry. CD151 expression was also silenced with shRNA in osteosarcoma cells of high metastatic potential, and cell adhesion, migration and invasion were evaluated in vitro and pulmonary metastasis was investigated in vivo. Mediators of cell signaling pathways were also examined following suppression of CD151 expression. Overall survival for patients with low versus high CD151 expression level was 94 vs. 41 months (p=0.0451). CD151 expression in osteosarcoma cells with high metastatic potential was significantly higher than in those with low metastatic potential (p<0.001). shRNA-mediated silencing of CD151 did not influence cell viability or proliferation; however, cell adhesion, migration and invasion were all inhibited (all p<0.001). In mice inoculated with shRNA-transduced osteosarcoma cells, the number and size of lung metastatic lesions were reduced compared to the mice inoculated with control-shRNA transduced cells (p<0.001). In addition, CD151 knockdown significantly reduced Akt, p38, and p65 phosphorylation as well as focal adhesion kinase, integrin β1, p70s6, and p-mTOR levels. Taken together, CD151 induced osteosarcoma metastasis likely by regulating cell function through adhesion signaling. Further studies are necessary to fully explore the diagnostic and prognostic value of determining CD151 expression in osteosarcoma patients.
Collapse
Affiliation(s)
- Zhuoying Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Chongren Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zifei Zhou
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Mengxiong Sun
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Chenghao Zhou
- Shanghai Bone Tumor Institution, Shanghai, 201620, China
| | - Jian Chen
- Shanghai Bone Tumor Institution, Shanghai, 201620, China
| | - Fei Yin
- Shanghai Bone Tumor Institution, Shanghai, 201620, China
| | - Hongsheng Wang
- Shanghai Bone Tumor Institution, Shanghai, 201620, China
| | - Binhui Lin
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Dongqing Zuo
- Shanghai Bone Tumor Institution, Shanghai, 201620, China
| | - Suoyuan Li
- Shanghai Bone Tumor Institution, Shanghai, 201620, China
| | - Lijin Feng
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.,Shanghai Bone Tumor Institution, Shanghai, 201620, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.,Shanghai Bone Tumor Institution, Shanghai, 201620, China
| |
Collapse
|
10
|
Cytometric Profiling of CD133+ Cells in Human Colon Carcinoma Cell Lines Identifies a Common core Phenotype and Cell Type-specific Mosaics. Int J Biol Markers 2018; 28:267-73. [DOI: 10.5301/jbm.5000020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2013] [Indexed: 01/06/2023]
Abstract
In colorectal cancer, CD133+ cells from fresh biopsies proved to be more tumorigenic than their CD133– counterparts. Nevertheless, the function of CD133 protein in tumorigenic cells seems only marginal. Moreover, CD133 expression alone is insufficient to isolate true cancer stem cells, since only 1 out of 262 CD133+ cells actually displays stem-cell capacity. Thus, new markers for colorectal cancer stem cells are needed. Here, we show the extensive characterization of CD133+ cells in 5 different colon carcinoma continuous cell lines (HT29, HCT116, Caco2, GEO and LS174T), each representing a different maturation level of colorectal cancer cells. Markers associated with stemness, tumorigenesis and metastatic potential were selected. We identified 6 molecules consistently present on CD133+ cells: CD9, CD29, CD49b, CD59, CD151, and CD326. By contrast, CD24, CD26, CD54, CD66c, CD81, CD90, CD99, CD112, CD164, CD166, and CD200 showed a discontinuous behavior, which led us to identify cell type-specific surface antigen mosaics. Finally, some antigens, e.g. CD227, indicated the possibility of classifying the CD133+ cells into 2 subsets likely exhibiting specific features. This study reports, for the first time, an extended characterization of the CD133+ cells in colon carcinoma cell lines and provides a “dictionary” of antigens to be used in colorectal cancer research.
Collapse
|
11
|
Fang T, Lin J, Wang Y, Chen G, Huang J, Chen J, Zhao Y, Sun R, Liang C, Liu B. Tetraspanin-8 promotes hepatocellular carcinoma metastasis by increasing ADAM12m expression. Oncotarget 2018; 7:40630-40643. [PMID: 27270327 PMCID: PMC5130032 DOI: 10.18632/oncotarget.9769] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 04/18/2016] [Indexed: 01/03/2023] Open
Abstract
Recent evidence indicates that tetraspanin-8 (TSPAN8) promotes tumor progression and metastasis. In this study, we explored the effects of TSPAN8 and the molecular mechanisms underlying hepatocellular carcinoma (HCC) metastasis using various HCC cell lines, tissues from 149 HCC patients, and animal models of HCC progression. We showed that elevated expression of TSPAN8 promoted HCC invasion in vitro and metastasis in vivo, but did not influence HCC cell proliferation in vitro. Increased TSPAN8 expression in human HCC was predictive of poor survival, and multivariate analyses indicated TSPAN8 expression to be an independent predictor for both postoperative overall survival and relapse-free survival. Importantly, TSPAN8 enhanced HCC invasion and metastasis by increasing ADAM12m expression. We therefore conclude that TSPAN8 and ADAM12m may be useful therapeutic targets for the prevention of HCC progression and metastasis.
Collapse
Affiliation(s)
- Tingting Fang
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, P. R. China
| | - Jiajia Lin
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, P. R. China
| | - Yanru Wang
- Laboratory of Tumor Immunology, Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, P. R. China
| | - Guangnan Chen
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Jing Huang
- Laboratory of Tumor Immunology, Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, P. R. China
| | - Jie Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, P. R. China
| | - Yan Zhao
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, P. R. China
| | - Ruixia Sun
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, P. R. China
| | - Chunmin Liang
- Laboratory of Tumor Immunology, Department of Anatomy, Histology, and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, P. R. China
| | - Binbin Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, P. R. China
| |
Collapse
|
12
|
Naudin C, Smith B, Bond DR, Dun MD, Scott RJ, Ashman LK, Weidenhofer J, Roselli S. Characterization of the early molecular changes in the glomeruli of Cd151 -/- mice highlights induction of mindin and MMP-10. Sci Rep 2017; 7:15987. [PMID: 29167507 PMCID: PMC5700190 DOI: 10.1038/s41598-017-15993-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/26/2017] [Indexed: 01/06/2023] Open
Abstract
In humans and FVB/N mice, loss of functional tetraspanin CD151 is associated with glomerular disease characterised by early onset proteinuria and ultrastructural thickening and splitting of the glomerular basement membrane (GBM). To gain insight into the molecular mechanisms associated with disease development, we characterised the glomerular gene expression profile at an early stage of disease progression in FVB/N Cd151 -/- mice compared to Cd151 +/+ controls. This study identified 72 up-regulated and 183 down-regulated genes in FVB/N Cd151 -/- compared to Cd151 +/+ glomeruli (p < 0.05). Further analysis highlighted induction of the matrix metalloprotease MMP-10 and the extracellular matrix protein mindin (encoded by Spon2) in the diseased FVB/N Cd151 -/- GBM that did not occur in the C57BL/6 diseased-resistant strain. Interestingly, mindin was also detected in urinary samples of FVB/N Cd151 -/- mice, underlining its potential value as a biomarker for glomerular diseases associated with GBM alterations. Gene set enrichment and pathway analysis of the microarray dataset showed enrichment in axon guidance and actin cytoskeleton signalling pathways as well as activation of inflammatory pathways. Given the known function of mindin, its early expression in the diseased GBM could represent a trigger of both further podocyte cytoskeletal changes and inflammation, thereby playing a key role in the mechanisms of disease progression.
Collapse
Affiliation(s)
- Crystal Naudin
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton, New South Wales, Australia.,Emory University, Atlanta, Georgia, USA
| | - Brian Smith
- School of Mathematics and Physical Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| | - Danielle R Bond
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton, New South Wales, Australia.,Hunter Area Pathology Service, John Hunter Hospital, New Lambton, New South Wales, Australia
| | - Leonie K Ashman
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Judith Weidenhofer
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Séverine Roselli
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, New South Wales, Australia. .,Hunter Medical Research Institute, New Lambton, New South Wales, Australia.
| |
Collapse
|
13
|
Lu J, Li J, Liu S, Wang T, Ianni A, Bober E, Braun T, Xiang R, Yue S. Exosomal tetraspanins mediate cancer metastasis by altering host microenvironment. Oncotarget 2017; 8:62803-62815. [PMID: 28977990 PMCID: PMC5617550 DOI: 10.18632/oncotarget.19119] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/05/2017] [Indexed: 12/18/2022] Open
Abstract
The metastases of malignant tumors develop through a cascade of events. The establishment of a pre-metastatic micro-environment is initiated by communication between tumors and host. Exosomes come into focus as the most potent intercellular communicators playing a pivotal role in this process. Cancer cells release exosomes into the extracellular environment prior to metastasis. Tetraspanin is a type of 4 times transmembrane proteins. It may be involved in cell motility, adhesion, morphogenesis, as well as cell and vesicular membrane fusion. The exosomal tetraspanin network is a molecular scaffold connecting various proteins for signaling transduction. The complex of tetraspanin-integrin determines the recruiting cancer exosomes to pre-metastatic sites. Tetraspanin is a key element for the target cell selection of exosomes uptake that may lead to the reprogramming of target cells. Reprogrammed target cells assist pre-metastatic niche formation. Previous reviews have described the biogenesis, secretion and intercellular interaction of exosomes in various tumors. However, there is a lack of reviews on the topic of exosomal tetraspanin in the context of cancer. In this review, we will describe the main characteristics of exosomal tetraspanin in cancer cells. We will also discuss how the cancer exosomal tetraspanin alters extracellular environment and regulates cancer metastasis.
Collapse
Affiliation(s)
- Jun Lu
- Department of General Surgery, Hefei Second People's Hospital, Hefei, China
| | - Jun Li
- School of Medicine, Nankai University, Tianjin, China.,The State International Science & Technology Cooperation Base of Tumor Immunology and Biological Vaccines, Nankai University, Tianjin, China
| | - Shuo Liu
- School of Medicine, Nankai University, Tianjin, China.,The State International Science & Technology Cooperation Base of Tumor Immunology and Biological Vaccines, Nankai University, Tianjin, China
| | - Teng Wang
- School of Medicine, Nankai University, Tianjin, China.,The State International Science & Technology Cooperation Base of Tumor Immunology and Biological Vaccines, Nankai University, Tianjin, China
| | - Alessandro Ianni
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Eva Bober
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rong Xiang
- School of Medicine, Nankai University, Tianjin, China.,The State International Science & Technology Cooperation Base of Tumor Immunology and Biological Vaccines, Nankai University, Tianjin, China
| | - Shijing Yue
- School of Medicine, Nankai University, Tianjin, China.,The State International Science & Technology Cooperation Base of Tumor Immunology and Biological Vaccines, Nankai University, Tianjin, China
| |
Collapse
|
14
|
The opposing roles of laminin-binding integrins in cancer. Matrix Biol 2017; 57-58:213-243. [DOI: 10.1016/j.matbio.2016.08.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/02/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023]
|
15
|
Yamada M, Sekiguchi K. Molecular Basis of Laminin-Integrin Interactions. CURRENT TOPICS IN MEMBRANES 2015; 76:197-229. [PMID: 26610915 DOI: 10.1016/bs.ctm.2015.07.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Laminins are composed of three polypeptide chains, designated as α, β, and γ. The C-terminal region of laminin heterotrimers, containing coiled-coil regions, short tails, and laminin globular (LG) domains, is necessary and sufficient for binding to integrins, which are the major laminin receptor class. Laminin recognition by integrins critically requires the α chain LG domains and a glutamic acid residue of the γ chain at the third position from the C-terminus. Furthermore, the C-terminal region of the β chain contains a short amino acid sequence that modulates laminin affinity for integrins. Thus, all three of the laminin chains act cooperatively to facilitate integrin binding. Mammals possess 5 α (α1-5), 3 β (β1-3), and 3 γ (γ1-3) chains, combinations of which give rise to 16 distinct laminin isoforms. Each isoform is expressed in a tissue-specific and developmental stage-specific manner, exerting its functions through binding of integrins. In this review, we detail the current knowledge surrounding the molecular basis and physiological relevance of specific interactions between laminins and integrins, and describe the mechanisms underlying laminin action through integrins.
Collapse
Affiliation(s)
- Masashi Yamada
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kiyotoshi Sekiguchi
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
16
|
Detchokul S, Williams ED, Parker MW, Frauman AG. Tetraspanins as regulators of the tumour microenvironment: implications for metastasis and therapeutic strategies. Br J Pharmacol 2015; 171:5462-90. [PMID: 23731188 DOI: 10.1111/bph.12260] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/16/2013] [Accepted: 05/16/2013] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED One of the hallmarks of cancer is the ability to activate invasion and metastasis. Cancer morbidity and mortality are largely related to the spread of the primary, localized tumour to adjacent and distant sites. Appropriate management and treatment decisions based on predicting metastatic disease at the time of diagnosis is thus crucial, which supports better understanding of the metastatic process. There are components of metastasis that are common to all primary tumours: dissociation from the primary tumour mass, reorganization/remodelling of extracellular matrix, cell migration, recognition and movement through endothelial cells and the vascular circulation and lodgement and proliferation within ectopic stroma. One of the key and initial events is the increased ability of cancer cells to move, escaping the regulation of normal physiological control. The cellular cytoskeleton plays an important role in cancer cell motility and active cytoskeletal rearrangement can result in metastatic disease. This active change in cytoskeletal dynamics results in manipulation of plasma membrane and cellular balance between cellular adhesion and motility which in turn determines cancer cell movement. Members of the tetraspanin family of proteins play important roles in regulation of cancer cell migration and cancer-endothelial cell interactions, which are critical for cancer invasion and metastasis. Their involvements in active cytoskeletal dynamics, cancer metastasis and potential clinical application will be discussed in this review. In particular, the tetraspanin member, CD151, is highlighted for its major role in cancer invasion and metastasis. LINKED ARTICLES This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24.
Collapse
Affiliation(s)
- S Detchokul
- Clinical Pharmacology and Therapeutics Unit, Department of Medicine (Austin Health/Northern Health), The University of Melbourne, Heidelberg, Vic., Australia
| | | | | | | |
Collapse
|
17
|
Targeting CD151 by lentivirus-mediated RNA interference inhibits luminal and basal-like breast cancer cell growth and invasion. Mol Cell Biochem 2015; 407:111-21. [DOI: 10.1007/s11010-015-2459-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/16/2015] [Indexed: 11/27/2022]
|
18
|
Fullár A, Dudás J, Oláh L, Hollósi P, Papp Z, Sobel G, Karászi K, Paku S, Baghy K, Kovalszky I. Remodeling of extracellular matrix by normal and tumor-associated fibroblasts promotes cervical cancer progression. BMC Cancer 2015; 15:256. [PMID: 25885552 PMCID: PMC4409756 DOI: 10.1186/s12885-015-1272-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/26/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Comparison of tissue microarray results of 29 cervical cancer and 27 normal cervix tissue samples using immunohistochemistry revealed considerable reorganization of the fibrillar stroma of these tumors. Preliminary densitometry analysis of laminin-1, α-smooth muscle actin (SMA) and fibronectin immunostaining demonstrated 3.8-fold upregulation of laminin-1 and 5.2-fold increase of SMA in the interstitial stroma, indicating that these proteins and the activated fibroblasts play important role in the pathogenesis of cervical cancer. In the present work we investigated the role of normal and tumor-associated fibroblasts. METHODS In vitro models were used to throw light on the multifactorial process of tumor-stroma interaction, by means of studying the cooperation between tumor cells and fibroblasts. Fibroblasts from normal cervix and cervical cancers were grown either separately or in co-culture with CSCC7 cervical cancer cell line. Changes manifest in secreted glycoproteins, integrins and matrix metallo-proteases (MMPs) were explored. RESULTS While normal fibroblasts produced components of interstitial matrix and TGF-β1 that promoted cell proliferation, cancer-associated fibroblasts (CAFs) synthesized ample amounts of laminin-1. The following results support the significance of laminin-1 in the invasion of CSCC7 cells: 1.) Tumor-associated fibroblasts produced more laminin-1 and less components of fibrillar ECM than normal cells; 2.) The production of laminin chains was further increased when CSCC7 cells were grown in co-culture with fibroblasts; 3.) CSCC7 cells were capable of increasing their laminin production; 4.) Tumor cells predominantly expressed integrin α6β4 laminin receptors and migrated towards laminin. The integrin profile of both normal and tumor-associated fibroblasts was similar, expressing receptors for fibronectin, vitronectin and osteopontin. MMP-7 secreted by CSCC7 cells was upregulated by the presence of normal fibroblasts, whereas MMP-2 produced mainly by fibroblasts was activated in the presence of CSCC7 cells. CONCLUSIONS Our results indicate that in addition to degradation of the basement membrane, invasion of cervical cancer is accomplished by the remodeling of the interstitial stroma, which process includes decrease and partial replacement of fibronectin and collagens by a laminin-rich matrix.
Collapse
Affiliation(s)
- Alexandra Fullár
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| | - József Dudás
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria.
| | - Lászlóné Oláh
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| | - Péter Hollósi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
- Tumor Progression Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Zoltán Papp
- Maternity Private Department Kútvölgyi Clinical Block, Semmelweis University, Budapest, Hungary.
| | - Gábor Sobel
- 2nd Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary.
| | - Katalin Karászi
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.
| | - Sándor Paku
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
- Tumor Progression Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
19
|
Kumari S, Devi G, Badana A, Dasari VR, Malla RR. CD151-A Striking Marker for Cancer Therapy. BIOMARKERS IN CANCER 2015; 7:7-11. [PMID: 25861224 PMCID: PMC4372031 DOI: 10.4137/bic.s21847] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/28/2015] [Accepted: 01/28/2015] [Indexed: 12/28/2022]
Abstract
Cluster of differentiation 151 (CD151) is a member of the mammalian tetraspanin family, which is involved in diverse functions such as maintaining normal cellular integrity, cell-to-cell communication, wound healing, platelet aggregation, trafficking, cell motility and angiogenesis. CD151 also supports de novo carcinogenesis in human skin squamous cell carcinoma (SCC) and tumor metastasis. CD151 interacts with α3β1 and α6β4 integrins through palmitoylation where cysteine plays an important role in the association of CD151 with integrins and non-integrin proteins. Invasion and metastasis of cancer cells were diminished by decreasing CD151 association with integrins. CD151 functions at various stages of cancer, including metastatic cascade and primary tumor growth, thus reinforcing the importance of CD151 as a target in oncology. The present review highlights the role of CD151 in tumor metastasis and its importance in cancer therapy.
Collapse
Affiliation(s)
- Seema Kumari
- Cancer Biology Lab, Department of Biochemistry, Institute of Science, GITAM University, Visakhapatnam, Andhra Pradesh, India
| | - Gayatri Devi
- Cancer Biology Lab, Department of Biochemistry, Institute of Science, GITAM University, Visakhapatnam, Andhra Pradesh, India
| | - Anil Badana
- Cancer Biology Lab, Department of Biochemistry, Institute of Science, GITAM University, Visakhapatnam, Andhra Pradesh, India
| | - Venkata Ramesh Dasari
- Department of Cancer Biology and Pharmacology, College of Medicine, University of Illinois, Peoria, IL, USA
| | - Rama Rao Malla
- Cancer Biology Lab, Department of Biochemistry, Institute of Science, GITAM University, Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
20
|
Tetraspanin 8-rictor-integrin α3 complex is required for glioma cell migration. Int J Mol Sci 2015; 16:5363-74. [PMID: 25761241 PMCID: PMC4394480 DOI: 10.3390/ijms16035363] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/03/2015] [Accepted: 02/09/2015] [Indexed: 01/21/2023] Open
Abstract
The malignant glioma remains one of the most aggressive human malignancies with extremely poor prognosis. Glioma cell invasion and migration are the main causes of death. In the current study, we studied the expression and the potential functions of tetraspanin 8 (Tspan8) in malignant gliomas. We found that Tspan8 expression level is high in both malignant glioma tissues and in several human glioma cell lines, where it formed a complex integrin α3 and rictor, the latter is a key component of mammalian target of rapamycin (mTOR) complex 2 (mTORC2). Disruption of this complex, through siRNA-mediated knockdown of anyone of these three proteins, inhibited U251MG glioma cell migration in vitro. We further showed that Tspan8-rictor association appeared required for mTORC2 activation. Knockdown of Tspan8 by the targeted siRNAs prevented mTOR-rictor (mTORC2) assembly as well as phosphorylation of AKT (Ser-473) and protein kinase C α (PKCα) in U251MG cells. Together, these results demonstrate that over-expressed Tspan8 in malignant glioma forms a complex with rictor and integrin α3 to mediate mTORC2 activation and glioma cell migration. Therefore, targeting Tspan8-rictor-integrin α3 complex may provide a potential therapeutic intervention for malignant glioma.
Collapse
|
21
|
Missan DS, Mitchell K, Subbaram S, DiPersio CM. Integrin α3β1 signaling through MEK/ERK determines alternative polyadenylation of the MMP-9 mRNA transcript in immortalized mouse keratinocytes. PLoS One 2015; 10:e0119539. [PMID: 25751421 PMCID: PMC4353714 DOI: 10.1371/journal.pone.0119539] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/13/2015] [Indexed: 12/15/2022] Open
Abstract
Integrin α3β1 is highly expressed in both normal and tumorigenic epidermal keratinocytes where it regulates genes that control cellular function and extracellular matrix remodeling during normal and pathological tissue remodeling processes, including wound healing and development of squamous cell carcinoma (SCC). Previous studies identified a role for α3β1 in immortalized and transformed keratinocytes in the regulation of genes that promote tumorigenesis, invasion, and pro-angiogenic crosstalk to endothelial cells. One such gene, matrix metalloproteinase-9 (MMP-9), is induced by α3β1 through a post-transcriptional mechanism of enhanced mRNA stability. In the current study, we sought to investigate the mechanism through which α3β1 controls MMP-9 mRNA stability. First, we utilized a luciferase reporter assay to show that AU-rich elements (AREs) residing within the 3’-untranslated region (3’-UTR) of the MMP-9 mRNA renders the transcript unstable in a manner that is independent of α3β1. Next, we cloned a truncated variant of the MMP-9 mRNA which is generated through usage of an alternative, upstream polyadenylation signal and lacks the 3’-UTR region containing the destabilizing AREs. Using an RNase protection assay to distinguish “long” (full-length 3’-UTR) and “short” (truncated 3’-UTR) MMP-9 mRNA variants, we demonstrated that the shorter, more stable mRNA that lacks 3’-UTR AREs was preferentially generated in α3β1-expressing keratinocytes compared with α3β1-deficient (i.e., α3-null) keratinocytes. Moreover, we determined that α3β1-dependent alternative polyadenylation was acquired by immortalized keratinocytes, as primary neonatal keratinocytes did not display α3β1-dependent differences in the long and short transcripts. Finally, pharmacological inhibition of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway in α3β1-expressing keratinocytes caused a shift towards long variant expression, while Raf-1-mediated activation of ERK in α3-null keratinocytes dramatically enhanced short variant expression, indicating a role for ERK/MAPK signaling in α3β1-mediated selection of the proximal polyadenylation site. These findings identify a novel mode of integrin α3β1-mediated gene regulation through alternative polyadenylation.
Collapse
Affiliation(s)
- Dara S. Missan
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - Kara Mitchell
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - Sita Subbaram
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - C. Michael DiPersio
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
22
|
Pan SJ, Wu YB, Cai S, Pan YX, Liu W, Bian LG, Sun B, Sun QF. Over-expression of tetraspanin 8 in malignant glioma regulates tumor cell progression. Biochem Biophys Res Commun 2015; 458:476-482. [DOI: 10.1016/j.bbrc.2015.01.128] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/26/2015] [Indexed: 01/11/2023]
|
23
|
Yue S, Mu W, Erb U, Zöller M. The tetraspanins CD151 and Tspan8 are essential exosome components for the crosstalk between cancer initiating cells and their surrounding. Oncotarget 2015; 6:2366-84. [PMID: 25544774 PMCID: PMC4385857 DOI: 10.18632/oncotarget.2958] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 12/09/2014] [Indexed: 01/01/2023] Open
Abstract
Tspan8 and CD151 are metastasis-promoting tetraspanins and a knockdown (kd) of Tspan8 or CD151 and most pronounced of both tetraspanins affects the metastatic potential of the rat pancreatic adenocarcinoma line ASML. Approaching to elaborate the underlying mechanism, we compared ASMLwt, -CD151kd and/or Tspan8kd clones. We focused on tumor exosomes, as exosomes play a major role in tumor progression and tetraspanins are suggested to be engaged in exosome targeting. ASML-CD151/Tspan8kd cells poorly metastasize, but regain metastatic capacity, when rats are pretreated with ASMLwt, but not ASML-CD151kd and/or -Tspan8kd exosomes. Both exosomal CD151 and Tspan8 contribute to host matrix remodelling due to exosomal tetraspanin-integrin and tetraspanin-protease associations. ASMLwt exosomes also support stroma cell activation with upregulation of cytokines, cytokine receptors and proteases and promote inflammatory cytokine expression in hematopoietic cells. Finally, CD151-/Tspan8-competent exosomes support EMT gene expression in poorly-metastatic ASML-CD151/Tspan8kd cells. These effects are not seen or are weakened using ASML-CD151kd or -Tspan8kd exosomes, which is at least partly due to reduced binding/uptake of CD151- and/or Tspan8-deficient exosomes. Thus, CD151- and Tspan8-competent tumor exosomes support matrix degradation, reprogram stroma and hematopoietic cells and drive non-metastatic ASML-CD151/Tspan8kd cells towards a motile phenotype.
Collapse
Affiliation(s)
- Shijing Yue
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | - Wei Mu
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | - Ulrike Erb
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | - Margot Zöller
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| |
Collapse
|
24
|
ZISMANOV VICTORIA, ATTAR-SCHNEIDER OSHRAT, LISHNER MICHAEL, AIZENFELD RACHELHEFFEZ, MATALON SHELLYTARTAKOVER, DRUCKER LIAT. Multiple myeloma proteostasis can be targeted via translation initiation factor eIF4E. Int J Oncol 2014; 46:860-70. [DOI: 10.3892/ijo.2014.2774] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/11/2014] [Indexed: 11/06/2022] Open
|
25
|
Sizemore ST, Sizemore GM, Booth CN, Thompson CL, Silverman P, Bebek G, Abdul-Karim FW, Avril S, Keri RA. Hypomethylation of the MMP7 promoter and increased expression of MMP7 distinguishes the basal-like breast cancer subtype from other triple-negative tumors. Breast Cancer Res Treat 2014; 146:25-40. [PMID: 24847890 DOI: 10.1007/s10549-014-2989-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/30/2014] [Indexed: 12/30/2022]
Abstract
Identification of novel targets for the treatment of basal-like breast cancer is essential for improved outcomes in patients with this disease. This study investigates the association of MMP7 expression and MMP7 promoter methylation with subtype and outcome in breast cancer patient cohorts. Immunohistochemical analysis was performed on a breast cancer tissue microarray and validated in independent histological samples. MMP7 expression significantly correlated with patient age, tumor size, triple-negative (TN) status, and recurrence. Analysis of publically available datasets confirmed MMP7 gene expression as a prognostic marker of breast cancer metastasis, particularly metastasis to the brain and lungs. Methylation of the MMP7 promoter was assessed by methylation-specific PCR in a panel of breast cancer cell lines and patient tumor samples. Hypomethylation of the MMP7 promoter significantly correlated with TN status in DNA from patient tumor samples, and this association was confirmed using The Cancer Genome Atlas (TCGA) dataset. Evaluation of a panel of breast cancer cell lines and data from the Curtis and TCGA breast carcinoma datasets revealed that elevated MMP7 expression and MMP7 promoter hypomethylation are specific biomarkers of the basal-like molecular subtype which shares considerable, but not complete, overlap with the clinical TN subtype. Importantly, MMP7 expression was identified as an independent predictor of pathological complete response in a large breast cancer patient cohort. Combined, these data suggest that MMP7 expression and MMP7 promoter methylation may be useful as prognostic biomarkers. Furthermore, MMP7 expression and promoter methylation analysis may be effective mechanisms to distinguish basal-like breast cancers from other triple-negative subtypes. Finally, these data implicate MMP7 as a potential therapeutic target for the treatment of basal-like breast cancers.
Collapse
Affiliation(s)
- Steven T Sizemore
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH, 44106-4965, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sadej R, Grudowska A, Turczyk L, Kordek R, Romanska HM. CD151 in cancer progression and metastasis: a complex scenario. J Transl Med 2014; 94:41-51. [PMID: 24247563 DOI: 10.1038/labinvest.2013.136] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/22/2013] [Indexed: 12/14/2022] Open
Abstract
Originally identified as a molecular organizer of interacting proteins into tetraspanin-enriched microdomains, the tetraspanin CD151 has now been shown to be involved in tumour progression. Increasing evidence emerging from in vitro, in vivo and clinical analyses implicates this tetraspanin in supporting growth of various types of tumours at different levels. It affects both cell autonomous behavior and communication with neighboring cells and the microenvironment. CD151 regulates post-adhesion events, that is, cell spreading, migration and invasion including subsequent intravasation and formation of metastasis. Present on both neoplastic and endothelial cells, CD151 is engaged in promotion of tumour neovascularization. The molecular mechanism of CD151 in cancer is based on its ability to organize distribution and function of interacting proteins, ie, laminin-binding integrins (α3β1, α6β1 and α6β4), receptors for growth factors (HGFR, EGFR and TGF-β1R) and matrix metalloproteinases (MMP-7, MMP-2 and MMP-9), which indicates its importance in disease development. Results of clinical analyses of CD151 expression in different types of cancer and a large number of in vivo models demonstrate its impact on tumour growth and invasion and implicate CD151 as a valuable diagnostic and prognostic marker as well as a potential target for anti-cancer therapy.
Collapse
Affiliation(s)
- Rafal Sadej
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Alicja Grudowska
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Lukasz Turczyk
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Radzislaw Kordek
- Department of Pathology, Medical University of Łódź, Łódź, Poland
| | - Hanna M Romanska
- Department of Pathology, Medical University of Łódź, Łódź, Poland
| |
Collapse
|
27
|
Yue S, Mu W, Zöller M. Tspan8 and CD151 promote metastasis by distinct mechanisms. Eur J Cancer 2013; 49:2934-48. [PMID: 23683890 DOI: 10.1016/j.ejca.2013.03.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/29/2013] [Accepted: 03/31/2013] [Indexed: 12/12/2022]
Abstract
AIM CD151 and Tspan8 are metastasis-promoting tetraspanins. To define whether Tspan8 and CD151 fulfil redundant or additive activities, Tspan8 and CD151 were stably knocked-down in highly metastatic rat pancreatic adenocarcinoma BSp73ASML cells (ASML(wt), ASML-Tspan8(kd), ASML-CD151(kd)). RESULTS ASML-CD151(kd) and ASML-Tspan8(kd) cells metastasise via the lymphatics to the lung with delay and a 2-3-fold increased survival time compared to ASML(wt) cells. Yet, CD151 and Tspan8 distinctly contribute to metastasis. Pronounced adhesion of ASML-Tspan8(kd) cells is due to CD151 associating with the alpha3 integrin chain, whereas strikingly increased ASML-CD151(kd) cell motility is efficiently inhibited by anti-beta4. These opposing Tspan8 and CD151 activities are due to distinct beta4 recruitment into Tspan8 complexes, accompanied by beta4 phosporylation, src recruitment, focal adhesion kinase (FAK) and Ras activation. On the other hand, CD151 associates more readily with proteases, particularly matrix metalloproteinase (MMP)13 and MMP9, than Tspan8. The stronger CD151-MMP association is accompanied by pronounced collagen I and IV and laminin111 degradation, also seen in metastatic tissue, and strengthens invasiveness. CONCLUSION CD151 and Tspan8 coordinately promote metastasis, where Tspan8 overrides the adhesive features of CD151 by recruiting integrins out of adhesion into motility promoting complexes. CD151 more efficiently than Tspan8 recruiting and activating MMP9 and MMP13 creates a path for migrating tumour cells.
Collapse
Affiliation(s)
- Shijing Yue
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | | | | |
Collapse
|
28
|
Zismanov V, Drucker L, Attar-Schneider O, Matalon ST, Pasmanik-Chor M, Lishner M. Tetraspanins stimulate protein synthesis in myeloma cell lines. J Cell Biochem 2012; 113:2500-10. [PMID: 22415769 DOI: 10.1002/jcb.24126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Intensive protein synthesis is a unique and differential trait of multiple myeloma (MM) cells. Previously we showed that tetraspanin (CD81, CD82) overexpression in MM cell lines attenuated Akt/mTOR cascades, activated UPR, and caused autophagic death, suggesting breach of protein homeostasis. Here, we explored the role of protein synthesis in the tetraspanin-induced MM cell death. Contrary to attenuation of the major metabolic regulator, mTOR we determined elevated steady-state levels of protein in CD81N1/CD82N1 transfected MM lines (RPMI-8226, CAG). Elevated levels of immunoglobulins supported increased protein production in RPMI-8226. Changes in cell morphology consistent with elevated protein synthesis were also determined (cell, nuclei, and nucleoli sizes and ratios). Increased levels of phospho-rpS6 and decreased levels of phospho-AMPK were consistent with increased translation but independent of mTOR. Involvement of p38 and its role in tetraspanin induced translation and cell death were demonstrated. Microarray analyses of tetraspanin transfected MM cell lines revealed activation of protein synthesis signaling cascades and signals implicated in ribosome biogenesis (snoRNAs). Finally, we showed tetraspanins elevated protein synthesis was instrumental to MM cells' death. This work explores and demonstrates that excessive protein translation can be detrimental to MM cell lines and therefore may present a therapeutic target. Proteostasis is particularly important in MM because it integrates the high levels of protein production unique to myeloma cells with critically important microenvironmental cues. We suggest that increasing translation may be the path of least resistance in MM and thus may afford a novel platform for strategically designed therapy.
Collapse
|
29
|
Romanska HM, Potemski P, Collins SI, Williams H, Parmar S, Berditchevski F. Loss of CD151/Tspan24 from the complex with integrin α3β1 in invasive front of the tumour is a negative predictor of disease-free survival in oral squamous cell carcinoma. Oral Oncol 2012; 49:224-9. [PMID: 23099281 DOI: 10.1016/j.oraloncology.2012.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 09/10/2012] [Accepted: 09/22/2012] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The study aimed to assess the role of CD151-integrin α3β1 (INGA3) complex as a potential prognostic indicator in OSCC and to examine whether mapping of its expression in the invasive front separately from that in the rest of the tumour would have an impact on the predictive value of the results. CD151/INGA3 profiles were compared with that of EGFR. MATERIALS AND METHODS Protein distributions were analysed either in the whole tumour (W) or separately, (i) the main tumour mass (TU) and (ii) the invasive front (IF) in 83 OSCC samples using immunohistochemistry. RESULTS AND CONCLUSION There was no statistical association between any of the proteins scored in W and clinicopathologic features or patient survival. When examined separately, significant associations were shown for (i) CD151 and EGFR in TU (p=0.036) and (ii) tumour grade and EGFR in both TU (p=0.045) and IF (p=0.030). INGA3 was present predominantly in the tumour-host interface, significantly stronger in IF than TU (p=0.021). An association with 5-year disease-free survival was close to significant for INGA3 (TU and IF) (p=0.050) but not the CD151/INGA3 complex. Expression of CD151/INGA3 at the IF might reflect tumour behaviour pertinent to patient outcome.
Collapse
Affiliation(s)
- H M Romanska
- Department of Cellular Pathology, University of Birmingham, Birmingham B15 2TT, UK.
| | | | | | | | | | | |
Collapse
|
30
|
Hong IK, Jeoung DI, Ha KS, Kim YM, Lee H. Tetraspanin CD151 stimulates adhesion-dependent activation of Ras, Rac, and Cdc42 by facilitating molecular association between β1 integrins and small GTPases. J Biol Chem 2012; 287:32027-39. [PMID: 22843693 DOI: 10.1074/jbc.m111.314443] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tetraspanin CD151 associates with laminin-binding α(3)β(1)/α(6)β(1) integrins in epithelial cells and regulates adhesion-dependent signaling events. We found here that CD151 plays a role in recruiting Ras, Rac1, and Cdc42, but not Rho, to the cell membrane region, leading to the formation of α(3)β(1)/α(6)β(1) integrin-CD151-GTPases complexes. Furthermore, cell adhesion to laminin enhanced CD151 association with β(1) integrin and, thereby, increased complex formation between the β(1) family of integrins and small GTPases, Ras, Rac1, and Cdc42. Adhesion receptor complex-associated small GTPases were activated by CD151-β(1) integrin complex-stimulating adhesion events, such as α(3)β(1)/α(6)β(1) integrin-activating cell-to-laminin adhesion and homophilic CD151 interaction-generating cell-to-cell adhesion. Additionally, FAK and Src appeared to participate in this adhesion-dependent activation of small GTPases. However, engagement of laminin-binding integrins in CD151-deficient cells or CD151-specific siRNA-transfected cells did not activate these GTPases to the level of cells expressing CD151. Small GTPases activated by engagement of CD151-β(1) integrin complexes contributed to CD151-induced cell motility and MMP-9 expression in human melanoma cells. Importantly, among the four tetraspanin proteins that associate with β(1) integrin, only CD151 exhibited the ability to facilitate complex formation between the β(1) family of integrins and small GTPases and stimulate β(1) integrin-dependent activation of small GTPases. These results suggest that CD151 links α(3)β(1)/α(6)β(1) integrins to Ras, Rac1, and Cdc42 by promoting the formation of multimolecular complexes in the membrane, which leads to the up-regulation of adhesion-dependent small GTPase activation.
Collapse
Affiliation(s)
- In-Kee Hong
- Medical and Bio-Material Research Center, School of Medicine, Kangwon National University, Chunchon, Kangwon-do 200-701, Korea
| | | | | | | | | |
Collapse
|
31
|
Furuya M. Ovarian cancer stroma: pathophysiology and the roles in cancer development. Cancers (Basel) 2012; 4:701-24. [PMID: 24213462 PMCID: PMC3712711 DOI: 10.3390/cancers4030701] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 06/29/2012] [Accepted: 07/12/2012] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer represents one of the cancers with the worst prognostic in adult women. More than half of the patients who present with clinical signs such as abdominal bloating and a feeling of fullness already show advanced stages. The majority of ovarian cancers grow as cystic masses, and cancer cells easily spread into the pelvic cavity once the cysts rupture or leak. When the ovarian cancer cells disseminate into the peritoneal cavity, metastatic nests may grow in the cul-de-sac, and in more advanced stages, the peritoneal surfaces of the upper abdomen become the next largest soil for cancer progression. Ascites is also produced frequently in ovarian cancers, which facilitates distant metastasis. Clinicopathologic, epidemiologic and molecular studies on ovarian cancers have improved our understanding and therapeutic approaches, but still further efforts are required to reduce the risks in the patients who are predisposed to this lethal disease and the mortality of the patients in advanced stages. Among various molecules involved in ovarian carcinogenesis, special genes such as TP53, BRCA1 and BRCA2 have been well investigated. These genes are widely accepted as the predisposing factors that trigger malignant transformation of the epithelial cells of the ovary. In addition, adnexal inflammatory conditions such as chronic salpingitis and ovarian endometriosis have been great research interests in the context of carcinogenic background of ovarian cancers. In this review, I discuss the roles of stromal cells and inflammatory factors in the carcinogenesis and progression of ovarian cancers.
Collapse
Affiliation(s)
- Mitsuko Furuya
- Department of Pathology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan.
| |
Collapse
|
32
|
Blumenthal A, Giebel J, Ummanni R, Schlüter R, Endlich K, Endlich N. Morphology and migration of podocytes are affected by CD151 levels. Am J Physiol Renal Physiol 2012; 302:F1265-77. [DOI: 10.1152/ajprenal.00468.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CD151, a member of the tetraspanin family of membrane proteins, is crucially involved in the formation of the glomerular filtration barrier in humans and mice. However, the role of CD151 in podocytes has not been investigated so far. In the present study, we utilized a conditionally immortalized mouse podocyte cell line to characterize CD151 in podocytes and to examine the consequences of manipulating CD151 expression levels. Mouse podocytes endogenously express CD151 as determined by RT-PCR and Western blotting. GFP-CD151 fusion protein localized to the cell membrane, to cell protrusions and cell-cell contacts, colocalizing with actin, β1-integrin, zonula occludens-1, and CD9. The expression of GFP-CD151 in cultured podocytes resulted in a marked increase in the presence of thin arborized protrusions (TAPs). TAPs are distinct from filopodia by increased length, protein composition, branched morphology, and slower dynamics. Furthermore, the migration rate of pEGFP-CD151-transfected podocytes was reduced in a wound assay. Fluorescence recovery after photo bleaching measurements revealed a half-time of 3 s for GFP-CD151 consistent with a high mobility of CD151 in the membrane and cytosol. CD151 knockdown in podocytes reduced β1-integrin expression and podocyte cell area, indicating diminished adherence and/or spreading. Our results indicate that CD151 importantly modulates podocyte function.
Collapse
Affiliation(s)
- Antje Blumenthal
- Department of Anatomy and Cell Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Jürgen Giebel
- Department of Anatomy and Cell Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Ramesh Ummanni
- Department of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Greifswald, Germany; and
| | - Rabea Schlüter
- Institute of Microbiology, Department of Applied Microbiology, University of Greifswald, Greifswald, Germany
| | - Karlhans Endlich
- Department of Anatomy and Cell Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
33
|
Mosig RA, Lin L, Senturk E, Shah H, Huang F, Schlosshauer P, Cohen S, Fruscio R, Marchini S, D'Incalci M, Sachidanandam R, Dottino P, Martignetti JA. Application of RNA-Seq transcriptome analysis: CD151 is an Invasion/Migration target in all stages of epithelial ovarian cancer. J Ovarian Res 2012; 5:4. [PMID: 22272937 PMCID: PMC3288733 DOI: 10.1186/1757-2215-5-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 01/24/2012] [Indexed: 12/22/2022] Open
Abstract
Background RNA-Seq allows a theoretically unbiased analysis of both genome-wide transcription levels and mutation status of a tumor. Using this technique we sought to identify novel candidate therapeutic targets expressed in epithelial ovarian cancer (EOC). Methods Specifically, we sought candidate invasion/migration targets based on expression levels across all tumors, novelty of expression in EOC, and known function. RNA-Seq analysis revealed the high expression of CD151, a transmembrane protein, across all stages of EOC. Expression was confirmed at both the mRNA and protein levels using RT-PCR and immunohistochemical staining, respectively. Results In both EOC tumors and normal ovarian surface epithelial cells we demonstrated CD151 to be localized to the membrane and cell-cell junctions in patient-derived and established EOC cell lines. We next evaluated its role in EOC dissemination using two ovarian cancer-derived cell lines with differential levels of CD151 expression. Targeted antibody-mediated and siRNA inhibition or loss of CD151 in SKOV3 and OVCAR5 cell lines effectively inhibited their migration and invasion. Conclusion Taken together, these findings provide the first proof-of-principle demonstration for a next generation sequencing approach to identifying candidate therapeutic targets and reveal CD151 to play a role in EOC dissemination.
Collapse
Affiliation(s)
- Rebecca A Mosig
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Exosome target cell selection and the importance of exosomal tetraspanins: a hypothesis. Biochem Soc Trans 2011; 39:559-62. [PMID: 21428939 DOI: 10.1042/bst0390559] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exosomes are derived from limiting membranes of MVBs (multivesicular bodies). They carry and transfer selected membrane and cytoplasmic proteins, mRNA and microRNA into target cells. It is due to this shipping of information that exosomes are considered to be the most promising therapeutic tool for multiple diseases. However, whereas knowledge on the composition of exosomes is rapidly increasing, the mode of selective recruitment into exosomes as well as target cell selection is poorly understood. We suggest that at least part of this task is taken over by tetraspanins. Tetraspanins, which are involved in morphogenesis, fission and fusion processes, are enriched in exosomes, and our previous work revealed that the recruitment of distinct tetraspanins into exosomes follows very selective routes, including a rearrangement of the tetraspanin web. Furthermore, only exosomes expressing a defined set of tetraspanins and associated molecules target endothelial cells, thereby contributing to angiogenesis and vasculogenesis. On the basis of these findings we hypothesize (i) that the protein assembly of exosomes and possibly the recruitment of microRNA will be regulated to a large extent by tetraspanins and (ii) that tetraspanins account for target cell selection and the tight interaction/uptake of exosomes by the target cell. Exosomes herald an unanticipated powerful path of cell-cell communication. An answer to how exosomes collect and transfer information will allow the use of Nature's concept to cope with malfunctions.
Collapse
|
35
|
Zevian S, Winterwood NE, Stipp CS. Structure-function analysis of tetraspanin CD151 reveals distinct requirements for tumor cell behaviors mediated by α3β1 versus α6β4 integrin. J Biol Chem 2011; 286:7496-506. [PMID: 21193415 PMCID: PMC3045005 DOI: 10.1074/jbc.m110.173583] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 12/02/2010] [Indexed: 12/13/2022] Open
Abstract
The basement membrane protein laminin-332 (laminin-5) mediates both stable cell adhesion and rapid cell migration and thus has the potential to either restrain or promote tumor cell metastasis. The major cellular receptors for laminin-332 are integrin α3β1, which mediates rapid tumor cell migration, and integrin α6β4, which often mediates stable cell attachment. Tetraspanin protein CD151 interacts directly with both α3β1 and α6β4 integrins and with other tetraspanins, thereby promoting α3β1 and α6β4 association with tetraspanin-enriched microdomains on the cell surface. To explore the possibility of selectively modulating tumor cell responses to laminin-332, we re-expressed a series of CD151 mutants in epidermoid carcinoma cells with near total, RNAi-mediated silencing of endogenous CD151. The interactions of CD151 with its integrin partners or its interactions with other tetraspanins were selectively disrupted by specific mutations in the CD151 large extracellular loop (EC2 domain) or in intracellular CD151 palmitoylation sites, respectively. CD151-integrin association and CD151-tetraspanin association were both important for α3β1 integrin-dependent initial adhesion and rapid migration on laminin-332. Remarkably, however, only CD151-integrin association was required for stable, α6β4 integrin-dependent cell attachment on laminin-332. In addition, we found that a QRD amino acid motif in the CD151 EC2 domain, which had been thought to be crucial for CD151-integrin interaction, is not essential for CD151-integrin association or for the ability of CD151 to promote several different integrin functions. These new data suggest potential strategies for selectively modulating migratory cell responses to laminin-332, while leaving stable cell attachment on laminin-332 intact.
Collapse
Affiliation(s)
| | | | - Christopher S. Stipp
- From the Departments of Biology and
- Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
36
|
Tetraspanins and tumor progression. Clin Exp Metastasis 2010; 28:261-70. [DOI: 10.1007/s10585-010-9365-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Accepted: 11/30/2010] [Indexed: 02/07/2023]
|
37
|
p53 expression in tumor-stromal fibroblasts forming and not forming fibrotic foci in invasive ductal carcinoma of the breast. Mod Pathol 2010; 23:662-72. [PMID: 20208478 DOI: 10.1038/modpathol.2010.47] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The purpose of this study was to determine whether p53 protein expression in tumor-stromal fibroblasts forming fibrotic foci is a significant outcome predictor, similar to p53 protein expression in tumor-stromal fibroblasts not forming fibrotic foci, and whether the combined assessment of p53 expression in tumor-stromal fibroblasts forming and not forming fibrotic foci served as an important outcome predictor among 1039 patients with invasive ductal carcinoma of the breast. We analyzed the outcome predictive power of the Allred score risk classification for p53 in tumor-stromal fibroblasts forming and not forming fibrotic foci using multivariate analyses with well-known clinicopathological factors. The Allred score risk classifications for p53 in tumor-stromal fibroblasts forming and not forming fibrotic foci were superior to the Allred scores for p53 in tumor-stromal fibroblasts not forming fibrotic foci alone for accurately predicting the tumor-related death of patients with invasive ductal carcinoma when examined using multivariate analyses. The Allred score risk classification for p53 in tumor-stromal fibroblasts forming and not forming fibrotic foci significantly increased the hazard rates for tumor recurrence and tumor-related death independent of the UICC pTNM stage in the multivariate analyses. These results indicated that the Allred score risk classification based on the combined assessment of p53 expression in tumor-stromal fibroblasts forming and not forming fibrotic foci is a very useful outcome predictor among patients with invasive ductal carcinoma.
Collapse
|
38
|
Abstract
Within the integrin family of cell adhesion receptors, integrins alpha3beta1, alpha6beta1, alpha6beta4 and alpha7beta1 make up a laminin-binding subfamily. The literature is divided on the role of these laminin-binding integrins in metastasis, with different studies indicating either pro- or antimetastatic functions. The opposing roles of the laminin-binding integrins in different settings might derive in part from their unusually robust associations with tetraspanin proteins. Tetraspanins organise integrins into multiprotein complexes within discrete plasma membrane domains termed tetraspanin-enriched microdomains (TEMs). TEM association is crucial to the strikingly rapid cell migration mediated by some of the laminin-binding integrins. However, emerging data suggest that laminin-binding integrins also promote the stability of E-cadherin-based cell-cell junctions, and that tetraspanins are essential for this function as well. Thus, TEM association endows the laminin-binding integrins with both pro-invasive functions (rapid migration) and anti-invasive functions (stable cell junctions), and the composition of TEMs in different cell types might help determine the balance between these opposing activities. Unravelling the tetraspanin control mechanisms that regulate laminin-binding integrins will help to define the settings where inhibiting the function of these integrins would be helpful rather than harmful, and may create opportunities to modulate integrin activity in more sophisticated ways than simple functional blockade.
Collapse
|
39
|
Hasebe T, Okada N, Tamura N, Houjoh T, Akashi-Tanaka S, Tsuda H, Shibata T, Sasajima Y, Iwasaki M, Kinoshita T. p53 expression in tumor stromal fibroblasts is associated with the outcome of patients with invasive ductal carcinoma of the breast. Cancer Sci 2009; 100:2101-8. [PMID: 19719774 PMCID: PMC11158397 DOI: 10.1111/j.1349-7006.2009.01307.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/06/2009] [Accepted: 07/29/2009] [Indexed: 06/09/2024] Open
Abstract
The purpose of this study was to determine whether p53 protein expression in tumor stromal fibroblasts assessed immunohistochemically by the Allred score system is significantly associated with nodal metastasis by invasive ductal carcinoma (IDC), and significantly associated with the outcome of 1042 IDC patients according to adjuvant therapy status, UICC pTNM stage, and triple-negative IDC status, in multivariate analyses with well-known clinicopathological factors. The Allred scores for p53 expression in tumor stromal fibroblasts were significantly associated with the number of nodal metastases, and Allred scores of 4-8 for p53 in tumor stromal fibroblasts significantly increased the hazard rate for distant organ metastasis or for tumor death in the triple-negative IDC patients, and the UICC pTNM stage I, II, and III patients. The results indicated that p53 protein expression in tumor stromal fibroblasts is closely associated with the number of nodal metastases and the outcome of IDC patients.
Collapse
Affiliation(s)
- Takahiro Hasebe
- Pathology Consultation Service, Clinical Trials and Practice Support Division, Center for Cancer Control and Information Services, National Cancer Center, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tamura N, Hasebe T, Okada N, Houjoh T, Akashi-Tanaka S, Shimizu C, Shibata T, Sasajima Y, Iwasaki M, Kinoshita T. Tumor histology in lymph vessels and lymph nodes for the accurate prediction of outcome among breast cancer patients treated with neoadjuvant chemotherapy. Cancer Sci 2009; 100:1823-33. [PMID: 19604245 PMCID: PMC11158533 DOI: 10.1111/j.1349-7006.2009.01264.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The present study investigated fibrotic foci (FFs), the grading system for lymph vessel tumor emboli (LVTEs), and the histological characteristics of nodal metastatic tumors that were significantly associated with the outcomes of 115 patients with invasive ductal carcinoma (IDC) who had received neoadjuvant chemotherapy. We compared the outcome predictive power of FFs, the grading system for LVTEs, and the histological characteristics of metastatic tumors in lymph nodes with the well-known clinicopathological characteristics of tumor recurrence and tumor-related death in multivariate analyses. The presence of FFs, as assessed by a biopsy performed before neoadjuvant chemotherapy, significantly increased the hazard rates (HRs) for tumor-related death in all the cases and in cases with nodal metastasis. The grading system for LVTEs, which was assessed using surgical specimens obtained after neoadjuvant chemotherapy, was significantly associated with increasing hazard rates (HRs) for tumor recurrence and tumor-related death in all the cases and in cases with nodal metastasis. Moderate to severe stroma in nodal metastatic tumors and five or more mitotic figures in nodal metastatic tumors were significantly associated with elevated HRs for tumor recurrence and tumor-related death among all the cases. These results indicated that FFs, the grading system for LVTEs, and the histological characteristics of tumor cells in lymph nodes play important roles in predicting the tumor progression of IDCs of the breast in patients treated with neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Nobuko Tamura
- Department of Breast Surgery, National Cancer Center Hospital, Chuo-ku, Tokyo.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ra HJ, Harju-Baker S, Zhang F, Linhardt RJ, Wilson CL, Parks WC. Control of promatrilysin (MMP7) activation and substrate-specific activity by sulfated glycosaminoglycans. J Biol Chem 2009; 284:27924-27932. [PMID: 19654318 DOI: 10.1074/jbc.m109.035147] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Matrix metalloproteinases are maintained in an inactive state by a bond between the thiol of a conserved cysteine in the prodomain and a zinc atom in the catalytic domain. Once this bond is disrupted, MMPs become active proteinases and can act on a variety of extracellular protein substrates. In vivo, matrilysin (MMP7) activates pro-alpha-defensins (procryptdins), but in vitro, processing of these peptides is slow, with about 50% conversion in 8-12 h. Similarly, autolytic activation of promatrilysin in vitro can take up to 12-24 h for 50% conversion. These inefficient reactions suggest that natural cofactors enhance the activation and activity of matrilysin. We determined that highly sulfated glycosaminoglycans (GAG), such as heparin, chondroitin-4,6-sulfate (CS-E), and dermatan sulfate, markedly enhanced (>50-fold) the intermolecular autolytic activation of promatrilysin and the activity of fully active matrilysin to cleave specific physiologic substrates. In contrast, heparan sulfate and less sulfated forms of chondroitin sulfate did not augment matrilysin activation or activity. Chondroitin-2,6-sulfate (CS-D) also did not enhance matrilysin activity, suggesting that the presentation of sulfates is more important than the overall degree of sulfation. Surface plasmon resonance demonstrated that promatrilysin bound heparin (K(D), 400 nm) and CS-E (K(D), 630 nm). Active matrilysin bound heparin (K(D), 150 nm) but less so to CS-E (K(D), 60 microm). Neither form bound heparan sulfate. These observations demonstrate that sulfated GAGs regulate matrilysin activation and its activity against specific substrates.
Collapse
Affiliation(s)
- Hyun-Jeong Ra
- Center for Lung Biology, University of Washington, Seattle, Washington 98109
| | - Susanna Harju-Baker
- Center for Lung Biology, University of Washington, Seattle, Washington 98109
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology and Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Carole L Wilson
- Department of Pathology, University of Washington, Seattle, Washington 98109
| | - William C Parks
- Center for Lung Biology, University of Washington, Seattle, Washington 98109.
| |
Collapse
|
42
|
Johnson JL, Winterwood N, DeMali KA, Stipp CS. Tetraspanin CD151 regulates RhoA activation and the dynamic stability of carcinoma cell-cell contacts. J Cell Sci 2009; 122:2263-73. [DOI: 10.1242/jcs.045997] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tetraspanins regulate integrin-dependent tumor cell interactions with the extracellular matrix. Here we show that tetraspanin CD151, which plays critical roles in regulating the adhesion and motility of individual tumor cells, is also an important regulator of collective tumor cell migration. Near total silencing of CD151 destabilizes E-cadherin-dependent carcinoma cell-cell junctions and enhances the collective migration of intact tumor cell sheets. This effect does not depend on reduced E-cadherin cell-surface expression or intrinsic adhesivity, or on obvious disruptions in the E-cadherin regulatory complex. Instead, the loss of CD151 causes excessive RhoA activation, loss of actin organization at cell-cell junctions, and increased actin stress fibers at the basal cell surface. Cell-cell contacts within CD151-silenced monolayers display a nearly threefold increase in remodeling rate and a significant reduction in lifespan as compared to cell-cell contacts within wild-type monolayers. CD151 re-expression restores junctional stability, as does acute treatment of CD151-silenced cells with a cell-permeable RhoA inhibitor. However, a CD151 mutant with impaired association with α3β1 integrin fails to restore junctional organization. These data reveal that, in addition to its roles in regulating tumor cell-substrate interactions, CD151 is also an important regulator of the stability of tumor cell-cell interactions, potentially through its interaction with α3β1 integrin. This could help to explain the phenotypes in human patients and mice lacking CD151.
Collapse
Affiliation(s)
| | | | - Kris A. DeMali
- Carver College of Medicine, Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
43
|
Abstract
Despite high expression levels at the plasma membrane or in intracellular vesicles, tetraspanins remain among the most mysterious transmembrane molecules 20 years after their discovery. Several genetic studies in mammals and invertebrates have demonstrated key physiological roles for some of these tetraspanins, in particular in the immune response, sperm-egg fusion, photoreceptor function and the normal function of certain epithelia. Other studies have highlighted their ability to modulate cell migration and metastasis formation. Their role in the propagation of infectious agents has drawn recent attention, with evidence for HIV budding in tetraspanin-enriched plasma membrane domains. Infection of hepatocytic cells by two major pathogens, the hepatitis C virus and the malaria parasite, also requires the tetraspanin CD81. The function of tetraspanins is thought to be linked to their ability to associate with one another and a wealth of other integral proteins, thereby building up an interacting network or 'tetraspanin web'. On the basis of the biochemical dissection of the tetraspanin web and recent analysis of the dynamics of some of its constituents, we propose that tetraspanins tightly regulate transient interactions between a variety of molecules and as such favour the efficient assembly of specialized structures upon proper stimulation.
Collapse
|
44
|
Ke AW, Shi GM, Zhou J, Wu FZ, Ding ZB, Hu MY, Xu Y, Song ZJ, Wang ZJ, Wu JC, Bai DS, Li JC, Liu KD, Fan J. Role of overexpression of CD151 and/or c-Met in predicting prognosis of hepatocellular carcinoma. Hepatology 2009; 49:491-503. [PMID: 19065669 DOI: 10.1002/hep.22639] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
UNLABELLED It has been reported that tetraspanin CD151 acts as a promoter of metastasis in several tumors and plays an important role in c-Met/hepatocyte growth factor signaling. However, the role of CD151 alone and coexpression of CD151/c-Met in hepatocellular carcinoma (HCC) remains unclear. We found that expression of CD151 was positively related to metastatic potential of HCC cell lines, and modified cells with CD151(high) showed higher secretion of matrix metalloproteinase 9 and aggressiveness in vitro and higher metastatic ability in vivo. Furthermore, HCC patients with vascular invasion, large tumors, multiple tumors, high tumor-node-metastasis stage, and undifferentiated tumor were prone to have higher CD151 expression. The postoperative 3-, 5-, and 7-year overall survival (OS) of patients in HCCs with CD151(high) were significantly lower than those in the CD151(low) group, and correspondingly cumulative recurrence rates in HCCs with CD151(high) were significantly higher than those in the CD151(low) group. Both CD151 and c-Met were remarkably overexpressed in HCCs, compared with adjacent nontumorous and normal liver tissues. Pearson correlation analysis showed a slight correlation between CD151 and c-Met in HCCs. Importantly, the 5- and 7-year OS rates in CD151(high)/c-Met(high) patients were 50.5% and 37.8%, respectively, significantly lower than those of CD151(low)/c-Met(low) patients (63.9% and 54.6%, respectively). Five- and 7-year cumulative recurrence rates in CD151(high)/c-Met(high) patients were 53.3% and 71.9%, respectively, markedly higher than those of CD151(low)/c-Met(low) patients (39.0% and 52.5%, respectively). Multivariate analysis revealed that CD151 and combination of CD151/c-Met were independent prognostic indicators for OS and cumulative recurrence. CONCLUSION CD151 is positively associated with invasiveness of HCC, and CD151 or combination of CD151/c-Met is a novel marker in predicting the prognosis of HCC and a potential therapeutic target.
Collapse
MESH Headings
- Adult
- Aged
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Carcinoma, Hepatocellular/diagnosis
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/surgery
- Cell Line, Tumor
- Cloning, Molecular
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- Liver Neoplasms/diagnosis
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Liver Neoplasms/surgery
- Male
- Middle Aged
- Neoplasm Invasiveness
- Neoplasm Metastasis/genetics
- Neoplasm Staging
- Prognosis
- Proto-Oncogene Proteins c-met/genetics
- Proto-Oncogene Proteins c-met/metabolism
- RNA, Messenger/genetics
- Tetraspanin 24
- Transfection
Collapse
Affiliation(s)
- Ai-Wu Ke
- Experimental Research Center of Zhongshan Hospital, Fudan University, Shanghai, PR China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Tumours progress through a cascade of events that enable the formation of metastases. Some of the components that are required for this fatal process are well established. Tetraspanins, however, have only recently received attention as both metastasis suppressors and metastasis promoters. This late appreciation is probably due to their capacity to associate with various molecules, which they recruit into special membrane microdomains, and their abundant presence in tumour-derived small vesicles that aid intercellular communication. It is reasonable to assume that differences in the membrane and vesicular web components that associate with individual tetraspanins account for their differing abilities to promote and suppress metastasis.
Collapse
Affiliation(s)
- Margot Zöller
- Department of Tumour Cell Biology, University Hospital of Surgery, Heidelberg, Germany.
| |
Collapse
|
46
|
Baldwin G, Novitskaya V, Sadej R, Pochec E, Litynska A, Hartmann C, Williams J, Ashman L, Eble JA, Berditchevski F. Tetraspanin CD151 regulates glycosylation of (alpha)3(beta)1 integrin. J Biol Chem 2008; 283:35445-54. [PMID: 18852263 DOI: 10.1074/jbc.m806394200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The tetraspanin CD151 forms a stoichiometric complex with integrin alpha3beta1 and regulates its endocytosis. We observed that down-regulation of CD151 in various epithelial cell lines changed glycosylation of alpha3beta1. In contrast, glycosylation of other transmembrane proteins, including those associated with CD151 (e.g. alpha6beta1, CD82, CD63, and emmprin/CD147) was not affected. The detailed analysis has shown that depletion of CD151 resulted in the reduction of Fucalpha1-2Gal and bisecting GlcNAc-beta(1-->4) linkage on N-glycans of the alpha3 integrin subunit. The modulatory activity of CD151 toward alpha3beta1 was specific, because stable knockdown of three other tetraspanins (i.e. CD9, CD63, and CD81) did not affect glycosylation of the integrin. Analysis of alpha3 glycosylation in CD151-depleted breast cancer cells with reconstituted expression of various CD151 mutants has shown that a direct contact with integrin is required but not sufficient for the modulatory activity of the tetraspanin toward alpha3beta1. We also found that glycosylation of CD151 is also critical; Asn(159) --> Gln mutation in the large extracellular loop did not affect interactions of CD151 with other tetraspanins or alpha3beta1 but negated its modulatory function. Changes in the glycosylation pattern of alpha3beta1 observed in CD151-depleted cells correlated with a dramatic decrease in cell migration toward laminin-332. Migration toward fibronectin or static adhesion of cells to extracellular matrix ligands was not affected. Importantly, reconstituted expression of the wild-type CD151 but not glycosylation-deficient mutant restored the migratory potential of the cells. These results demonstrate that CD151 plays an important role in post-translation modification of alpha3beta1 integrin and strongly suggest that changes in integrin glycosylation are critical for the promigratory activity of this tetraspanin.
Collapse
Affiliation(s)
- Gouri Baldwin
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|