1
|
Lin YC, Pan YJ, Chang SM, Yang FY. Transcranial ultrasound stimulation ameliorates dextran sulphate sodium-induced colitis and behavioural disorders by suppressing the inflammatory response in the brain. Brain Commun 2025; 7:fcaf119. [PMID: 40170911 PMCID: PMC11957916 DOI: 10.1093/braincomms/fcaf119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/18/2025] [Accepted: 03/20/2025] [Indexed: 04/03/2025] Open
Abstract
Inflammatory bowel disease (IBD) is associated with neuroinflammation, which may contribute to an increased risk of neurodegenerative disorders. This research investigated the potential of transcranial low-intensity pulsed ultrasound (LIPUS) to mitigate colonic inflammation induced by dextran sulphate sodium (DSS), focusing on its effects via the brain-gut axis. Colitis and neuroinflammation were induced in mice by administering 3% (wt/vol) DSS for 7 days. Subsequently, the brain was subjected to LIPUS stimulation at intensities of 0.5 or 1.0 W/cm² for 3 days. Biological samples were analyzed using real-time polymerase chain reaction, western blot, enzyme-linked immunosorbent assay, and histological observation. Behavioural dysfunctions were assessed using the open field test, novel object recognition task, and Y-maze test. The alteration in gut microbiota composition was assessed through 16S rRNA sequencing. LIPUS therapy notably alleviated colitis symptoms and suppressed inflammation in both the colon and hippocampus of DSS-exposed mice. Compared with the group treated only with DSS, the LIPUS treatment showed decreased crypt destruction and partial epithelial barrier preservation. Moreover, LIPUS preserved intestinal barrier function by upregulating the levels of occludin and zonula occludens, decreasing the levels of lipopolysaccharide (LPS) and LPS-binding protein in serum, and ameliorating behavioural disorders. Further analysis indicated that LIPUS did not significantly transform the composition of the intestinal microbiota, but the microbial community showed some differences from the community in the DSS-only treatment group. This study demonstrates that transcranial LIPUS stimulation could be a novel therapeutic strategy for IBD and neuroinflammation via regulation of inflammatory interactions across brain-gut axis.
Collapse
Affiliation(s)
- Yu-Chen Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yi-Ju Pan
- Department of Psychiatry, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan City 320315, Taiwan
| | - Shu-Ming Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Feng-Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| |
Collapse
|
2
|
Amlashi FI, Besharat S, Jahanshahi M, Shirzad-Aski H, Torshizi FN. Colitis can reduce the cingulate cortex neuronal density in rats. BMC Gastroenterol 2025; 25:171. [PMID: 40082771 PMCID: PMC11907912 DOI: 10.1186/s12876-025-03745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND AND AIM Hyperalgesia and hypersensitivity in patients with Inflammatory Bowel Disease (IBD) can be related to central nervous system (CNS) changes, particularly in the pain pathways. The objective of this study was to examine the neuronal density of the cingulate cortex area (CC) and amygdala in an animal model of colitis. MATERIALS AND METHODS In this experiment, 13 male Wistar rats were subjected to study. Colitis was induced in the rats by transrectally administering 1 cc of acetic acid 3% under sedation with xylazine 10% (5 mg/kg). After 14 days of colitis, the rats were euthanized under high doses of anesthesia with ketamine (50 mg/kg), xylazine (10 mg/kg), and diazepam (2.5 mg/kg). Their brains were then removed surgically. Six-micrometer-thick brain slices were stained with cresyl violet, and the neuronal density of the amygdala, area 1 of the cingulate cortex area (CC1), and area 2 of the cingulate cortex area (CC2) was assessed via microscopic imaging. RESULTS The mean ± standard deviation (SD) of the neuronal density in CC1 was significantly decreased in rats with colitis compared to the control group in both the right CC1 (43.53 ± 9.63 vs. 62.7 ± 11.89; p-value ˂ 0.001), and left CC1 (41.19 ± 9.05 and 63.1 ± 7.44; p-value ˂ 0.001). Additionally, the neuronal density of CC2 in the colitis group was found to be significantly lower than that of the controls in both the right CC2 (57.8 ± 13.23 vs. 87.95 ± 8.76; p-value ˂ 0.001), and left CC2 (55.42 ± 11.3 vs. 98 ± 8.99; p-value ˂ 0.001). Furthermore, the amygdala had a lower neuronal density in both hemispheres in rats with colitis in comparison to the controls bilaterally: right hemisphere (24.51 ± 5.49 and 36.3 ± 7.44; p-value = 0.360), and left hemisphere (24.52 ± 5.53 VS. 35.25 ± 5.6; P-value = 0.869). CONCLUSION This study showed that colitis can reduce the neuronal density within cortical areas and amygdala of both hemispheres. Considering the cingulate cortex's role in suppressing pain perception, any harm inflicted upon this region of the brain can has the ability to impact the cognitive and sensory aspects of pain.
Collapse
Affiliation(s)
- Fazel Isapanah Amlashi
- Golestan Research Center of Gastroenterology and Hepatology, GolestanUniversity of Medical Sciences, Gorgan, Iran
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sima Besharat
- Golestan Research Center of Gastroenterology and Hepatology, GolestanUniversity of Medical Sciences, Gorgan, Iran
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Hesamaddin Shirzad-Aski
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, 49178-67439, Iran.
| | - Fatemeh Nassaj Torshizi
- Clinical Research Development Unit (CRDU), Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
3
|
Gurow K, Joshi DC, Gwasikoti J, Joshi N. Gut Microbial Control of Neurotransmitters and Their Relation to Neurological Disorders: A Comprehensive Review. Horm Metab Res 2025. [PMID: 40073909 DOI: 10.1055/a-2536-1421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The study explores the vital role of gut microbiota in regulating neurotransmitters and its subsequent effects on brain function and mental health. It aims to unravel the mechanisms by which microbial metabolites influence neurotransmitter synthesis and signaling. The ultimate goal is to identify potential therapeutic strategies targeting gut microbiota for the management and treatment of neurological disorders, such as depression, autism spectrum disorder (ASD), anxiety, and Parkinson's disease. The review synthesizes current research on the gut-brain axis, focusing on the influence of gut microbial metabolites on key neurotransmitters, including dopamine, serotonin, and gamma-aminobutyric acid (GABA). It incorporates a multidisciplinary approach, linking microbiology, neurobiology, and clinical research. Each section presents an in-depth review of scientific studies, clinical trials, and emerging therapeutic strategies. The findings highlight the intricate interplay between gut microbiota and the central nervous system. Gut microbes significantly impact the synthesis and signaling of crucial neurotransmitters, which play a pivotal role in neurological health. Evidence supports the hypothesis that modulating gut microbiota can alter neurotransmitter output and alleviate symptoms associated with neurological disorders. Notable therapeutic potentials include microbiota-targeted interventions for managing depression, ASD, anxiety, and Parkinson's disease. This comprehensive analysis underscores the critical connection between gut microbiota and neurological health. By bridging gaps between microbiology, neurobiology, and clinical practice, the study opens avenues for innovative therapeutic approaches. It provides a valuable resource for researchers, clinicians, and students, emphasizing the need for continued investigation into gut microbiota's role in neurological disorders and its therapeutic potential.
Collapse
Affiliation(s)
- Kajal Gurow
- Gurukul Pharmacy College IPB-13, RIICO Industrial Area, Ranpur, Kota, Rajasthan, India
| | - Deepak Chandra Joshi
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist. Ajmer, Rajasthan, India
| | - Jyoti Gwasikoti
- Department of Pharmacy, Graphic Era Hill University, Bhimtal, India
| | - Nirmal Joshi
- Faculty of Pharmaceutical Sciences, Amrapali University, Haldwani, India
| |
Collapse
|
4
|
Gao CY, Pan YJ, Su WS, Wu CY, Chang TY, Yang FY. Abdominal ultrasound stimulation alleviates DSS-induced colitis and behavioral disorders in mice by mediating the microbiota-gut-brain axis balance. Neurotherapeutics 2025; 22:e00494. [PMID: 39580323 DOI: 10.1016/j.neurot.2024.e00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/17/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
Inflammatory bowel disease (IBD) has the potential to induce neuroinflammation, which may increase the risk of developing neurodegenerative disorders. Ultrasound stimulation to the abdomen is a potential treatment for dextran sulfate sodium (DSS)-induced acute colitis. The present study aimed to investigate whether abdominal low-intensity pulsed ultrasound (LIPUS) can alleviate DSS-induced neuroinflammation through the microbiota-gut-brain axis. Male mice were fed DSS to induce ulcerative colitis. LIPUS stimulation was then applied to the abdomen at intensities of 0.5 and 1.0 W/cm2. Mouse biological samples were analyzed, and behavior was evaluated. [18F]FEPPA PET/CT imaging was employed to track and quantify inflammation in the abdomen and brain. Changes in the gut microbiota composition were analyzed using 16S rRNA sequencing. Abdominal LIPUS significantly inhibited the DSS-induced inflammatory response, repaired destroyed crypts, and partially preserved the epithelial barrier. [18F]FEPPA accumulation in the colitis-induced neuroinflammation in the abdomen and specific brain regions significantly decreased after LIPUS treatment. LIPUS maintained intestinal integrity by increasing zonula occludens and occludin levels, reduced lipopolysaccharide-binding protein and lipopolysaccharide levels in the serum, and improved behavioral dysfunctions. Moreover, LIPUS, at an intensity of 0.5 W/cm2, reshaped the gut microbiota in colitis-induced mice by increasing the relative abundance of the Firmicutes and decreasing the relative abundance of the Bacteroidota. Our findings demonstrated that abdominal LIPUS stimulation has the potential to be a novel therapeutic strategy to improve colitis-induced behavioral disorders through microbiota-gut-brain axis signaling.
Collapse
Affiliation(s)
- Cong-Yong Gao
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ju Pan
- Department of Psychiatry, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan City, Taiwan
| | - Wei-Shen Su
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Yu Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Feng-Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
5
|
Nakashima Y, Hibi T, Urakami M, Hoshino M, Morii T, Sugawa H, Katsuta N, Tominaga Y, Takahashi H, Otomo A, Hadano S, Yasuda S, Hokamura A, Imai S, Kinoshita H. Soymilk yogurt prepared using Pediococcus pentosaceus TOKAI 759m ameliorates cognitive function through gut microbiota modulation in high-fat diet mice. Curr Res Food Sci 2025; 10:100993. [PMID: 40026903 PMCID: PMC11869912 DOI: 10.1016/j.crfs.2025.100993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/15/2025] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
Recent studies have confirmed that obesity leads to neuroinflammation and cognitive decline. This study aimed to examine whether soymilk yogurt prepared using Pediococcus pentosaceus TOKAI 759m could prevent cognitive decline and neuroinflammation progression in mice fed a high-fat diet (HFD). C57BL/6NJcl male mice were grouped according to the following dietary interventions and monitored for 15 weeks: (1) normal control diet, (2) HFD, (3) HFD with soymilk (SM), (4) HFD with soymilk yogurt (SY), and (5) HFD with bacterial cells of the starter strain (BC). The levels of inflammatory cytokines in serum and hippocampus were measured. Compared to the HFD group, the SY group scored higher in the novel object recognition test and exhibited lower levels of Interleukin-6 (IL-6) and Tumor Necrosis Factor (TNF)-α in the hippocampus. However, the SM and BC groups did not show these significant changes. Proteomic analysis of the hippocampus revealed three enriched protein clusters in the SY group: synaptic proteins, glycolysis, and mitochondrial ATP formation. Fecal samples were also collected to measure the proportion of gut microbiota using 16S rRNA analysis. Interestingly, the proportion of butyrate-producing bacteria, such as Clostridium and Akkermansia, tended to be higher in the SY group than in the HFD group. An additional in vitro study revealed that the components of SY, such as daidzein, genistein, and adenine, could decrease inflammatory cytokine levels in microglial cells. In conclusion, soymilk yogurt prepared using P. pentosaceus TOKAI 759m may modulate gut microbiota and prevent neuroinflammation, thereby leading to a possible improvement in cognitive function.
Collapse
Affiliation(s)
- Yuki Nakashima
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- JSPS Research Fellowship for Young Scientists, Tokyo, 102-0083, Japan
| | - Tomoyuki Hibi
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- Research Institute of Agriculture, Tokai University, Kumamoto, 862-8652, Japan
| | - Masafumi Urakami
- School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Maki Hoshino
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Taiki Morii
- School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Hikari Sugawa
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Nana Katsuta
- Research Institute of Agriculture, Tokai University, Kumamoto, 862-8652, Japan
| | - Yuki Tominaga
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Himeno Takahashi
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- Research Institute of Agriculture, Tokai University, Kumamoto, 862-8652, Japan
| | - Asako Otomo
- Molecular Neuropathobiology Laboratory, Department of Physiology, Tokai University School of Medicine, Isehara, Kanagawa, 259- 1193, Japan
| | - Shinji Hadano
- Molecular Neuropathobiology Laboratory, Department of Physiology, Tokai University School of Medicine, Isehara, Kanagawa, 259- 1193, Japan
| | - Shin Yasuda
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Ayaka Hokamura
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Saki Imai
- Research Institute of Agriculture, Tokai University, Kumamoto, 862-8652, Japan
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
| | - Hideki Kinoshita
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- Research Institute of Agriculture, Tokai University, Kumamoto, 862-8652, Japan
- School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki-machi, Kamimashiki-gun, Kumamoto, Japan
- Probio Co., Ltd., 1330-1 Futa, Nishihara-mura, Aso-gun, Kumamoto, Japan
| |
Collapse
|
6
|
Wang P, Ouyang H, Bi G, Liang F, Hu S, Wu C, Jiang X, Zhou W, Li D, Zhang S, Yang X, Zhao M, Fang JH, Wang H, Jia W, Zhu ZJ, Bi H. Schisandrol B alleviates depression-like behavior in mice by regulating bile acid homeostasis in the brain-liver-gut axis via the pregnane X receptor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156340. [PMID: 39809031 DOI: 10.1016/j.phymed.2024.156340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/18/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Depression is a widely recognized neuropsychiatric disorder. Recent studies have shown a potential correlation between bile acid disorders and depression, highlighting the importance of maintaining bile acid balance for effective antidepressant treatment. Schisandrol B (SolB), a primary bioactive compound from Schisandra chinensis (Turcz.) Baill. or Schisandra sphenanthera Rehd.etWils, is pivotal in regulating bile acid homeostasis via pregnane X receptor (PXR) in cholestasis. However, the potential of SolB in alleviating depression-like symptoms, its pharmacological effects, and the underlying mechanisms remain to be fully elucidated. METHODS We confirmed the effect of SolB against depression induced by chronic restraint stress (CRS) and chronic unpredictable mild stress (CUMS) in mice. The role of SolB in bile acid homeostasis in depression was analyzed using the metabolomic. Gene analyses and 16S rRNA sequencing were employed to investigate the involvement of PXR. Experiments with Pxr-/- mice were conducted to confirm the essential role of the PXR pathway in SolB's antidepressant effects. RESULTS SolB treatment significantly increased sucrose consumption in the SPT and the locomotor activity in the OFT, while decreasing immobility time in the FST and TST in mice exposed to CRS and CUMS. Additionally, SolB treatment significantly preserved the integrity of the dendritic spine, elevated synaptic protein PSD95 levels, and augmented CREB/BDNF expression. Metabolomic and gene analyses indicated that SolB treatment significantly facilitated bile acid metabolism, promoted intestinal bile acid efflux, decreased hippocampal levels of the secondary bile acids DCA and TLCA, and upregulated expression of the PXR target proteins CYP3A11, SULT2A1, MRP2, and OATP1B1 in the liver, and MRP2 and MDR1 in hippocampus, which are integral to bile acid homeostasis. 16S rRNA sequencing revealed that SolB reduced the abundance of the bile salt hydrolase (BSH)-producing bacteria Lactobacillus johnsonii and Bacteroides fragilis and subsequently decreased the production of TLCA and DCA. Moreover, SolB failed to protect against depression induced by CRS in Pxr-null mice, suggesting that the antidepressant effect of SolB was PXR-dependent. CONCLUSIONS These results provide direct evidence of the antidepressant effect of SolB via activation of PXR to regulate bile acid homeostasis in the brain-liver-gut axis, suggesting that SolB may serve as a novel potential target for preventing and treating depression.
Collapse
Affiliation(s)
- Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Hui Ouyang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Guofang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Fengting Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shuang Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Chenghua Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaowen Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wenhong Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Dan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shuaishuai Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China; The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China
| | - Mingliang Zhao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jian-Hong Fang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Haitao Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wei Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China; The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China.
| |
Collapse
|
7
|
Iqbal H, Kim Y, Jin M, Rhee DK. Ginseng as a therapeutic target to alleviate gut and brain diseases via microbiome regulation. J Ginseng Res 2025; 49:12-21. [PMID: 39872288 PMCID: PMC11764131 DOI: 10.1016/j.jgr.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/07/2024] [Accepted: 04/25/2024] [Indexed: 01/30/2025] Open
Abstract
The human gut, which contains a diverse microbiome, plays an important role in maintaining physiological balance and preserving the immune system. The complex interplay between the central nervous system (CNS) and the gut microbiome has gained significant attention due to its profound implications for overall health, particularly for gut and brain disorders. There is emerging evidence that the gut-brain axis (GBA) represents a bidirectional communication system between the CNS and the gastrointestinal tract and plays a pivotal role in regulating many aspects of human health. Ginseng has shown potential to ameliorate conditions associated with dysbiosis, such as gut and CNS disorders by restoring microbial balance and enhancing gut barrier function. This comprehensive review provides valuable insights into the potential of ginseng as a herbal modulator of GBA as a therapeutic intervention for preventing and treating gut and neurological diseases via microbiota regulation to ultimately enhance overall health. Furthermore, we emphasize the therapeutic benefits of ginseng, its ability to enhance beneficial probiotics, such as Firmicutes, Bacteroides, Lactobacillus, Bifidobacterium, and Akkermansia while reducing pathogenic bacteria prevalence, such as Helicobacter, Clostridium, and Proteobacteria. Although the connection between ginseng regulation of microbial communities in response to the gut and neuropsychiatric disorders is lacking, additional investigations are warranted to elucidate the underlying mechanisms, optimize dosages, and explore the clinical relevance of ginseng in promoting GBA balance and ultimately overall health.
Collapse
Affiliation(s)
- Hamid Iqbal
- Department of Pharmacy, CECOS University, Hayatabad, Peshawar, Pakistan
- Department of Microbiology, College of Medicine, Gachon University, Incheon, Republic of Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Yihyo Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Mirim Jin
- Department of Microbiology, College of Medicine, Gachon University, Incheon, Republic of Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Dong-kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
8
|
Shin YJ, Ma X, Joo MK, Baek JS, Kim DH. Lactococcus lactis and Bifidobacterium bifidum alleviate postmenopausal symptoms by suppressing NF-κB signaling and microbiota dysbiosis. Sci Rep 2024; 14:31675. [PMID: 39738244 PMCID: PMC11685947 DOI: 10.1038/s41598-024-81500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
To understand the action mechanism of probiotics against postmenopausal symptoms, we examined the effects of Lactococcus lactis P32 (PL) and Bifidobacterium bifidum P45 (PB), which suppressed interleukin (IL)-6 and receptor activator of nuclear factor-κB (RANK) ligand (RNAKL) expression in Gardnerella vaginalis (Gv)-stimulated macrophages, on vaginitis, osteoporosis, and depression/cognitive impairment (DC) in mice with vaginally infected Gv, ovariectomy (Ov), or Ov/Gv (oG). Oral administration of PL or PB decreased Gv-induced DC-like behavior and tumor necrosis factor (TNF)-α, IL-6, RANK, and/or RANKL expression in the vagina, bone, hypothalamus, hippocampus, and colon, while Gv-suppressed bone osteoprotegerin and brain serotonin and brain-derived neurotrophic factor (BDNF) levels increased. They partially shifted vaginal and gut dysbiosis in Gv-infected mice to the gut microbiota composition in normal control mice. In mice with oG, oral administration of PL or PB decreased oG-induced DC-like behavior and TNF-α, IL-6, RANK, and/or RANKL expression in the vagina, bone, brain, and colon, while oG-suppressed bone osteoprotegerin and brain serotonin and BDNF levels increased. They also alleviated oG-induced vaginal and gut dysbiosis: they decreased Proteobacteria population. PL and PB (4:1) mix (PM) suppressed DC-like behavior in mice with Gv, Ov, or oG. PM also suppressed TNF-α, IL-6, RANK, and/or RANKL expression in the vagina, bone, colon, and brain. PM alleviated Gv-induced vaginal and gut dysbiosis: it decreased Proteobacteria population. These findings suggest that PL and PB, singly or together, can alleviate postmenopausal symptoms including vaginitis, colitis, osteoporosis, and DC by suppressing RANK/RANKL-mediated NF-κB activation and alleviating vaginal/gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea
| | - Xiaoyang Ma
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea
| | - Min-Kyung Joo
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea
| | - Ji-Su Baek
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, 02447, Korea.
- PBLbiolab, Inc., Seoul, 02374, Korea.
| |
Collapse
|
9
|
Shin JW, Shin YJ, Lee DY, Kim DH. Alleviation of Helicobacter pylori- or aspirin-induced gastritis and neuroinflammation in mice by Lactococcus lactis and Bifidobacterium longum. Lett Appl Microbiol 2024; 77:ovae128. [PMID: 39668634 DOI: 10.1093/lambio/ovae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024]
Abstract
Helicobacter pylori (HP) causes gastritis and peptic ulcer. Therefore, we examined whether probiotics Lactococcus lactis P135 and Bifidobacterium longum P142, which inhibited HP growth by 37.9% and 35.3%, respectively, and HP-induced IL-8 expression in KATO III cells by 68.6% and 63.1%, respectively, compared to those of normal controls, could mitigate HP-induced gastritis and psychiatric disorder in mice. Oral administration of P135 and/or P142 alleviated HP- or aspirin-induced gastritis, colitis, neuroinflammation, and depression/cognitive impairment-like behavior. They also suppressed HP infection, neutrophil infiltration, and NF-κB activation in the stomach and TNF-α expression and NF-κB activation in the colon and hippocampus. of P135 and/or P142 alleviated HP- or aspirin-induced gut dysbiosis: they decreased Lachnospiracease, Helicobacteriaceae, and Akkermansiaceae populations and increased Bacteroidaceae and Muribaculaceae populations. These findings suggest that HP growth/inflammation-inhibitory P135 and/or P142 may alleviate gut inflammation (gastritis and colitis) and neuroinflammation through the suppression of neutrophil infiltration, NF-κB activation, and HP growth, thereby leading to the attenuation of systemic inflammation and psychiatric disorder.
Collapse
Affiliation(s)
- Jung-Woo Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Dong-Yun Lee
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
10
|
Alsegiani AS, Shah ZA. Age-dependent sex differences in cofilin1 pathway (LIMK1/SSH1) and its association with AD biomarkers after chronic systemic inflammation in mice. Neurobiol Aging 2024; 144:43-55. [PMID: 39265451 DOI: 10.1016/j.neurobiolaging.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/15/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
Chronic systemic inflammation (CSI) results in neuroinflammation and neurodegeneration. Cofilin1 is a stress protein that activates microglia and induces neuroinflammation, but its role in CSI at different aging stages remains unidentified. Therefore, the study aims to identify cofilin1 and its upstream regulators LIMK1 and SSH1 after CSI in young-, middle-, and advanced-aged mice. CSI was induced by injecting the male and female mice with a sub-lethal dose of Lipopolysaccharide weekly for six weeks. The results showed that normal male mice did not show cofilin pathway dysregulation, but a significant dysregulation was observed in CSI advanced-aged mice. In females, cofilin1 dysregulation was observed in healthy and CSI advanced-aged mice, while significant cofilin1 dysregulation was observed in middle-aged mice during CSI. Furthermore, cofilin1 pathway dysregulations correlated with Alzheimer's disease (AD) biomarkers in the brain and saliva, astrocyte activation, synaptic degeneration, neurobehavioral impairments, gut-microbiota abnormalities, and circulatory inflammation. These results provide new insights into cofilin1 sex and age-dependent mechanistic differences that might help identify targets for modulating neuroinflammation and early onset of AD.
Collapse
Affiliation(s)
- Amsha S Alsegiani
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
11
|
Chen Q, Shi J, Yu G, Xie H, Yu S, Xu J, Liu J, Sun J. Gut microbiota dysbiosis in patients with Alzheimer's disease and correlation with multiple cognitive domains. Front Aging Neurosci 2024; 16:1478557. [PMID: 39665039 PMCID: PMC11632125 DOI: 10.3389/fnagi.2024.1478557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024] Open
Abstract
Background Accumulating evidence suggested that Alzheimer's disease (AD) was associated with altered gut microbiota. However, the relationships between gut microbiota and specific cognitive domains of AD patients have yet been fully elucidated. The aim of this study was to explore microbial signatures associated with global cognition and specific cognitive domains in AD patients and to determine their predictive value as biomarkers. Methods A total of 64 subjects (18 mild AD, 23 severe AD and 23 healthy control) were recruited in the study. 16 s rDNA sequencing was performed for the gut bacteria composition, followed by liquid chromatography electrospray ionization tandem mass spectrometry (LC/MS/MS) analysis of short-chain fatty acids (SCFAs). The global cognition, specific cognitive domains (abstraction, orientation, attention, language, etc.) and severity of cognitive impairment, were evaluated by Montreal Cognitive Assessment (MoCA) scores. We further identified characteristic bacteria and SCFAs, and receiver operating characteristic (ROC) curve was used to determine the predictive value. Results Our results showed that the microbiota dysbiosis index was significantly higher in the severe and mild AD patients compared to the healthy control (HC). Linear discriminant analysis (LDA) showed that 12 families and 17 genera were identified as key microbiota among three groups. The abundance of Butyricicoccus was positively associated with abstraction, and the abundance of Lachnospiraceae_UCG-004 was positively associated with attention, language, orientation in AD patients. Moreover, the levels of isobutyric acid and isovaleric acid were both significantly negatively correlated with abstraction, and level of propanoic acid was significantly positively associated with the attention. In addition, ROC models based on the characteristic bacteria Lactobacillus, Butyricicoccus and Lachnospiraceae_UCG-004 could effectively distinguished between low and high orientation in AD patients (area under curve is 0.891), and Butyricicoccus and Agathobacter or the combination of SCFAs could distinguish abstraction in AD patients (area under curve is 0.797 and 0.839 respectively). Conclusion These findings revealed the signatures gut bacteria and metabolite SCFAs of AD patients and demonstrated the correlations between theses characteristic bacteria and SCFAs and specific cognitive domains, highlighting their potential value in early detection, monitoring, and intervention strategies for AD patients.
Collapse
Affiliation(s)
- Qionglei Chen
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiayu Shi
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gaojie Yu
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huijia Xie
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shicheng Yu
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jin Xu
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Jing Sun
- Department of Geriatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Pasam T, Padhy HP, Dandekar MP. Lactobacillus Helveticus Improves Controlled Cortical Impact Injury-Generated Neurological Aberrations by Remodeling of Gut-Brain Axis Mediators. Neurochem Res 2024; 50:3. [PMID: 39541016 DOI: 10.1007/s11064-024-04251-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/15/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Considerable studies augured the potential of gut microbiota-based interventions in brain injury-associated complications. Based on our earlier study results, we envisaged the sex-specific neuroprotective effect of Lactobacillus helveticus by remodeling of gut-brain axis. In this study, we investigated the effect of L. helveticus on neurological complications in a mouse model of controlled cortical impact (CCI). Adult, male and female, C57BL/6 mice underwent CCI surgery and received L. helveticus treatment for six weeks. Sensorimotor function was evaluated via neurological severity score and rotarod test. Long-term effects on anxiety-like behavior and cognition were assessed using the elevated-zero maze (EZM) and novel object recognition test (NORT). Brain perilesional area, blood, colon, and fecal samples were collected post-CCI for molecular biology analysis. CCI-operated mice displayed significant neurological impairments at 1-, 3-, 5-, and 7-days post-injury (dpi) and exhibited altered behavior in EZM and NORT compared to sham-operated mice. However, these behavioral changes were ameliorated in mice receiving L. helveticus. GFAP, Iba-1, TNF-α, and IL-1β expressions and corticotrophin-releasing hormone (CRH) levels were elevated in the perilesional cortex of CCI-operated male/female mice. These elevated biomarkers and decreased BDNF levels in both male/female mice were modified by L. helveticus treatment. Additionally, L. helveticus treatment restored altered short-chain fatty acids (SCFAs) levels in fecal samples and improved intestinal integrity but did not affect decreased plasma levels of progesterone and testosterone in CCI mice. These results indicate that L. helveticus exerts beneficial effects in the CCI mouse model by mitigating inflammation and remodeling of gut microbiota-brain mediators.
Collapse
Affiliation(s)
- Tulasi Pasam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Hara Prasad Padhy
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
13
|
Sotelo‐Parrilla G, Ruiz‐Calero A, García‐Miranda P, Calonge ML, Vázquez‐Carretero MD, Peral MJ. Motor, mood, and memory impairments persist during remission periods in chronic colitis and are influenced by neuroinflammation and sex. FASEB J 2024; 38:e70133. [PMID: 39460563 PMCID: PMC11580723 DOI: 10.1096/fj.202400837r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/25/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Ulcerative colitis is a chronic pathology characterized by relapsing-remitting phases of intestinal inflammation. Additionally, some patients develop neuropsychiatric disorders, such as depression and anxiety, or cognitive deficits. We aimed to investigate whether the development of chronic colitis elicits memory, locomotion, and mood impairments. It further examined whether these impairments are influenced by the relapsing-remitting phases of the colitis or by sex. Here, we used a chronic colitis model in male and female rats, induced with sodium dextran sulfate, mirroring the phases of human ulcerative colitis. Our results revealed that the severity of colitis was slightly higher in males than females. Chronic colitis triggered motor and short-term memory deficits and induced anxiety- and depression-like behaviors that remained throughout the development of the disease. There are also sex differences under control or inflammatory conditions. Therefore, in both situations, females compared to males displayed: (i) slightly lower locomotion, (ii) increased anxiety-like behaviors, (iii) similar depression-like behaviors, and (iv) similar short-term memory deficit. Additionally, under control conditions, the mRNA levels of IL-1β, IL-6, and TNF-α were higher in the female hippocampus. In both sexes, when chronic colitis was established, the neuroinflammation was evidenced by increased mRNA levels of these three cytokines in the hippocampus and in the motor and prefrontal cortices. Interestingly, this neuroinflammation was slightly greater in males. In summary, we show that the development of chronic colitis caused persistent behavioral abnormalities, highlighting sex differences, and that could be a consequence, at least in part, of the increase in IL-1β, IL-6, and TNF-α in the brain.
Collapse
Affiliation(s)
- Gema Sotelo‐Parrilla
- Departamento de Fisiología, Facultad de FarmaciaUniversidad de SevillaSevillaSpain
| | | | - Pablo García‐Miranda
- Departamento de Fisiología, Facultad de FarmaciaUniversidad de SevillaSevillaSpain
| | - María L. Calonge
- Departamento de Fisiología, Facultad de FarmaciaUniversidad de SevillaSevillaSpain
| | | | - María J. Peral
- Departamento de Fisiología, Facultad de FarmaciaUniversidad de SevillaSevillaSpain
| |
Collapse
|
14
|
Ashique S, Mohanto S, Kumar N, Nag S, Mishra A, Biswas A, Rihan M, Srivastava S, Bhowmick M, Taghizadeh-Hesary F. Unlocking the possibilities of therapeutic potential of silymarin and silibinin against neurodegenerative Diseases-A mechanistic overview. Eur J Pharmacol 2024; 981:176906. [PMID: 39154829 DOI: 10.1016/j.ejphar.2024.176906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/28/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Silymarin, a bioflavonoid derived from the Silybum marianum plant, was discovered in 1960. It contains C25 and has been extensively used as a therapeutic agent against liver-related diseases caused by alcohol addiction, acute viral hepatitis, and toxins-inducing liver failure. Its efficacy stems from its role as a potent anti-oxidant and scavenger of free radicals, employed through various mechanisms. Additionally, silymarin or silybin possesses immunomodulatory characteristics, impacting immune-enhancing and immune-suppressive functions. Recently, silymarin has been recognized as a potential neuroprotective therapy for various neurological conditions, including Parkinson's and Alzheimer's diseases, along with conditions related to cerebral ischemia. Its hepatoprotective qualities, primarily due to its anti-oxidant and tissue-regenerating properties, are well-established. Silymarin also enhances health by modifying processes such as inflammation, β-amyloid accumulation, cellular estrogenic receptor mediation, and apoptotic machinery. While believed to reduce oxidative stress and support neuroprotective mechanisms, these effects represent just one aspect of the compound's multifaceted protective action. This review article further delves into the possibilities of potential therapeutic advancement of silymarin and silibinin for the management of neurodegenerative disorders via mechanics modules.
Collapse
Affiliation(s)
- Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India.
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to Be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Anuradha Mishra
- Amity Institute of Pharmacy, Amity University Lucknow Campus, Uttar Pradesh, 226010, India
| | - Aritra Biswas
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara Akhil Mukherjee Road, Khardaha, West Bengal, 700118, India; UNESCO Regional Centre for Biotechnology, Department of Biotechnology, Government of India, NCR Biotech Science Cluster, Faridabad, 121001, Haryana, India.
| | - Mohd Rihan
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Shriyansh Srivastava
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, 203201, India; Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), Sector 3 Pushp Vihar, New Delhi, 110017, India
| | - Mithun Bhowmick
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Ashique S, Mohanto S, Kumar N, Nag S, Mishra A, Biswas A, Rihan M, Srivastava S, Bhowmick M, Taghizadeh-Hesary F. Unlocking the possibilities of therapeutic potential of silymarin and silibinin against neurodegenerative Diseases-A mechanistic overview. Eur J Pharmacol 2024; 981:176906. [DOI: https:/doi.org/10.1016/j.ejphar.2024.176906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
|
16
|
Erkert L, Gamez-Belmonte R, Kabisch M, Schödel L, Patankar JV, Gonzalez-Acera M, Mahapatro M, Bao LL, Plattner C, Kühl AA, Shen J, Serneels L, De Strooper B, Neurath MF, Wirtz S, Becker C. Alzheimer's disease-related presenilins are key to intestinal epithelial cell function and gut immune homoeostasis. Gut 2024; 73:1618-1631. [PMID: 38684238 DOI: 10.1136/gutjnl-2023-331622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Mutations in presenilin genes are the major cause of Alzheimer's disease. However, little is known about their expression and function in the gut. In this study, we identify the presenilins Psen1 and Psen2 as key molecules that maintain intestinal homoeostasis. DESIGN Human inflammatory bowel disease (IBD) and control samples were analysed for Psen1 expression. Newly generated intestinal epithelium-specific Psen1-deficient, Psen2-deficient and inducible Psen1/Psen2 double-deficient mice were used to dissect the functional role of presenilins in intestinal homoeostasis. RESULTS Psen1 expression was regulated in experimental gut inflammation and in patients with IBD. Induced deletion of Psen1 and Psen2 in mice caused rapid weight loss and spontaneous development of intestinal inflammation. Mice exhibited epithelial barrier disruption with bacterial translocation and deregulation of key pathways for nutrient uptake. Wasting disease was independent of gut inflammation and dysbiosis, as depletion of microbiota rescued Psen-deficient animals from spontaneous colitis development but not from weight loss. On a molecular level, intestinal epithelial cells lacking Psen showed impaired Notch signalling and dysregulated epithelial differentiation. CONCLUSION Overall, our study provides evidence that Psen1 and Psen2 are important guardians of intestinal homoeostasis and future targets for barrier-promoting therapeutic strategies in IBD.
Collapse
Affiliation(s)
- Lena Erkert
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Reyes Gamez-Belmonte
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Melanie Kabisch
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Lena Schödel
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Jay V Patankar
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Miguel Gonzalez-Acera
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Mousumi Mahapatro
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Li-Li Bao
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
| | - Christina Plattner
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Anja A Kühl
- iPATH.Berlin, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jie Shen
- Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lutgarde Serneels
- VIB Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- VIB Center for Brain and Disease Research, KU Leuven, Leuven, Belgium
- UK Dementia Research Institute@UCL, University College London, London, UK
| | - Markus F Neurath
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
17
|
Schwärzler J, Verstockt B. Presenilins: the hidden guardians of gut health in Alzheimer's disease. Gut 2024; 73:1601-1602. [PMID: 38897732 DOI: 10.1136/gutjnl-2024-332677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Affiliation(s)
- Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Bram Verstockt
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, KU Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Kurdi M, Bajwa SJS, Sharma R, Choudhary R. Gut Microbiota and Probiotics in Perioperative Management: A Narrative Review. Cureus 2024; 16:e68404. [PMID: 39360063 PMCID: PMC11445195 DOI: 10.7759/cureus.68404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2024] [Indexed: 10/04/2024] Open
Abstract
The human gut is the abode of several complex and diverse microbes. It is a fact that the human brain is interconnected with the spinal cord and sense organs; however, there is also a possibility of a connection between the brain and the gut microbiome. The human gut can be altered in various ways, the principal method being the intake of prebiotics, probiotics and synbiotics. Can this alteration in the gut microbiome be clinically utilised in the perioperative period? We conducted a literature search related to this topic using databases and search engines (Medical Literature Analysis and Retrieval System Online {MEDLINE}, Embase, Scopus, PubMed and Google Scholar). The search revealed some preclinical and clinical studies in animals and humans that demonstrate the alteration of the gut microbiome with the use of anxiolysis, probiotics/prebiotics and other perioperative factors including opioids, anaesthetics and perioperative stress. The significant effects of this alteration have been seen on preoperative anxiety and postoperative delirium/cognitive dysfunction/pain. These effects are described in this narrative review, which opens up newer vistas for high-quality research related to the gut microbiome, gut-brain axis, the related signaling pathways and their clinical application in the perioperative period.
Collapse
Affiliation(s)
- Madhuri Kurdi
- Department of Anaesthesiology, Karnataka Medical College and Research Institute, Hubballi, IND
| | - Sukhminder J S Bajwa
- Department of Anaesthesiology, Gian Sagar Medical College and Hospital, Patiala, IND
| | - Ridhima Sharma
- Department of Anaesthesiology, All India Institute of Medical Sciences, Nagpur, IND
| | - Ripon Choudhary
- Department of Anaesthesiology, Datta Meghe Medical College and Research Institute, Nagpur, IND
| |
Collapse
|
19
|
Białoń MN, Górka DHNOZD, Górka MM. The brain-gut axis: communication mechanisms and the role of the microbiome as a neuroprotective factor in the development of neurodegenerative diseases: A literature overview. AIMS Neurosci 2024; 11:289-311. [PMID: 39431278 PMCID: PMC11486619 DOI: 10.3934/neuroscience.2024019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 10/22/2024] Open
Abstract
The study of the brain-gut axis and its impact on cognitive function and in the development of neurodegenerative diseases is a very timely topic of interest to researchers. This review summarizes information on the basic mechanisms of gut-brain communication. We then discuss the roles of the gut microbiome as a neuroprotective factor in neurodegeneration. The gut microbiota is extremely important in maintaining the body's homeostasis, shaping the human immune system and the proper functioning of the brain. The intestinal microflora affects the processes of neuroplasticity, synaptogenesis, and neuronal regeneration. This review aims to explain changes in the composition of the bacterial population of the intestinal microflora among patients with Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Abnormalities in gut microflora composition are also noted in stress, depression, or autism spectrum development. New observations on psychobiotic supplementation in alleviating the symptoms of neurodegenerative diseases are also presented.
Collapse
Affiliation(s)
- Mgr Natalia Białoń
- Faculty of Health Sciences in Katowice, Department of Sports Medicine and Physiology of Physical Exercise, Medical University of Silesia in Katowice, 12 Medyków St., 40-752 Katowice, Poland
| | - Dr Hab N O Zdr Dariusz Górka
- Faculty of Health Sciences in Katowice, Department of Sports Medicine and Physiology of Physical Exercise, Medical University of Silesia in Katowice, 12 Medyków St., 40-752 Katowice, Poland
| | - Mgr Mikołaj Górka
- Center for Experimental Medicine of the Silesian Medical University in Katowice, 4 Medyków St., 40-752 Katowice, Poland
| |
Collapse
|
20
|
Yun SW, Lee DY, Park HS, Kim DH. Heat-Processed Soybean Germ Extract and Lactobacillus gasseri NK109 Supplementation Reduce LPS-Induced Cognitive Impairment and Colitis in Mice. Nutrients 2024; 16:2736. [PMID: 39203872 PMCID: PMC11357477 DOI: 10.3390/nu16162736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Soybean alleviates cognitive impairment. In our preparatory experiment, we found that dry-heat (90 °C for 30 min)-processed soybean embryo ethanol extract (hSE) most potently suppressed lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α expression in BV2 cells among dry-heat-, steaming-, and oil exclusion-processed soybean embryo ethanol extracts (SEs). Heat processing increased the absorbable soyasaponin Bb content of SE. Therefore, we investigated whether hSE and its supplement could mitigate LPS-impaired cognitive function in mice. Among dry-heat-, steaming-, and oil exclusion-processed SEs, hSE mitigated LPS-impaired cognitive function more than parental SE. hSE potently upregulated LPS-suppressed brain-derived neurotropic factor (BDNF) expression in the hippocampus, while LPS-induced TNF-α and IL-1β expression in the hippocampus and colon were downregulated. Lactobacillus gasseri NK109 additively increased the cognitive function-enhancing activity of hSE in mice with LPS-induced cognitive impairment as follows: the hSE and NK109 mix potently increased cognitive function and hippocampal BDNF expression and BDNF-positive neuron cell numbers and decreased TNF-α expression and NF-κB-positive cell numbers in the hippocampus and colon. These findings suggest that hSE and its supplement may decrease colitis and neuroinflammation by suppressing NF-κB activation and inducing BDNF expression, resulting in the attenuation of cognitive impairment.
Collapse
Affiliation(s)
| | | | | | - Dong-Hyun Kim
- Neurobiota Research Center, Department of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; (S.-W.Y.); (D.-Y.L.); (H.-S.P.)
| |
Collapse
|
21
|
Margutti P, D’Ambrosio A, Zamboni S. Microbiota-Derived Extracellular Vesicle as Emerging Actors in Host Interactions. Int J Mol Sci 2024; 25:8722. [PMID: 39201409 PMCID: PMC11354844 DOI: 10.3390/ijms25168722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
The human microbiota is an intricate micro-ecosystem comprising a diverse range of dynamic microbial populations mainly consisting of bacteria, whose interactions with hosts strongly affect several physiological and pathological processes. The gut microbiota is being increasingly recognized as a critical player in maintaining homeostasis, contributing to the main functions of the intestine and distal organs such as the brain. However, gut dysbiosis, characterized by composition and function alterations of microbiota with intestinal barrier dysfunction has been linked to the development and progression of several pathologies, including intestinal inflammatory diseases, systemic autoimmune diseases, such as rheumatic arthritis, and neurodegenerative diseases, such as Alzheimer's disease. Moreover, oral microbiota research has gained significant interest in recent years due to its potential impact on overall health. Emerging evidence on the role of microbiota-host interactions in health and disease has triggered a marked interest on the functional role of bacterial extracellular vesicles (BEVs) as mediators of inter-kingdom communication. Accumulating evidence reveals that BEVs mediate host interactions by transporting and delivering into host cells effector molecules that modulate host signaling pathways and cell processes, influencing health and disease. This review discusses the critical role of BEVs from the gut, lung, skin and oral cavity in the epithelium, immune system, and CNS interactions.
Collapse
Affiliation(s)
- Paola Margutti
- Department of Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.D.); (S.Z.)
| | | | | |
Collapse
|
22
|
Yang Y, Yang L, Wan M, Pan D, Sun G, Yang C. Assessment of optimal combinations of therapeutic probiotics for depression, anxiety, and stress. Psychol Med 2024; 54:2547-2561. [PMID: 38497101 DOI: 10.1017/s0033291724000679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
BACKGROUND Accumulating data show that probiotics may be beneficial for reducing depressive, anxiety, and stress symptoms. However, the best combinations and species of probiotics have not been identified. The objective of our study was to assess the most effective combinations and components of different probiotics through network meta-analysis. METHOD A systematic search of four databases, PubMed, Web of Science, Cochrane, and Embase, was conducted from inception to 11 January 2024. The GRADE framework was used to assess the quality of evidence contributing to each network estimate. RESULTS We deemed 45 trials eligible, these included 4053 participants and 10 types of interventions. The quality of evidence was rated as high or moderate. The NMA revealed that Bifidobacterium exhibited a greater probability of being the optimal probiotic species for improving anxiety symptoms (SMD = -0.80; 95% CI -1.49 to -0.11), followed by Lactobacillus (SMD = -0.49; 95% CI -0.85 to -0.12). In addition, for multiple strains, compared with the other interventions, Lactobacillus + Bifidobacterium (SMD = -0.41; 95% CI -0.73 to -0.10) had a positive effect on depression. CONCLUSION The NMA revealed that Lactobacillus and Bifidobacterium had prominent efficacy in the treatment of individuals with anxiety, depression, and combination of Lactobacillus + Bifidobacterium had a similar effect. With few direct comparisons available between probiotic species, this NMA may be instrumental in shaping the guidelines for probiotic treatment of psychological disorders.
Collapse
Affiliation(s)
- Yafang Yang
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Min Wan
- Rongxiang Community Health Service Center, Wuxi 214000, China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Chao Yang
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| |
Collapse
|
23
|
Sui Y, Jiang R, Niimi M, Wang X, Xu Y, Zhang Y, Shi Z, Suda M, Mao Z, Fan J, Yao J. Gut bacteria exacerbates TNBS-induced colitis and kidney injury through oxidative stress. Redox Biol 2024; 72:103140. [PMID: 38593629 PMCID: PMC11016804 DOI: 10.1016/j.redox.2024.103140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Gut microbiota has been implicated in the initiation and progression of various diseases; however, the underlying mechanisms remain elusive and effective therapeutic strategies are scarce. In this study, we investigated the role and mechanisms of gut microbiota in TNBS-induced colitis and its associated kidney injury while evaluating the potential of dietary protein as a therapeutic intervention. The intrarectal administration of TNBS induced colitis in mice, concurrently with kidney damage. Interestingly, this effect was absent when TNBS was administered intraperitoneally, indicating a potential role of gut microbiota. Depletion of gut bacteria with antibiotics significantly attenuated the severity of TNBS-induced inflammation, oxidative damage, and tissue injury in the colon and kidneys. Mechanistic investigations using cultured colon epithelial cells and bone-marrow macrophages unveiled that TNBS induced cell oxidation, inflammation and injury, which was amplified by the bacterial component LPS and mitigated by thiol antioxidants. Importantly, in vivo administration of thiol-rich whey protein entirely prevented TNBS-induced colonic and kidney injury. Our findings suggest that gut bacteria significantly contribute to the initiation and progression of colitis and associated kidney injury, potentially through mechanisms involving LPS-induced exaggeration of oxidative cellular damage. Furthermore, our research highlights the potential of dietary thiol antioxidants as preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Yang Sui
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, 409-3898, Japan
| | - Rui Jiang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, 409-3898, Japan
| | - Manabu Niimi
- Division of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, 409-3898, Japan
| | - Xin Wang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, 409-3898, Japan
| | - Yijun Xu
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, 409-3898, Japan
| | - Yingyu Zhang
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, 409-3898, Japan
| | - Zhuheng Shi
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, 409-3898, Japan
| | - Mika Suda
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, 409-3898, Japan
| | - Zhimin Mao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, 409-3898, Japan; Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China.
| | - Jianglin Fan
- Division of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, 409-3898, Japan.
| | - Jian Yao
- Division of Molecular Signaling, Department of the Advanced Biomedical Research, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, 409-3898, Japan.
| |
Collapse
|
24
|
Thangeswaran D, Shamsuddin S, Balakrishnan V. A comprehensive review on the progress and challenges of tetrahydroisoquinoline derivatives as a promising therapeutic agent to treat Alzheimer's disease. Heliyon 2024; 10:e30788. [PMID: 38803973 PMCID: PMC11128835 DOI: 10.1016/j.heliyon.2024.e30788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Alzheimer's disease (AD) is the most common and irreversible neurodegenerative disorder worldwide. While the precise mechanism behind this rapid progression and multifaceted disease remains unknown, the numerous drawbacks of the available therapies are prevalent, necessitating effective alternative treatment methods. In view of the rising demand for effective AD treatment, numerous reports have shown that tetrahydroisoquinoline (THIQ) is a valuable scaffold in various clinical medicinal molecules and has a promising potential as a therapeutic agent in treating AD due to its significant neuroprotective, anti-inflammatory, and antioxidative properties via several mechanisms that target the altered signaling pathways. Therefore, this review comprehensively outlines the potential application of THIQ derivatives in AD treatment and the challenges in imparting the action of these prospective therapeutic agents. The review emphasizes a number of THIQ derivatives, including Dauricine, jatrorrhizine, 1MeTIQ, and THICAPA, that have been incorporated in AD studies in recent years. Subsequently, a dedicated section of the review briefly discusses the emerging potential benefits of multi-target therapeutics, which lie in their ability to be integrated with alternative therapeutics. Eventually, this review elaborates on the rising challenges and future recommendations for the development of therapeutic drug agents to treat AD effectively. In essence, the valuable research insights of THIQ derivatives presented in this comprehensive review would serve as an integral reference for future studies to develop potent therapeutic drugs for AD research.
Collapse
Affiliation(s)
- Danesh Thangeswaran
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- Nanobiotech Research Initiative, Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| |
Collapse
|
25
|
Louka E, Koumandou VL. The Emerging Role of Human Gut Bacteria Extracellular Vesicles in Mental Disorders and Developing New Pharmaceuticals. Curr Issues Mol Biol 2024; 46:4751-4767. [PMID: 38785554 PMCID: PMC11120620 DOI: 10.3390/cimb46050286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
In recent years, further evidence has emerged regarding the involvement of extracellular vesicles in various human physiopathological conditions such as Alzheimer's disease, Parkinson's disease, irritable bowel syndrome, and mental disorders. The biogenesis and cargo of such vesicles may reveal their impact on human health nd disease and set the underpinnings for the development of novel chemical compounds and pharmaceuticals. In this review, we examine the link between bacteria-derived exosomes in the gastrointestinal tract and mental disorders, such as depression and anxiety disorders. Crucially, we focus on whether changes in the gut environment affect the human mental state or the other way around. Furthermore, the possibility of handling bacteria-derived exosomes as vectors of chemicals to treat such conditions is examined.
Collapse
Affiliation(s)
- Effrosyni Louka
- Genetics Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Vassiliki Lila Koumandou
- Genetics Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
26
|
Boles JS, Krueger ME, Jernigan JE, Cole CL, Neighbarger NK, Uriarte Huarte O, Tansey MG. A leaky gut dysregulates gene networks in the brain associated with immune activation, oxidative stress, and myelination in a mouse model of colitis. Brain Behav Immun 2024; 117:473-492. [PMID: 38341052 DOI: 10.1016/j.bbi.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
The gut and brain are increasingly linked in human disease, with neuropsychiatric conditions classically attributed to the brain showing an involvement of the intestine and inflammatory bowel diseases (IBDs) displaying an ever-expanding list of neurological comorbidities. To identify molecular systems that underpin this gut-brain connection and thus discover therapeutic targets, experimental models of gut dysfunction must be evaluated for brain effects. In the present study, we examine disturbances along the gut-brain axis in a widely used murine model of colitis, the dextran sodium sulfate (DSS) model, using high-throughput transcriptomics and an unbiased network analysis strategy coupled with standard biochemical outcome measures to achieve a comprehensive approach to identify key disease processes in both colon and brain. We examine the reproducibility of colitis induction with this model and its resulting genetic programs during different phases of disease, finding that DSS-induced colitis is largely reproducible with a few site-specific molecular features. We focus on the circulating immune system as the intermediary between the gut and brain, which exhibits an activation of pro-inflammatory innate immunity during colitis. Our unbiased transcriptomics analysis provides supporting evidence for immune activation in the brain during colitis, suggests that myelination may be a process vulnerable to increased intestinal permeability, and identifies a possible role for oxidative stress and brain oxygenation. Overall, we provide a comprehensive evaluation of multiple systems in a prevalent experimental model of intestinal permeability, which will inform future studies using this model and others, assist in the identification of druggable targets in the gut-brain axis, and contribute to our understanding of the concomitance of intestinal and neuropsychiatric dysfunction.
Collapse
Affiliation(s)
- Jake Sondag Boles
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | - Maeve E Krueger
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Janna E Jernigan
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Cassandra L Cole
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Noelle K Neighbarger
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Oihane Uriarte Huarte
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
27
|
Xie X, Wang L, Dong S, Ge S, Zhu T. Immune regulation of the gut-brain axis and lung-brain axis involved in ischemic stroke. Neural Regen Res 2024; 19:519-528. [PMID: 37721279 PMCID: PMC10581566 DOI: 10.4103/1673-5374.380869] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/11/2023] [Accepted: 06/12/2023] [Indexed: 09/19/2023] Open
Abstract
Local ischemia often causes a series of inflammatory reactions when both brain immune cells and the peripheral immune response are activated. In the human body, the gut and lung are regarded as the key reactional targets that are initiated by brain ischemic attacks. Mucosal microorganisms play an important role in immune regulation and metabolism and affect blood-brain barrier permeability. In addition to the relationship between peripheral organs and central areas and the intestine and lung also interact among each other. Here, we review the molecular and cellular immune mechanisms involved in the pathways of inflammation across the gut-brain axis and lung-brain axis. We found that abnormal intestinal flora, the intestinal microenvironment, lung infection, chronic diseases, and mechanical ventilation can worsen the outcome of ischemic stroke. This review also introduces the influence of the brain on the gut and lungs after stroke, highlighting the bidirectional feedback effect among the gut, lungs, and brain.
Collapse
Affiliation(s)
- Xiaodi Xie
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Lei Wang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Shanshan Dong
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - ShanChun Ge
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Ting Zhu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
28
|
Kouba BR, de Araujo Borba L, Borges de Souza P, Gil-Mohapel J, Rodrigues ALS. Role of Inflammatory Mechanisms in Major Depressive Disorder: From Etiology to Potential Pharmacological Targets. Cells 2024; 13:423. [PMID: 38474387 PMCID: PMC10931285 DOI: 10.3390/cells13050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The involvement of central and peripheral inflammation in the pathogenesis and prognosis of major depressive disorder (MDD) has been demonstrated. The increase of pro-inflammatory cytokines (interleukin (IL)-1β, IL-6, IL-18, and TNF-α) in individuals with depression may elicit neuroinflammatory processes and peripheral inflammation, mechanisms that, in turn, can contribute to gut microbiota dysbiosis. Together, neuroinflammation and gut dysbiosis induce alterations in tryptophan metabolism, culminating in decreased serotonin synthesis, impairments in neuroplasticity-related mechanisms, and glutamate-mediated excitotoxicity. This review aims to highlight the inflammatory mechanisms (neuroinflammation, peripheral inflammation, and gut dysbiosis) involved in the pathophysiology of MDD and to explore novel anti-inflammatory therapeutic approaches for this psychiatric disturbance. Several lines of evidence have indicated that in addition to antidepressants, physical exercise, probiotics, and nutraceuticals (agmatine, ascorbic acid, and vitamin D) possess anti-inflammatory effects that may contribute to their antidepressant properties. Further studies are necessary to explore the therapeutic benefits of these alternative therapies for MDD.
Collapse
Affiliation(s)
- Bruna R. Kouba
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (L.d.A.B.); (P.B.d.S.)
| | - Laura de Araujo Borba
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (L.d.A.B.); (P.B.d.S.)
| | - Pedro Borges de Souza
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (L.d.A.B.); (P.B.d.S.)
| | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ana Lúcia S. Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (L.d.A.B.); (P.B.d.S.)
| |
Collapse
|
29
|
Aditya S, Qumar M, Karimy MF, Pourazad P, Penagos-Tabares F, Wulansari N. High-grain feeding contributes to endotoxin contamination in dairy milk. Toxicon 2024; 241:107659. [PMID: 38423219 DOI: 10.1016/j.toxicon.2024.107659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/28/2023] [Accepted: 01/02/2024] [Indexed: 03/02/2024]
Abstract
To support milk production and milk quality, ruminant animals like dairy cows are particularly fed using concentrate containing high grain and starch. Nonetheless, this type of regimen feeding could induce subacute rumen acidosis condition. Then, these circumstances cause the lysis of gram-negative bacteria accompanied by endotoxin release in gut. More importantly, gut endotoxin could be translocated to mammary gland, whereby this condition negatively affects to milk safety. The aim of the review is to update and summarize the current knowledge regarding high-grain diet and the occurrence of endotoxin in milk of dairy cows. The data suggest that there is interplay between high-grain feeding for dairy cows to endotoxin contamination in milk.
Collapse
Affiliation(s)
- S Aditya
- Research Group of Food Safety, Research Center for Food Technology Processing, The National Agency for Research and Innovation of the Republic of Indonesia, Jl. Jogja-Wonosari, Yogyakarta, Indonesia.
| | - M Qumar
- Department of Animal Nutrition, Faculty of Animal Production & Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - M F Karimy
- Research Group of Food Safety, Research Center for Food Technology Processing, The National Agency for Research and Innovation of the Republic of Indonesia, Jl. Jogja-Wonosari, Yogyakarta, Indonesia
| | - P Pourazad
- Phytogenic Feed Additives Division, Delacon Biotechnik GmbH Langwiesen 24, 4209, Engerwitzdorf, Austria
| | - F Penagos-Tabares
- Unit Nutritional Physiology, Centre for Veterinary Systems Transformation and Sustainability, Clinical Department of Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria; Christian-Doppler-Laboratory for Innovative Gut Health Concepts in Livestock (CDL-LiveGUT), Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, Vienna, 1210, Austria; FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, 3430, Tulln, Austria
| | - N Wulansari
- The Animal Teaching Hospital, Universitas Brawijaya, Puncak Dieng Eksklusif, Kalisongo, Dau, Malang, East Java, 6514, Indonesia
| |
Collapse
|
30
|
Adamczak AM, Werblińska A, Jamka M, Walkowiak J. Maternal-Foetal/Infant Interactions-Gut Microbiota and Immune Health. Biomedicines 2024; 12:490. [PMID: 38540103 PMCID: PMC10967760 DOI: 10.3390/biomedicines12030490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 01/03/2025] Open
Abstract
In recent years, the number of scientific publications on the role of intestinal microbiota in shaping human health, as well as the occurrence of intestinal dysbiosis in various disease entities, has increased dynamically. However, there is a gap in comprehensively understanding the factors influencing a child's gut microbiota. This review discusses the establishment of gut microbiota and the immunological mechanisms regulating children's microbiota, emphasising the importance of prioritising the development of appropriate gut microbiota in a child from the planning stages of pregnancy. The databases PubMed, Web of Sciences, Cochrane, Scopus and Google Scholar were searched to identify relevant articles. A child's gut microbiota composition is influenced by numerous factors, such as diet during pregnancy, antibiotic therapy, the mother's vaginal microbiota, delivery method, and, later, feeding method and environmental factors. During pregnancy, the foetus naturally acquires bacterial strains from the mother through the placenta, thereby shaping the newborn's immune system. Inappropriate maternal vaginal microbiota may increase the risk of preterm birth. Formula-fed infants typically exhibit a more diverse microbiota than their breastfed counterparts. These factors, among others, shape the maturation of the child's immune system, impacting the production of IgA antibodies that are central to cellular humoral immune defence. Further research should focus on identifying specific microbiota-immune system interactions influencing a child's immune health and developing personalised treatment strategies for immune-related disorders.
Collapse
Affiliation(s)
- Ada Maria Adamczak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 27/33 Szpitalna Street, 60-572 Poznań, Poland; (A.M.A.); (M.J.)
| | - Alicja Werblińska
- Greater Poland Centre for Pulmonology and Thoracic Surgery Named after Eugenia and Janusz Zeyland, 62 Szamarzewskiego Street, 60-569 Poznań, Poland;
| | - Małgorzata Jamka
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 27/33 Szpitalna Street, 60-572 Poznań, Poland; (A.M.A.); (M.J.)
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, 27/33 Szpitalna Street, 60-572 Poznań, Poland; (A.M.A.); (M.J.)
| |
Collapse
|
31
|
Lee DY, Shin JW, Shin YJ, Han SW, Kim DH. Lactobacillus plantarum and Bifidobacterium longum Alleviate Liver Injury and Fibrosis in Mice by Regulating NF-κB and AMPK Signaling. J Microbiol Biotechnol 2024; 34:149-156. [PMID: 38105432 PMCID: PMC10840473 DOI: 10.4014/jmb.2310.10006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
In a preliminary study, live biotherapeutic products (LBPs) Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 inhibited the secretion of alanine transaminase (ALT) and aspartate transaminase (AST) in LPS-stimulated HepG2 cells, while Escherichia coli K1 (Ec) increased ALT and ALT secretion. Therefore, we examined the effects of LC27 and LC67 on LPS-induced liver injury and fibrosis in mice and the correlation between their biomarkers in cell and animal experiments. Orally administered LC27 or LC67 significantly decreased blood ALT, AST, γ-glutamyl transferase (γGTP), TNF-α, triglyceride (TG), total cholesterol (TCh), total bile acid, and LPS levels, liver TNF-α, toll-like receptor-4 gene (Tlr4), α-smooth muscle actin (αSMA), and collagen-1 expression and αSMA+GFAP+ and NF-κB+F4/80+ cell populations, and colonic Tlr4, TNF-α, and IL-6 expression and NF-κB-positive cell population in LPS-treated mice. Furthermore, they increased AMPKa phosphorylation in the liver and colon. However, Ec increased the expression of TNF-α and IL-6 in blood, liver, and colon. The suppression of LPS-stimulated ALT and AST secretion in HepG2 cells by LBPs was positively correlated with their ameliorating effects on LPS-induced blood γGTP, ALT, and AST levels and liver αSMA and collagen-1 expression in mice. Based on these findings, LC27 and LC67 may improve liver injury and fibrosis by regulating NF-κB and AMPK signaling pathway and a protocol that can assay the inhibitory activity of LBPs on LPS-induced ALT and AST secretion in HepG2 may be useful for guessing their antihepatitic effects in the in vivo experiments.
Collapse
Affiliation(s)
- Dong-Yun Lee
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jung-Woo Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung-Won Han
- PB Department, NVP Healthcare, Inc., Suwon 16209, Republic of Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
32
|
Ma X, Shin YJ, Yoo JW, Park HS, Kim DH. Extracellular vesicles derived from Porphyromonas gingivalis induce trigeminal nerve-mediated cognitive impairment. J Adv Res 2023; 54:293-303. [PMID: 36796586 DOI: 10.1016/j.jare.2023.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
INTRODUCTION Porphyromonas gingivalis (PG)-infected periodontitis is in close connection with the development of Alzheimer's disease (AD). PG-derived extracellular vesicles (pEVs) contain inflammation-inducing virulence factors, including gingipains (GPs) and lipopolysaccharide (LPS). OBJECTIVES To understand how PG could cause cognitive decline, we investigated the effects of PG and pEVs on the etiology of periodontitis and cognitive impairment in mice. METHODS Cognitive behaviors were measured in the Y-maze and novel object recognition tasks. Biomarkers were measured using ELISA, qPCR, immunofluorescence assay, and pyrosequencing. RESULTS pEVs contained neurotoxic GPs and inflammation-inducible fimbria protein and LPS. Gingivally exposed, but not orally gavaged, PG or pEVs caused periodontitis and induced memory impairment-like behaviors. Gingival exposure to PG or pEVs increased TNF-α expression in the periodontal and hippocampus tissues. They also increased hippocampal GP+Iba1+, LPS+Iba1+, and NF-κB+Iba1+ cell numbers. Gingivally exposed PG or pEVs decreased BDNF, claudin-5, and N-methyl-D-aspartate receptor expression and BDNF+NeuN+ cell number. Gingivally exposed fluorescein-5-isothiocyanate-labeled pEVs (F-pEVs) were detected in the trigeminal ganglia and hippocampus. However, right trigeminal neurectomy inhibited the translocation of gingivally injected F-EVs into the right trigeminal ganglia. Gingivally exposed PG or pEVs increased blood LPS and TNF-α levels. Furthermore, they caused colitis and gut dysbiosis. CONCLUSION Gingivally infected PG, particularly pEVs, may cause cognitive decline with periodontitis. PG products pEVs and LPS may be translocated into the brain through the trigeminal nerve and periodontal blood pathways, respectively, resulting in the cognitive decline, which may cause colitis and gut dysbiosis. Therefore, pEVs may be a remarkable risk factor for dementia.
Collapse
Affiliation(s)
- Xiaoyang Ma
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dong-daemun-gu, Seoul 02447, Korea.
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dong-daemun-gu, Seoul 02447, Korea.
| | - Jong-Wook Yoo
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dong-daemun-gu, Seoul 02447, Korea.
| | - Hee-Seo Park
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dong-daemun-gu, Seoul 02447, Korea.
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dong-daemun-gu, Seoul 02447, Korea.
| |
Collapse
|
33
|
Mendes de Almeida V, Engel DF, Ricci MF, Cruz CS, Lopes ÍS, Alves DA, d’ Auriol M, Magalhães J, Machado EC, Rocha VM, Carvalho TG, Lacerda LSB, Pimenta JC, Aganetti M, Zuccoli GS, Smith BJ, Carregari VC, da Silva Rosa E, Galvão I, Dantas Cassali G, Garcia CC, Teixeira MM, André LC, Ribeiro FM, Martins FS, Saia RS, Costa VV, Martins-de-Souza D, Hansbro PM, Marques JT, Aguiar ERGR, Vieira AT. Gut microbiota from patients with COVID-19 cause alterations in mice that resemble post-COVID symptoms. Gut Microbes 2023; 15:2249146. [PMID: 37668317 PMCID: PMC10481883 DOI: 10.1080/19490976.2023.2249146] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/19/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023] Open
Abstract
Long-term sequelae of coronavirus disease (COVID)-19 are frequent and of major concern. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection affects the host gut microbiota, which is linked to disease severity in patients with COVID-19. Here, we report that the gut microbiota of post-COVID subjects had a remarkable predominance of Enterobacteriaceae strains with an antibiotic-resistant phenotype compared to healthy controls. Additionally, short-chain fatty acid (SCFA) levels were reduced in feces. Fecal transplantation from post-COVID subjects to germ-free mice led to lung inflammation and worse outcomes during pulmonary infection by multidrug-resistant Klebsiella pneumoniae. transplanted mice also exhibited poor cognitive performance. Overall, we show prolonged impacts of SARS-CoV-2 infection on the gut microbiota that persist after subjects have cleared the virus. Together, these data demonstrate that the gut microbiota can directly contribute to post-COVID sequelae, suggesting that it may be a potential therapeutic target.
Collapse
Affiliation(s)
- Viviani Mendes de Almeida
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Daiane F. Engel
- Department of Clinical Analysis, School of Pharmacy, Universidade Federal de Ouro Preto - UFOP, Ouro Preto, Brazil
| | - Mayra F. Ricci
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Clênio Silva Cruz
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Ícaro Santos Lopes
- Laboratory of Virus Bioinformatics - Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz - UESC, Ilhéus, Brazil
| | - Daniele Almeida Alves
- Laboratory of RNA Interference and Antiviral Immunity - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Mirna d’ Auriol
- Laboratory of Toxicology - Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - João Magalhães
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Elayne C. Machado
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Victor M. Rocha
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Toniana G. Carvalho
- Laboratory of Neurobiochemistry - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Larisse S. B. Lacerda
- Center for Research and Development of Drugs - Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Jordane C. Pimenta
- Center for Research and Development of Drugs - Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Mariana Aganetti
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Giuliana S. Zuccoli
- Laboratory of Neuroproteomics - Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade do Estado de Campinas - UNICAMP, Campinas, Brazil
| | - Bradley J. Smith
- Laboratory of Neuroproteomics - Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade do Estado de Campinas - UNICAMP, Campinas, Brazil
| | - Victor C. Carregari
- Laboratory of Neuroproteomics - Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade do Estado de Campinas - UNICAMP, Campinas, Brazil
| | - Erika da Silva Rosa
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Izabela Galvão
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Geovanni Dantas Cassali
- Laboratory of Comparative Pathology - Department of Pathology, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Cristiana C. Garcia
- Laboratory of Respiratory Viruses and Measles, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
| | - Mauro Martins Teixeira
- Center for Research and Development of Drugs - Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Leiliane C. André
- Laboratory of Toxicology - Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Fabiola Mara Ribeiro
- Laboratory of Neurobiochemistry - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Flaviano S. Martins
- Laboratory of Biotherapeutic Agents - Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Rafael Simone Saia
- Laboratory of Intestinal Physiology - Department of Physiology, Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vivian Vasconcelos Costa
- Center for Research and Development of Drugs - Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics - Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade do Estado de Campinas - UNICAMP, Campinas, Brazil
- D’Or Institute for Research and Education, São Paulo, Brazil
- Experimental Medicine Research Cluster, Universidade do Estado de Campinas - UNICAMP, Campinas, Brazil
- National Institute of Biomarkers in Neuropsychiatry, National Council for Scientific and Technological Development, São Paulo, Brazil
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia
| | - João Trindade Marques
- Laboratory of RNA Interference and Antiviral Immunity - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
- CNRS UPR9022, University of Strasbourg, Strasbourg, France
| | - Eric R. G. R. Aguiar
- Laboratory of Virus Bioinformatics - Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz - UESC, Ilhéus, Brazil
| | - Angélica T. Vieira
- Laboratory of Microbiota and Immunomodulation - Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, Brazil
| |
Collapse
|
34
|
Kim N, Ju IG, Jeon SH, Lee Y, Jung MJ, Gee MS, Cho JS, Inn KS, Garrett-Sinha LA, Oh MS, Lee JK. Inhibition of microfold cells ameliorates early pathological phenotypes by modulating microglial functions in Alzheimer's disease mouse model. J Neuroinflammation 2023; 20:282. [PMID: 38012646 PMCID: PMC10680211 DOI: 10.1186/s12974-023-02966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The gut microbiota has recently attracted attention as a pathogenic factor in Alzheimer's disease (AD). Microfold (M) cells, which play a crucial role in the gut immune response against external antigens, are also exploited for the entry of pathogenic bacteria and proteins into the body. However, whether changes in M cells can affect the gut environments and consequently change brain pathologies in AD remains unknown. METHODS Five familial AD (5xFAD) and 5xFAD-derived fecal microbiota transplanted (5xFAD-FMT) naïve mice were used to investigate the changes of M cells in the AD environment. Next, to establish the effect of M cell depletion on AD environments, 5xFAD mice and Spib knockout mice were bred, and behavioral and histological analyses were performed when M cell-depleted 5xFAD mice were six or nine months of age. RESULTS In this study, we found that M cell numbers were increased in the colons of 5xFAD and 5xFAD-FMT mice compared to those of wild-type (WT) and WT-FMT mice. Moreover, the level of total bacteria infiltrating the colons increased in the AD-mimicked mice. The levels of M cell-related genes and that of infiltrating bacteria showed a significant correlation. The genetic inhibition of M cells (Spib knockout) in 5xFAD mice changed the composition of the gut microbiota, along with decreasing proinflammatory cytokine levels in the colons. M cell depletion ameliorated AD symptoms including amyloid-β accumulation, microglial dysfunction, neuroinflammation, and memory impairment. Similarly, 5xFAD-FMT did not induce AD-like pathologies, such as memory impairment and excessive neuroinflammation in Spib-/- mice. CONCLUSION Therefore, our findings provide evidence that the inhibiting M cells can prevent AD progression, with therapeutic implications.
Collapse
Affiliation(s)
- Namkwon Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - In Gyoung Ju
- Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul, Republic of Korea
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Seung Ho Jeon
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Yeongae Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Min-Ji Jung
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Min Sung Gee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Jae Seok Cho
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Kyung-Soo Inn
- Department of Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, Republic of Korea.
- Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul, Republic of Korea.
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea.
| | - Jong Kil Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea.
- Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
35
|
Baek JS, Shin YJ, Ma X, Park HS, Hwang YH, Kim DH. Bifidobacterium bifidum and Lactobacillus paracasei alleviate sarcopenia and cognitive impairment in aged mice by regulating gut microbiota-mediated AKT, NF-κB, and FOXO3a signaling pathways. Immun Ageing 2023; 20:56. [PMID: 37872562 PMCID: PMC10591382 DOI: 10.1186/s12979-023-00381-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Sarcopenia is closely associated with gut dysbiosis. Probiotics alleviate gut dysbiosis. Therefore, we selected probiotics Lactobacillus paracasei P62 (Lp) and Bifidobacterium bifidum P61 (Bb), which suppressed muscle RING-finger protein-1 (MuRF1) expression and NF-κB activation in C2C12 cells, and examined their effects on muscle mass loss and dysfunction in aged mice. Oral administration of Lp, Bb, or their mix (LB) increased grip strength and treadmill running distance and time. They significantly increased muscle weight in aged mice. They also increased AKT activation, PGC1α, SIRT1, and myosin heavy chain (MyHC) expression, MyHC-positive cell population, and cell size in the gastrocnemius (GA) muscle, while FOXO3a and NF-κB activation, MuRF1, muscle atrophy F-box, and p16 expression, and NF-κB+CD11c+ cell population decreased. Furthermore, they reduced cognitive impairment-like behavior, IL-6 expression, FOXO3a activation, and NF-κB-positive cell population in the hippocampus, GA, and colon, while hippocampal brain-derived neurotropic factor expression increased. They shifted gut microbiota composition in aged mice: they increased Akkermansiaceae and Bacteroidaceae populations, which were positively correlated with total muscle weight and MyHC expression, and decreased Odoribacteraceae and Deferribacteriaceae populations, which were positively correlated with MuRF1 and IL-6 expression. LB alleviated sarcopenia- and cognitive impairment-like symptoms more potently than Lp or Bb alone. Based on these findings, probiotics, particularly Lp, Bb, and LB, can alleviate aging-dependent sarcopenia and cognitive impairment by regulating gut microbiota-mediated AKT, NF-κB, and/or FOXO3a signaling pathways.
Collapse
Affiliation(s)
- Ji-Su Baek
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, 02447, Korea
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, 02447, Korea
| | - Xiaoyang Ma
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, 02447, Korea
| | - Hee-Seo Park
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, 02447, Korea
| | - Yun-Ha Hwang
- DongWha Pharm Research Institute, Yongin-shi, Gyeonggi, 17084, Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul, 02447, Korea.
- , PBLbiolab, Seongbuk-gu, Seoul, 02823, Korea.
| |
Collapse
|
36
|
Zhang Z, Zhao L, Wu J, Pan Y, Zhao G, Li Z, Zhang L. The Effects of Lactobacillus johnsonii on Diseases and Its Potential Applications. Microorganisms 2023; 11:2580. [PMID: 37894238 PMCID: PMC10609197 DOI: 10.3390/microorganisms11102580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Lactobacillus johnsonii has been used as a probiotic for decades to treat a wide range of illnesses, and has been found to have specific advantages in the treatment of a number of ailments. We reviewed the potential therapeutic effects and mechanisms of L. johnsonii in various diseases based on PubMed and the Web of Science databases. We obtained the information of 149 L. johnsonii from NCBI (as of 14 February 2023), and reviewed their comprehensive metadata, including information about the plasmids they contain. This review provides a basic characterization of different L. johnsonii and some of their potential therapeutic properties for various ailments. Although the mechanisms are not fully understood yet, it is hoped that they may provide some evidence for future studies. Furthermore, the antibiotic resistance of the various strains of L. johnsonii is not clear, and more complete and in-depth studies are needed. In summary, L. johnsonii presents significant research potential for the treatment or prevention of disease; however, more proof is required to justify its therapeutic application. An additional study on the antibiotic resistance genes it contains is also needed to reduce the antimicrobial resistance dissemination.
Collapse
Affiliation(s)
- Ziyi Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; (Z.Z.); (L.Z.); (J.W.); (Y.P.); (G.Z.)
| | - Lanlan Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; (Z.Z.); (L.Z.); (J.W.); (Y.P.); (G.Z.)
| | - Jiacheng Wu
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; (Z.Z.); (L.Z.); (J.W.); (Y.P.); (G.Z.)
| | - Yingmiao Pan
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; (Z.Z.); (L.Z.); (J.W.); (Y.P.); (G.Z.)
| | - Guoping Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; (Z.Z.); (L.Z.); (J.W.); (Y.P.); (G.Z.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, China
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200000, China
| | - Ziyun Li
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; (Z.Z.); (L.Z.); (J.W.); (Y.P.); (G.Z.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, China
| | - Lei Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250000, China; (Z.Z.); (L.Z.); (J.W.); (Y.P.); (G.Z.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, China
| |
Collapse
|
37
|
Yuan C, He Y, Xie K, Feng L, Gao S, Cai L. Review of microbiota gut brain axis and innate immunity in inflammatory and infective diseases. Front Cell Infect Microbiol 2023; 13:1282431. [PMID: 37868345 PMCID: PMC10585369 DOI: 10.3389/fcimb.2023.1282431] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
The microbiota gut brain (MGB) axis has been shown to play a significant role in the regulation of inflammatory and infective diseases. Exploring the structure and communication mode of MGB axis is crucial for understanding its role in diseases, and studying the signaling pathways and regulatory methods of MGB axis regulation in diseases is also of profound significance for future clinical research. This article reviews the composition, communication mechanism of MGB axis and its role in inflammatory and infective diseases, including Parkinson's disease (PD), Alzheimer's disease (AD), multiple sclerosis (MS), autism spectrum disorder (ASD), depression, psoriasis, irritable bowel syndrome (IBS), and inflammatory bowel diseases (IBD). In addition, our investigation delved into the regulatory functions of the inflammasome, IFN-I, NF-κB, and PARK7/DJ-1 innate immune signaling pathway in the context of inflammatory and infective diseases. Ultimately, we discussed the efficacy of various interventions, including fecal microbiota transplantation (FMT), antibiotics, probiotics, prebiotics, synbiotics, and postbiotics, in the management of inflammatory and infective diseases. Understanding the role and mechanism of the MGB axis might make positive effects in the treatment of inflammatory and infective diseases.
Collapse
Affiliation(s)
- Chongshan Yuan
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yuhong He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Kunyu Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Lianjun Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shouyang Gao
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lifu Cai
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
38
|
Yadav H, Jaldhi, Bhardwaj R, Anamika, Bakshi A, Gupta S, Maurya SK. Unveiling the role of gut-brain axis in regulating neurodegenerative diseases: A comprehensive review. Life Sci 2023; 330:122022. [PMID: 37579835 DOI: 10.1016/j.lfs.2023.122022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Emerging evidence have shown the importance of gut microbiota in regulating brain functions. The diverse molecular mechanisms involved in cross-talk between gut and brain provide insight into importance of this communication in maintenance of brain homeostasis. It has also been observed that disturbed gut microbiota contributes to neurological diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis and aging. Recently, gut microbiome-derived exosomes have also been reported to play an essential role in the development and progression of neurodegenerative diseases and could thereby act as a therapeutic target. Further, pharmacological interventions including antibiotics, prebiotics and probiotics can influence gut microbiome-mediated management of neurological diseases. However, extensive research is warranted to better comprehend this interconnection in maintenance of brain homeostasis and its implication in neurological diseases. Thus, the present review is aimed to provide a detailed understanding of gut-brain axis followed by possibilities to target the gut microbiome for improving neurological health.
Collapse
Affiliation(s)
- Himanshi Yadav
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Jaldhi
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Rati Bhardwaj
- Department of Biotechnology, Delhi Technical University, Delhi, India
| | - Anamika
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Amrita Bakshi
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Suchi Gupta
- Tech Cell Innovations Private Limited, Centre for Medical Innovation and Entrepreneurship (CMIE), All India Institute of Medical Sciences, New Delhi, India
| | - Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India.
| |
Collapse
|
39
|
Wan J, Song J, Lv Q, Zhang H, Xiang Q, Dai H, Zheng H, Lin X, Zhang W. Alterations in the Gut Microbiome of Young Children with Airway Allergic Disease Revealed by Next-Generation Sequencing. J Asthma Allergy 2023; 16:961-972. [PMID: 37700874 PMCID: PMC10494927 DOI: 10.2147/jaa.s422537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023] Open
Abstract
Purpose Recent studies had shown that gut microbiota played a significant role in the development of the immune system and may affect the course of airway allergic disease. We conducted this study to determine unique gut microbial associated with allergic disease in children by shotgun gene sequencing. Methods We collected fecal samples from children with allergic asthma (n = 23) and allergic rhinitis (n = 18), and healthy control (n = 19). The gut microbiota of specimens was analyzed by high-throughput metagenomic shotgun gene sequencing. Results The intestinal microbiota of children with allergic asthma and allergic rhinitis was characterized by increased microbial richness and diversity. Simpson and Shannon were significantly elevated in children with allergic asthma. Principal coordinates analysis (PCoA) showed that the gut microbial communities cluster patterns of children with asthma or rhinitis were significantly different from those of healthy controls. However, no significant difference was found between asthma group and rhinitis group At the phylum level, higher relative abundance of Firmicutes was found in the allergic rhinitis group and allergic asthma group, while the level of Bacteroidetes was significantly lower. At the genus level, Corynebacterium, Streptococcus, Dorea, Actinomyces, Bifidobacterium, Blautia, and Rothia were significantly enriched in the allergic asthma group. Finally, a random forest classifier model selected 16 general signatures to discriminate the allergic asthma group from the healthy control group. Conclusion In conclusion, children in the allergic rhinitis group and allergic asthma group had altered gut microbiomes in comparison with the healthy control group. Compared to healthy children, the gut microbiome in children with allergic diseases has higher pro-inflammatory potential and increased production of pro-inflammatory molecules.
Collapse
Affiliation(s)
- Jinyi Wan
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
- Department of Pediatric Internal Medicine, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, 317000, People’s Republic of China
| | - Jingjing Song
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Qingqing Lv
- Department of Pediatric Internal Medicine, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, 317000, People’s Republic of China
| | - Hui Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Qiangwei Xiang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Huan Dai
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Hang Zheng
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Xixi Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| | - Weixi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, 325027, People’s Republic of China
| |
Collapse
|
40
|
Kuijer EJ, Steenbergen L. The microbiota-gut-brain axis in hippocampus-dependent learning and memory: current state and future challenges. Neurosci Biobehav Rev 2023; 152:105296. [PMID: 37380040 DOI: 10.1016/j.neubiorev.2023.105296] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 05/15/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
A fundamental shift in neuroscience suggests bidirectional interaction of gut microbiota with the healthy and dysfunctional brain. This microbiota-gut-brain axis has mainly been investigated in stress-related psychopathology (e.g. depression, anxiety). The hippocampus, a key structure in both the healthy brain and psychopathologies, is implicated by work in rodents that suggests gut microbiota substantially impact hippocampal-dependent learning and memory. However, understanding microbiota-hippocampus mechanisms in health and disease, and translation to humans, is hampered by the absence of a coherent evaluative approach. We review the current knowledge regarding four main gut microbiota-hippocampus routes in rodents: through the vagus nerve; via the hypothalamus-pituitary-adrenal-axis; by metabolism of neuroactive substances; and through modulation of host inflammation. Next, we suggest an approach including testing (biomarkers of) the four routes as a function of the influence of gut microbiota (composition) on hippocampal-dependent (dys)functioning. We argue that such an approach is necessary to proceed from the current state of preclinical research to beneficial application in humans to optimise microbiota-based strategies to treat and enhance hippocampal-dependent memory (dys)functions.
Collapse
Affiliation(s)
- Eloise J Kuijer
- Leiden University Medical Centre, Leiden, the Netherlands; Department of Life Sciences, University of Bath, United Kingdom.
| | - Laura Steenbergen
- Clinical Psychology Unit, Leiden University & Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| |
Collapse
|
41
|
Choi SH, Eom JY, Kim HJ, Seo W, Kwun HJ, Kim DK, Kim J, Cho YE. Aloe-derived nanovesicles attenuate inflammation and enhance tight junction proteins for acute colitis treatment. Biomater Sci 2023; 11:5490-5501. [PMID: 37367827 DOI: 10.1039/d3bm00591g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent inflammatory disease of the digestive tract that causes pain and weight loss and also increases the risk of colon cancer. Inspired by the benefits of plant-derived nanovesicles and aloe, we herein report aloe-derived nanovesicles, including aloe vera-derived nanovesicles (VNVs), aloe arborescens-derived nanovesicles (ANVs), and aloe saponaria-derived nanovesicles (SNVs) and evaluate their therapeutic potential and molecular mechanisms in a dextran sulfate sodium (DSS)-induced acute experimental colitis mouse model. Aloe-derived nanovesicles not only facilitate markedly reduced DSS-induced acute colonic inflammation, but also enable the restoration of tight junction (TJ) and adherent junction (AJ) proteins to prevent gut permeability in DSS-induced acute colonic injury. These therapeutic effects are ascribed to the anti-inflammatory and anti-oxidant effects of aloe-derived nanovesicles. Therefore, aloe-derived nanovesicles are a safe treatment option for IBD.
Collapse
Affiliation(s)
- Sang-Hun Choi
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea.
| | - Jung-Young Eom
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Hyun-Jin Kim
- Department of Food and Nutrition, Andong National University, Andong 36729, Republic of Korea.
| | - Wonhyo Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyo-Jung Kwun
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Do-Kyun Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Jihoon Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea.
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong 36729, Republic of Korea.
| |
Collapse
|
42
|
Ma X, Kim JK, Shin YJ, Son YH, Lee DY, Park HS, Kim DH. Alleviation of Cognitive Impairment-like Behaviors, Neuroinflammation, Colitis, and Gut Dysbiosis in 5xFAD Transgenic and Aged Mice by Lactobacillus mucosae and Bifidobacterium longum. Nutrients 2023; 15:3381. [PMID: 37571319 PMCID: PMC10421059 DOI: 10.3390/nu15153381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Neuropsychiatric disorders including Alzheimer's disease (AD) may cause gut inflammation and dysbiosis. Gut inflammation-suppressing probiotics alleviate neuropsychiatric disorders. Herein, to understand whether anti-inflammatory probiotics Lactobacillus mucosae NK41 and Bifidobacterium longum NK46, which suppressed tumor necrosis factor (TNF)-α expression in lipopolysaccharide (LPS)-stimulated macrophages, could alleviate cognitive impairment, we first examined their effects on cognitive function, gut inflammation, and gut microbiota composition in 5xFAD-transgenic mice. Oral administration of NK41 or NK46 decreased cognitive impairment-like behaviors, hippocampal amyloid-β (Aβ), TNF-α and interleukin (IL)-1β expression, hippocampal NF-κB+Iba1+ cell population, and Aβ accumulation, while hippocampal brain-derived neurotropic factor (BDNF) and IL-10 expression and BDNF+NeuN+ cell population increased. They also decreased TNF-α and IL-1β expression and NF-κB+CD11c+ cell population in the colon. They also reduced fecal and blood LPS levels and gut Proteobacteria and Verrucomicrobia populations (including Akkkermansiaceae), which are positively associated with hippocampal TNF-α and fecal LPS levels and negatively correlated with hippocampal BDNF level. However, they increased Odoribactericeae, which positively correlated with BDNF expression level and TNF-α to IL-10 expression ratio. The combination of NK41 and NK46 (4:1, NKc), which potently inhibited TNF-α expression in LPS-stimulated macrophages, additively alleviated cognitive impairment-like behaviors in 5xFAD-transgenic or aged mice. NKc increased hippocampal BDNF+NeuN+ cell population and BDNF expression in 5xFAD-transgenic or aged mice, while hippocampal TNF-α and IL-1β expression decreased. NKc also decreased TNF-α and IL-1β expression in the colon and LPS levels in the blood and feces. These findings suggest that gut bacteria and its product LPS may be closely connected with occurrence of cognitive impairment and neuroinflammation and the combination of NK41 and NK46 can additively alleviate cognitive impairment and neuroinflammation by inducing NF-κB-suppressed BDNF expression and suppressing LPS-producing gut bacteria.
Collapse
Affiliation(s)
- Xiaoyang Ma
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jeon-Kyung Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- College of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Young-Hoo Son
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dong-Yun Lee
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee-Seo Park
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
43
|
Celebi O, Taghizadehghalehjoughi A, Celebi D, Mesnage R, Golokhvast KS, Arsene AL, Spandidos DA, Tsatsakis A. Effect of the combination of Lactobacillus acidophilus (probiotic) with vitamin K3 and vitamin E on Escherichia coli and Staphylococcus aureus: An in vitro pathogen model. Mol Med Rep 2023; 27:119. [PMID: 37144488 PMCID: PMC10196883 DOI: 10.3892/mmr.2023.13006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/16/2023] [Indexed: 05/06/2023] Open
Abstract
The gut microbiota plays a key role in maintaining health and regulating the host's immune response. The use of probiotics and concomitant vitamins can increase mucus secretion by improving the intestinal microbial population and prevent the breakdown of tight junction proteins by reducing lipopolysaccharide concentration. Changes in the intestinal microbiome mass affect multiple metabolic and physiological functions. Studies on how this microbiome mass and the regulation in the gastrointestinal tract are affected by probiotic supplements and vitamin combinations have attracted attention. The current study evaluated vitamins K and E and probiotic combinations effects on Escherichia coli and Staphylococcus aureus. Minimal inhibition concentrations of vitamins and probiotics were determined. In addition, inhibition zone diameters, antioxidant activities and immunohistochemical evaluation of the cell for DNA damage were performed to evaluate the effects of vitamins and probiotics. At the specified dose intervals, L. acidophilus and vitamin combinations inhibit the growth of Escherichia coli and Staphylococcus aureus. It could thus contribute positively to biological functions by exerting immune system‑strengthening activities.
Collapse
Affiliation(s)
- Ozgur Celebi
- Department of Medical Microbiology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | | | - Demet Celebi
- Department of Microbiology, Faculty of Veterinary Medicine, Ataturk University, 25240 Erzurum, Turkey
- Vaccine Application and Development Center, Ataturk University, 25240 Erzurum, Turkey
| | - Robin Mesnage
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London WC2R 2LS, United Kingdom
| | | | - Andreea Letitia Arsene
- Department of General and Pharmaceutical Microbiology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
44
|
Khatoon S, Kalam N, Rashid S, Bano G. Effects of gut microbiota on neurodegenerative diseases. Front Aging Neurosci 2023; 15:1145241. [PMID: 37323141 PMCID: PMC10268008 DOI: 10.3389/fnagi.2023.1145241] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/12/2023] [Indexed: 06/17/2023] Open
Abstract
A progressive degradation of the brain's structure and function, which results in a reduction in cognitive and motor skills, characterizes neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). The morbidity linked to NDs is growing, which poses a severe threat to human being's mental and physical ability to live well. The gut-brain axis (GBA) is now known to have a crucial role in the emergence of NDs. The gut microbiota is a conduit for the GBA, a two-way communication system between the gut and the brain. The myriad microorganisms that make up the gut microbiota can affect brain physiology by transmitting numerous microbial chemicals from the gut to the brain via the GBA or neurological system. The synthesis of neurotransmitters, the immunological response, and the metabolism of lipids and glucose have all been demonstrated to be impacted by alterations in the gut microbiota, such as an imbalance of helpful and harmful bacteria. In order to develop innovative interventions and clinical therapies for NDs, it is crucial to comprehend the participation of the gut microbiota in these conditions. In addition to using antibiotics and other drugs to target particular bacterial species that may be a factor in NDs, this also includes using probiotics and other fecal microbiota transplantation to maintain a healthy gut microbiota. In conclusion, the examination of the GBA can aid in understanding the etiology and development of NDs, which may benefit the improvement of clinical treatments for these disorders and ND interventions. This review indicates existing knowledge about the involvement of microbiota present in the gut in NDs and potential treatment options.
Collapse
Affiliation(s)
- Saima Khatoon
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Nida Kalam
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gulnaz Bano
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
45
|
Ma X, Shin YJ, Park HS, Jeong JW, Kim JY, Shim JJ, Lee JL, Kim DH. Lactobacillus casei and Its Supplement Alleviate Stress-Induced Depression and Anxiety in Mice by the Regulation of BDNF Expression and NF-κB Activation. Nutrients 2023; 15:nu15112488. [PMID: 37299451 DOI: 10.3390/nu15112488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Stress-induced depression and anxiety (DA) are closely connected to gastrointestinal inflammation and dysbiosis, which can suppress brain-derived neurotrophic factor (BDNF) in the brain. Herein, we isolated the BDNF expression-inducing probiotics Lactobacillus casei HY2782 and Bifidobacterium lactis HY8002 in lipopolysaccharide-stimulated SH-SY5Y cells. Then, we investigated the effects of HY2782, HY8002, anti-inflammatory L-theanine, and their supplement (PfS, probiotics-fermented L-theanine-containing supplement) on DA in mice exposed to restraint stress (RS) or the fecal microbiota of patients with inflammatory bowel disease and depression (FMd). Oral administration of HY2782, HY8002, or L-theanine alleviated RS-induced DA-like behaviors. They also decreased RS-induced hippocampal interleukin (IL)-1β and IL-6 levels, as well as NF-κB-positive cell numbers, blood corticosterone level, and colonic IL-1β and IL-6 levels and NF-κB-positive cell numbers. L-theanine more potently suppressed DA-like behaviors and inflammation-related marker levels than probiotics. However, these probiotics more potently increased RS-suppressed hippocampal BDNF level and BDNF+NeuN+ cell numbers than L-theanine. Furthermore, HY2782 and HY8002 suppressed RS-increased Proteobacteria and Verrucomicrobia populations in gut microbiota. In particular, they increased Lachnospiraceae and Lactobacillacease populations, which are closely positively associated with hippocampal BDNF expression, and suppressed Sutterellaceae, Helicobacteriaceae, Akkermansiaceae, and Enterobacteriaceae populations, which are closely positively associated with hippocampal IL-1β expression. HY2782 and HY8002 potently alleviated FMd-induced DA-like behaviors and increased FMd-suppressed BDNF, serotonin levels, and BDNF-positive neuronal cell numbers in the brain. They alleviated blood corticosterone level and colonic IL-1β α and IL-6 levels. However, L-theanine weakly, but not significantly, alleviated FMd-induced DA-like behaviors and gut inflammation. BDNF expression-inducing probiotic (HY2782, HY8002, Streptococcus thermophilus, and Lactobacillus acidophilus)-fermented and anti-inflammatory L-theanine-containing supplement PfS alleviated DA-like behaviors, inflammation-related biomarker levels, and gut dysbiosis more than probiotics or L-theanine. Based on these findings, a combination of BDNF expression-inducing probiotics with anti-inflammatory L-theanine may additively or synergistically alleviate DA and gut dysbiosis by regulating gut microbiota-mediated inflammation and BDNF expression, thereby being beneficial for DA.
Collapse
Affiliation(s)
- Xiaoyang Ma
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee-Seo Park
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji-Woong Jeong
- R&BD Department, hy Co., Ltd., Seoul 06530, Republic of Korea
| | - Joo Yun Kim
- R&BD Department, hy Co., Ltd., Seoul 06530, Republic of Korea
| | - Jae-Jung Shim
- R&BD Department, hy Co., Ltd., Seoul 06530, Republic of Korea
| | - Jung-Lyoul Lee
- R&BD Department, hy Co., Ltd., Seoul 06530, Republic of Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- PBLbiolab, Seoul 02823, Republic of Korea
| |
Collapse
|
46
|
Jantsch J, Rodrigues FDS, Fraga GDF, Eller S, Silveira AK, Moreira JCF, Giovernardi M, Guedes RP. Calorie restriction mitigates metabolic, behavioral and neurochemical effects of cafeteria diet in aged male rats. J Nutr Biochem 2023:109371. [PMID: 37169228 DOI: 10.1016/j.jnutbio.2023.109371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/13/2023]
Abstract
Besides metabolic dysfunctions, elderly individuals with obesity are at special risk of developing cognitive decline and psychiatric disturbances. Restricted calorie consumption could be an efficient strategy to improve metabolic function after obesity. However, its effects on anxiety-like behaviors in aged rats submitted to an obesogenic diet are unknown. For this purpose, 42 Wistar rats (18-months old) were divided into four groups: Control (CT), calorie restriction (CR), cafeteria diet (CAF), and CAF+CR (CAF/CR). CT, CR, and CAF groups received the diets for 8 weeks. CAF/CR group was submitted to the CAF menu for 7 weeks and then switched to a standard diet on a CR regimen, receiving 30% lower calories than consumed by the CT, for another 5 weeks. CAF's menu consisted of ultra-processed foods such as cookies, chocolate, sausage, and bologna. Body weight, visceral adiposity, and biochemical blood analysis were evaluated for obesity diagnosis. The profile of gut microbiota was investigated, along with circulating levels of LPS. Neurochemical parameters, such as neurotransmitter levels, were dosed. Anxiety-like behaviors were accessed using open field (OF) and elevated plus maze (EPM) tests. As expected, CR reduced weight gain and improved glucose homeostasis. Gut microbiome disturbance was found in CAF-fed animals accompanied by increased levels of LPS. However, CR after CAF mitigated several harmful responses. The obesogenic diet triggered anxiety-like manifestations in the OF and EPM tests that were not evidenced in the CAF/CR group. These findings indicate that CR can be a promising strategy for the neurological effects of obesity in aged rats.
Collapse
Affiliation(s)
- Jeferson Jantsch
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| | - Fernanda da Silva Rodrigues
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| | - Gabriel de Farias Fraga
- Biomedical Science Undergraduate Program, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| | - Sarah Eller
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| | - Alexandre Kleber Silveira
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Brazil
| | - José Cláudio Fonseca Moreira
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 90035-003, Brazil
| | - Márcia Giovernardi
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil
| | - Renata Padilha Guedes
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil.
| |
Collapse
|
47
|
Zhang L, Wang F, Jia L, Yan H, Gao L, Tian Y, Su X, Zhang X, Lv C, Ma Z, Xue Y, Lin Q, Wang K. Edwardsiella piscicida infection reshapes the intestinal microbiome and metabolome of big-belly seahorses: mechanistic insights of synergistic actions of virulence factors. Front Immunol 2023; 14:1135588. [PMID: 37215132 PMCID: PMC10193291 DOI: 10.3389/fimmu.2023.1135588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Uncovering the mechanism underlying the pathogenesis of Edwardsiella piscicida-induced enteritis is essential for global aquaculture. In the present study, we identified E. piscicida as a lethal pathogen of the big-belly seahorse (Hippocampus abdominalis) and revealed its pathogenic pattern and characteristics by updating our established bacterial enteritis model and evaluation system. Conjoint analysis of metagenomic and metabolomic data showed that 15 core virulence factors could mutually coordinate the remodeling of intestinal microorganisms and host metabolism and induce enteritis in the big-belly seahorse. Specifically, the Flagella, Type IV pili, and Lap could significantly increase the activities of the representative functional pathways of both flagella assembly and bacterial chemotaxis in the intestinal microbiota (P < 0.01) to promote pathogen motility, adherence, and invasion. Legiobactin, IraAB, and Hpt could increase ABC transporter activity (P < 0.01) to compete for host nutrition and promote self-replication. Capsule1, HP-NAP, and FarAB could help the pathogen to avoid phagocytosis. Upon entering epithelial cells and phagocytes, Bsa T3SS and Dot/Icm could significantly increase bacterial secretion system activity (P < 0.01) to promote the intracellular survival and replication of the pathogen and the subsequent invasion of the neighboring tissues. Finally, LPS3 could significantly increase lipopolysaccharide biosynthesis (P < 0.01) to release toxins and kill the host. Throughout the pathogenic process, BopD, PhoP, and BfmRS significantly activated the two-component system (P < 0.01) to coordinate with other VFs to promote deep invasion. In addition, the levels of seven key metabolic biomarkers, Taurine, L-Proline, Uridine, L-Glutamate, Glutathione, Xanthosine, and L-Malic acid, significantly decreased (P < 0.01), and they can be used for characterizing E. piscicida infection. Overall, the present study systematically revealed how a combination of virulence factors mediate E. piscicida-induced enteritis in fish for the first time, providing a theoretical reference for preventing and controlling this disease in the aquaculture of seahorses and other fishes.
Collapse
Affiliation(s)
- Lele Zhang
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Fang Wang
- Department of Pathology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Longwu Jia
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Hansheng Yan
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Longkun Gao
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Yanan Tian
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Xiaolei Su
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Xu Zhang
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Chunhui Lv
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Zhenhao Ma
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Yuanyuan Xue
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| | - Qiang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Kai Wang
- School of Agriculture, Ludong University, Yantai, China
- Research and Development Center of Science, Technology and Industrialization of Seahorses, Ludong University, Yantai, China
| |
Collapse
|
48
|
Shin YJ, Lee DY, Kim JY, Heo K, Shim JJ, Lee JL, Kim DH. Effect of fermented red ginseng on gut microbiota dysbiosis- or immobilization stress-induced anxiety, depression, and colitis in mice. J Ginseng Res 2023; 47:255-264. [PMID: 36926604 PMCID: PMC10014181 DOI: 10.1016/j.jgr.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/06/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
Background Red ginseng (RG) alleviates psychiatric disorders. Fermented red ginseng (fRG) alleviates stress-induced gut inflammation. Gut dysbiosis causes psychiatric disorders with gut inflammation. To understand the gut microbiota-mediated action mechanism of RG and fRG against anxiety/depression (AD), we investigated the effects of RG, fRG, ginsenoside Rd, and 20(S)-β-D-glucopyranosyl protopanaxadiol (CK) on gut microbiota dysbiosis-induced AD and colitis in mice. Methods Mice with AD and colitis were prepared by exposing to immobilization stress (IS) or transplanting the feces of patients with ulcerative colitis and depression (UCDF). AD-like behaviors were measured in the elevated plus maze, light/dark transition, forced swimming, and tail suspension tests. Results Oral gavage of UCDF increased AD-like behaviors and induced neuroinflammation, gastrointestinal inflammation, and gut microbiota fluctuation in mice. Oral administration of fRG or RG treatment reduced UCDF-induced AD-like behaviors, hippocampal and hypothalamic IL-6 expression, and blood corticosterone level, whereas UCDF-suppressed hippocampal BDNF+NeuN+ cell population and dopamine and hypothalamic serotonin levels increased. Furthermore, their treatments suppressed UCDF-induced colonic inflammation and partially restored UCDF-induced gut microbiota fluctuation. Oral administration of fRG, RG, Rd, or CK also decreased IS-induced AD-like behaviors, blood IL-6 and corticosterone and colonic IL-6 and TNF-α levels, and gut dysbiosis, while IS-suppressed hypothalamic dopamine and serotonin levels increased. Conclusion Oral gavage of UCDF caused AD, neuroinflammation, and gastrointestinal inflammation in mice. fRG mitigated AD and colitis in UCDF-exposed mice by the regulation of the microbiota-gut-brain axis and IS-exposed mice by the regulation of the hypothalamic-pituitary-adrenal axis.
Collapse
Key Words
- AD, anxiety/depression
- BDNF, brain-derived neurotropic factor
- CK, 20(S)-β-D-glucopyranosyl protopanaxadiol
- ELISA, enzyme-linked immunoassay
- EPMT, elevated plus maze task
- FMT, fecal microbiota transplantation
- FST, forced swimming test
- HPA, hypothalamic–pituitary–adrenal
- IL, interleukin
- IS, immobilization stress
- LDTT, light/dark transition task
- RG, red ginseng
- TNBS, 2,4,6-trinitrobenzenesulfonic acid
- TNF, tumor necrosis factor
- TST, tail suspension test
- UCD, ulcerative colitis and depression
- UCDF, the feces of patients with ulcerative colitis and depression
- depression
- fRG, fermented red ginseng
- fermentation
- ginsenoside Rd
- gut microbiota
- red ginseng
Collapse
Affiliation(s)
- Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Dong-Yun Lee
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Joo Yun Kim
- R&BD Center, hy Co.Ltd., Yongin, Republic of Korea
| | - Keon Heo
- R&BD Center, hy Co.Ltd., Yongin, Republic of Korea
| | | | | | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
49
|
Alleviation of Porphyromonas gingivalis or Its Extracellular Vesicles Provoked Periodontitis and Cognitive Impairment by Lactobacillus pentosus NK357 and Bifidobacterium bifidum NK391. Nutrients 2023; 15:nu15051068. [PMID: 36904068 PMCID: PMC10005711 DOI: 10.3390/nu15051068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Porphyromonas gingivalis (PG) is closely involved in the outbreak of periodontitis and cognitive impairment (CI). Herein, we examined the effects of anti-inflammatory Lactobacillus pentosus NK357 and Bifidobacterium bifidum NK391 on PG- or its extracellular vesicles (pEVs)-induced periodontitis and CI in mice. Oral administration of NK357 or NK391 significantly decreased PG-induced tumor necrosis factor (TNF)-α, receptor activator of nuclear factors κB (RANK), and RANK ligand (RANKL) expression, gingipain (GP)+lipopolysaccharide (LPS)+ and NF-κB+CD11c+ populations, and PG 16S rDNA level in the periodontal tissue. Their treatments also suppressed PG-induced CI -like behaviors, TNF-α expression and NF-κB-positive immune cells in the hippocampus and colon, while PG-suppressed hippocampal BDNF and N-methyl-D-aspartate receptor (NMDAR) expression increased. The combination of NK357 and NK391 additively alleviated PG- or pEVs-induced periodontitis, neuroinflammation, CI-like behaviors, colitis, and gut microbiota dysbiosis and increased PG- or pEVs-suppressed BDNF and NMDAR expression in the hippocampus. In conclusion, NK357 and NK391 may alleviate periodontitis and dementia by regulating NF-κB, RANKL/RANK, and BDNF-NMDAR signaling and gut microbiota.
Collapse
|
50
|
Yun SW, Park HS, Shin YJ, Ma X, Han MJ, Kim DH. Lactobacillus gasseri NK109 and Its Supplement Alleviate Cognitive Impairment in Mice by Modulating NF-κB Activation, BDNF Expression, and Gut Microbiota Composition. Nutrients 2023; 15:nu15030790. [PMID: 36771498 PMCID: PMC9921112 DOI: 10.3390/nu15030790] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/09/2023] Open
Abstract
Aging-related gut microbiota dysbiosis initiates gut inflammation and microbiota dysbiosis, which induce the occurrence of psychiatric disorders including dementia. The alleviation of gut microbiota dysbiosis by probiotics is suggested to be able to alleviate psychiatric disorders including cognitive impairment (CI). Therefore, to understand how probiotics could alleviate CI, we examined the effects of anti-inflammatory Lactobacillus gasseri NK109 and its supplement (NS, mixture of NK109 and soybean embryo ethanol extract) on cognitive function in aged (Ag), 5XFAD transgenic (Tg), or mildly cognition-impaired adult fecal microbiota (MCF)-transplanted mice. Oral administration of NK109 or NS decreased CI-like behaviors in Ag mice. Their treatments suppressed TNF-α and p16 expression and NF-κB-activated cell populations in the hippocampus and colon, while BDNF expression was induced. Moreover, they partially shifted the β-diversity of gut microbiota in Ag mice to those of young mice: they decreased Bifidobacteriaceae, Lactobacillaceae, and Helicobacteriaceae populations and increased Rikenellaceae and Prevotellaceae populations. Oral administration of NK109 or NS also reduced CI-like behaviors in Tg mice. Their treatments induced BDNF expression in the hippocampus, decreased hippocampal TNF-α and Aβ expression and hippocampal and colonic NF-κB-activated cell populations. NK109 and NS partially shifted the β-diversity of gut microbiota in Tg mice: they decreased Muribaculaceae and Rhodospiraceae populations and increased Helicobacteriaceae population. Oral administration of NK109 or NS decreased MCF transplantation-induced CI-like behaviors in mice. NK109 and NS increased hippocampal BDNF expression, while hippocampal and colonic TNF-α expression and NF-κB-activated cell populations decreased. These findings suggest that dementia can fluctuate the gut microbiota composition and NK109 and its supplement NS can alleviate CI with systemic inflammation by inducing BDNF expression and suppressing NF-κB activation and gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Soo-Won Yun
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee-Seo Park
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Xiaoyang Ma
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Myung Joo Han
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (M.J.H.); (D.-H.K.); Tel.: +82-2-961-0553 (M.J.H.); +82-2-961-0374 (D.-H.K.)
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (M.J.H.); (D.-H.K.); Tel.: +82-2-961-0553 (M.J.H.); +82-2-961-0374 (D.-H.K.)
| |
Collapse
|