1
|
Bonnier J, Sáez Laguna E, Francisco T, Troispoux V, Brunaux O, Schmitt S, Traissac S, Tysklind N, Heuertz M. Wet Season Environments Drive Local Adaptation in the Timber Tree Dicorynia guianensis in French Guiana. Mol Ecol 2025:e17759. [PMID: 40197836 DOI: 10.1111/mec.17759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/20/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025]
Abstract
The vast tropical rainforests of the Guiana Shield in Northern South America play a vital role in maintaining the region's ecological balance and economy. Increasing pressure from selective logging, gold mining and climate variability threatens these ecosystems. Sustainable rainforest management requires understanding the genetic diversity and local adaptation of key tree species to inform conservation. This study focuses on Dicorynia guianensis (Fabaceae), a widespread and economically important tree species in French Guiana. We performed genome resequencing on 87 individuals sampled in 11 sites across French Guiana to investigate the genetic structure, diversity and genetic basis of local adaptation. Genetic structure analysis identified three distinct groups: western, central and eastern, with similar levels of genetic diversity distributed in areas with different environmental conditions. Six methods applied to detect genomic signatures of selection revealed region-specific selective sweeps and a weak overlap between single nucleotide polymorphisms (SNPs) identified through outlier analysis or genome-environment association analyses. The strongest associations between environmental variables and genomic constitution were observed for potential evapotranspiration of the wettest quarter and for precipitation of the coldest quarter, suggesting that environmental variables related to high rainfall during the wet season are stronger drivers of local adaptation of D. guianensis populations than drought. Sites located in central and western French Guiana had higher risks of climatic maladaptation. These findings advance our understanding of local adaptation and climatic vulnerability in tropical trees and emphasise the need for targeted, area-specific management strategies for conservation and sustainable timber extraction under climate change.
Collapse
Affiliation(s)
- Julien Bonnier
- BIOGECO, INRAE, University of Bordeaux, Cestas, France
- ECOFOG, INRAE, Agroparistech, CNRS, Cirad, Université des Antilles, Université de la Guyane, Kourou, French Guiana, France
| | | | | | - Valérie Troispoux
- ECOFOG, INRAE, Agroparistech, CNRS, Cirad, Université des Antilles, Université de la Guyane, Kourou, French Guiana, France
| | - Olivier Brunaux
- ONF, R&D, Réserve de Montabo, Cayenne Cedex, French Guiana, France
| | | | - Stéphane Traissac
- ECOFOG, INRAE, Agroparistech, CNRS, Cirad, Université des Antilles, Université de la Guyane, Kourou, French Guiana, France
| | - Niklas Tysklind
- ECOFOG, INRAE, Agroparistech, CNRS, Cirad, Université des Antilles, Université de la Guyane, Kourou, French Guiana, France
| | | |
Collapse
|
2
|
Manirakiza N, Melkani S, Rabbany A, Medina-Irizarry N, Smidt S, Braswell A, Martens-Habbena W, Bhadha JH. Responses of soil health to seasonal change under different land cover types in a sub-tropical preserve ecosystem. PLoS One 2025; 20:e0318092. [PMID: 40132019 PMCID: PMC11936207 DOI: 10.1371/journal.pone.0318092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/09/2025] [Indexed: 03/27/2025] Open
Abstract
In subtropical preserve ecosystems, natural factors combined with anthropogenic activities have led to significant seasonal changes, including distinct dry and rainy seasons. These changes can potentially impact soil health indicators, which are keystone properties that control ecosystem services across terrestrial landscapes. Few studies have evaluated the impact of seasonal changes on soil health within non-agronomic landscapes, such as preserves. As part of this study, we collected topsoil samples (0-15 cm) from twenty-three land cover types within a 109 km² preserve in central Florida during two different seasons (dry and wet) to advance the understanding of how soil health responds to seasonal changes and to explore the environmental factors controlling soil health within non-agronomic landscapes. Ten soil indicators were analyzed and incorporated into the total dataset (TDS). From the TDS, a minimum dataset was derived using Principal Component Analysis, which was then used to calculate the Soil Health Index (SHI) for soil health assessment. Our findings showed that changes in soil indicators, their relationships, and the SHI across seasons depend on land cover type. Based on soil health classification grades, soil health status either improved, declined, or remained constant between seasons, depending on land cover type. The regression analysis of eight selected environmental factors, such as soil profile moisture (SPM), surface soil wetness (SSW), precipitation (P), soil temperature (T), elevation (El), slope gradient (S), global horizontal irradiance (GHI) and surface albedo (ALB), showed that only slope gradient significantly explains variations in SHI during wet season, whereas other environmental factors do not show significant explanatory power for SHI variations in either dry or wet season. These findings highlight the dominant influence of slope gradient on soil health within non-agronomic landscapes, while indicating that other evaluated environmental factors may have limited relevance in this context. Furthermore, the non-significant findings among soil indicators across seasons may be attributed to the study's small sample size (i.e., three replications), a limitation stemming from constrained funding. This highlights the importance of future research incorporating larger sample size to validate the findings of this study.
Collapse
Affiliation(s)
- Noel Manirakiza
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Everglades Research and Education Center, Belle Glade, Florida, United States of America,
| | - Suraj Melkani
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Everglades Research and Education Center, Belle Glade, Florida, United States of America,
| | - Abul Rabbany
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Everglades Research and Education Center, Belle Glade, Florida, United States of America,
| | - Natalia Medina-Irizarry
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, Florida, United States of America,
| | - Samuel Smidt
- American Farmland Trust, Washington, District of Columbia, United States of America,
| | - Anna Braswell
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, Florida, United States of America,
- Florida Sea Grant, University of Florida/IFAS, Gainesville, Florida, United States of America,
| | - Willm Martens-Habbena
- Department of Microbiology and Cell Science, Fort Lauderdale Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Davie, Florida, United States of America
| | - Jehangir H. Bhadha
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Everglades Research and Education Center, Belle Glade, Florida, United States of America,
| |
Collapse
|
3
|
González‐Rebeles G, Alonso‐Arevalo MÁ, López E, Méndez‐Alonzo R. A low-cost protocol for the optical method of vulnerability curves to calculate P 50. APPLICATIONS IN PLANT SCIENCES 2025; 13:e70004. [PMID: 40308903 PMCID: PMC12038744 DOI: 10.1002/aps3.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/23/2024] [Accepted: 02/02/2025] [Indexed: 05/02/2025]
Abstract
Premise The quantification of plant drought resistance, particularly embolism formation, within and across species, is critical for ecosystem management and agriculture. We developed a cost-effective protocol to measure the water potential at which 50% of hydraulic conductivity (P 50) is lost in stems, using affordable and accessible materials in comparison to the traditional optical method. Methods and Results Our protocol uses inexpensive USB microscopes, which are secured along with the plants to a pegboard base to avoid movement. A Python program automatized the image acquisition. This method was applied to quantify P 50 in an exotic species (Nicotiana glauca) and native species (Rhus integrifolia) of the Mediterranean vegetation in Baja California, Mexico. Conclusions The intra- and interspecific patterns of variation in stem P 50 of N. glauca and R. integrifolia were obtained using the low-cost optical method with widely available and affordable materials that can be easily replicated for other species.
Collapse
Affiliation(s)
- Georgina González‐Rebeles
- Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de EnsenadaCarretera EnsenadaTijuana No. 3918, Zona Playitas, C.P. 22860EnsenadaBaja CaliforniaMexico
- Departamento del Hombre y su AmbienteUniversidad Autónoma Metropolitana–Unidad XochimilcoCalzada del Hueso 1100, Colonia Villa Quietud, Alcaldía Coyoacán, C.P. 04960Ciudad de MéxicoMexico
| | - Miguel Ángel Alonso‐Arevalo
- Departamento de Electrónica y Telecomunicaciones, Centro de Investigación Científica y de Educación Superior de EnsenadaCarretera EnsenadaTijuana No. 3918, Zona Playitas, C.P. 22860EnsenadaBaja CaliforniaMexico
| | - Eulogio López
- Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de EnsenadaCarretera EnsenadaTijuana No. 3918, Zona Playitas, C.P. 22860EnsenadaBaja CaliforniaMexico
| | - Rodrigo Méndez‐Alonzo
- Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de EnsenadaCarretera EnsenadaTijuana No. 3918, Zona Playitas, C.P. 22860EnsenadaBaja CaliforniaMexico
| |
Collapse
|
4
|
Jops K, Dalling JW, O’Dwyer JP. Life history is a key driver of temporal fluctuations in tropical tree abundances. Proc Natl Acad Sci U S A 2025; 122:e2422348122. [PMID: 39854224 PMCID: PMC11789054 DOI: 10.1073/pnas.2422348122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025] Open
Abstract
The question of what mechanisms maintain tropical biodiversity is a critical frontier in ecology, intensified by the heightened risk of biodiversity loss faced in tropical regions. Ecological theory has shed light on multiple mechanisms that could lead to the high levels of biodiversity in tropical forests. But variation in species abundances over time may be just as important as overall biodiversity, with a more immediate connection to the risk of extirpation and biodiversity loss. Despite the urgency, our understanding of the primary mechanisms driving fluctuations in species abundances has not been clearly established. Here, we introduce a theoretical framework based around life history; the schedule of birth, growth, and mortality over a lifespan, and its systematic variation across species. We develop a mean field model to predict expected fluctuations in abundance for a focal species in a larger community, and we quantify empirical life history variation among 90 tropical forest species in a 50 ha plot in Panama. Putting theory and data together, we show that life history provides a critical piece of this puzzle, allowing us to explain patterns of abundance fluctuations more accurately than previous models incorporating demographic stochasticity without life history variation, and without introducing unobserved couplings between species and their environment. This framework provides a starting point for more general models that incorporate multiple factors in addition to life history variation, and suggests the potential for a fine-grained assessment of extirpation risk based on the impacts of anthropogenic change on demographic rates across life stages.
Collapse
Affiliation(s)
- Kenneth Jops
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - James W. Dalling
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Smithsonian Tropical Research Institute, Balboa, Panama
| | - James P. O’Dwyer
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Center for Artificial Intelligence and Modeling, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
5
|
Blackman CJ, Halliwell B, Brodribb TJ. All together now: A mixed-planting experiment reveals adaptive drought tolerance in seedlings of 10 Eucalyptus species. PLANT PHYSIOLOGY 2024; 197:kiae632. [PMID: 39673329 DOI: 10.1093/plphys/kiae632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 12/16/2024]
Abstract
The negative impacts of drought on plant productivity and survival in natural and crop systems are increasing with global heating, yet our capacity to identify species capable of surviving drought remains limited. Here, we tested the use of a mixed-planting approach for assessing differences in seedling drought tolerance. To homogenize dehydration rates, we grew seedlings of 10 species of Eucalyptus together in trays where roots of all individuals were overlapping in a common loam soil. These seedling combinations were dried down under cool and warm temperature conditions, and seedling responses were quantified from measurements of chlorophyll fluorescence (Fv/Fm). The day of drought (T) associated with an 88% decline in Fv/Fm (TF88) varied significantly among species and was unrelated to seedling size. No significant differences in water potentials were detected among seedlings dehydrated under warm conditions prior to leaf wilt. The rank-order of species TF88 was consistent under both temperature treatments. Under cool conditions, seedling TF88 increased with decreasing cavitation vulnerability measured on adult foliage. Under both treatments, a quadratic function best fit the relationship between seedling TF88 and sampling site mean annual precipitation. These results provide evidence for adaptive selection of seedling drought tolerance. Our findings highlight the use of mixed-planting experiments for comparing seedling drought tolerance with applications for improving plant breeding and conservation outcomes.
Collapse
Affiliation(s)
- Chris J Blackman
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Ben Halliwell
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Tim J Brodribb
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia
| |
Collapse
|
6
|
Savo V, Kohfeld KE, Sillmann J, Morton C, Bailey J, Haslerud AS, Le Quéré C, Lepofsky D. Using human observations with instrument-based metrics to understand changing rainfall patterns. Nat Commun 2024; 15:9563. [PMID: 39500880 PMCID: PMC11538278 DOI: 10.1038/s41467-024-53861-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
Shifting precipitation regimes are a well-documented and pervasive consequence of climate change. Subsistence-oriented communities worldwide can identify changes in rainfall patterns that most affect their lives. Here we scrutinize the importance of human-based rainfall observations (collated through a literature review spanning from 1994 to 2013) as climate metrics and the relevance of instrument-based precipitation indices to subsistence activities. For comparable time periods (1955-2005), changes observed by humans match well with instrumental records at same locations for well-established indices of rainfall (72% match), drought (76%), and extreme rainfall (81%), demonstrating that we can bring together human and instrumental observations. Many communities (1114 out of 1827) further identify increased variability and unpredictability in the start, end, and continuity of rainy seasons, all of which disrupt the cropping calendar, particularly in the Tropics. These changes in rainfall patterns and predictability are not fully captured by existing indices, and their social-ecological impacts are still understudied.
Collapse
Grants
- V.S. was supported by the Government of Canada/avec l’appui du gouvernement du Canada, the Tula Foundation (Heriot Bay, BC, Canada) through the Hakai Institute (Heriot Bay, BC, Canada) and the Department of Education Science, University Roma Tre.
- K.E.K. was supported by the NSERC Canada Research Chair program and NSERC Discovery Grant R832686
- J.S.was supported by the Research Council of Norway grant 244551/E10 (CiXPAG). J.S. further acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2037: “CLICCS-Climate, Climatic Change, and Society” - Project Number: 390683824, contribution to the Center for Earth System Research and Sustainability (CEN) of Universität Hamburg.
- A.S.H. was supported by the Research Council of Norway grant 244551/E10 (CiXPAG)
- C.L.Q. was supported by the UK Royal Society (Grant RP\R1\191063).
Collapse
Affiliation(s)
- V Savo
- Hakai Institute, Heriot Bay, BC, Canada.
- School of Resource and Environmental Management, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada.
- Department of Education Science, University Roma Tre, Rome, RM, Italy.
| | - K E Kohfeld
- School of Resource and Environmental Management, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
- School of Environmental Science, Simon Fraser University, Burnaby, BC, Canada
| | - J Sillmann
- Center for International Climate Research - Oslo, CICERO, Pb. 1129 Blindern, Oslo, Norway
- University of Hamburg, Research Unit for Sustainability and Climate Risks, Hamburg, Germany
| | - C Morton
- School of Resource and Environmental Management, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - J Bailey
- School of Resource and Environmental Management, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - A S Haslerud
- Center for International Climate Research - Oslo, CICERO, Pb. 1129 Blindern, Oslo, Norway
| | - C Le Quéré
- Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - D Lepofsky
- Hakai Institute, Heriot Bay, BC, Canada
- Department of Archaeology, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
7
|
Pan L, Song X, Zhang W, Yang J, Cao M. Seedling dynamics differ between canopy species and understory species in a tropical seasonal rainforest, SW China. PLANT DIVERSITY 2024; 46:671-677. [PMID: 39290886 PMCID: PMC11403141 DOI: 10.1016/j.pld.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 09/19/2024]
Abstract
We used 11 years of census data from 450 seedling quadrats established in a 20-ha forest dynamics plot to study seedling dynamics in tree species of a tropical seasonal rainforest in Xishuangbanna, southwestern China. We found that overall seedling recruitment rate and relative growth rate were higher in the rainy season than in the dry season. Both the recruitment rate of seedlings from canopy tree species (two species) and the relative growth rate of seedlings from understory species (nine species) were higher in the rainy season than in the dry season. However, in the rainy season, the recruitment rate of seedlings was higher for canopy tree species than for understory tree species. In addition, relative growth rate of seedlings was higher in the canopy species than in understory seedlings in the dry season. We also observed that, in both rainy and dry seasons, mortality rate of seedlings was higher for canopy species than for understory species. Overall, canopy tree species appear to have evolved a flexible strategy to adapt to the seasonal changes of a monsoon climate. In contrast, understory tree species seem to have adopted a conservative strategy. Specifically, these species mainly release seedlings in the rainy season and maintain relatively stable populations with a lower mortality rate and recruitment rate in both dry and rainy seasons. Our study suggests that canopy and understory seedling populations growing in forest understory may respond to future climate change scenarios with distinct regeneration strategies.
Collapse
Affiliation(s)
- Libing Pan
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| | - Wenfu Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
| |
Collapse
|
8
|
Jhaveri R, Cannanbilla L, Bhat KSA, Sankaran M, Krishnadas M. Anatomical traits explain drought response of seedlings from wet tropical forests. Ecol Evol 2024; 14:e70155. [PMID: 39224158 PMCID: PMC11366499 DOI: 10.1002/ece3.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Water availability regulates plant community dynamics but the drought response of seedlings remains poorly known, despite their vulnerability, especially for the Asian tropics. In particular, discerning how functional traits of seedlings mediate drought response can aid generalizable predictions of tree responses to global environmental change. We assessed interspecific variation in drought response explained by above- and below-ground seedling traits. We conducted a dry-down experiment in the greenhouse using 16 tree species from the humid forests of Western Ghats in southern India, chosen to represent differences in affinity to conditions of high and low seasonal drought (seasonality affiliation). We compared survival, growth, and photosynthetic performance under drought and well-watered conditions and assessed the extent to which species' responses were explained by seasonality affiliation and 12 traits of root, stem and leaf. We found that the species from seasonally dry forest reduced photosynthetic rate in drought compared with well-watered conditions, but seasonality affiliation did not explain differences in growth and survival. Performance in drought vs well-watered conditions were best explained by anatomical traits of xylem, veins and stomata. Species with larger xylem reduced their growth and photosynthesis to tolerate desiccation. In drought, species with smaller stomata correlated with lower survival even though photosynthetic activity decreased by a larger extent with larger stomata. Overall, anatomical traits of xylem and stomata, directly related to water transport and gas-exchange, played a more prominent role than commonly used traits (e.g., specific leaf area, leaf dry matter content) in explaining species response to drought, and may offer a good proxy for physiological traits related to drought tolerance of seedlings.
Collapse
Affiliation(s)
- Rishiddh Jhaveri
- CSIR – Centre for Cellular and Molecular BiologyHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Lakshmipriya Cannanbilla
- CSIR – Centre for Cellular and Molecular BiologyHyderabadIndia
- Chair of Plant EcologyUniversity of BayreuthBayreuthGermany
| | - K. S. Arpitha Bhat
- Department of Life ScienceBangalore UniversityBangaloreIndia
- Ashoka Trust for Research in Ecology and the Environment (ATREE)BangaloreIndia
| | | | - Meghna Krishnadas
- CSIR – Centre for Cellular and Molecular BiologyHyderabadIndia
- National Centre for Biological Sciences, TIFRBangaloreIndia
| |
Collapse
|
9
|
Ma F, Wang S, Sang W, Ma K. Spatial Pattern of Living Woody and Coarse Woody Debris in Warm-Temperate Broad-Leaved Secondary Forest in North China. PLANTS (BASEL, SWITZERLAND) 2024; 13:2339. [PMID: 39204775 PMCID: PMC11360155 DOI: 10.3390/plants13162339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The investigation into the spatial distribution of living woody (LWD) and coarse woody debris (CWD) within forests represents a fundamental methodology for probing the inherent mechanisms governing coexistence and mortality within forest ecosystems. Here, a complete spatial randomness (CSR) null model was employed to scrutinize the spatial pattern, while canonical correspondence analysis (CCA) and the Torus-translation test (TTT) were utilized to elucidate the distribution patterns of LWD and CWD within warm-temperate deciduous broadleaf secondary forests in Dongling Mountains plot, northern China. The results reveal that both LWD and CWD exhibit an aggregated distribution as the predominant pattern in the Dongling Mountains plot, with the proportion and intensity of aggregation diminishing as spatial scale increases. Specifically, the aggregation intensity g0-10 demonstrates a significant negative correlation with abundance and maximum diameter at breast height (DBH). Notably, the g0-10 of LWD manifests a stronger correlation with the maximum DBH, whereas the g0-10 of CWD exhibits a greater association with the mortality rate. CCA outcomes suggest that elevation, convexity, and aspect significantly impact LWD distribution, whereas CWD distribution shows substantial negative correlations with elevation, convexity, slope, and aspect. TTT findings indicate that ecosystems characterized by a substantial presence of LWD also display a notable prevalence of CWD. Additionally, the majority of species exhibit no habitat preference, displaying neutral habitat connections and low ecological niche differentiation within the sampled plot.
Collapse
Affiliation(s)
- Fang Ma
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shunzhong Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Weiguo Sang
- College of Life and Environmental Sciences, Minzu University of China, #27 Zhongguancun South Avenue, Beijing 100081, China
| | - Keming Ma
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
10
|
Gerolamo CS, Pereira L, Costa FRC, Jansen S, Angyalossy V, Nogueira A. Lianas in tropical dry seasonal forests have a high hydraulic efficiency but not always a higher embolism resistance than lianas in rainforests. ANNALS OF BOTANY 2024; 134:337-350. [PMID: 38721801 PMCID: PMC11232521 DOI: 10.1093/aob/mcae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/07/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND AND AIMS Lianas have higher relative abundance and biomass in drier seasonal forests than in rainforests, but whether this difference is associated with their hydraulic strategies is unclear. Here, we investigate whether lianas of seasonally dry forests are safer and more efficient in water transport than rainforest lianas, explaining patterns of liana abundance. METHODS We measured hydraulic traits on five pairs of congeneric lianas of the tribe Bignonieae in two contrasting forest sites: the wet 'Dense Ombrophilous Forest' in Central Amazonia (~2 dry months) and the drier 'Semideciduous Seasonal Forest' in the inland Atlantic Forest (~6 dry months). We also gathered a broader database, including 197 trees and 58 liana species from different tropical forests, to compare hydraulic safety between habits and forest types. KEY RESULTS Bignonieae lianas from both forests had high and similar hydraulic efficiency but exhibited variability in resistance to embolism across forest types when phylogenetic relationships were taken into account. Three genera had higher hydraulic safety in the seasonal forest than in the rainforest, but species across both forests had similar positive hydraulic safety margins despite lower predawn water potential values of seasonal forest lianas. We did not find the safety-efficiency trade-off. Merging our results with previously published data revealed a high variability of resistance to embolism in both trees and lianas, independent of forest types. CONCLUSIONS The high hydraulic efficiency of lianas detected here probably favours their rapid growth across tropical forests, but differences in hydraulic safety highlight that some species are highly vulnerable and may rely on other mechanisms to cope with drought. Future research on the lethal dehydration threshold and the connection between hydraulic resistance strategies and liana abundance could offer further insights into tropical forest dynamics under climatic threats.
Collapse
Affiliation(s)
- Caian S Gerolamo
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Luciano Pereira
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm D-89081, Germany
| | - Flavia R C Costa
- Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, AM, 69011-970, Brazil
| | - Steven Jansen
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm D-89081, Germany
| | - Veronica Angyalossy
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Anselmo Nogueira
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, São Bernardo do Campo, SP, 09606-070, Brazil
| |
Collapse
|
11
|
Astigarraga J, Esquivel-Muelbert A, Ruiz-Benito P, Rodríguez-Sánchez F, Zavala MA, Vilà-Cabrera A, Schelhaas MJ, Kunstler G, Woodall CW, Cienciala E, Dahlgren J, Govaere L, König LA, Lehtonen A, Talarczyk A, Liu D, Pugh TAM. Relative decline in density of Northern Hemisphere tree species in warm and arid regions of their climate niches. Proc Natl Acad Sci U S A 2024; 121:e2314899121. [PMID: 38954552 PMCID: PMC11252807 DOI: 10.1073/pnas.2314899121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/01/2024] [Indexed: 07/04/2024] Open
Abstract
Although climate change is expected to drive tree species toward colder and wetter regions of their distribution, broadscale empirical evidence is lacking. One possibility is that past and present human activities in forests obscure or alter the effects of climate. Here, using data from more than two million monitored trees from 73 widely distributed species, we quantify changes in tree species density within their climatic niches across Northern Hemisphere forests. We observe a reduction in mean density across species, coupled with a tendency toward increasing tree size. However, the direction and magnitude of changes in density exhibit considerable variability between species, influenced by stand development that results from previous stand-level disturbances. Remarkably, when accounting for stand development, our findings show a significant change in density toward cold and wet climatic conditions for 43% of the species, compared to only 14% of species significantly changing their density toward warm and arid conditions in both early- and late-development stands. The observed changes in climate-driven density showed no clear association with species traits related to drought tolerance, recruitment and dispersal capacity, or resource use, nor with the temperature or aridity affiliation of the species, leaving the underlying mechanism uncertain. Forest conservation policies and associated management strategies might want to consider anticipated long-term species range shifts alongside the integration of contemporary within-distribution density changes.
Collapse
Affiliation(s)
- Julen Astigarraga
- Department of Life Sciences, Forest Ecology and Restoration Group (FORECO), Universidad de Alcalá, Alcalá de Henares 28805, Spain
| | - Adriane Esquivel-Muelbert
- School of Geography, Earth and Environmental Sciences, University of Birmingham, BirminghamB15 2TT, United Kingdom
- Birmingham Institute of Forest Research, University of Birmingham, BirminghamB15 2TT, United Kingdom
| | - Paloma Ruiz-Benito
- Department of Life Sciences, Forest Ecology and Restoration Group (FORECO), Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Department of Geology, Geography and Environment Science, Environmental Remote Sensing Research Group (GITA), Universidad de Alcalá, Alcalá de Henares28801, Spain
| | | | - Miguel A. Zavala
- Department of Life Sciences, Forest Ecology and Restoration Group (FORECO), Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Universidad de Alcalá, Franklin Institute, Alcalá de Henares28801, Spain
| | - Albert Vilà-Cabrera
- Department of Life Sciences, Forest Ecology and Restoration Group (FORECO), Universidad de Alcalá, Alcalá de Henares 28805, Spain
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Bellaterra (Cerdanyola de Vallès), CataloniaE08193, Spain
| | - Mart-Jan Schelhaas
- Wageningen Environmental Research, Team Sustainable Forest Ecosystems, Wageningen University and Research, Wageningen6708 PB, The Netherlands
| | - Georges Kunstler
- Université Grenoble Alpes, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Laboratoire EcoSystémes et Sociétés En Montagne (LESSEM), St.-Martin-d’Heres38402, France
| | - Christopher W. Woodall
- The United States Department of Agriculture (USDA) Forest Service, Northern Research Station, Durham, NH03824
| | - Emil Cienciala
- Institute of Forest Ecosystem Research (IFER), Research and Science, Jilove u Prahy254 01, Czech Republic
- Global Change Research Institute CAS, Department of Climate Change Impacts on Agroecosystems, Brno603 00, Czech Republic
| | - Jonas Dahlgren
- Department of Forest Resource and Management, Division of Forest Resource Data, Swedish University of Agricultural Sciences, Umeå90183, Sweden
| | - Leen Govaere
- Department of Policy and Strategy, Agency for Nature and Forests, Brussels1000, Belgium
| | - Louis A. König
- Wageningen Environmental Research, Team Sustainable Forest Ecosystems, Wageningen University and Research, Wageningen6708 PB, The Netherlands
- Forest Ecology, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, Federal Institute of Technology (ETH) Zurich, Zurich8092, Switzerland
| | | | - Andrzej Talarczyk
- Forest and Natural Resources Research Centre, Warsaw02-491, Poland
- Taxus IT, Warsaw02-491, Poland
| | - Daijun Liu
- Department of Botany and Biodiversity Research, University of Vienna, Vienna1030, Austria
| | - Thomas A. M. Pugh
- School of Geography, Earth and Environmental Sciences, University of Birmingham, BirminghamB15 2TT, United Kingdom
- Birmingham Institute of Forest Research, University of Birmingham, BirminghamB15 2TT, United Kingdom
- Department of Physical Geography and Ecosystem Science, Lund University, LundS-223 62, Sweden
| |
Collapse
|
12
|
Rodríguez-Ramírez EC, Frei J, Ames-Martínez FN, Guerra A, Andrés-Hernández AR. Ecological stress memory in wood architecture of two Neotropical hickory species from central-eastern Mexico. BMC PLANT BIOLOGY 2024; 24:638. [PMID: 38971728 PMCID: PMC11227188 DOI: 10.1186/s12870-024-05348-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Drought periods are major evolutionary triggers of wood anatomical adaptive variation in Lower Tropical Montane Cloud Forests tree species. We tested the influence of historical drought events on the effects of ecological stress memory on latewood width and xylem vessel traits in two relict hickory species (Carya palmeri and Carya myristiciformis) from central-eastern Mexico. We hypothesized that latewood width would decrease during historical drought years, establishing correlations between growth and water stress conditions, and that moisture deficit during past tree growth between successive drought events, would impact on wood anatomical features. We analyzed latewood anatomical traits that developed during historical drought and pre- and post-drought years in both species. RESULTS We found that repeated periods of hydric stress left climatic signatures for annual latewood growth and xylem vessel traits that are essential for hydric adaptation in tropical montane hickory species. CONCLUSIONS Our results demonstrate the existence of cause‒effect relationships in wood anatomical architecture and highlight the ecological stress memory linked with historical drought events. Thus, combined time-series analysis of latewood width and xylem vessel traits is a powerful tool for understanding the ecological behavior of hickory species.
Collapse
Affiliation(s)
- Ernesto C Rodríguez-Ramírez
- Laboratorio de Dendrocronología, Universidad Continental, Urbanización San Antonio, Avenida San Carlos 1980, Huancayo, Junín, Peru.
| | - Jonas Frei
- Atelier foifacht, Juglandaceae expert, Schaffhausen, Switzerland
| | - Fressia N Ames-Martínez
- Laboratorio de Biotecnología y Biología Molecular, Universidad Continental, Urbanización San Antonio, Huancayo, Peru
- Programa de Investigación de Ecología y Biodiversidad, Asociación ANDINUS, Calle Miguel Grau 370, Sicaya, Junín, Huancayo, Peru
| | - Anthony Guerra
- Programa de Pós-Graduação em Agronomia/Fisiologia Vegetal, Departamento de Biologia- Instituto de Ciências Naturais, Universidade Federal de Lavras, Lavras, Minas Gerais, 7203-202, Brazil
| | | |
Collapse
|
13
|
Comita LS, Jones FA, Manzané-Pinzón EJ, Álvarez-Casino L, Cerón-Souza I, Contreras B, Jaén-Barrios N, Ferro N, Engelbrecht BMJ. Limited intraspecific variation in drought resistance along a pronounced tropical rainfall gradient. Proc Natl Acad Sci U S A 2024; 121:e2316971121. [PMID: 38809703 PMCID: PMC11161779 DOI: 10.1073/pnas.2316971121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/08/2024] [Indexed: 05/31/2024] Open
Abstract
Assessing within-species variation in response to drought is crucial for predicting species' responses to climate change and informing restoration and conservation efforts, yet experimental data are lacking for the vast majority of tropical tree species. We assessed intraspecific variation in response to water availability across a strong rainfall gradient for 16 tropical tree species using reciprocal transplant and common garden field experiments, along with measurements of gene flow and key functional traits linked to drought resistance. Although drought resistance varies widely among species in these forests, we found little evidence for within-species variation in drought resistance. For the majority of functional traits measured, we detected no significant intraspecific variation. The few traits that did vary significantly between drier and wetter origins of the same species all showed relationships opposite to expectations based on drought stress. Furthermore, seedlings of the same species originating from drier and wetter sites performed equally well under drought conditions in the common garden experiment and at the driest transplant site. However, contrary to expectation, wetter-origin seedlings survived better than drier-origin seedlings under wetter conditions in both the reciprocal transplant and common garden experiment, potentially due to lower insect herbivory. Our study provides the most comprehensive picture to date of intraspecific variation in tropical tree species' responses to water availability. Our findings suggest that while drought plays an important role in shaping species composition across moist tropical forests, its influence on within-species variation is limited.
Collapse
Affiliation(s)
- Liza S. Comita
- The Forest School, Yale School of the Environment, Yale University, New Haven, CT06511
- Smithsonian Tropical Research InstituteApartadoPostal 0843-03092, Panama City, Panamá
| | - F. Andrew Jones
- Smithsonian Tropical Research InstituteApartadoPostal 0843-03092, Panama City, Panamá
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR
| | - Eric J. Manzané-Pinzón
- Smithsonian Tropical Research InstituteApartadoPostal 0843-03092, Panama City, Panamá
- Departamento de Ciencias Naturales, Facultad de Ciencias y Tecnología, Universidad Tecnológica de Panamá, Panama City, Panamá
| | - Leonor Álvarez-Casino
- Department of Plant Biology and Ecology, Faculty of Biology, University of Seville, Seville, Spain
- Department of Plant Ecology, Center for Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | - Ivania Cerón-Souza
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR
- Centro de Investigación Tibaitatá, Mosquera Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Cundinamarca250047, Colombia
| | - Blexein Contreras
- Smithsonian Tropical Research InstituteApartadoPostal 0843-03092, Panama City, Panamá
| | - Nelson Jaén-Barrios
- Smithsonian Tropical Research InstituteApartadoPostal 0843-03092, Panama City, Panamá
- Department of Plant Biology, Institute of Biology, University of Campinas, CampinasCEP 13083-970, SP, Brazil
| | - Natalie Ferro
- Smithsonian Tropical Research InstituteApartadoPostal 0843-03092, Panama City, Panamá
| | - Bettina M. J. Engelbrecht
- Smithsonian Tropical Research InstituteApartadoPostal 0843-03092, Panama City, Panamá
- Department of Plant Ecology, Center for Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
14
|
Núñez CL, Clark JS, Poulsen JR. Disturbance sensitivity shapes patterns of tree species distribution in Afrotropical lowland rainforests more than climate or soil. Ecol Evol 2024; 14:e11329. [PMID: 38698930 PMCID: PMC11063613 DOI: 10.1002/ece3.11329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/20/2024] [Accepted: 04/07/2024] [Indexed: 05/05/2024] Open
Abstract
Understanding how tropical forests respond to abiotic environmental changes is critical for preserving biodiversity, mitigating climate change, and maintaining ecosystem services in the coming century. To evaluate the relative roles of the abiotic environment and human disturbance on Central African tree community composition, we employ tree inventory data, remotely sensed climatic data, and soil nutrient data collected from 30 1-ha plots distributed across a large-scale observational experiment in forests that had been differently impacted by logging and hunting in northern Republic of Congo. We show that the composition of Afrotropical plant communities at this scale responds to human disturbance more than to climate, with particular sensitivities to hunting and distance to the nearest village (a proxy for other human activities, including tree-cutting and gathering). These findings contrast neotropical predictions, highlighting the unique ecological, evolutionary, and anthropogenic history of Afrotropical forests.
Collapse
Affiliation(s)
- Chase L. Núñez
- Department for the Ecology of Animal SocietiesMax Planck Institute of Animal BehaviorKonstanzGermany
- Centre for the Advanced Study of Collective BehaviourUniversity of KonstanzKonstanzGermany
- Department of BiologyUniversity of KonstanzKonstanzGermany
- University Program in EcologyDuke UniversityDurhamNorth CarolinaUSA
- Nicholas School of the EnvironmentDuke UniversityDurhamNorth CarolinaUSA
| | - James S. Clark
- University Program in EcologyDuke UniversityDurhamNorth CarolinaUSA
- Nicholas School of the EnvironmentDuke UniversityDurhamNorth CarolinaUSA
| | - John R. Poulsen
- University Program in EcologyDuke UniversityDurhamNorth CarolinaUSA
- Nicholas School of the EnvironmentDuke UniversityDurhamNorth CarolinaUSA
- The Nature ConservancyBoulderColoradoUSA
| |
Collapse
|
15
|
Zhou C, Bo W, El-Kassaby YA, Li W. Transcriptome profiles reveal response mechanisms and key role of PsNAC1 in Pinus sylvestris var. mongolica to drought stress. BMC PLANT BIOLOGY 2024; 24:343. [PMID: 38671396 PMCID: PMC11046967 DOI: 10.1186/s12870-024-05051-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Drought stress severely impedes plant growth, and only a limited number of species exhibit long-term resistance to such conditions. Pinus sylvestris var. mongolica, a dominant tree species in arid and semi-arid regions of China, exhibits strong drought resistance and plays a crucial role in the local ecosystem. However, the molecular mechanisms underlying this resistance remain poorly understood. RESULTS Here, we conducted transcriptome sequence and physiological indicators analysis of needle samples during drought treatment and rehydration stages. De-novo assembly yielded approximately 114,152 unigenes with an N50 length of 1,363 bp. We identified 6,506 differentially expressed genes (DEGs), with the majority being concentrated in the heavy drought stage (4,529 DEGs). Functional annotation revealed enrichment of drought-related GO terms such as response to water (GO:0009415: enriched 108 genes) and response to water deprivation (GO:0009414: enriched 106 genes), as well as KEGG categories including MAPK signaling pathway (K04733: enriched 35 genes) and monoterpenoid biosynthesis (K21374: enriched 27 genes). Multiple transcription factor families and functional protein families were differentially expressed during drought treatment. Co-expression network analysis identified a potential drought regulatory network between cytochrome P450 genes (Unigene4122_c1_g1) and a core regulatory transcription factor Unigene9098_c3_g1 (PsNAC1) with highly significant expression differences. We validated PsNAC1 overexpression in Arabidopsis and demonstrated enhanced drought resistance. CONCLUSIONS These findings provide insight into the molecular basis of drought resistance in P. sylvestris var. mongolica and lay the foundation for further exploration of its regulatory network.
Collapse
Affiliation(s)
- Chengcheng Zhou
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Wenhao Bo
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
16
|
Matlaga D, Lammerant R, Hogan JA, Uriarte M, Rodriguez‐Valle C, Zimmerman JK, Muscarella R. Survival, growth, and functional traits of tropical wet forest tree seedlings across an experimental soil moisture gradient in Puerto Rico. Ecol Evol 2024; 14:e11095. [PMID: 38505185 PMCID: PMC10950389 DOI: 10.1002/ece3.11095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Droughts are predicted to become more frequent and intense in many tropical regions, which may cause shifts in plant community composition. Especially in diverse tropical communities, understanding how traits mediate demographic responses to drought can help provide insight into the effects of climate change on these ecosystems. To understand tropical tree responses to reduced soil moisture, we grew seedlings of eight species across an experimental soil moisture gradient at the Luquillo Experimental Forest, Puerto Rico. We quantified survival and growth over an 8-month period and characterized demographic responses in terms of tolerance to low soil moisture-defined as survival and growth rates under low soil moisture conditions-and sensitivity to variation in soil moisture-defined as more pronounced changes in demographic rates across the observed range of soil moisture. We then compared demographic responses with interspecific variation in a suite of 11 (root, stem, and leaf) functional traits, measured on individuals that survived the experiment. Lower soil moisture was associated with reduced survival and growth but traits mediated species-specific responses. Species with relatively conservative traits (e.g., high leaf mass per area), had higher survival at low soil moisture whereas species with more extensive root systems were more sensitive to soil moisture, in that they exhibited more pronounced changes in growth across the experimental soil moisture gradient. Our results suggest that increasing drought will favor species with more conservative traits that confer greater survival in low soil moisture conditions.
Collapse
Affiliation(s)
- David Matlaga
- Department of BiologySusquehanna UniversitySelinsgrovePennsylvaniaUSA
| | - Roel Lammerant
- Plant Ecology and EvolutionUppsala UniversityUppsalaSweden
- Tvärminne Zoological StationUniversity of HelsinkiHankoFinland
| | - J. Aaron Hogan
- Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
| | - María Uriarte
- Department of Ecology, Evolution and Environmental BiologyColumbia UniversityNew YorkNew YorkUSA
| | - Celimar Rodriguez‐Valle
- Department of Environmental SciencesUniversity of Puerto Rico‐Rio PiedrasSan JuanPuerto RicoUSA
| | - Jess K. Zimmerman
- Department of Environmental SciencesUniversity of Puerto Rico‐Rio PiedrasSan JuanPuerto RicoUSA
| | | |
Collapse
|
17
|
Luo H, Jia W, Zhang F, Zhang M, Zhang Y, Lan X, Yu Z. The competitive relationship of scrub plants for water use in the subalpine zone of the Qilian Mountains in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21326-21340. [PMID: 38386162 DOI: 10.1007/s11356-024-32519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Samples of scrub plants and soil were collected from May to October 2019 in the subalpine scrub zone of the Qilian Mountains. Based on measured oxygen isotope values (δ18O) in plant xylem water and soil water, the multivariate linear mixed model (IsoSource) and the proportional similarity index (PS index) were used to analyze the using proportion for each potential water source and the competition relationship for water use of scrub plants in different growing periods and habitats. The results showed that the soil water content gradually decreased with increasing depth of the soil layer, with the maximum value in the soil layer of 0-10 cm. Most of the scrub plants mainly used soil water in the soil layer of 0-30 cm during the different periods of growing season, but Salix sclerophylla Anderss. and Salix oritrepha Schneid. on the semi-sunny slope habitat mainly used soil water in the soil layer of 40-80 cm during the middle period of growing season (July-August), with the proportion of 59.5% and 52.1%, respectively; and Potentilla fruticosa Linn. and Salix cupularis Rehd. on the semi-shady slope habitat mainly used soil water in the soil layer of 30-60 cm during the early period of growing season (May-June), with the proportion of 61.1% and 49.7%, respectively. The competition relationships of scrub plants for water use varied during different periods of growing season (P < 0.05). On the semi-sunny slope habitat, they were fiercest for Salix cupularis Rehd. and Rhododendron thymifolium Maxim., Potentilla fruticosa Linn., and Salix sclerophylla Anderss. during the early period of growing season; Salix cupularis Rehd. and Rhododendron thymifolium Maxim. during the middle period of growing season, and Salix sclerophylla Anderss. and Salix oritrepha Schneid. during the end period of growing season (September-October). On the semi-shady slope habitat, they were fiercest for Salix oritrepha Schneid. and Caragana jubata (Pall.) Poir. during the early period of growing season; Rhododendron przewalskii Maxim. and Rhododendron thymifolium Maxim. during the middle period of growing season; and Salix cupularis Rehd. and Salix oritrepha Schneid. during the end period of growing season. This study reveals the competitive relationship of scrub plants for water use in the subalpine zone and their response to environmental changes, so as to provide theoretical references for the ecological conservation in the ecologically fragile areas of the Qilian Mountains.
Collapse
Affiliation(s)
- Huifang Luo
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China
| | - Wenxiong Jia
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China.
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China.
| | - Fuhua Zhang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China
| | - Miaomiao Zhang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China
| | - Yue Zhang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China
| | - Xin Lan
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China
| | - Zhijie Yu
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China
| |
Collapse
|
18
|
Ortega MA, Cayuela L, Griffith DM, Camacho A, Coronado IM, del Castillo RF, Figueroa-Rangel BL, Fonseca W, Garibaldi C, Kelly DL, Letcher SG, Meave JA, Merino-Martín L, Meza VH, Ochoa-Gaona S, Olvera-Vargas M, Ramírez-Marcial N, Tun-Dzul FJ, Valdez-Hernández M, Velázquez E, White DA, Williams-Linera G, Zahawi RA, Muñoz J. Climate change increases threat to plant diversity in tropical forests of Central America and southern Mexico. PLoS One 2024; 19:e0297840. [PMID: 38422027 PMCID: PMC10903834 DOI: 10.1371/journal.pone.0297840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024] Open
Abstract
Global biodiversity is negatively affected by anthropogenic climate change. As species distributions shift due to increasing temperatures and precipitation fluctuations, many species face the risk of extinction. In this study, we explore the expected trend for plant species distributions in Central America and southern Mexico under two alternative Representative Concentration Pathways (RCPs) portraying moderate (RCP4.5) and severe (RCP8.5) increases in greenhouse gas emissions, combined with two species dispersal assumptions (limited and unlimited), for the 2061-2080 climate forecast. Using an ensemble approach employing three techniques to generate species distribution models, we classified 1924 plant species from the region's (sub)tropical forests according to IUCN Red List categories. To infer the spatial and taxonomic distribution of species' vulnerability under each scenario, we calculated the proportion of species in a threat category (Vulnerable, Endangered, Critically Endangered) at a pixel resolution of 30 arc seconds and by family. Our results show a high proportion (58-67%) of threatened species among the four experimental scenarios, with the highest proportion under RCP8.5 and limited dispersal. Threatened species were concentrated in montane areas and avoided lowland areas where conditions are likely to be increasingly inhospitable. Annual precipitation and diurnal temperature range were the main drivers of species' relative vulnerability. Our approach identifies strategic montane areas and taxa of conservation concern that merit urgent inclusion in management plans to improve climatic resilience in the Mesoamerican biodiversity hotspot. Such information is necessary to develop policies that prioritize vulnerable elements and mitigate threats to biodiversity under climate change.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Instituto Mixto de Investigación en Biodiversidad (IMIB-CSIC), Mieres, Spain
- Universidad Internacional Menéndez Pelayo, Madrid, Spain
| | - Luis Cayuela
- Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Daniel M. Griffith
- Departamento de Ciencias Biológicas y Agropecuarias, EcoSs Lab, Universidad Técnica Particular de Loja, Loja, Ecuador
| | | | | | | | - Blanca L. Figueroa-Rangel
- Departamento de Ecología y Recursos Naturales, Centro Universitario de la Costa Sur, Universidad de Guadalajara, Autlán de Navarro, Jalisco, Mexico
| | - William Fonseca
- Universidad Nacional Autónoma de Costa Rica, Santa Lucía, Barva, Heredia, Costa Rica
| | - Cristina Garibaldi
- Departmento de Botánica, Universidad de Panamá, Campus Universitario Ciudad de Panamá, Panamá, República de Panamá
| | - Daniel L. Kelly
- Department of Botany, Trinity College, University of Dublin, Dublin, Ireland
| | - Susan G. Letcher
- College of the Atlantic, Bar Harbor, Maine, United States of America
| | - Jorge A. Meave
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luis Merino-Martín
- Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Víctor H. Meza
- Instituto de Investigación y Servicios Forestales, Universidad Nacional de Costa Rica, Campus Omar Dengo, Heredia, Costa Rica
| | | | - Miguel Olvera-Vargas
- Departamento de Ecología y Recursos Naturales, Centro Universitario de la Costa Sur, Universidad de Guadalajara, Autlán de Navarro, Jalisco, Mexico
| | | | - Fernando J. Tun-Dzul
- Centro de Investigación Científica de Yucatán, Chuburna de Hidalgo, Mérida, Yucatán, Mexico
| | - Mirna Valdez-Hernández
- Herbario, Departamento Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Chetumal, Mexico
| | - Eduardo Velázquez
- Departamento de Producción Vegetal y Recursos Forestales, Instituto Universitario de Gestión Forestal Sostenible, Universidad de Valladolid (Campus de Palencia), Palencia, Spain
| | - David A. White
- Emeritus Faculty, Program in the Environment, Loyola University, New Orleans, New Orleans, Louisiana, United States of America
| | | | | | - Jesús Muñoz
- Real Jardín Botánico (RJB-CSIC), Madrid, Spain
| |
Collapse
|
19
|
Zhang X, Ma S, Hu H, Li F, Bao W, Huang L. A trade-off between leaf hydraulic efficiency and safety across three xerophytic species in response to increased rock fragment content. TREE PHYSIOLOGY 2024; 44:tpae010. [PMID: 38245807 PMCID: PMC10918055 DOI: 10.1093/treephys/tpae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/05/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Limited information is available on the variation of plant leaf hydraulic traits in relation to soil rock fragment content (RFC), particularly for xerophytes native to rocky mountain areas. In this study, we conducted a field experiment with four gradients of RFC (0, 25, 50 and 75% ν ν-1) on three different xerophytic species (Sophora davidii, Cotinus szechuanensis and Bauhinia brachycarpa). We measured predawn and midday leaf water potential (Ψleaf), leaf hydraulic conductance (Kleaf), Ψleaf induced 50% loss of Kleaf (P50), pressure-volume curve traits and leaf structure. A consistent response of hydraulic traits to increased RFC was observed in three species. Kleaf showed a decrease, whereas P50 and turgor loss point (Ψtlp) became increasingly negative with increasing RFC. Thus, a clear trade-off between hydraulic efficiency and safety was observed in the xerophytic species. In all three species, the reduction in Kleaf was associated with an increase in leaf mass per area. In S. davidii, alterations in Kleaf and P50 were driven by leaf vein density (VLA) and Ψtlp. In C. szechuanensis, Ψtlp and VLA drove the changes in Kleaf and P50, respectively. In B. brachycarpa, changes in P50 were driven by VLA, whereas changes in both Kleaf and P50 were simultaneously influenced by Ψtlp. Our findings suggest that adaptation to increased rockiness necessarily implies a trade-off between leaf hydraulic efficiency and safety in xerophytic species. Additionally, the trade-off between leaf hydraulic efficiency and safety among xerophytic species is likely to result from processes occurring in the xylem and the outside-xylem hydraulic pathways. These findings contribute to a better understanding of the survival strategies and mechanisms of xerophytes in rocky soils, and provide a theoretical basis for the persistence of xerophytic species in areas with stony substrates.
Collapse
Affiliation(s)
- Xiulong Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
| | - Shaowei Ma
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Hui Hu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Fanglan Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
| | - Weikai Bao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
| | - Long Huang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4 South Renmin Road, Wuhou District, Chengdu, Sichuan 610041, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
20
|
Mercado-Reyes JA, Pereira TS, Manandhar A, Rimer IM, McAdam SAM. Extreme drought can deactivate ABA biosynthesis in embolism-resistant species. PLANT, CELL & ENVIRONMENT 2024; 47:497-510. [PMID: 37905689 DOI: 10.1111/pce.14754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/24/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
The phytohormone abscisic acid (ABA) is synthesised by plants during drought to close stomata and regulate desiccation tolerance pathways. Conifers and some angiosperms with embolism-resistant xylem show a peaking-type (p-type) response in ABA levels, in which ABA levels increase early in drought then decrease as drought progresses, declining to pre-stressed levels. The mechanism behind this dynamic remains unknown. Here, we sought to characterise the mechanism driving p-type ABA dynamics in the conifer Callitris rhomboidea and the highly drought-resistant angiosperm Umbellularia californica. We measured leaf water potentials (Ψl ), stomatal conductance, ABA, conjugates and phaseic acid (PA) levels in potted plants during a prolonged but non-fatal drought. Both species displayed a p-type ABA dynamic during prolonged drought. In branches collected before and after the peak in endogenous ABA levels in planta, that were rehydrated overnight and then bench dried, ABA biosynthesis was deactivated beyond leaf turgor loss point. Considerable conversion of ABA to conjugates was found to occur during drought, but not catabolism to PA. The mechanism driving the decline in ABA levels in p-type species may be conserved across embolism-resistant seed plants and is mediated by sustained conjugation of ABA and the deactivation of ABA accumulation as Ψl becomes more negative than turgor loss.
Collapse
Affiliation(s)
- Joel A Mercado-Reyes
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Talitha Soares Pereira
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Anju Manandhar
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Ian M Rimer
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - Scott A M McAdam
- Purdue Center for Plant Biology, Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
21
|
Yule TS, de Oliveira Arruda RDC, Santos MG. Drought-adapted leaves are produced even when more water is available in dry tropical forest. JOURNAL OF PLANT RESEARCH 2024; 137:49-64. [PMID: 37962735 DOI: 10.1007/s10265-023-01505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
Species in dry environments may adjust their anatomical and physiological behaviors by adopting safer or more efficient strategies. Thus, species distributed across a water availability gradient may possess different phenotypes depending on the specific environmental conditions to which they are subjected. Leaf and vascular tissues are plastic and may vary strongly in response to environmental changes affecting an individual's survival and species distribution. To identify whether and how legumes leaves vary across a water availability gradient in a seasonally dry tropical forest, we quantified leaf construction costs and performed an anatomical study on the leaves of seven legume species. We evaluated seven species, which were divided into three categories of rainfall preference: wet species, which are more abundant in wetter areas; indifferent species, which are more abundant and occur indistinctly under both rainfall conditions; and dry species, which are more abundant in dryer areas. We observed two different patterns based on rainfall preference categories. Contrary to our expectations, wet and indifferent species changed traits in the sense of security when occupying lower rainfall areas, whereas dry species changed some traits when more water was available, such as increasing cuticle and spongy parenchyma thickness, or producing smaller and more numerous stomata. Trischidium molle, the most plastic and wet species, exhibited a similar strategy to the dry species. Our results corroborate the risks to vegetation under future climate change scenarios as stressed species and populations may not endure even more severe conditions.
Collapse
Affiliation(s)
- Tamires Soares Yule
- Laboratório de Fisiologia Vegetal, Programa de Pós-Graduação em Biologia Vegetal, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
- Laboratório de Anatomia Vegetal, Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil.
- Instituto de Biociências, Laboratório de Botânica, Universidade Federal de Mato Grosso do Sul, Av. Costa e Silva, s/n, Cidade Universitária, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil.
| | - Rosani do Carmo de Oliveira Arruda
- Laboratório de Anatomia Vegetal, Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Mauro Guida Santos
- Laboratório de Fisiologia Vegetal, Programa de Pós-Graduação em Biologia Vegetal, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
22
|
Kim EH, Hitchmough JD, Cameron RW, Schrodt F, Martin KWE, Cubey R. Applying the concept of niche breadth to understand urban tree mortality in the UK. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166304. [PMID: 37619719 DOI: 10.1016/j.scitotenv.2023.166304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Accelerated climate change has raised concerns about heightened vulnerability of urban trees, spurring the need to reevaluate their suitability. The urgency has also driven the widespread application of climatic niche-based models. In particular, the concept of niche breadth (NB), the range of environmental conditions that species can tolerate, is commonly estimated based on species occurrence data over the selected geographic range to predict species response to changing conditions. However, in urban environments where many species are cultivated out of the NB of their natural distributions, additional empirical evidence beyond presence and absence is needed not only to test the true tolerance limits but also to evaluate species' adaptive capacity to future climate. In this research, mortality trends of Acer and Quercus species spanning a 21-year period (2000-2021) from tree inventories of three major UK botanic gardens - the Royal Botanic Gardens, Kew (KEW), Westonbirt, the National Arboretum (WESB), and the Royal Botanic Garden Edinburgh (RBGE) - were analyzed in relation to their NB under long-term drought stress. As a result, Acer species were more responsive to drought and heat stress. For Acer, positioning below the lower limits of the precipitation of warmest quarter led to an increase in the probability of annual mortality by 1.2 and 1.3 % at KEW and RBGE respectively. In addition, the mean cumulative mortality rate increased corresponding to an increase in the number of niche positions below the lower limits of the selected bioclimatic variables. On the other hand, Quercus species in general exhibited comparable resilience regardless of their niche positions. Moreover, Mediterranean oaks were most tolerant, with cumulative mortality rates that were lower than those of native oaks in the UK. These findings further highlight the importance of incorporating ecological performance and recognizing species-specific adaptive strategies in climatic niche modeling.
Collapse
Affiliation(s)
- Eun Hye Kim
- Department of Landscape Architecture, University of Sheffield, Arts Tower, Sheffield S10 2TN, UK.
| | - James D Hitchmough
- Department of Landscape Architecture, University of Sheffield, Arts Tower, Sheffield S10 2TN, UK
| | - Ross W Cameron
- Department of Landscape Architecture, University of Sheffield, Arts Tower, Sheffield S10 2TN, UK
| | - Franziska Schrodt
- Department of Geography, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | |
Collapse
|
23
|
Schmitt S, Hérault B, Derroire G. High intraspecific growth variability despite strong evolutionary legacy in an Amazonian forest. Ecol Lett 2023; 26:2135-2146. [PMID: 37819108 DOI: 10.1111/ele.14318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/08/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023]
Abstract
Tree growth is key to species performance. However, individual growth variability within species remains underexplored for a whole community, and the role of species evolutionary legacy and local environments remains unquantified. Based on 36 years of diameter records for 7961 trees from 138 species, we assessed individual growth across an Amazonian forest. We related individual growth to taxonomy, topography and neighbourhood, before exploring species growth link to functional traits and distribution along the phylogeny. We found most variation in growth among individuals within species, even though taxonomy explained a third of the variation. Species growth was phylogenetically conserved up to the genus. Traits of roots, wood and leaves were good predictors of growth, suggesting their joint selection during convergent evolutions. Neighbourhood crowding significantly decreased individual growth, although much of inter-individual variation remains unexplained. The high intraspecific variation observed could allow individuals to respond to the heterogeneous environments of Amazonian forests.
Collapse
Affiliation(s)
- Sylvain Schmitt
- CNRS, UMR EcoFoG (Agroparistech, Cirad, INRAE, Université des Antilles, Université de la Guyane), Kourou, French Guiana
- CIRAD, UPR Forêts et Sociétés, Montpellier, France
- Forêts et Sociétés, Univ Montpellier, CIRAD, Montpellier, France
| | - Bruno Hérault
- Forêts et Sociétés, Univ Montpellier, CIRAD, Montpellier, France
- CIRAD, UPR Forêts et Sociétés, Yamoussoukro, Côte d'Ivoire
- Institut National Polytechnique Félix Houphouët-Boigny, INP-HB, Yamoussoukro, Côte d'Ivoire
| | - Géraldine Derroire
- Cirad, UMR EcoFoG (Agroparistech, CNRS, INRAE, Université des Antilles, Université de la Guyane), Kourou, French Guiana
| |
Collapse
|
24
|
Getaneh ZA, Demissew S, Woldu Z, Aynekulu E. Determinants of plant community along environmental gradients in Geramo forest, the western escarpment of the rift valley of Ethiopia. PLoS One 2023; 18:e0294324. [PMID: 38011089 PMCID: PMC10681247 DOI: 10.1371/journal.pone.0294324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
Detailed information on plant community types, distribution, and their relationships with various environmental gradients is crucial for understanding forest dynamics and sustainable forest management because plant community types are influenced by various environmental factors. Thus, this study was conducted to investigate plant community types and species diversity in relation to various environmental gradients in Geramo Forest, which is a remnant forest in the western escarpment of the Rift Valley of Ethiopia. Vegetation data were collected in 96 nested plots (20 × 20 m2 and five 1 ×1 m2) laid systematically at a distance of 250 m along 16 line transects, which were laid 300 m apart. Environmental and disturbance variables were also collected from each main plot. Agglomerative hierarchical cluster analysis and Canonical correspondence analysis (CCA) with R software were used to identify plant community types and analyze the relationship between plant community types and environmental variables, respectively. The Shannon Wiener diversity index was used to compute species diversity among community types. Five significantly different (p ≤ 0.001) plant community types were identified. The CCA results showed that species diversity and community composition among different community types were significantly influenced by altitude, disturbance, soil organic carbon, slope, soil available phosphorus, and pH, which revealed the compounded effect of various environmental factors on species richness, diversity, and evenness among plant community types. The study also identified a significant level of anthropogenic disturbance and a strong reliance of the local community on the forest in the research area. Therefore, it is recommended that sustainable forest conservation interventions be implemented through awareness creation and the promotion of community-based approaches.
Collapse
Affiliation(s)
- Zeleke Assefa Getaneh
- Department of Plant Biology and Biodiversity Management, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Biology, College of Natural Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Sebsebe Demissew
- Department of Plant Biology and Biodiversity Management, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Zerihun Woldu
- Department of Plant Biology and Biodiversity Management, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ermias Aynekulu
- World Agroforestry (ICRAF), United Nations Avenue, Nairobi, Kenya
| |
Collapse
|
25
|
Smith-Martin CM, Muscarella R, Hammond WM, Jansen S, Brodribb TJ, Choat B, Johnson DM, Vargas-G G, Uriarte M. Hydraulic variability of tropical forests is largely independent of water availability. Ecol Lett 2023; 26:1829-1839. [PMID: 37807917 DOI: 10.1111/ele.14314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 07/06/2023] [Accepted: 08/08/2023] [Indexed: 10/10/2023]
Abstract
Tropical rainforest woody plants have been thought to have uniformly low resistance to hydraulic failure and to function near the edge of their hydraulic safety margin (HSM), making these ecosystems vulnerable to drought; however, this may not be the case. Using data collected at 30 tropical forest sites for three key traits associated with drought tolerance, we show that site-level hydraulic diversity of leaf turgor loss point, resistance to embolism (P50 ), and HSMs is high across tropical forests and largely independent of water availability. Species with high HSMs (>1 MPa) and low P50 values (< -2 MPa) are common across the wet and dry tropics. This high site-level hydraulic diversity, largely decoupled from water stress, could influence which species are favoured and become dominant under a drying climate. High hydraulic diversity could also make these ecosystems more resilient to variable rainfall regimes.
Collapse
Affiliation(s)
- Chris M Smith-Martin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York City, New York, USA
| | - Robert Muscarella
- Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - William M Hammond
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
| | - Timothy J Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, Australia
| | - Brendan Choat
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Daniel M Johnson
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
| | - German Vargas-G
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - María Uriarte
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York City, New York, USA
| |
Collapse
|
26
|
Martínez-Vilalta J, García-Valdés R, Jump A, Vilà-Cabrera A, Mencuccini M. Accounting for trait variability and coordination in predictions of drought-induced range shifts in woody plants. THE NEW PHYTOLOGIST 2023; 240:23-40. [PMID: 37501525 DOI: 10.1111/nph.19138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
Functional traits offer a promising avenue to improve predictions of species range shifts under climate change, which will entail warmer and often drier conditions. Although the conceptual foundation linking traits with plant performance and range shifts appears solid, the predictive ability of individual traits remains generally low. In this review, we address this apparent paradox, emphasizing examples of woody plants and traits associated with drought responses at the species' rear edge. Low predictive ability reflects the fact not only that range dynamics tend to be complex and multifactorial, as well as uncertainty in the identification of relevant traits and limited data availability, but also that trait effects are scale- and context-dependent. The latter results from the complex interactions among traits (e.g. compensatory effects) and between them and the environment (e.g. exposure), which ultimately determine persistence and colonization capacity. To confront this complexity, a more balanced coverage of the main functional dimensions involved (stress tolerance, resource use, regeneration and dispersal) is needed, and modelling approaches must be developed that explicitly account for: trait coordination in a hierarchical context; trait variability in space and time and its relationship with exposure; and the effect of biotic interactions in an ecological community context.
Collapse
Affiliation(s)
- Jordi Martínez-Vilalta
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Universitat Autònoma de Barcelona, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Raúl García-Valdés
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Forest Science and Technology Centre of Catalonia (CTFC), E25280, Solsona, Spain
- Department of Biology, Geology, Physics and Inorganic Chemistry, School of Experimental Sciences and Technology, Rey Juan Carlos University, E28933, Móstoles, Madrid, Spain
| | - Alistair Jump
- Biological and Environmental Sciences, University of Stirling, FK9 4LA, Stirling, UK
| | - Albert Vilà-Cabrera
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- Biological and Environmental Sciences, University of Stirling, FK9 4LA, Stirling, UK
| | - Maurizio Mencuccini
- CREAF, E08193, Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, E08010, Barcelona, Spain
| |
Collapse
|
27
|
Liu X, Zhou W, Li X, Zhang Y, Dong W. Secondary succession of shrub-herb communities in the hilly area of Taihang Mountain. FRONTIERS IN PLANT SCIENCE 2023; 14:1194083. [PMID: 37746017 PMCID: PMC10514918 DOI: 10.3389/fpls.2023.1194083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
Introduction To document the successional processes of shrub-herb communities after large-scale human disturbance, and understand how changing environmental conditions affect species replacement in semi-humid hilly areas. Methods Utilizing the established permanent plots in the hilly area of Taihang Mountain, we evaluated temporal patterns of vegetation and soil following grass-to-shrub succession. Results and Discussion Along secondary succession, Vitex negundo var. heterophylla gradually dominated in dry sunny slope and shared the dominance with Leptodermis oblonga in shaded slope. Herbaceous dominant species in shrub-herb communities switched from Themeda japonica, Bothriochloa ischaemum, Artemisia sacrorum, and Cleistogenes chinensis in 1986 census to B. ischaemum and A. sacrorum in 2008 census, but herb was no longer dominant in 2020 census. As succession progresses, species dominance increased while richness decreased generally, and herb cover and aboveground biomass decreased, whereas shrub height, cover, and aboveground biomass increased significantly. Soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), and total potassium (TK) in topsoil increased significantly while pH declined by 1.04 units over the past three decades. Plant communities transitioned from perennial herbs to shrub-herb and then shrub communities, and V. negundo var. heterophylla dominated in the succession of shrub-herb communities. Climate and soil properties, combined with plant attributes, together drive post-disturbance secondary succession. From a management perspective, the tight coupling between vegetation and soil under local climatic conditions should be considered to improve the fragile ecosystem in the hilly area of Taihang Mountain.
Collapse
Affiliation(s)
- Xiuping Liu
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Wangming Zhou
- School of life Sciences, Anqing Normal University, Anqing, China
| | - Xiaoxin Li
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Yuming Zhang
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Wenxu Dong
- Key Laboratory of Agricultural Water Resources, Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| |
Collapse
|
28
|
Li J, He B, Ahmad S, Mao W. Leveraging explainable machine learning models to assess forest health: A case study in Hainan, China. Ecol Evol 2023; 13:e10558. [PMID: 37753308 PMCID: PMC10518842 DOI: 10.1002/ece3.10558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/28/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Global forest area has declined over the past few years, forest quality has declined, and ecological and environmental events have increased with climate change and human activity. In the context of ecological civilization, forest health issues have received unprecedented attention. By improving forest health, forests can better perform their ecosystem service functions and promote green development. This study was carried out in the WuZhi Shan area of Hainan Tropical Rainforest National Park. We employed a decision tree algorithm, a machine learning technique, for our modeling due to its high accuracy and interpretability. The objective weighted method using criteria of importance through intercriteria correlation (CRITIC) was used to determine forest health classes based on survey and experimental data from 132 forest samples. The results showed that species diversity is the most important metric to measure forest health. An interpretable decision tree machine learning model was proposed to incorporate forest health indicators, providing up to 90% accuracy in the classification of forest health conditions. The model demonstrated a high degree of effectiveness, achieving an average precision of 90%, a recall of 67%, and an F1 score of 70.2% in predicting forest health. The interpretable decision tree classification results showed that breast height diameter is the most important variable in classifying the health status of both primary and secondary forests. This study highlights the importance of using interpretable machine learning methods for the decision-making process. Our work contributes to the scientific underpinnings of sustainable forest development and effective conservation planning.
Collapse
Affiliation(s)
- Jialing Li
- School of Ecology and EnvironmentHainan UniversityHaikouChina
- Key Laboratory of Agro‐Forestry Environmental Processes and Ecological Regulation of Hainan ProvinceHainan UniversityHaikouChina
- Wuzhishan DivisionHainan Tropical Rainforest National Park BureauWuzhishanChina
| | - Bohao He
- School of Ecology and EnvironmentHainan UniversityHaikouChina
- Key Laboratory of Agro‐Forestry Environmental Processes and Ecological Regulation of Hainan ProvinceHainan UniversityHaikouChina
| | - Shahid Ahmad
- School of Ecology and EnvironmentHainan UniversityHaikouChina
- Key Laboratory of Agro‐Forestry Environmental Processes and Ecological Regulation of Hainan ProvinceHainan UniversityHaikouChina
| | - Wei Mao
- School of Ecology and EnvironmentHainan UniversityHaikouChina
- Key Laboratory of Agro‐Forestry Environmental Processes and Ecological Regulation of Hainan ProvinceHainan UniversityHaikouChina
| |
Collapse
|
29
|
Jung CG, Keyser AR, Remy CC, Krofcheck D, Allen CD, Hurteau MD. Topographic information improves simulated patterns of post-fire conifer regeneration in the southwest United States. GLOBAL CHANGE BIOLOGY 2023; 29:4342-4353. [PMID: 37211629 DOI: 10.1111/gcb.16764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/19/2023] [Accepted: 05/07/2023] [Indexed: 05/23/2023]
Abstract
The western United States is projected to experience more frequent and severe wildfires in the future due to drier and hotter climate conditions, exacerbating destructive wildfire impacts on forest ecosystems such as tree mortality and unsuccessful post-fire regeneration. While empirical studies have revealed strong relationships between topographical information and plant regeneration, ecological processes in ecosystem models have either not fully addressed topography-mediated effects on the probability of plant regeneration, or the probability is only controlled by climate-related factors, for example, water and light stresses. In this study, we incorporated seedling survival data based on a planting experiment in the footprint of the 2011 Las Conchas Fire into the Photosynthesis and EvapoTranspiration (PnET) extension of the LANDIS-II model by adding topographic and an additional climatic variable to the probability of regeneration. The modified algorithm included topographic parameters such as heat load index and ground slope and spring precipitation. We ran simulations on the Las Conchas Fire landscape for 2012-2099 using observed and projected climate data (i.e., Representative Concentration Pathway 4.5 and 8.5). Our modification significantly reduced the number of regeneration events of three common southwestern conifer tree species (piñon, ponderosa pine, and Douglas-fir), leading to decreases in aboveground biomass, regardless of climate scenario. The modified algorithm decreased regeneration at higher elevations and increased regeneration at lower elevations relative to the original algorithm. Regenerations of three species also decreased in eastern aspects. Our findings suggest that ecosystem models may overestimate post-fire regeneration events in the southwest United States. To better represent regeneration processes following wildfire, ecosystem models need refinement to better account for the range of factors that influence tree seedling establishment. This will improve model utility for projecting the combined effects of climate and wildfire on tree species distributions.
Collapse
Affiliation(s)
- Chang Gyo Jung
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Alisa R Keyser
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, Colorado, USA
| | - Cecile C Remy
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
- Institute of Geography, Augsburg University, Augsburg, Germany
| | - Daniel Krofcheck
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Craig D Allen
- Department of Geography and Environmental Studies, University of New Mexico, Albuquerque, New Mexico, USA
| | - Matthew D Hurteau
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
30
|
Li Y, Rao T, Gai L, Price ML, Yuxin L, Jianghong R. Giant pandas are losing their edge: Population trend and distribution dynamic drivers of the giant panda. GLOBAL CHANGE BIOLOGY 2023; 29:4480-4495. [PMID: 37303043 DOI: 10.1111/gcb.16805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/15/2023] [Accepted: 05/21/2023] [Indexed: 06/13/2023]
Abstract
Comprehending the population trend and understanding the distribution range dynamics of species are necessary for global species protection. Recognizing what causes dynamic distribution change is crucial for identifying species' environmental preferences and formulating protection policies. Here, we studied the rear-edge population of the flagship species, giant pandas (Ailuropoda melanoleuca), to (1) assess their population trend using their distribution patterns, (2) evaluate their distribution dynamics change from the second (1988) to the third (2001) survey (2-3 Interval) and third to the fourth (2013) survey (3-4 Interval) using a machine learning algorithm (eXtremely Gradient Boosting), and (3) decode model results to identify driver factors in the first known use of SHapley Additive exPlanations. Our results showed that the population trends in Liangshan Mountains were worst in the second survey (k = 1.050), improved by the third survey (k = 0.97), but deteriorated by the fourth survey (k = 0.996), which indicates a worrying population future. We found that precipitation had the most significant influence on distribution dynamics among several potential environmental factors, showing a negative correlation between precipitation and giant panda expansion. We recommend that further research is needed to understand the microenvironment and animal distribution dynamics. We provide a fresh perspective on the dynamics of giant panda distribution, highlighting novel focal points for ecological research on this species. Our study offers theoretical underpinnings that could inform the formulation of more effective conservation policies. Also, we emphasize the uniqueness and importance of the Liangshan Mountains giant pandas as the rear-edge population, which is at a high risk of population extinction.
Collapse
Affiliation(s)
- Yuhang Li
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Sichuan University, Chengdu, Sichuan, China
| | - Tong Rao
- Electric Power Research Institute, Yunnan Power Grid Co., Ltd, Kunming, China
| | - Luo Gai
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Sichuan University, Chengdu, Sichuan, China
| | - Megan L Price
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Sichuan University, Chengdu, Sichuan, China
| | - Liu Yuxin
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Sichuan University, Chengdu, Sichuan, China
| | - Ran Jianghong
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
31
|
Preece ND, van Oosterzee P, Lawes MJ. Reforestation success can be enhanced by improving tree planting methods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117645. [PMID: 36871451 DOI: 10.1016/j.jenvman.2023.117645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Successful cost-effective reforestation plantings depend substantially on maximising sapling survival from the time of planting, yet in reforestation programs remarkably little attention is given to management of saplings at the planting stage and to planting methods used. Critical determinants of sapling survival include their vigour and condition when planted, the wetness of the soil into which saplings are planted, the trauma of transplant shock from nursery to natural field soils, and the method and care taken during planting. While some determinants are outside planters' control, careful management of specific elements associated with outplanting can significantly lessen transplanting shock and improve survival rates. Results from three reforestation experiments designed to examine cost-effective planting methods in the Australian wet tropics provided the opportunity to examine the effects of specific planting treatments, including (1) watering regime prior to planting, (2) method of planting and planter technique, and (3) site preparation and maintenance, on sapling survival and establishment. Focusing on sapling root moisture and physical protection during planting improved sapling survival by at least 10% (>91% versus 81%) at 4 months. Survival rates of saplings under different planting treatments were reflected in longer-term survival of trees at 18-20 months, differing from a low of 52% up to 76-88%. This survival effect was evident more than 6 years after planting. Watering saplings immediately prior to planting, careful planting using a forester's planting spade in moist soil and suppressing grass competition using appropriate herbicides were critical to improved plant survival.
Collapse
Affiliation(s)
- Noel D Preece
- College of Science & Engineering, Centre for Tropical Environmental and Sustainability Science, James Cook University, Cairns, Qld, 4811, Australia; Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia.
| | - Penny van Oosterzee
- College of Science & Engineering, Centre for Tropical Environmental and Sustainability Science, James Cook University, Cairns, Qld, 4811, Australia; Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia
| | - Michael J Lawes
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, 3209, South Africa; Institute of Biodiversity and Environmental Conservation (IBEC), Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
32
|
Bi MH, Jiang C, Brodribb T, Yang YJ, Yao GQ, Jiang H, Fang XW. Ethylene constrains stomatal reopening in Fraxinus chinensis post moderate drought. TREE PHYSIOLOGY 2023; 43:883-892. [PMID: 36547259 DOI: 10.1093/treephys/tpac144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 06/11/2023]
Abstract
Clarifying the mechanisms underlying the recovery of gas exchange following drought is the key to providing insights into plant drought adaptation and habitat distribution. However, the mechanisms are still largely unknown. Targeting processes known to inhibit gas exchange during drought recovery, we measured leaf water potential, the leaf hydraulic conductance, stomatal reopening, abscisic acid (ABA) and the ethylene emission rate (EER) following moderate drought stress in seedlings of the globally pervasive woody tree Fraxinus chinensis. We found strong evidence that the slow stomatal reopening after rehydration is regulated by a slow decrease in EER, rather than changes in leaf hydraulics or foliar ABA levels. This was supported by evidence of rapid gas exchange recovery in plants after treatment with the ethylene antagonist 1-methylcyclopropene. These findings provide evidence to rigorously support ethylene as a key factor constraining stomatal reopening from moderate drought directly, thereby potentially opening new windows for understanding species drought adaptation.
Collapse
Affiliation(s)
- Min-Hui Bi
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Chao Jiang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Timothy Brodribb
- School of Biological Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - Yu-Jie Yang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Guang-Qian Yao
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Hui Jiang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Xiang-Wen Fang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
33
|
Kiene C, Jung EY, Engelbrecht BMJ. Nutrient effects on drought responses vary across common temperate grassland species. Oecologia 2023; 202:1-14. [PMID: 37145315 DOI: 10.1007/s00442-023-05370-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/02/2023] [Indexed: 05/06/2023]
Abstract
Drought and nutrient input are two main global change drivers that threaten ecosystem function and services. Resolving the interactive effects of human-induced stressors on individual species is necessary to improve our understanding of community and ecosystem responses. This study comparatively assessed how different nutrient conditions affect whole-plant drought responses across 13 common temperate grassland species. We conducted a fully factorial drought-fertilization experiment to examine the effect of nutrient addition [nitrogen (N), phosphorus (P), and combined NP] on species' drought survival, and on drought resistance of growth as well as drought legacy effects. Drought had an overall negative effect on survival and growth, and the adverse drought effects extended into the next growing season. Neither drought resistance nor legacy effects exhibited an overall effect of nutrients. Instead, both the size and the direction of the effects differed strongly among species and between nutrient conditions. Consistently, species performance ranking under drought changed with nitrogen availability. The idiosyncratic responses of species to drought under different nutrient conditions may underlie the seemingly contradicting effects of drought in studies on grassland composition and productivity along nutrient and land-use gradients-ranging from amplifying to dampening. Differential species' responses to combinations of nutrients and drought, as observed in our study, complicate predictions of community and ecosystem responses to climate and land-use changes. Moreover, they highlight the urgent need for an improved understanding of the mechanisms that render species more or less vulnerable to drought under different nutrients.
Collapse
Affiliation(s)
- Carola Kiene
- Functional and Tropical Plant Ecology, Bayreuth Centre of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany.
| | - Eun-Young Jung
- Functional and Tropical Plant Ecology, Bayreuth Centre of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
| | - Bettina M J Engelbrecht
- Functional and Tropical Plant Ecology, Bayreuth Centre of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama
| |
Collapse
|
34
|
Rainfall affects interactions between plant neighbours. Nature 2023; 615:39-40. [PMID: 36792897 DOI: 10.1038/d41586-023-00267-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
35
|
Lebrija-Trejos E, Hernández A, Wright SJ. Effects of moisture and density-dependent interactions on tropical tree diversity. Nature 2023; 615:100-104. [PMID: 36792827 DOI: 10.1038/s41586-023-05717-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/08/2023] [Indexed: 02/17/2023]
Abstract
Tropical tree diversity increases with rainfall1,2. Direct physiological effects of moisture availability and indirect effects mediated by biotic interactions are hypothesized to contribute to this pantropical increase in diversity with rainfall2-6. Previous studies have demonstrated direct physiological effects of variation in moisture availability on tree survival and diversity5,7-10, but the indirect effects of variation in moisture availability on diversity mediated by biotic interactions have not been shown11. Here we evaluate the relationships between interannual variation in moisture availability, the strength of density-dependent interactions, and seedling diversity in central Panama. Diversity increased with soil moisture over the first year of life across 20 annual cohorts. These first-year changes in diversity persisted for at least 15 years. Differential survival of moisture-sensitive species did not contribute to the observed changes in diversity. Rather, negative density-dependent interactions among conspecifics were stronger and increased diversity in wetter years. This suggests that moisture availability enhances diversity indirectly through moisture-sensitive, density-dependent conspecific interactions. Pathogens and phytophagous insects mediate interactions among seedlings in tropical forests12-18, and many of these plant enemies are themselves moisture-sensitive19-27. Changes in moisture availability caused by climate change and habitat degradation may alter these interactions and tropical tree diversity.
Collapse
Affiliation(s)
- Edwin Lebrija-Trejos
- Department of Biology and Environment, University of Haifa-Oranim, Kiryat Tiv'on, Israel.
| | | | - S Joseph Wright
- Smithsonian Tropical Research Institute, Balboa Ancón, Panama
| |
Collapse
|
36
|
Zhang X, Ci X, Hu J, Bai Y, Thornhill AH, Conran JG, Li J. Riparian areas as a conservation priority under climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159879. [PMID: 36334670 DOI: 10.1016/j.scitotenv.2022.159879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Identifying climatic refugia is important for long-term conservation planning under climate change. Riparian areas have the potential to provide climatic refugia for wildlife, but literature remains limited, especially for plants. This study was conducted with the purpose of identifying climatic refugia of plant biodiversity in the portion of the Mekong River Basin located in Xishuangbanna, China. We first predicted the current and future (2050s and 2070s) potential distribution of 50 threatened woody species in Xishuangbanna by using an ensemble of small models, then stacked the predictions for individual species to derive spatial biodiversity patterns within each 10 × 10 km grid cell. We then identified the top 17 % of the areas for spatial biodiversity patterns as biodiversity hotspots, with climatic refugia defined as areas that remained as biodiversity hotspots over time. Stepwise regression and linear correlation were applied to analyze the environmental correlations with spatial biodiversity patterns and the relationships between climatic refugia and river distribution, respectively. Our results showed potential upward and northward shifts in threatened woody species, with range contractions and expansions predicted. The spatial biodiversity patterns shift from southeast to northwest, and were influenced by temperature, precipitation, and elevation heterogeneity. Climatic refugia under climate change were related closely to river distribution in Xishuangbanna, with riparian areas identified that could provide climatic refugia. These refugial zones are recommended as priority conservation areas for mitigating the impacts of climate change on biodiversity. Our study confirmed that riparian areas could act as climatic refugia for plants and emphasizes the conservation prioritization of riparian areas within river basins for protecting biodiversity under climate change.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuqin Ci
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China.
| | - Jianlin Hu
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Bai
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China; Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China; Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation, Menglun, Yunnan 666303, China
| | - Andrew H Thornhill
- The University of Adelaide, School of Biological Sciences, Adelaide, South Australia 5005, Australia; State Herbarium of South Australia, Botanic Garden and State Herbarium, Department for Environment and Water, Hackney Road, Adelaide, South Australia 5001, Australia
| | - John G Conran
- The University of Adelaide, School of Biological Sciences, Adelaide, South Australia 5005, Australia
| | - Jie Li
- Plant Phylogenetics and Conservation Group, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, China.
| |
Collapse
|
37
|
Teng H, Chen S, Hu B, Shi Z. Future changes and driving factors of global peak vegetation growth based on CMIP6 simulations. ECOL INFORM 2023. [DOI: 10.1016/j.ecoinf.2023.102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
38
|
Zhou J, Xiao L, Huang R, Song F, Li L, Li P, Fang Y, Lu W, Lv C, Quan M, Zhang D, Du Q. Local diversity of drought resistance and resilience in Populus tomentosa correlates with the variation of DNA methylation. PLANT, CELL & ENVIRONMENT 2023; 46:479-497. [PMID: 36385613 DOI: 10.1111/pce.14490] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Little information is known about DNA methylation variation in shaping environment-specific drought resistance and resilience for tree adaptation. In this study, we leveraged RNA sequencing and whole-genome bisulfite sequencing data to dissect the distinction of epigenetic regulation under drought stress and rewater condition of Populus tomentosa accessions from three geographical regions. We demonstrated low resistance and high resilience for accessions from South. Non-CG methylation levels in promoter regions of Southern accessions were lower than accessions from higher latitudes and negatively regulated gene expression. CHH context methylation was more sensitive to drought stress, and the geographical-specific differentially methylated regions were scarcely changed by environmental fluctuation. We identified 60 conserved hub genes within the co-expression networks that correlate with photosynthetic and stomatal morphological traits. Epigenome-wide association studies and genome-wide association studies of these 60 hub genes revealed the interdependency between genetic and epigenetic variation in GATA9 and LECRK-VIII.2, which was associated with stomatal morphology and chlorophyll content. The natural epigenetic variation in GATA9 was also faithfully transmitted to progenies in two family-based F1 populations. This study indicates a functional relationship of DNA methylation diversity with drought resistance and resilience which offers new insights into plants' local adaptation to a stressful environment.
Collapse
Affiliation(s)
- Jiaxuan Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Liang Xiao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Rui Huang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Fangyuan Song
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Lianzheng Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Peng Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Yuanyuan Fang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Wenjie Lu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Chenfei Lv
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Mingyang Quan
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Deqiang Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| | - Qingzhang Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P. R. China
| |
Collapse
|
39
|
McCulloh KA, Augustine SP, Goke A, Jordan R, Krieg CP, O’Keefe K, Smith DD. At least it is a dry cold: the global distribution of freeze-thaw and drought stress and the traits that may impart poly-tolerance in conifers. TREE PHYSIOLOGY 2023; 43:1-15. [PMID: 36094836 PMCID: PMC9833871 DOI: 10.1093/treephys/tpac102] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/20/2022] [Accepted: 08/30/2022] [Indexed: 05/25/2023]
Abstract
Conifers inhabit some of the most challenging landscapes where multiple abiotic stressors (e.g., aridity, freezing temperatures) often co-occur. Physiological tolerance to multiple stressors ('poly-tolerance') is thought to be rare because exposure to one stress generally limits responses to another through functional trade-offs. However, the capacity to exhibit poly-tolerance may be greater when combined abiotic stressors have similar physiological impacts, such as the disruption of hydraulic function imposed by drought or freezing. Here, we reviewed empirical data in light of theoretical expectations for conifer adaptations to drought and freeze-thaw cycles with particular attention to hydraulic traits of the stem and leaf. Additionally, we examined the commonality and spatial distribution of poly-stress along indices of these combined stressors. We found that locations with the highest values of our poly-stress index (PSi) are characterized by moderate drought and moderate freeze-thaw, and most of the global conifer distribution occupies areas of moderate poly-stress. Among traits examined, we found diverse responses to the stressors. Turgor loss point did not correlate with freeze-thaw or drought stress individually, but did with the PSi, albeit inverse to what was hypothesized. Leaf mass per area was more strongly linked with drought stress than the poly-stress and not at all with freeze-thaw stress. In stems, the water potential causing 50% loss of hydraulic conductivity became more negative with increasing drought stress and poly-stress but did not correlate with freeze-thaw stress. For these traits, we identified a striking lack of coverage for substantial portions of species ranges, particularly at the upper boundaries of their respective PSis, demonstrating a critical gap in our understanding of trait prevalence and plasticity along these stress gradients. Future research should investigate traits that confer tolerance to both freeze-thaw and drought stress in a wide range of species across broad geographic scales.
Collapse
Affiliation(s)
| | - Steven P Augustine
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Alex Goke
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Rachel Jordan
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Christopher P Krieg
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Kimberly O’Keefe
- Department of Biological Sciences, Saint Edward’s University, Austin, TX 78704, USA
| | - Duncan D Smith
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
40
|
Werden LK, Averill C, Crowther TW, Calderón-Morales E, Toro L, Alvarado JP, Gutiérrez LM, Mallory DE, Powers JS. Below-ground traits mediate tree survival in a tropical dry forest restoration. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210067. [PMID: 36373912 PMCID: PMC9661956 DOI: 10.1098/rstb.2021.0067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/03/2022] [Indexed: 11/16/2022] Open
Abstract
Reforestation is one of our most promising natural climate solutions, and one that addresses the looming biodiversity crisis. Tree planting can catalyse forest community reassembly in degraded landscapes where natural regeneration is slow, however, tree survival rates vary remarkably across projects. Building a trait-based framework for tree survival could streamline species selection in a way that generalizes across ecosystems, thereby increasing the effectiveness of the global restoration movement. We investigated how traits mediated seedling survival in a tropical dry forest restoration, and how traits were coordinated across plant structures. We examined growth and survival of 14 species for 2 years and measured six below-ground and 22 above-ground traits. Species-level survival ranged widely from 7.8% to 90.1%, and a model including growth rate, below-ground traits and their interaction explained more than 73% of this variation. A strong interaction between below-ground traits and growth rate indicated that selecting species with fast growth rates can promote establishment, but this effect was most apparent for species that invest in thick fine roots and deep root structures. Overall, results emphasize the prominent role of below-ground traits in determining early restoration outcomes, and highlight little above- and below-ground trait coordination, providing a path forward for tropical dry forest restoration efforts. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.
Collapse
Affiliation(s)
- Leland K. Werden
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
- Lyon Arboretum and School of Life Sciences, University of Hawaii, Honolulu, HI 96822, USA
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Colin Averill
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Thomas W. Crowther
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Erick Calderón-Morales
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| | - Laura Toro
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - J. Pedro Alvarado
- Estación Experimental Forestal Horizontes, Área de Conservación Guanacaste, Liberia, 8008 Costa Rica
| | - L. Milena Gutiérrez
- Estación Experimental Forestal Horizontes, Área de Conservación Guanacaste, Liberia, 8008 Costa Rica
| | | | - Jennifer S. Powers
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
41
|
Oyanoghafo OO, Miller AD, Toomey M, Ahrens CW, Tissue DT, Rymer PD. Contributions of phenotypic integration, plasticity and genetic adaptation to adaptive capacity relating to drought in Banksia marginata (Proteaceae). FRONTIERS IN PLANT SCIENCE 2023; 14:1150116. [PMID: 37152164 PMCID: PMC10160485 DOI: 10.3389/fpls.2023.1150116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/28/2023] [Indexed: 05/09/2023]
Abstract
The frequency and intensity of drought events are predicted to increase because of climate change, threatening biodiversity and terrestrial ecosystems in many parts of the world. Drought has already led to declines in functionally important tree species, which are documented in dieback events, shifts in species distributions, local extinctions, and compromised ecosystem function. Understanding whether tree species possess the capacity to adapt to future drought conditions is a major conservation challenge. In this study, we assess the capacity of a functionally important plant species from south-eastern Australia (Banksia marginata, Proteaceae) to adapt to water-limited environments. A water-manipulated common garden experiment was used to test for phenotypic plasticity and genetic adaptation in seedlings sourced from seven provenances of contrasting climate-origins (wet and dry). We found evidence of local adaptation relating to plant growth investment strategies with populations from drier climate-origins showing greater growth in well-watered conditions. The results also revealed that environment drives variation in physiological (stomatal conductance, predawn and midday water potential) and structural traits (wood density, leaf dry matter content). Finally, these results indicate that traits are coordinated to optimize conservation of water under water-limited conditions and that trait coordination (phenotypic integration) does not constrain phenotypic plasticity. Overall, this study provides evidence for adaptive capacity relating to drought conditions in B. marginata, and a basis for predicting the response to climate change in this functionally important plant species.
Collapse
Affiliation(s)
- Osazee O. Oyanoghafo
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, Benin, Nigeria
- *Correspondence: Osazee O. Oyanoghafo, ;
| | - Adam D. Miller
- School of Life and Environmental Sciences, Deakin University, Princes Highway, Warrnambool, VIC, Australia
| | - Madeline Toomey
- School of Life and Environmental Sciences, Deakin University, Princes Highway, Warrnambool, VIC, Australia
| | - Collin W. Ahrens
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- Cesar Australia, Brunswick, VIC, Australia
| | - David T. Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- Global Centre for Land-Based Innovation, Western Sydney University, Richmond, NSW, Australia
| | - Paul D. Rymer
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
42
|
Nutiprapun P, Hermhuk S, Nanami S, Itoh A, Kanzaki M, Marod D. Effects of El Niño drought on seedling dynamics in a seasonally dry tropical forest in Northern Thailand. GLOBAL CHANGE BIOLOGY 2023; 29:451-461. [PMID: 36273818 DOI: 10.1111/gcb.16466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
As El Niño is predicted to become stronger and more frequent in the future, it is crucial to understand how El Niño-induced droughts will affect tropical forests. Although many studies have focused on tropical rainforests, there is a paucity of studies on seasonally dry tropical forests (SDTFs), particularly in Asia, and few studies have focused on seedling dynamics, which are expected to be strongly affected by drought. Seedlings in SDTFs are generally more drought-tolerant than those in the rainforests, and the effects of El Niño-induced droughts may differ between SDTF and tropical rainforests. In this study, we explored the impact of El Niño-induced drought at an SDTF in northern Thailand by monitoring the seedling dynamics at monthly intervals for 7 years, including a period of strong El Niño. The effects were compared between two forest types in an SDTF: a deciduous dipterocarp forest (DDF), dominated by deciduous species, and an adjacent lower montane forest (LMF) with more evergreen species. El Niño-induced drought increased seedling mortality in both the forest types. The effect of drought was stronger in evergreen than in the deciduous species, resulting in higher mortality in the LMF during El Niño. However, El Niño increased seedling recruitment only in the DDF, mainly because of the massive recruitment of the deciduous oak, Quercus brandisiana (Fagaceae), which compensated for the mortality of seedlings in the DDF. As a result, El Niño increased seedling density in the DDF and decreased it in the LMF. This is the first long-term study to identify the differences in the impacts of El Niño on seedlings between the two forest types, and two leaf habits, evergreen and deciduous, in Southeast Asia. Our findings suggest that future climate change may alter the species composition and spatial distribution of seedlings in Asian SDTFs.
Collapse
Affiliation(s)
| | - Sutheera Hermhuk
- Faculty of Agricultural Production, Maejo University, Chiang Mai, Thailand
| | - Satoshi Nanami
- Graduate School of Science, Osaka City University, Osaka, Japan
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Akira Itoh
- Graduate School of Science, Osaka City University, Osaka, Japan
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Mamoru Kanzaki
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Dokrak Marod
- Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
43
|
Zhang P, Jiao L, Wei M, Wu X, Du D, Xue R. Drought timing and severity affect radial growth of Picea crassifolia at different elevations in the western Qilian Mountains. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:2449-2462. [PMID: 36201038 DOI: 10.1007/s00484-022-02368-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
In the context of continued global climate change, the intensity and frequency of droughts have increased to varying degrees in many places. Due to the complexity of drought events, the mechanisms by which trees respond to drought are not well understood. In this study, we analyzed the growth trends of Qinghai spruce (Picea crassifolia) at different elevations in the western part of Qilian Mountains and the dynamic response to climate change. We also compared the differences in radial growth of trees at different elevations in response to drought events in the growing and non-growing seasons based on resistance (Rt), recovery (Rc), and resilience (Rs). The results showed that (1) trees at all three elevations were limited by drought stress and the lower the elevation the more sensitive the trees were to drought. (2) The response of middle- and low-elevation trees to the standardized precipitation evaporation index in June of that year was stable. (3) Growing season drought limits radial growth of trees more than non-growing season drought, and Rt is smaller and Rc is larger at low elevations. With increasing drought severity, trees at all three elevations exhibited a trend of decreasing Rt and Rs and increasing Rc. (4) There were significant differences in the growth trends of trees at the three elevations. Therefore, we should continuously pay attention to the dynamics of the forest ecosystem in the western part of Qilian Mountains and take improved measures to cope with the adverse effects of drought on Qinghai spruce.
Collapse
Affiliation(s)
- Peng Zhang
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China
| | - Liang Jiao
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou, 730070, China.
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China.
| | - Mengyuan Wei
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China
| | - Xuan Wu
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China
| | - Dashi Du
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China
| | - Ruhong Xue
- College of Geography and Environment Sciences, Northwest Normal University, Lanzhou, 730070, China
- Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou, 730070, China
| |
Collapse
|
44
|
Melo DHA, Freitas AVL, Tabarelli M, Filgueiras BKC, Leal IR. Aridity and chronic anthropogenic disturbance as organizing forces of fruit‐feeding butterfly assemblages in a Caatinga dry forest. Biotropica 2022. [DOI: 10.1111/btp.13173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Douglas H. A. Melo
- Programa de Pós‐Graduação em Biologia Animal Universidade Federal de Pernambuco Recife Brazil
| | - André V. L. Freitas
- Departamento de Biologia Animal and Museu de Zoologia Universidade Estadual de Campinas Campinas Brazil
| | - Marcelo Tabarelli
- Departamento de Botânica Universidade Federal de Pernambuco Recife Brazil
| | - Bruno K. C. Filgueiras
- Programa de Pós‐Graduação em Biologia Vegetal Universidade Federal de Pernambuco Recife Brazil
| | - Inara R. Leal
- Departamento de Botânica Universidade Federal de Pernambuco Recife Brazil
| |
Collapse
|
45
|
Sepúlveda‐Espinoza F, Bertin‐Benavides A, Hasbún R, Toro‐Núñez Ó, Varas‐Myrik A, Alarcón D, Guillemin M. The impact of Pleistocene glaciations and environmental gradients on the genetic structure of Embothrium coccineum. Ecol Evol 2022; 12:e9474. [PMID: 36381388 PMCID: PMC9646505 DOI: 10.1002/ece3.9474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 11/11/2022] Open
Abstract
The South American temperate forests were subjected to drastic topographic and climatic changes during the Pliocene-Pleistocene as a consequence of the Andean orogeny and glacial cycles. Such changes are common drivers of genetic structure and adaptation. Embothrium coccineum (Proteaceae) is an emblematic tree of the South American temperate forest (around 20°S of latitude) that has strongly been affected by topographic and climatic events. Previous studies have shown a marked genetic structure in this species, and distinct ecotypes have been described. Yet, little is known about their adaptive genetic responses. The main goal of this study was to investigate the effects of historical and contemporary landscape features affecting the genetic diversity and connectivity of E. coccineum throughout its current natural distribution. Using over 2000 single nucleotide polymorphisms (SNPs), we identified two genetic groups (a Northern and a Central-Southern group) that diverged around 2.8 million years ago. The level of genetic structure was higher among populations within the Northern genetic group than within the Central-Southern group. We propose that these differences in genetic structure may be due to differences in the assemblages of pollinators and in the evolutionary histories of the two genetic groups. Moreover, the data displayed a strong pattern of isolation by the environment in E. coccineum, suggesting that selection could have led to adaptive divergence among localities. We propose that in the Chilean temperate forest, the patterns of genetic variation in E. coccineum reflect both a Quaternary phylogenetic imprint and signatures of selection as a consequence of a strong environmental gradient.
Collapse
Affiliation(s)
- Francisco Sepúlveda‐Espinoza
- Laboratorio de Epigenética Vegetal, Departamento de Silvicultura, Facultad de Ciencias ForestalesUniversidad de ConcepciónConcepciónChile
- Facultad de Ciencias, Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
| | - Ariana Bertin‐Benavides
- Laboratorio de Epigenética Vegetal, Departamento de Silvicultura, Facultad de Ciencias ForestalesUniversidad de ConcepciónConcepciónChile
- ONG Conciencia SurConcepciónChile
- Laboratorio de Genómica Forestal, Centro de BiotecnologíaUniversidad de ConcepciónConcepciónChile
| | - Rodrigo Hasbún
- Laboratorio de Epigenética Vegetal, Departamento de Silvicultura, Facultad de Ciencias ForestalesUniversidad de ConcepciónConcepciónChile
| | - Óscar Toro‐Núñez
- Departamento de Botánica, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
| | - Antonio Varas‐Myrik
- Laboratorio de Epigenética Vegetal, Departamento de Silvicultura, Facultad de Ciencias ForestalesUniversidad de ConcepciónConcepciónChile
| | - Diego Alarcón
- Departamento de Ciencias Ecológicas, Instituto de Ecología y BiodiversidadUniversidad de ChileÑuñoaChile
| | - Marie‐Laure Guillemin
- Núcleo Milenio MASH, Instituto de Ciencias Ambientales y Evolutivas, Facultad de CienciasUniversidad Austral de ChileValdiviaChile
- IRL 3614 Evolutionary Biology and Ecology of Algae, CNRSSorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de ChileRoscoffFrance
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL)ValdiviaChile
| |
Collapse
|
46
|
Jiang S, Cheng X, Yu S, Zhang H, Xu Z, Peng J. Elevation dependency of ecosystem services supply efficiency in great lake watershed. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115476. [PMID: 35714471 DOI: 10.1016/j.jenvman.2022.115476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Although it is well acknowledged that the improvement of ecosystem services is conducive to human well-being, there is still a lack of approach to determining reasonable improvement goals, especially for ecosystem services with trade-off relationship. Based on the method of production possibility frontier (PPF), this study presented a novel approach to identifying the improvement goals of interacting ecosystem services with considering their context dependency. By calculating the gap between the current supply of ecosystem services and the reasonable improvement goal, the ecosystem services supply efficiency was defined and measured to identify the optimization potentials of ecosystem services with trade-off relationship. The results showed that the supply efficiency of ecosystem services (grain production and water purification) decreased and then increased significantly along with the increasing of farmland area ratio in the Dongting Lake Basin (DLB). Meanwhile, the inflection point appeared when the farmland area ratio was 0.16. The change of farmland area ratio was significantly influenced by the change of elevation, with the regression coefficients of elevation on the left and right sides of the inflection point being -1.28 and -0.5 respectively, which were higher than that of other factors. Along with the increasing of elevation, the ecosystem services supply efficiency decreased but increased when the elevation exceeded 721.74 m. Furthermore, the sub-watersheds with farmland area ratio below the inflection point, i.e. mainly high elevation areas, were located around national or provincial level poor counties, posing a great challenge for improving ecosystem services with trade-off relationship. Development strategies for sub-watersheds should consider the non-linear trade-offs of ecosystem services, especially the opposite stages of supply efficiency. This study highlighted the elevation dependency of ecosystem services supply efficiency through farmland area ratio in great lake watershed.
Collapse
Affiliation(s)
- Song Jiang
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xueyan Cheng
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Shuying Yu
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Hanbing Zhang
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Zihan Xu
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jian Peng
- Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
47
|
Reynaert S, Zi L, AbdElgawad H, De Boeck HJ, Vindušková O, Nijs I, Beemster G, Asard H. Does previous exposure to extreme precipitation regimes result in acclimated grassland communities? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156368. [PMID: 35654184 DOI: 10.1016/j.scitotenv.2022.156368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Climate change will likely increase weather persistence in the mid-latitudes, resulting in precipitation regimes (PR) with longer dry and wet periods compared to historic averages. This could affect terrestrial ecosystems substantially through the increased occurrence of repeated, prolonged drought and water logging conditions. Climate history is an important determinant of ecosystem responses to consecutive environmental extremes, through direct damage, community restructuring as well as morphological and physiological acclimation in species or individuals. However, it is unclear how community restructuring and individual metabolic acclimation effects interact to determine ecosystem responses to subsequent climate extremes. Here, we investigated, if and how, differences in exposure to extreme or historically normal PR induced long-lasting (i.e. legacy) effects at the level of community (e.g., species composition), plant (e.g., biomass), and molecular composition (e.g., sugars, lipids, stress markers). Experimental grassland communities were exposed to long (extreme) or short (historically normal) dry/wet cycles in year 1 (Y1), followed by exposure to an identical PR or the opposite PR in year 2 (Y2). Results indicate that exposure to extreme PR in Y1, reduced diversity but induced apparent acclimation effects in all climate scenarios, stimulating biomass (higher productivity and structural sugar content) in Y2. In contrast, plants pre-exposed to normal PR, showed more activated stress responses (higher proline and antioxidants) under extreme PR in Y2. Overall, Y1 acclimation effects were strongest in the dominant grasses, indicating comparatively high phenotypical plasticity. However, Y2 drought intensity also correlated with grass productivity and structural sugar findings, suggesting that responses to short-term soil water deficits contributed to the observed patterns. Interactions between different legacy effects are discussed. We conclude that more extreme PR will likely alter diversity in the short-to midterm and select for acclimated grassland communities with increased productivity and attenuated molecular stress responses under future climate regimes.
Collapse
Affiliation(s)
- Simon Reynaert
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, B-2610 Wilrijk, Belgium
| | - Lin Zi
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, B-2020 Antwerp, Belgium.
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, B-2020 Antwerp, Belgium; Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Hans J De Boeck
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, B-2610 Wilrijk, Belgium
| | - Olga Vindušková
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, B-2610 Wilrijk, Belgium; Institute for Environmental Studies, Charles University, Prague 128 01, Czech Republic
| | - Ivan Nijs
- Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, B-2610 Wilrijk, Belgium
| | - Gerrit Beemster
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, B-2020 Antwerp, Belgium
| | - Han Asard
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, B-2020 Antwerp, Belgium
| |
Collapse
|
48
|
Reich PB, Bermudez R, Montgomery RA, Rich RL, Rice KE, Hobbie SE, Stefanski A. Even modest climate change may lead to major transitions in boreal forests. Nature 2022; 608:540-545. [PMID: 35948640 DOI: 10.1038/s41586-022-05076-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/06/2022] [Indexed: 11/09/2022]
Abstract
The sensitivity of forests to near-term warming and associated precipitation shifts remains uncertain1-9. Herein, using a 5-year open-air experiment in southern boreal forest, we show divergent responses to modest climate alteration among juveniles of nine co-occurring North American tree species. Warming alone (+1.6 °C or +3.1 °C above ambient temperature) or combined with reduced rainfall increased the juvenile mortality of all species, especially boreal conifers. Species differed in growth responses to warming, ranging from enhanced growth in Acer rubrum and Acer saccharum to severe growth reductions in Abies balsamea, Picea glauca and Pinus strobus. Moreover, treatment-induced changes in both photosynthesis and growth help explain treatment-driven changes in survival. Treatments in which species experienced conditions warmer or drier than at their range margins resulted in the most adverse impacts on growth and survival. Species abundant in southern boreal forests had the largest reductions in growth and survival due to climate manipulations. By contrast, temperate species that experienced little mortality and substantial growth enhancement in response to warming are rare throughout southern boreal forest and unlikely to rapidly expand their density and distribution. Therefore, projected climate change will probably cause regeneration failure of currently dominant southern boreal species and, coupled with their slow replacement by temperate species, lead to tree regeneration shortfalls with potential adverse impacts on the health, diversity and ecosystem services of regional forests.
Collapse
Affiliation(s)
- Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA. .,Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia. .,Institute for Global Change Biology and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA.
| | - Raimundo Bermudez
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
| | | | - Roy L Rich
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA.,Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Karen E Rice
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
| | - Sarah E Hobbie
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Artur Stefanski
- Department of Forest Resources, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
49
|
Harenčár JG, Ávila‐Lovera E, Goldsmith GR, Chen GF, Kay KM. Flexible drought deciduousness in a neotropical understory herb. AMERICAN JOURNAL OF BOTANY 2022; 109:1262-1272. [PMID: 35862815 PMCID: PMC9545341 DOI: 10.1002/ajb2.16037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Adaptive divergence across environmental gradients is a key driver of speciation. Precipitation seasonality gradients are common in the tropics, yet drought adaptation is nearly unexplored in neotropical understory herbs. Here, we examined two recently diverged neotropical spiral gingers, one adapted to seasonal drought and one reliant on perennial water, to uncover the basis of drought adaptation. METHODS We combined ecophysiological trait measurements in the field and greenhouse with experimental and observational assessments of real-time drought response to determine how Costus villosissimus (Costaceae) differs from C. allenii to achieve drought adaptation. RESULTS We found that drought-adapted C. villosissimus has several characteristics indicating flexible dehydration avoidance via semi-drought-deciduousness and a fast economic strategy. Although the two species do not differ in water-use efficiency, C. villosissimus has a more rapid growth rate, lower leaf mass per area, lower stem density, higher leaf nitrogen, and a strong trend of greater light-saturated photosynthetic rates. These fast economic strategy traits align with both field-based observations and experimental dry-down results. During drought, C. villosissimus displays facultative drought-deciduousness, losing lower leaves during the dry season and rapidly growing new leaves in the wet season. CONCLUSIONS We revealed a drought adaptation strategy that has not, to our knowledge, previously been documented in tropical herbs. This divergent drought adaptation evolved recently and is an important component of reproductive isolation between C. villosissimus and C. allenii, indicating that adaptive shifts to survive seasonal drought may be an underappreciated axis of neotropical understory plant diversification.
Collapse
Affiliation(s)
- Julia G. Harenčár
- Ecology and Evolutionary Biology DepartmentUniversity of California, Santa CruzSanta CruzCA95060USA
| | - Eleinis Ávila‐Lovera
- Smithsonian Tropical Research InstituteApartado Postal 0843‐03092Panamá, República de Panamá
- Schmid College of Science and TechnologyChapman UniversityOrangeCA92866USA
| | | | - Grace F. Chen
- Department of BiologyEast Carolina UniversityGreenvilleNC27858USA
| | - Kathleen M. Kay
- Ecology and Evolutionary Biology DepartmentUniversity of California, Santa CruzSanta CruzCA95060USA
| |
Collapse
|
50
|
Pearse IS, McIntyre P, Cacho NI, Strauss SY. Fitness homeostasis across an experimental water gradient predicts species' geographic range and climatic breadth. Ecology 2022; 103:e3827. [PMID: 35857374 DOI: 10.1002/ecy.3827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 11/09/2022]
Abstract
Species range sizes and realized niche breadths vary tremendously. Understanding the source of this variation has been a long-term aim in evolutionary ecology and is a major tool in efforts to ameliorate the impacts of changing climates on species distributions. Species ranges that span a large climatic envelope can be achieved by a collection of specialized genotypes locally adapted to a small range of conditions, by genotypes with stable fitness across variable environments, or a combination of these factors. We asked whether fitness expressed along a key niche axis, water availability, could explain a species' realized niche breadth--its geographic range and climate breadth-- in 11 species from a clade of jewelflowers whose range sizes vary by two orders of magnitude. Specifically, we explored whether the range size of a species was related to the ability of genotypes (maternal families) to maintain fitness across a range of experimental water availabilities based on 30-year historical field precipitation regimes. We operationally characterized fitness homeostasis through the coefficient of variation (CV) in fitness of a genotype (family) across the experimental water gradient. We found that species with genotypes that had high fitness homeostasis -- low variation in fitness over our treatments --had larger climatic niche breadth and geographic range in their field distributions. The result was robust to alternate measures of fitness homeostasis. Our results show that the fitness homeostasis of genotypes can be a major factor contributing to niche breadth and range size in this clade. Fitness homeostasis can buffer species from loss of genetic diversity and under changing climates, provides time for adaptation to future conditions.
Collapse
Affiliation(s)
- Ian S Pearse
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Ave #C, Ft Collins, CO 80526, USA
| | - Patrick McIntyre
- Nature Serve, Western Regional Office, 1680 38th St., Suite 120, Boulder, Colorado, USA
| | - N Ivalú Cacho
- Instituto de Biología, 3er Circuito de CU s/n, Universidad Nacional Autónoma de México, Copilco Coyoacán, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
| | - Sharon Y Strauss
- Center for Population Biology and Department of Evolution and Ecology, University of California, Davis, CA, USA
| |
Collapse
|