1
|
Xiao L, Jin H, Dang Y, Zhao P, Li S, Shi Y, Wang S, Zhang K. DUX-mediated configuration of p300/CBP drives minor zygotic genome activation independent of its catalytic activity. Cell Rep 2025; 44:115544. [PMID: 40202846 DOI: 10.1016/j.celrep.2025.115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/18/2025] [Accepted: 03/19/2025] [Indexed: 04/11/2025] Open
Abstract
Maternal-deposited factors initiate zygotic genome activation (ZGA), driving the maternal-to-zygotic transition; however, the coordination between maternal coactivators and transcription factors (TFs) in this process remains unclear. In this study, by profiling the dynamic landscape of p300 during mouse ZGA, we reveal its role in promoting RNA polymerase II (Pol II) pre-configuration at ZGA gene regions and sequentially establishing enhancer activity and regulatory networks. Moreover, p300/CBP-catalyzed acetylation drives Pol II elongation and minor ZGA gene expression by inducing pivotal TFs such as Dux. Remarkably, the supplementation of exogenous Dux rescues ZGA failure and developmental defects caused by the loss of p300/CBP acetylation. DUX functions as a pioneer factor, guiding p300 and Pol II to minor ZGA gene regions and activating them in a manner dependent on the non-catalytic functions of p300/CBP. Together, our findings reveal a mutual dependency between p300/CBP and DUX, highlighting their coordinated role in regulating minor ZGA activation.
Collapse
Affiliation(s)
- Lieying Xiao
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hao Jin
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yanna Dang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Panpan Zhao
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuang Li
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yan Shi
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shaohua Wang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kun Zhang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
2
|
Jay A, Pondevida CM, Vahedi G. The epigenetic landscape of fate decisions in T cells. Nat Immunol 2025; 26:544-556. [PMID: 40108419 DOI: 10.1038/s41590-025-02113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025]
Abstract
Specialized T cell subsets mediate adaptive immunity in response to cytokine signaling and specific transcription factor activity. The epigenetic landscape of T cells has an important role in facilitating and establishing T cell fate decisions. Here, we review the interplay between transcription factors, histone modifications, DNA methylation and three-dimensional chromatin organization to define key elements of the epigenetic landscape in T cells. We introduce key technologies in the areas of sequencing, microscopy and proteomics that have enabled the multi-scale profiling of the epigenetic landscape. We highlight the dramatic changes of the epigenetic landscape as multipotent progenitor cells commit to the T cell lineage during development and discuss the epigenetic changes that favor the emergence of CD4+ and CD8+ T cells. Finally, we discuss the inheritance of epigenetic marks and its potential effects on immune responses as well as therapeutic strategies with potential for epigenetic regulation.
Collapse
Affiliation(s)
- Atishay Jay
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Carlos M Pondevida
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Golnaz Vahedi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Kaunitz JD. Sometimes Small Is Beautiful: Discovery of the Janus Kinases (JAK) and Signal Transducer and Activator of Transcription (STAT) Pathways and the Initial Development of JAK Inhibitors for IBD Treatment. Dig Dis Sci 2025; 70:890-898. [PMID: 39827247 PMCID: PMC11919997 DOI: 10.1007/s10620-024-08791-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Abstract
The Janus kinase/signal transducer and activator of transfection (JAK/STAT) system is comprised of multiple cell surface receptors, receptor tyrosine kinases, and signal transducers that are key components of numerous systems involved in malignancy, inflammation, immune surveillance and development, cellular proliferation, metabolism, differentiation, apoptosis, and hematologic disorders, all of which when disrupted can produce severe disease. Nevertheless, small molecule inhibitors of the four known JAKs, termed JAKinibs, have found therapeutic indications for a broad category of diseases. In this perspective, I will summarize the development of JAK inhibitors, whose origins were in antiquity, with particular attention to their use in treating patients with inflammatory bowel disease (IBD). This perspective is accompanied by a companion publication addressing how JAKinibs have forever altered the landscape of IBD therapy.
Collapse
Affiliation(s)
- Jonathan D Kaunitz
- Medical Service, Greater Los Angeles VAMC and Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90073, USA.
| |
Collapse
|
4
|
Yuan L, Jiang N, Li Y, Wang X, Wang W. RGS1 Enhancer RNA Promotes Gene Transcription by Recruiting Transcription Factor FOXJ3 and Facilitates Osteoclastogenesis Through PLC-IP3R-dependent Ca 2+ Response in Rheumatoid Arthritis. Inflammation 2025; 48:447-463. [PMID: 38904871 DOI: 10.1007/s10753-024-02067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
Recent evidence has highlighted the functions of enhancers in modulating transcriptional machinery and affecting the development of human diseases including rheumatoid arthritis (RA). Enhancer RNAs (eRNAs) are RNA molecules transcribed from active enhancer regions. This study investigates the specific function of eRNA in gene transcription and osteoclastogenesis in RA. Regulator of G protein signaling 1 (RGS1)-associated eRNA was highly activated in osteoclasts according to bioinformatics prediction. RGS1 mRNA was increased in mice with collagen-induced arthritis as well as in M-CSF/soluble RANKL-stimulated macrophages (derived from monocytes). This was ascribed to increased RGS1 eRNA activity. Silencing of 5'-eRNA blocked the binding between forkhead box J3 (FOXJ3) and the RGS1 promoter, thus suppressing RGS1 transcription. RGS1 accelerated osteoclastogenesis through PLC-IP3R-dependent Ca2+ response. Knockdown of either FOXJ3 or RGS1 ameliorated arthritis severity, improved pathological changes, and reduced osteoclastogenesis and bone erosion in vivo and in vitro. However, the effects of FOXJ3 silencing were negated by RGS1 overexpression. In conclusion, this study demonstrates that the RGS1 eRNA-driven transcriptional activation of the FOXJ3/RGS1 axis accelerates osteoclastogenesis through PLC-IP3R dependent Ca2+ response in RA. The finding may offer novel insights into the role of eRNA in gene transcription and osteoclastogenesis in RA.
Collapse
MESH Headings
- Animals
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/pathology
- RGS Proteins/genetics
- RGS Proteins/metabolism
- Mice
- Osteoclasts/metabolism
- Osteoclasts/pathology
- Osteogenesis/genetics
- Osteogenesis/physiology
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Forkhead Transcription Factors/metabolism
- Forkhead Transcription Factors/genetics
- Humans
- Transcription, Genetic
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/genetics
- Arthritis, Experimental/pathology
- Enhancer Elements, Genetic
- Calcium/metabolism
- Enhancer RNAs
Collapse
Affiliation(s)
- Lin Yuan
- Department of Health Management, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, P.R. of China
| | - Nan Jiang
- Department of Price, The First Affiliated Hospital of China Medical University, Shenyang, 110001, Liaoning, P.R. China
| | - Yuxuan Li
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, P.R. China
| | - Xin Wang
- Department of Health Management, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, P.R. of China
| | - Wei Wang
- Department of Health Management, The First Affiliated Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, P.R. of China.
| |
Collapse
|
5
|
Agrifoglio O, Kasprick A, Gross N, Wahlig M, Kauffold E, Woitas A, Vorobyev A, Ehlers L, Ludwig RJ, Bieber K, Jaster R. Dexamethasone's Clinical Efficacy in Experimental Autoimmune Pancreatitis Correlates with a Unique Transcriptomic Signature, Whilst Kinase Inhibitors Are Not Effective. Biomedicines 2024; 12:2480. [PMID: 39595046 PMCID: PMC11591683 DOI: 10.3390/biomedicines12112480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/14/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
(1) Background: Autoimmune pancreatitis (AIP) is mainly treated with steroids. Using an AIP mouse model, we investigated two potential alternatives, the transforming growth factor-β-activated kinase 1 inhibitor, takinib, and the Janus kinase inhibitor, tofacitinib. (2) Methods: In a multicenter preclinical study, MRL/MpJ mice were injected with polyinosinic/polycytidylic acid (poly I:C) for two weeks to induce AIP. They were then treated for four weeks with either takinib (25, 50, or 75 mg/kg body weight), tofacitinib (5, 10 or 15 mg/kg), dexamethasone (1 mg/kg), or solvent, while the poly I:C injections were continued. The severity of AIP was assessed histopathologically. Flow cytometry was used to examine lymphocyte subtypes in the spleen and mesenteric lymph nodes. The pancreatic gene expression profiles were analyzed by RNA sequencing. (3) Results: Poly I:C-treated mice developed severe AIP with inflammation, destruction of acinar tissue, and fibrosis. Dexamethasone significantly attenuated the disease, while takinib or tofacitinib had no effects. Dexamethasone also antagonized the effects of poly I:C on the relative frequencies of the AIP-associated lymphocyte subtypes CD4/CD69, CD8/CD44high, and CD4/CD25/FoxP3 in the spleen. In the principal component analysis of pancreatic transcriptomics, poly I:C-injected mice treated with tofacitinib, takinib, or solvent clustered together, while untreated and dexamethasone-treated mice formed separate, unique clusters. (4) Conclusions: Dexamethasone effectively reduced AIP severity, while takinib and tofacitinib were ineffective. The unique gene expression profile in dexamethasone-treated mice may provide a basis for identifying new drug targets for AIP treatment.
Collapse
Affiliation(s)
- Ottavia Agrifoglio
- Department of Medicine II, Division of Gastroenterology and Endocrinology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Anika Kasprick
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, 23562 Lübeck, Germany
| | - Natalie Gross
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, 23562 Lübeck, Germany
| | - Marc Wahlig
- Department of Medicine II, Division of Gastroenterology and Endocrinology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Emilia Kauffold
- Department of Medicine II, Division of Gastroenterology and Endocrinology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Aline Woitas
- Department of Medicine II, Division of Gastroenterology and Endocrinology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Artem Vorobyev
- Department of Dermatology, University of Lübeck, 23562 Lübeck, Germany
| | - Luise Ehlers
- Department of Medicine II, Division of Gastroenterology and Endocrinology, Rostock University Medical Center, 18057 Rostock, Germany
| | - Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, 23562 Lübeck, Germany
- Department of Dermatology, University of Lübeck, 23562 Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, 23562 Lübeck, Germany
| | - Robert Jaster
- Department of Medicine II, Division of Gastroenterology and Endocrinology, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
6
|
Kim H, Tan TK, Lee DZY, Huang XZ, Ong JZL, Kelliher MA, Yeoh AEJ, Sanda T, Tan SH. Oncogenic dependency on SWI/SNF chromatin remodeling factors in T-cell acute lymphoblastic leukemia. Leukemia 2024; 38:1906-1917. [PMID: 38969731 DOI: 10.1038/s41375-024-02331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a hematological malignancy arising from immature thymocytes. Unlike well-known oncogenic transcription factors, such as NOTCH1 and MYC, the involvement of chromatin remodeling factors in T-ALL pathogenesis is poorly understood. Here, we provide compelling evidence on how SWI/SNF chromatin remodeling complex contributes to human T-ALL pathogenesis. Integrative analysis of transcriptomic and ATAC-Seq datasets revealed high expression of SMARCA4, one of the subunits of the SWI/SNF complex, in T-ALL patient samples and cell lines compared to normal T cells. Loss of SMARCA protein function resulted in apoptosis induction and growth inhibition in multiple T-ALL cell lines. ATAC-Seq analysis revealed a massive reduction in chromatin accessibility across the genome after the loss of SMARCA protein function. RUNX1 interacts with SMARCA4 protein and co-occupies the same genomic regions. Importantly, the NOTCH1-MYC pathway was primarily affected when SMARCA protein function was impaired, implicating SWI/SNF as a novel therapeutic target.
Collapse
Affiliation(s)
- Hyoju Kim
- Cancer Science Institute of Singapore, National University of, Singapore, 117599, Singapore
| | - Tze King Tan
- Cancer Science Institute of Singapore, National University of, Singapore, 117599, Singapore
| | - Dean Zi Yang Lee
- Cancer Science Institute of Singapore, National University of, Singapore, 117599, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of, Singapore, 117599, Singapore
| | - Jolynn Zu Lin Ong
- Cancer Science Institute of Singapore, National University of, Singapore, 117599, Singapore
| | - Michelle A Kelliher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Allen Eng Juh Yeoh
- Cancer Science Institute of Singapore, National University of, Singapore, 117599, Singapore
- Department of Pediatrics, National University of, Singapore, Singapore
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of, Singapore, 117599, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan.
| | - Shi Hao Tan
- Cancer Science Institute of Singapore, National University of, Singapore, 117599, Singapore
| |
Collapse
|
7
|
Thakore PI, Schnell A, Huang L, Zhao M, Hou Y, Christian E, Zaghouani S, Wang C, Singh V, Singaraju A, Krishnan RK, Kozoriz D, Ma S, Sankar V, Notarbartolo S, Buenrostro JD, Sallusto F, Patsopoulos NA, Rozenblatt-Rosen O, Kuchroo VK, Regev A. BACH2 regulates diversification of regulatory and proinflammatory chromatin states in T H17 cells. Nat Immunol 2024; 25:1395-1410. [PMID: 39009838 DOI: 10.1038/s41590-024-01901-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/18/2024] [Indexed: 07/17/2024]
Abstract
Interleukin-17 (IL-17)-producing helper T (TH17) cells are heterogenous and consist of nonpathogenic TH17 (npTH17) cells that contribute to tissue homeostasis and pathogenic TH17 (pTH17) cells that mediate tissue inflammation. Here, we characterize regulatory pathways underlying TH17 heterogeneity and discover substantial differences in the chromatin landscape of npTH17 and pTH17 cells both in vitro and in vivo. Compared to other CD4+ T cell subsets, npTH17 cells share accessible chromatin configurations with regulatory T cells, whereas pTH17 cells exhibit features of both npTH17 cells and type 1 helper T (TH1) cells. Integrating single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) and single-cell RNA sequencing (scRNA-seq), we infer self-reinforcing and mutually exclusive regulatory networks controlling different cell states and predicted transcription factors regulating TH17 cell pathogenicity. We validate that BACH2 promotes immunomodulatory npTH17 programs and restrains proinflammatory TH1-like programs in TH17 cells in vitro and in vivo. Furthermore, human genetics implicate BACH2 in multiple sclerosis. Overall, our work identifies regulators of TH17 heterogeneity as potential targets to mitigate autoimmunity.
Collapse
Affiliation(s)
- Pratiksha I Thakore
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Alexandra Schnell
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Linglin Huang
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Maryann Zhao
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yu Hou
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Elena Christian
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sarah Zaghouani
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Chao Wang
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Immunology, University of Toronto and Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Vasundhara Singh
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anvita Singaraju
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rajesh Kumar Krishnan
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Deneen Kozoriz
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sai Ma
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Venkat Sankar
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuele Notarbartolo
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Infectious Diseases Unit, Milan, Italy
| | - Jason D Buenrostro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Federica Sallusto
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Nikolaos A Patsopoulos
- Systems Biology and Computer Science Program, Ann Romney Center for Neurological Diseases, Department of Neurology, Brigham & Women's Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Vijay K Kuchroo
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Genentech, South San Francisco, CA, USA.
| |
Collapse
|
8
|
Picavet LW, Samat AAK, Calis J, Nijhuis L, Scholman R, Mokry M, Tough DF, Prinjha RK, Vastert SJ, van Loosdregt J. CBP/P300 Inhibition Impairs CD4+ T Cell Activation: Implications for Autoimmune Disorders. Biomedicines 2024; 12:1344. [PMID: 38927552 PMCID: PMC11202127 DOI: 10.3390/biomedicines12061344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
T cell activation is critical for an effective immune response against pathogens. However, dysregulation contributes to the pathogenesis of autoimmune diseases, including Juvenile Idiopathic Arthritis (JIA). The molecular mechanisms underlying T cell activation are still incompletely understood. T cell activation promotes the acetylation of histone 3 at Lysine 27 (H3K27ac) at enhancer and promoter regions of proinflammatory cytokines, thereby increasing the expression of these genes which is essential for T cell function. Co-activators E1A binding protein P300 (P300) and CREB binding protein (CBP), collectively known as P300/CBP, are essential to facilitate H3K27 acetylation. Presently, the role of P300/CBP in human CD4+ T cells activation remains incompletely understood. To assess the function of P300/CBP in T cell activation and autoimmune disease, we utilized iCBP112, a selective inhibitor of P300/CBP, in T cells obtained from healthy controls and JIA patients. Treatment with iCBP112 suppressed T cell activation and cytokine signaling pathways, leading to reduced expression of many proinflammatory cytokines, including IL-2, IFN-γ, IL-4, and IL-17A. Moreover, P300/CBP inhibition in T cells derived from the inflamed synovium of JIA patients resulted in decreased expression of similar pathways and preferentially suppressed the expression of disease-associated genes. This study underscores the regulatory role of P300/CBP in regulating gene expression during T cell activation while offering potential insights into the pathogenesis of autoimmune diseases. Our findings indicate that P300/CBP inhibition could potentially be leveraged for the treatment of autoimmune diseases such as JIA in the future.
Collapse
Affiliation(s)
- Lucas Wilhelmus Picavet
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (A.A.K.S.); (J.C.); (L.N.); (R.S.); (S.J.V.)
| | - Anoushka A. K. Samat
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (A.A.K.S.); (J.C.); (L.N.); (R.S.); (S.J.V.)
| | - Jorg Calis
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (A.A.K.S.); (J.C.); (L.N.); (R.S.); (S.J.V.)
| | - Lotte Nijhuis
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (A.A.K.S.); (J.C.); (L.N.); (R.S.); (S.J.V.)
| | - Rianne Scholman
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (A.A.K.S.); (J.C.); (L.N.); (R.S.); (S.J.V.)
| | - Michal Mokry
- Department of Experimental Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - David F. Tough
- Immunology Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK; (D.F.T.); (R.K.P.)
| | - Rabinder K. Prinjha
- Immunology Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK; (D.F.T.); (R.K.P.)
| | - Sebastiaan J. Vastert
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (A.A.K.S.); (J.C.); (L.N.); (R.S.); (S.J.V.)
- Department of Pediatric Rheumatology and Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (A.A.K.S.); (J.C.); (L.N.); (R.S.); (S.J.V.)
| |
Collapse
|
9
|
Chen ACY, Jaiswal S, Martinez D, Yerinde C, Ji K, Miranda V, Fung ME, Weiss SA, Zschummel M, Taguchi K, Garris CS, Mempel TR, Hacohen N, Sen DR. The aged tumor microenvironment limits T cell control of cancer. Nat Immunol 2024; 25:1033-1045. [PMID: 38745085 PMCID: PMC11500459 DOI: 10.1038/s41590-024-01828-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024]
Abstract
The etiology and effect of age-related immune dysfunction in cancer is not completely understood. Here we show that limited priming of CD8+ T cells in the aged tumor microenvironment (TME) outweighs cell-intrinsic defects in limiting tumor control. Increased tumor growth in aging is associated with reduced CD8+ T cell infiltration and function. Transfer of T cells from young mice does not restore tumor control in aged mice owing to rapid induction of T cell dysfunction. Cell-extrinsic signals in the aged TME drive a tumor-infiltrating age-associated dysfunctional (TTAD) cell state that is functionally, transcriptionally and epigenetically distinct from canonical T cell exhaustion. Altered natural killer cell-dendritic cell-CD8+ T cell cross-talk in aged tumors impairs T cell priming by conventional type 1 dendritic cells and promotes TTAD cell formation. Aged mice are thereby unable to benefit from therapeutic tumor vaccination. Critically, myeloid-targeted therapy to reinvigorate conventional type 1 dendritic cells can improve tumor control and restore CD8+ T cell immunity in aging.
Collapse
Affiliation(s)
- Alex C Y Chen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Sneha Jaiswal
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Carnegie Mellon University, Pittsburgh, PA, USA
| | - Daniela Martinez
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Cansu Yerinde
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Keely Ji
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Velita Miranda
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Megan E Fung
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Sarah A Weiss
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Maria Zschummel
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Kazuhiro Taguchi
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Christopher S Garris
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Thorsten R Mempel
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Nir Hacohen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Debattama R Sen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
10
|
Son A, Baral I, Falduto GH, Schwartz DM. Locus of (IL-9) control: IL9 epigenetic regulation in cellular function and human disease. Exp Mol Med 2024; 56:1331-1339. [PMID: 38825637 PMCID: PMC11263352 DOI: 10.1038/s12276-024-01241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 06/04/2024] Open
Abstract
Interleukin-9 (IL-9) is a multifunctional cytokine with roles in a broad cross-section of human diseases. Like many cytokines, IL-9 is transcriptionally regulated by a group of noncoding regulatory elements (REs) surrounding the IL9 gene. These REs modulate IL-9 transcription by forming 3D loops that recruit transcriptional machinery. IL-9-promoting transcription factors (TFs) can bind REs to increase locus accessibility and permit chromatin looping, or they can be recruited to already accessible chromatin to promote transcription. Ample mechanistic and genome-wide association studies implicate this interplay between IL-9-modulating TFs and IL9 cis-REs in human physiology, homeostasis, and disease.
Collapse
Affiliation(s)
- Aran Son
- Neuroscience Department, International School for Advanced Studies (SISSA), via Bonomea 265, Trieste, 34136, Italy
| | - Ishita Baral
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guido H Falduto
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniella M Schwartz
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Del Duca E, Dahabreh D, Kim M, Bar J, Da Rosa JC, Rabinowitz G, Facheris P, Gómez-Arias PJ, Chang A, Utti V, Chowdhury A, Liu Y, Estrada YD, Laculiceanu A, Agache I, Guttman-Yassky E. Transcriptomic evaluation of skin tape-strips in children with allergic asthma uncovers epidermal barrier dysfunction and asthma-associated biomarkers abnormalities. Allergy 2024; 79:1516-1530. [PMID: 38375886 PMCID: PMC11247382 DOI: 10.1111/all.16060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/08/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024]
Abstract
INTRODUCTION Tape-strips, a minimally invasive method validated for the evaluation of several skin diseases, may help identify asthma-specific biomarkers in the skin of children with allergic asthma. METHODS Skin tape-strips were obtained and analyzed with RNA-Seq from children with moderate allergic asthma (MAA) (n = 11, mean age 7.00; SD = 1.67), severe allergic asthma (SAA) (n = 9, mean age 9.11; SD = 2.37), and healthy controls (HCs) (n = 12, mean age 7.36; SD = 2.03). Differentially expressed genes (DEGs) were identified by fold change ≥2 with a false discovery rate <0.05. Transcriptomic biomarkers were analyzed for their accuracy in distinguishing asthma from HCs, their relationships with asthma-related outcomes (exacerbation rate, lung function-FEV1, IOS-R5-20, and lung inflammation-FeNO), and their links to skin (barrier and immune response) and lung (remodeling, metabolism, aging) pathogenetic pathways. RESULTS RNA-Seq captured 1113 in MAA and 2117 DEGs in SAA. Epidermal transcriptomic biomarkers for terminal differentiation (FLG/filaggrin), cell adhesion (CDH19, JAM2), lipid biosynthesis/metabolism (ACOT2, LOXL2) were significantly downregulated. Gene set variation analysis revealed enrichment of Th1/IFNγ pathways (p < .01). MAA and SAA shared downregulation of G-protein-coupled receptor (OR4A16, TAS1R3), upregulation of TGF-β/ErbB signaling-related (ACVR1B, EGFR, ID1/2), and upregulation of mitochondrial-related (HIGD2A, VDAC3, NDUFB9) genes. Skin transcriptomic biomarkers correlated with the annualized exacerbation rate and with lung function parameters. A two-gene classifier (TSSC4-FAM212B) was able to differentiate asthma from HCs with 100% accuracy. CONCLUSION Tape-strips detected epithelial barrier and asthma-associated signatures in normal-appearing skin from children with allergic asthma and may serve as an alternative to invasive approaches for evaluating asthma endotypes.
Collapse
Affiliation(s)
- Ester Del Duca
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
- Dermatology Clinic, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Dante Dahabreh
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Madeline Kim
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Jonathan Bar
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Joel Correa Da Rosa
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Grace Rabinowitz
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Paola Facheris
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
- Department of Dermatology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Pedro Jesús Gómez-Arias
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
- Department of Dermatology, Reina Sofía University Hospital, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - Annie Chang
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Vivian Utti
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Amira Chowdhury
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Ying Liu
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Yeriel D. Estrada
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| | - Alexandru Laculiceanu
- Department of Allergy and Clinical Immunology, Transylvania University, Brasov, Romania
| | - Ioana Agache
- Department of Allergy and Clinical Immunology, Transylvania University, Brasov, Romania
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at the Mount Sinai, New York, New York, USA
| |
Collapse
|
12
|
Yao Z, Song P, Jiao W. Pathogenic role of super-enhancers as potential therapeutic targets in lung cancer. Front Pharmacol 2024; 15:1383580. [PMID: 38681203 PMCID: PMC11047458 DOI: 10.3389/fphar.2024.1383580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Lung cancer is still one of the deadliest malignancies today, and most patients with advanced lung cancer pass away from disease progression that is uncontrollable by medications. Super-enhancers (SEs) are large clusters of enhancers in the genome's non-coding sequences that actively trigger transcription. Although SEs have just been identified over the past 10 years, their intricate structure and crucial role in determining cell identity and promoting tumorigenesis and progression are increasingly coming to light. Here, we review the structural composition of SEs, the auto-regulatory circuits, the control mechanisms of downstream genes and pathways, and the characterization of subgroups classified according to SEs in lung cancer. Additionally, we discuss the therapeutic targets, several small-molecule inhibitors, and available treatment options for SEs in lung cancer. Combination therapies have demonstrated considerable advantages in preclinical models, and we anticipate that these drugs will soon enter clinical studies and benefit patients.
Collapse
Affiliation(s)
- Zhiyuan Yao
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Song
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenjie Jiao
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Hardtke-Wolenski M, Landwehr-Kenzel S. Tipping the balance in autoimmunity: are regulatory t cells the cause, the cure, or both? Mol Cell Pediatr 2024; 11:3. [PMID: 38507159 PMCID: PMC10954601 DOI: 10.1186/s40348-024-00176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Regulatory T cells (Tregs) are a specialized subgroup of T-cell lymphocytes that is crucial for maintaining immune homeostasis and preventing excessive immune responses. Depending on their differentiation route, Tregs can be subdivided into thymically derived Tregs (tTregs) and peripherally induced Tregs (pTregs), which originate from conventional T cells after extrathymic differentiation at peripheral sites. Although the regulatory attributes of tTregs and pTregs partially overlap, their modes of action, protein expression profiles, and functional stability exhibit specific characteristics unique to each subset. Over the last few years, our knowledge of Treg differentiation, maturation, plasticity, and correlations between their phenotypes and functions has increased. Genetic and functional studies in patients with numeric and functional Treg deficiencies have contributed to our mechanistic understanding of immune dysregulation and autoimmune pathologies. This review provides an overview of our current knowledge of Treg biology, discusses monogenetic Treg pathologies and explores the role of Tregs in various other autoimmune disorders. Additionally, we discuss novel approaches that explore Tregs as targets or agents of innovative treatment options.
Collapse
Affiliation(s)
- Matthias Hardtke-Wolenski
- Hannover Medical School, Department of Gastroenterology Hepatology, Infectious Diseases and Endocrinology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
- University Hospital Essen, Institute of Medical Microbiology, University Duisburg-Essen, Hufelandstraße 55, Essen, 45122, Germany
| | - Sybille Landwehr-Kenzel
- Hannover Medical School, Department of Pediatric Pneumology, Allergology and Neonatology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
| |
Collapse
|
14
|
Cepika AM, Amaya L, Waichler C, Narula M, Mantilla MM, Thomas BC, Chen PP, Freeborn RA, Pavel-Dinu M, Nideffer J, Porteus M, Bacchetta R, Müller F, Greenleaf WJ, Chang HY, Roncarolo MG. Epigenetic signature and key transcriptional regulators of human antigen-specific type 1 regulatory T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.582969. [PMID: 38559096 PMCID: PMC10979855 DOI: 10.1101/2024.03.07.582969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Human adaptive immunity is orchestrated by effector and regulatory T (Treg) cells. Natural Tregs arise in the thymus where they are shaped to recognize self-antigens, while type 1 Tregs or Tr1 cells are induced from conventional peripheral CD4 + T cells in response to peripheral antigens, such as alloantigens and allergens. Tr1 cells have been developed as a potential therapy for inducing antigen-specific tolerance, because they can be rapidly differentiated in vitro in response to a target antigen. However, the epigenetic landscape and the identity of transcription factors (TFs) that regulate differentiation, phenotype, and functions of human antigen-specific Tr1 cells is largely unknown, hindering Tr1 research and broader clinical development. Here, we reveal the unique epigenetic signature of antigen-specific Tr1 cells, and TFs that regulate their differentiation, phenotype and function. We showed that in vitro induced antigen-specific Tr1 cells are distinct both clonally and transcriptionally from natural Tregs and other conventional CD4 + T cells on a single-cell level. An integrative analysis of Tr1 cell epigenome and transcriptome identified a TF signature unique to antigen-specific Tr1 cells, and predicted that IRF4, BATF, and MAF act as their transcriptional regulators. Using functional genomics, we showed that each of these TFs play a non-redundant role in regulating Tr1 cell differentiation, suppressive function, and expression of co-inhibitory and cytotoxic proteins. By using the Tr1-specific TF signature as a molecular fingerprint, we tracked Tr1 cells in peripheral blood of recipients of allogeneic hematopoietic stem cell transplantation treated with adoptive Tr1 cell therapy. Furthermore, the same signature identified Tr1 cells in resident CD4 + T cells in solid tumors. Altogether, these results reveal the epigenetic signature and the key transcriptional regulators of human Tr1 cells. These data will guide mechanistic studies of human Tr1 cell biology and the development and optimization of adoptive Tr1 cell therapies.
Collapse
|
15
|
Singh V, Nandi S, Ghosh A, Adhikary S, Mukherjee S, Roy S, Das C. Epigenetic reprogramming of T cells: unlocking new avenues for cancer immunotherapy. Cancer Metastasis Rev 2024; 43:175-195. [PMID: 38233727 DOI: 10.1007/s10555-024-10167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
T cells, a key component of cancer immunotherapy, undergo a variety of histone modifications and DNA methylation changes since their bone marrow progenitor stages before developing into CD8+ and CD4+ T cells. These T cell types can be categorized into distinct subtypes based on their functionality and properties, such as cytotoxic T cells (Tc), helper T cells (Th), and regulatory T cells (Treg) as subtypes for CD8+ and CD4+ T cells. Among these, the CD4+ CD25+ Tregs potentially contribute to cancer development and progression by lowering T effector (Teff) cell activity under the influence of the tumor microenvironment (TME). This contributes to the development of therapeutic resistance in patients with cancer. Subsequently, these individuals become resistant to monoclonal antibody therapy as well as clinically established immunotherapies. In this review, we delineate the different epigenetic mechanisms in cancer immune response and its involvement in therapeutic resistance. Furthermore, the possibility of epi-immunotherapeutic methods based on histone deacetylase inhibitors and histone methyltransferase inhibitors are under investigation. In this review we highlight EZH2 as the principal driver of cancer cell immunoediting and an immune escape regulator. We have addressed in detail how understanding T cell epigenetic regulation might bring unique inventive strategies to overcome drug resistance and increase the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Vipin Singh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Aritra Ghosh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Indian Institute of Science Education and Research, Kolkata, India
| | - Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Siddhartha Roy
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India.
- Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
16
|
Tao Y, Wang QH, Li XT, Liu Y, Sun RH, Xu HJ, Zhang M, Li SY, Yang L, Wang HJ, Hao LY, Cao JL, Pan Z. Spinal-Specific Super Enhancer in Neuropathic Pain. J Neurosci 2023; 43:8547-8561. [PMID: 37802656 PMCID: PMC10711714 DOI: 10.1523/jneurosci.1006-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/31/2023] [Accepted: 10/01/2023] [Indexed: 10/08/2023] Open
Abstract
Dysfunctional gene expression in nociceptive pathways plays a critical role in the development and maintenance of neuropathic pain. Super enhancers (SEs), composed of a large cluster of transcriptional enhancers, are emerging as new players in the regulation of gene expression. However, whether SEs participate in nociceptive responses remains unknown. Here, we report a spinal-specific SE (SS-SE) that regulates chronic constriction injury (CCI)-induced neuropathic pain by driving Ntmt1 and Prrx2 transcription in dorsal horn neurons. Peripheral nerve injury significantly enhanced the activity of SS-SE and increased the expression of NTMT1 and PRRX2 in the dorsal horn of male mice in a bromodomain-containing protein 4 (BRD4)-dependent manner. Both intrathecal administration of a pharmacological BRD4 inhibitor JQ1 and CRISPR-Cas9-mediated SE deletion abolished the increased NTMT1 and PRRX2 in CCI mice and attenuated their nociceptive hypersensitivities. Furthermore, knocking down Ntmt1 or Prrx2 with siRNA suppressed the injury-induced elevation of phosphorylated extracellular-signal-regulated kinase (p-ERK) and glial fibrillary acidic protein (GFAP) expression in the dorsal horn and alleviated neuropathic pain behaviors. Mimicking the increase in spinal Ntmt1 or Prrx2 in naive mice increased p-ERK and GFAP expression and led to the genesis of neuropathic pain-like behavior. These results redefine our understanding of the regulation of pain-related genes and demonstrate that BRD4-driven increases in SS-SE activity is responsible for the genesis of neuropathic pain through the governance of NTMT1 and PRRX2 expression in dorsal horn neurons. Our findings highlight the therapeutic potential of BRD4 inhibitors for the treatment of neuropathic pain.SIGNIFICANCE STATEMENT SEs drive gene expression by recruiting master transcription factors, cofactors, and RNA polymerase, but their role in the development of neuropathic pain remains unknown. Here, we report that the activity of an SS-SE, located upstream of the genes Ntmt1 and Prrx2, was elevated in the dorsal horn of mice with neuropathic pain. SS-SE contributes to the genesis of neuropathic pain by driving expression of Ntmt1 and Prrx2 Both inhibition of SS-SE with a pharmacological BRD4 inhibitor and genetic deletion of SS-SE attenuated pain hypersensitivities. This study suggests an effective and novel therapeutic strategy for neuropathic pain.
Collapse
Affiliation(s)
- Yang Tao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Qi-Hui Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiao-Tong Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Ya Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Run-Hang Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Heng-Jun Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Ming Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Si-Yuan Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Li Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Hong-Jun Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Ling-Yun Hao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhiqiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
17
|
Trujillo-Ochoa JL, Kazemian M, Afzali B. The role of transcription factors in shaping regulatory T cell identity. Nat Rev Immunol 2023; 23:842-856. [PMID: 37336954 PMCID: PMC10893967 DOI: 10.1038/s41577-023-00893-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/21/2023]
Abstract
Forkhead box protein 3-expressing (FOXP3+) regulatory T cells (Treg cells) suppress conventional T cells and are essential for immunological tolerance. FOXP3, the master transcription factor of Treg cells, controls the expression of multiples genes to guide Treg cell differentiation and function. However, only a small fraction (<10%) of Treg cell-associated genes are directly bound by FOXP3, and FOXP3 alone is insufficient to fully specify the Treg cell programme, indicating a role for other accessory transcription factors operating upstream, downstream and/or concurrently with FOXP3 to direct Treg cell specification and specialized functions. Indeed, the heterogeneity of Treg cells can be at least partially attributed to differential expression of transcription factors that fine-tune their trafficking, survival and functional properties, some of which are niche-specific. In this Review, we discuss the emerging roles of accessory transcription factors in controlling Treg cell identity. We specifically focus on members of the basic helix-loop-helix family (AHR), basic leucine zipper family (BACH2, NFIL3 and BATF), CUT homeobox family (SATB1), zinc-finger domain family (BLIMP1, Ikaros and BCL-11B) and interferon regulatory factor family (IRF4), as well as lineage-defining transcription factors (T-bet, GATA3, RORγt and BCL-6). Understanding the imprinting of Treg cell identity and specialized function will be key to unravelling basic mechanisms of autoimmunity and identifying novel targets for drug development.
Collapse
Affiliation(s)
- Jorge L Trujillo-Ochoa
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
18
|
Assiri MA, Albekairi TH, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Shahid M, Aldossari AA, Almutairi MM, Almanaa TN, Alwetaid MY, Ahmad SF. The Exposure to Lead (Pb) Exacerbates Immunological Abnormalities in BTBR T + Itpr 3tf/J Mice through the Regulation of Signaling Pathways Relevant to T Cells. Int J Mol Sci 2023; 24:16218. [PMID: 38003408 PMCID: PMC10671427 DOI: 10.3390/ijms242216218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental illness characterized by abnormal social interactions, communication difficulties, and repetitive and limited behaviors or interests. The BTBR T+ Itpr3tf/J (BTBR) mice have been used extensively to research the ASD-like phenotype. Lead (Pb) is a hazardous chemical linked to organ damage in the human body. It is regarded as one of the most common metal exposure sources and has been connected to the development of neurological abnormalities. We used flow cytometry to investigate the molecular mechanism behind the effect of Pb exposure on subsets of CD4+ T cells in the spleen expressing IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, AhR, IL-10, and Foxp3. Furthermore, using RT-PCR, we studied the effect of Pb on the expression of numerous genes in brain tissue, including IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, AhR, IL-10, and Foxp3. Pb exposure increased the population of CD4+IFN-γ+, CD4+T-bet+, CD4+STAT1+, CD4+STAT4+, CD4+IL-9+, CD4+IRF4+, CD4+IL-22+, and CD4+AhR+ cells in BTBR mice. In contrast, CD4+IL-10+ and CD4+Foxp3+ cells were downregulated in the spleen cells of Pb-exposed BTBR mice compared to those treated with vehicle. Furthermore, Pb exposure led to a significant increase in IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, and AhR mRNA expression in BTBR mice. In contrast, IL-10 and Foxp3 mRNA expression was significantly lower in those treated with the vehicle. Our data suggest that Pb exposure exacerbates immunological dysfunctions associated with ASD. These data imply that Pb exposure may increase the risk of ASD.
Collapse
Affiliation(s)
- Mohammed A. Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Thamer H. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Mushtaq A. Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah A. Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Mohammed M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Taghreed N. Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (M.Y.A.)
| | - Mohammad Y. Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (M.Y.A.)
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| |
Collapse
|
19
|
Alwetaid MY, Almanaa TN, Bakheet SA, Ansari MA, Nadeem A, Attia SM, Hussein MH, Ahmad SF. Aflatoxin B 1 Exposure Aggravates Neurobehavioral Deficits and Immune Dysfunctions of Th1, Th9, Th17, Th22, and T Regulatory Cell-Related Transcription Factor Signaling in the BTBR T +Itpr3 tf/J Mouse Model of Autism. Brain Sci 2023; 13:1519. [PMID: 38002479 PMCID: PMC10669727 DOI: 10.3390/brainsci13111519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by impaired communication, reciprocal social interactions, restricted sociability deficits, and stereotyped behavioral patterns. Environmental factors and genetic susceptibility have been implicated in an increased risk of ASD. Aflatoxin B1 (AFB1) is a typical contaminant of food and feed that causes severe immune dysfunction in humans and animals. Nevertheless, the impact of ASD on behavioral and immunological responses has not been thoroughly examined. To investigate this phenomenon, we subjected BTBR T+Itpr3tf/J (BTBR) mice to AFB1 and evaluated their marble-burying and self-grooming behaviors and their sociability. The exposure to AFB1 resulted in a notable escalation in marble-burying and self-grooming activities while concurrently leading to a decline in social contacts. In addition, we investigated the potential molecular mechanisms that underlie the impact of AFB1 on the production of Th1 (IFN-γ, STAT1, and T-bet), Th9 (IL-9 and IRF4), Th17 (IL-17A, IL-21, RORγT, and STAT3), Th22 (IL-22, AhR, and TNF-α), and T regulatory (Treg) (IL-10, TGF-β1, and FoxP3) cells in the spleen. This was achieved using RT-PCR and Western blot analyses to assess mRNA and protein expression in brain tissue. The exposure to AFB1 resulted in a significant upregulation of various immune-related factors, including IFN-γ, STAT1, T-bet, IL-9, IRF4, IL-17A, IL-21, RORγ, STAT3, IL-22, AhR, and TNF-α in BTBR mice. Conversely, the production of IL-10, TGF-β1, and FoxP3 by CD4+ T cells was observed to be downregulated. Exposure to AFB1 demonstrated a notable rise in Th1/Th9/Th22/Th17 levels and a decrease in mRNA and protein expression of Treg. The results above underscore the significance of AFB1 exposure in intensifying neurobehavioral and immunological abnormalities in BTBR mice, hence indicating the necessity for a more comprehensive investigation into the contribution of AFB1 to the development of ASD.
Collapse
Affiliation(s)
- Mohammad Y. Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Taghreed N. Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A. Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa H. Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
20
|
Scott TJ, Hansen TJ, McArthur E, Hodges E. Cross-tissue patterns of DNA hypomethylation reveal genetically distinct histories of cell development. BMC Genomics 2023; 24:623. [PMID: 37858046 PMCID: PMC10588161 DOI: 10.1186/s12864-023-09622-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Establishment of DNA methylation (DNAme) patterns is essential for balanced multi-lineage cellular differentiation, but exactly how these patterns drive cellular phenotypes is unclear. While > 80% of CpG sites are stably methylated, tens of thousands of discrete CpG loci form hypomethylated regions (HMRs). Because they lack DNAme, HMRs are considered transcriptionally permissive, but not all HMRs actively regulate genes. Unlike promoter HMRs, a subset of non-coding HMRs is cell type-specific and enriched for tissue-specific gene regulatory functions. Our data further argues not only that HMR establishment is an important step in enforcing cell identity, but also that cross-cell type and spatial HMR patterns are functionally informative of gene regulation. RESULTS To understand the significance of non-coding HMRs, we systematically dissected HMR patterns across diverse human cell types and developmental timepoints, including embryonic, fetal, and adult tissues. Unsupervised clustering of 126,104 distinct HMRs revealed that levels of HMR specificity reflects a developmental hierarchy supported by enrichment of stage-specific transcription factors and gene ontologies. Using a pseudo-time course of development from embryonic stem cells to adult stem and mature hematopoietic cells, we find that most HMRs observed in differentiated cells (~ 60%) are established at early developmental stages and accumulate as development progresses. HMRs that arise during differentiation frequently (~ 35%) establish near existing HMRs (≤ 6 kb away), leading to the formation of HMR clusters associated with stronger enhancer activity. Using SNP-based partitioned heritability from GWAS summary statistics across diverse traits and clinical lab values, we discovered that genetic contribution to trait heritability is enriched within HMRs. Moreover, the contribution of heritability to cell-relevant traits increases with both increasing HMR specificity and HMR clustering, supporting the role of distinct HMR subsets in regulating normal cell function. CONCLUSIONS Our results demonstrate that the entire HMR repertoire within a cell-type, rather than just the cell type-specific HMRs, stores information that is key to understanding and predicting cellular phenotypes. Ultimately, these data provide novel insights into how DNA hypo-methylation provides genetically distinct historical records of a cell's journey through development, highlighting HMRs as functionally distinct from other epigenomic annotations.
Collapse
Affiliation(s)
- Timothy J Scott
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Tyler J Hansen
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Evonne McArthur
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Emily Hodges
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
| |
Collapse
|
21
|
Tovar A, Kyono Y, Nishino K, Bose M, Varshney A, Parker SCJ, Kitzman JO. Using a modular massively parallel reporter assay to discover context-specific regulatory grammars in type 2 diabetes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.08.561391. [PMID: 37873175 PMCID: PMC10592691 DOI: 10.1101/2023.10.08.561391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Recent genome-wide association studies have established that most complex disease-associated loci are found in noncoding regions where defining their function is nontrivial. In this study, we leverage a modular massively parallel reporter assay (MPRA) to uncover sequence features linked to context-specific regulatory activity. We screened enhancer activity across a panel of 198-bp fragments spanning over 10k type 2 diabetes- and metabolic trait-associated variants in the 832/13 rat insulinoma cell line, a relevant model of pancreatic beta cells. We explored these fragments' context sensitivity by comparing their activities when placed up-or downstream of a reporter gene, and in combination with either a synthetic housekeeping promoter (SCP1) or a more biologically relevant promoter corresponding to the human insulin gene ( INS ). We identified clear effects of MPRA construct design on measured fragment enhancer activity. Specifically, a subset of fragments (n = 702/11,656) displayed positional bias, evenly distributed across up- and downstream preference. A separate set of fragments exhibited promoter bias (n = 698/11,656), mostly towards the cell-specific INS promoter (73.4%). To identify sequence features associated with promoter preference, we used Lasso regression with 562 genomic annotations and discovered that fragments with INS promoter-biased activity are enriched for HNF1 motifs. HNF1 family transcription factors are key regulators of glucose metabolism disrupted in maturity onset diabetes of the young (MODY), suggesting genetic convergence between rare coding variants that cause MODY and common T2D-associated regulatory variants. We designed a follow-up MPRA containing HNF1 motif-enriched fragments and observed several instances where deletion or mutation of HNF1 motifs disrupted the INS promoter-biased enhancer activity, specifically in the beta cell model but not in a skeletal muscle cell line, another diabetes-relevant cell type. Together, our study suggests that cell-specific regulatory activity is partially influenced by enhancer-promoter compatibility and indicates that careful attention should be paid when designing MPRA libraries to capture context-specific regulatory processes at disease-associated genetic signals.
Collapse
|
22
|
Leonard WJ, Lin JX. Strategies to therapeutically modulate cytokine action. Nat Rev Drug Discov 2023; 22:827-854. [PMID: 37542128 DOI: 10.1038/s41573-023-00746-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 08/06/2023]
Abstract
Cytokines are secreted or membrane-presented molecules that mediate broad cellular functions, including development, differentiation, growth and survival. Accordingly, the regulation of cytokine activity is extraordinarily important both physiologically and pathologically. Cytokine and/or cytokine receptor engineering is being widely investigated to safely and effectively modulate cytokine activity for therapeutic benefit. IL-2 in particular has been extensively engineered, to create IL-2 variants that differentially exhibit activities on regulatory T cells to potentially treat autoimmune disease versus effector T cells to augment antitumour effects. Additionally, engineering approaches are being applied to many other cytokines such as IL-10, interferons and IL-1 family cytokines, given their immunosuppressive and/or antiviral and anticancer effects. In modulating the actions of cytokines, the strategies used have been broad, including altering affinities of cytokines for their receptors, prolonging cytokine half-lives in vivo and fine-tuning cytokine actions. The field is rapidly expanding, with extensive efforts to create improved therapeutics for a range of diseases.
Collapse
Affiliation(s)
- Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Paroli M, Becciolini A, Bravi E, Andracco R, Nucera V, Parisi S, Ometto F, Lumetti F, Farina A, Del Medico P, Colina M, Lo Gullo A, Ravagnani V, Scolieri P, Larosa M, Priora M, Visalli E, Addimanda O, Vitetta R, Volpe A, Bezzi A, Girelli F, Molica Colella AB, Caccavale R, Di Donato E, Adorni G, Santilli D, Lucchini G, Arrigoni E, Platè I, Mansueto N, Ianniello A, Fusaro E, Ditto MC, Bruzzese V, Camellino D, Bianchi G, Serale F, Foti R, Amato G, De Lucia F, Dal Bosco Y, Foti R, Reta M, Fiorenza A, Rovera G, Marchetta A, Focherini MC, Mascella F, Bernardi S, Sandri G, Giuggioli D, Salvarani C, Franchina V, Molica Colella F, Ferrero G, Ariani A. Long-Term Retention Rate of Tofacitinib in Rheumatoid Arthritis: An Italian Multicenter Retrospective Cohort Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1480. [PMID: 37629770 PMCID: PMC10456797 DOI: 10.3390/medicina59081480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
Background: Tofacitinib (TOFA) was the first Janus kinase inhibitor (JAKi) to be approved for the treatment of rheumatoid arthritis (RA). However, data on the retention rate of TOFA therapy are still far from definitive. Objective: The goal of this study is to add new real-world data on the TOFA retention rate in a cohort of RA patients followed for a long period of time. Methods: A multicenter retrospective study of RA subjects treated with TOFA as monotherapy or in combination with conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) was conducted in 23 Italian tertiary rheumatology centers. The study considered a treatment period of up to 48 months for all included patients. The TOFA retention rate was assessed with the Kaplan-Meier method. Hazard ratios (HRs) for TOFA discontinuation were obtained using Cox regression analysis. Results: We enrolled a total of 213 patients. Data analysis revealed that the TOFA retention rate was 86.5% (95% CI: 81.8-91.5%) at month 12, 78.8% (95% CI: 78.8-85.2%) at month 24, 63.8% (95% CI: 55.1-73.8%) at month 36, and 59.9% (95% CI: 55.1-73.8%) at month 48 after starting treatment. None of the factors analyzed, including the number of previous treatments received, disease activity or duration, presence of rheumatoid factor and/or anti-citrullinated protein antibody, and presence of comorbidities, were predictive of the TOFA retention rate. Safety data were comparable to those reported in the registration studies. Conclusions: TOFA demonstrated a long retention rate in RA in a real-world setting. This result, together with the safety data obtained, underscores that TOFA is a viable alternative for patients who have failed treatment with csDMARD and/or biologic DMARDs (bDMARDs). Further large, long-term observational studies are urgently needed to confirm these results.
Collapse
Affiliation(s)
- Marino Paroli
- Department of Clinical, Internist, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Andrea Becciolini
- Internal Medicine and Rheumatology Unit, University Hospital of Parma, 43126 Parma, Italy; (A.B.); (E.D.D.); (G.A.); (D.S.); (G.L.); (A.A.)
| | - Elena Bravi
- Rheumatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy; (E.B.); (E.A.); (I.P.)
| | - Romina Andracco
- Internal Medicine Unit, Imperia Hospital, 18100 Imperia, Italy; (R.A.); (N.M.)
| | - Valeria Nucera
- Rheumatology Unit, ASL Novara, 28100 Novara, Italy; (V.N.); (A.I.)
| | - Simone Parisi
- Rheumatology Department, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy; (S.P.); (E.F.); (M.C.D.)
| | | | - Federica Lumetti
- Rheumatology Unit, Azienda USL of Modena and AOU Policlinico of Modena, 41100 Modena, Italy;
| | - Antonella Farina
- Internal Medicine Unit, Augusto Murri Hospital, 63900 Fermo, Italy;
| | - Patrizia Del Medico
- Internal Medicine Unit, Civitanova Marche Hospital, 62012 Civitanova Marche, Italy;
| | - Matteo Colina
- Rheumatology Unit, Internal Medicine Division, Department of Medicine and Oncology, Santa Maria della Scaletta Hospital, 40026 Imola, Italy;
- Rheumatology Unit, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
| | | | - Viviana Ravagnani
- Rheumatology Unit, Santa Chiara Hospital APSS—Trento, 38122 Trento, Italy;
| | - Palma Scolieri
- Rheumatology Unit, Nuovo Regina Margherita Hospital, 00154 Roma, Italy; (P.S.); (V.B.)
| | - Maddalena Larosa
- Division of Rheumatology, Department of Medical Specialties, Azienda Sanitaria Locale 3 Genovese, 16132 Genova, Italy; (M.L.); (D.C.); (G.B.)
| | - Marta Priora
- Rheumatology Unit, ASL CN1, 12100 Cuneo, Italy; (M.P.); (F.S.)
| | - Elisa Visalli
- Rheumatology Unit, Policlinico San Marco Hospital, 95121 Catania, Italy; (E.V.); (R.F.); (G.A.); (F.D.L.); (Y.D.B.); (R.F.)
| | - Olga Addimanda
- Rheumatology Unit, AUSL of Bologna—Policlinico Sant’Orsola—AOU—IRCCS of Bologna, 40138 Bologna, Italy; (O.A.); (M.R.)
| | - Rosetta Vitetta
- Unit of Rheumatology, ASL VC Sant’ Andrea Hospital, 13100 Vercelli, Italy; (R.V.); (A.F.)
| | - Alessandro Volpe
- Unit of Rheumatology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy; (A.V.); (A.M.)
| | - Alessandra Bezzi
- Internal Medicine and Rheumatology Unit, AUSL della Romagna—Rimini, 47924 Rimini, Italy; (A.B.); (M.C.F.); (F.M.)
| | - Francesco Girelli
- Rheumatology Unit, G.B. Morgagni—L. Pierantoni Hospital, 47121 Forlì, Italy; (F.G.); (S.B.)
| | | | - Rosalba Caccavale
- Department of Clinical, Internist, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Eleonora Di Donato
- Internal Medicine and Rheumatology Unit, University Hospital of Parma, 43126 Parma, Italy; (A.B.); (E.D.D.); (G.A.); (D.S.); (G.L.); (A.A.)
| | - Giuditta Adorni
- Internal Medicine and Rheumatology Unit, University Hospital of Parma, 43126 Parma, Italy; (A.B.); (E.D.D.); (G.A.); (D.S.); (G.L.); (A.A.)
| | - Daniele Santilli
- Internal Medicine and Rheumatology Unit, University Hospital of Parma, 43126 Parma, Italy; (A.B.); (E.D.D.); (G.A.); (D.S.); (G.L.); (A.A.)
| | - Gianluca Lucchini
- Internal Medicine and Rheumatology Unit, University Hospital of Parma, 43126 Parma, Italy; (A.B.); (E.D.D.); (G.A.); (D.S.); (G.L.); (A.A.)
| | - Eugenio Arrigoni
- Rheumatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy; (E.B.); (E.A.); (I.P.)
| | - Ilaria Platè
- Rheumatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy; (E.B.); (E.A.); (I.P.)
| | - Natalia Mansueto
- Internal Medicine Unit, Imperia Hospital, 18100 Imperia, Italy; (R.A.); (N.M.)
| | - Aurora Ianniello
- Rheumatology Unit, ASL Novara, 28100 Novara, Italy; (V.N.); (A.I.)
| | - Enrico Fusaro
- Rheumatology Department, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy; (S.P.); (E.F.); (M.C.D.)
| | - Maria Chiara Ditto
- Rheumatology Department, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, 10126 Torino, Italy; (S.P.); (E.F.); (M.C.D.)
| | - Vincenzo Bruzzese
- Rheumatology Unit, Nuovo Regina Margherita Hospital, 00154 Roma, Italy; (P.S.); (V.B.)
| | - Dario Camellino
- Division of Rheumatology, Department of Medical Specialties, Azienda Sanitaria Locale 3 Genovese, 16132 Genova, Italy; (M.L.); (D.C.); (G.B.)
| | - Gerolamo Bianchi
- Division of Rheumatology, Department of Medical Specialties, Azienda Sanitaria Locale 3 Genovese, 16132 Genova, Italy; (M.L.); (D.C.); (G.B.)
| | | | - Rosario Foti
- Rheumatology Unit, Policlinico San Marco Hospital, 95121 Catania, Italy; (E.V.); (R.F.); (G.A.); (F.D.L.); (Y.D.B.); (R.F.)
| | - Giorgio Amato
- Rheumatology Unit, Policlinico San Marco Hospital, 95121 Catania, Italy; (E.V.); (R.F.); (G.A.); (F.D.L.); (Y.D.B.); (R.F.)
| | - Francesco De Lucia
- Rheumatology Unit, Policlinico San Marco Hospital, 95121 Catania, Italy; (E.V.); (R.F.); (G.A.); (F.D.L.); (Y.D.B.); (R.F.)
| | - Ylenia Dal Bosco
- Rheumatology Unit, Policlinico San Marco Hospital, 95121 Catania, Italy; (E.V.); (R.F.); (G.A.); (F.D.L.); (Y.D.B.); (R.F.)
| | - Roberta Foti
- Rheumatology Unit, Policlinico San Marco Hospital, 95121 Catania, Italy; (E.V.); (R.F.); (G.A.); (F.D.L.); (Y.D.B.); (R.F.)
| | - Massimo Reta
- Rheumatology Unit, AUSL of Bologna—Policlinico Sant’Orsola—AOU—IRCCS of Bologna, 40138 Bologna, Italy; (O.A.); (M.R.)
| | - Alessia Fiorenza
- Unit of Rheumatology, ASL VC Sant’ Andrea Hospital, 13100 Vercelli, Italy; (R.V.); (A.F.)
| | - Guido Rovera
- Unit of Rheumatology, ASL VC Sant’ Andrea Hospital, 13100 Vercelli, Italy; (R.V.); (A.F.)
| | - Antonio Marchetta
- Unit of Rheumatology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy; (A.V.); (A.M.)
| | - Maria Cristina Focherini
- Internal Medicine and Rheumatology Unit, AUSL della Romagna—Rimini, 47924 Rimini, Italy; (A.B.); (M.C.F.); (F.M.)
| | - Fabio Mascella
- Internal Medicine and Rheumatology Unit, AUSL della Romagna—Rimini, 47924 Rimini, Italy; (A.B.); (M.C.F.); (F.M.)
| | - Simone Bernardi
- Rheumatology Unit, G.B. Morgagni—L. Pierantoni Hospital, 47121 Forlì, Italy; (F.G.); (S.B.)
| | - Gilda Sandri
- Rheumatology Unit, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.S.); (D.G.); (C.S.)
| | - Dilia Giuggioli
- Rheumatology Unit, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.S.); (D.G.); (C.S.)
| | - Carlo Salvarani
- Rheumatology Unit, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.S.); (D.G.); (C.S.)
| | - Veronica Franchina
- Medical Oncology Unit, Azienda Ospedaliera Papardo, 98158 Messina, Italy;
| | | | - Giulio Ferrero
- Unit of Diagnostic and Interventional Radiology, Santa Corona Hospital, 17027 Pietra Ligure, Italy;
| | - Alarico Ariani
- Internal Medicine and Rheumatology Unit, University Hospital of Parma, 43126 Parma, Italy; (A.B.); (E.D.D.); (G.A.); (D.S.); (G.L.); (A.A.)
| |
Collapse
|
24
|
Van Emmenis L. Golnaz Vahedi: My environment enables me to achieve impossible goals. J Exp Med 2023; 220:e20231182. [PMID: 37477639 PMCID: PMC10360022 DOI: 10.1084/jem.20231182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Golnaz Vahedi is an associate professor of genetics at the Perelman School of Medicine, University of Pennsylvania. Golnaz runs a multidisciplinary lab that uses cutting-edge computational and experimental approaches to understand the molecular mechanisms by which genomic information in immune cells is interpreted in normal development and during immune-mediated diseases. We talked about her diverse scientific background, the benefits of integrating molecular biology and immunology, and the importance of staying positive in academia.
Collapse
|
25
|
Tang ZC, Qu Q, Teng XQ, Zhuang HH, Xu WX, Qu J. Bibliometric analysis of evolutionary trends and hotspots of super-enhancers in cancer. Front Pharmacol 2023; 14:1192855. [PMID: 37576806 PMCID: PMC10415222 DOI: 10.3389/fphar.2023.1192855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction: In the past decade, super-enhancer (SE) has become a research hotspot with increasing attention on cancer occurrence, development, and prognosis. To illustrate the hotspots of SE in cancer research and its evolutionary tendency, bibliometric analysis was carried out for this topic. Methods: Literature published before Dec 31, 2022, in WOSCC, was systematically classified, and Citespace, bibliometric.com/app, and GraphPad Prism analyzed the data. Results: After screening out inappropriate documents and duplicate data, 911 publications were selected for further bibliometric analysis. The top five research areas were Oncology (257, 28.211%), Cell Biology (210, 23.052%), Biochemistry Molecular Biology (209, 22.942%), Science Technology Other Topics (138, 15.148%), and Genetics Heredity (132, 14.490%). The United States of America (United States) has the highest number of documents (462, 50.71%), followed by China (303, 33.26%). Among the most productive institutions, four of which are from the United States and one from Singapore, the National University of Singapore. Harvard Medical School (7.68%) has the highest percentage of articles. Young, Richard A, with 32 publications, ranks first in the number of articles. The top three authors came from Whitehead Institute for Biomedical Research as a research team. More than two-thirds of the research are supported by the National Institutes of Health of the United States (337, 37.654%) and the United States Department of Health Human Services (337, 37.654%). And "super enhancer" (525), "cell identity" (258), "expression" (223), "cancer" (205), and "transcription factor" (193) account for the top 5 occurrence keywords. Discussion: Since 2013, SE and cancer related publications have shown a rapid growth trend. The United States continues to play a leading role in this field, as the top literature numbers, affiliations, funding agencies, and authors were all from the United States, followed by China and European countries. A high degree of active cooperation is evident among a multitude of countries. The role of SEs in cell identity, gene transcription, expression, and inhibition, as well as the relationship between SEs and TFs, and the selective inhibition of SEs, have received much attention, suggesting that they are hot issues for research.
Collapse
Affiliation(s)
- Zhen-Chu Tang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Institute of Hospital Management, Central South University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Xin-Qi Teng
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hai-Hui Zhuang
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wei-Xin Xu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
26
|
Zhang G, Li Y, Wei G. Multi-omic analysis reveals dynamic changes of three-dimensional chromatin architecture during T cell differentiation. Commun Biol 2023; 6:773. [PMID: 37488215 PMCID: PMC10366224 DOI: 10.1038/s42003-023-05141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/13/2023] [Indexed: 07/26/2023] Open
Abstract
Cell differentiation results in widespread changes in transcriptional programs as well as multi-level remodeling of three-dimensional genome architecture. Nonetheless, few synthetically investigate the chromatin higher-order landscapes in different T helper (Th) cells. Using RNA-Seq, ATAC-Seq and Hi-C assays, we characterize dynamic changes in chromatin organization at different levels during Naive CD4+ T cells differentiation into T helper 17 (Th17) and T helper 1 (Th1) cells. Upon differentiation, we observe decreased short-range and increased extra-long-range chromatin interactions. Although there is no apparent global switch in the A/B compartments, Th cells display the weaker compartmentalization. A portion of topologically associated domains are rearranged. Furthermore, we identify cell-type specific enhancer-promoter loops, many of which are associated with functional genes in Th cells, such as Rorc facilitating Th17 differentiation and Hif1a responding to intracellular oxygen levels in Th1. Taken together, these results uncover the general patterns of chromatin reorganization and epigenetic landscapes of gene regulation during T helper cell differentiation.
Collapse
Affiliation(s)
- Ge Zhang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ying Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
27
|
Chandra A, Yoon S, Michieletto MF, Goldman N, Ferrari EK, Abedi M, Johnson I, Fasolino M, Pham K, Joannas L, Kee BL, Henao-Mejia J, Vahedi G. Quantitative control of Ets1 dosage by a multi-enhancer hub promotes Th1 cell differentiation and protects from allergic inflammation. Immunity 2023; 56:1451-1467.e12. [PMID: 37263273 PMCID: PMC10979463 DOI: 10.1016/j.immuni.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 06/03/2023]
Abstract
Multi-enhancer hubs are spatial clusters of enhancers present across numerous developmental programs. Here, we studied the functional relevance of these three-dimensional structures in T cell biology. Mathematical modeling identified a highly connected multi-enhancer hub at the Ets1 locus, comprising a noncoding regulatory element that was a hotspot for sequence variation associated with allergic disease in humans. Deletion of this regulatory element in mice revealed that the multi-enhancer connectivity was dispensable for T cell development but required for CD4+ T helper 1 (Th1) differentiation. These mice were protected from Th1-mediated colitis but exhibited overt allergic responses. Mechanistically, the multi-enhancer hub controlled the dosage of Ets1 that was required for CTCF recruitment and assembly of Th1-specific genome topology. Our findings establish a paradigm wherein multi-enhancer hubs control cellular competence to respond to an inductive cue through quantitative control of gene dosage and provide insight into how sequence variation within noncoding elements at the Ets1 locus predisposes individuals to allergic responses.
Collapse
Affiliation(s)
- Aditi Chandra
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sora Yoon
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michaël F Michieletto
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Naomi Goldman
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily K Ferrari
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maryam Abedi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Isabelle Johnson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria Fasolino
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kenneth Pham
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leonel Joannas
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Barbara L Kee
- Department of Pathology, Committees on Cancer Biology and Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Jorge Henao-Mejia
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Golnaz Vahedi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
Li Y, Yi Y, Lv J, Gao X, Yu Y, Babu S, Bruno I, Zhao D, Xia B, Peng W, Zhu J, Chen H, Zhang L, Cao Q, Chen K. Low RNA stability signifies increased post-transcriptional regulation of cell identity genes. Nucleic Acids Res 2023; 51:6020-6038. [PMID: 37125636 PMCID: PMC10325912 DOI: 10.1093/nar/gkad300] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
Cell identity genes are distinct from other genes with respect to the epigenetic mechanisms to activate their transcription, e.g. by super-enhancers and broad H3K4me3 domains. However, it remains unclear whether their post-transcriptional regulation is also unique. We performed a systematic analysis of transcriptome-wide RNA stability in nine cell types and found that unstable transcripts were enriched in cell identity-related pathways while stable transcripts were enriched in housekeeping pathways. Joint analyses of RNA stability and chromatin state revealed significant enrichment of super-enhancers and broad H3K4me3 domains at the gene loci of unstable transcripts. Intriguingly, the RNA m6A methyltransferase, METTL3, preferentially binds to chromatin at super-enhancers, broad H3K4me3 domains and their associated genes. METTL3 binding intensity is positively correlated with RNA m6A methylation and negatively correlated with RNA stability of cell identity genes, probably due to co-transcriptional m6A modifications promoting RNA decay. Nanopore direct RNA-sequencing showed that METTL3 knockdown has a stronger effect on RNA m6A and mRNA stability for cell identity genes. Our data suggest a run-and-brake model, where cell identity genes undergo both frequent transcription and fast RNA decay to achieve precise regulation of RNA expression.
Collapse
Affiliation(s)
- Yanqiang Li
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Yang Yi
- Department of Urology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jie Lv
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Xinlei Gao
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Yang Yu
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Sahana Suresh Babu
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Ivone Bruno
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Dongyu Zhao
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Bo Xia
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington, DC 20052, USA
| | - Jun Zhu
- Systems Biology Center, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Lili Zhang
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
| | - Qi Cao
- Department of Urology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kaifu Chen
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Houston Methodist Research Institute, The Methodist Hospital System, Houston, TX 77030, USA
- Broad Institute of MIT and Harvard, Boston, MA 02115, USA
- Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| |
Collapse
|
29
|
Qiu Y, Feng D, Jiang W, Zhang T, Lu Q, Zhao M. 3D genome organization and epigenetic regulation in autoimmune diseases. Front Immunol 2023; 14:1196123. [PMID: 37346038 PMCID: PMC10279977 DOI: 10.3389/fimmu.2023.1196123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
Three-dimensional (3D) genomics is an emerging field of research that investigates the relationship between gene regulatory function and the spatial structure of chromatin. Chromatin folding can be studied using chromosome conformation capture (3C) technology and 3C-based derivative sequencing technologies, including chromosome conformation capture-on-chip (4C), chromosome conformation capture carbon copy (5C), and high-throughput chromosome conformation capture (Hi-C), which allow scientists to capture 3D conformations from a single site to the entire genome. A comprehensive analysis of the relationships between various regulatory components and gene function also requires the integration of multi-omics data such as genomics, transcriptomics, and epigenomics. 3D genome folding is involved in immune cell differentiation, activation, and dysfunction and participates in a wide range of diseases, including autoimmune diseases. We describe hierarchical 3D chromatin organization in this review and conclude with characteristics of C-techniques and multi-omics applications of the 3D genome. In addition, we describe the relationship between 3D genome structure and the differentiation and maturation of immune cells and address how changes in chromosome folding contribute to autoimmune diseases.
Collapse
Affiliation(s)
- Yueqi Qiu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Delong Feng
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenjuan Jiang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
| | - Tingting Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
30
|
Bélanger S, Haupt S, Faliti CE, Getzler A, Choi J, Diao H, Karunadharma PP, Bild NA, Pipkin ME, Crotty S. The Chromatin Regulator Mll1 Supports T Follicular Helper Cell Differentiation by Controlling Expression of Bcl6, LEF-1, and TCF-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1752-1760. [PMID: 37074193 PMCID: PMC10334568 DOI: 10.4049/jimmunol.2200927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/17/2023] [Indexed: 04/20/2023]
Abstract
T follicular helper (TFH) cells are essential for developing protective Ab responses following vaccination. Greater understanding of the genetic program leading to TFH differentiation is needed. Chromatin modifications are central in the control of gene expression. However, detailed knowledge of how chromatin regulators (CRs) regulate differentiation of TFH cells is limited. We screened a large short hairpin RNA library targeting all known CRs in mice and identified the histone methyltransferase mixed lineage leukemia 1 (Mll1) as a positive regulator of TFH differentiation. Loss of Mll1 expression reduced formation of TFH cells following acute viral infection or protein immunization. In addition, expression of the TFH lineage-defining transcription factor Bcl6 was reduced in the absence of Mll1. Transcriptomics analysis identified Lef1 and Tcf7 as genes dependent on Mll1 for their expression, which provides one mechanism for the regulation of TFH differentiation by Mll1. Taken together, CRs such as Mll1 substantially influence TFH differentiation.
Collapse
Affiliation(s)
- Simon Bélanger
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Sonya Haupt
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Biomedical Sciences (BMS) Graduate Program. School of Medicine, University of California, San Diego (UCSD), La Jolla, CA, 92037, USA
| | - Caterina E. Faliti
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Adam Getzler
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Jinyong Choi
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Microbiology, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 03083, Republic of Korea
| | - Huitian Diao
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | | | - Nicholas A. Bild
- Genomics Core, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Matthew E. Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, 9203,7USA
| |
Collapse
|
31
|
Ding M, Huang W, Liu G, Zhai B, Yan H, Zhang Y. Integration of ATAC-Seq and RNA-Seq reveals FOSL2 drives human liver progenitor-like cell aging by regulating inflammatory factors. BMC Genomics 2023; 24:260. [PMID: 37173651 PMCID: PMC10182660 DOI: 10.1186/s12864-023-09349-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Human primary hepatocytes (PHCs) are considered to be the best cell source for cell-based therapies for the treatment of end-stage liver disease and acute liver failure. To obtain sufficient and high-quality functional human hepatocytes, we have established a strategy to dedifferentiate human PHCs into expandable hepatocyte-derived liver progenitor-like cells (HepLPCs) through in vitro chemical reprogramming. However, the reduced proliferative capacity of HepLPCs after long-term culture still limits their utility. Therefore, in this study, we attempted to explore the potential mechanism related to the proliferative ability of HepLPCs in vitro culture. RESULTS In this study, analysis of assay for transposase accessible chromatin using sequencing (ATAC-seq) and RNA sequencing (RNA-seq) were performed for PHCs, proliferative HepLPCs (pro-HepLPCs) and late-passage HepLPCs (lp-HepLPCs). Genome-wide transcriptional and chromatin accessibility changes during the conversion and long-term culture of HepLPCs were studied. We found that lp-HepLPCs exhibited an aged phenotype characterized by the activation of inflammatory factors. Epigenetic changes were found to be consistent with our gene expression findings, with promoter and distal regions of many inflammatory-related genes showing increased accessibility in the lp-HepLPCs. FOSL2, a member of the AP-1 family, was found to be highly enriched in the distal regions with increased accessibility in lp-HepLPCs. Its depletion attenuated the expression of aging- and senescence-associated secretory phenotype (SASP)-related genes and resulted in a partial improvement of the aging phenotype in lp-HepLPCs. CONCLUSIONS FOSL2 may drive the aging of HepLPCs by regulating inflammatory factors and its depletion may attenuate this phenotypic shift. This study provides a novel and promising approach for the long-term in vitro culture of HepLPCs.
Collapse
Affiliation(s)
- Min Ding
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Weijian Huang
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Guifen Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bo Zhai
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hexin Yan
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China.
| | - Yong Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
32
|
Mutascio S, Mota T, Franchitti L, Sharma AA, Willemse A, Bergstresser SN, Wang H, Statzu M, Tharp GK, Weiler J, Sékaly RP, Bosinger SE, Paiardini M, Silvestri G, Jones RB, Kulpa DA. CD8 + T cells promote HIV latency by remodeling CD4 + T cell metabolism to enhance their survival, quiescence, and stemness. Immunity 2023; 56:1132-1147.e6. [PMID: 37030290 PMCID: PMC10880039 DOI: 10.1016/j.immuni.2023.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/16/2022] [Accepted: 03/15/2023] [Indexed: 04/10/2023]
Abstract
HIV infection persists during antiretroviral therapy (ART) due to a reservoir of latently infected cells that harbor replication-competent virus and evade immunity. Previous ex vivo studies suggested that CD8+ T cells from people with HIV may suppress HIV expression via non-cytolytic mechanisms, but the mechanisms responsible for this effect remain unclear. Here, we used a primary cell-based in vitro latency model and demonstrated that co-culture of autologous activated CD8+ T cells with HIV-infected memory CD4+ T cells promoted specific changes in metabolic and/or signaling pathways resulting in increased CD4+ T cell survival, quiescence, and stemness. Collectively, these pathways negatively regulated HIV expression and ultimately promoted the establishment of latency. As shown previously, we observed that macrophages, but not B cells, promoted latency in CD4+ T cells. The identification of CD8-specific mechanisms of pro-latency activity may favor the development of approaches to eliminate the viral reservoir in people with HIV.
Collapse
Affiliation(s)
- Simona Mutascio
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Talia Mota
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lavinia Franchitti
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Ashish A Sharma
- Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Abigail Willemse
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | | - Hong Wang
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Maura Statzu
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Gregory K Tharp
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Jared Weiler
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Rafick-Pierre Sékaly
- Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Steven E Bosinger
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Mirko Paiardini
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Guido Silvestri
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - R Brad Jones
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Deanna A Kulpa
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pathology & Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
33
|
Kravchuk EV, Ashniev GA, Gladkova MG, Orlov AV, Vasileva AV, Boldyreva AV, Burenin AG, Skirda AM, Nikitin PI, Orlova NN. Experimental Validation and Prediction of Super-Enhancers: Advances and Challenges. Cells 2023; 12:cells12081191. [PMID: 37190100 DOI: 10.3390/cells12081191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Super-enhancers (SEs) are cis-regulatory elements of the human genome that have been widely discussed since the discovery and origin of the term. Super-enhancers have been shown to be strongly associated with the expression of genes crucial for cell differentiation, cell stability maintenance, and tumorigenesis. Our goal was to systematize research studies dedicated to the investigation of structure and functions of super-enhancers as well as to define further perspectives of the field in various applications, such as drug development and clinical use. We overviewed the fundamental studies which provided experimental data on various pathologies and their associations with particular super-enhancers. The analysis of mainstream approaches for SE search and prediction allowed us to accumulate existing data and propose directions for further algorithmic improvements of SEs' reliability levels and efficiency. Thus, here we provide the description of the most robust algorithms such as ROSE, imPROSE, and DEEPSEN and suggest their further use for various research and development tasks. The most promising research direction, which is based on topic and number of published studies, are cancer-associated super-enhancers and prospective SE-targeted therapy strategies, most of which are discussed in this review.
Collapse
Affiliation(s)
- Ekaterina V Kravchuk
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, MSU, 1-12, 119991 Moscow, Russia
| | - German A Ashniev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskiye Gory, MSU, 1-12, 119991 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, MSU, 1-73, 119234 Moscow, Russia
| | - Marina G Gladkova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskiye Gory, MSU, 1-73, 119234 Moscow, Russia
| | - Alexey V Orlov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Anastasiia V Vasileva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Anna V Boldyreva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Alexandr G Burenin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Artemiy M Skirda
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Petr I Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| | - Natalia N Orlova
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| |
Collapse
|
34
|
Abstract
Inflammatory bowel diseases (IBD) are currently recognized to involve chronic intestinal inflammation in genetically susceptible individuals. Patients with IBD mainly develop gastrointestinal inflammation, but it is sometimes accompanied by extraintestinal manifestations such as arthritis, erythema nodosum, episcleritis, pyoderma gangrenosum, uveitis, and primary sclerosing cholangitis. These clinical aspects imply the importance of interorgan networks in IBD. In the gastrointestinal tract, immune cells are influenced by multiple local environmental factors including microbiota, dietary environment, and intercellular networks, which further alter molecular networks in immune cells. Therefore, deciphering networks at interorgan, intercellular, and intracellular levels should help to obtain a comprehensive understanding of IBD. This review focuses on the intestinal immune system, which governs the physiological and pathological functions of the digestive system in harmony with the other organs.
Collapse
|
35
|
Li Z, Liu H, Teng J, Xu W, Shi H, Wang Y, Meng M. Epigenetic regulation of iNKT2 cell adoptive therapy on the imbalance of iNKT cell subsets in thymus of RA mice. Cell Immunol 2023; 386:104703. [PMID: 36889216 DOI: 10.1016/j.cellimm.2023.104703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Epigenetic regulation affects the development and differentiation of iNKT cells. Our previous study found that the number of iNKT cells in thymus of RA mice was reduced and the ratio of subsets was unbalanced, but the related mechanism remains unclear. We adopted an adoptive infusion of iNKT2 cells with specific phenotypes and functions to RA mice and used the α-Galcer treatment group as control. The findings revealed that: 1. Adoptive treatment of iNKT cells decreased the proportion of iNKT1 and iNKT17 subsets in the thymus of RA mice, and increased the proportion of iNKT2 subsets. 2. Following treatment with iNKT cells, the expression of PLZF in thymus DP T cells was increased whereas the expression of T-bet in thymus iNKT cells was decreased in RA mice. 3. Adoptive therapy reduced the modification levels of H3Kb7me3 and H3K4me3 in the promoter regions of Zbtb16 (encoding PLZF) and Tbx21 (encoding T-bet) gene in thymus DP T cells and iNKT cells, and the reduction of H3K4me3 was particularly significant in the cell treatment group. Furthermore, adoptive therapy also upregulated the expression of UTX (histone demethylase) in thymus lymphocytes of RA mice. As a result, it is hypothesized that adoptive therapy of iNKT2 cells may affect the level of histone methylation in the promoter region of important transcription factor genes for iNKT development and differentiation, thereby directly or indirectly correcting the imbalance of iNKT subsets in the thymus of RA mice. These findings offer a fresh rationale and concept for the management of RA that targets.
Collapse
Affiliation(s)
- Zhao Li
- College of Basic Medicine, Hebei University, Baoding 071000, Hebei Province, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Baoding 071000, Hebei Province, China
| | - Huifang Liu
- College of Basic Medicine, Hebei University, Baoding 071000, Hebei Province, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Baoding 071000, Hebei Province, China
| | - Jingfang Teng
- College of Basic Medicine, Hebei University, Baoding 071000, Hebei Province, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Baoding 071000, Hebei Province, China
| | - Wenbin Xu
- College of Basic Medicine, Hebei University, Baoding 071000, Hebei Province, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Baoding 071000, Hebei Province, China
| | - Hongyun Shi
- Affiliated Hospital of Hebei University, Baoding 071000, Hebei Province, China
| | - Yan Wang
- Affiliated Hospital of Hebei University, Baoding 071000, Hebei Province, China.
| | - Ming Meng
- College of Basic Medicine, Hebei University, Baoding 071000, Hebei Province, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Baoding 071000, Hebei Province, China.
| |
Collapse
|
36
|
Stankey CT, Lee JC. Translating non-coding genetic associations into a better understanding of immune-mediated disease. Dis Model Mech 2023; 16:dmm049790. [PMID: 36897113 PMCID: PMC10040244 DOI: 10.1242/dmm.049790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Genome-wide association studies have identified hundreds of genetic loci that are associated with immune-mediated diseases. Most disease-associated variants are non-coding, and a large proportion of these variants lie within enhancers. As a result, there is a pressing need to understand how common genetic variation might affect enhancer function and thereby contribute to immune-mediated (and other) diseases. In this Review, we first describe statistical and experimental methods to identify causal genetic variants that modulate gene expression, including statistical fine-mapping and massively parallel reporter assays. We then discuss approaches to characterise the mechanisms by which these variants modulate immune function, such as clustered regularly interspaced short palindromic repeats (CRISPR)-based screens. We highlight examples of studies that, by elucidating the effects of disease variants within enhancers, have provided important insights into immune function and uncovered key pathways of disease.
Collapse
Affiliation(s)
- Christina T. Stankey
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - James C. Lee
- Genetic Mechanisms of Disease Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Institute of Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK
| |
Collapse
|
37
|
Li H, Sun J, Dong Y, Huang Y, Wu L, Xi C, Su Z, Xiao Y, Zhang C, Liang Y, Li Y, Lin Z, Shen L, Zuo Y, Abudureheman A, Yin J, Wang H, Kong X, Le R, Gao S, Zhang Y. Remodeling of H3K9me3 during the pluripotent to totipotent-like state transition. Stem Cell Reports 2023; 18:449-462. [PMID: 36638787 PMCID: PMC9968986 DOI: 10.1016/j.stemcr.2022.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 01/14/2023] Open
Abstract
Multiple chromatin modifiers associated with H3K9me3 play important roles in the transition from embryonic stem cells to 2-cell (2C)-like cells. However, it remains elusive how H3K9me3 is remodeled and its association with totipotency. Here, we integrated transcriptome and H3K9me3 profiles to conduct a detailed comparison of 2C embryos and 2C-like cells. Globally, H3K9me3 is highly preserved and H3K9me3 dynamics within the gene locus is not associated with gene expression change during 2C-like transition. Promoter-deposited H3K9me3 plays non-repressive roles in the activation of genes during 2C-like transition. In contrast, transposable elements, residing in the nearby regions of up-regulated genes, undergo extensive elimination of H3K9me3 and are tended to be induced in 2C-like transitions. Furthermore, a large fraction of trophoblast stem cell-specific enhancers undergo loss of H3K9me3 exclusively in MERVL+/Zscan4+ cells. Our study therefore reveals the unique H3K9me3 profiles of 2C-like cells, facilitating the further exploration of totipotency.
Collapse
Affiliation(s)
- Hu Li
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jiatong Sun
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yu Dong
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yixin Huang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Li Wu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chenxiang Xi
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhongqu Su
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yihan Xiao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chuyu Zhang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yuwei Liang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yujun Li
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhiyi Lin
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Lu Shen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yixing Zuo
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Abuduwaili Abudureheman
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiqing Yin
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiangyin Kong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Rongrong Le
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Yanping Zhang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
38
|
Friedman MJ, Lee H, Lee JY, Oh S. Transcriptional and Epigenetic Regulation of Context-Dependent Plasticity in T-Helper Lineages. Immune Netw 2023; 23:e5. [PMID: 36911799 PMCID: PMC9995996 DOI: 10.4110/in.2023.23.e5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Th cell lineage determination and functional specialization are tightly linked to the activation of lineage-determining transcription factors (TFs) that bind cis-regulatory elements. These lineage-determining TFs act in concert with multiple layers of transcriptional regulators to alter the epigenetic landscape, including DNA methylation, histone modification and three-dimensional chromosome architecture, in order to facilitate the specific Th gene expression programs that allow for phenotypic diversification. Accumulating evidence indicates that Th cell differentiation is not as rigid as classically held; rather, extensive phenotypic plasticity is an inherent feature of T cell lineages. Recent studies have begun to uncover the epigenetic programs that mechanistically govern T cell subset specification and immunological memory. Advances in next generation sequencing technologies have allowed global transcriptomic and epigenomic interrogation of CD4+ Th cells that extends previous findings focusing on individual loci. In this review, we provide an overview of recent genome-wide insights into the transcriptional and epigenetic regulation of CD4+ T cell-mediated adaptive immunity and discuss the implications for disease as well as immunotherapies.
Collapse
Affiliation(s)
- Meyer J. Friedman
- Department and School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Haram Lee
- College of Pharmacy Korea University, Sejong 30019, Korea
| | - June-Yong Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
- Institute of Genetic Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soohwan Oh
- College of Pharmacy Korea University, Sejong 30019, Korea
| |
Collapse
|
39
|
Nguyen H, Arribas-Layton D, Chow IT, Speake C, Kwok WW, Hessner MJ, Greenbaum CJ, James EA. Characterizing T cell responses to enzymatically modified beta cell neo-epitopes. Front Immunol 2023; 13:1015855. [PMID: 36703975 PMCID: PMC9871889 DOI: 10.3389/fimmu.2022.1015855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Previous studies verify the formation of enzymatically post-translationally modified (PTM) self-peptides and their preferred recognition by T cells in subjects with type 1 diabetes (T1D). However, questions remain about the relative prevalence of T cells that recognize PTM self-peptides derived from different antigens, their functional phenotypes, and whether their presence correlates with a specific disease endotype. Methods To address this question, we identified a cohort of subjects with T1D who had diverse levels of residual beta cell function. Using previously developed HLA class II tetramer reagents, we enumerated T cells that recognize PTM GAD epitopes in the context of DRB1*04:01 or PTM IA2 epitopes in the context of DQB1*03:02 (DQ8). Results Consistent with prior studies, we observed higher overall frequencies and a greater proportion of memory T cells in subjects with T1D than in HLA matched controls. There were significantly higher numbers of GAD specific T cells than IA2 specific T cells in subjects with T1D. T cells specific for both groups of epitopes could be expanded from the peripheral blood of subjects with established T1D and at-risk subjects. Expanded neo-epitope specific T cells primarily produced interferon gamma in both groups, but a greater proportion of T cells were interferon gamma positive in subjects with T1D, including some poly-functional cells that also produced IL-4. Based on direct surface phenotyping, neo-epitope specific T cells exhibited diverse combinations of chemokine receptors. However, the largest proportion had markers associated with a Th1-like phenotype. Notably, DQ8 restricted responses to PTM IA2 were over-represented in subjects with lower residual beta cell function. Neo-epitope specific T cells were present in at-risk subjects, and those with multiple autoantibodies have higher interferon gamma to IL-4 ratios than those with single autoantibodies, suggesting a shift in polarization during progression. Discussion These results reinforce the relevance of PTM neo-epitopes in human disease and suggest that distinct responses to neo-antigens promote a more rapid decline in beta cell function.
Collapse
Affiliation(s)
- Hai Nguyen
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - David Arribas-Layton
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - I-Ting Chow
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Cate Speake
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - William W. Kwok
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Martin J. Hessner
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, United States
| | - Carla J. Greenbaum
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States,Department of Medicine, University of Washington, Seattle, WA, United States
| | - Eddie A. James
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States,*Correspondence: Eddie A. James,
| |
Collapse
|
40
|
Yan B, Wang C, Chakravorty S, Zhang Z, Kadadi SD, Zhuang Y, Sirit I, Hu Y, Jung M, Sahoo SS, Wang L, Shao K, Anderson NL, Trujillo‐Ochoa JL, Briggs SD, Liu X, Olson MR, Afzali B, Zhao B, Kazemian M. A comprehensive single cell data analysis of lymphoblastoid cells reveals the role of super-enhancers in maintaining EBV latency. J Med Virol 2023; 95:e28362. [PMID: 36453088 PMCID: PMC10027397 DOI: 10.1002/jmv.28362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
Abstract
We probed the lifecycle of Epstein-Barr virus (EBV) on a cell-by-cell basis using single cell RNA sequencing (scRNA-seq) data from nine publicly available lymphoblastoid cell lines (LCLs). While the majority of LCLs comprised cells containing EBV in the latent phase, two other clusters of cells were clearly evident and were distinguished by distinct expression of host and viral genes. Notably, both were high expressors of EBV LMP1/BNLF2 and BZLF1 compared to another cluster that expressed neither gene. The two novel clusters differed from each other in their expression of EBV lytic genes, including glycoprotein gene GP350. The first cluster, comprising GP350- LMP1hi cells, expressed high levels of HIF1A and was transcriptionally regulated by HIF1-α. Treatment of LCLs with Pevonedistat, a drug that enhances HIF1-α signaling, markedly induced this cluster. The second cluster, containing GP350+ LMP1hi cells, expressed EBV lytic genes. Host genes that are controlled by super-enhancers (SEs), such as transcription factors MYC and IRF4, had the lowest expression in this cluster. Functionally, the expression of genes regulated by MYC and IRF4 in GP350+ LMP1hi cells were lower compared to other cells. Indeed, induction of EBV lytic reactivation in EBV+ AKATA reduced the expression of these SE-regulated genes. Furthermore, CRISPR-mediated perturbation of the MYC or IRF4 SEs in LCLs induced the lytic EBV gene expression, suggesting that host SEs and/or SE target genes are required for maintenance of EBV latency. Collectively, our study revealed EBV-associated heterogeneity among LCLs that may have functional consequence on host and viral biology.
Collapse
Affiliation(s)
- Bingyu Yan
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Chong Wang
- Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Zonghao Zhang
- Department of Agricultural and Biological EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Simran D. Kadadi
- Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Yuxin Zhuang
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Isabella Sirit
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Yonghua Hu
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Minwoo Jung
- Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | | | - Luopin Wang
- Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Kunming Shao
- Department of Agricultural and Biological EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Nicole L. Anderson
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Jorge L. Trujillo‐Ochoa
- Immunoregulation Section, Kidney Diseases BranchNational Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIHBethesdaMarylandUSA
| | - Scott D. Briggs
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Xing Liu
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Matthew R. Olson
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases BranchNational Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIHBethesdaMarylandUSA
| | - Bo Zhao
- Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Majid Kazemian
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
- Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
41
|
Chopp L, Redmond C, O'Shea JJ, Schwartz DM. From thymus to tissues and tumors: A review of T-cell biology. J Allergy Clin Immunol 2023; 151:81-97. [PMID: 36272581 PMCID: PMC9825672 DOI: 10.1016/j.jaci.2022.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
T cells are critical orchestrators of the adaptive immune response that optimally eliminate a specific pathogen. Aberrant T-cell development and function are implicated in a broad range of human disease including immunodeficiencies, autoimmune diseases, and allergic diseases. Accordingly, therapies targeting T cells and their effector cytokines have markedly improved the care of patients with immune dysregulatory diseases. Newer discoveries concerning T-cell-mediated antitumor immunity and T-cell exhaustion have further prompted development of highly effective and novel treatment modalities for malignancies, including checkpoint inhibitors and antigen-reactive T cells. Recent discoveries are also uncovering the depth and variability of T-cell phenotypes: while T cells have long been described using a subset-based classification system, next-generation sequencing technologies suggest an astounding degree of complexity and heterogeneity at the single-cell level.
Collapse
Affiliation(s)
- Laura Chopp
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda
| | - Christopher Redmond
- Clinical Fellowship Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda; Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh.
| |
Collapse
|
42
|
Thümmler K, Williams MTS, Kitson S, Sood S, Akbar M, Cole JJ, Hunter E, Soutar R, Goodyear CS. Targeting 3D chromosomal architecture at the RANK loci to suppress myeloma-driven osteoclastogenesis. Oncoimmunology 2022; 11:2104070. [PMID: 35936985 PMCID: PMC9348127 DOI: 10.1080/2162402x.2022.2104070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Katja Thümmler
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Mark TS Williams
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Susan Kitson
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Shatakshi Sood
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Moeed Akbar
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - John J Cole
- GLAZgo Discovery Centre, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Richard Soutar
- Beatson West of Scotland Cancer Centre, Gartnavel Hospital, Glasgow, UK
| | - Carl S Goodyear
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- GLAZgo Discovery Centre, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
43
|
Yamagata K, Nakayamada S, Zhang T, Nguyen AP, Ohkubo N, Iwata S, Kato S, Tanaka Y. IL-6 production through repression of UBASH3A gene via epigenetic dysregulation of super-enhancer in CD4 + T cells in rheumatoid arthritis. Inflamm Regen 2022; 42:46. [PMID: 36324153 PMCID: PMC9632101 DOI: 10.1186/s41232-022-00231-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is associated with immune dysfunction. UBASH3A as a negative regulator of T cell receptors (TCRs) signaling is a susceptible factor in RA. The aim of this study was to determine the role of UBASH3A in RA pathogenesis, by assessing the role of super-enhancer (SE) in the control of UBASH3A expression in CD4+ T cells and the contribution of the latter in proinflammatory cytokine production in patients with RA. Methods UBASH3A mRNA and protein levels were quantified by PCR and western blotting, respectively. The cells were treated with a locked nucleic acid to inhibit enhancer RNA (eRNA) expression. Chromatin immunoprecipitation was used to identify the factors recruited to UBASH3A loci displaying SE architecture. CD4+ T cells were transfected with UBASH3A plasmids, and cytokine levels were measured by a cytometric bead array. Results UBASH3A was extracted as a RA susceptibility gene associated with SNPs in the SEs that are highly expressed in CD4+ T cells by in silico screening. UBASH3A mRNA and protein expression levels were lower in CD4+ T cells of RA patients than in the control. eRNA_1 and eRNA_3 knockdown reduced UBASH3A mRNA levels. RA patients exhibited accumulation of BTB and CNC homology 2 (BACH2), the silencing transcription factor, at the UBASH3A loci in CD4+ T cells, but not the SE-defining factor, mediator complex subunit 1 (MED1)/bromodomain 4 (BRD4). However, opposite changes were observed in the control. Stimulation of TCRs expressed on CD4+ T cells of RA patients resulted in interleukin (IL)-6 production, while UBASH3A over-expression significantly inhibited the production. Conclusions In RA, transcription of UBASH3A is suppressed via epigenetic regulation of SE in CD4+ T cells. Low UBASH3A levels result in excessive TCR signal activation with subsequent enhancement of IL-6 production. Supplementary Information The online version contains supplementary material available at 10.1186/s41232-022-00231-9.
Collapse
Affiliation(s)
- Kaoru Yamagata
- grid.271052.30000 0004 0374 5913The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu, Fukuoka, 807-8555 Japan
| | - Shingo Nakayamada
- grid.271052.30000 0004 0374 5913The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu, Fukuoka, 807-8555 Japan
| | - Tong Zhang
- grid.271052.30000 0004 0374 5913The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu, Fukuoka, 807-8555 Japan
| | - Anh Phuong Nguyen
- grid.271052.30000 0004 0374 5913The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu, Fukuoka, 807-8555 Japan
| | - Naoyuki Ohkubo
- grid.271052.30000 0004 0374 5913The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu, Fukuoka, 807-8555 Japan
| | - Shigeru Iwata
- grid.271052.30000 0004 0374 5913The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu, Fukuoka, 807-8555 Japan
| | - Shigeaki Kato
- grid.411789.20000 0004 0371 1051Graduate School of Life Science and Engineering, Iryo Sosei University, Iwaki, Fukushima, 970-8551, Japan
| | - Yoshiya Tanaka
- grid.271052.30000 0004 0374 5913The First Department of Internal Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi, Kitakyushu, Fukuoka, 807-8555 Japan
| |
Collapse
|
44
|
Barton PR, Davenport AJ, Hukelmann J, Cantrell DA, Stinchcombe JC, Richard AC, Griffiths GM. Super-killer CTLs are generated by single gene deletion of Bach2. Eur J Immunol 2022; 52:1776-1788. [PMID: 36086884 PMCID: PMC9828676 DOI: 10.1002/eji.202249797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/28/2022] [Accepted: 09/05/2022] [Indexed: 01/12/2023]
Abstract
Bach2 codes for a transcriptional regulator exerting major influences on T cell-mediated immune regulation. Effector CTLs derived from in vitro activation of murine CD8+ T cells showed increased proliferative and cytolytic capacity in the absence of BACH2. Before activation, BACH2-deficient splenic CD8+ T cells had a higher abundance of memory and reduced abundance of naïve cells compared to wild-type. CTLs derived from central memory T cells were more potently cytotoxic than those derived from naïve T cells, but even within separated subsets, BACH2-deficiency conferred a cytotoxic advantage. Immunofluorescence and electron microscopy revealed larger granules in BACH2-deficient compared to wild-type CTLs, and proteomic analysis showed an increase in granule content, including perforin and granzymes. Thus, the enhanced cytotoxicity observed in effector CTLs lacking BACH2 arises not only from differences in their initial differentiation state but also inherent production of enlarged cytolytic granules. These results demonstrate how a single gene deletion can produce a CTL super-killer.
Collapse
Affiliation(s)
- Philippa R. Barton
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridge Biomedical CampusCambridgeCB2 0XYUK
| | - Alexander J. Davenport
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridge Biomedical CampusCambridgeCB2 0XYUK
| | - Jens Hukelmann
- Cell Signalling and Immunology Division, School of Life SciencesUniversity of DundeeDundeeDD1 5EHUK
| | - Doreen A. Cantrell
- Cell Signalling and Immunology Division, School of Life SciencesUniversity of DundeeDundeeDD1 5EHUK
| | - Jane C. Stinchcombe
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridge Biomedical CampusCambridgeCB2 0XYUK
| | - Arianne C. Richard
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridge Biomedical CampusCambridgeCB2 0XYUK
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridge Biomedical CampusCambridgeCB2 0REUK
| | - Gillian M Griffiths
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridge Biomedical CampusCambridgeCB2 0XYUK
| |
Collapse
|
45
|
The JAK-STAT pathway at 30: Much learned, much more to do. Cell 2022; 185:3857-3876. [PMID: 36240739 PMCID: PMC9815833 DOI: 10.1016/j.cell.2022.09.023] [Citation(s) in RCA: 306] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
The discovery of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway arose from investigations of how cells respond to interferons (IFNs), revealing a paradigm in cell signaling conserved from slime molds to mammals. These discoveries revealed mechanisms underlying rapid gene expression mediated by a wide variety of extracellular polypeptides including cytokines, interleukins, and related factors. This knowledge has provided numerous insights into human disease, from immune deficiencies to cancer, and was rapidly translated to new drugs for autoimmune, allergic, and infectious diseases, including COVID-19. Despite these advances, major challenges and opportunities remain.
Collapse
|
46
|
Mammary-Enriched Transcription Factors Synergize to Activate the Wap Super-Enhancer for Mammary Gland Development. Int J Mol Sci 2022; 23:ijms231911680. [PMID: 36232979 PMCID: PMC9569684 DOI: 10.3390/ijms231911680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Super-enhancers are large clusters of enhancers critical for cell-type-specific development. In a previous study, 440 mammary-specific super-enhancers, highly enriched for an active enhancer mark H3K27ac; a mediator MED1; and the mammary-enriched transcription factors ELF5, NFIB, STAT5A, and GR, were identified in the genome of the mammary epithelium of lactating mice. However, the triggering mechanism for mammary-specific super-enhancers and the molecular interactions between key transcription factors have not been clearly elucidated. In this study, we investigated in vivo protein-protein interactions between major transcription factors that activate mammary-specific super-enhancers. In mammary epithelial cells, ELF5 strongly interacted with NFIB while weakly interacting with STAT5A, and it showed modest interactions with MED1 and GR, a pattern unlike that in non-mammary cells. We further investigated the role of key transcription factors in the initial activation of the mammary-specific Wap super-enhancer, using CRISPR-Cas9 genome editing to introduce single or combined mutations at transcription factor binding sites in the pioneer enhancer of the Wap super-enhancer in mice. ELF5 and STAT5A played key roles in igniting Wap super-enhancer activity, but an intact transcription factor complex was required for the full function of the super-enhancer. Our study demonstrates that mammary-enriched transcription factors within a protein complex interact with different intensities and synergize to activate the Wap super-enhancer. These findings provide an important framework for understanding the regulation of cell-type-specific development.
Collapse
|
47
|
Abstract
Inflammation is a biological process that dynamically alters the surrounding microenvironment, including participating immune cells. As a well-protected organ surrounded by specialized barriers and with immune privilege properties, the central nervous system (CNS) tightly regulates immune responses. Yet in neuroinflammatory conditions, pathogenic immunity can disrupt CNS structure and function. T cells in particular play a key role in promoting and restricting neuroinflammatory responses, while the inflamed CNS microenvironment can influence and reshape T cell function and identity. Still, the contraction of aberrant T cell responses within the CNS is not well understood. Using autoimmunity as a model, here we address the contribution of CD4 T helper (Th) cell subsets in promoting neuropathology and disease. To address the mechanisms antagonizing neuroinflammation, we focus on the control of the immune response by regulatory T cells (Tregs) and describe the counteracting processes that preserve their identity under inflammatory challenges. Finally, given the influence of the local microenvironment on immune regulation, we address how CNS-intrinsic signals reshape T cell function to mitigate abnormal immune T cell responses.
Collapse
Affiliation(s)
- Nail Benallegue
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France
| | - Hania Kebir
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jorge I. Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
48
|
Chi X, Jin W, Zhao X, Xie T, Shao J, Bai X, Jiang Y, Wang X, Dong C. RORγt expression in mature T H17 cells safeguards their lineage specification by inhibiting conversion to T H2 cells. SCIENCE ADVANCES 2022; 8:eabn7774. [PMID: 36026450 PMCID: PMC9417185 DOI: 10.1126/sciadv.abn7774] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 07/13/2022] [Indexed: 05/31/2023]
Abstract
RORγt is the lineage-specific transcription factor for T helper 17 (TH17) cells and an attractive drug target for treating TH17-associated diseases. Although the critical role of RORγt in early TH17 cell differentiation has been well recognized, its function in mature TH17 cell maintenance remains largely unknown. Here, we show that genetic deletion of Rorc in mature TH17 cells inhibited their pathogenic functions. Mechanistically, loss of RORγt led to a closed chromatin configuration at key TH17-specific gene loci, particularly at the "super-enhancer" regions. Unexpectedly, RORγt directly bound and inhibited Il4 transcription, whereas pharmaceutically or genetically targeting RORγt caused spontaneous conversion of TH17 cells to TH2-like cells in vitro and in vivo. Our results thus reveal dual crucial functions of RORγt in effector TH17 cells in maintaining TH17 cell program and constraining TH2 cell conversion, offering previously unidenified considerations in therapeutic targeting of RORγt.
Collapse
Affiliation(s)
- Xinxin Chi
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
- School of Life Science, Tsinghua University, Beijing 100084, China
| | - Wei Jin
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Tian Xie
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
- School of Life Science, Tsinghua University, Beijing 100084, China
| | - Jing Shao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xue Bai
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yu Jiang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaohu Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai 200127, China
| |
Collapse
|
49
|
Raugh A, Allard D, Bettini M. Nature vs. nurture: FOXP3, genetics, and tissue environment shape Treg function. Front Immunol 2022; 13:911151. [PMID: 36032083 PMCID: PMC9411801 DOI: 10.3389/fimmu.2022.911151] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022] Open
Abstract
The importance of regulatory T cells (Tregs) in preventing autoimmunity has been well established; however, the precise alterations in Treg function in autoimmune individuals and how underlying genetic associations impact the development and function of Tregs is still not well understood. Polygenetic susceptibly is a key driving factor in the development of autoimmunity, and many of the pathways implicated in genetic association studies point to a potential alteration or defect in regulatory T cell function. In this review transcriptomic control of Treg development and function is highlighted with a focus on how these pathways are altered during autoimmunity. In combination, observations from autoimmune mouse models and human patients now provide insights into epigenetic control of Treg function and stability. How tissue microenvironment influences Treg function, lineage stability, and functional plasticity is also explored. In conclusion, the current efficacy and future direction of Treg-based therapies for Type 1 Diabetes and other autoimmune diseases is discussed. In total, this review examines Treg function with focuses on genetic, epigenetic, and environmental mechanisms and how Treg functions are altered within the context of autoimmunity.
Collapse
Affiliation(s)
- Arielle Raugh
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, TX, United States
| | - Denise Allard
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
| | - Maria Bettini
- Department of Pathology, Microbiology and Immunology, University of Utah, Salt Lake City, UT, United States
- *Correspondence: Maria Bettini,
| |
Collapse
|
50
|
Zhang Y, Tang M, Huang M, Xie J, Cheng J, Fu Y, Jiang D, Yu X, Li B. Dynamic enhancer transcription associates with reprogramming of immune genes during pattern triggered immunity in Arabidopsis. BMC Biol 2022; 20:165. [PMID: 35864475 PMCID: PMC9301868 DOI: 10.1186/s12915-022-01362-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Enhancers are cis-regulatory elements present in eukaryote genomes, which constitute indispensable determinants of gene regulation by governing the spatiotemporal and quantitative expression dynamics of target genes, and are involved in multiple life processes, for instance during development and disease states. The importance of enhancer activity has additionally been highlighted for immune responses in animals and plants; however, the dynamics of enhancer activities and molecular functions in plant innate immunity are largely unknown. Here, we investigated the involvement of distal enhancers in early innate immunity in Arabidopsis thaliana. RESULTS A group of putative distal enhancers producing low-abundance transcripts either unidirectionally or bidirectionally are identified. We show that enhancer transcripts are dynamically modulated in plant immunity triggered by microbe-associated molecular patterns and are strongly correlated with open chromatin, low levels of methylated DNA, and increases in RNA polymerase II targeting and acetylated histone marks. Dynamic enhancer transcription is correlated with target early immune gene expression patterns. Cis motifs that are bound by immune-related transcription factors, such as WRKYs and SARD1, are highly enriched within upregulated enhancers. Moreover, a subset of core pattern-induced enhancers are upregulated by multiple patterns from diverse pathogens. The expression dynamics of putative immunity-related enhancers and the importance of WRKY binding motifs for enhancer function were also validated. CONCLUSIONS Our study demonstrates the general occurrence of enhancer transcription in plants and provides novel information on the distal regulatory landscape during early plant innate immunity, providing new insights into immune gene regulation and ultimately improving the mechanistic understanding of the plant immune system.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Meng Tang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Mengling Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yanping Fu
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China.
| |
Collapse
|