1
|
Mahanta AK, Chaulagain B, Gothwal A, Singh J. Engineered PLGA Nanoparticles for Brain-Targeted Codelivery of Cannabidiol and pApoE2 through the Intranasal Route for the Treatment of Alzheimer's Disease. ACS Biomater Sci Eng 2025. [PMID: 40380910 DOI: 10.1021/acsbiomaterials.5c00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Abstract
Neuroinflammation induced by the accumulation of amyloid beta plaques expedites the progression of Alzheimer's disease (AD). Reducing Aβ plaques and associated neuroinflammation could potentially help to delay the progression of AD. Cannabidiol (CBD) is well-known for its antioxidant, anti-inflammatory, and neuroprotective nature, and the ApoE2 is effective in binding and clearing Aβ plaques in the brain. Therefore, codelivery of CBD and pApoE2 to the brain would be a promising therapeutic approach in developing effective therapeutics against AD. This research aims to design a nonviral delivery agent that delivers both drugs and genes to the brain through a noninvasive intranasal route. We have developed mPEG-PLGA nanoparticles coated with mannose, a brain-targeting ligand, to deliver CBD and pApoE2. The designed CBD-loaded coated nanoparticles showed an average diameter of 179.3 ± 4.57 nm and a zeta potential of 30.3 ± 6.45 mV. The coated nanoparticles prolonged the CBD release and showed a 93% release of its payload in 30 days. CBD-loaded nanoparticles, as compared to the free CBD, significantly reduced lipopolysaccharide and amyloid beta-induced inflammation in immortalized microglia cells. Cytotoxicity of the designed nanoparticles was assessed against brain endothelial cells (bEND.3) and found to be nontoxic in nature. The mannose-conjugated chitosan-coated nanoparticles were cationic and able to bind with the pApoE2, protecting the encapsulated pApoE2 from enzymatic degradation. Quantitative in vitro transfection efficiency study in primary astrocytes and primary neurons revealed that the ApoE2 expression level is significantly (P < 0.0001) higher for mPLGA-CBD-MC/pApoE2 than the control. The ApoE2 expression level in the brain of C57BL6/J mice was significantly (P < 0.0001) increased after intranasal administration of mPLGA-CBD-MC/pApoE2. Henceforth, the mannose-conjugated chitosan-coated mPLGA nanoparticles could serve as a nonviral delivery system to deliver both drugs and genes to the brain through the intranasal route for the management of AD.
Collapse
Affiliation(s)
- Arun Kumar Mahanta
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| | - Bivek Chaulagain
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| | - Avinash Gothwal
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| |
Collapse
|
2
|
Yang X, Yao K, Zhang M, Zhang W, Zu H. New insight into the role of altered brain cholesterol metabolism in the pathogenesis of AD: A unifying cholesterol hypothesis and new therapeutic approach for AD. Brain Res Bull 2025; 224:111321. [PMID: 40164234 DOI: 10.1016/j.brainresbull.2025.111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
The dysregulation of cholesterol metabolism homeostasis has been universally suggested in the aeotiology of Alzheimer's disease (AD). Initially, studies indicate that alteration of serum cholesterol level might contribute to AD. However, because blood-brain barrier impedes entry of plasma cholesterol, brain cells are not directly influenced by plasma cholesterol. Furthermore, mounting evidences suggest a link between alteration of brain cholesterol metabolism and AD. Interestingly, Amyloid-β proteins (Aβ) can markedly inhibit cellular cholesterol biosynthesis and lower cellular cholesterol content in cultured cells. And Aβ overproduction/overload induces a significant decrease of brain cellular cholesterol content in familial AD (FAD) animals. Importantly, mutations or polymorphisms of genes related to brain cholesterol transportation, such as ApoE4, ATP binding cassette (ABC) transporters, low-density lipoprotein receptor (LDLR) family and Niemann-Pick C disease 1 or 2 (NPC1/2), obviously lead to decreased brain cholesterol transport, resulting in brain cellular cholesterol loss, which could be tightly associated with AD pathological impairments. Additionally, accumulating data show that there are reduction of brain cholesterol biosynthesis and/or disorder of brain cholesterol trafficking in a variety of sporadic AD (SAD) animals and patients. Collectively, compelling evidences indicate that FAD and SAD could share one common and overlapping neurochemical mechanism: brain neuronal/cellular cholesterol deficiency. Therefore, accumulated evidences strongly support a novel hypothesis that deficiency of brain cholesterol contributes to the onset and progression of AD. This review highlights the pivotal role of brain cholesterol deficiency in the pathogenesis of AD. The hypothesis offers valuable insights for the future development of AD treatment.
Collapse
Affiliation(s)
- Xiaobo Yang
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China; Department of Neurology, Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200237, China
| | - Kai Yao
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Mengqi Zhang
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Wenbin Zhang
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China
| | - Hengbing Zu
- Department of Neurology, Jinshan Hospital affiliated to Fudan University, Shanghai 201508, China.
| |
Collapse
|
3
|
Barral S, Yang Z, Phillips N, Barber RC, Brickman AM, Honig LS, Cieza B, Reyes‐Dumeyer D, Mayeux R, Rajabli F, Cuccaro ML, Vance JM, Arango SM, Samper‐Ternent R, Obregon AM, Montesinos R, Soto‐Añari M, Duran JC, Cusicanqui M, Velazquez IZJ, Marca V, Illanes‐Manrique M, Cornejo‐Olivas M, Pericak‐Vance M, Wong R, O'Bryant S, Custodio N, Tosto G. APOE and Alzheimer's disease and related dementias risk among 12,221 Hispanics/Latinos. Alzheimers Dement 2025; 21:e70138. [PMID: 40219824 PMCID: PMC11992591 DOI: 10.1002/alz.70138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Effect of apolipoprotein E (APOE) on Alzheimer's disease and related dementias (ADRD) risk is heterogeneous across populations, with scarce data on Hispanics/Latinos. METHODS APOE genotype was studied in 12,221 Hispanics/Latinos (per cohort and via metanalysis): Caribbean-Hispanics, Mexicans, Mexican-Americans, and Peruvians/Bolivians. A subsample had longitudinal assessment and plasma p-tau. We tested the modifying effects of global and local ancestries. Results were replicated in an independent Peruvian cohort and brain samples. RESULTS APOE ε4 effect was strongest in Peruvians/Bolivians (odds ratio [OR] = 6.13, 95% confidence interval [CI] = 2.71-13.83), followed by Mexicans (OR = 4.31, 95% CI = 1.58-11.74), Mexican-Americans (OR = 3.06, 95% CI = 2.04-4.59), and Caribbean-Hispanics (OR = 2.22, 95% CI = 1.99-2.48). Meta-analyses showed OR = 2.32 (95% CI = 2.09-2.57) and OR = 0.81 (95% CI = 0.68-0.97) for the ε4 and ε2 allele, respectively. The APOE ε4 effect was replicated independently in Peruvians (OR = 5.06, 95% CI = 2.48-10.70). ε4 carriers displayed higher ADRD conversions and p-tau levels. Global and local ancestries did not modify ADRD risk, and they were associated with Braak stage. DISCUSSION APOE shows a heterogeneous effect on ADRD risk in our Hispanics/Latinos sample, the largest to date. HIGHLIGHTS The apolipoprotein E (APOE) ε4 effect is stronger in Peruvians/Bolivians than in other Hispanic/Latino groups. The strong APOE effect size in Peruvians and Bolivians was replicated in a second independent Peruvian cohort. Meta-analysis for ε4 and ε2 confirmed a significant association with Alzheimer's disease and related dementias (ADRD). Global and local ancestry do not modify the association between APOE genotype and ADRD.
Collapse
Affiliation(s)
- Sandra Barral
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
- The Gertrude H. Sergievsky Center, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
- Department of Neurology, Vagelos College of Physicians and SurgeonsColumbia University, and the New York Presbyterian HospitalNew YorkNew YorkUSA
| | - Zikun Yang
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
| | - Nicole Phillips
- Department of MicrobiologyImmunology and Genetics UNT Health Science Center Fort WorthFort WorthTexasUSA
| | - Robert C. Barber
- Institute for Translational Research and Department of Family MedicineUNT Health Science CenterFort WorthTexasUSA
| | - Adam M. Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
- The Gertrude H. Sergievsky Center, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
- Department of Neurology, Vagelos College of Physicians and SurgeonsColumbia University, and the New York Presbyterian HospitalNew YorkNew YorkUSA
| | - Lawrence S. Honig
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
- The Gertrude H. Sergievsky Center, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
- Department of Neurology, Vagelos College of Physicians and SurgeonsColumbia University, and the New York Presbyterian HospitalNew YorkNew YorkUSA
| | - Basilio Cieza
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
| | - Dolly Reyes‐Dumeyer
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
- The Gertrude H. Sergievsky Center, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
- Department of Neurology, Vagelos College of Physicians and SurgeonsColumbia University, and the New York Presbyterian HospitalNew YorkNew YorkUSA
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
- The Gertrude H. Sergievsky Center, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
- Department of Neurology, Vagelos College of Physicians and SurgeonsColumbia University, and the New York Presbyterian HospitalNew YorkNew YorkUSA
| | - Farid Rajabli
- John P. Hussman Institute for Human Genomics, Dr. John Macdonald Foundation Department of Human GeneticsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Michael L. Cuccaro
- John P. Hussman Institute for Human Genomics, Dr. John Macdonald Foundation Department of Human GeneticsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Jeffery M. Vance
- John P. Hussman Institute for Human Genomics, Dr. John Macdonald Foundation Department of Human GeneticsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Silvia Mejia Arango
- Institute of Neuroscience, School of MedicineUniversity of Texas Rio Grande ValleyHarlingenTexasUSA
| | | | | | - Rosa Montesinos
- Unidad de diagnóstico de deterioro cognitivo y prevención de demenciaInstituto Peruano de NeurocienciasLince LimaPerú
| | | | | | | | - Ivonne Z. Jimenez Velazquez
- Department of Medicine, Medical Sciences CampusUniversity of Puerto Rico School of MedicineSan JuanPuerto Rico
| | - Victoria Marca
- Neurogenetics Working GroupUniversidad Cientifica del SurLimaPeru
| | | | - Mario Cornejo‐Olivas
- Neurogenetics Working GroupUniversidad Cientifica del SurLimaPeru
- Neurogenetics Research CenterInstituto Nacional de Ciencias NeurologicasLimaPeru
| | - Margaret Pericak‐Vance
- John P. Hussman Institute for Human Genomics, Dr. John Macdonald Foundation Department of Human GeneticsUniversity of Miami Miller School of MedicineMiamiFloridaUSA
| | - Rebeca Wong
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas HealthSan AntonioTexasUSA
| | - Sid O'Bryant
- Department of MicrobiologyImmunology and Genetics UNT Health Science Center Fort WorthFort WorthTexasUSA
| | - Nilton Custodio
- Unidad de diagnóstico de deterioro cognitivo y prevención de demenciaInstituto Peruano de NeurocienciasLince LimaPerú
- Escuela Profesional de Medicina HumanaUniversidad Privada San Juan BautistaChorrillosPeru
| | - Giuseppe Tosto
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
- The Gertrude H. Sergievsky Center, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
- Department of Neurology, Vagelos College of Physicians and SurgeonsColumbia University, and the New York Presbyterian HospitalNew YorkNew YorkUSA
| |
Collapse
|
4
|
Blum EG, Edmunds KJ, Breidenbach B, Cook N, Driscoll I, Lose SR, Bendlin BB, Ma Y, Christian B, Betthauser TJ, Sager M, Asthana S, Johnson SC, Cook DB, Okonkwo OC. Physical activity and APOE neuropathology score modify the association of age and [ 11C]-PiB-PET amyloid burden in a cohort enriched with risk for Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.01.25323157. [PMID: 40093261 PMCID: PMC11908305 DOI: 10.1101/2025.03.01.25323157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Background Physical activity (PA) is a protective factor against amyloid-β (Aβ) accumulation in adults at risk for Alzheimer's disease (AD). This association, however, may differ by apolipoprotein E (APOE) genotype. This work examines interactions between age, PA, and neuropathology-based genetic risk for AD (APOE np ) on Aβ burden in cortical regions sensitive to its accumulation. Materials and Methods Included were 388 cognitively unimpaired, older (mean age ± SD = 68.10 ± 7.09; 66% female) participants from the Wisconsin Registry for Alzheimer's Prevention (WRAP) study. The cohort was enriched with both family history of AD at enrollment and a higher overall prevalence of APOE ε4 allele carriage than typically observed in the general population. PA was assessed using a self-reported questionnaire. Aβ burden was measured using Pittsburg Compound B (11C-PiB) PET imaging, which allowed us to derive volume corrected distribution volume ratio (DVR) maps from nine bilateral regions of interest (ROIs) and a global cortical composite score. Linear regression models examined the interactions between age, PA, and APOE np on Aβ burden. Finally, APOE np scores were aggregated according to estimated risk to illustrate the differential effects between active (weekly moderate PA ≥ 150 minutes) and inactive individuals. Results Three-way interactions (Age × PA × APOE np ) were significant (all P's ≤ 0.05) for the global cortical composite and six of the examined ROIs (the PPC, ACC, mOFC, SMG, MTG, and STG). Models stratified by APOE np and PA showed greater levels of age-related Aβ accumulation in each of these ROIs, with the greatest effects in inactive participants with high APOE np scores. Conclusion Individuals with high APOE np scores who concomitantly engage in suboptimal weekly moderate-intensity PA have greater Aβ burden. These findings underscore how both PA and APOE haplotype play intersect in modifying age-related Aβ burden in brain regions susceptible to its deposition in cognitively unimpaired, older adults at risk for AD.
Collapse
Affiliation(s)
- Eli G Blum
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Kyle J Edmunds
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Institute of Biomedical and Neural Engineering (IBNE), Reykjavík University, 101 Reykjavík, Iceland
| | - Brianne Breidenbach
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Noah Cook
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, 63110
| | - Ira Driscoll
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Sarah R Lose
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Yue Ma
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Bradley Christian
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Tobey J Betthauser
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Mark Sager
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Dane B Cook
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705
- Department of Kinesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| | - Ozioma C Okonkwo
- Wisconsin Alzheimer's Disease Research Center and Department of Geriatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
- Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792
| |
Collapse
|
5
|
Wang S, Xiao L. Progress in AAV-Mediated In Vivo Gene Therapy and Its Applications in Central Nervous System Diseases. Int J Mol Sci 2025; 26:2213. [PMID: 40076831 PMCID: PMC11899905 DOI: 10.3390/ijms26052213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
As the blood-brain barrier (BBB) prevents molecules from accessing the central nervous system (CNS), the traditional systemic delivery of chemical drugs limits the development of neurological drugs. However, in recent years, innovative therapeutic strategies have tried to bypass the restriction of traditional drug delivery methods. In vivo gene therapy refers to emerging biopharma vectors that carry the specific genes and target and infect specific tissues; these infected cells and tissues then undergo fundamental changes at the genetic level and produce therapeutic proteins or substances, thus providing therapeutic benefits. Clinical and preclinical trials mainly utilize adeno-associated viruses (AAVs), lentiviruses (LVs), and other viruses as gene vectors for disease investigation. Although LVs have a higher gene-carrying capacity, the vector of choice for many neurological diseases is the AAV vector due to its safety and long-term transgene expression in neurons. Here, we review the basic biology of AAVs and summarize some key issues in recombinant AAV (rAAV) engineering in gene therapy research; then, we summarize recent clinical trials using rAAV treatment for neurological diseases and provide translational perspectives and future challenges on target selection.
Collapse
Affiliation(s)
- Shuming Wang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China;
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, South China Normal University, Guangzhou 510631, China
| | - Lin Xiao
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China;
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
6
|
Marizzoni M, Tournier BB, Chevalier C, Saleri S, Lathuilière A, Ceyzériat K, Paquis A, Park R, Troesch E, Cattaneo A, Millet P, Frisoni GB. Stools from a human APOEe2 donor reduces amyloid and tau pathology and increases neuroinflammation in a 3xTg AD mouse model. Front Aging Neurosci 2025; 17:1539067. [PMID: 40026419 PMCID: PMC11868276 DOI: 10.3389/fnagi.2025.1539067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Background The mechanisms underlying the protective effect of the e2 variant of the APOE gene (APOEe2) against Alzheimer's disease (AD) have not been elucidated. We altered the microbiota of 3xTgAD mice by fecal microbiota transplantation from a human APOEe2 donor (e2-FMT) and tested the effect of microbiota perturbations on brain AD pathology. Methods FMT of bacteria isolated from stools of untreated 3xTgAD mice (M-FMT) or e2-FMT were transplanted in 15-month-old 3xTgAD mice. FMT was done alone or in combination with antibiotic and proton-pump inhibitor following the Microbiota Transfer Therapy protocol (MTT). The effect of donor (M or e2) and transplantation protocol (FMT or MTT) on hippocampal amyloid, tau pathology and neuroinflammation were assessed at the end of the treatment. Results e2-FMT reduced amyloid, and tau pathology as well as increased neuroinflammation as compared with M-FMT. MTT was associated with reduced number of Aβ40+ plaques and tau pathology. Low levels of amyloid were associated with high levels of pro-inflammatory molecules in e2-FMT mice. These associations were partially attenuated by MTT. Conclusion Bacteria from a human APOEe2 donor reduced AD pathology and increased neuroinflammation in mice suggesting that the gut microbiota may be a mediator of the protective effect of APOEe2.
Collapse
Affiliation(s)
- Moira Marizzoni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Benjamin B. Tournier
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Claire Chevalier
- Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Samantha Saleri
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Aurélien Lathuilière
- Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Kelly Ceyzériat
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Geneva, Switzerland
| | - Arthur Paquis
- Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Rahel Park
- Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Emma Troesch
- Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Philippe Millet
- Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Giovanni B. Frisoni
- Memory Clinic and LANVIE-Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
7
|
Chew CS, Lee JY, Ng KY, Koh RY, Chye SM. Resilience mechanisms underlying Alzheimer's disease. Metab Brain Dis 2025; 40:86. [PMID: 39760900 DOI: 10.1007/s11011-024-01507-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 12/14/2024] [Indexed: 01/07/2025]
Abstract
Alzheimer's disease (AD) consists of two main pathologies, which are the deposition of amyloid plaque as well as tau protein aggregation. Evidence suggests that not everyone who carries the AD-causing genes displays AD-related symptoms; they might never acquire AD as well. These individuals are referred to as non-demented individuals with AD neuropathology (NDAN). Despite the presence of extensive AD pathology in their brain, it was found that NDAN had better cognitive function than was expected, suggesting that they were more resilient (better at coping) to AD due to differences in their brains compared to other demented or cognitively impaired patients. Thus, identification of the mechanisms underlying resilience is crucial since it represents a promising therapeutic strategy for AD. In this review, we will explore the molecular mechanisms underpinning the role of genetic and molecular resilience factors in improving resilience to AD. These include protective genes and proteins such as APOE2, BDNF, RAB10, actin network proteins, scaffolding proteins, and the basal forebrain cholinergic system. A thorough understanding of these resilience mechanisms is crucial for not just comprehending the development of AD but may also open new treatment possibilities for AD by enhancing the neuroprotective pathway and targeting the pathogenic process.
Collapse
Affiliation(s)
- Chu Shi Chew
- School of Health Science, IMU University, 57000, Kuala Lumpur, Malaysia
| | - Jia Yee Lee
- School of Health Science, IMU University, 57000, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, IMU University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, IMU University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
8
|
Preman P, Moechars D, Fertan E, Wolfs L, Serneels L, Shah D, Lamote J, Poovathingal S, Snellinx A, Mancuso R, Balusu S, Klenerman D, Arranz AM, Fiers M, De Strooper B. APOE from astrocytes restores Alzheimer's Aβ-pathology and DAM-like responses in APOE deficient microglia. EMBO Mol Med 2024; 16:3113-3141. [PMID: 39528861 PMCID: PMC11628604 DOI: 10.1038/s44321-024-00162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The major genetic risk factor for Alzheimer's disease (AD), APOE4, accelerates beta-amyloid (Aβ) plaque formation, but whether this is caused by APOE expressed in microglia or astrocytes is debated. We express here the human APOE isoforms in astrocytes in an Apoe-deficient AD mouse model. This is not only sufficient to restore the amyloid plaque pathology but also induces the characteristic transcriptional pathological responses in Apoe-deficient microglia surrounding the plaques. We find that both APOE4 and the protective APOE2 from astrocytes increase fibrillar plaque deposition, but differentially affect soluble Aβ aggregates. Microglia and astrocytes show specific alterations in function of APOE genotype expressed in astrocytes. Our experiments indicate a central role of the astrocytes in APOE mediated amyloid plaque pathology and in the induction of associated microglia responses.
Collapse
Affiliation(s)
- Pranav Preman
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Daan Moechars
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Emre Fertan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Leen Wolfs
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Lutgarde Serneels
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Disha Shah
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Jochen Lamote
- VIB FACS Expertise Center, Center for Cancer Biology, Leuven, Belgium
| | | | - An Snellinx
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB-UAntwerp, Centre for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sriram Balusu
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Amaia M Arranz
- Laboratory of Humanized Models of Disease, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Mark Fiers
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium.
| | - Bart De Strooper
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium.
- UK Dementia Research Institute, University College London, London, UK.
| |
Collapse
|
9
|
Bello-Corral L, Seco-Calvo J, Molina Fresno A, González AI, Llorente A, Fernández-Lázaro D, Sánchez-Valdeón L. Prevalence of ApoE Alleles in a Spanish Population of Patients with a Clinical Diagnosis of Alzheimer's Disease: An Observational Case-Control Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1941. [PMID: 39768823 PMCID: PMC11679489 DOI: 10.3390/medicina60121941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/27/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Background and Objectives: Alzheimer's dementia is a progressive neurodegenerative disease that affects memory abilities due to genetic and environmental factors. A well-known gene that influences the risk of Alzheimer's disease is the apolipoprotein E (APOE) gene. The APOE gene is involved in the production of a protein that helps transport cholesterol and other types of fat in the bloodstream. Problems in this process are thought to contribute to the development of Alzheimer's disease. APOE comes in several forms, which are called alleles (ε2, ε3, ε4). Materials and Methods: Therefore, our study aims to identify those subjects with a higher genetic risk through the polymorphism of the APOE gene, using a population screening in patients with a clinical diagnosis of AD in a region of Spain, Castilla y León, as potential biomarkers and to identify individuals at increased genetic risk by polymorphism of the APOE gene. An observational case-control study was conducted in Castilla y León (Spain). Saliva samples were collected and the ApoE gene was analyzed by PCR and agarose gel electrophoresis, respecting ethical criteria. Results: In the Alzheimer's population in Castilla y León, a high prevalence of ApoE3 (74%) was found, followed by ApoE4 (22%); in addition, a higher presence of the ε4 allele was found in the Alzheimer's disease (AD) group than in the control group. It was also observed that the ε2/ε2 genotype was not found in any individual with AD but was found in healthy subjects and that the opposite was observed for the ε4/ε4 genotype. The odds ratio (OR) indicated a risk four times greater of having AD if having the ε4 allele. Conclusions: The demonstrated relation between the different isoforms and the likelihood of developing AD has led to its consideration as a biomarker and a potential pre-symptomatic therapy. The molecular mechanisms that confer a disruptive and protective role to ApoE4 and ApoE2, respectively, are still being studied.
Collapse
Affiliation(s)
- Laura Bello-Corral
- Health Research Nursing Group (GREIS), University of Leon, 24071 Leon, Spain; (L.B.-C.); (L.S.-V.)
- Department of Nursing and Physiotherapy, University of Leon, 24071 Leon, Spain
| | - Jesús Seco-Calvo
- Institute of Biomedicine, University of León, 24071 Leon, Spain
- Department of Physiology, University of the Basque Country, 48940 Leioa, Spain
| | | | - Ana Isabel González
- Genetics Area, Department of Molecular Biology, University of León, 24071 Leon, Spain; (A.I.G.); (A.L.)
| | - Ana Llorente
- Genetics Area, Department of Molecular Biology, University of León, 24071 Leon, Spain; (A.I.G.); (A.L.)
| | - Diego Fernández-Lázaro
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42004 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47002 Valladolid, Spain
| | - Leticia Sánchez-Valdeón
- Health Research Nursing Group (GREIS), University of Leon, 24071 Leon, Spain; (L.B.-C.); (L.S.-V.)
- Department of Nursing and Physiotherapy, University of Leon, 24071 Leon, Spain
| |
Collapse
|
10
|
Yesiltepe M, Yin T, Tambini M, Bao H, Pan M, d'Abramo C, Giliberto L, Han X, D'Adamio L. Analysis of early effects of human APOE isoforms on Alzheimer's disease and type III hyperlipoproteinemia pathways using knock-in rat models with humanized APP and APOE. Cell Commun Signal 2024; 22:458. [PMID: 39334477 PMCID: PMC11438110 DOI: 10.1186/s12964-024-01832-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
APOE is a major genetic factor in late-onset Alzheimer's disease (LOAD), with APOE4 increasing risk, APOE3 acting as neutral, and APOE2 offering protection. APOE also plays key role in lipid metabolism, affecting both peripheral and central systems, particularly in lipoprotein metabolism in triglyceride and cholesterol regulation. APOE2 is linked to Hyperlipoproteinemia type III (HLP), characterized by mixed hypercholesterolemia and hypertriglyceridemia due to impaired binding to Low-Density Lipoproteins receptors. To explore the impact of human APOE isoforms on LOAD and lipid metabolism, we developed Long-Evans rats with human APOE2, APOE3, or APOE4 in place of rat Apoe. These rats were crossed with those carrying a humanized App allele to express human Aβ, which is more aggregation-prone than rodent Aβ, enabling the study of human APOE-human Aβ interactions. In this study, we focused on 80-day-old adolescent rats to analyze early changes that may be associated with the later development of LOAD. We found that APOE2hAβ rats had the highest levels of APOE in serum and brain, with no significant transcriptional differences among isoforms, suggesting variations in protein translation or stability. Aβ43 levels were significantly higher in male APOE4hAβ rats compared to APOE2hAβ rats. However, no differences in Tau or phosphorylated Tau levels were observed across the APOE isoforms. Neuroinflammation analysis revealed lower levels of IL13, IL4 and IL5 in APOE2hAβ males compared to APOE4hAβ males. Neuronal transmission and plasticity tests using field Input-Output (I/O) and long-term potentiation (LTP) recordings showed increased excitability in all APOE-carrying rats, with LTP deficits in APOE2hAβand APOE4hAβ rats compared to ApoehAβ and APOE3hAβ rats. Additionally, a lipidomic analysis of 222 lipid molecular species in serum samples showed that APOE2hAβ rats displayed elevated triglycerides and cholesterol, making them a valuable model for studying HLP. These rats also exhibited elevated levels of phosphatidylglycerol, phosphatidylserine, phosphatidylethanolamine, sphingomyelin, and lysophosphatidylcholine. Minimal differences in lipid profiles between APOE3hAβ and APOE4hAβ rats reflect findings from mouse models. Future studies will include comprehensive lipidomic analyses in various CNS regions and at older ages to further validate these models and explore the effects of APOE isoforms on lipid metabolism in relation to AD pathology.
Collapse
Affiliation(s)
- Metin Yesiltepe
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, The State University of New Jersey, Rutgers, Newark, NJ, USA
| | - Tao Yin
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, The State University of New Jersey, Rutgers, Newark, NJ, USA
| | - Marc Tambini
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, The State University of New Jersey, Rutgers, Newark, NJ, USA
| | - Hanmei Bao
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Meixia Pan
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Cristina d'Abramo
- Litwin-Zucker Center for the Study of Alzheimer's Disease and Memory Disorders, Feinstein Institutes for Medical Research, Institute of Molecular Medicine, Manhasset, NY, USA
| | - Luca Giliberto
- Litwin-Zucker Center for the Study of Alzheimer's Disease and Memory Disorders, Feinstein Institutes for Medical Research, Institute of Molecular Medicine, Manhasset, NY, USA
- Institute of Neurology and Neurosurgery, Northwell Health System, Manhasset, NY, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Medicine - Diabetes, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Luciano D'Adamio
- Department of Pharmacology, Physiology & Neuroscience New Jersey Medical School, The State University of New Jersey, Rutgers, Newark, NJ, USA.
| |
Collapse
|
11
|
Moon HJ, Luo Y, Chugh D, Zhao L. Human apolipoprotein E glycosylation and sialylation: from structure to function. Front Mol Neurosci 2024; 17:1399965. [PMID: 39169951 PMCID: PMC11335735 DOI: 10.3389/fnmol.2024.1399965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/28/2024] [Indexed: 08/23/2024] Open
Abstract
Human apolipoprotein E (ApoE) was first identified as a polymorphic gene in the 1970s; however, the genetic association of ApoE genotypes with late-onset sporadic Alzheimer's disease (sAD) was only discovered 20 years later. Since then, intensive research has been undertaken to understand the molecular effects of ApoE in the development of sAD. Despite three decades' worth of effort and over 10,000 papers published, the greatest mystery in the ApoE field remains: human ApoE isoforms differ by only one or two amino acid residues; what is responsible for their significantly distinct roles in the etiology of sAD, with ApoE4 conferring the greatest genetic risk for sAD whereas ApoE2 providing exceptional neuroprotection against sAD. Emerging research starts to point to a novel and compelling hypothesis that the sialoglycans posttranslationally appended to human ApoE may serve as a critical structural modifier that alters the biology of ApoE, leading to the opposing impacts of ApoE isoforms on sAD and likely in the peripheral systems as well. ApoE has been shown to be posttranslationally glycosylated in a species-, tissue-, and cell-specific manner. Human ApoE, particularly in brain tissue and cerebrospinal fluid (CSF), is highly glycosylated, and the glycan chains are exclusively attached via an O-linkage to serine or threonine residues. Moreover, studies have indicated that human ApoE glycans undergo sialic acid modification or sialylation, a structural alteration found to be more prominent in ApoE derived from the brain and CSF than plasma. However, whether the sialylation modification of human ApoE has a biological role is largely unexplored. Our group recently first reported that the three major isoforms of human ApoE in the brain undergo varying degrees of sialylation, with ApoE2 exhibiting the most abundant sialic acid modification, whereas ApoE4 is the least sialylated. Our findings further indicate that the sialic acid moiety on human ApoE glycans may serve as a critical modulator of the interaction of ApoE with amyloid β (Aβ) and downstream Aβ pathogenesis, a prominent pathologic feature in AD. In this review, we seek to provide a comprehensive summary of this exciting and rapidly evolving area of ApoE research, including the current state of knowledge and opportunities for future exploration.
Collapse
Affiliation(s)
- Hee-Jung Moon
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Yan Luo
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Diksha Chugh
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Liqin Zhao
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
- Neuroscience Graduate Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
12
|
Liu L, Xu J, Huang X, Wang Y, Ma X, Wang X, Liu Y, Ren X, Li J, Wang Y, Zhou S, Yuan L. DHA dietary intervention caused different hippocampal lipid and protein profile in ApoE-/- and C57BL/6J mice. Biomed Pharmacother 2024; 177:117088. [PMID: 38971007 DOI: 10.1016/j.biopha.2024.117088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Changes in protein and lipid levels may occur in the Alzheimer's disease brain, and DHA can have beneficial effects on it. To investigate the impact of DHA dietary intervention on brain protein and lipid profile in ApoE-/- mice and C57 mice. METHOD Three-month-old ApoE-/- mice and C57 mice were randomly divided into two groups respectively, and fed with control diet and DHA-fortified diet for five months. Cortical TC, HDL-C and LDL-C levels and cholesterol metabolism-related protein expression were measured by ELISA or immunohistochemistry methods. Hippocampus were collected for proteomic and lipidomics analysis by LC-MS/MS and differential proteins and lipid metabolites were screened and further analyzed by GO functional annotation and KEGG pathway enrichment analysis. RESULTS DHA intervention decreased cortical TC level in both C57 and ApoE-/- mice (P < 0.05), but caused different change of cortical HDL-C, LDL-C level and LDL-C/HDL-C ratio in C57 and ApoE-/- mice (P < 0.05). Discrepant cortical and hippocampal LDLR, ABCG1, Lox1 and SORT1 protein expression was found between C57 and ApoE-/- mice (P < 0.05), and DHA treatment caused different changes of these proteins in C57 and ApoE-/- mice (P < 0.05). Differential hippocampal proteins and lipids profile were found in C57 and ApoE-/- mice before and after DHA treatment, which were mainly involved in vesicular transport and phospholipid metabolic pathways. CONCLUSION ApoE genetic defect caused abnormal cholesterol metabolism, and affected protein and lipid profile, as well as discrepant response of hippocampal protein and lipids profile in the brain of mice given DHA fortified diet intervention.
Collapse
Affiliation(s)
- Lu Liu
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Jingjing Xu
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Xiaochen Huang
- School of Public Health, Capital Medical University, Beijing, China
| | - Ying Wang
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, China
| | - Xiaojun Ma
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Xixiang Wang
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Yu Liu
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Xiuwen Ren
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Jiahao Li
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Yueyong Wang
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases
| | - Shaobo Zhou
- School of Science, Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham ME4 4TB, UK.
| | - Linhong Yuan
- School of Public Health, Capital Medical University, Beijing, China; China-British Joint Laboratory of Nutrition Prevention and Control of Chronic Diseases.
| |
Collapse
|
13
|
Xia Z, Prescott EE, Urbanek A, Wareing HE, King MC, Olerinyova A, Dakin H, Leah T, Barnes KA, Matuszyk MM, Dimou E, Hidari E, Zhang YP, Lam JYL, Danial JSH, Strickland MR, Jiang H, Thornton P, Crowther DC, Ohtonen S, Gómez-Budia M, Bell SM, Ferraiuolo L, Mortiboys H, Higginbottom A, Wharton SB, Holtzman DM, Malm T, Ranasinghe RT, Klenerman D, De S. Co-aggregation with Apolipoprotein E modulates the function of Amyloid-β in Alzheimer's disease. Nat Commun 2024; 15:4695. [PMID: 38824138 PMCID: PMC11144216 DOI: 10.1038/s41467-024-49028-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Which isoforms of apolipoprotein E (apoE) we inherit determine our risk of developing late-onset Alzheimer's Disease (AD), but the mechanism underlying this link is poorly understood. In particular, the relevance of direct interactions between apoE and amyloid-β (Aβ) remains controversial. Here, single-molecule imaging shows that all isoforms of apoE associate with Aβ in the early stages of aggregation and then fall away as fibrillation happens. ApoE-Aβ co-aggregates account for ~50% of the mass of diffusible Aβ aggregates detected in the frontal cortices of homozygotes with the higher-risk APOE4 gene. We show how dynamic interactions between apoE and Aβ tune disease-related functions of Aβ aggregates throughout the course of aggregation. Our results connect inherited APOE genotype with the risk of developing AD by demonstrating how, in an isoform- and lipidation-specific way, apoE modulates the aggregation, clearance and toxicity of Aβ. Selectively removing non-lipidated apoE4-Aβ co-aggregates enhances clearance of toxic Aβ by glial cells, and reduces secretion of inflammatory markers and membrane damage, demonstrating a clear path to AD therapeutics.
Collapse
Affiliation(s)
- Zengjie Xia
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
| | - Emily E Prescott
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Agnieszka Urbanek
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Hollie E Wareing
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Marianne C King
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Anna Olerinyova
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Helen Dakin
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
- Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Tom Leah
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Katy A Barnes
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Martyna M Matuszyk
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Eleni Dimou
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
| | - Eric Hidari
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
| | - Yu P Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
| | - Jeff Y L Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
| | - John S H Danial
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
- SUPA School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS, UK
| | - Michael R Strickland
- Department of Neurology, Hope Center for Neurological Disorders, Knight ADRC, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hong Jiang
- Department of Neurology, Hope Center for Neurological Disorders, Knight ADRC, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter Thornton
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Sohvi Ohtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mireia Gómez-Budia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Simon M Bell
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
- Healthy Lifespan Institute (HELSI), University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight ADRC, Washington University School of Medicine, St. Louis, MO, USA
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Rohan T Ranasinghe
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK.
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK.
| | - Suman De
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK.
- Healthy Lifespan Institute (HELSI), University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
14
|
Pirhaghi M, Mamashli F, Moosavi-Movahedi F, Arghavani P, Amiri A, Davaeil B, Mohammad-Zaheri M, Mousavi-Jarrahi Z, Sharma D, Langel Ü, Otzen DE, Saboury AA. Cell-Penetrating Peptides: Promising Therapeutics and Drug-Delivery Systems for Neurodegenerative Diseases. Mol Pharm 2024; 21:2097-2117. [PMID: 38440998 DOI: 10.1021/acs.molpharmaceut.3c01167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Currently, one of the most significant and rapidly growing unmet medical challenges is the treatment of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). This challenge encompasses the imperative development of efficacious therapeutic agents and overcoming the intricacies of the blood-brain barrier for successful drug delivery. Here we focus on the delivery aspect with particular emphasis on cell-penetrating peptides (CPPs), widely used in basic and translational research as they enhance drug delivery to challenging targets such as tissue and cellular compartments and thus increase therapeutic efficacy. The combination of CPPs with nanomaterials such as nanoparticles (NPs) improves the performance, accuracy, and stability of drug delivery and enables higher drug loads. Our review presents and discusses research that utilizes CPPs, either alone or in conjugation with NPs, to mitigate the pathogenic effects of neurodegenerative diseases with particular reference to AD and PD.
Collapse
Affiliation(s)
- Mitra Pirhaghi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 6673145137, Iran
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Fatemeh Mamashli
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | | | - Payam Arghavani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Ahmad Amiri
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Bagher Davaeil
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Mahya Mohammad-Zaheri
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Zahra Mousavi-Jarrahi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh 160036, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Ülo Langel
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden
| | - Daniel Erik Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus C 1592-224, Denmark
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran
| |
Collapse
|
15
|
Tsujita M, Melchior JT, Yokoyama S. Lipoprotein Particles in Cerebrospinal Fluid. Arterioscler Thromb Vasc Biol 2024; 44:1042-1052. [PMID: 38545782 PMCID: PMC11342562 DOI: 10.1161/atvbaha.123.318284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The brain is the most lipid-rich organ in the body, and the intricate interplay between lipid metabolism and pathologies associated with neurodegenerative disorders is being increasingly recognized. The brain is bathed in cerebrospinal fluid (CSF), which, like plasma, contains lipid-protein complexes called lipoproteins that are responsible for extracellular lipid transport. Multiple CSF lipoprotein populations exist, some of which are produced de novo in the central nervous system and others that appear to be generated from protein constituents that are produced in the periphery. These CSF lipoproteins are thought to play key roles in maintaining lipid homeostasis in the central nervous system, while little else is known due to their limited accessibility and their low abundance in CSF. Recent work has provided new insights into the compositional complexity of CSF lipoprotein families and their metabolism in cerebral circulation. The purpose of this review is to summarize our current state of knowledge on the composition, origin, and metabolism of CSF lipoproteins.
Collapse
|
16
|
Chen H, Zhao S, Jian Q, Yan Y, Wang S, Zhang X, Ji Y. The role of ApoE in fatty acid transport from neurons to astrocytes under ischemia/hypoxia conditions. Mol Biol Rep 2024; 51:320. [PMID: 38393618 DOI: 10.1007/s11033-023-08921-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/31/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND The aim of this study was to investigate whether ischemia/hypoxia conditions induce fatty acid transport from neurons to astrocytes and whether this mechanism is affected by ApoE isoforms. METHODS AND RESULTS A neonatal rat model of hypoxic-ischemic brain damage was established. Excessive accumulation of lipid droplets and upregulation of ApoE expression occurred in the hippocampus and cerebral cortex after hypoxia-ischemia, which implied the occurrence of abnormal fatty acid metabolism. Lipid peroxidation was induced in an oxygen-glucose deprivation and reperfusion (OGDR) model of ApoE-/- primary neurons. The number of BODIPY 558/568 C12-positive particles (fatty acid markers) transferred from neurons to astrocytes was significantly increased with the addition of human recombinant ApoE compared with that in the OGDR group, which significantly increased the efficiency of fatty acid transport from neurons to astrocytes and neuronal viability. However, ApoE4 was found to be associated with lower efficiency in fatty acid transport and less protective effects in OGDR-induced neuronal cell death than both ApoE2 and ApoE3. COG133, an ApoE-mimetic peptide, partially compensated for the adverse effects of ApoE4. FABP5 and SOD1 gene and protein expression levels were upregulated in astrocytes treated with BODIPY 558/568 C12 particles. CONCLUSIONS In conclusion, ApoE plays an important role in mediating the transport of fatty acids from neurons to astrocytes under ischemia/hypoxia conditions, and this transport mechanism is ApoE isoform dependent. ApoE4 has a low transfer efficiency and may be a potential target for the clinical treatment of neonatal hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Hongyan Chen
- Department of Central Laboratory, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, No. 30, South Street, Beilin District, Xi'an, 710002, Shaanxi, China
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an No. 4 Hospital), No. 21, Jiefang Road, Xi'an, 710004, Shaanxi, China
| | - Shaozhi Zhao
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an No. 4 Hospital), No. 21, Jiefang Road, Xi'an, 710004, Shaanxi, China
| | - Qiang Jian
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an No. 4 Hospital), No. 21, Jiefang Road, Xi'an, 710004, Shaanxi, China
| | - Yinfang Yan
- Department of Central Laboratory, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, No. 30, South Street, Beilin District, Xi'an, 710002, Shaanxi, China
| | - Simin Wang
- Department of Central Laboratory, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, No. 30, South Street, Beilin District, Xi'an, 710002, Shaanxi, China
| | - Xinwen Zhang
- Center of Medical Genetics, Xi'an People's Hospital (Xi'an No. 4 Hospital), No. 21, Jiefang Road, Xi'an, 710004, Shaanxi, China.
| | - Yuqiang Ji
- Department of Central Laboratory, Xi'an No. 1 Hospital, The First Affiliated Hospital of Northwest University, No. 30, South Street, Beilin District, Xi'an, 710002, Shaanxi, China.
| |
Collapse
|
17
|
Kawles A, Keszycki R, Minogue G, Zouridakis A, Ayala I, Gill N, Macomber A, Lubbat V, Coventry C, Rogalski E, Weintraub S, Mao Q, Flanagan ME, Zhang H, Castellani R, Bigio EH, Mesulam MM, Geula C, Gefen T. Phenotypically concordant distribution of pick bodies in aphasic versus behavioral dementias. Acta Neuropathol Commun 2024; 12:31. [PMID: 38389095 PMCID: PMC10885488 DOI: 10.1186/s40478-024-01738-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
Pick's disease (PiD) is a subtype of the tauopathy form of frontotemporal lobar degeneration (FTLD-tau) characterized by intraneuronal 3R-tau inclusions. PiD can underly various dementia syndromes, including primary progressive aphasia (PPA), characterized by an isolated and progressive impairment of language and left-predominant atrophy, and behavioral variant frontotemporal dementia (bvFTD), characterized by progressive dysfunction in personality and bilateral frontotemporal atrophy. In this study, we investigated the neocortical and hippocampal distributions of Pick bodies in bvFTD and PPA to establish clinicopathologic concordance between PiD and the salience of the aphasic versus behavioral phenotype. Eighteen right-handed cases with PiD as the primary pathologic diagnosis were identified from the Northwestern University Alzheimer's Disease Research Center brain bank (bvFTD, N = 9; PPA, N = 9). Paraffin-embedded sections were stained immunohistochemically with AT8 to visualize Pick bodies, and unbiased stereological analysis was performed in up to six regions bilaterally [middle frontal gyrus (MFG), superior temporal gyrus (STG), inferior parietal lobule (IPL), anterior temporal lobe (ATL), dentate gyrus (DG) and CA1 of the hippocampus], and unilateral occipital cortex (OCC). In bvFTD, peak neocortical densities of Pick bodies were in the MFG, while the ATL was the most affected in PPA. Both the IPL and STG had greater leftward pathology in PPA, with the latter reaching significance (p < 0.01). In bvFTD, Pick body densities were significantly right-asymmetric in the STG (p < 0.05). Hippocampal burden was not clinicopathologically concordant, as both bvFTD and PPA cases demonstrated significant hippocampal pathology compared to neocortical densities (p < 0.0001). Inclusion-to-neuron analyses in a subset of PPA cases confirmed that neurons in the DG are disproportionately burdened with inclusions compared to neocortical areas. Overall, stereological quantitation suggests that the distribution of neocortical Pick body pathology is concordant with salient clinical features unique to PPA vs. bvFTD while raising intriguing questions about the selective vulnerability of the hippocampus to 3R-tauopathies.
Collapse
Affiliation(s)
- Allegra Kawles
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rachel Keszycki
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Grace Minogue
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Antonia Zouridakis
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ivan Ayala
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nathan Gill
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alyssa Macomber
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Vivienne Lubbat
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christina Coventry
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily Rogalski
- Department of Neurology, University of Chicago School of Medicine, Chicago, IL, USA
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qinwen Mao
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Margaret E Flanagan
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hui Zhang
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rudolph Castellani
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Eileen H Bigio
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - M-Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
18
|
McLaren AMR, Kawaja MD. Olfactory Dysfunction and Alzheimer's Disease: A Review. J Alzheimers Dis 2024; 99:811-827. [PMID: 38728185 DOI: 10.3233/jad-231377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Alzheimer's disease is the most common cause of dementia, and it is one of the leading causes of death globally. Identification and validation of biomarkers that herald the onset and progression of Alzheimer's disease is of paramount importance for early reliable diagnosis and effective pharmacological therapy commencement. A substantial body of evidence has emerged demonstrating that olfactory dysfunction is a preclinical symptom of neurodegenerative diseases including Alzheimer's disease. While a correlation between olfactory dysfunction and Alzheimer's disease onset and progression in humans exists, the mechanism underlying this relationship remains unknown. The aim of this article is to review the current state of knowledge regarding the range of potential factors that may contribute to the development of Alzheimer's disease-related olfactory dysfunction. This review predominantly focuses on genetic mutations associated with Alzheimer's disease including amyloid-β protein precursor, presenilin 1 and 2, and apolipoprotein E mutations, that may (in varying ways) drive the cellular events that lead to and sustain olfactory dysfunction.
Collapse
Affiliation(s)
| | - Michael D Kawaja
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, ON, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, ON, Canada
| |
Collapse
|
19
|
Valencia-Olvera AC, Balu D, Moore A, Shah M, Ainis R, Xiang B, Saleh Y, Cai D, LaDu MJ, Tai LM. APOE2 Heterozygosity Reduces Hippocampal Soluble Amyloid-β42 Levels in Non-Hyperlipidemic Mice. J Alzheimers Dis 2024; 97:1629-1639. [PMID: 38306049 DOI: 10.3233/jad-231210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
APOE2 lowers Alzheimer's disease (AD) risk; unfortunately, the mechanism remains poorly understood and the use of mice models is problematic as APOE2 homozygosity is associated with hyperlipidemia. In this study, we developed mice that are heterozygous for APOE2 and APOE3 or APOE4 and overexpress amyloid-β peptide (Aβ) (EFAD) to evaluate the effect of APOE2 dosage on Aβ pathology. We found that heterozygous mice do not exhibit hyperlipidemia. Hippocampal but not cortical levels of soluble Aβ42 followed the order E2/2FAD > E2/3FAD≤E3/3FAD and E2/2FAD > E2/4FAD < E4/4FAD without an effect on insoluble Aβ42. These findings offer initial insights on the impact of APOE2 on Aβ pathology.
Collapse
Affiliation(s)
- Ana C Valencia-Olvera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Deebika Balu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Maitri Shah
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Rebecca Ainis
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Yaseen Saleh
- University of Miami/Jackson Healthcare System, Miami, FL, USA
| | - Dongming Cai
- Alzheimer Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Research and Development Service, James J. Peters VA Medical Center, Bronx, NY, USA
- Department of Neurology, N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, USA
- Geriatric Research Education and Clinical Center (GRECC), Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Leon M Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
20
|
Moon HS, Mahzarnia A, Stout J, Anderson RJ, Strain M, Tremblay JT, Han ZY, Niculescu A, MacFarlane A, King J, Ashley-Koch A, Clark D, Lutz MW, Badea A. Multivariate investigation of aging in mouse models expressing the Alzheimer's protective APOE2 allele: integrating cognitive metrics, brain imaging, and blood transcriptomics. Brain Struct Funct 2024; 229:231-249. [PMID: 38091051 PMCID: PMC11082910 DOI: 10.1007/s00429-023-02731-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/03/2023] [Indexed: 01/31/2024]
Abstract
APOE allelic variation is critical in brain aging and Alzheimer's disease (AD). The APOE2 allele associated with cognitive resilience and neuroprotection against AD remains understudied. We employed a multipronged approach to characterize the transition from middle to old age in mice with APOE2 allele, using behavioral assessments, image-derived morphometry and diffusion metrics, structural connectomics, and blood transcriptomics. We used sparse multiple canonical correlation analyses (SMCCA) for integrative modeling, and graph neural network predictions. Our results revealed brain sub-networks associated with biological traits, cognitive markers, and gene expression. The cingulate cortex emerged as a critical region, demonstrating age-associated atrophy and diffusion changes, with higher fractional anisotropy in males and middle-aged subjects. Somatosensory and olfactory regions were consistently highlighted, indicating age-related atrophy and sex differences. The hippocampus exhibited significant volumetric changes with age, with differences between males and females in CA3 and CA1 regions. SMCCA underscored changes in the cingulate cortex, somatosensory cortex, olfactory regions, and hippocampus in relation to cognition and blood-based gene expression. Our integrative modeling in aging APOE2 carriers revealed a central role for changes in gene pathways involved in localization and the negative regulation of cellular processes. Our results support an important role of the immune system and response to stress. This integrative approach offers novel insights into the complex interplay among brain connectivity, aging, and sex. Our study provides a foundation for understanding the impact of APOE2 allele on brain aging, the potential for detecting associated changes in blood markers, and revealing novel therapeutic intervention targets.
Collapse
Affiliation(s)
- Hae Sol Moon
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Ali Mahzarnia
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Jacques Stout
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, USA
| | - Robert J Anderson
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Madison Strain
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jessica T Tremblay
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Zay Yar Han
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Andrei Niculescu
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Anna MacFarlane
- Department of Neuroscience, Duke University, Durham, NC, USA
| | - Jasmine King
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Allison Ashley-Koch
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Darin Clark
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Michael W Lutz
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Alexandra Badea
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Quantitative Imaging and Analysis Laboratory, Department of Radiology, Duke University School of Medicine, Durham, NC, USA.
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, USA.
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
21
|
Ayyubova G. APOE4 is a Risk Factor and Potential Therapeutic Target for Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:342-352. [PMID: 36872358 DOI: 10.2174/1871527322666230303114425] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/20/2022] [Accepted: 01/12/2023] [Indexed: 03/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, the main pathological hallmark of which is the loss of neurons, resulting in cognitive and memory impairments. Sporadic late-onset AD is a prevalent form of the disease and the apolipoprotein E4 (APOE4) genotype is the strongest predictor of the disease development. The structural variations of APOE isoforms affect their roles in synaptic maintenance, lipid trafficking, energy metabolism, inflammatory response, and BBB integrity. In the context of AD, APOE isoforms variously control the key pathological elements of the disease, including Aβ plaque formation, tau aggregation, and neuroinflammation. Taking into consideration the limited number of therapy choices that can alleviate symptoms and have little impact on the AD etiology and progression to date, the precise research strategies guided by apolipoprotein E (APOE) polymorphisms are required to assess the potential risk of age-related cognitive decline in people carrying APOE4 genotype. In this review, we summarize the evidence implicating the significance of APOE isoforms on brain functions in health and pathology with the aim to identify the possible targets that should be addressed to prevent AD manifestation in individuals with the APOE4 genotype and to explore proper treatment strategies.
Collapse
Affiliation(s)
- Gunel Ayyubova
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University, Baku, Azerbaijan
| |
Collapse
|
22
|
Espay AJ, Herrup K, Kepp KP, Daly T. The proteinopenia hypothesis: Loss of Aβ 42 and the onset of Alzheimer's Disease. Ageing Res Rev 2023; 92:102112. [PMID: 38270185 DOI: 10.1016/j.arr.2023.102112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 01/26/2024]
Abstract
The dominant protein-lowering strategy in Alzheimer's Disease (AD) has failed to provide a clinically-meaningful treatment for patients. We hypothesize that the loss of functional, soluble Aβ42 during the process of aggregation into amyloid is more detrimental to the brain than the corresponding accrual of insoluble amyloid.
Collapse
Affiliation(s)
- Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA.
| | - Karl Herrup
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kasper P Kepp
- Department of Chemistry, Section of Biophysical and Biomedicinal Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Timothy Daly
- Science Norms Democracy, UMR 8011 Sorbonne University, Paris, France; Bioethics Program, FLACSO Argentina, Tucumán 1966, C1050 AAN, Buenos Aires, Argentina.
| |
Collapse
|
23
|
Wang SM, Kang DW, Um YH, Kim S, Lee CU, Lim HK. Functional Connectivity Change Associated With Apolipoprotein E Allotypes Precedes Structural Connectivity and Neurodegeneration in Cognitive Normal Older Adults Without Cerebral Aβ Deposition. Psychiatry Investig 2023; 20:1054-1060. [PMID: 37997333 PMCID: PMC10678152 DOI: 10.30773/pi.2023.0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/27/2023] [Accepted: 08/20/2023] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVE Apolipoprotein E (APOE) gene is known to influence cerebral functional connectivity (FC) in Alzheimer's disease continuum. We investigated association between APOE allotypes and FC, structural connectivity, and cortical thickness in amyloid-PET negative cognitive normal older adults (CN). METHODS A total of 188 CN (37 had ε2/ε2 or ε2/ε3 [ε2 group], 113 had ε3/ε3 [ε3 group], and 38 had ε3/ε4 or ε4/ε4 [ε4 group]) were recruited. Voxel-based morphometry and cortical thickness analysis were used to investigate differences in cortical thickness between three APOE allotypes. To investigate integrity of structural connectivity, we analyzed diffusion weighted imaging using fractional anisotropy and mean diffusivity. In terms of FC, differences of FC in default mode network (DMN) among APOE allotypes were measured using functional magnetic resonance imaging. RESULTS There were no significant differences in age, sex, education, cerebral beta-amyloid (Aβ) deposition severity, or neuropsychological profiles. No significant differences were found in cortical thickness and structural connectivity among the APOE allotypes. However, FC within the DMN was significantly lower in ε4 and ε2 carriers compared to ε3 homozygotes. CONCLUSION This study suggests that both ε4 and ε2 exhibit APOE-associated DMN FC changes before Aβ deposition, structural changes, and neurodegeneration.
Collapse
Affiliation(s)
- Sheng-Min Wang
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Woo Kang
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoo Hyun Um
- Department of Psychiatry, St. Vincent Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sunghwan Kim
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang Uk Lee
- Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
24
|
Wijekoon N, Gonawala L, Ratnayake P, Dissanayaka P, Gunarathne I, Amaratunga D, Liyanage R, Senanayaka S, Wijesekara S, Gunasekara HH, Vanarsa K, Castillo J, Hathout Y, Dalal A, Steinbusch HW, Hoffman E, Mohan C, de Silva KRD. Integrated genomic, proteomic and cognitive assessment in Duchenne Muscular Dystrophy suggest astrocyte centric pathology. Heliyon 2023; 9:e18530. [PMID: 37593636 PMCID: PMC10432191 DOI: 10.1016/j.heliyon.2023.e18530] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
Introduction Documented Duchenne Muscular Dystrophy (DMD) biomarkers are confined to Caucasians and are poor indicators of cognitive difficulties and neuropsychological alterations. Materials and methods This study correlates serum protein signatures with cognitive performance in DMD patients of South Asian origin. Study included 25 DMD patients aged 6-16 years. Cognitive profiles were assessed by Wechsler Intelligence Scale for Children. Serum proteome profiling of 1317 proteins was performed in eight DMD patients and eight age-matched healthy volunteers. Results Among the several novel observations we report, better cognitive performance in DMD was associated with increased serum levels of MMP9 and FN1 but decreased Siglec-3, C4b, and C3b. Worse cognitive performance was associated with increased serum levels of LDH-H1 and PDGF-BB but reduced GDF-11, MMP12, TPSB2, and G1B. Secondly, better cognitive performance in Processing Speed (PSI) and Perceptual Reasoning (PRI) domains was associated with intact Dp116, Dp140, and Dp71 dystrophin isoforms while better performance in Verbal Comprehension (VCI) and Working Memory (WMI) domains was associated with intact Dp116 and Dp140 isoforms. Finally, functional pathways shared with Alzheimer's Disease (AD) point towards an astrocyte-centric model for DMD. Conclusion Astrocytic dysfunction leading to synaptic dysfunction reported previously in AD may be a common pathogenic mechanism underlying both AD and DMD, linking protein alterations to cognitive impairment. This new insight may pave the path towards novel therapeutic approaches targeting reactive astrocytes.
Collapse
Affiliation(s)
- Nalaka Wijekoon
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Lakmal Gonawala
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, The Netherlands
| | | | - Pulasthi Dissanayaka
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | - Isuru Gunarathne
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | | | - Roshan Liyanage
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
| | | | - Saraji Wijesekara
- Department of Pediatrics, University of Sri Jayewardenepura, 10250, Sri Lanka
- Colombo South Teaching Hospital, 10350, Sri Lanka
| | | | - Kamala Vanarsa
- Department of Bioengineering, University of Houston, Houston, 77204, USA
| | - Jessica Castillo
- Department of Bioengineering, University of Houston, Houston, 77204, USA
| | - Yetrib Hathout
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, New York, USA
| | - Ashwin Dalal
- Diagnostics Division, Center for DNA Fingerprinting and Diagnostics, India
| | - Harry W.M. Steinbusch
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Eric Hoffman
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, New York, USA
| | - Chandra Mohan
- Department of Bioengineering, University of Houston, Houston, 77204, USA
| | - K. Ranil D. de Silva
- Interdisciplinary Center for Innovation in Biotechnology and Neuroscience, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka
- Department of Cellular and Translational Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, The Netherlands
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defence University, Ratmalana, 10390, Sri Lanka
| |
Collapse
|
25
|
Toro CA, Hansen J, Siddiq MM, Johnson K, Cao J, Pero A, Iyengar R, Cai D, Cardozo CP. Synaptojanin 1 Modulates Functional Recovery After Incomplete Spinal Cord Injury in Male Apolipoprotein E Epsilon 4 Mice. Neurotrauma Rep 2023; 4:464-477. [PMID: 37528868 PMCID: PMC10389254 DOI: 10.1089/neur.2023.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Apolipoprotein E epsilon 4 (ApoE4) is the second most common variant of ApoE, being present in ∼14% of the population. Clinical reports identify ApoE4 as a genetic risk factor for poor outcomes after traumatic spinal cord injury (SCI) and spinal cord diseases such as cervical myelopathy. To date, there is no intervention to promote recovery of function after SCI/spinal cord diseases that is specifically targeted at ApoE4-associated impairment. Studies in the human and mouse brain link ApoE4 to elevated levels of synaptojanin 1 (synj1), a lipid phosphatase that degrades phosphoinositol 4,5-bisphosphate (PIP2) into inositol 4-monophosphate. Synj1 regulates rearrangements of the cytoskeleton as well as endocytosis and trafficking of synaptic vesicles. We report here that, as compared to ApoE3 mice, levels of synj1 messenger RNA and protein were elevated in spinal cords of healthy ApoE4 mice associated with lower PIP2 levels. Using a moderate-severity model of contusion SCI in mice, we found that genetic reduction of synj1 improved locomotor function recovery at 14 days after SCI in ApoE4 mice without altering spared white matter. Genetic reduction of synj1 did not alter locomotor recovery of ApoE3 mice after SCI. Bulk RNA sequencing revealed that at 14 days after SCI in ApoE4 mice, genetic reduction of synj1 upregulated genes involved in glutaminergic synaptic transmission just above and below the lesion. Overall, our findings provide evidence for a link between synj1 to poor outcomes after SCI in ApoE4 mice, up to 14 days post-injury, through mechanisms that may involve the function of excitatory glutaminergic neurons.
Collapse
Affiliation(s)
- Carlos A. Toro
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, New York, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jens Hansen
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mustafa M. Siddiq
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kaitlin Johnson
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, New York, USA
| | - Jiqing Cao
- Research and Development, James J. Peters VA Medical Center, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adriana Pero
- Research and Development, James J. Peters VA Medical Center, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ravi Iyengar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dongming Cai
- Neurology Service, James J. Peters VA Medical Center, Bronx, New York, USA
- Research and Development, James J. Peters VA Medical Center, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christopher P. Cardozo
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, New York, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Rehabilitative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
26
|
Shi C, Gottschalk WK, Colton CA, Mukherjee S, Lutz MW. Alzheimer's Disease Protein Relevance Analysis Using Human and Mouse Model Proteomics Data. FRONTIERS IN SYSTEMS BIOLOGY 2023; 3:1085577. [PMID: 37650081 PMCID: PMC10467016 DOI: 10.3389/fsysb.2023.1085577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The principles governing genotype-phenotype relationships are still emerging(1-3), and detailed translational as well as transcriptomic information is required to understand complex phenotypes, such as the pathogenesis of Alzheimer's disease. For this reason, the proteomics of Alzheimer disease (AD) continues to be studied extensively. Although comparisons between data obtained from humans and mouse models have been reported, approaches that specifically address the between-species statistical comparisons are understudied. Our study investigated the performance of two statistical methods for identification of proteins and biological pathways associated with Alzheimer's disease for cross-species comparisons, taking specific data analysis challenges into account, including collinearity, dimensionality reduction and cross-species protein matching. We used a human dataset from a well-characterized cohort followed for over 22 years with proteomic data available. For the mouse model, we generated proteomic data from whole brains of CVN-AD and matching control mouse models. We used these analyses to determine the reliability of a mouse model to forecast significant proteomic-based pathological changes in the brain that may mimic pathology in human Alzheimer's disease. Compared with LASSO regression, partial least squares discriminant analysis provided better statistical performance for the proteomics analysis. The major biological finding of the study was that extracellular matrix proteins and integrin-related pathways were dysregulated in both the human and mouse data. This approach may help inform the development of mouse models that are more relevant to the study of human late-onset Alzheimer's disease.
Collapse
Affiliation(s)
- Cathy Shi
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | - W. Kirby Gottschalk
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carol A. Colton
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sayan Mukherjee
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
- Departments of Mathematics, Computer Science, and Biostatistics & Bioinformatics Duke University, Durham, NC 27708, USA
| | - Michael W. Lutz
- Division of Translational Brain Sciences, Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
27
|
Pham AQ, Dore K. Novel approaches to increase synaptic resilience as potential treatments for Alzheimer's disease. Semin Cell Dev Biol 2023; 139:84-92. [PMID: 35370089 DOI: 10.1016/j.semcdb.2022.03.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022]
Abstract
A significant proportion of brains with Alzheimer's disease pathology are obtained from patients that were cognitively normal, suggesting that differences within the brains of these individuals made them resilient to the disease. Here, we describe recent approaches that specifically increase synaptic resilience, as loss of synapses is considered to be the first change in the brains of Alzheimer's patients. We start by discussing studies showing benefit from increased expression of neurotrophic factors and protective genes. Methods that effectively make dendritic spines stronger, specifically by acting through actin network proteins, scaffolding proteins and inhibition of phosphatases are described next. Importantly, the therapeutic strategies presented in this review tackle Alzheimer's disease not by targeting plaques and tangles, but instead by making synapses resilient to the pathology associated with Alzheimer's disease, which has tremendous potential.
Collapse
Affiliation(s)
- Andrew Q Pham
- Department of Neurosciences, Center for Neural Circuits and Behavior, UCSD, La Jolla 92093, United States
| | - Kim Dore
- Department of Neurosciences, Center for Neural Circuits and Behavior, UCSD, La Jolla 92093, United States.
| |
Collapse
|
28
|
Turner AD, Locklear CE, Oruru D, Briggs AQ, Bubu OM, Seixas A. Exploring the combined effects of sleep apnea and APOE-e4 on biomarkers of Alzheimer's disease. Front Aging Neurosci 2023; 14:1017521. [PMID: 36688173 PMCID: PMC9847474 DOI: 10.3389/fnagi.2022.1017521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/16/2022] [Indexed: 01/06/2023] Open
Abstract
Objective We determined the interactive associations of apolipoprotein e4 (APOE-e4), and obstructive sleep apnea (OSA) on biomarkers of Alzheimer's disease and examined for racial/ethnic differences of this association. Methods We used data from the National Alzheimer's Coordinating Center Uniform Dataset (NACC UDS). All participants undergo annual observations, including demographic survey, battery of neuropsychological tests, blood draw (with genotyping), and a clinical evaluation with medical and cognitive/dementia status assessment, while a subset of participants have cerebrospinal fluid (CSF) biomarkers and neuroimaging data. Biomarkers of AD were characterized as the presence of abnormally low amyloid in CSF, via validated Aβ42 cut off protocols, and total segmented hippocampal volume, and volume of white matter hyper intensities (WMH). While clinical markers (to preview cognitive relationships) were characterized via the Montreal Cognitive Assessment (MOCA). Results Biomarker and clinical marker data were derived from 1,387 participants at baseline (mean age = 69.73 ± 8.32; 58.6% female; 13.7% Black/African American), 18.4% of the sample had sleep apnea, and 37.9% were APOE-e4 carriers. Our results confirmed previous reports that OSA and APOE-e4 were independently associated with AD through abnormal levels of amyloid (F (1,306) = 4.27; p = 0.040; F (1,285) = 60.88; p < 0.000, respectively), WMH volume (F (1,306) = 4.27; p = 0.040; F (1,285) = 60.88; p < 0.000, respectively), and MOCA scores (F (1,306) = 4.27; p = 0.040; F (1,285) = 60.88; p < 0.000, respectively). No significant interaction between OSA and APOE-e4 relative to amyloid emerged, however, race stratified analyses indicated the interaction of OSA and APOE-e4 and was significantly associated with WMH and hippocampal volume in Black/African American, but not white participants. Conclusion OSA and APOE-e4 are interactively associated with WHM in Black/African Americans. This interaction may partially explicate increased levels of risk in this population.
Collapse
Affiliation(s)
- Arlener D Turner
- Center for Translational Sleep and Circadian Sciences, Department of Psychiatry & Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Clarence E Locklear
- Center for Translational Sleep and Circadian Sciences, Department of Psychiatry & Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Daisha Oruru
- Center for Translational Sleep and Circadian Sciences, Department of Psychiatry & Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Anthony Q Briggs
- Department of Neurology, Grossman School of Medicine, New York University, New York, NY, United States
| | - Omonigho M Bubu
- Department of Neurology, Grossman School of Medicine, New York University, New York, NY, United States
- Department of Psychiatry, Grossman School of Medicine, New York University, New York, NY, United States
- Department of Population Health, Grossman School of Medicine, New York University, New York, NY, United States
| | - Azizi Seixas
- The Media & Innovation Lab, Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
29
|
Zhao B, Ou YN, Zhang XY, Fu Y, Tan L. Differential Associations of APOEɛ2 and APOEɛ4 Genotypes with Cerebrospinal Fluid Biomarkers of Alzheimer's Disease in Individuals Without Dementia. J Alzheimers Dis 2023; 96:1813-1825. [PMID: 38073392 DOI: 10.3233/jad-230761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
BACKGROUND The APOE genotype has emerged as the major genetic factor for AD but differs among different alleles. OBJECTIVE To investigate the discrepant effects of APOE genotype on AD cerebrospinal fluid (CSF) biomarkers. METHODS A total of 989 non-demented ADNI participants were included. The associations of APOEɛ2 and APOEɛ4 with CSF biomarkers were investigated using linear regression models. Interaction and subgroup analyses were used to investigate the effects of sex and age on these associations. Furthermore, we used mediation analyses to assess whether Aβ mediated the associations between APOE genotypes and tau. RESULTS APOEɛ2 carriers only showed higher Aβ levels (β [95% CI] = 0.07 [0.01, 0.13], p = 0.026). Conversely, APOEɛ4 carriers exhibited lower Aβ concentration (β [95% CI] = -0.27 [-0.31, -0.24], p < 0.001), higher t-Tau (β [95% CI] = 0.25 [0.08, 0.18], p < 0.001) and higher p-Tau (β [95% CI] = 0.31 [0.25, 0.37], p < 0.001). Subgroup analysis showed that APOE ɛ2 was significantly positively associated with Aβ only in females (β [95% CI] = 0.12 [0.04, 0.21], p = 0.005) and older people (β [95% CI] = 0.06 [0.001, 0.12], p = 0.048). But the effects of APOE ɛ4 were independent of gender and age. Besides, the associations of APOE ɛ4 with t-Tau and p-Tau were both mediated by baseline Aβ. CONCLUSIONS Our data suggested that APOEɛ2 could promote Aβ clearance, while the process could be modified by sex and age. However, APOEɛ4 might cause the accumulation of Aβ and tau pathology independent of sex and age.
Collapse
Affiliation(s)
- Bing Zhao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xuan-Yue Zhang
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
30
|
Liu X, Zeng Q, Luo X, Li K, Xu X, Hong L, Li J, Guan X, Xu X, Huang P, Zhang M, the Alzheimer's Disease Neuroimaging Initiative (ADNI). Effects of APOE ε2 allele on basal forebrain functional connectivity in mild cognitive impairment. CNS Neurosci Ther 2022; 29:597-608. [PMID: 36468416 PMCID: PMC9873529 DOI: 10.1111/cns.14038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 12/10/2022] Open
Abstract
BACKGROUND Basal forebrain cholinergic system (BFCS) dysfunction is associated with cognitive decline in Alzheimer's disease (AD) and mild cognitive impairment (MCI). Apolipoprotein E (APOE) ε2 is a protective genetic factor in AD and MCI, and cholinergic sprouting depends on APOE. OBJECTIVE We investigated the effect of the APOE ε2 allele on BFCS functional connectivity (FC) in cognitively normal (CN) subjects and MCI patients. METHOD We included 60 MCI patients with APOE ε3/ε3, 18 MCI patients with APOE ε2/ε3, 73 CN subjects with APOE ε3/ε3, and 36 CN subjects with APOE ε2/ε3 genotypes who had resting-state functional magnetic resonance imaging data from the Alzheimer's disease Neuroimaging Initiative. We used BFCS subregions (Ch1-3 and Ch4) as seeds and calculated the FC with other brain areas. Using a mixed-effect analysis, we explored the interaction effects of APOE ε2 allele × cognitive status on BFCS-FC. Furthermore, we examined the relationships between imaging metrics, cognitive abilities, and AD pathology markers, controlling for sex, age, and education as covariates. RESULTS An interaction effect on functional connectivity was found between the right Ch4 (RCh4) and left insula (p < 0.05, corrected), and between the RCh4 and left Rolandic operculum (p < 0.05, corrected). Among all subjects and APOE ε2 carriers, RCh4-left Insula FC was associated with early tau deposition. Furthermore, no correlation was found between imaging metrics and amyloid burden. Among all subjects and APOE ε2 carriers, FC metrics were associated with cognitive performance. CONCLUSION The APOE ε2 genotype may play a protective role during BFCS degeneration in MCI.
Collapse
Affiliation(s)
- Xiaocao Liu
- Department of RadiologyThe 2nd Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Qingze Zeng
- Department of RadiologyThe 2nd Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Xiao Luo
- Department of RadiologyThe 2nd Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Kaicheng Li
- Department of RadiologyThe 2nd Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Xiaopei Xu
- Department of RadiologyThe 2nd Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Luwei Hong
- Department of RadiologyThe 2nd Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Jixuan Li
- Department of RadiologyThe 2nd Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Xiaojun Guan
- Department of RadiologyThe 2nd Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Xiaojun Xu
- Department of RadiologyThe 2nd Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Peiyu Huang
- Department of RadiologyThe 2nd Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Min‐Ming Zhang
- Department of RadiologyThe 2nd Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | | |
Collapse
|
31
|
Margrett JA, Schofield T, Martin P, Poon LW, Masaki K, Donlon TA, Kallianpur KJ, Willcox BJ. Novel Functional, Health, and Genetic Determinants of Cognitive Terminal Decline: Kuakini Honolulu Heart Program/Honolulu-Asia Aging Study. J Gerontol A Biol Sci Med Sci 2022; 77:1525-1533. [PMID: 34918073 PMCID: PMC9373950 DOI: 10.1093/gerona/glab327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Indexed: 11/13/2022] Open
Abstract
To investigate interindividual differences in cognitive terminal decline and identify determinants including functional, health, and genetic risk and protective factors, data from the Honolulu Heart Program/Honolulu-Asia Aging Study, a prospective cohort study of Japanese American men, were analyzed. The sample was recruited in 1965-1968 (ages 45-68 years). Longitudinal performance of cognitive abilities and mortality status were assessed from Exam 4 (1991-1993) through June 2014. Latent class analysis revealed 2 groups: maintainers retained relatively high levels of cognitive functioning until death and decliners demonstrated significant cognitive waning several years prior to death. Maintainers were more likely to have greater education, diagnosed coronary heart disease, and presence of the apolipoprotein E (APOE) ε2 allele and FOXO3 G allele (SNP rs2802292). Decliners were more likely to be older and have prior stroke, Parkinson's disease, dementia, and greater depressive symptoms at Exam 4, and the APOE ε4 allele. Findings support terminal decline using distance to death as the basis for modeling change. Significant differences were observed between maintainers and decliners 15 years prior to death, a finding much earlier compared to the majority of previous investigations.
Collapse
Affiliation(s)
- Jennifer A Margrett
- Department of Human Development and Family Studies, College of Human Sciences, Iowa State University, Ames, Iowa, USA
| | - Thomas Schofield
- Department of Human Development and Family Studies, College of Human Sciences, Iowa State University, Ames, Iowa, USA
| | - Peter Martin
- Department of Human Development and Family Studies, College of Human Sciences, Iowa State University, Ames, Iowa, USA
| | - Leonard W Poon
- Institute of Gerontology, University of Georgia, Athens, Georgia, USA
| | - Kamal Masaki
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
- Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
| | - Timothy A Donlon
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
- Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
| | - Kalpana J Kallianpur
- Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Bradley J Willcox
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
- Department of Research, Kuakini Medical Center, Honolulu, Hawaii, USA
| |
Collapse
|
32
|
Mietani K, Hasegawa-Moriyama M, Inoue R, Ogata T, Shimojo N, Kurano M, Yatomi Y, Uchida K, Sumitani M. Serum levels of apolipoprotein A-I and E are associated with postoperative delirium: A post hoc analysis. Medicine (Baltimore) 2022; 101:e29906. [PMID: 35905282 PMCID: PMC9333508 DOI: 10.1097/md.0000000000029906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Postoperative delirium is a common complication for elderly patients. Detection of phosphorylated neurofilament heavy subunit in the serum reflects axonal damage with postoperative delirium. Although it has been implicated that serum apolipoprotein levels might be associated with senile cognitive disorder, its role in the development of delirium has not been fully investigated. This study examined the association of apolipoproteins with delirium after surgery. This was a post hoc analysis of 117 patients who participated in a prospective observational study of delirium in patients undergoing cancer surgery. Patients were clinically assessed for delirium within the first 5 days of surgery. Serum levels of apolipoprotein A-I, B, and E were measured on postoperative day 3. Forty-one patients (35%) were clinically diagnosed with postoperative delirium. Serum levels of apolipoprotein A-I and B were increased in patients with delirium whereas those of apolipoprotein E were decreased. These changes in apolipoprotein A-I and E levels were associated with the presence of phosphorylated neurofilament heavy subunit in the serum, and were significantly associated with delirium (A-I: adjusted odds ratio [aOR], 6.238; 95% confidence interval [CI], 2.766-20.68; P < .0001; E: aOR, 0.253; 95% CI, 0.066-0.810; P = .0193). A combination of apolipoprotein A-I and E offers significant discrimination between delirium and nondelirium with high accuracy (area under the curve, 0.8899). Serum apolipoprotein A-I and E levels were associated with delirium and the presence of phosphorylated neurofilament heavy subunit in serum. Therefore, apolipoproteins might be useful biomarkers of postoperative delirium.
Collapse
Affiliation(s)
- Kazuhito Mietani
- Department of Anaesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Maiko Hasegawa-Moriyama
- Department of Pain and Palliative Medical Sciences, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Reo Inoue
- Department of Anaesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Toru Ogata
- Department of Rehabilitation Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Nobutake Shimojo
- Department of Emergency and Critical Care Medicine, Tsukuba University Hospital, Ibaraki, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Kanji Uchida
- Department of Anaesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Masahiko Sumitani
- Department of Pain and Palliative Medicines, The University of Tokyo Hospital, Tokyo, Japan
- * Correspondence: Masahiko Sumitani, MD, PhD, Department of Pain and Palliative Medicines, The University of Tokyo, Tokyo, Japan (e-mail: )
| |
Collapse
|
33
|
Zhang Y, Gao H, Zheng W, Xu H. Current understanding of the interactions between metal ions and Apolipoprotein E in Alzheimer's disease. Neurobiol Dis 2022; 172:105824. [PMID: 35878744 DOI: 10.1016/j.nbd.2022.105824] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/05/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease (AD), the most common type of dementia in the elderly, is a chronic and progressive neurodegenerative disorder with no effective disease-modifying treatments to date. Studies have shown that an imbalance in brain metal ions, such as zinc, copper, and iron, is closely related to the onset and progression of AD. Many efforts have been made to understand metal-related mechanisms and therapeutic strategies for AD. Emerging evidence suggests that interactions of brain metal ions and apolipoprotein E (ApoE), which is the strongest genetic risk factor for late-onset AD, may be one of the mechanisms for neurodegeneration. Here, we summarize the key points regarding how metal ions and ApoE contribute to the pathogenesis of AD. We further describe the interactions between metal ions and ApoE in the brain and propose that their interactions play an important role in neuropathological alterations and cognitive decline in AD.
Collapse
Affiliation(s)
- Yanhui Zhang
- Department of Tissue Engineering, China Medical University, Shenyang, China
| | - Huiling Gao
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Wei Zheng
- Department of Histology and Embryology, China Medical University, Shenyang, China
| | - He Xu
- Department of Anatomy, Histology and Embryology, School of Medicine, Shenzhen University, Shenzhen, China.
| |
Collapse
|
34
|
Kim H, Devanand DP, Carlson S, Goldberg TE. Apolipoprotein E Genotype e2: Neuroprotection and Its Limits. Front Aging Neurosci 2022; 14:919712. [PMID: 35912085 PMCID: PMC9329577 DOI: 10.3389/fnagi.2022.919712] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
In this review, we comprehensively, qualitatively, and critically synthesized several features of APOE-e2, a known APOE protective variant, including its associations with longevity, cognition, and neuroimaging, and neuropathology, all in humans. If e2’s protective effects—and their limits—could be elucidated, it could offer therapeutic windows for Alzheimer’s disease (AD) prevention or amelioration. Literature examining e2 within the years 1994–2021 were considered for this review. Studies on human subjects were selectively reviewed and were excluded if observation of e2 was not specified. Effects of e2 were compared with e3 and e4, separately and as a combined non-e2 group. Our examination of existing literature indicated that the most robust protective role of e2 is in longevity and AD neuropathologies, but e2’s effect on cognition and other AD imaging markers (brain structure, function, and metabolism) were inconsistent, thus inconclusive. Notably, e2 was associated with greater risk of non-AD proteinopathies and a disadvantageous cerebrovascular profile. We identified multiple methodological shortcomings of the literature on brain function and cognition that could have contributed to inconsistent and potentially misleading findings. We make careful interpretations of existing findings and provide directions for research strategies that could effectively examine the independent and unbiased effect of e2 on AD risk.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
- Department of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, United States
| | - Davangere P. Devanand
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
- Department of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, United States
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - Scott Carlson
- Department of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, United States
| | - Terry E. Goldberg
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
- Department of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, United States
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, United States
- *Correspondence: Terry E. Goldberg,
| |
Collapse
|
35
|
Abstract
The brain, as one of the most lipid-rich organs, heavily relies on lipid transport and distribution to maintain homeostasis and neuronal function. Lipid transport mediated by lipoprotein particles, which are complex structures composed of apolipoproteins and lipids, has been thoroughly characterized in the periphery. Although lipoproteins in the central nervous system (CNS) were reported over half a century ago, the identification of APOE4 as the strongest genetic risk factor for Alzheimer's disease has accelerated investigation of the biology and pathobiology of lipoproteins in the CNS. This review provides an overview of the different components of lipoprotein particles, in particular apolipoproteins, and their involvements in both physiological functions and pathological mechanisms in the CNS.
Collapse
Affiliation(s)
| | - Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA;
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA;
| |
Collapse
|
36
|
Dumuid D, Mellow ML, Olds T, Tregoweth E, Greaves D, Keage H, Smith AE. Does APOE ɛ4 Status Change How 24-Hour Time-Use Composition Is Associated with Cognitive Function? An Exploratory Analysis Among Middle-to-Older Adults. J Alzheimers Dis 2022; 88:1157-1165. [PMID: 35754272 DOI: 10.3233/jad-220181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The 24 h time-use composition of physical activity, sedentary behavior, and sleep is linked to cognitive function in adults and may contribute to future dementia risk. However, the impact of reallocating time between behaviors may differ depending on an individual's genetic dementia risk. OBJECTIVE To explore if there is an interaction between 24 h time-use composition and genetic dementia risk in relation to cognitive function, and to simulate how time-reallocations are associated with cognitive function across different levels of genetic dementia risk. METHODS Cross-sectional global cognition, executive function, genetic dementia risk (at least one apolipoprotein (APOE) ɛ4 allele versus none) and 7 days of 24 h accelerometry (average daily time-use composition of moderate-to-vigorous physical activity (MVPA), light physical activity, sedentary time, sleep) were collected from 82 adults (65.6±7.5 years, 49 females). Linear regression was used to explore the relationship between time-use composition and cognitive measures, testing for interaction between APOE ɛ4 status and time-use composition. The models were used to simulate time reallocations in both APOE ɛ4 status groups. RESULTS The 24 h time-use composition was associated with global cognition (F = 2.4, p = 0.02) and executive function (F = 2.6, p = 0.01). For both measures, the association differed according to genetic risk (interactions p < 0.001). In both APOE ɛ4 groups, reallocating time to MVPA was beneficially associated with measures of cognitive function, but associations were larger among those with at least one APOE ɛ4 allele. CONCLUSION Genetic dementia risk may impact the effectiveness of activity interventions. Increasing MVPA may provide greater benefits among those with higher genetic dementia risk.
Collapse
Affiliation(s)
- Dorothea Dumuid
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, Adelaide, South Australia
| | - Maddison L Mellow
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, Adelaide, South Australia
| | - Tim Olds
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, Adelaide, South Australia
| | - Emma Tregoweth
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, Adelaide, South Australia
| | - Danielle Greaves
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, Adelaide, South Australia.,Cognitive Ageing and Impairment Neurosciences Laboratory, Behaviour, Brain and Body Research Centre, Justice and Society, University of South Australia, Adelaide, South Australia
| | - Hannah Keage
- Cognitive Ageing and Impairment Neurosciences Laboratory, Behaviour, Brain and Body Research Centre, Justice and Society, University of South Australia, Adelaide, South Australia
| | - Ashleigh E Smith
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, Adelaide, South Australia
| |
Collapse
|
37
|
Mass Spectrometry-Based Analysis of Lipid Involvement in Alzheimer’s Disease Pathology—A Review. Metabolites 2022; 12:metabo12060510. [PMID: 35736443 PMCID: PMC9228715 DOI: 10.3390/metabo12060510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
Irregularities in lipid metabolism have been linked to numerous neurodegenerative diseases. The roles of abnormal brain, plasma, and cerebrospinal fluid (CSF) lipid levels in Alzheimer’s disease (AD) onset and progression specifically have been described to a great extent in the literature. Apparent hallmarks of AD include, but are not limited to, genetic predisposition involving the APOE Ɛ4 allele, oxidative stress, and inflammation. A common culprit tied to many of these hallmarks is disruption in brain lipid homeostasis. Therefore, it is important to understand the roles of lipids, under normal and abnormal conditions, in each process. Lipid influences in processes such as inflammation and blood–brain barrier (BBB) disturbance have been primarily studied via biochemical-based methods. There is a need, however, for studies focused on uncovering the relationship between lipid irregularities and AD by molecular-based quantitative analysis in transgenic animal models and human samples alike. In this review, mass spectrometry as it has been used as an analytical tool to address the convoluted relationships mentioned above is discussed. Additionally, molecular-based mass spectrometry strategies that should be used going forward to further relate structure and function relationships of lipid irregularities and hallmark AD pathology are outlined.
Collapse
|
38
|
Williams T, Ruiz AJ, Ruiz AM, Vo Q, Tsering W, Xu G, McFarland K, Giasson BI, Sullivan P, Borchelt DR, Chakrabarty P. Impact of APOE genotype on prion-type propagation of tauopathy. Acta Neuropathol Commun 2022; 10:57. [PMID: 35440098 PMCID: PMC9019935 DOI: 10.1186/s40478-022-01359-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/01/2022] [Indexed: 11/10/2022] Open
Abstract
Apolipoprotein (APOE) is a major risk factor of Alzheimer's disease (AD), with the E2, E3 and E4 isoforms differentially regulating the burden of AD-associated neuropathologies, such as amyloid β and tau. In AD, pathological tau is thought to spread along neuroanatomic connections following a prion-like mechanism. To provide insights into whether APOE isoforms differentially regulate the prion properties of tau and determine trans-synaptic transmission of tauopathy, we have generated human P301S mutant tau transgenic mice (PS19) that carry human APOE (APOE2, APOE3 or APOE4) or mouse Apoe allele. Mice received intrahippocamal injections of preformed aggregates of K18-tau at young ages, which were analyzed 5 months post-inoculation. Compared to the parental PS19 mice with mouse Apoe alleles, PS19 mice expressing human APOE alleles generally responded to K18-tau seeding with more intense AT8 immunoreactive phosphorylated tau athology. APOE3 homozygous mice accumulated higher levels of AT8-reactive ptau and microgliosis relative to APOE2 or APOE4 homozygotes (E3 > E4~2). PS19 mice that were heterozygous for APOE3 showed similar results, albeit to a lesser degree. In the timeframe of our investigation, we did not observe significant induction of argentophilic or MC1-reactive neurofibrillary tau tangle in PS19 mice homozygous for human APOE. To our knowledge, this is the first comprehensive study in rodent models that provides neuropathological insights into the dose-dependent effect of APOE isoforms on phosphorylated tau pathology induced by recombinant tau prions.
Collapse
|
39
|
Alcohol-Induced Alterations in the Vascular Basement Membrane in the Substantia Nigra of the Adult Human Brain. Biomedicines 2022; 10:biomedicines10040830. [PMID: 35453580 PMCID: PMC9028457 DOI: 10.3390/biomedicines10040830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/10/2022] Open
Abstract
The blood–brain barrier (BBB) represents a highly specialized interface that acts as the first line of defense against toxins. Herein, we investigated the structural and ultrastructural changes in the basement membrane (BM), which is responsible for maintaining the integrity of the BBB, in the context of chronic alcoholism. Human post-mortem tissues from the Substantia Nigra (SN) region were obtained from 44 individuals, then grouped into controls, age-matched alcoholics, and non-age-matched alcoholics and assessed using light and electron microscopy. We found significantly less CD31+ vessels in alcoholic groups compared to controls in both gray and white matter samples. Alcoholics showed increased expression levels of collagen-IV, laminin-111, and fibronectin, which were coupled with a loss of BM integrity in comparison with controls. The BM of the gray matter was found to be more disintegrated than the white matter in alcoholics, as demonstrated by the expression of both collagen-IV and laminin-111, thereby indicating a breakdown in the BM’s structural composition. Furthermore, we observed that the expression of fibronectin was upregulated in the BM of the white matter vasculature in both alcoholic groups compared to controls. Taken together, our findings highlight some sort of aggregation or clumping of BM proteins that occurs in response to chronic alcohol consumption.
Collapse
|
40
|
Fisher RA, Miners JS, Love S. Pathological changes within the cerebral vasculature in Alzheimer's disease: New perspectives. Brain Pathol 2022; 32:e13061. [PMID: 35289012 PMCID: PMC9616094 DOI: 10.1111/bpa.13061] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Cerebrovascular disease underpins vascular dementia (VaD), but structural and functional changes to the cerebral vasculature contribute to disease pathology and cognitive decline in Alzheimer's disease (AD). In this review, we discuss the contribution of cerebral amyloid angiopathy and non‐amyloid small vessel disease in AD, and the accompanying changes to the density, maintenance and remodelling of vessels (including alterations to the composition and function of the cerebrovascular basement membrane). We consider how abnormalities of the constituent cells of the neurovascular unit – particularly of endothelial cells and pericytes – and impairment of the blood‐brain barrier (BBB) impact on the pathogenesis of AD. We also discuss how changes to the cerebral vasculature are likely to impair Aβ clearance – both intra‐periarteriolar drainage (IPAD) and transport of Aβ peptides across the BBB, and how impaired neurovascular coupling and reduced blood flow in relation to metabolic demand increase amyloidogenic processing of APP and the production of Aβ. We review the vasoactive properties of Aβ peptides themselves, and the probable bi‐directional relationship between vascular dysfunction and Aβ accumulation in AD. Lastly, we discuss recent methodological advances in transcriptomics and imaging that have provided novel insights into vascular changes in AD, and recent advances in assessment of the retina that allow in vivo detection of vascular changes in the early stages of AD.
Collapse
Affiliation(s)
- Robert A Fisher
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - J Scott Miners
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| | - Seth Love
- Dementia Research Group, University of Bristol Medical School, Bristol, UK
| |
Collapse
|
41
|
Triebswetter C, Kiely M, Khattar N, Ferrucci L, Resnick SM, Spencer RG, Bouhrara M. Differential associations between apolipoprotein E alleles and cerebral myelin content in normative aging. Neuroimage 2022; 251:118988. [PMID: 35150834 PMCID: PMC8940662 DOI: 10.1016/j.neuroimage.2022.118988] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/20/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022] Open
Abstract
Mounting evidence indicates that myelin breakdown may represent an early phenomenon in neurodegeneration, including Alzheimer's disease (AD). Understanding the factors influencing myelin synthesis and breakdown will be essential for the development and evaluation of therapeutic interventions. In this work, we assessed associations between genetic variance in apolipoprotein E (APOE) and cerebral myelin content. Quantitative magnetic resonance imaging (qMRI) was performed on a cohort of 92 cognitively unimpaired adults ranging in age from 24 to 94 years. We measured whole-brain myelin water fraction (MWF), a direct measure of myelin content, as well as longitudinal and transverse relaxation rates (R1 and R2), sensitive measures of myelin content, in carriers of the APOE ε4 or APOE ε2 alleles and individuals with the ε33 genotype. Automated brain mapping algorithms and statistical models were used to evaluate the relationships between MWF or relaxation rates and APOE isoforms, accounting for confounding variables including age, sex, and race, in several cerebral structures. Our results indicate that carriers of APOE ε2 exhibited significantly higher myelin content, that is, higher MWF, R1 or R2 values, in most brain regions investigated as compared to noncarriers, while ε4 carriers exhibited trends toward lower myelin content compared to noncarriers. Finally, all qMRI metrics exhibited quadratic, inverted U-shape, associations with age; attributed to the development of myelination from young to middle age followed by progressive loss of myelin afterwards. Sex and race effects on myelination were, overall, nonsignificant. These findings suggest that individual genetic background may influence cerebral myelin maintenance. Although preliminary, this work lays the foundation for further investigations to clarify the relationship between APOE genotype and myelination, which may suggest potential targets in treatment or prevention of AD.
Collapse
Affiliation(s)
- Curtis Triebswetter
- Magnetic Resonance Physics of Aging and Dementia Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, BRC 05C-222, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Matthew Kiely
- Magnetic Resonance Physics of Aging and Dementia Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, BRC 05C-222, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Nikkita Khattar
- Magnetic Resonance Physics of Aging and Dementia Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, BRC 05C-222, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Richard G Spencer
- Magnetic Resonance Physics of Aging and Dementia Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, BRC 05C-222, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Mustapha Bouhrara
- Magnetic Resonance Physics of Aging and Dementia Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, BRC 05C-222, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| |
Collapse
|
42
|
Zajac DJ, Green SJ, Johnson LA, Estus S. APOE genetics influence murine gut microbiome. Sci Rep 2022; 12:1906. [PMID: 35115575 PMCID: PMC8814305 DOI: 10.1038/s41598-022-05763-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/17/2022] [Indexed: 01/03/2023] Open
Abstract
Apolipoprotein E (APOE) alleles impact pathogenesis and risk for multiple human diseases, making them primary targets for disease treatment and prevention. Previously, we and others reported an association between APOE alleles and the gut microbiome. Here, we evaluated effects of APOE heterozygosity and tested whether these overall results extended to mice maintained under ideal conditions for microbiome analyses. To model human APOE alleles, this study used APOE targeted replacement (TR) mice on a C57Bl/6 background. To minimize genetic drift, homozygous APOE3 mice were crossed to homozygous APOE2 or homozygous APOE4 mice prior to the study, and the resulting heterozygous progeny crossed further to generate the study mice. To maximize environmental homogeneity, mice with mixed genotypes were housed together and used bedding from the cages was mixed and added back as a portion of new bedding. Fecal samples were obtained from mice at 3-, 5- and 7-months of age, and microbiota analyzed by 16S ribosomal RNA gene amplicon sequencing. Linear discriminant analysis of effect size (LefSe) identified taxa associated with APOE status, depicted as cladograms to show phylogenetic relatedness. The influence of APOE status was tested on alpha-diversity (Shannon H index) and beta-diversity (principal coordinate analyses and PERMANOVA). Individual taxa associated with APOE status were identified by classical univariate analysis. Whether findings in the APOE mice were replicated in humans was evaluated by using published microbiome genome wide association data. Cladograms revealed robust differences with APOE in male mice and limited differences in female mice. The richness and evenness (alpha-diversity) and microbial community composition (beta-diversity) of the fecal microbiome was robustly associated with APOE status in male but not female mice. Classical univariate analysis revealed individual taxa that were significantly increased or decreased with APOE, illustrating a stepwise APOE2-APOE3-APOE4 pattern of association with heterozygous animals trending as intermediate in the stepwise pattern. The relative abundance of bacteria from the class Clostridia, order Clostridiales, family Ruminococacceae and related genera increased with APOE2 status. The relative abundance of Erysipelotrichia increased with APOE4 status, a finding that extended to humans. In this study, wherein mice were maintained in an ideal fashion for microbiome studies, gut microbiome profiles were strongly and significantly associated with APOE status in male APOE-TR mice. Erysipelotrichia are increased with APOE4 in both mice and humans. APOE allelic effects appeared generally intermediate in heterozygous animals. Further evaluation of these findings in humans, as well as studies evaluating the impact of the APOE-associated microbiota on disease-relevant phenotypes, will be necessary to determine if alterations in the gut microbiome represent a novel mechanism whereby APOE alleles impact disease.
Collapse
Affiliation(s)
- Diana J Zajac
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Stefan J Green
- Genome Research Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL, USA
| | - Lance A Johnson
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Steven Estus
- Department of Physiology and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
- Department of Physiology, University of Kentucky, 789 S. Limestone, Rm. 537, Lexington, KY, 40536, USA.
| |
Collapse
|
43
|
Patel K, Srivastava S, Kushwah S, Mani A. Perspectives on the Role of APOE4 as a Therapeutic Target for Alzheimer's Disease. J Alzheimers Dis Rep 2021; 5:899-910. [PMID: 35088039 PMCID: PMC8764632 DOI: 10.3233/adr-210027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/21/2021] [Indexed: 11/15/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is coupled with chronic cognitive dysfunction. AD cases are mostly late onset, and genetic risk factors like the Apolipoprotein E (APOE) play a key role in this process. APOE ɛ2, APOE ɛ3, and APOE ɛ4 are three key alleles in the human APOE gene. For late onset, APOE ɛ4 has the most potent risk factor while APOE ɛ2 plays a defensive role. Several studies suggests that APOE ɛ4 causes AD via different processes like neurofibrillary tangle formation by amyloid-β accumulation, exacerbated neuroinflammation, cerebrovascular disease, and synaptic loss. But the pathway is still unclear that which actions of APOE ɛ4 lead to AD development. Since APOE was found to contribute to many AD pathways, targeting APOE ɛ4 can lead to a hopeful plan of action in development of new drugs to target AD. In this review, we focus on recent studies and perspectives, focusing on APOE ɛ4 as a key molecule in therapeutic strategies.
Collapse
Affiliation(s)
- Kavita Patel
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Siwangi Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Shikha Kushwah
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| |
Collapse
|
44
|
Gao H, Zheng W, Li C, Xu H. Isoform-Specific Effects of Apolipoprotein E on Hydrogen Peroxide-Induced Apoptosis in Human Induced Pluripotent Stem Cell (iPSC)-Derived Cortical Neurons. Int J Mol Sci 2021; 22:ijms222111582. [PMID: 34769014 PMCID: PMC8584079 DOI: 10.3390/ijms222111582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
Hydrogen peroxide (H2O2)-induced neuronal apoptosis is critical to the pathology of Alzheimer's disease (AD) as well as other neurodegenerative diseases. The neuroprotective effects of apolipoprotein (ApoE) isoforms against apoptosis and the underlying mechanism remains controversial. Here, we have generated human cortical neurons from iPSCs and induced apoptosis with H2O2. We show that ApoE2 and ApoE3 pretreatments significantly attenuate neuronal apoptosis, whereas ApoE4 has no neuroprotective effect and higher concentrations of ApoE4 even display toxic effect. We further identify that ApoE2 and ApoE3 regulate Akt/FoxO3a/Bim signaling pathway in the presence of H2O2. We propose that ApoE alleviates H2O2-induced apoptosis in human iPSC-derived neuronal culture in an isoform specific manner. Our results provide an alternative mechanistic explanation on how ApoE isoforms influence the risk of AD onset as well as a promising therapeutic target for diseases involving neuronal apoptosis in the central nervous system.
Collapse
Affiliation(s)
- Huiling Gao
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China;
| | - Wei Zheng
- Department of Histology and Embryology, China Medical University, Shenyang 110122, China;
| | - Cheng Li
- Department of Immunology, China Medical University, Shenyang 110122, China;
| | - He Xu
- Department of Histology and Embryology, Faculty of Medicine, Shenzhen University, Shenzhen 518061, China
- Correspondence:
| |
Collapse
|
45
|
Panitch R, Hu J, Chung J, Zhu C, Meng G, Xia W, Bennett DA, Lunetta KL, Ikezu T, Au R, Stein TD, Farrer LA, Jun GR. Integrative brain transcriptome analysis links complement component 4 and HSPA2 to the APOE ε2 protective effect in Alzheimer disease. Mol Psychiatry 2021; 26:6054-6064. [PMID: 34480088 PMCID: PMC8758485 DOI: 10.1038/s41380-021-01266-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 07/07/2021] [Accepted: 08/12/2021] [Indexed: 02/08/2023]
Abstract
Mechanisms underlying the protective effect of apolipoprotein E (APOE) ε2 against Alzheimer disease (AD) are not well understood. We analyzed gene expression data derived from autopsied brains donated by 982 individuals including 135 APOE ɛ2/ɛ3 carriers. Complement pathway genes C4A and C4B were among the most significantly differentially expressed genes between ɛ2/ɛ3 AD cases and controls. We also identified an APOE ε2/ε3 AD-specific co-expression network enriched for astrocytes, oligodendrocytes and oligodendrocyte progenitor cells containing the genes C4A, C4B, and HSPA2. These genes were significantly associated with the ratio of phosphorylated tau at position 231 to total Tau but not with amyloid-β 42 level, suggesting this APOE ɛ2 related co-expression network may primarily be involved with tau pathology. HSPA2 expression was oligodendrocyte-specific and significantly associated with C4B protein. Our findings provide the first evidence of a crucial role of the complement pathway in the protective effect of APOE ε2 for AD.
Collapse
Affiliation(s)
- Rebecca Panitch
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Junming Hu
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Jaeyoon Chung
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Congcong Zhu
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Gaoyuan Meng
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Weiming Xia
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Tsuneya Ikezu
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Center for Systems Neuroscience, Boston University School of Medicine, Boston, MA, USA
| | - Rhoda Au
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Thor D Stein
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA.
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA.
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA.
| | - Gyungah R Jun
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA.
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
46
|
Babić Leko M, Nikolac Perković M, Nedić Erjavec G, Klepac N, Švob Štrac DK, Borovečki F, Pivac N, Hof PR, Šimić G. Association of the MAOB rs1799836 Single Nucleotide Polymorphism and APOE ɛ4 Allele in Alzheimer's Disease. Curr Alzheimer Res 2021; 18:585-594. [PMID: 34533445 DOI: 10.2174/1567205018666210917162843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/01/2021] [Accepted: 08/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The dopaminergic system is functionally compromised in Alzheimer's dis-ease (AD). The activity of monoamine oxidase B (MAOB), the enzyme involved in the degradation of dopamine, is increased during AD. Also, increased expression of MAOB occurs in the post-mortem hippocampus and neocortex of patients with AD. The MAOB rs1799836 polymorphism modulates MAOB transcription, consequently influencing protein translation and MAOB activity. We recently showed that cerebrospinal fluid levels of amyloid β1-42 are decreased in patients carry- ing the A allele in MAOB rs1799836 polymorphism. OBJECTIVE The present study compares MAOB rs1799836 polymorphism and APOE, the only con- firmed genetic risk factor for sporadic AD. METHOD We included 253 participants, 127 of whom had AD, 57 had mild cognitive impairment, 11 were healthy controls, and 58 suffered from other primary causes of dementia. MAOB and APOE polymorphisms were determined using TaqMan SNP Genotyping Assays. RESULTS We observed that the frequency of APOE ɛ4/ɛ4 homozygotes and APOE ɛ4 carriers is sig- nificantly increased among patients carrying the AA MAOB rs1799836 genotype. CONCLUSION These results indicate that the MAOB rs1799836 polymorphism is a potential genetic biomarker of AD and a potential target for the treatment of decreased dopaminergic transmission and cognitive deterioration in AD.
Collapse
Affiliation(s)
- Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | | | | | - Nataša Klepac
- Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia
| | | | - Fran Borovečki
- Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Nela Pivac
- Department of Molecular Medicine, Institute Ruđer Bošković, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| |
Collapse
|
47
|
Wang YY, Sun YP, Luo YM, Peng DH, Li X, Yang BY, Wang QH, Kuang HX. Biomarkers for the Clinical Diagnosis of Alzheimer's Disease: Metabolomics Analysis of Brain Tissue and Blood. Front Pharmacol 2021; 12:700587. [PMID: 34366852 PMCID: PMC8333692 DOI: 10.3389/fphar.2021.700587] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/08/2021] [Indexed: 01/09/2023] Open
Abstract
With an increase in aging populations worldwide, age-related diseases such as Alzheimer's disease (AD) have become a global concern. At present, a cure for neurodegenerative disease is lacking. There is an urgent need for a biomarker that can facilitate the diagnosis, classification, prognosis, and treatment response of AD. The recent emergence of highly sensitive mass-spectrometry platforms and high-throughput technology can be employed to discover and catalog vast datasets of small metabolites, which respond to changed status in the body. Metabolomics analysis provides hope for a better understanding of AD as well as the subsequent identification and analysis of metabolites. Here, we review the state-of-the-art emerging candidate biomarkers for AD.
Collapse
Affiliation(s)
- Yang-Yang Wang
- Key Laboratory of Chinese Materia Medica Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan-Ping Sun
- Key Laboratory of Chinese Materia Medica Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu-Meng Luo
- Key Laboratory of Chinese Materia Medica Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dong-Hui Peng
- Key Laboratory of Chinese Materia Medica Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiao Li
- Key Laboratory of Chinese Materia Medica Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bing-You Yang
- Key Laboratory of Chinese Materia Medica Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiu-Hong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
48
|
Babić Leko M, Jurasović J, Nikolac Perković M, Španić E, Sekovanić A, Orct T, Lukinović Škudar V, Bačić Baronica K, Kiđemet-Piskač S, Vogrinc Ž, Pivac N, Borovečki F, Hof PR, Šimić G. The Association of Essential Metals with APOE Genotype in Alzheimer's Disease. J Alzheimers Dis 2021; 82:661-672. [PMID: 34057084 DOI: 10.3233/jad-210158] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The major confirmed genetic risk factor for late-onset, sporadic Alzheimer's disease (AD) is variant ɛ4 of apolipoprotein E gene (APOE). It is proposed that ApoE, a protein involved in transport of cholesterol to neurons can cause neurodegeneration in AD through interaction with metals. Previous studies mostly associated copper, iron, zinc, and calcium with ApoE4-mediated toxicity. OBJECTIVE To test the association of essential metals with APOE genotype. METHODS We compared plasma and cerebrospinal fluid (CSF) levels of copper, zinc, iron, sodium, magnesium, calcium, cobalt, molybdenum, manganese, boron, and chromium, and CSF ferritin levels among AD, mild cognitive impairment (MCI) patients, and healthy controls (HC) with different APOE genotype. RESULTS Sodium, copper, and magnesium levels were increased in carriers of ɛ4 allele. Additionally, the increase in sodium, calcium and cobalt plasma levels was observed in carriers of ɛ4/ɛx genotype. The decrease in boron plasma levels was observed in carriers of ɛ4 allele and ɛ4/ɛ4 genotype. Additionally, CSF zinc levels as well as plasma sodium levels were increased in AD patients compared to HC. CONCLUSION These results indicate that the molecular underpinnings of association of essential metals and metalloids with APOE should be further tested and clarified in vivo and in vitro.
Collapse
Affiliation(s)
- Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jasna Jurasović
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Ena Španić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ankica Sekovanić
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Tatjana Orct
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Vesna Lukinović Škudar
- Department of Physiology and Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Koraljka Bačić Baronica
- University Department of Neurology, Clinical Hospital "Sveti Duh", Zagreb, Croatia and Neurology Clinic, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | | | - Željka Vogrinc
- Laboratory for Neurobiochemistry, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Nela Pivac
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Fran Borovečki
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
49
|
Beydoun MA, Weiss J, Beydoun HA, Hossain S, Maldonado AI, Shen B, Evans MK, Zonderman AB. Race, APOE genotypes, and cognitive decline among middle-aged urban adults. ALZHEIMERS RESEARCH & THERAPY 2021; 13:120. [PMID: 34193248 PMCID: PMC8247163 DOI: 10.1186/s13195-021-00855-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022]
Abstract
Background Associations of Apolipoprotein (APOE) ε2 or ε4 (APOE2 or APOE4) dosages with cognitive change may differ across racial groups. Methods Longitudinal data on 1770 middle-aged White and African American adults was compiled from the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS 2004-2013) study. APOE2 and APOE4 dosages were the two main exposures, while v1 and annual rate of change in cognitive performance (between v1 and v2) on 11 test scores were the main outcomes of interest (v1: 2004–2009 and v2: 2009–2013). Mixed-effects linear regression models were conducted adjusting for socio-demographic, lifestyle, and health-related potential confounders. Race (African American vs. White) and sex within racial groups were main effect modifiers. Results Upon adjustment for multiple testing and potential confounders, APOE4 allelic dosage was associated with faster decline on a test of verbal memory among Whites only (CVLT-List A: γ12 = − 0.363 ± 0.137, p = 0.008), but not among African Americans. In contrast, among African American women, APOE4 dosage was linked to slower decline on a test of attention (BTA: γ12 = + 0.106 ± 0.035, p = 0.002), while no association was detected among African American men. APOE2 and APOE4 dosages showed inconsistent results in other domains of cognition overall and across racial groups that did not survive correction for multiple testing. Conclusions In conclusion, APOE4 dosage was associated with faster decline on a test of verbal memory among Whites only, while exhibiting a potential protective effect among African American women in the domain of attention. Further longitudinal studies are needed to replicate our race and sex-specific findings. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00855-y.
Collapse
Affiliation(s)
- May A Beydoun
- Laboratory of Epidemiology and Population Sciences, NIH Biomedical Research Center, National Institute on Aging, IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA.
| | - Jordan Weiss
- Department of Demography, University of California, Berkeley, Berkeley, CA, USA
| | - Hind A Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA, USA
| | - Sharmin Hossain
- Laboratory of Epidemiology and Population Sciences, NIH Biomedical Research Center, National Institute on Aging, IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA
| | - Ana I Maldonado
- Laboratory of Epidemiology and Population Sciences, NIH Biomedical Research Center, National Institute on Aging, IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA.,Department of Psychology, University of Maryland Baltimore County, Catonsville, MD, USA
| | - Botong Shen
- Laboratory of Epidemiology and Population Sciences, NIH Biomedical Research Center, National Institute on Aging, IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, NIH Biomedical Research Center, National Institute on Aging, IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, NIH Biomedical Research Center, National Institute on Aging, IRP, 251 Bayview Blvd., Suite 100, Room #: 04B118, Baltimore, MD, 21224, USA
| |
Collapse
|
50
|
Guebel DV, Torres NV, Acebes Á. Mapping the transcriptomic changes of endothelial compartment in human hippocampus across aging and mild cognitive impairment. Biol Open 2021; 10:bio057950. [PMID: 34184731 PMCID: PMC8181899 DOI: 10.1242/bio.057950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
Compromise of the vascular system has important consequences on cognitive abilities and neurodegeneration. The identification of the main molecular signatures present in the blood vessels of human hippocampus could provide the basis to understand and tackle these pathologies. As direct vascular experimentation in hippocampus is problematic, we achieved this information by computationally disaggregating publicly available whole microarrays data of human hippocampal homogenates. Three conditions were analyzed: 'Young Adults', 'Aged', and 'aged with Mild Cognitive Impairment' (MCI). The genes identified were contrasted against two independent data-sets. Here we show that the endothelial cells from the Younger Group appeared in an 'activated stage'. In turn, in the Aged Group, the endothelial cells showed a significant loss of response to shear stress, changes in cell adhesion molecules, increased inflammation, brain-insulin resistance, lipidic alterations, and changes in the extracellular matrix. Some specific changes in the MCI group were also detected. Noticeably, in this study the features arisen from the Aged Group (high tortuosity, increased bifurcations, and smooth muscle proliferation), pose the need for further experimental verification to discern between the occurrence of arteriogenesis and/or vascular remodeling by capillary arterialization. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Daniel V. Guebel
- Program Agustín de Betancourt, Universidad de La Laguna, Tenerife 38200, Spain
- Department of Biochemistry, Cellular Biology and Genetics, Institute of Biomedical Technologies, Universidad de La Laguna, Tenerife 38200, Spain
| | - Néstor V. Torres
- Department of Biochemistry, Cellular Biology and Genetics, Institute of Biomedical Technologies, Universidad de La Laguna, Tenerife 38200, Spain
| | - Ángel Acebes
- Department of Basic Medical Sciences, Institute of Biomedical Technologies, University of La Laguna, Tenerife 38200, Spain
| |
Collapse
|