1
|
Hillson K, Saglani S, Custovic A. Preschool wheeze and asthma endotypes- implications for future therapy. Expert Rev Respir Med 2024; 18:1025-1039. [PMID: 39655566 DOI: 10.1080/17476348.2024.2440468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Preschool wheeze and school-aged asthma present a large healthcare burden. Both conditions are now recognized to be heterogeneous, with similar symptom presentation but likely different underlying lung pathology. AREAS COVERED Current treatment options for preschool wheeze are constrained by extrapolations from the management of school-aged children with asthma. While most cases of asthma at school age are caused by classical atopic, eosinophilic, Type-2 driven asthma, only a quarter of preschool children with wheeze fall into this category. Targeting treatment to specific underlying mechanisms resulting in preschool wheeze may alter the progression to school age asthma. Novel biologics have revolutionized the management of severe, treatment-resistant school age asthma, but a limited evidence base limits their use in young children. There are several potential future non-steroid-based treatment options in development, of which bacterial lysates show the most promise. EXPERT OPINION Effective treatment of preschool wheeze may preserve lung function into later life, which may alter the progression trajectory toward school age asthma. Endotype-driven management will enable more effective treatment of both preschool wheeze and school age asthma.
Collapse
Affiliation(s)
- Kushalinii Hillson
- National Heart and Lung Institute, Imperial College London, London, UK
- Paediatric Respiratory Medicine Department, Royal Brompton Hospital, London, UK
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College London, London, UK
- Paediatric Respiratory Medicine Department, Royal Brompton Hospital, London, UK
- NIHR Imperial Biomedical Research Centre (BRC), London, UK
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Imperial Biomedical Research Centre (BRC), London, UK
| |
Collapse
|
2
|
Hewady S, Manuel CR, Pasquali C, Koya J, Reznik SE. OM-85 attenuates high-fat diet-induced obesity, insulin resistance, gut dysbiosis and nonalcoholic steatohepatitis in a murine model. Biomed Pharmacother 2024; 181:117710. [PMID: 39626377 DOI: 10.1016/j.biopha.2024.117710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/04/2024] [Accepted: 11/23/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Obesity is a global epidemic that is tied to a wide range of human disorders. Chronic consumption of a high-fat diet is linked to disruption of the intestinal microbiome, which drives obesity-related pathophysiology. Broncho-Vaxom® (OM-85), a bacterial lysate used for prophylaxis of recurrent respiratory tract infections, has both immunostimulatory and immunomodulatory functions. METHODS Male C57Bl/6 mice were maintained on normal control vs. high-fat diets for 8 weeks and treated or untreated with OM-85 or with the probiotic Lactobacillus plantarum, as a positive control. Mice were evaluated for weight gain, glucose tolerance, insulin tolerance, gut microbiome composition and non-alcoholic steatohepatitis (NASH). RESULTS High-fat diet mice developed obesity, insulin resistance, NASH and gut dysbiosis with a shift from the Bacteroidetes phylum, such as Bacteroidales order and Muribaculaceae family organisms to Firmicutes groups, such as the Clostridium and Blautia genuses. Treatment with OM-85 led to 1) prevention of obesity, 2) prevention of insulin resistance, 3) attenuation of NASH and 4) attenuation of gut dysbiosis, with decreased levels of the organisms mentioned above and increases in Verrucomicrobiae phylum organisms such as Akkermansia family microbes as well as Muribaculaceae organisms. These shifts in the gut microbiome predict favorable effects on the short chain fatty acid profile in the gut and increased integrity of the intestinal barrier. Pathway analysis showed that OM-85 decreases rates of carbohydrate metabolism, providing an additional mechanism whereby OM-85 prevents obesity. CONCLUSION Immune modulators such as OM-85 should be investigated for their potential therapeutic effects on metabolism.
Collapse
Affiliation(s)
- Sarah Hewady
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, USA
| | | | | | | | - Sandra E Reznik
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY, USA; Departments of Pathology and Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
3
|
Rahman MM, Grice ID, Ulett GC, Wei MQ. Advances in Bacterial Lysate Immunotherapy for Infectious Diseases and Cancer. J Immunol Res 2024; 2024:4312908. [PMID: 38962577 PMCID: PMC11221958 DOI: 10.1155/2024/4312908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 07/05/2024] Open
Abstract
Antigenic cell fragments, pathogen-associated molecular patterns, and other immunostimulants in bacterial lysates or extracts may induce local and systemic immune responses in specific and nonspecific paradigms. Based on current knowledge, this review aimed to determine whether bacterial lysate has comparable functions in infectious diseases and cancer treatment. In infectious diseases, including respiratory and urinary tract infections, immune system activation by bacterial lysate can identify and combat pathogens. Commercially available bacterial lysates, including OM-85, Ismigen, Lantigen B, and LW 50020, were effective in children and adults in treating respiratory tract infections, chronic obstructive pulmonary disease, rhinitis, and rhinosinusitis with varying degrees of success. Moreover, OM-89, Uromune, Urovac, Urivac, and ExPEC4V showed therapeutic benefits in controlling urinary tract infections in adults, especially women. Bacterial lysate-based therapeutics are safe, well-tolerated, and have few side effects, making them a good alternative for infectious disease management. Furthermore, a nonspecific immunomodulation by bacterial lysates may stimulate innate immunity, benefiting cancer treatment. "Coley's vaccine" has been used to treat sarcomas, carcinomas, lymphomas, melanomas, and myelomas with varying outcomes. Later, several similar bacterial lysate-based therapeutics have been developed to treat cancers, including bladder cancer, non-small cell lung cancer, and myeloma; among them, BCG for in situ bladder cancer is well-known. Proinflammatory cytokines, including IL-1, IL-6, IL-12, and TNF-α, may activate bacterial antigen-specific adaptive responses that could restore tumor antigen recognition and response by tumor-specific type 1 helper cells and cytotoxic T cells; therefore, bacterial lysates are worth investigating as a vaccination adjuvants or add-on therapies for several cancers.
Collapse
Affiliation(s)
- Md. Mijanur Rahman
- School of Pharmacy and Medical SciencesGriffith University, Gold Coast 4222, QLD, Australia
- Menzies Health Institute QueenslandGriffith University, Gold Coast 4222, QLD, Australia
| | - I. Darren Grice
- School of Pharmacy and Medical SciencesGriffith University, Gold Coast 4222, QLD, Australia
- Institute for GlycomicsGriffith University, Gold Coast 4222, QLD, Australia
| | - Glen C. Ulett
- School of Pharmacy and Medical SciencesGriffith University, Gold Coast 4222, QLD, Australia
- Menzies Health Institute QueenslandGriffith University, Gold Coast 4222, QLD, Australia
| | - Ming Q. Wei
- School of Pharmacy and Medical SciencesGriffith University, Gold Coast 4222, QLD, Australia
- Menzies Health Institute QueenslandGriffith University, Gold Coast 4222, QLD, Australia
| |
Collapse
|
4
|
Khameneh HJ, Bolis M, Ventura PMO, Cassanmagnago GA, Fischer BA, Zenobi A, Guerra J, Buzzago I, Bernasconi M, Zaman GJR, Rinaldi A, Moro SG, Sallusto F, Baulier E, Pasquali C, Guarda G. The bacterial lysate OM-85 engages Toll-like receptors 2 and 4 triggering an immunomodulatory gene signature in human myeloid cells. Mucosal Immunol 2024; 17:346-358. [PMID: 38447907 DOI: 10.1016/j.mucimm.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/02/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
OM-85 is a bacterial lysate used in clinical practice to reduce duration and frequency of recurrent respiratory tract infections. Whereas knowledge of its regulatory effects in vivo has substantially advanced, the mechanisms of OM-85 sensing remain inadequately addressed. Here, we show that the immune response to OM-85 in the mouse is largely mediated by myeloid immune cells through Toll-like receptor (TLR) 4 in vitro and in vivo. Instead, in human immune cells, TLR2 and TLR4 orchestrate the response to OM-85, which binds to both receptors as shown by surface plasmon resonance assay. Ribonucleic acid-sequencing analyses of human monocyte-derived dendritic cells reveal that OM-85 triggers a pro-inflammatory signature and a unique gene set, which is not induced by canonical agonists of TLR2 or TLR4 and comprises tolerogenic genes. A largely overlapping TLR2/4-dependent gene signature was observed in individual subsets of primary human airway myeloid cells, highlighting the robust effects of OM-85. Collectively, our results suggest caution should be taken when relating murine studies on bacterial lysates to humans. Furthermore, our data shed light on how a standardized bacterial lysate shapes the response through TLR2 and TLR4, which are crucial for immune response, trained immunity, and tolerance.
Collapse
Affiliation(s)
- Hanif J Khameneh
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland.
| | - Marco Bolis
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute of Oncology Research, Bellinzona, Switzerland; Computational Oncology Unit, Department of Oncology, Istituto di Richerche Farmacologiche 'Mario Negri' IRCCS, Milano, Italy; Bioinformatics Core Unit, Swiss Institute of Bioinformatics, Bellinzona, Switzerland
| | - Pedro M O Ventura
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Giada A Cassanmagnago
- Computational Oncology Unit, Department of Oncology, Istituto di Richerche Farmacologiche 'Mario Negri' IRCCS, Milano, Italy
| | - Berenice A Fischer
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Alessandro Zenobi
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Jessica Guerra
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Irene Buzzago
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Maurizio Bernasconi
- Pulmonology Division, Ente Ospedaliero Cantonale (EOC), Ospedale Regionale di Bellinzona e Valli (ORBV), Bellinzona, Switzerland
| | | | - Andrea Rinaldi
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute of Oncology Research, Bellinzona, Switzerland
| | - Simone G Moro
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Federica Sallusto
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland; Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Edouard Baulier
- OM Pharma SA, Department of Preclinical Research, Meyrin, Switzerland
| | | | - Greta Guarda
- Università della Svizzera Italiana (USI), Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland.
| |
Collapse
|
5
|
Go N, Arsène S, Faddeenkov I, Galland T, Martis B S, Lefaudeux D, Wang Y, Etheve L, Jacob E, Monteiro C, Bosley J, Sansone C, Pasquali C, Lehr L, Kulesza A. A quantitative systems pharmacology workflow toward optimal design and biomarker stratification of atopic dermatitis clinical trials. J Allergy Clin Immunol 2024; 153:1330-1343. [PMID: 38369029 DOI: 10.1016/j.jaci.2023.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/03/2023] [Accepted: 12/22/2023] [Indexed: 02/20/2024]
Abstract
BACKGROUND The development of atopic dermatitis (AD) drugs is challenged by many disease phenotypes and trial design options, which are hard to explore experimentally. OBJECTIVE We aimed to optimize AD trial design using simulations. METHODS We constructed a quantitative systems pharmacology model of AD and standard of care (SoC) treatments and generated a phenotypically diverse virtual population whose parameter distribution was derived from known relationships between AD biomarkers and disease severity and calibrated using disease severity evolution under SoC regimens. RESULTS We applied this workflow to the immunomodulator OM-85, currently being investigated for its potential use in AD, and calibrated the investigational treatment model with the efficacy profile of an existing trial (thereby enriching it with plausible marker levels and dynamics). We assessed the sensitivity of trial outcomes to trial protocol and found that for this particular example the choice of end point is more important than the choice of dosing regimen and patient selection by model-based responder enrichment could increase the expected effect size. A global sensitivity analysis revealed that only a limited subset of baseline biomarkers is needed to predict the drug response of the full virtual population. CONCLUSIONS This AD quantitative systems pharmacology workflow built around knowledge of marker-severity relationships as well as SoC efficacy can be tailored to specific development cases to optimize several trial protocol parameters and biomarker stratification and therefore has promise to become a powerful model-informed AD drug development and personalized medicine tool.
Collapse
|
6
|
Arsène S, Parès Y, Tixier E, Granjeon-Noriot S, Martin B, Bruezière L, Couty C, Courcelles E, Kahoul R, Pitrat J, Go N, Monteiro C, Kleine-Schultjann J, Jemai S, Pham E, Boissel JP, Kulesza A. In Silico Clinical Trials: Is It Possible? Methods Mol Biol 2024; 2716:51-99. [PMID: 37702936 DOI: 10.1007/978-1-0716-3449-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Modeling and simulation (M&S), including in silico (clinical) trials, helps accelerate drug research and development and reduce costs and have coined the term "model-informed drug development (MIDD)." Data-driven, inferential approaches are now becoming increasingly complemented by emerging complex physiologically and knowledge-based disease (and drug) models, but differ in setup, bottlenecks, data requirements, and applications (also reminiscent of the different scientific communities they arose from). At the same time, and within the MIDD landscape, regulators and drug developers start to embrace in silico trials as a potential tool to refine, reduce, and ultimately replace clinical trials. Effectively, silos between the historically distinct modeling approaches start to break down. Widespread adoption of in silico trials still needs more collaboration between different stakeholders and established precedence use cases in key applications, which is currently impeded by a shattered collection of tools and practices. In order to address these key challenges, efforts to establish best practice workflows need to be undertaken and new collaborative M&S tools devised, and an attempt to provide a coherent set of solutions is provided in this chapter. First, a dedicated workflow for in silico clinical trial (development) life cycle is provided, which takes up general ideas from the systems biology and quantitative systems pharmacology space and which implements specific steps toward regulatory qualification. Then, key characteristics of an in silico trial software platform implementation are given on the example of jinkō.ai (nova's end-to-end in silico clinical trial platform). Considering these enabling scientific and technological advances, future applications of in silico trials to refine, reduce, and replace clinical research are indicated, ranging from synthetic control strategies and digital twins, which overall shows promise to begin a new era of more efficient drug development.
Collapse
|
7
|
Abstract
Allergic diseases typically begin in early life and can impose a heavy burden on children and their families. Effective preventive measures are currently unavailable but may be ushered in by studies on the "farm effect", the strong protection from asthma and allergy found in children born and raised on traditional farms. Two decades of epidemiologic and immunologic research have demonstrated that this protection is provided by early and intense exposure to farm-associated microbes that target primarily innate immune pathways. Farm exposure also promotes timely maturation of the gut microbiome, which mediates a proportion of the protection conferred by the farm effect. Current research seeks to identify allergy-protective compounds from traditional farm environments, but standardization and regulation of such substances will likely prove challenging. On the other hand, studies in mouse models show that administration of standardized, pharmacological-grade lysates of human airway bacteria abrogates allergic lung inflammation by acting on multiple innate immune targets, including the airway epithelium/IL-33/ILC2 axis and dendritic cells whose Myd88/Trif-dependent tolerogenic reprogramming is sufficient for asthma protection in adoptive transfer models. To the extent that these bacterial lysates mimic the protective effects of natural exposure to microbe-rich environments, these agents might provide an effective tool for prevention of allergic disease.
Collapse
Affiliation(s)
- Donata Vercelli
- Department of Cellular and Molecular Medicine, Asthma & Airway Disease Research Center, The BIO5 Institute, and The Arizona Center for the Biology of Complex Diseases, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
8
|
Kloepfer KM, McCauley KE, Kirjavainen PV. The Microbiome as a Gateway to Prevention of Allergic Disease Development. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY: IN PRACTICE 2022; 10:2195-2204. [PMID: 35718258 DOI: 10.1016/j.jaip.2022.05.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 12/18/2022]
Abstract
Allergic diseases exclusively affect tissues that face environmental challenges and harbor endogenous bacterial microbiota. The microbes inhabiting the affected tissues may not be mere bystanders in this process but actively affect the risk of allergic sensitization, disease development, and exacerbation or abatement of symptoms. Experimental evidence provides several plausible means by which the human microbiota could influence the development of allergic diseases including, but not limited to, effects on antigen presentation and induction of tolerance and allergen permeation by endorsing or disrupting epithelial barrier integrity. Epidemiological evidence attests to the significance of age-appropriate, nonpathogenic microbiota development in skin, gastrointestinal tract, and airways for protection against allergic disease development. Thus, there exist potential targets for preventive actions either in the prenatal or postnatal period. These could include maternal dietary interventions, antibiotic stewardship for both the mother and infant, reducing elective cesarean deliveries, and understanding barriers to breastfeeding and timing of food diversification. In here, we will review the current understanding and evidence of allergy-associated human microbiota patterns, their role in the development of allergic diseases, and how we could harness these associations to our benefit against allergies.
Collapse
|
9
|
Watchorn D, Menzies-Gow A. Investigational approaches for unmet need in severe asthma. Expert Rev Respir Med 2022; 16:661-678. [PMID: 35786146 DOI: 10.1080/17476348.2022.2096593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Molecular antibodies (mAb) targeting inflammatory mediators are effective in T2-high asthma. The recent approval of Tezepelumab presents a novel mAb therapeutic option for those with T2-low asthma. AREAS COVERED We discuss a number of clinical problems pertinent to severe asthma that are less responsive to current therapies, such as persistent airflow obstruction and airway hyperresponsiveness. We discuss selected investigational approaches, including a number of candidate therapies under investigation in two adaptive platform trials currently in progress, with particular reference to this unmet need, as well as their potential in phenotypes such as neutrophilic asthma and obese asthma, which may or may not overlap with a T2-high phenotype. EXPERT OPINION The application of discrete targeting approaches to T2-low molecular phenotypes, including those phenotypes in which inflammation may not arise within the airway, has yielded variable results to date. Endotypes associated with T2-low asthma are likely to be diverse but await validation. Investigational therapeutic approaches must, likewise, be diverse if the goal of remission is to become attainable for all those living with asthma.
Collapse
Affiliation(s)
- David Watchorn
- Lung Division, Royal Brompton & Harefield Hospitals,London,UK
| | | |
Collapse
|
10
|
Antunes KH, Cassão G, Santos LD, Borges SG, Poppe J, Gonçalves JB, Nunes EDS, Recacho GF, Sousa VB, Da Silva GS, Mansur D, Stein RT, Pasquali C, De Souza APD. Airway Administration of Bacterial Lysate OM-85 Protects Mice Against Respiratory Syncytial Virus Infection. Front Immunol 2022; 13:867022. [PMID: 35603159 PMCID: PMC9118194 DOI: 10.3389/fimmu.2022.867022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/11/2022] [Indexed: 01/05/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a seasonal pathogen responsible for the highest percentage of viral bronchiolitis in pediatric patients. There are currently no vaccine available and therapeutic methods to mitigate the severity of RSV bronchiolitis are limited. OM-85, an oral standardized bacterial lysate isolated from human respiratory strains and widely used to prevent recurrent infections and/or exacerbations in populations at risk, has been shown to be effective and safe in children and adults. Here, we demonstrate that airway administration of OM-85 in Balb/c mice prior to infection prevents RSV-induced disease, resulting in inhibition of viral replication associated with less perivascular and peribronchial inflammation in the lungs. These protective effects are dose and time-dependent with complete protection using 1mg dose of OM-85 only four times intranasally. Mechanistic insights using this topical route in the airways revealed increased alveolar macrophages, a selective set of tolerogenic DCs, Treg and Th1 expansion in the lung, even in the absence of infection, contributing to a better Th1/Th2 balance and preventing ILC2 recruitment in the airways and associated inflammatory sequelae. OM-85 preventive treatment also improved antiviral response by increasing IFNβ and its responsive genes in the lung. In vitro, OM-85 protects against RSV infection in a type I interferon pathway. Our animal model data suggest that intranasal use of OM-85 should be considered as a potential prophylactic product to prevent RSV bronchiolitis once human studies confirm these findings.
Collapse
Affiliation(s)
- Krist Helen Antunes
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Gisele Cassão
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Leonardo Duarte Santos
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Sofia Giacomet Borges
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Juliana Poppe
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - João Budelon Gonçalves
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Eduarda da Silva Nunes
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Guilherme Fernando Recacho
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Vitória Barbosa Sousa
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Gabriela Souza Da Silva
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Daniel Mansur
- Laboratory of Imunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Renato T Stein
- Department of Pediatrics, São Lucas Hospital PUCRS, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | | | - Ana Paula Duarte De Souza
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
11
|
Arsène S, Couty C, Faddeenkov I, Go N, Granjeon-Noriot S, Šmít D, Kahoul R, Illigens B, Boissel JP, Chevalier A, Lehr L, Pasquali C, Kulesza A. Modeling the disruption of respiratory disease clinical trials by non-pharmaceutical COVID-19 interventions. Nat Commun 2022; 13:1980. [PMID: 35418135 PMCID: PMC9008035 DOI: 10.1038/s41467-022-29534-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
Respiratory disease trials are profoundly affected by non-pharmaceutical interventions (NPIs) against COVID-19 because they perturb existing regular patterns of all seasonal viral epidemics. To address trial design with such uncertainty, we developed an epidemiological model of respiratory tract infection (RTI) coupled to a mechanistic description of viral RTI episodes. We explored the impact of reduced viral transmission (mimicking NPIs) using a virtual population and in silico trials for the bacterial lysate OM-85 as prophylaxis for RTI. Ratio-based efficacy metrics are only impacted under strict lockdown whereas absolute benefit already is with intermediate NPIs (eg. mask-wearing). Consequently, despite NPI, trials may meet their relative efficacy endpoints (provided recruitment hurdles can be overcome) but are difficult to assess with respect to clinical relevance. These results advocate to report a variety of metrics for benefit assessment, to use adaptive trial design and adapted statistical analyses. They also question eligibility criteria misaligned with the actual disease burden.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ben Illigens
- Novadiscovery SA, Lyon, France
- Dresden International University, Dresden, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Pivniouk V, Gimenes-Junior JA, Ezeh P, Michael A, Pivniouk O, Hahn S, VanLinden SR, Malone SP, Abidov A, Anderson D, Gozdz J, DeVries A, Martinez FD, Pasquali C, Vercelli D. Airway administration of OM-85, a bacterial lysate, blocks experimental asthma by targeting dendritic cells and the epithelium/IL-33/ILC2 axis. J Allergy Clin Immunol 2022; 149:943-956. [PMID: 34560105 PMCID: PMC8901455 DOI: 10.1016/j.jaci.2021.09.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Microbial interventions against allergic asthma have robust epidemiologic underpinnings and the potential to recalibrate disease-inducing immune responses. Oral administration of OM-85, a standardized lysate of human airways bacteria, is widely used empirically to prevent respiratory infections and a clinical trial is testing its ability to prevent asthma in high-risk children. We previously showed that intranasal administration of microbial products from farm environments abrogates experimental allergic asthma. OBJECTIVES We sought to investigate whether direct administration of OM-85 to the airway compartment protects against experimental allergic asthma; and to identify protective cellular and molecular mechanisms activated through this natural route. METHODS Different strains of mice sensitized and challenged with ovalbumin or Alternaria received OM-85 intranasally, and cardinal cellular and molecular asthma phenotypes were measured. Airway transfer experiments assessed whether OM-85-treated dendritic cells protect allergen-sensitized, OM-85-naive mice against asthma. RESULTS Airway OM-85 administration suppressed allergic asthma in all models acting on multiple innate and adaptive immune targets: the airway epithelium/IL-33/ILC2 axis, lung allergen-induced type 2 responses, and dendritic cells whose Myd88/Trif-dependent tolerogenic reprogramming was sufficient to transfer OM-85-induced asthma protection. CONCLUSIONS We provide the first demonstration that administering a standardized bacterial lysate to the airway compartment protects from experimental allergic asthma by engaging multiple immune pathways. Because protection required a cumulative dose 27- to 46-fold lower than the one reportedly active through the oral route, the efficacy of intranasal OM-85 administration may reflect its direct access to the airway mucosal networks controlling the initiation and development of allergic asthma.
Collapse
Affiliation(s)
- Vadim Pivniouk
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, Ariz; Asthma and Airway Disease Research Center, The University of Arizona, Tucson, Ariz; BIO5 Institute, The University of Arizona, Tucson, Ariz.
| | - Joao A. Gimenes-Junior
- Asthma and Airway Disease Research Center, The University
of Arizona, Tucson, AZ, 85721, USA
| | - Peace Ezeh
- Asthma and Airway Disease Research Center, The University
of Arizona, Tucson, AZ, 85721, USA
| | - Ashley Michael
- Asthma and Airway Disease Research Center, The University
of Arizona, Tucson, AZ, 85721, USA
| | - Oksana Pivniouk
- Asthma and Airway Disease Research Center, The University
of Arizona, Tucson, AZ, 85721, USA
| | - Seongmin Hahn
- Asthma and Airway Disease Research Center, The University
of Arizona, Tucson, AZ, 85721, USA
| | - Sydney R. VanLinden
- Asthma and Airway Disease Research Center, The University
of Arizona, Tucson, AZ, 85721, USA
| | - Sean P. Malone
- Asthma and Airway Disease Research Center, The University
of Arizona, Tucson, AZ, 85721, USA
| | - Amir Abidov
- Medical Student Research Program, College of Medicine, The
University of Arizona, Tucson, AZ, 85721, USA
| | - Dayna Anderson
- Asthma and Airway Disease Research Center, The University
of Arizona, Tucson, AZ, 85721, USA
| | - Justyna Gozdz
- Asthma and Airway Disease Research Center, The University
of Arizona, Tucson, AZ, 85721, USA
| | - Avery DeVries
- Asthma and Airway Disease Research Center, The University
of Arizona, Tucson, AZ, 85721, USA,The BIO5 Institute, The University of Arizona, Tucson, AZ,
85721, USA
| | - Fernando D. Martinez
- Asthma and Airway Disease Research Center, The University
of Arizona, Tucson, AZ, 85721, USA,The BIO5 Institute, The University of Arizona, Tucson, AZ,
85721, USA
| | | | - Donata Vercelli
- Department of Cellular and Molecular Medicine, The
University of Arizona, Tucson, AZ, 85721, USA,Asthma and Airway Disease Research Center, The University
of Arizona, Tucson, AZ, 85721, USA,The BIO5 Institute, The University of Arizona, Tucson, AZ,
85721, USA,Arizona Center for the Biology of Complex Diseases, The
University of Arizona
| |
Collapse
|
13
|
Troy NM, Strickland D, Serralha M, de Jong E, Jones AC, Read J, Galbraith S, Islam Z, Kaur P, Mincham KT, Holt BJ, Sly PD, Bosco A, Holt PG. Protection against severe infant lower respiratory tract infections by immune training: Mechanistic studies. J Allergy Clin Immunol 2022; 150:93-103. [PMID: 35177255 DOI: 10.1016/j.jaci.2022.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Results from recent clinical studies suggest potential efficacy of immune training (IT)-based approaches for protection against severe lower respiratory tract infections in infants, but underlying mechanisms are unclear. OBJECTIVE We used systems-level analyses to elucidate IT mechanisms in infants in a clinical trial setting. METHODS Pre- and posttreatment peripheral blood mononuclear cells from a placebo-controlled trial in which winter treatment with the IT agent OM85 reduced infant respiratory infection frequency and/or duration were stimulated for 24 hours with the virus/bacteria mimics polyinosinic:polycytidylic acid/lipopolysaccharide. Transcriptomic profiling via RNA sequencing, pathway and upstream regulator analyses, and systems-level gene coexpression network analyses were used sequentially to elucidate and compare responses in treatment and placebo groups. RESULTS In contrast to subtle changes in antivirus-associated polyinosinic:polycytidylic acid response profiles, the bacterial lipopolysaccharide-triggered gene coexpression network responses exhibited OM85 treatment-associated upregulation of IFN signaling. This was accompanied by network rewiring resulting in increased coordination of TLR4 expression with IFN pathway-associated genes (especially master regulator IRF7); segregation of TNF and IFN-γ (which potentially synergize to exaggerate inflammatory sequelae) into separate expression modules; and reduced size/complexity of the main proinflammatory network module (containing, eg, IL-1,IL-6, and CCL3). Finally, we observed a reduced capacity for lipopolysaccharide-induced inflammatory cytokine (eg, IL-6 and TNF) production in the OM85 group. CONCLUSION These changes are consistent with treatment-induced enhancement of bacterial pathogen detection/clearance capabilities concomitant with enhanced capacity to regulate ensuing inflammatory response intensity and duration. We posit that IT agents exemplified by OM85 potentially protect against severe lower respiratory tract infections in infants principally by effects on innate immune responses targeting the bacterial components of the mixed respiratory viral/bacterial infections that are characteristic of this age group.
Collapse
Affiliation(s)
- Niamh M Troy
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Deborah Strickland
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Michael Serralha
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Emma de Jong
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Anya C Jones
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - James Read
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Sally Galbraith
- Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Zahir Islam
- Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Parwinder Kaur
- School of Agriculture and Environment, The University of Western Australia, Perth, Australia
| | - Kyle T Mincham
- National Hearth and Lung Institute, Imperial College London, London, United Kingdom
| | - Barbara J Holt
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | - Peter D Sly
- Child Health Research Centre, University of Queensland, Brisbane, Australia
| | - Anthony Bosco
- Asthma and Airway Disease Research Center, The University of Arizona, Tucson
| | - Patrick G Holt
- Telethon Kids Institute, The University of Western Australia, Perth, Australia.
| |
Collapse
|
14
|
Georas SN, Wright RJ, Ivanova A, Israel E, LaVange LM, Akuthota P, Carr TF, Denlinger LC, Fajt ML, Kumar R, O'Neal WK, Phipatanakul W, Szefler SJ, Aronica MA, Bacharier LB, Burbank AJ, Castro M, Crotty Alexander L, Bamdad J, Cardet JC, Comhair SAA, Covar RA, DiMango EA, Erwin K, Erzurum SC, Fahy JV, Gaffin JM, Gaston B, Gerald LB, Hoffman EA, Holguin F, Jackson DJ, James J, Jarjour NN, Kenyon NJ, Khatri S, Kirwan JP, Kraft M, Krishnan JA, Liu AH, Liu MC, Marquis MA, Martinez F, Mey J, Moore WC, Moy JN, Ortega VE, Peden DB, Pennington E, Peters MC, Ross K, Sanchez M, Smith LJ, Sorkness RL, Wechsler ME, Wenzel SE, White SR, Zein J, Zeki AA, Noel P. The Precision Interventions for Severe and/or Exacerbation-Prone (PrecISE) Asthma Network: An overview of Network organization, procedures, and interventions. J Allergy Clin Immunol 2022; 149:488-516.e9. [PMID: 34848210 PMCID: PMC8821377 DOI: 10.1016/j.jaci.2021.10.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/24/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022]
Abstract
Asthma is a heterogeneous disease, with multiple underlying inflammatory pathways and structural airway abnormalities that impact disease persistence and severity. Recent progress has been made in developing targeted asthma therapeutics, especially for subjects with eosinophilic asthma. However, there is an unmet need for new approaches to treat patients with severe and exacerbation-prone asthma, who contribute disproportionately to disease burden. Extensive deep phenotyping has revealed the heterogeneous nature of severe asthma and identified distinct disease subtypes. A current challenge in the field is to translate new and emerging knowledge about different pathobiologic mechanisms in asthma into patient-specific therapies, with the ultimate goal of modifying the natural history of disease. Here, we describe the Precision Interventions for Severe and/or Exacerbation-Prone Asthma (PrecISE) Network, a groundbreaking collaborative effort of asthma researchers and biostatisticians from around the United States. The PrecISE Network was designed to conduct phase II/proof-of-concept clinical trials of precision interventions in the population with severe asthma, and is supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health. Using an innovative adaptive platform trial design, the PrecISE Network will evaluate up to 6 interventions simultaneously in biomarker-defined subgroups of subjects. We review the development and organizational structure of the PrecISE Network, and choice of interventions being studied. We hope that the PrecISE Network will enhance our understanding of asthma subtypes and accelerate the development of therapeutics for severe asthma.
Collapse
Affiliation(s)
- Steve N Georas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Rochester Medical Center, Rochester, NY.
| | | | - Anastasia Ivanova
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Elliot Israel
- Department of Medicine, Divisions of Pulmonary & Critical Care Medicine & Allergy & Immunology, Brigham & Women's Hospital, Harvard Medical School, Boston, Mass
| | - Lisa M LaVange
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Praveen Akuthota
- Pulmonary Division, Department of Medicine, University of California-San Diego, La Jolla, Calif
| | - Tara F Carr
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Loren C Denlinger
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Merritt L Fajt
- University of Pittsburgh Asthma Institute, University of Pittsburgh, Pittsburgh, Pa
| | | | - Wanda K O'Neal
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC
| | | | - Stanley J Szefler
- Children's Hospital Colorado, Aurora, Colo; University of Colorado School of Medicine, Aurora, Colo
| | - Mark A Aronica
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Allison J Burbank
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC
| | - Mario Castro
- University of Kansas School of Medicine, Kansas City, Mo
| | - Laura Crotty Alexander
- Pulmonary Division, Department of Medicine, University of California-San Diego, La Jolla, Calif
| | - Julie Bamdad
- Division of Lung Diseases, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Md
| | | | | | | | | | - Kim Erwin
- Institute for Healthcare Delivery Design, University of Illinois at Chicago, Chicago, Ill
| | | | - John V Fahy
- University of California, San Francisco School of Medicine, San Francisco, Calif
| | | | - Benjamin Gaston
- Wells Center for Pediatric Research, Indiana University, Indianapolis, Ind
| | - Lynn B Gerald
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Eric A Hoffman
- Department of Radiology, University of Iowa, Iowa City, Iowa
| | | | - Daniel J Jackson
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - John James
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Nizar N Jarjour
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Nicholas J Kenyon
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis School of Medicine, Davis, Calif
| | - Sumita Khatri
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - John P Kirwan
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, La
| | - Monica Kraft
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Jerry A Krishnan
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Ill
| | - Andrew H Liu
- Children's Hospital Colorado, Aurora, Colo; University of Colorado School of Medicine, Aurora, Colo
| | - Mark C Liu
- Pulmonary and Critical Care Medicine, Department of Medicine, the Johns Hopkins University, Baltimore, Md
| | - M Alison Marquis
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Fernando Martinez
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Jacob Mey
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, La
| | - Wendy C Moore
- Wake Forest University School of Medicine, Winston-Salem, NC
| | - James N Moy
- Rush University Medical Center, Chicago, Ill
| | - Victor E Ortega
- Wake Forest University School of Medicine, Winston-Salem, NC
| | - David B Peden
- Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC
| | | | - Michael C Peters
- University of California, San Francisco School of Medicine, San Francisco, Calif
| | - Kristie Ross
- The Cleveland Clinic, Cleveland, Ohio; UH Rainbow Babies and Children's Hospitals, Cleveland, Ohio
| | - Maria Sanchez
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | | | - Ronald L Sorkness
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wis
| | - Michael E Wechsler
- Children's Hospital Colorado, Aurora, Colo; University of Colorado School of Medicine, Aurora, Colo
| | - Sally E Wenzel
- University of Pittsburgh Asthma Institute, University of Pittsburgh, Pittsburgh, Pa
| | - Steven R White
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Ill
| | - Joe Zein
- Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Amir A Zeki
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis School of Medicine, Davis, Calif
| | - Patricia Noel
- Division of Lung Diseases, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health, Bethesda, Md
| |
Collapse
|
15
|
Tramper‐Stranders G, Ambrożej D, Arcolaci A, Atanaskovic‐Markovic M, Boccabella C, Bonini M, Karavelia A, Mingomataj E, O' Mahony L, Sokolowska M, Untersmayr E, Feleszko W. Dangerous liaisons: Bacteria, antimicrobial therapies, and allergic diseases. Allergy 2021; 76:3276-3291. [PMID: 34390006 DOI: 10.1111/all.15046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022]
Abstract
Microbiota composition and associated metabolic activities are essential for the education and development of a healthy immune system. Microbial dysbiosis, caused by risk factors such as diet, birth mode, or early infant antimicrobial therapy, is associated with the inception of allergic diseases. In turn, allergic diseases increase the risk for irrational use of antimicrobial therapy. Microbial therapies, such as probiotics, have been studied in the prevention and treatment of allergic diseases, but evidence remains limited due to studies with high heterogeneity, strain-dependent effectiveness, and variable outcome measures. In this review, we sketch the relation of microbiota with allergic diseases, the overuse and rationale for the use of antimicrobial agents in allergic diseases, and current knowledge concerning the use of bacterial products in allergic diseases. We urgently recommend 1) limiting antibiotic therapy in pregnancy and early childhood as a method contributing to the reduction of the allergy epidemic in children and 2) restricting antibiotic therapy in exacerbations and chronic treatment of allergic diseases, mainly concerning asthma and atopic dermatitis. Future research should be aimed at antibiotic stewardship implementation strategies and biomarker-guided therapy, discerning those patients that might benefit from antibiotic therapy.
Collapse
Affiliation(s)
- Gerdien Tramper‐Stranders
- Department of Pediatrics Franciscus Gasthuis & Vlietland Rotterdam the Netherlands
- Department of Neonatology Erasmus Medical CenterSophia Children's Hospital Rotterdam the Netherlands
| | - Dominika Ambrożej
- Department of Pediatric Pneumonology and Allergy Medical University of Warsaw Warsaw Poland
- Doctoral School Medical University of Warsaw Warsaw Poland
| | - Alessandra Arcolaci
- Immunology Unit University of Verona and General Hospital Borgo Roma Hospital Verona Italy
| | | | - Cristina Boccabella
- Department of Cardiovascular and Thoracic Sciences Università Cattolica del Sacro CuoreFondazione Policlinico Universitario A. Gemelli – IRCCS Rome Italy
| | - Matteo Bonini
- Department of Cardiovascular and Thoracic Sciences Università Cattolica del Sacro CuoreFondazione Policlinico Universitario A. Gemelli – IRCCS Rome Italy
- National Heart and Lung Institute (NHLI) Imperial College London London UK
| | - Aspasia Karavelia
- Department of Ear‐Nose‐Throat surgery General Hospital of Kozani Kozani Greece
| | - Ervin Mingomataj
- Department of Allergology & Clinical Immunology ‘Mother Theresa’ School of Medicine Tirana Albania
| | - Liam O' Mahony
- Departments of Medicine and Microbiology APC Microbiome IrelandNational University of Ireland Cork Ireland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Zurich Switzerland
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Wojciech Feleszko
- Department of Pediatric Pneumonology and Allergy Medical University of Warsaw Warsaw Poland
| | | |
Collapse
|
16
|
de Boer GM, Braunstahl G, van der Ploeg EK, van Zelst CM, van Bruggen A, Epping G, van Nimwegen M, Verhoeven G, Birnie E, Boxma‐de Klerk BM, de Bruijn MJW, Stadhouders R, Hendriks RW, Tramper‐Stranders GA. Bacterial lysate add-on therapy to reduce exacerbations in severe asthma: A double-blind placebo-controlled trial. Clin Exp Allergy 2021; 51:1172-1184. [PMID: 34289183 PMCID: PMC9292626 DOI: 10.1111/cea.13990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 04/28/2021] [Accepted: 07/19/2021] [Indexed: 11/26/2022]
Abstract
Background Asthma exacerbations are frequently induced by respiratory tract infections (RTIs). Bacterial lysates have been described to possess immune‐modulatory effects and reduce RTIs as well as asthma symptoms in children. However, whether bacterial lysates have similar effects in adult asthma patients is unknown. Aims To reduce asthma exacerbations by add‐on bacterial lysate therapy in adults with severe asthma and to characterize the clinical and immune‐modulatory effects of this treatment. Methods Asthma patients (GINA 4) with ≥2 annual exacerbations in the previous year were included. The intervention regimen consisted of OM‐85/placebo for 10 consecutive days per month for 6 months during two winter seasons. Primary end‐point was the number of severe asthma exacerbations within 18 months. The study was approved by the national and local ethical review board and registered in the Dutch Trial Registry (NL5752). All participants provided written informed consent. Results Seventy‐five participants were included (38 OM‐85; 37 placebo). Exacerbation frequencies were not different between the groups after 18 months (incidence rate ratio 1.07, 95%CI [0.68–1.69], p = 0.77). With the use of OM‐85, FEV1% increased by 3.81% (p = 0.04) compared with placebo. Nasopharyngeal swabs taken during RTIs detected a virus less frequently in patients using OM‐85 compared to placebo (30.5% vs. 48.0%, p = 0.02). In subjects with type 2 inflammation adherent to the protocol (22 OM‐85; 20 placebo), a non‐statistically significant decrease in exacerbations in the OM‐85 group was observed (IRR = 0.71, 95%CI [0.39–1.26], p = 0.25). Immune‐modulatory effects included an increase in several plasma cytokines in the OM‐85 group, especially IL‐10 and interferons. Peripheral blood T‐ and B cell subtyping, including regulatory T cells, did not show differences between the groups. Conclusion Although OM‐85 may have immune‐modulatory effects, it did not reduce asthma exacerbations in this heterogeneous severe adult asthma group. Post hoc analysis showed a potential clinical benefit in patients with type 2 inflammation.
Collapse
Affiliation(s)
- Geertje M. de Boer
- Department of Pulmonary MedicineFranciscus Gasthuis & VlietlandRotterdamThe Netherlands
- Department of Pulmonary MedicineErasmus University Medical CenterRotterdamThe Netherlands
| | - Gert‐Jan Braunstahl
- Department of Pulmonary MedicineFranciscus Gasthuis & VlietlandRotterdamThe Netherlands
- Department of Pulmonary MedicineErasmus University Medical CenterRotterdamThe Netherlands
| | - Esmee K. van der Ploeg
- Department of Pulmonary MedicineErasmus University Medical CenterRotterdamThe Netherlands
- Department of Cell BiologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Cathelijne M. van Zelst
- Department of Pulmonary MedicineFranciscus Gasthuis & VlietlandRotterdamThe Netherlands
- Department of Pulmonary MedicineErasmus University Medical CenterRotterdamThe Netherlands
| | - Alie van Bruggen
- Department of Pulmonary MedicineFranciscus Gasthuis & VlietlandRotterdamThe Netherlands
| | - Guido Epping
- Department of Pulmonary MedicineFranciscus Gasthuis & VlietlandRotterdamThe Netherlands
| | - Menno van Nimwegen
- Department of Pulmonary MedicineErasmus University Medical CenterRotterdamThe Netherlands
| | - Gert Verhoeven
- Department of Pulmonary MedicineMaasstad hospitalRotterdamThe Netherlands
| | - Erwin Birnie
- Department of Scientific EducationFranciscus Gasthuis & VlietlandRotterdamThe Netherlands
| | | | | | - Ralph Stadhouders
- Department of Pulmonary MedicineErasmus University Medical CenterRotterdamThe Netherlands
- Department of Cell BiologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Rudi W. Hendriks
- Department of Pulmonary MedicineErasmus University Medical CenterRotterdamThe Netherlands
| | - Gerdien A. Tramper‐Stranders
- Department of Pulmonary MedicineErasmus University Medical CenterRotterdamThe Netherlands
- Department of PediatricsFranciscus Gasthuis & VlietlandRotterdamThe Netherlands
| |
Collapse
|
17
|
Lauzon-Joset JF, Mincham KT, Scott NM, Khandan Y, Stumbles PA, Holt PG, Strickland DH. Protection against neonatal respiratory viral infection via maternal treatment during pregnancy with the benign immune training agent OM-85. Clin Transl Immunology 2021; 10:e1303. [PMID: 34249358 PMCID: PMC8248556 DOI: 10.1002/cti2.1303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/20/2021] [Accepted: 06/02/2021] [Indexed: 12/29/2022] Open
Abstract
Objectives Incomplete maturation of immune regulatory functions at birth is antecedent to the heightened risk for severe respiratory infections during infancy. Our forerunner animal model studies demonstrated that maternal treatment with the microbial‐derived immune training agent OM‐85 during pregnancy promotes accelerated postnatal maturation of mechanisms that regulate inflammatory processes in the offspring airways. Here, we aimed to provide proof of concept for a novel solution to reduce the burden and potential long‐term sequelae of severe early‐life respiratory viral infection through maternal oral treatment during pregnancy with OM‐85, already in widespread human clinical use. Methods In this study, we performed flow cytometry and targeted gene expression (RT‐qPCR) analysis on lungs from neonatal offspring whose mothers received oral OM‐85 treatment during pregnancy. We next determined whether neonatal offspring from OM‐85 treated mothers demonstrate enhanced protection against lethal lower respiratory infection with mouse‐adapted rhinovirus (vMC0), and associated lung immune changes. Results Offspring from mothers treated with OM‐85 during pregnancy display accelerated postnatal seeding of lung myeloid populations demonstrating upregulation of function‐associated markers. Offspring from OM‐85 mothers additionally exhibit enhanced expression of TLR4/7 and the IL‐1β/NLRP3 inflammasome complex within the lung. These treatment effects were associated with enhanced capacity to clear an otherwise lethal respiratory viral infection during the neonatal period, with concomitant regulation of viral‐induced IFN response intensity. Conclusion These results demonstrate that maternal OM‐85 treatment protects offspring against lethal neonatal respiratory viral infection by accelerating development of innate immune mechanisms crucial for maintenance of local immune homeostasis in the face of pathogen challenge.
Collapse
Affiliation(s)
- Jean-Francois Lauzon-Joset
- Centre de Recherche Institut Universitaire de Cardiologie et de Pneumologie de Québec Université Laval Québec QC Canada.,Telethon Kids Institute University of Western Australia Nedlands WA Australia
| | - Kyle T Mincham
- Telethon Kids Institute University of Western Australia Nedlands WA Australia
| | - Naomi M Scott
- Telethon Kids Institute University of Western Australia Nedlands WA Australia
| | - Yasmine Khandan
- Telethon Kids Institute University of Western Australia Nedlands WA Australia
| | - Philip A Stumbles
- Telethon Kids Institute University of Western Australia Nedlands WA Australia.,Medical, Molecular and Forensic Sciences Murdoch University Perth WA Australia
| | - Patrick G Holt
- Telethon Kids Institute University of Western Australia Nedlands WA Australia
| | | |
Collapse
|
18
|
Mincham KT, Young JD, Strickland DH. OMIP 076: High-dimensional immunophenotyping of murine T-cell, B-cell, and antibody secreting cell subsets. Cytometry A 2021; 99:888-892. [PMID: 34159723 PMCID: PMC9546025 DOI: 10.1002/cyto.a.24474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/14/2021] [Accepted: 05/31/2021] [Indexed: 11/21/2022]
Affiliation(s)
- Kyle T Mincham
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Jacob D Young
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Deborah H Strickland
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
19
|
Dysbiosis in Pediatrics Is Associated with Respiratory Infections: Is There a Place for Bacterial-Derived Products? Microorganisms 2021; 9:microorganisms9020448. [PMID: 33671586 PMCID: PMC7926342 DOI: 10.3390/microorganisms9020448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/22/2022] Open
Abstract
Respiratory tract infections (RTIs) are common in childhood because of the physiologic immaturity of the immune system, a microbial community under development in addition to other genetic, physiological, environmental and social factors. RTIs tend to recur and severe lower viral RTIs in early childhood are not uncommon and are associated with increased risk of respiratory disorders later in life, including recurrent wheezing and asthma. Therefore, a better understanding of the main players and mechanisms involved in respiratory morbidity is necessary for a prompt and improved care as well as for primary prevention. The inter-talks between human immune components and microbiota as well as their main functions have been recently unraveled; nevertheless, more is still to be discovered or understood in the above medical conditions. The aim of this review paper is to provide the most up-to-date overview on dysbiosis in pre-school children and its association with RTIs and their complications. The potential role of non-harmful bacterial-derived products, according to the old hygiene hypothesis and the most recent trained-innate immunity concept, will be discussed together with the need of proof-of-concept studies and larger clinical trials with immunological and microbiological endpoints.
Collapse
|
20
|
Mincham KT, Jones AC, Bodinier M, Scott NM, Lauzon-Joset JF, Stumbles PA, Bosco A, Holt PG, Strickland DH. Transplacental Innate Immune Training via Maternal Microbial Exposure: Role of XBP1-ERN1 Axis in Dendritic Cell Precursor Programming. Front Immunol 2020; 11:601494. [PMID: 33424847 PMCID: PMC7793790 DOI: 10.3389/fimmu.2020.601494] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/05/2020] [Indexed: 12/19/2022] Open
Abstract
We recently reported that offspring of mice treated during pregnancy with the microbial-derived immunomodulator OM-85 manifest striking resistance to allergic airways inflammation, and localized the potential treatment target to fetal conventional dendritic cell (cDC) progenitors. Here, we profile maternal OM-85 treatment-associated transcriptomic signatures in fetal bone marrow, and identify a series of immunometabolic pathways which provide essential metabolites for accelerated myelopoiesis. Additionally, the cDC progenitor compartment displayed treatment-associated activation of the XBP1-ERN1 signalling axis which has been shown to be crucial for tissue survival of cDC, particularly within the lungs. Our forerunner studies indicate uniquely rapid turnover of airway mucosal cDCs at baseline, with further large-scale upregulation of population dynamics during aeroallergen and/or pathogen challenge. We suggest that enhanced capacity for XBP1-ERN1-dependent cDC survival within the airway mucosal tissue microenvironment may be a crucial element of OM-85-mediated transplacental innate immune training which results in postnatal resistance to airway inflammatory disease.
Collapse
Affiliation(s)
- Kyle T. Mincham
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Anya C. Jones
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Marie Bodinier
- INRA Pays de la Loire, UR 1268 Biopolymers Interactions Assemblies (BIA) Nantes, Nantes, France
| | - Naomi M. Scott
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Jean-Francois Lauzon-Joset
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- Centre de recherche de I‘Institut de Cardiologie et de Pneumologie de Québec, Université, Laval, QC, Canada
| | - Philip A. Stumbles
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Anthony Bosco
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Patrick G. Holt
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
21
|
de Boer GM, Żółkiewicz J, Strzelec KP, Ruszczyński M, Hendriks RW, Braunstahl GJ, Feleszko W, Tramper-Stranders GA. Bacterial lysate therapy for the prevention of wheezing episodes and asthma exacerbations: a systematic review and meta-analysis. Eur Respir Rev 2020; 29:29/158/190175. [PMID: 33246991 DOI: 10.1183/16000617.0175-2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/26/2020] [Indexed: 11/05/2022] Open
Abstract
Wheezing and asthma are a growing cause of morbidity in children and adults. Treatment is aimed at prevention of disease exacerbations and preservation of lung function. Respiratory viruses are involved in ∼40-60% of exacerbations. Bacterial lysates prevent recurrent respiratory tract infections and might reduce exacerbations. Moreover, immunomodulatory effects have been observed in human and animal studies. Here we aimed to assess the effects of bacterial lysate therapy on preschool wheezing episodes and asthma exacerbation frequency. We performed a systematic literature review based on the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) statement and a meta-analysis using Cochrane Review Manager. Out of 2016 retrieved articles, 22 studies were included, of which five provided sufficient data for a meta-analysis.The use of bacterial lysates showed a decrease of both wheezing episodes (mean difference -2.35 (-3.03- -1.67), p<0.001) and asthma exacerbations in children (mean difference -0.90 (-1.23- -0.57), p<0.001). Additionally, antibiotic use was reduced, and the duration of wheezing episodes was also decreased. No data for adults with asthma are currently available. The immunomodulatory effect seems to be dependent on increased T-helper (Th)1-cell activation and Th2-cell suppression.These favourable effects of bacterial lysates indicate that they show promise as add-on therapy in preschool wheezing and childhood asthma.
Collapse
Affiliation(s)
- Geertje Maria de Boer
- Dept of Pulmonary Medicine, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands.,Dept of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Jakub Żółkiewicz
- Dept of Paediatric Allergy and Pulmonology, The Medical University of Warsaw, Warsaw, Poland.,Joint first authors
| | - Konrad Piotr Strzelec
- Dept of Paediatric Allergy and Pulmonology, The Medical University of Warsaw, Warsaw, Poland
| | - Marek Ruszczyński
- Dept of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Rudi W Hendriks
- Dept of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Gert-Jan Braunstahl
- Dept of Pulmonary Medicine, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands.,Dept of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Wojciech Feleszko
- Dept of Paediatric Allergy and Pulmonology, The Medical University of Warsaw, Warsaw, Poland
| | - Gerdien A Tramper-Stranders
- Dept of Paediatric Medicine, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands.,Dept of Neonatology, Erasmus MC-Sophia, Rotterdam, The Netherlands
| |
Collapse
|
22
|
Cardinale F, Lombardi E, Rossi O, Bagnasco D, Bellocchi A, Menzella F. Epithelial dysfunction, respiratory infections and asthma: the importance of immunomodulation. A focus on OM-85. Expert Rev Respir Med 2020; 14:1019-1026. [PMID: 32635771 DOI: 10.1080/17476348.2020.1793673] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Damage to the respiratory epithelium, is often a multifactorial phenomenon. The risk for developing a damage in respiratory epithelium and recurrent respiratory infections may vary among individuals. Preventive measures are based on strengthening the immune function, thus increasing the natural response to pathogens. Immunomodulatory agents are: i. synthetic molecules; ii. Probiotics, prebiotics, symbiotics; iii. Lysates, bacterial extracts immunomodulators: OM-85, RU 41740, D53; iv. Trace elements, vitamins. OM-85 is used for the prevention of recurrent respiratory tract infections and/or exacerbations both in adults and children, showing a good efficacy and safety profile. Its active principle, an extract of bacterial lysates isolated from 21 known respiratory pathogenic strains, shows protection against airway infections of bacterial and viral origin. AREAS COVERED This non-systematic review focuses on bacterial lysates and in particular on OM-85 and its effects on respiratory epithelium function and activity in asthma respiratory infections. Studies were selected by PubMed search of "bacterial lysate" or "OM-85" and "respiratory epithelium" or "respiratory infections", from 1993 to 2019. EXPERT OPINION Results highlight the ability of OM-85 to trigger immunomodulatory and protective immune responses against different pathogens in vivo, including influenza and respiratory syncytial virus as well bacterial superinfection following influenza.
Collapse
Affiliation(s)
- Fabio Cardinale
- University of Bari, Azienda Ospedaliero-Universitaria 'Policlinico-Giovanni XXIII', UOC di Pediatria e Pronto Soccorso , Bari, Italy
| | - Enrico Lombardi
- 'Meyer' Pediatric University Hospital, Pediatric Pumonary Unit , Firenze, Italy
| | - Oliviero Rossi
- Azienda Ospedaliero-Universitaria Careggi, UOC di Immunoallergologia , Firenze, Italy
| | - Diego Bagnasco
- Casa di Cura Villa Montallegro, Unità di Malattie Dell'apparato Respiratorio , Genova, Italy
| | - Aldo Bellocchi
- ASL ROMA 4/Dist.4, Pediatrician- Family Doctor , Roma, Italy
| | - Francesco Menzella
- Azienda USL di Reggio Emilia-IRCSS, Department of Medical Specialties, Santa Maria Nuova Hospital, Pneumology Unit , Reggio Emilia, Italy
| |
Collapse
|
23
|
Rossi GA, Pohunek P, Feleszko W, Ballarini S, Colin AA. Viral infections and wheezing-asthma inception in childhood: is there a role for immunomodulation by oral bacterial lysates? Clin Transl Allergy 2020; 10:17. [PMID: 32509272 PMCID: PMC7255835 DOI: 10.1186/s13601-020-00322-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/16/2020] [Indexed: 12/15/2022] Open
Abstract
Severe and recurrent infections of the respiratory tract in early childhood constitute major risk factors for the development of bronchial hyper-responsiveness and obstructive respiratory diseases in later life. In the first years of life, the vast majority of respiratory tract infections (RTI) leading to wheezing and asthma are of a viral origin and severity and recurrence are the consequence of a greater exposure to infectious agents in a period when the immune system is still relatively immature. Therefore, boosting the efficiency of the host immune response against viral infections seems to be a rational preventative approach. In the last decades it has been demonstrated that living in farm environments, i.e. early-life exposure to microbes, may reduce the risk of allergic and infectious disorders, increasing the immune response efficacy. These findings have suggested that treatment with bacterial lysates could promote a nonspecific immunomodulation useful in the prevention of recurrent RTIs and of wheezing inception and persistence. Experimental and clinical studies showing the reduction of RTI frequency and severity in childhood and elucidating the involved mechanisms can support this hypothesis.
Collapse
Affiliation(s)
- Giovanni A. Rossi
- Department of Pediatrics, Pulmonary and Allergy Disease Unit and Cystic Fibrosis Center, G. Gaslini University Hospital, Largo G. Gaslini, 4, 16148 Genoa, Italy
| | - Petr Pohunek
- Dept of Paediatrics, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Wojciech Feleszko
- Department of Pediatric Pulmonology and Allergy, The Medical University of Warsaw, Warsaw, Poland
| | - Stefania Ballarini
- Medical Affairs Lead, Infectious Diseases, OM Pharma, a Vifor Pharma Company, Meyrin, Geneva, Switzerland
| | - Andrew A. Colin
- Division of Pediatric Pulmonology, Miller School of Medicine, University of Miami, Miami, FL USA
| |
Collapse
|
24
|
Holt PG, Strickland DH, Custovic A. Targeting maternal immune function during pregnancy for asthma prevention in offspring: Harnessing the "farm effect"? J Allergy Clin Immunol 2020; 146:270-272. [PMID: 32333916 DOI: 10.1016/j.jaci.2020.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/26/2020] [Accepted: 04/03/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Patrick G Holt
- Telethon Kids Institute, The University of Western Australia, Nedlands, Australia.
| | - Deborah H Strickland
- Telethon Kids Institute, The University of Western Australia, Nedlands, Australia
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
25
|
Feleszko W, Rossi GA, Krenke R, Canonica GW, Van Gerven L, Kalyuzhin O. Immunoactive preparations and regulatory responses in the respiratory tract: potential for clinical application in chronic inflammatory airway diseases. Expert Rev Respir Med 2020; 14:603-619. [PMID: 32250709 DOI: 10.1080/17476348.2020.1744436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction: The prevalence of chronic inflammatory airway diseases is rising. Their treatment with corticosteroids increases infection risk, while overuse of antimicrobial agents may increase morbidity and antimicrobial resistance. Nonspecific immunomodulatory compounds alter immune responses to both infectious and atopic challenges. These compounds may offer an alternative approach for symptom reduction and prophylaxis against both infections and exacerbations in chronic inflammatory airway disease.Areas covered: We assessed the available data on the efficacy of nonspecific immunomodulators including bacterial lysates, synthetic compounds, and vaccines in chronic rhinosinusitis (CRS); allergic and non-allergic rhinitis; chronic obstructive pulmonary disease (COPD), and asthma. A search of PubMed was carried out using the 'Clinical Trials' filter for each condition and immunomodulatory product detailed below, where available, data from meta-analyses were reported.Expert opinion: Pre-clinical data has revealed a coherent mechanistic path of action for oral immunomodulators on the respiratory immune system, principally via the gut-lung immune axis. In patients with asthma, allergic rhinitis, CRS, and COPD immunomodulatory therapy reduces symptoms, exacerbations, hospitalizations, and drug consumption. However, data are heterogeneous, and study quality remains limited. A lack of high-quality recent trials remains the major unmet research need in the field.
Collapse
Affiliation(s)
- Wojciech Feleszko
- Department of Pediatric Respiratory Diseases and Allergy, The Medical University of Warsaw, Warsaw, Poland
| | - Giovanni A Rossi
- Chief Emeritus, Pediatric Pulmonology and Allergy Units, Cystic Fibrosis Regional Centre, IRCCS G. Gaslini, Genoa, Italy
| | - Rafal Krenke
- Department of Internal Medicine, Pulmonary Diseases & Allergy, Medical University of Warsaw, Warsaw, Poland
| | - G Walter Canonica
- Personalized Medicine Asthma & Allergy, Clinic-Humanitas University & Research Hospital, Milan, Italy
| | - Laura Van Gerven
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Oleg Kalyuzhin
- Professor of Department of Clinical Immunology and Allergy, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
26
|
Huang MT, Chiu CJ, Chiang BL. Multi-Faceted Notch in Allergic Airway Inflammation. Int J Mol Sci 2019; 20:3508. [PMID: 31319491 PMCID: PMC6678794 DOI: 10.3390/ijms20143508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022] Open
Abstract
Notch is an evolutionarily conserved signaling family which iteratively exerts pleiotropic functions in cell fate decisions and various physiological processes, not only during embryonic development but also throughout adult life. In the context of the respiratory system, Notch has been shown to regulate ciliated versus secretory lineage differentiation of epithelial progenitor cells and coordinate morphogenesis of the developing lung. Reminiscent of its role in development, the Notch signaling pathway also plays a role in repair of lung injuries by regulation of stem cell activity, cell differentiation, cell proliferation and apoptosis. In addition to functions in embryonic development, cell and tissue renewal and various physiological processes, including glucose and lipid metabolism, Notch signaling has been demonstrated to regulate differentiation of literally almost all T-cell subsets, and impact on elicitation of inflammatory response and its outcome. We have investigated the role of Notch in allergic airway inflammation in both acute and chronic settings. In this mini-review, we will summarize our own work and recent advances on the role of Notch signaling in allergic airway inflammation, and discuss potential applications of the Notch signaling family in therapy for allergic airway diseases.
Collapse
Affiliation(s)
- Miao-Tzu Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei 10048, Taiwan.
- Department of Pediatrics, National Taiwan University Hospital, Taipei 10048, Taiwan.
- Graduate Institute of Clinical Medicine, School of Medicine, National Taiwan University, Taipei 10048, Taiwan.
| | - Chiao-Juno Chiu
- Graduate Institute of Clinical Medicine, School of Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Bor-Luen Chiang
- Department of Medical Research, National Taiwan University Hospital, Taipei 10048, Taiwan.
- Department of Pediatrics, National Taiwan University Hospital, Taipei 10048, Taiwan.
- Graduate Institute of Clinical Medicine, School of Medicine, National Taiwan University, Taipei 10048, Taiwan.
| |
Collapse
|
27
|
Martinez FD, Guerra S. Early Origins of Asthma. Role of Microbial Dysbiosis and Metabolic Dysfunction. Am J Respir Crit Care Med 2019; 197:573-579. [PMID: 29048927 DOI: 10.1164/rccm.201706-1091pp] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Fernando D Martinez
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| | - Stefano Guerra
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona
| |
Collapse
|
28
|
Ross KR, Teague WG, Gaston BM. Life Cycle of Childhood Asthma: Prenatal, Infancy and Preschool, Childhood, and Adolescence. Clin Chest Med 2018; 40:125-147. [PMID: 30691707 DOI: 10.1016/j.ccm.2018.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Asthma is a heterogeneous developmental disorder influenced by complex interactions between genetic susceptibility and exposures. Wheezing in infancy and early childhood is highly prevalent, with a substantial minority of children progressing to established asthma by school age, most of whom are atopic. Adolescence is a time of remission of symptoms with persistent lung function deficits. The transition to asthma in adulthood is not well understood.
Collapse
Affiliation(s)
- Kristie R Ross
- Division of Pediatric Pulmonology, Allergy, Immunology and Sleep Medicine, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44106, USA.
| | - W Gerald Teague
- Pediatric Asthma Center of Excellence, Department of Pediatrics, University of Virginia School of Medicine, 409 Lane Road, Building MR4, Room 2112, PO Box 801349, Charlottesville, VA 22908, USA
| | - Benjamin M Gaston
- Division of Pediatric Pulmonology, Allergy, Immunology and Sleep Medicine, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Children's Lung Foundation, 2109 Adelbert Road, BRB 827, Cleveland, OH 44106, USA
| |
Collapse
|
29
|
Mincham KT, Scott NM, Lauzon-Joset JF, Leffler J, Larcombe AN, Stumbles PA, Robertson SA, Pasquali C, Holt PG, Strickland DH. Transplacental immune modulation with a bacterial-derived agent protects against allergic airway inflammation. J Clin Invest 2018; 128:4856-4869. [PMID: 30153109 DOI: 10.1172/jci122631] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/23/2018] [Indexed: 01/18/2023] Open
Abstract
Chronic allergic inflammatory diseases are a major cause of morbidity, with allergic asthma alone affecting over 300 million people worldwide. Epidemiological studies demonstrate that environmental stimuli are associated with either the promotion or prevention of disease. Major reductions in asthma prevalence are documented in European and US farming communities. Protection is associated with exposure of mothers during pregnancy to microbial breakdown products present in farm dusts and unprocessed foods and enhancement of innate immune competence in the children. We sought to develop a scientific rationale for progressing these findings toward clinical application for primary disease prevention. Treatment of pregnant mice with a defined, clinically approved immune modulator was shown to markedly reduce susceptibility of their offspring to development of the hallmark clinical features of allergic airway inflammatory disease. Mechanistically, offspring displayed enhanced dendritic cell-dependent airway mucosal immune surveillance function, which resulted in more efficient generation of mucosal-homing regulatory T cells in response to local inflammatory challenge. We provide evidence that the principal target for maternal treatment effects was the fetal dendritic cell progenitor compartment, equipping the offspring for accelerated functional maturation of the airway mucosal dendritic cell network following birth. These data provide proof of concept supporting the rationale for developing transplacental immune reprogramming approaches for primary disease prevention.
Collapse
Affiliation(s)
- Kyle T Mincham
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Naomi M Scott
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | | | - Jonatan Leffler
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Alexander N Larcombe
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia.,Health, Safety and Environment, School of Public Health, Curtin University, Perth, Western Australia, Australia
| | - Philip A Stumbles
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia.,School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.,School of Paediatrics and Child Health, University of Western Australia, Subiaco, Western Australia, Australia
| | - Sarah A Robertson
- Robinson Research Institute and School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | | | - Patrick G Holt
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Deborah H Strickland
- Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
30
|
Lei Y, Kuang SJ, Liao CS. [Effects of bacterial lysates and all trans-retinoic acid on airway inflammation in asthmatic mice]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:514-518. [PMID: 29972129 PMCID: PMC7389946 DOI: 10.7499/j.issn.1008-8830.2018.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To observe the effects of bacterial lysates (OM-85BV) and all trans-retinoic acid (ATRA) on airway inflammation in asthmatic mice, and to investigate the immunoregulatory mechanism of OM-85BV and ATRA for airway inflammation in asthmatic mice. METHODS Forty female BALB/c mice were randomly divided into five groups: normal control, model, OM-85BV, ATRA, and OM-85BV+ATRA. A bronchial asthma model was established by intraperitoneal injection of ovalbumin (OVA) for sensitization and aerosol challenge in all mice except those in the normal control group. On days 25-34, before aerosol challenge, the model, OM-85BV, ATRA, and OM-85BV+ATRA groups were given normal saline, OM-85BV, ATRA, and OM-85BV+ATRA respectively by gavage. Normal saline was used instead for sensitization, challenge, and pretreatment before challenge in the normal control group. These mice were anesthetized and dissected at 24-48 hours after the final challenge. Bronchoalveolar lavage fluid (BALF) was collected from the right lung to measure the levels of interleukin-10 (IL-10) and interleukin-17 (IL-17) by ELISA. The left lung was collected to observe histopathological changes by hematoxylin-eosin staining. The relative expression of ROR-γT mRNA was measured by quantitative real-time PCR. RESULTS Compared with the normal control group, the model group showed contraction of the bronchial cavity, increased bronchial secretions, and a large number of infiltrating inflammatory cells around the bronchi and alveolar walls, as well as a significantly reduced level of IL-10 (P<0.05) and significantly increased levels of IL-17 and ROR-γT mRNA (P<0.05). Compared with the model group, the OM-85BV, ATRA, and OM-85BV+ATRA groups showed a significant reduction in infiltrating inflammatory cells around the bronchi and alveolar walls; the OM-85BV group showed a significant increase in the level of IL-10 in BALF (P<0.05) and significant reductions in the levels of IL-17 and ROR-γT mRNA (P<0.05); the ATRA group showed significant reductions in the levels of IL-17 and ROR-γT mRNA (P<0.05). Compared with the OM-85BV group, the OM-85BV+ATRA group had significantly increased relative expression of ROR-γT mRNA (P<0.05). Compared with the ATRA group, the OM-85BV+ATRA group had significantly increased levels of IL-10 and IL-17 in BALF (P<0.05). CONCLUSIONS Both OM-85BV and ATRA can reduce respiratory inflammation in asthmatic mice. However, a combination of the two drugs does not have a better effect than them used alone.
Collapse
Affiliation(s)
- Yuan Lei
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | | | | |
Collapse
|
31
|
Esposito S, Soto-Martinez ME, Feleszko W, Jones MH, Shen KL, Schaad UB. Nonspecific immunomodulators for recurrent respiratory tract infections, wheezing and asthma in children: a systematic review of mechanistic and clinical evidence. Curr Opin Allergy Clin Immunol 2018; 18:198-209. [PMID: 29561355 PMCID: PMC6037280 DOI: 10.1097/aci.0000000000000433] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW To provide an overview of the mechanistic and clinical evidence for the use of nonspecific immunomodulators in paediatric respiratory tract infection (RTI) and wheezing/asthma prophylaxis. RECENT FINDINGS Nonspecific immunomodulators have a long history of empirical use for the prevention of RTIs in vulnerable populations, such as children. The past decade has seen an increase in both the number and quality of studies providing mechanistic and clinical evidence for the prophylactic potential of nonspecific immunomodulators against both respiratory infections and wheezing/asthma in the paediatric population. Orally administered immunomodulators result in the mounting of innate and adaptive immune responses to infection in the respiratory mucosa and anti-inflammatory effects in proinflammatory environments. Clinical data reflect these mechanistic effects in reductions in the recurrence of respiratory infections and wheezing events in high-risk paediatric populations. A new generation of clinical studies is currently underway with the power to position the nonspecific bacterial lysate immunomodulator OM-85 as a potential antiasthma prophylactic. SUMMARY An established mechanistic and clinical role for prophylaxis against paediatric respiratory infections by nonspecific immunomodulators exists. Clinical trials underway promise to provide high-quality data to establish whether a similar role exists in wheezing/asthma prevention.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Manuel E. Soto-Martinez
- Division of Respiratory Medicine, Department of Pediatrics, Hospital Nacional de Niños, Universidad de Costa Rica, San Jose, Costa Rica
| | - Wojciech Feleszko
- Department of Pediatric Pneumology and Allergy, The Medical University Children's Hospital, Warszawa, Poland
| | - Marcus H. Jones
- Department of Pediatrics, School of Medicine, Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Kun-Ling Shen
- Department of Respiratory Care, Beijing Children's Hospital, Beijing, China
| | - Urs B. Schaad
- Division of Pediatric Infectious Diseases, University Children's Hospital, Basel, Switzerland
| |
Collapse
|
32
|
Pitrez P, Stein R. Low dose treatment of mice with bacterial extract (OM-85) for attenuation of experimental atopic asthma in mice - Reply. Allergol Immunopathol (Madr) 2018; 46:206-207. [PMID: 29289436 DOI: 10.1016/j.aller.2017.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 06/21/2017] [Indexed: 10/18/2022]
|
33
|
The Immunotherapeutic Role of Bacterial Lysates in a Mouse Model of Asthma. Lung 2017; 195:563-569. [DOI: 10.1007/s00408-017-0003-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 04/17/2017] [Indexed: 12/23/2022]
|
34
|
Holt P, Strickland D. Low dose treatment of mice with bacterial extract (OM-85) for attenuation of experimental atopic asthma in mice. Allergol Immunopathol (Madr) 2017; 45:310-311. [PMID: 28237132 DOI: 10.1016/j.aller.2016.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/03/2016] [Indexed: 11/25/2022]
|
35
|
Adjuvant treatment with the bacterial lysate (OM-85) improves management of atopic dermatitis: A randomized study. PLoS One 2017; 12:e0161555. [PMID: 28333952 PMCID: PMC5363804 DOI: 10.1371/journal.pone.0161555] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 08/05/2016] [Indexed: 12/22/2022] Open
Abstract
Background Environmental factors play a major role on atopic dermatitis (AD) which shows a constant rise in prevalence in western countries over the last decades. The Hygiene Hypothesis suggesting an inverse relationship between incidence of infections and the increase in atopic diseases in these countries, is one of the working hypothesis proposed to explain this trend. Objective This study tested the efficacy and safety of oral administration of the bacterial lysate OM-85 (Broncho-Vaxom®, Broncho-Munal®, Ommunal®, Paxoral®, Vaxoral®), in the treatment of established AD in children. Methods Children aged 6 months to 7 years, with confirmed AD diagnosis, were randomized in a double-blind, placebo-controlled trial to receive, in addition to conventional treatment with emollients and topical corticosteroids, 3.5mg of the bacterial extract OM-85 or placebo daily for 9 months. The primary end-point was the difference between groups in the occurrence of new flares (NF) during the study period, evaluated by Hazard Ratio (HR) derived from conditional Cox proportional hazard regression models accounting for repeated events. Results Among the 179 randomized children, 170 were analysed, 88 in the OM-85 and 82 in the placebo group. As expected most children in both treatment groups experienced at least 1 NF during the study period (75 (85%) patients in the OM-85 group and 72 (88%) in the placebo group). Patients treated with OM-85 as adjuvant therapy had significantly fewer and delayed NFs (HR of repeated flares = 0.80; 95% confidence interval (CI): 0.67–0.96), also when potential confounding factors, as family history of atopy and corticosteroids use, were taken into account (HR = 0.82; 95% CI: 0.69–0.98). No major side effect was reported, with comparable and good tolerability for OM-85 and placebo. Conclusions Results show an adjuvant therapeutic effect of a well standardized bacterial lysate OM-85 on established AD.
Collapse
|
36
|
Huang MT, Chen YL, Lien CI, Liu WL, Hsu LC, Yagita H, Chiang BL. Notch Ligand DLL4 Alleviates Allergic Airway Inflammation via Induction of a Homeostatic Regulatory Pathway. Sci Rep 2017; 7:43535. [PMID: 28262821 PMCID: PMC5337933 DOI: 10.1038/srep43535] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/27/2017] [Indexed: 02/08/2023] Open
Abstract
Notch is a pleiotropic signaling family that has been implicated in pathogenesis of allergic airway diseases; however, the distinct function of individual Notch ligands remains elusive. We investigated whether Notch ligands, Jagged1 and DLL4, exert differential effects in OVA-induced allergic asthma. We found that whilst Jagged1 inhibition mitigated Th2-dominated airway inflammation, blockage of DLL4 aggravated the Th2-mediated asthma phenotypes. Additionally, Jagged1 signaling blockage enhanced IL-17 production and neutrophilic airway infiltration. In vitro, exogenous Jagged1 induced Th2-skewed responses, whereas augmented DLL4 signaling displayed a dual role by promoting expansion of both Tregs and Th17. In vivo, DLL4 blockage impaired Treg differentiation which plausibly resulted in exaggerated asthma phenotypes. On the contrary, administration of DLL4-expressing antigen-presenting cells promoted endogenous Treg expansion and ameliorated the allergic responses. Therefore, whilst Jagged1 induces Th2-skewed inflammation, DLL4 elicits an essential self-regulatory mechanism via Treg-mediated pathway that counterbalances Jagged1-induced Th2 responses and facilitates resolution of the airway inflammation to restore homeostasis. These findings uncover a disparate function of Jagged1 and DLL4 in allergic airway diseases, hinting feasibility of Notch ligand-specific targeting in therapy of allergic airway diseases.
Collapse
Affiliation(s)
- Miao-Tzu Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, 100, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, 100, Taiwan
- Graduate Institute of Clinical Medicine, School of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Yi-Lien Chen
- Graduate Institute of Clinical Medicine, School of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Chia-I Lien
- Graduate Institute of Molecular Medicine, School of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Wei-Liang Liu
- Graduate Institute of Clinical Medicine, School of Medicine, National Taiwan University, Taipei, 100, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Li-Chung Hsu
- Graduate Institute of Molecular Medicine, School of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Bor-Luen Chiang
- Department of Medical Research, National Taiwan University Hospital, Taipei, 100, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, 100, Taiwan
- Graduate Institute of Clinical Medicine, School of Medicine, National Taiwan University, Taipei, 100, Taiwan
| |
Collapse
|
37
|
Lynch JP, Sikder MAA, Curren BF, Werder RB, Simpson J, Cuív PÓ, Dennis PG, Everard ML, Phipps S. The Influence of the Microbiome on Early-Life Severe Viral Lower Respiratory Infections and Asthma-Food for Thought? Front Immunol 2017; 8:156. [PMID: 28261214 PMCID: PMC5311067 DOI: 10.3389/fimmu.2017.00156] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/30/2017] [Indexed: 12/24/2022] Open
Abstract
Severe viral lower respiratory infections are a major cause of infant morbidity. In developing countries, respiratory syncytial virus (RSV)-bronchiolitis induces significant mortality, whereas in developed nations the disease represents a major risk factor for subsequent asthma. Susceptibility to severe RSV-bronchiolitis is governed by gene-environmental interactions that affect the host response to RSV infection. Emerging evidence suggests that the excessive inflammatory response and ensuing immunopathology, typically as a consequence of insufficient immunoregulation, leads to long-term changes in immune cells and structural cells that render the host susceptible to subsequent environmental incursions. Thus, the initial host response to RSV may represent a tipping point in the balance between long-term respiratory health or chronic disease (e.g., asthma). The composition and diversity of the microbiota, which in humans stabilizes in the first year of life, critically affects the development and function of the immune system. Hence, perturbations to the maternal and/or infant microbiota are likely to have a profound impact on the host response to RSV and susceptibility to childhood asthma. Here, we review recent insights describing the effects of the microbiota on immune system homeostasis and respiratory disease and discuss the environmental factors that promote microbial dysbiosis in infancy. Ultimately, this knowledge will be harnessed for the prevention and treatment of severe viral bronchiolitis as a strategy to prevent the onset and development of asthma.
Collapse
Affiliation(s)
- Jason P. Lynch
- Laboratory of Respiratory Mucosal Immunity, School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Md. Al Amin Sikder
- Laboratory of Respiratory Mucosal Immunity, School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Bodie F. Curren
- Laboratory of Respiratory Mucosal Immunity, School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Rhiannon B. Werder
- Laboratory of Respiratory Mucosal Immunity, School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Jennifer Simpson
- Laboratory of Respiratory Mucosal Immunity, School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Páraic Ó Cuív
- Translational Research Institute, The University of Queensland Diamantina Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Paul G. Dennis
- The School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Mark L. Everard
- School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia
| | - Simon Phipps
- Laboratory of Respiratory Mucosal Immunity, School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
38
|
The infant gut bacterial microbiota and risk of pediatric asthma and allergic diseases. Transl Res 2017; 179:60-70. [PMID: 27469270 PMCID: PMC5555614 DOI: 10.1016/j.trsl.2016.06.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/26/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023]
Abstract
Among the many areas being revolutionized by the recent introduction of culture-independent microbial identification techniques is investigation of the relationship between close contact with large animals, antibiotics, breast feeding, mode of birth, and other exposures during infancy as related to a reduced risk of asthma and allergic disease. These exposures were originally clustered under the "Hygiene Hypothesis" which has evolved into the "Microbiota Hypothesis". This review begins by summarizing epidemiologic studies suggesting that the common feature of these allergy risk-related exposures is their influence on the founding and early development of a child's gut microbiota. Next, studies using culture-independent techniques are presented showing that children who have experienced the exposures of interest have altered gut microbiota. Finally, selected mouse and human studies are presented which begin to corroborate the protective exposures identified in epidemiologic studies by elucidating mechanisms through which microbes can alter immune development and function. These microbially driven immune alterations demonstrate that microbial exposures in many cases could alter the risk of subsequent allergic disease and asthma. Hopefully, a better understanding of how microbes influence allergic disease will lead to safe and effective methods for reducing the prevalence of all forms of allergic disease.
Collapse
|
39
|
Rodrigues A, Gualdi LP, de Souza RG, Vargas MHM, Nuñez NK, da Cunha AA, Jones MH, Pinto LA, Stein RT, Pitrez PM. Bacterial extract (OM-85) with human-equivalent doses does not inhibit the development of asthma in a murine model. Allergol Immunopathol (Madr) 2016; 44:504-511. [PMID: 27707587 DOI: 10.1016/j.aller.2016.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 03/29/2016] [Accepted: 04/27/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND OM-85 is an immunostimulant bacterial lysate, which has been proven effective in reducing the number of lower airways infections. We investigated the efficacy of the bacterial lysate OM-85 in the primary prevention of a murine model of asthma. METHODS In the first phase of our study the animals received doses of 0.5μg, 5μg and 50μg of OM-85 through gavage for five days (days -10 to -6 of the protocol), 10 days prior to starting the sensitisation with ovalbumin (OVA), in order to evaluate the results of dose-response protocols. A single dose (5μg) was then chosen in order to verify in detail the effect of OM-85 on the pulmonary allergic response. Total/differential cells count and cytokine levels (IL-4, IL-5, IL-13 and IFN-γ) from bronchoalveolar lavage fluid (BALF), OVA-specific IgE levels from serum, lung function and lung histopathological analysis were evaluated. RESULTS OM-85 did not reduce pulmonary eosinophilic response, regardless of the dose used. In the phase protocol using 5μg/animal of OM-85, no difference was shown among the groups studied, including total cell and eosinophil counts in BALF, serum OVA-specific IgE, lung histopathologic findings and lung resistance. However, OM-85 decreased IL-5 and IL-13 levels in BALF. CONCLUSIONS OM-85, administered in early life in mice in human-equivalent doses, does not inhibit the development of allergic pulmonary response in mice.
Collapse
Affiliation(s)
- A Rodrigues
- Laboratory of Pediatric Respirology, Infant Center, Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - L P Gualdi
- Laboratory of Pediatric Respirology, Infant Center, Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - R G de Souza
- Laboratory of Pediatric Respirology, Infant Center, Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - M H M Vargas
- Laboratory of Pediatric Respirology, Infant Center, Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - N K Nuñez
- Laboratory of Pediatric Respirology, Infant Center, Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - A A da Cunha
- Laboratory of Pediatric Respirology, Infant Center, Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.
| | - M H Jones
- Laboratory of Respiratory Physiology, Infant Center, Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - L A Pinto
- Laboratory of Pediatric Respirology, Infant Center, Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - R T Stein
- Laboratory of Pediatric Respirology, Infant Center, Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - P M Pitrez
- Laboratory of Pediatric Respirology, Infant Center, Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
40
|
Langhendries JP, Allegaert K, Van Den Anker J, Veyckemans F, Smets F. Possible effects of repeated exposure to ibuprofen and acetaminophen on the intestinal immune response in young infants. Med Hypotheses 2016; 87:90-6. [DOI: 10.1016/j.mehy.2015.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/25/2015] [Accepted: 11/17/2015] [Indexed: 12/29/2022]
|
41
|
Navarro S, Lazzari A, Kanda A, Fleury S, Dombrowicz D, Glaichenhaus N, Julia V. Bystander immunotherapy as a strategy to control allergen-driven airway inflammation. Mucosal Immunol 2015; 8:841-51. [PMID: 25425267 PMCID: PMC5410219 DOI: 10.1038/mi.2014.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 10/16/2014] [Indexed: 02/04/2023]
Abstract
Allergic asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness (AHR), lung infiltration of Th2 cells, and high levels of IgE. To date, allergen-specific immunotherapy (SIT) is the only treatment that effectively alleviates clinical symptoms and has a long-term effect after termination. Unfortunately, SIT is unsuitable for plurisensitized patients, and highly immunogenic allergens cannot be used. To overcome these hurdles, we sought to induce regulatory CD4(+) T cells (Treg) specific to an exogenous antigen that could be later activated as needed in vivo to control allergic responses. We have established an experimental approach in which mice tolerized to ovalbumin (OVA) were sensitized to the Leishmania homolog of receptors for activated c kinase (LACK) antigen, and subsequently challenged with aerosols of LACK alone or LACK and OVA together. Upon OVA administration, AHR and allergic airway responses were strongly reduced. OVA-induced suppression was mediated by CD25(+) Treg, required CTLA-4 and ICOS signaling and resulted in decreased numbers of migrating airway dendritic cells leading to a strong impairment in the proliferation of allergen-specific Th2 cells. Therefore, inducing Treg specific to a therapeutic antigen that could be further activated in vivo may represent a safe and novel curative approach for allergic asthma.
Collapse
Affiliation(s)
- Séverine Navarro
- Immunologie des muqueuses et inflammation
INSERMUniversité Nice Sophia AntipolisIPMC, 660 route des lucioles 06560 Valbonne,IPMC, Institut de pharmacologie moléculaire et cellulaire
CNRSUniversité Nice Sophia AntipolisCNRS-IPMC 660 Route des lucioles 06560 Valbonne
| | - Anne Lazzari
- Immunologie des muqueuses et inflammation
INSERMUniversité Nice Sophia AntipolisIPMC, 660 route des lucioles 06560 Valbonne,IPMC, Institut de pharmacologie moléculaire et cellulaire
CNRSUniversité Nice Sophia AntipolisCNRS-IPMC 660 Route des lucioles 06560 Valbonne
| | - Akira Kanda
- Récepteurs Nucléaires, Maladies Cardiovasculaires et Diabète EGID FR 3508
INSERMInstitut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex
| | - Sébastien Fleury
- Récepteurs Nucléaires, Maladies Cardiovasculaires et Diabète EGID FR 3508
INSERMInstitut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex
| | - David Dombrowicz
- Récepteurs Nucléaires, Maladies Cardiovasculaires et Diabète EGID FR 3508
INSERMInstitut Pasteur de LilleUniversité Lille II - Droit et santé1 rue du Prof Calmette 59019 Lille Cedex
| | - Nicolas Glaichenhaus
- Immunologie des muqueuses et inflammation
INSERMUniversité Nice Sophia AntipolisIPMC, 660 route des lucioles 06560 Valbonne,IPMC, Institut de pharmacologie moléculaire et cellulaire
CNRSUniversité Nice Sophia AntipolisCNRS-IPMC 660 Route des lucioles 06560 Valbonne
| | - Valérie Julia
- Immunologie des muqueuses et inflammation
INSERMUniversité Nice Sophia AntipolisIPMC, 660 route des lucioles 06560 Valbonne,IPMC, Institut de pharmacologie moléculaire et cellulaire
CNRSUniversité Nice Sophia AntipolisCNRS-IPMC 660 Route des lucioles 06560 Valbonne,* Correspondence should be addressed to Valérie Julia
| |
Collapse
|
42
|
Khamechian T, Movahedian AH, Ebrahimi Eskandari G, Heidarzadeh Arani M, Mohammadi A. Evaluation of the Correlation Between Childhood Asthma and Helicobacter pylori in Kashan. Jundishapur J Microbiol 2015; 8:e17842. [PMID: 26310565 PMCID: PMC4545572 DOI: 10.5812/jjm.8(6)2015.17842] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 06/14/2014] [Accepted: 06/26/2014] [Indexed: 12/30/2022] Open
Abstract
Background: Asthma is a chronic inflammatory air-way disease with increasing prevalence rate during the recent years. There are studies about the relationship between asthma and infectious diseases, including the association between asthma and Helicobacter pylori. According to the latest studies, there is an epidemiological correlation between asthma prevalence and prevalence of H. pylori. Objectives: The aim of this research was to study the correlation between H. pylori and asthma by biopsy in five to eighteen year-old children who had undergone endoscopy at Shahid Beheshti Hospital. Patients and Methods: Three hundred children (5 to 18 years old) undergoing endoscopy owing to gastro-intestinal problems at Shahid Beheshti Hospital were observed for childhood asthma using the Gina 2010 questionnaire which included 24 questions with “yes” and “no” answers to identify asthmatic patients with five positive answers. Next, the patients were referred to an allergy and asthma specialist for clinical examinations, spirometry and post bronchodilator test (Post BD). Results: Among 138 H. pylori positive patients, eight cases (5.8 %) were asthmatic while of the 162 H. pylori negative patients 28 (17.3%) were asthmatic. This difference was statistically significant (P Value = 0.002). The correlation between H. pylori and asthma was studied after controlling the confounding variables including, gender, age and family history. The results obtained for the above-mentioned variables were significant (P Values of 0.004, 0.005 and 0.002, and Odd-Ratio Mantel Haenszel (ORMH) of 3.38, 3.24 and 4.06, respectively). Conclusions: Our findings showed that there is an inverse correlation between H. pylori and asthma. Performing more studies with larger sample sizes is necessary to confirm these results.
Collapse
Affiliation(s)
- Tahere Khamechian
- Anatomical Sciences Research Centre, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, IR Iran
| | - Amir Hossein Movahedian
- Pediatric Department, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
| | | | - Marzieh Heidarzadeh Arani
- Pediatric Department, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, IR Iran
- Corresponding author: Marzieh Heidarzadeh Arani, Pediatric Department, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, IR Iran. Tel: +98-9122146635, Fax: +98-3615558900, E-mail:
| | - Abouzar Mohammadi
- Surgical Technology Department, Faculty of Nursing and Midwifery, Kashan University of Medical Sciences, Kashan, IR Iran
| |
Collapse
|
43
|
Evaluation of the Correlation Between Childhood Asthma and Helicobacter pylori in Kashan. Jundishapur J Microbiol 2015. [DOI: 10.5812/jjm.8(5)2015.17842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
44
|
Han L, Zheng CP, Sun YQ, Xu G, Wen W, Fu QL. A bacterial extract of OM-85 Broncho-Vaxom prevents allergic rhinitis in mice. Am J Rhinol Allergy 2015; 28:110-6. [PMID: 24717947 DOI: 10.2500/ajra.2013.27.4021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND According to the hygiene hypothesis, bacterial infections during early life contribute to a reduced incidence of asthma in animals. However, the effects of microbial products at a safe dose and within a rational time course on the prevention of allergic rhinitis (AR) have been inconclusive. This study investigated the immunomodulatory effects of oral administration of a bacterial extract, OM-85 Broncho-Vaxom (BV), with a low dose and general time course, which is currently used for respiratory infections in humans, on AR inflammation in mice. METHODS We developed a mouse model of ovalbumin (OVA)-induced AR allergic inflammation in the nose mucosa of mice. Low doses of OM-85 BV were orally administered for 3 months (long term) before sensitization. We evaluated nasal symptoms, pathology in the nose, inflammatory cells, and the levels of T helper 1 (Th1)/Th2 cytokines in the nasal lavage fluids, and the serum levels of specific IgE and IgG1. We also observed enhanced effects of OM-85 BV with 1 month (short term) of treatment. RESULTS We found that long-term pretreatment with OM-85 BV protected the mice from the majority of allergy-specific symptoms; specifically, OM-85 BV suppressed nasal symptoms, inhibited eosinophil infiltration in the nose, inhibited inflammatory infiltrates and the Th2 response by reducing cytokines (IL-4, IL-5, or IL-13) in the nasal lavage fluids, and reduced IgE and IgG1 levels. Furthermore, short-term treatment with OM-85 BV decreased the levels of Th2 cytokines and IgE. CONCLUSION Taken together, our data suggested that OM-85 BV is a low-cost alternative candidate to prevent AR with simple oral administration.
Collapse
Affiliation(s)
- Ling Han
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | | | | | | | | |
Collapse
|
45
|
Pasquali C, Salami O, Taneja M, Gollwitzer ES, Trompette A, Pattaroni C, Yadava K, Bauer J, Marsland BJ. Enhanced Mucosal Antibody Production and Protection against Respiratory Infections Following an Orally Administered Bacterial Extract. Front Med (Lausanne) 2014; 1:41. [PMID: 25593914 PMCID: PMC4292070 DOI: 10.3389/fmed.2014.00041] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/12/2014] [Indexed: 01/19/2023] Open
Abstract
Secondary bacterial infections following influenza infection are a pressing problem facing respiratory medicine. Although antibiotic treatment has been highly successful over recent decades, fatalities due to secondary bacterial infections remain one of the leading causes of death associated with influenza. We have assessed whether administration of a bacterial extract alone is sufficient to potentiate immune responses and protect against primary infection with influenza, and secondary infections with either Streptococcus pneumoniae or Klebsiella pneumoniae in mice. We show that oral administration with the bacterial extract, OM-85, leads to a maturation of dendritic cells and B-cells characterized by increases in MHC II, CD86, and CD40, and a reduction in ICOSL. Improved immune responsiveness against influenza virus reduced the threshold of susceptibility to secondary bacterial infections, and thus protected the mice. The protection was associated with enhanced polyclonal B-cell activation and release of antibodies that were effective at neutralizing the virus. Taken together, these data show that oral administration of bacterial extracts provides sufficient mucosal immune stimulation to protect mice against a respiratory tract viral infection and associated sequelae.
Collapse
Affiliation(s)
| | - Olawale Salami
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV , Lausanne , Switzerland
| | - Manisha Taneja
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV , Lausanne , Switzerland
| | - Eva S Gollwitzer
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV , Lausanne , Switzerland
| | - Aurelien Trompette
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV , Lausanne , Switzerland
| | - Céline Pattaroni
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV , Lausanne , Switzerland
| | - Koshika Yadava
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV , Lausanne , Switzerland
| | | | - Benjamin J Marsland
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV , Lausanne , Switzerland
| |
Collapse
|
46
|
Early-life viral infections and the development of asthma: a target for asthma prevention? Curr Opin Allergy Clin Immunol 2014; 14:131-6. [PMID: 24569522 DOI: 10.1097/aci.0000000000000047] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW To discuss the recent insights into the relationships between viral respiratory infections and asthma inception in the context of a long-term goal of moving toward prevention strategies for childhood asthma. RECENT FINDINGS There is strong evidence for respiratory syncytial virus and human rhinovirus wheezing illnesses as important risk factors for asthma inception. The mechanisms underlying these relationships have been an intense area of study. Novel approaches for the prevention of virus infections and/or lessening the severity of associated illnesses are at various stages of development, and are important potential tools in efforts aimed at primary and secondary prevention of asthma. SUMMARY Viral respiratory infections in early life are a major source of morbidity and are critical in the development of asthma. Mechanisms by which these infections lead to asthma inception in susceptible individuals are emerging. Further, there are promising potential interventions currently available that should be tested in clinical trials. The goal of prevention of disease inception is clearly on the horizon.
Collapse
|
47
|
Raedler D, Schaub B. Immune mechanisms and development of childhood asthma. THE LANCET RESPIRATORY MEDICINE 2014; 2:647-56. [PMID: 25008972 DOI: 10.1016/s2213-2600(14)70129-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Early life influences are crucial for the development of distinct childhood asthma phenotypes, which are currently included under the term asthma syndrome. Improved characterisation of different childhood asthma phenotypes will help to elucidate specific underlying immune mechanisms--namely, endotypes. Besides genetics, epigenetics and environmental factors have an effect on innate and adaptive immune regulatory networks. Crucial determining factors for complex immune regulation and barrier function include family history of atopy, respiratory infections, microbiome, and nutrition. Recent diagnostic approaches, including biomarkers, might offer a unique opportunity to improve definitions of asthma sub-phenotypes, prediction of outcome, and treatment options, by referring to the underlying pathophysiology. For prevention and patient-individualised medicine, a multifactorial approach incorporating deep phenotyping and mathematical models for analysis to extend our present knowledge is needed.
Collapse
Affiliation(s)
- Diana Raedler
- University Children's Hospital Munich, Department of Allergy and Pulmonary, Ludwig-Maximilians University of Munich, Munich, Germany; German Centre for Lung Research, Comprehensive Pneumology Centre, Munich, Germany
| | - Bianca Schaub
- University Children's Hospital Munich, Department of Allergy and Pulmonary, Ludwig-Maximilians University of Munich, Munich, Germany; German Centre for Lung Research, Comprehensive Pneumology Centre, Munich, Germany.
| |
Collapse
|
48
|
Holt PG, Strickland DH, Hales BJ, Sly PD. Defective respiratory tract immune surveillance in asthma: a primary causal factor in disease onset and progression. Chest 2014; 145:370-378. [PMID: 24493508 DOI: 10.1378/chest.13-1341] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The relative importance of respiratory viral infections vs inhalant allergy in asthma pathogenesis is the subject of ongoing debate. Emerging data from long-term prospective birth cohorts are bringing increasing clarity to this issue, in particular through the demonstration that while both of these factors can contribute independently to asthma initiation and progression, their effects are strongest when they act in synergy to drive cycles of episodic airways inflammation. An important question is whether susceptibility to infection and allergic sensitization in children with asthma arises from common or shared defect(s). We argue here that susceptibility to recurrent respiratory viral infections, failure to generate protective immunologic tolerance to aeroallergens, and ultimately the synergistic interactions between inflammatory pathways triggered by concomitant responses to these agents all result primarily from functional deficiencies within the cells responsible for local surveillance for antigens impinging on airway surfaces: the respiratory mucosal dendritic cell (DC) network. The effects of these defects in DCs from children wtih asthma are accentuated by parallel attenuation of innate immune functions in adjacent airway epithelial cells that reduce their resistance to the upper respiratory viral infections, which are the harbingers of subsequent inflammatory events at asthma lesion site(s) in the lower airways. An important common factor underpinning the innate immune functions of these unrelated cell types is use of an overlapping series of pattern recognition receptors (exemplified by the Toll-like receptor family), and variations in the highly polymorphic genes encoding these receptors and related molecules in downstream signaling pathways appear likely contributors to these shared defects. Findings implicating recurrent respiratory infections in adult-onset asthma, much of which is nonatopic, suggest a similar role for deficient immune surveillance in this phenotype of the disease.
Collapse
Affiliation(s)
- Patrick G Holt
- Telethon Institute for Child Health Research and Centre for Child Health Research, The University of Western Australia, Perth, WA; QCMRI-Queensland Children's Medical Research Institute and University of Queensland, Brisbane, QLD, Australia.
| | - Deborah H Strickland
- Telethon Institute for Child Health Research and Centre for Child Health Research, The University of Western Australia, Perth, WA
| | - Belinda J Hales
- Telethon Institute for Child Health Research and Centre for Child Health Research, The University of Western Australia, Perth, WA
| | - Peter D Sly
- Telethon Institute for Child Health Research and Centre for Child Health Research, The University of Western Australia, Perth, WA; QCMRI-Queensland Children's Medical Research Institute and University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
49
|
Fu R, Li J, Zhong H, Yu D, Zeng X, Deng M, Sun Y, Wen W, Li H. Broncho-Vaxom attenuates allergic airway inflammation by restoring GSK3β-related T regulatory cell insufficiency. PLoS One 2014; 9:e92912. [PMID: 24667347 PMCID: PMC3965496 DOI: 10.1371/journal.pone.0092912] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/27/2014] [Indexed: 12/22/2022] Open
Abstract
Background Oral administration of bacterial extracts (eg, Broncho-Vaxom (BV)) has been proposed to attenuate asthma through modulating Treg cells. However, the underlying mechanism has not been fully characterized. This study sought to assess the effects of oral administration of BV on GSK-3β expression and Treg cells in ovalbumin (OVA)-induced asthmatic mice models. Method Asthmatic mice models were established with OVA challenge and treated with oral administration of BV. Next, infiltration of inflammatory cells including eosinophil and neutrophils, mucous metaplasia, levels of Th1/Th2/Treg-typed cytokines and expression of GSK3β and Foxp3 were examined in asthmatic mice models by histological analysis, Bio-Plex and western blot, respectively. Moreover, the frequencies of Treg cells were evaluated in cultured splenocytes by flow cytometry in the presence of BV or GSK3β siRNA interference. Results We found significant decrease of infiltrated inflammatory cells in bronchoalveolar lavage fluid (BALF) in asthmatic mice models after oral administration of BV. Oral administration of BV was shown to significantly suppress mucus metaplasia, Th2-typed cytokine levels and GSK3β expression while increasing Foxp3 production in asthmatic mice models. Moreover, BV significantly enhanced GSK3β-related expansion of Treg cells in cultured spleen cells in vitro. Conclusion Our findings provide evidence that oral administration of BV is capable of attenuating airway inflammation in asthmatic mice models, which may be associated with GSK3β-related expansion of Treg cells.
Collapse
Affiliation(s)
- Ran Fu
- Allergy and Cancer Center, Otorhinolarygology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian Li
- Allergy and Cancer Center, Otorhinolarygology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hua Zhong
- Allergy and Cancer Center, Otorhinolarygology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dehong Yu
- Department of Otolaryngology, Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xianping Zeng
- Allergy and Cancer Center, Otorhinolarygology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mengxia Deng
- Allergy and Cancer Center, Otorhinolarygology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yueqi Sun
- Allergy and Cancer Center, Otorhinolarygology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weiping Wen
- Allergy and Cancer Center, Otorhinolarygology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- * E-mail: (WW); (HL)
| | - Huabin Li
- Allergy and Cancer Center, Otorhinolarygology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Otolaryngology, Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- * E-mail: (WW); (HL)
| |
Collapse
|
50
|
Martinez FD. The human microbiome. Early life determinant of health outcomes. Ann Am Thorac Soc 2014; 11 Suppl 1:S7-12. [PMID: 24437411 PMCID: PMC3972972 DOI: 10.1513/annalsats.201306-186mg] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/16/2013] [Indexed: 01/15/2023] Open
Abstract
The development of new technologies to isolate and identify microbial genomes has markedly increased our understanding of the role of microbiomes in health and disease. The idea, first proposed as part of the hygiene hypothesis, that environmental microbes influence the developmental trajectories of the immune system in early life, has now been considerably extended and refined. The abundant microbiota present in mucosal surfaces, especially the gut, is actively selected by the host through complex receptor systems that respond differentially depending on the molecular patterns presented to mucosal cells. Germ-free mice are more likely to develop allergic airway inflammation and show alterations in normal motor control and anxiety. These effects can be reversed by neonatal microbial recolonization but remain unchanged if recolonization occurs in adults. What emerges from these recent studies is the discovery of a complex, major early environmental determinant of lifetime human phenotypes. To change the natural course of asthma, obesity, and other chronic inflammatory conditions, active manipulation of the extensive bacterial, phage, and fungal metagenomes present in mucosal surfaces may be required, specifically during the developing years. Domesticating the human microbiome and adapting it to our health needs may be a challenge akin to, but far more complex than, the one faced by humanity when a few dozen species of plants and animals were domesticated during the transition between hunter-gatherer and sedentary societies after the end of the Pleistocene era.
Collapse
Affiliation(s)
- Fernando D. Martinez
- Arizona Respiratory Center and BIO5 Institute, The University of Arizona, Tucson, Arizona
| |
Collapse
|