1
|
Watanabe M, Miyamoto H, Okamoto K, Nakano K, Matsunari H, Kazuki K, Hasegawa K, Uchikura A, Takayanagi S, Umeyama K, Hiramuki Y, Kemter E, Klymuik N, Kurome M, Kessler B, Wolf E, Kazuki Y, Nagashima H. Phenotypic features of dystrophin gene knockout pigs harboring a human artificial chromosome containing the entire dystrophin gene. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:444-453. [PMID: 37588685 PMCID: PMC10425850 DOI: 10.1016/j.omtn.2023.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 07/20/2023] [Indexed: 08/18/2023]
Abstract
Mammalian artificial chromosomes have enabled the introduction of extremely large amounts of genetic information into animal cells in an autonomously replicating, nonintegrating format. However, the evaluation of human artificial chromosomes (HACs) as novel tools for curing intractable hereditary disorders has been hindered by the limited efficacy of the delivery system. We generated dystrophin gene knockout (DMD-KO) pigs harboring the HAC bearing the entire human DMD via a somatic cell cloning procedure (DYS-HAC-cloned pig). Restored human dystrophin expression was confirmed by immunofluorescence staining in the skeletal muscle of the DYS-HAC-cloned pigs. Viability at the first month postpartum of the DYS-HAC-cloned pigs, including motor function in the hind leg and serum creatinine kinase level, was improved significantly when compared with that in the original DMD-KO pigs. However, decrease in systemic retention of the DYS-HAC vector and limited production of the DMD protein might have caused severe respiratory impairment with general prostration by 3 months postpartum. The results demonstrate that the use of transchromosomic cloned pigs permitted a straightforward estimation of the efficacy of the DYS-HAC carried in affected tissues/organs in a large-animal disease model, providing novel insights into the therapeutic application of exogenous mammalian artificial chromosomes.
Collapse
Affiliation(s)
- Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Hitomaru Miyamoto
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Kazutoshi Okamoto
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Kazuaki Nakano
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Kanako Kazuki
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Koki Hasegawa
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Ayuko Uchikura
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Shuko Takayanagi
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Yosuke Hiramuki
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Nikolai Klymuik
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Mayuko Kurome
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Barbara Kessler
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Eckhard Wolf
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Yasuhiro Kazuki
- Department of Chromosome Biomedical Engineering, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Chromosome Engineering Research Group, The Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
2
|
Workman AM, Heaton MP, Vander Ley BL, Webster DA, Sherry L, Bostrom JR, Larson S, Kalbfleisch TS, Harhay GP, Jobman EE, Carlson DF, Sonstegard TS. First gene-edited calf with reduced susceptibility to a major viral pathogen. PNAS NEXUS 2023; 2:pgad125. [PMID: 37181049 PMCID: PMC10167990 DOI: 10.1093/pnasnexus/pgad125] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/03/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023]
Abstract
Bovine viral diarrhea virus (BVDV) is one of the most important viruses affecting the health and well-being of bovine species throughout the world. Here, we used CRISPR-mediated homology-directed repair and somatic cell nuclear transfer to produce a live calf with a six amino acid substitution in the BVDV binding domain of bovine CD46. The result was a gene-edited calf with dramatically reduced susceptibility to infection as measured by reduced clinical signs and the lack of viral infection in white blood cells. The edited calf has no off-target edits and appears normal and healthy at 20 months of age without obvious adverse effects from the on-target edit. This precision bred, proof-of-concept animal provides the first evidence that intentional genome alterations in the CD46 gene may reduce the burden of BVDV-associated diseases in cattle and is consistent with our stepwise, in vitro and ex vivo experiments with cell lines and matched fetal clones.
Collapse
Affiliation(s)
- Aspen M Workman
- US Meat Animal Research Center, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), 844 Road 313 Clay Center, NE 68933, USA
| | - Michael P Heaton
- US Meat Animal Research Center, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), 844 Road 313 Clay Center, NE 68933, USA
| | - Brian L Vander Ley
- Great Plains Veterinary Educational Center, University of Nebraska–Lincoln, 820 Road 313 Clay Center, NE 68933, USA
| | - Dennis A Webster
- Recombinetics Inc., 3388 Mike Collins Drive, Eagan, MN 55121, USA
| | - Luke Sherry
- Recombinetics Inc., 3388 Mike Collins Drive, Eagan, MN 55121, USA
| | | | - Sabreena Larson
- Acceligen Inc., 3388 Mike Collins Drive, Eagan, MN 55121, USA
| | - Theodore S Kalbfleisch
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, 1400 Nicholasville Rd Lexington, KY 40546, USA
| | - Gregory P Harhay
- US Meat Animal Research Center, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), 844 Road 313 Clay Center, NE 68933, USA
| | - Erin E Jobman
- Great Plains Veterinary Educational Center, University of Nebraska–Lincoln, 820 Road 313 Clay Center, NE 68933, USA
| | - Daniel F Carlson
- Recombinetics Inc., 3388 Mike Collins Drive, Eagan, MN 55121, USA
| | | |
Collapse
|
3
|
Moura MT. Cloning by SCNT: Integrating Technical and Biology-Driven Advances. Methods Mol Biol 2023; 2647:1-35. [PMID: 37041327 DOI: 10.1007/978-1-0716-3064-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Somatic cell nuclear transfer (SCNT) into enucleated oocytes initiates nuclear reprogramming of lineage-committed cells to totipotency. Pioneer SCNT work culminated with cloned amphibians from tadpoles, while technical and biology-driven advances led to cloned mammals from adult animals. Cloning technology has been addressing fundamental questions in biology, propagating desired genomes, and contributing to the generation of transgenic animals or patient-specific stem cells. Nonetheless, SCNT remains technically complex and cloning efficiency relatively low. Genome-wide technologies revealed barriers to nuclear reprogramming, such as persistent epigenetic marks of somatic origin and reprogramming resistant regions of the genome. To decipher the rare reprogramming events that are compatible with full-term cloned development, it will likely require technical advances for large-scale production of SCNT embryos alongside extensive profiling by single-cell multi-omics. Altogether, cloning by SCNT remains a versatile technology, while further advances should continuously refresh the excitement of its applications.
Collapse
Affiliation(s)
- Marcelo Tigre Moura
- Chemical Biology Graduate Program, Federal University of São Paulo - UNIFESP, Campus Diadema, Diadema - SP, Brazil
| |
Collapse
|
4
|
Yamashita MS, Melo EO. Animal Transgenesis and Cloning: Combined Development and Future Perspectives. Methods Mol Biol 2023; 2647:121-149. [PMID: 37041332 DOI: 10.1007/978-1-0716-3064-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The revolution in animal transgenesis began in 1981 and continues to become more efficient, cheaper, and faster to perform. New genome editing technologies, especially CRISPR-Cas9, are leading to a new era of genetically modified or edited organisms. Some researchers advocate this new era as the time of synthetic biology or re-engineering. Nonetheless, we are witnessing advances in high-throughput sequencing, artificial DNA synthesis, and design of artificial genomes at a fast pace. These advances in symbiosis with animal cloning by somatic cell nuclear transfer (SCNT) allow the development of improved livestock, animal models of human disease, and heterologous production of bioproducts for medical applications. In the context of genetic engineering, SCNT remains a useful technology to generate animals from genetically modified cells. This chapter addresses these fast-developing technologies driving this biotechnological revolution and their association with animal cloning technology.
Collapse
Affiliation(s)
- Melissa S Yamashita
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- Graduation Program in Animal Biology, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Eduardo O Melo
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil.
- Graduation Program in Biotechnology, University of Tocantins, Gurupi, Tocantins, Brazil.
| |
Collapse
|
5
|
Saied AA, Nascimento MSL, do Nascimento Rangel AH, Skowron K, Grudlewska‐Buda K, Dhama K, Shah J, Abdeen A, El‐Mayet FS, Ahmed H, Metwally AA. Transchromosomic bovines-derived broadly neutralizing antibodies as potent biotherapeutics to counter important emerging viral pathogens with a special focus on SARS-CoV-2, MERS-CoV, Ebola, Zika, HIV-1, and influenza A virus. J Med Virol 2022; 94:4599-4610. [PMID: 35655326 PMCID: PMC9347534 DOI: 10.1002/jmv.27907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
Abstract
Historically, passive immunotherapy is an approved approach for protecting and treating humans against various diseases when other alternative therapeutic options are unavailable. Human polyclonal antibodies (hpAbs) can be made from convalescent human donor serum, although it is considered limited due to pandemics and the urgent requirement. Additionally, polyclonal antibodies (pAbs) could be generated from animals, but they may cause severe immunoreactivity and, once "humanized," may have lower neutralization efficiency. Transchromosomic bovines (TcBs) have been developed to address these concerns by creating robust neutralizing hpAbs, which are useful in preventing and/or curing human infections in response to hyperimmunization with vaccines holding adjuvants and/or immune stimulators over an extensive period. Unlike other animal-derived pAbs, potent hpAbs could be promptly produced from TcB in large amounts to assist against an outbreak scenario. Some of these highly efficacious TcB-derived antibodies have already neutralized and blocked diseases in clinical studies. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has numerous variants classified into variants of concern (VOCs), variants of interest (VOIs), and variants under monitoring. Although these variants possess different mutations, such as N501Y, E484K, K417N, K417T, L452R, T478K, and P681R, SAB-185 has shown broad neutralizing activity against VOCs, such as Alpha, Beta, Gamma, Delta, and Omicron variants, and VOIs, such as Epsilon, Iota, Kappa, and Lambda variants. This article highlights recent developments in the field of bovine-derived biotherapeutics, which are seen as a practical platform for developing safe and effective antivirals with broad activity, particularly considering emerging viral infections such as SARS-CoV-2, Ebola, Middle East respiratory syndrome coronavirus, Zika, human immunodeficiency virus type 1, and influenza A virus. Antibodies in the bovine serum or colostrum, which have been proved to be more protective than their human counterparts, are also reviewed.
Collapse
Affiliation(s)
- AbdulRahman A. Saied
- National Food Safety Authority (NFSA)AswanEgypt
- Ministry of Tourism and AntiquitiesAswanEgypt
| | - Manuela Sales Lima Nascimento
- Department of Microbiology and Parasitology, Biosciences CenterFederal University of Rio Grande do NorteNatalRio Grande do NorteBrazil
| | | | - Krzysztof Skowron
- Department of Microbiology, Nicolaus Copernicus University in ToruńL. Rydygier Collegium Medicum in BydgoszczBydgoszczPoland
| | - Katarzyna Grudlewska‐Buda
- Department of Microbiology, Nicolaus Copernicus University in ToruńL. Rydygier Collegium Medicum in BydgoszczBydgoszczPoland
| | - Kuldeep Dhama
- Division of PathologyICAR‐Indian Veterinary Research Institute (IVRI)IzatnagarUttar PradeshIndia
| | - Jaffer Shah
- Medical Research CenterKateb UniversityKabulAfghanistan
- New York State Department of HealthNew York CityNew YorkUSA
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary MedicineBenha UniversityToukhEgypt
| | - Fouad S. El‐Mayet
- Department of Virology, Faculty of Veterinary MedicineBenha UniversityToukhEgypt
| | - Hassan Ahmed
- Department of Physiology, Faculty of Veterinary MedicineSouth Valley UniversityQenaEgypt
| | - Asmaa A. Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary MedicineAswan UniversityAswanEgypt
| |
Collapse
|
6
|
Use of Genome Editing Techniques to Produce Transgenic Farm Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1354:279-297. [PMID: 34807447 PMCID: PMC9810480 DOI: 10.1007/978-3-030-85686-1_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recombinant proteins are essential for the treatment and diagnosis of clinical human ailments. The availability and biological activity of recombinant proteins is heavily influenced by production platforms. Conventional production platforms such as yeast, bacteria, and mammalian cells have biological and economical challenges. Transgenic livestock species have been explored as an alternative production platform for recombinant proteins, predominantly through milk secretion; the strategy has been demonstrated to produce large quantities of biologically active proteins. The major limitation of utilizing livestock species as bioreactors has been efforts required to alter the genome of livestock. Advancements in the genome editing field have drastically improved the ability to genetically engineer livestock species. Specifically, genome editing tools such as the CRISPR/Cas9 system have lowered efforts required to generate genetically engineered livestock, thus minimizing restrictions on the type of genetic modification in livestock. In this review, we discuss characteristics of transgenic animal bioreactors and how the use of genome editing systems enhances design and availability of the animal models.
Collapse
|
7
|
Deykin AV, Shcheblykina OV, Povetka EE, Golubinskaya PA, Pokrovsky VM, Korokina LV, Vanchenko OA, Kuzubova EV, Trunov KS, Vasyutkin VV, Radchenko AI, Danilenko AP, Stepenko JV, Kochkarova IS, Belyaeva VS, Yakushev VI. Genetically modified animals for use in biopharmacology: from research to production. RESEARCH RESULTS IN PHARMACOLOGY 2021. [DOI: 10.3897/rrpharmacology.7.76685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: In this review, the analysis of technologies for obtaining biologically active proteins from various sources is carried out, and the comparative analysis of technologies for creating producers of biologically active proteins is presented. Special attention is paid to genetically modified animals as bioreactors for the pharmaceutical industry of a new type. The necessity of improving the technology of development transgenic rabbit producers and creating a platform solution for the production of biological products is substantiated.
The advantages of using TrB for the production of recombinant proteins: The main advantages of using TrB are the low cost of obtaining valuable complex therapeutic human proteins in readily accessible fluids, their greater safety relative to proteins isolated directly from human blood, and the greater safety of the activity of the native protein.
The advantages of the mammary gland as a system for the expression of recombinant proteins: The mammary gland is the organ of choice for the expression of valuable recombinant proteins because milk is easy to collect in large volumes.
Methods for obtaining transgenic animals: The modern understanding of the regulation of gene expression and the discovery of new tools for gene editing can increase the efficiency of creating bioreactors for animals and help to obtain high concentrations of the target protein.
The advantages of using rabbits as bioreactors producing recombinant proteins in milk: The rabbit is a relatively small animal with a short duration of gestation, puberty and optimal size, capable of producing up to 5 liters of milk per year per female, receiving up to 300 grams of the target protein.
Collapse
|
8
|
Saied AA, Metwally AA, Mohamed HMA, Haridy MAM. The contribution of bovines to human health against viral infections. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46999-47023. [PMID: 34272669 PMCID: PMC8284698 DOI: 10.1007/s11356-021-14941-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/12/2021] [Indexed: 04/12/2023]
Abstract
In the last 40 years, novel viruses have evolved at a much faster pace than other pathogens. Viral diseases pose a significant threat to public health around the world. Bovines have a longstanding history of significant contributions to human nutrition, agricultural, industrial purposes, medical research, drug and vaccine development, and livelihood. The life cycle, genomic structures, viral proteins, and pathophysiology of bovine viruses studied in vitro paved the way for understanding the human counterparts. Calf model has been used for testing vaccines against RSV, papillomavirus vaccines and anti-HCV agents were principally developed after using the BPV and BVDV model, respectively. Some bovine viruses-based vaccines (BPIV-3 and bovine rotaviruses) were successfully developed, clinically tried, and commercially produced. Cows, immunized with HIV envelope glycoprotein, produced effective broadly neutralizing antibodies in their serum and colostrum against HIV. Here, we have summarized a few examples of human viral infections for which the use of bovines has contributed to the acquisition of new knowledge to improve human health against viral infections covering the convergence between some human and bovine viruses and using bovines as disease models. Additionally, the production of vaccines and drugs, bovine-based products were covered, and the precautions in dealing with bovines and bovine-based materials.
Collapse
Affiliation(s)
- AbdulRahman A Saied
- Department of Food Establishments Licensing (Aswan Branch), National Food Safety Authority (NFSA), Aswan, 81511, Egypt.
- Touristic Activities and Interior Offices Sector (Aswan Office), Ministry of Tourism and Antiquities, Aswan, 81511, Egypt.
| | - Asmaa A Metwally
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Aswan University, Aswan, 81511, Egypt
| | - Hams M A Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mohie A M Haridy
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
9
|
Kazuki Y, Uno N, Abe S, Kajitani N, Kazuki K, Yakura Y, Sawada C, Takata S, Sugawara M, Nagashima Y, Okada A, Hiratsuka M, Osaki M, Ferrari G, Tedesco FS, Nishikawa S, Fukumoto K, Takayanagi SI, Kunisato A, Kaneko S, Oshimura M, Tomizuka K. Engineering of human induced pluripotent stem cells via human artificial chromosome vectors for cell therapy and disease modeling. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:629-639. [PMID: 33552683 PMCID: PMC7819819 DOI: 10.1016/j.omtn.2020.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/11/2020] [Indexed: 02/04/2023]
Abstract
Genetic engineering of induced pluripotent stem cells (iPSCs) holds great promise for gene and cell therapy as well as drug discovery. However, there are potential concerns regarding the safety and control of gene expression using conventional vectors such as viruses and plasmids. Although human artificial chromosome (HAC) vectors have several advantages as a gene delivery vector, including stable episomal maintenance and the ability to carry large gene inserts, the full potential of HAC transfer into iPSCs still needs to be explored. Here, we provide evidence of a HAC transfer into human iPSCs by microcell-mediated chromosome transfer via measles virus envelope proteins for various applications, including gene and cell therapy, establishment of versatile human iPSCs capable of gene loading and differentiation into T cells, and disease modeling for aneuploidy syndrome. Thus, engineering of human iPSCs via desired HAC vectors is expected to be widely applied in biomedical research.
Collapse
Affiliation(s)
- Yasuhiro Kazuki
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Narumi Uno
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
- Laboratory of Bioengineering, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Satoshi Abe
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Naoyo Kajitani
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Kanako Kazuki
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Yuwna Yakura
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Chiaki Sawada
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Shuta Takata
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Masaki Sugawara
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Yuichi Nagashima
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Akane Okada
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Masaharu Hiratsuka
- Division of Genome and Cellular Functions, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Mitsuhiko Osaki
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Giulia Ferrari
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
- Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- The Francis Crick Institute, London NW1 1AT, UK
| | - Satoshi Nishikawa
- Regenerative Medicine Research Laboratories, Research Functions Unit, R&D Division, Kyowa Kirin, Co., Ltd. 3-6-6, Asahi-machi, Machida-shi, Tokyo 194-8533, Japan
| | - Ken Fukumoto
- Cell Therapy Project, R&D Division, Kirin Holdings, Co., Ltd. 1-13-5, Fukuura Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| | - Shin-ichiro Takayanagi
- Cell Therapy Project, R&D Division, Kirin Holdings, Co., Ltd. 1-13-5, Fukuura Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| | - Atsushi Kunisato
- Project Planning Section, Kirin Holdings, Co., Ltd., 4-10-2 Nakano, Nakano-ku, Tokyo 164-0001 Japan
| | - Shin Kaneko
- Shin Kaneko Laboratory, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Kazuma Tomizuka
- Laboratory of Bioengineering, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
10
|
Centromere identity and function put to use: construction and transfer of mammalian artificial chromosomes to animal models. Essays Biochem 2021; 64:185-192. [PMID: 32501473 DOI: 10.1042/ebc20190071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/25/2022]
Abstract
Mammalian artificial chromosomes (MACs) are widely used as gene expression vectors and have various advantages over conventional expression vectors. We review and discuss breakthroughs in MAC construction, initiation of functional centromeres allowing their faithful inheritance, and transfer from cell culture to animal model systems. These advances have contributed to advancements in synthetic biology, biomedical research, and applications in industry and in the clinic.
Collapse
|
11
|
Transgenic Animals for the Generation of Human Antibodies. LEARNING MATERIALS IN BIOSCIENCES 2021. [DOI: 10.1007/978-3-030-54630-4_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Navarro M, Soto DA, Pinzon CA, Wu J, Ross PJ. Livestock pluripotency is finally captured in vitro. Reprod Fertil Dev 2020; 32:11-39. [PMID: 32188555 DOI: 10.1071/rd19272] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pluripotent stem cells (PSCs) have demonstrated great utility in improving our understanding of mammalian development and continue to revolutionise regenerative medicine. Thanks to the improved understanding of pluripotency in mice and humans, it has recently become feasible to generate stable livestock PSCs. Although it is unlikely that livestock PSCs will be used for similar applications as their murine and human counterparts, new exciting applications that could greatly advance animal agriculture are being developed, including the use of PSCs for complex genome editing, cellular agriculture, gamete generation and invitro breeding schemes.
Collapse
Affiliation(s)
- Micaela Navarro
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA
| | - Delia A Soto
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA
| | - Carlos A Pinzon
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Pablo J Ross
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA; and Corresponding author.
| |
Collapse
|
13
|
Human Alphoid tetO Artificial Chromosome as a Gene Therapy Vector for the Developing Hemophilia A Model in Mice. Cells 2020; 9:cells9040879. [PMID: 32260189 PMCID: PMC7226776 DOI: 10.3390/cells9040879] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 01/17/2023] Open
Abstract
Human artificial chromosomes (HACs), including the de novo synthesized alphoidtetO-HAC, are a powerful tool for introducing genes of interest into eukaryotic cells. HACs are mitotically stable, non-integrative episomal units that have a large transgene insertion capacity and allow efficient and stable transgene expression. Previously, we have shown that the alphoidtetO-HAC vector does not interfere with the pluripotent state and provides stable transgene expression in human induced pluripotent cells (iPSCs) and mouse embryonic stem cells (ESCs). In this study, we have elaborated on a mouse model of ex vivo iPSC- and HAC-based treatment of hemophilia A monogenic disease. iPSCs were developed from FVIIIY/− mutant mice fibroblasts and FVIII cDNA, driven by a ubiquitous promoter, was introduced into the alphoidtetO-HAC in hamster CHO cells. Subsequently, the therapeutic alphoidtetO-HAC-FVIII was transferred into the FVIIIY/– iPSCs via the retro-microcell-mediated chromosome transfer method. The therapeutic HAC was maintained as an episomal non-integrative vector in the mouse iPSCs, showing a constitutive FVIII expression. This study is the first step towards treatment development for hemophilia A monogenic disease with the use of a new generation of the synthetic chromosome vector—the alphoidtetO-HAC.
Collapse
|
14
|
Sinenko SA, Ponomartsev SV, Tomilin AN. Human artificial chromosomes for pluripotent stem cell-based tissue replacement therapy. Exp Cell Res 2020; 389:111882. [DOI: 10.1016/j.yexcr.2020.111882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 02/08/2023]
|
15
|
Moriwaki T, Abe S, Oshimura M, Kazuki Y. Transchromosomic technology for genomically humanized animals. Exp Cell Res 2020; 390:111914. [PMID: 32142854 DOI: 10.1016/j.yexcr.2020.111914] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/16/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
"Genomically" humanized animals are invaluable tools for generating human disease models and for biomedical research. Humanized animal models have generally been developed via conventional transgenic technologies; however, conventional gene delivery vectors such as viruses, plasmids, bacterial artificial chromosomes, P1 phase-derived artificial chromosomes, and yeast artificial chromosomes have limitations for transgenic animal creation as their loading gene capacity is restricted, and the expression of transgenes is unstable. Transchromosomic (Tc) techniques using mammalian artificial chromosomes, including human chromosome fragments, human artificial chromosomes, and mouse artificial chromosomes, have overcome these limitations. These tools can carry multiple genes or Mb-sized genomic loci and their associated regulatory elements, which has facilitated the creation of more useful and complex transgenic models for human disease, drug development, and humanized animal research. This review describes the history of Tc animal development, the applications of Tc animals, and future prospects.
Collapse
Affiliation(s)
- Takashi Moriwaki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Satoshi Abe
- Trans Chromosomics, Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Mitsuo Oshimura
- Trans Chromosomics, Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan; Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Yasuhiro Kazuki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan; Chromosome Engineering Research Center (CERC), Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| |
Collapse
|
16
|
Hyder I, Eghbalsaied S, Kues WA. Systematic optimization of square-wave electroporation conditions for bovine primary fibroblasts. BMC Mol Cell Biol 2020; 21:9. [PMID: 32111153 PMCID: PMC7049184 DOI: 10.1186/s12860-020-00254-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene transfer by electroporation is an established method for the non-viral mediated transfection of mammalian cells. Primary cells pose a particular challenge for electroporation-mediated gene transfer, since they are more vulnerable than immortalized cells, and have a limited proliferative capacity. Improving the gene transfer by using square wave electroporation in difficult to transfect cells, like bovine fetal fibroblasts, is a prerequisite for transgenic and further downstream experiments. RESULTS Here, bovine fetal fibroblasts were used for square-wave electroporation experiments in which the following parameters were systematically tested: electroporation buffer, electroporation temperature, pulse voltage, pulse duration, pulse number, cuvette type and plasmid DNA amount. For the experiments a commercially available square-wave generator was applied. Post electroporation, the bovine fetal fibroblasts were observed after 24 h for viability and reporter expression. The best results were obtained with a single 10 millisecond square-wave pulse of 400 V using 10 μg supercoiled plasmid DNA and 0.3 × 106 cells in 100 μl of Opti-MEM medium in 4 mm cuvettes. Importantly, the electroporation at room temperature was considerably better than with pre-cooled conditions. CONCLUSIONS The optimized electroporation conditions will be relevant for gene transfer experiments in bovine fetal fibroblasts to obtain genetically engineered donor cells for somatic cell nuclear transfer and for reprogramming experiments in this species.
Collapse
Affiliation(s)
- Iqbal Hyder
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, 31535, Neustadt, Germany.,Department of Veterinary Physiology, NTR College of Veterinary Science, Gannavaram, India
| | - Shahin Eghbalsaied
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, 31535, Neustadt, Germany.,Transgenesis Center of Excellence, Isfahan (Khorasgan) branch, Islamic Azad University, Isfahan, Iran
| | - Wilfried A Kues
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, 31535, Neustadt, Germany.
| |
Collapse
|
17
|
Current advances in microcell-mediated chromosome transfer technology and its applications. Exp Cell Res 2020; 390:111915. [PMID: 32092294 DOI: 10.1016/j.yexcr.2020.111915] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/06/2020] [Accepted: 02/19/2020] [Indexed: 11/22/2022]
Abstract
Chromosomes and chromosomal gene delivery vectors, human/mouse artificial chromosomes (HACs/MACs), can introduce megabase-order DNA sequences into target cells and are used for applications including gene mapping, gene expression control, gene/cell therapy, and the development of humanized animals and animal models of human disease. Microcell-mediated chromosome transfer (MMCT), which enables chromosome transfer from donor cells to target cells, is a key technology for these applications. In this review, we summarize the principles of gene transfer with HACs/MACs; their engineering, characteristics, and utility; and recent advances in the chromosome transfer technology.
Collapse
|
18
|
Suva LJ, Westhusin ME, Long CR, Gaddy D. Engineering bone phenotypes in domestic animals: Unique resources for enhancing musculoskeletal research. Bone 2020; 130:115119. [PMID: 31712131 PMCID: PMC8805042 DOI: 10.1016/j.bone.2019.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College Station, TX, 77843, United States.
| | - Mark E Westhusin
- Department of Veterinary Physiology and Pharmacology, College Station, TX, 77843, United States
| | - Charles R Long
- Department of Veterinary Physiology and Pharmacology, College Station, TX, 77843, United States
| | - Dana Gaddy
- Department of Veterinary Integrative Biosciences Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
19
|
Fuentes S, Ravichandran S, Khurana S. Antibody Repertoire of Human Polyclonal Antibodies Against Ebola Virus Glycoprotein Generated After Deoxyribonucleic Acid and Protein Vaccination of Transchromosomal Bovines. J Infect Dis 2019; 218:S597-S602. [PMID: 29939294 PMCID: PMC7107430 DOI: 10.1093/infdis/jiy325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Several Ebola vaccines and therapeutics are under clinical development. However, limited knowledge exists on the quality of antibody response generated by different Ebola vaccines. In this study, antibody repertoire induced by vaccination of transchromosomal bovine (TcB) with Ebola virus (EBOV) glycoprotein ([GP]; recombinant GP [rGP]) encoded by either deoxyribonucleic acid (DNA) or nanoparticle-based vaccine platform was analyzed using EBOV genome fragment phage display library and surface plasmon resonance (SPR)-based real-time kinetics assay to measure antibody affinity maturation to both native and partially denatured Ebola GP as well as GP containing the receptor binding domain but lacking the mucin-like domain. Immunoglobulin (IgG) obtained from rGP nanoparticle-vaccinated TcB demonstrated ~4-fold higher binding affinity compared with DNA-vaccinated TcB-induced IgG against the native rGP’s. The rGP nanoparticle vaccine generated a more robust and diverse antibody immune response to the native EBOV-GP compared with the DNA vaccine, which may explain the protective efficacy observed for these antibody preparations.
Collapse
Affiliation(s)
- Sandra Fuentes
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Supriya Ravichandran
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
20
|
Wu H, Fan Z, Brandsrud M, Meng Q, Bobbitt M, Regouski M, Stott R, Sweat A, Crabtree J, Hogan RJ, Tripp RA, Wang Z, Polejaeva IA, Sullivan EJ. Generation of H7N9-specific human polyclonal antibodies from a transchromosomic goat (caprine) system. Sci Rep 2019; 9:366. [PMID: 30675003 PMCID: PMC6344498 DOI: 10.1038/s41598-018-36961-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/23/2018] [Indexed: 01/23/2023] Open
Abstract
To address the unmet needs for human polyclonal antibodies both as therapeutics and diagnostic reagents, building upon our previously established transchromosomic (Tc) cattle platform, we report herein the development of a Tc goat system expressing human polyclonal antibodies in their sera. In the Tc goat system, a human artificial chromosome (HAC) comprising the entire human immunoglobulin (Ig) gene repertoire in the germline configuration was introduced into the genetic makeup of the domestic goat. We achieved this by transferring the HAC into goat fetal fibroblast cells followed by somatic cell nuclear transfer for Tc goat production. Gene and protein expression analyses in the peripheral blood mononuclear cells (PBMC) and the sera, respectively, of Tc caprine demonstrated the successful expression of human Ig genes and antibodies. Furthermore, immunization of Tc caprine with inactivated influenza A (H7N9) viruses followed by H7N9 Hemagglutinin 1 (HA1) boosting elicited human antibodies with high neutralizing activities against H7N9 viruses in vitro. As a small ungulate, Tc caprine offers the advantages of low cost and quick establishment of herds, therefore complementing the Tc cattle platform in responses to a range of medical needs and diagnostic applications where small volumes of human antibody products are needed.
Collapse
Affiliation(s)
- Hua Wu
- SAB Biotherapeutics, Sioux Falls, SD, 57104, USA.,SAB Capra, LLC, Salt Lake City, UT, 84101, USA
| | - Zhiqiang Fan
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | | | - Qinggang Meng
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | | | - Misha Regouski
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | - Rusty Stott
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | - Alexis Sweat
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | - Jackelyn Crabtree
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Robert J Hogan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Zhongde Wang
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA.
| | - Irina A Polejaeva
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA.
| | - Eddie J Sullivan
- SAB Biotherapeutics, Sioux Falls, SD, 57104, USA. .,SAB Capra, LLC, Salt Lake City, UT, 84101, USA.
| |
Collapse
|
21
|
Sinenko SA, Skvortsova EV, Liskovykh MA, Ponomartsev SV, Kuzmin AA, Khudiakov AA, Malashicheva AB, Alenina N, Larionov V, Kouprina N, Tomilin AN. Transfer of Synthetic Human Chromosome into Human Induced Pluripotent Stem Cells for Biomedical Applications. Cells 2018; 7:cells7120261. [PMID: 30544831 PMCID: PMC6316689 DOI: 10.3390/cells7120261] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 12/27/2022] Open
Abstract
AlphoidtetO-type human artificial chromosome (HAC) has been recently synthetized as a novel class of gene delivery vectors for induced pluripotent stem cell (iPSC)-based tissue replacement therapeutic approach. This HAC vector was designed to deliver copies of genes into patients with genetic diseases caused by the loss of a particular gene function. The alphoidtetO-HAC vector has been successfully transferred into murine embryonic stem cells (ESCs) and maintained stably as an independent chromosome during the proliferation and differentiation of these cells. Human ESCs and iPSCs have significant differences in culturing conditions and pluripotency state in comparison with the murine naïve-type ESCs and iPSCs. To date, transferring alphoidtetO-HAC vector into human iPSCs (hiPSCs) remains a challenging task. In this study, we performed the microcell-mediated chromosome transfer (MMCT) of alphoidtetO-HAC expressing the green fluorescent protein into newly generated hiPSCs. We used a recently modified MMCT method that employs an envelope protein of amphotropic murine leukemia virus as a targeting cell fusion agent. Our data provide evidence that a totally artificial vector, alphoidtetO-HAC, can be transferred and maintained in human iPSCs as an independent autonomous chromosome without affecting pluripotent properties of the cells. These data also open new perspectives for implementing alphoidtetO-HAC as a gene therapy tool in future biomedical applications.
Collapse
Affiliation(s)
- Sergey A Sinenko
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St-Petersburg 194064, Russia.
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Orlova Roscha 1, Gatchina 188300, Russia.
| | - Elena V Skvortsova
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St-Petersburg 194064, Russia.
| | - Mikhail A Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Sergey V Ponomartsev
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St-Petersburg 194064, Russia.
| | - Andrey A Kuzmin
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St-Petersburg 194064, Russia.
| | - Aleksandr A Khudiakov
- Almazov National Medical Research Centre, 2 Akkuratova Str., St-Petersburg 197341, Russia.
| | - Anna B Malashicheva
- Almazov National Medical Research Centre, 2 Akkuratova Str., St-Petersburg 197341, Russia.
| | - Natalia Alenina
- Max-Delbruck Center for Molecular Medicine, 10 Robert-Rössle-Straße, 13125 Berlin, Germany.
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Alexey N Tomilin
- Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St-Petersburg 194064, Russia.
- Institute of Translational Biomedicine, St-Petersburg State University, 7-9, Universitetskaya nab., St-Petersburg 199034, Russia.
| |
Collapse
|
22
|
Caetano-Anolles K, Kim K, Kwak W, Sung S, Kim H, Choi BH, Lim D. Genome sequencing and protein domain annotations of Korean Hanwoo cattle identify Hanwoo-specific immunity-related and other novel genes. BMC Genet 2018; 19:37. [PMID: 29843617 PMCID: PMC5975384 DOI: 10.1186/s12863-018-0623-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/14/2018] [Indexed: 12/30/2022] Open
Abstract
Background Identification of genetic mechanisms and idiosyncrasies at the breed-level can provide valuable information for potential use in evolutionary studies, medical applications, and breeding of selective traits. Here, we analyzed genomic data collected from 136 Korean Native cattle, known as Hanwoo, using advanced statistical methods. Results Results revealed Hanwoo-specific protein domains which were largely characterized by immunoglobulin function. Furthermore, domain interactions of novel Hanwoo-specific genes reveal additional links to immunity. Novel Hanwoo-specific genes linked to muscle and other functions were identified, including protein domains with functions related to energy, fat storage, and muscle function that may provide insight into the mechanisms behind Hanwoo cattle’s uniquely high percentage of intramuscular fat and fat marbling. Conclusion The identification of Hanwoo-specific genes linked to immunity are potentially useful for future medical research and selective breeding. The significant genomic variations identified here can crucially identify genetic novelties that are arising from useful adaptations. These results will allow future researchers to compare and classify breeds, identify important genetic markers, and develop breeding strategies to further improve significant traits. Electronic supplementary material The online version of this article (10.1186/s12863-018-0623-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kelsey Caetano-Anolles
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Kwondo Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak St. 599, Kwan-ak Gu, Seoul, 151-741, Republic of Korea
| | - Woori Kwak
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak St. 599, Kwan-ak Gu, Seoul, 151-741, Republic of Korea.,CHO&KIM genomics, Main Bldg. #514, SNU Research Park, Seoul National University Mt.4-2, NakSeoungDae, Gwanakgu, Seoul, 151-919, Republic of Korea
| | - Samsun Sung
- CHO&KIM genomics, Main Bldg. #514, SNU Research Park, Seoul National University Mt.4-2, NakSeoungDae, Gwanakgu, Seoul, 151-919, Republic of Korea
| | - Heebal Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak St. 599, Kwan-ak Gu, Seoul, 151-741, Republic of Korea.,Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea.,CHO&KIM genomics, Main Bldg. #514, SNU Research Park, Seoul National University Mt.4-2, NakSeoungDae, Gwanakgu, Seoul, 151-919, Republic of Korea
| | - Bong-Hwan Choi
- Animal Genomics & Bioinformatics Division, National Institute of Animal Science, RDA, 77 Chuksan-gil, Kwonsun-gu, Suwon, 441-706, Republic of Korea
| | - Dajeong Lim
- Animal Genomics & Bioinformatics Division, National Institute of Animal Science, RDA, 77 Chuksan-gil, Kwonsun-gu, Suwon, 441-706, Republic of Korea.
| |
Collapse
|
23
|
Chaisri U, Chaicumpa W. Evolution of Therapeutic Antibodies, Influenza Virus Biology, Influenza, and Influenza Immunotherapy. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9747549. [PMID: 29998138 PMCID: PMC5994580 DOI: 10.1155/2018/9747549] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/19/2018] [Accepted: 03/31/2018] [Indexed: 02/07/2023]
Abstract
This narrative review article summarizes past and current technologies for generating antibodies for passive immunization/immunotherapy. Contemporary DNA and protein technologies have facilitated the development of engineered therapeutic monoclonal antibodies in a variety of formats according to the required effector functions. Chimeric, humanized, and human monoclonal antibodies to antigenic/epitopic myriads with less immunogenicity than animal-derived antibodies in human recipients can be produced in vitro. Immunotherapy with ready-to-use antibodies has gained wide acceptance as a powerful treatment against both infectious and noninfectious diseases. Influenza, a highly contagious disease, precipitates annual epidemics and occasional pandemics, resulting in high health and economic burden worldwide. Currently available drugs are becoming less and less effective against this rapidly mutating virus. Alternative treatment strategies are needed, particularly for individuals at high risk for severe morbidity. In a setting where vaccines are not yet protective or available, human antibodies that are broadly effective against various influenza subtypes could be highly efficacious in lowering morbidity and mortality and controlling unprecedented epidemic/pandemic. Prototypes of human single-chain antibodies to several conserved proteins of influenza virus with no Fc portion (hence, no ADE effect in recipients) are available. These antibodies have high potential as a novel, safe, and effective anti-influenza agent.
Collapse
Affiliation(s)
- Urai Chaisri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
24
|
Chen WC, Murawsky CM. Strategies for Generating Diverse Antibody Repertoires Using Transgenic Animals Expressing Human Antibodies. Front Immunol 2018; 9:460. [PMID: 29563917 PMCID: PMC5845867 DOI: 10.3389/fimmu.2018.00460] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/21/2018] [Indexed: 01/14/2023] Open
Abstract
Therapeutic molecules derived from antibodies have become a dominant class of drugs used to treat human disease. Increasingly, therapeutic antibodies are discovered using transgenic animal systems that have been engineered to express human antibodies. While the engineering details differ, these platforms share the ability to raise an immune response that is comprised of antibodies with fully human idiotypes. Although the predominant transgenic host species has been mouse, the genomes of rats, rabbits, chickens, and cows have also been modified to express human antibodies. The creation of transgenic animal platforms expressing human antibody repertoires has revolutionized therapeutic antibody drug discovery. The observation that the immune systems of these animals are able to recognize and respond to a wide range of therapeutically relevant human targets has led to a surge in antibody-derived drugs in current development. While the clinical success of fully human monoclonal antibodies derived from transgenic animals is well established, recent trends have seen increasingly stringent functional design goals and a shift in difficulty as the industry attempts to tackle the next generation of disease-associated targets. These challenges have been met with a number of novel approaches focused on the generation of large, high-quality, and diverse antibody repertoires. In this perspective, we describe some of the strategies and considerations we use for manipulating the immune systems of transgenic animal platforms (such as XenoMouse®) with a focus on maximizing the diversity of the primary response and steering the ensuing antibody repertoire toward a desired outcome.
Collapse
Affiliation(s)
- Weihsu C Chen
- Biologics Discovery, Department of Therapeutic Discovery, Amgen British Columbia Inc., Burnaby, BC, Canada
| | - Christopher M Murawsky
- Biologics Discovery, Department of Therapeutic Discovery, Amgen British Columbia Inc., Burnaby, BC, Canada
| |
Collapse
|
25
|
Saadeldin IM, Abdel-Aziz Swelum A, Alzahrani FA, Alowaimer AN. The current perspectives of dromedary camel stem cells research. Int J Vet Sci Med 2018; 6:S27-S30. [PMID: 30761317 PMCID: PMC6161867 DOI: 10.1016/j.ijvsm.2018.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/06/2018] [Indexed: 12/17/2022] Open
Abstract
Camels have cultural value in the Arab society and are considered one of the most important animals in the Arabian Peninsula and arid environments, due to the distinct characteristics of their meat and milk. Moreover, there is a great interest in camel racing and beauty shows. Therefore, treatment of elite animals, increasing the number of camels as well as genetic improvement is an essential demand. Because there are unique camels for milk production, meat, or in racing, the need to propagate genetically superior camels is urgent. Recent biotechnological approaches such as stem cells hold great promise for biomedical research, genetic engineering, and as a model for studying early mammalian developmental biology. Establishment of stem cells lines from camels would tremendously facilitate regenerative medicine for genetically superior camels, permit the gene targeting of the camel genome and the generation of genetically modified animal and be a mean for genome conservation for the elite breeds. In this mini-review, we show the current research, future horizons and potential applications for camel stem cells.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia.,Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia.,Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Faisal A Alzahrani
- Department of Biological Sciences, Rabigh College of Science and Arts, King Abdulaziz University, Rabigh Branch, Rabigh 21911, Saudi Arabia
| | - Abdullah N Alowaimer
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Uno N, Abe S, Oshimura M, Kazuki Y. Combinations of chromosome transfer and genome editing for the development of cell/animal models of human disease and humanized animal models. J Hum Genet 2017; 63:145-156. [PMID: 29180645 DOI: 10.1038/s10038-017-0378-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/03/2017] [Accepted: 10/11/2017] [Indexed: 11/09/2022]
Abstract
Chromosome transfer technology, including chromosome modification, enables the introduction of Mb-sized or multiple genes to desired cells or animals. This technology has allowed innovative developments to be made for models of human disease and humanized animals, including Down syndrome model mice and humanized transchromosomic (Tc) immunoglobulin mice. Genome editing techniques are developing rapidly, and permit modifications such as gene knockout and knockin to be performed in various cell lines and animals. This review summarizes chromosome transfer-related technologies and the combined technologies of chromosome transfer and genome editing mainly for the production of cell/animal models of human disease and humanized animal models. Specifically, these include: (1) chromosome modification with genome editing in Chinese hamster ovary cells and mouse A9 cells for efficient transfer to desired cell types; (2) single-nucleotide polymorphism modification in humanized Tc mice with genome editing; and (3) generation of a disease model of Down syndrome-associated hematopoiesis abnormalities by the transfer of human chromosome 21 to normal human embryonic stem cells and the induction of mutation(s) in the endogenous gene(s) with genome editing. These combinations of chromosome transfer and genome editing open up new avenues for drug development and therapy as well as for basic research.
Collapse
Affiliation(s)
- Narumi Uno
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.,Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Satoshi Abe
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.,Trans Chromosomics Inc., 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan. .,Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| |
Collapse
|
27
|
da Silva CG, Martins CF, Cardoso TC, da Cunha ER, Bessler HC, Martins GHL, Pivato I, Báo SN. Production of Bovine Embryos and Calves Cloned by Nuclear Transfer Using Mesenchymal Stem Cells from Amniotic Fluid and Adipose Tissue. Cell Reprogram 2016; 18:127-36. [PMID: 27055630 DOI: 10.1089/cell.2015.0064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The less differentiated the donor cells are used in nuclear transfer (NT), the more easily are they reprogrammed by the recipient cytoplasm. In this context, mesenchymal stem cells (MSCs) appear as an alternative to donor nuclei for NT. The amniotic fluid and adipose tissue are sources of MSCs that have not been tested for the production of cloned embryos in cattle. The objective of this study was to isolate, characterize, and use MSCs derived from amniotic fluid (MSC-AF) and adipose tissue (MSC-AT) to produce cloned calves. Isolation of MSC-AF was performed using in vivo ultrasound-guided transvaginal amniocentesis, and MSC-AT were isolated by explant culture. Cellular phenotypic and genotypic characterization by flow cytometry, immunohistochemistry, and RT-PCR were performed, as well as induction in different cell lineages. The NT was performed using MSC-AF and MSC-AT as nuclear donors. The mesenchymal markers of MSC were expressed in bovine MSC-AF and MSC-AT cultures, as evidenced by flow cytometry, immunohistochemistry, and RT-PCR. When induced, these cells differentiated into osteocytes, chondrocytes, and adipocytes. Embryo production was similar between the cell types, and two calves were born. The calf from MSC-AT was born healthy, and this fact opens a new possibility of using this type of cell to produce cloned cattle by NT.
Collapse
Affiliation(s)
| | - Carlos Frederico Martins
- 2 Laboratory of Animal Reproduction, Center for Technology of Zebu Dairy Breeds-CTZL , Embrapa Cerrados, Brasília, CEP 72668-900, Brazil
| | - Tereza Cristina Cardoso
- 3 Laboratory of Animal Virology and Cell Culture, UNESP-University of São Paulo State , Araçatuba, São Paulo, 16050-680, Brazil
| | - Elisa Ribeiro da Cunha
- 1 University of Brasília , Brasília, CEP 70919-970, Brazil .,2 Laboratory of Animal Reproduction, Center for Technology of Zebu Dairy Breeds-CTZL , Embrapa Cerrados, Brasília, CEP 72668-900, Brazil
| | - Heidi Christina Bessler
- 2 Laboratory of Animal Reproduction, Center for Technology of Zebu Dairy Breeds-CTZL , Embrapa Cerrados, Brasília, CEP 72668-900, Brazil
| | - George Henrique Lima Martins
- 2 Laboratory of Animal Reproduction, Center for Technology of Zebu Dairy Breeds-CTZL , Embrapa Cerrados, Brasília, CEP 72668-900, Brazil
| | - Ivo Pivato
- 1 University of Brasília , Brasília, CEP 70919-970, Brazil
| | - Sônia Nair Báo
- 1 University of Brasília , Brasília, CEP 70919-970, Brazil
| |
Collapse
|
28
|
Luke T, Wu H, Zhao J, Channappanavar R, Coleman CM, Jiao JA, Matsushita H, Liu Y, Postnikova EN, Ork BL, Glenn G, Flyer D, Defang G, Raviprakash K, Kochel T, Wang J, Nie W, Smith G, Hensley LE, Olinger GG, Kuhn JH, Holbrook MR, Johnson RF, Perlman S, Sullivan E, Frieman MB. Human polyclonal immunoglobulin G from transchromosomic bovines inhibits MERS-CoV in vivo. Sci Transl Med 2016; 8:326ra21. [PMID: 26888429 DOI: 10.1126/scitranslmed.aaf1061] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As of 13 November 2015, 1618 laboratory-confirmed human cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection, including 579 deaths, had been reported to the World Health Organization. No specific preventive or therapeutic agent of proven value against MERS-CoV is currently available. Public Health England and the International Severe Acute Respiratory and Emerging Infection Consortium identified passive immunotherapy with neutralizing antibodies as a treatment approach that warrants priority study. Two experimental MERS-CoV vaccines were used to vaccinate two groups of transchromosomic (Tc) bovines that were genetically modified to produce large quantities of fully human polyclonal immunoglobulin G (IgG) antibodies. Vaccination with a clade A γ-irradiated whole killed virion vaccine (Jordan strain) or a clade B spike protein nanoparticle vaccine (Al-Hasa strain) resulted in Tc bovine sera with high enzyme-linked immunosorbent assay (ELISA) and neutralizing antibody titers in vitro. Two purified Tc bovine human IgG immunoglobulins (Tc hIgG), SAB-300 (produced after Jordan strain vaccination) and SAB-301 (produced after Al-Hasa strain vaccination), also had high ELISA and neutralizing antibody titers without antibody-dependent enhancement in vitro. SAB-301 was selected for in vivo and preclinical studies. Administration of single doses of SAB-301 12 hours before or 24 and 48 hours after MERS-CoV infection (Erasmus Medical Center 2012 strain) of Ad5-hDPP4 receptor-transduced mice rapidly resulted in viral lung titers near or below the limit of detection. Tc bovines, combined with the ability to quickly produce Tc hIgG and develop in vitro assays and animal model(s), potentially offer a platform to rapidly produce a therapeutic to prevent and/or treat MERS-CoV infection and/or other emerging infectious diseases.
Collapse
Affiliation(s)
- Thomas Luke
- Viral and Rickettsial Diseases Department, Navy Medical Research Center, The Henry Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD 20910, USA.
| | - Hua Wu
- SAB Biotherapeutics Inc., Sioux Falls, SD 57104, USA
| | - Jincun Zhao
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA. State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | | | - Christopher M Coleman
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Jin-An Jiao
- SAB Biotherapeutics Inc., Sioux Falls, SD 57104, USA
| | | | - Ye Liu
- Novavax Inc., Gaithersburg, MD 20878, USA
| | - Elena N Postnikova
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Britini L Ork
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | | | | | - Gabriel Defang
- Department of Virology, Naval Medical Research Unit-3, Cairo FPO AP 09835, Egypt
| | | | - Tadeusz Kochel
- Viral and Rickettsial Diseases Department, Navy Medical Research Center, Silver Spring, MD 20910, USA.
| | - Jonathan Wang
- Thermo Fisher Scientific, South San Francisco, CA 94080, USA
| | - Wensheng Nie
- Thermo Fisher Scientific, South San Francisco, CA 94080, USA
| | - Gale Smith
- Novavax Inc., Gaithersburg, MD 20878, USA
| | - Lisa E Hensley
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Gene G Olinger
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Michael R Holbrook
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Reed F Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Stanley Perlman
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | | - Matthew B Frieman
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
29
|
Precise gene editing paves the way for derivation of Mannheimia haemolytica leukotoxin-resistant cattle. Proc Natl Acad Sci U S A 2016; 113:13186-13190. [PMID: 27799556 DOI: 10.1073/pnas.1613428113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Signal peptides of membrane proteins are cleaved by signal peptidase once the nascent proteins reach the endoplasmic reticulum. Previously, we reported that, contrary to the paradigm, the signal peptide of ruminant CD18, the β subunit of β2 integrins, is not cleaved and hence remains intact on mature CD18 molecules expressed on the surface of ruminant leukocytes. Leukotoxin secreted by Mannheimia (Pasteurella) haemolytica binds to the intact signal peptide and causes cytolysis of ruminant leukocytes, resulting in acute inflammation and lung tissue damage. We also demonstrated that site-directed mutagenesis leading to substitution of cleavage-inhibiting glutamine (Q), at amino acid position 5 upstream of the signal peptide cleavage site, with cleavage-inducing glycine (G) results in the cleavage of the signal peptide and abrogation of leukotoxin-induced cytolysis of target cells. In this proof-of-principle study, we used precise gene editing to induce Q(‒5)G substitution in both alleles of CD18 in bovine fetal fibroblast cells. The gene-edited fibroblasts were used for somatic nuclear transfer and cloning to produce a bovine fetus homozygous for the Q(‒5)G substitution. The leukocyte population of this engineered ruminant expressed CD18 without the signal peptide. More importantly, these leukocytes were absolutely resistant to leukotoxin-induced cytolysis. This report demonstrates the feasibility of developing lines of cattle genetically resistant to M. haemolytica-caused pneumonia, which inflicts an economic loss of over $1 billion to the US cattle industry alone.
Collapse
|
30
|
Chromosome transplantation as a novel approach for correcting complex genomic disorders. Oncotarget 2016; 6:35218-30. [PMID: 26485770 PMCID: PMC4742100 DOI: 10.18632/oncotarget.6143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/01/2015] [Indexed: 01/22/2023] Open
Abstract
Genomic disorders resulting from large rearrangements of the genome remain an important unsolved issue in gene therapy. Chromosome transplantation, defined as the perfect replacement of an endogenous chromosome with a homologous one, has the potential of curing this kind of disorders. Here we report the first successful case of chromosome transplantation by replacement of an endogenous X chromosome carrying a mutation in the Hprt gene with a normal one in mouse embryonic stem cells (ESCs), correcting the genetic defect. The defect was also corrected by replacing the Y chromosome with an X chromosome. Chromosome transplanted clones maintained in vitro and in vivo features of stemness and contributed to chimera formation. Genome integrity was confirmed by cytogenetic and molecular genome analysis. The approach here proposed, with some modifications, might be used to cure various disorders due to other X chromosome aberrations in induced pluripotent stem (iPS) cells derived from affected patients.
Collapse
|
31
|
Do L, Wittayarat M, Terazono T, Sato Y, Taniguchi M, Tanihara F, Takemoto T, Kazuki Y, Kazuki K, Oshimura M, Otoi T. Effects of duration of electric pulse on in vitro development of cloned cat embryos with human artificial chromosome vector. Reprod Domest Anim 2016; 51:1039-1043. [PMID: 27568550 DOI: 10.1111/rda.12766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/25/2016] [Indexed: 01/01/2023]
Abstract
The current applications for cat cloning include production of models for the study of human and animal diseases. This study was conducted to investigate the optimal fusion protocol on in vitro development of transgenic cloned cat embryos by comparing duration of electric pulse. Cat fibroblast cells containing a human artificial chromosome (HAC) vector were used as genetically modified nuclear donor cells. Couplets were fused and activated simultaneously with a single DC pulse of 3.0 kV/cm for either 30 or 60 μs. Low rates of fusion and embryo development to the blastocyst stage were observed in the reconstructed HAC-transchromosomic embryos, when the duration of fusion was prolonged to 60 μs. In contrast, the prolongation of electric pulse duration improved the embryo development and quality in the reconstructed control embryos without HAC vector. Our results suggested that the optimal parameters of electric pulses for fusion in cat somatic cell nuclear transfer vary among the types used for donor cells.
Collapse
Affiliation(s)
- Ltk Do
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan.,The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - M Wittayarat
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - T Terazono
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Y Sato
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - M Taniguchi
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - F Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - T Takemoto
- Fujii Memorial Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Y Kazuki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori, Japan.,Chromosome Engineering Research Center (CERC), Tottori University, Tottori, Japan
| | - K Kazuki
- Chromosome Engineering Research Center (CERC), Tottori University, Tottori, Japan
| | - M Oshimura
- Chromosome Engineering Research Center (CERC), Tottori University, Tottori, Japan
| | - T Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| |
Collapse
|
32
|
Suzuki T, Kazuki Y, Oshimura M, Hara T. Highly Efficient Transfer of Chromosomes to a Broad Range of Target Cells Using Chinese Hamster Ovary Cells Expressing Murine Leukemia Virus-Derived Envelope Proteins. PLoS One 2016; 11:e0157187. [PMID: 27271046 PMCID: PMC4896634 DOI: 10.1371/journal.pone.0157187] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/25/2016] [Indexed: 12/31/2022] Open
Abstract
Microcell-mediated chromosome transfer (MMCT) is an essential step for introducing chromosomes from donor cells to recipient cells. MMCT allows not only for genetic/epigenetic analysis of specific chromosomes, but also for utilization of human and mouse artificial chromosomes (HACs/MACs) as gene delivery vectors. Although the scientific demand for genome scale analyses is increasing, the poor transfer efficiency of the current method has hampered the application of chromosome engineering technology. Here, we developed a highly efficient chromosome transfer method, called retro-MMCT, which is based on Chinese hamster ovary cells expressing envelope proteins derived from ecotropic or amphotropic murine leukemia viruses. Using this method, we transferred MACs to NIH3T3 cells with 26.5 times greater efficiency than that obtained using the conventional MMCT method. Retro-MMCT was applicable to a variety of recipient cells, including embryonic stem cells. Moreover, retro-MMCT enabled efficient transfer of MAC to recipient cells derived from humans, monkeys, mice, rats, and rabbits. These results demonstrate the utility of retro-MMCT for the efficient transfer of chromosomes to various types of target cell.
Collapse
Affiliation(s)
- Teruhiko Suzuki
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- * E-mail:
| | - Yasuhiro Kazuki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Tottori, Japan
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, Tottori, Japan
| | - Takahiko Hara
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
33
|
Corti D, Kearns JD. Promises and pitfalls for recombinant oligoclonal antibodies-based therapeutics in cancer and infectious disease. Curr Opin Immunol 2016; 40:51-61. [PMID: 26995095 PMCID: PMC7127534 DOI: 10.1016/j.coi.2016.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 02/08/2023]
Abstract
Monoclonal antibodies (mAbs) have revolutionized the diagnosis and treatment of many human diseases and the application of combinations of mAbs has demonstrated improved therapeutic activity in both preclinical and clinical testing. Combinations of antibodies have several advantages such as the capacities to target multiple and mutating antigens in complex pathogens and to engage varied epitopes on multiple disease-related antigens (e.g. receptors) to overcome heterogeneity and plasticity. Oligoclonal antibodies are an emerging therapeutic format in which a novel antibody combination is developed as a single drug product. Here, we will provide historical context on the use of oligoclonal antibodies in oncology and infectious diseases and will highlight practical considerations related to their preclinical and clinical development programs.
Collapse
Affiliation(s)
| | - Jeffrey D Kearns
- Merrimack Pharmaceuticals, Inc., One Kendall Square, Suite B7201, Cambridge, MA 02139, USA.
| |
Collapse
|
34
|
One-step Multiplex Transgenesis via Sleeping Beauty Transposition in Cattle. Sci Rep 2016; 6:21953. [PMID: 26905416 PMCID: PMC4764937 DOI: 10.1038/srep21953] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/01/2016] [Indexed: 01/22/2023] Open
Abstract
Genetically modified cattle are important for developing new biomedical models and for an improved understanding of the pathophysiology of zoonotic diseases. However, genome editing and genetic engineering based on somatic cell nuclear transfer suffer from a low overall efficiency. Here, we established a highly efficient one-step multiplex gene transfer system into the bovine genome.
Collapse
|
35
|
Doran TJ, Cooper CA, Jenkins KA, Tizard MLV. Advances in genetic engineering of the avian genome: "Realising the promise". Transgenic Res 2016; 25:307-19. [PMID: 26820412 DOI: 10.1007/s11248-016-9926-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
Abstract
This review provides an historic perspective of the key steps from those reported at the 1st Transgenic Animal Research Conference in 1997 through to the very latest developments in avian transgenesis. Eighteen years later, on the occasion of the 10th conference in this series, we have seen breakthrough advances in the use of viral vectors and transposons to transform the germline via the direct manipulation of the chicken embryo, through to the establishment of PGC cultures allowing in vitro modification, expansion into populations to analyse the genetic modifications and then injection of these cells into embryos to create germline chimeras. We have now reached an unprecedented time in the history of chicken transgenic research where we have the technology to introduce precise, targeted modifications into the chicken genome, ranging from; new transgenes that provide improved phenotypes such as increased resilience to economically important diseases; the targeted disruption of immunoglobulin genes and replacement with human sequences to generate transgenic chickens that express "humanised" antibodies for biopharming; and the deletion of specific nucleotides to generate targeted gene knockout chickens for functional genomics. The impact of these advances is set to be realised through applications in chickens, and other bird species as models in scientific research, for novel biotechnology and to protect and improve agricultural productivity.
Collapse
Affiliation(s)
- Timothy J Doran
- Australian Animal Health Laboratory, CSIRO Health and Biosecurity, Private Bag 24, Geelong, VIC, 3220, Australia.
| | - Caitlin A Cooper
- Australian Animal Health Laboratory, CSIRO Health and Biosecurity, Private Bag 24, Geelong, VIC, 3220, Australia
| | - Kristie A Jenkins
- Australian Animal Health Laboratory, CSIRO Health and Biosecurity, Private Bag 24, Geelong, VIC, 3220, Australia
| | - Mark L V Tizard
- Australian Animal Health Laboratory, CSIRO Health and Biosecurity, Private Bag 24, Geelong, VIC, 3220, Australia
| |
Collapse
|
36
|
Abstract
Since the development of therapeutic antibodies the demand of recombinant human antibodies is steadily increasing. Traditionally, therapeutic antibodies were generated by immunization of rat or mice, the generation of hybridoma clones, cloning of the antibody genes and subsequent humanization and engineering of the lead candidates. In the last few years, techniques were developed that use transgenic animals with a human antibody gene repertoire. Here, modern recombinant DNA technologies can be combined with well established immunization and hybridoma technologies to generate already affinity maturated human antibodies. An alternative are in vitro technologies which enabled the generation of fully human antibodies from antibody gene libraries that even exceed the human antibody repertoire. Specific antibodies can be isolated from these libraries in a very short time and therefore reduce the development time of an antibody drug at a very early stage.In this review, we describe different technologies that are currently used for the in vitro and in vivo generation of human antibodies.
Collapse
|
37
|
Oshimura M, Uno N, Kazuki Y, Katoh M, Inoue T. A pathway from chromosome transfer to engineering resulting in human and mouse artificial chromosomes for a variety of applications to bio-medical challenges. Chromosome Res 2015; 23:111-33. [PMID: 25657031 PMCID: PMC4365188 DOI: 10.1007/s10577-014-9459-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microcell-mediated chromosome transfer (MMCT) is a technique to transfer a chromosome from defined donor cells into recipient cells and to manipulate chromosomes as gene delivery vectors and open a new avenue in somatic cell genetics. However, it is difficult to uncover the function of a single specific gene via the transfer of an entire chromosome or fragment, because each chromosome or fragment contains a set of numerous genes. Thus, alternative tools are human artificial chromosome (HAC) and mouse artificial chromosome (MAC) vectors, which can carry a gene or genes of interest. HACs/MACs have been generated mainly by either a "top-down approach" (engineered creation) or a "bottom-up approach" (de novo creation). HACs/MACs with one or more acceptor sites exhibit several characteristics required by an ideal gene delivery vector, including stable episomal maintenance and the capacity to carry large genomic loci plus their regulatory elements, thus allowing the physiological regulation of the introduced gene in a manner similar to that of native chromosomes. The MMCT technique is also applied for manipulating HACs and MACs in donor cells and delivering them to recipient cells. This review describes the lessons learned and prospects identified from studies on the construction of HACs and MACs, and their ability to drive exogenous gene expression in cultured cells and transgenic animals via MMCT. New avenues for a variety of applications to bio-medical challenges are also proposed.
Collapse
Affiliation(s)
- Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan,
| | | | | | | | | |
Collapse
|
38
|
Jagadeesan P, Bin Salem S. Transgenic and cloned animals in the food chain--are we prepared to tackle it? JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:2779-2782. [PMID: 25857482 DOI: 10.1002/jsfa.7205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/14/2015] [Accepted: 04/02/2015] [Indexed: 06/04/2023]
Abstract
Transgenic and cloned animal production for various purposes has been increasing rapidly in recent times. While the actual impact of these animals in the food chain is unknown, the significance of tracking and monitoring measures to curb accidental and or deliberate release has been discussed. Religious perspectives from different faiths and traditions have been presented. Although the concept of substantial equivalence satisfies the technical and nutritional requirements of these products when assessed against comparators, public opinion and religious concerns should also be considered by the regulators while developing policy regulations. In conclusion, measures to prevent real or perceived risks of transgenic and cloned animals in food production require global coordinated action. It is worthwhile to consider establishing effective tracking systems and analytical procedures as this will be a valuable tool if a global consensus is not reached on policy regulation.
Collapse
Affiliation(s)
- Premanandh Jagadeesan
- Microbiology and Molecular Biology Section, Quality and Conformity Council, Abu Dhabi, United Arab Emirates
| | - Samara Bin Salem
- Microbiology and Molecular Biology Section, Quality and Conformity Council, Abu Dhabi, United Arab Emirates
| |
Collapse
|
39
|
Matsushita H, Sano A, Wu H, Wang Z, Jiao JA, Kasinathan P, Sullivan EJ, Kuroiwa Y. Species-Specific Chromosome Engineering Greatly Improves Fully Human Polyclonal Antibody Production Profile in Cattle. PLoS One 2015; 10:e0130699. [PMID: 26107496 PMCID: PMC4479556 DOI: 10.1371/journal.pone.0130699] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/01/2015] [Indexed: 11/25/2022] Open
Abstract
Large-scale production of fully human IgG (hIgG) or human polyclonal antibodies (hpAbs) by transgenic animals could be useful for human therapy. However, production level of hpAbs in transgenic animals is generally very low, probably due to the fact that evolutionarily unique interspecies-incompatible genomic sequences between human and non-human host species may impede high production of fully hIgG in the non-human environment. To address this issue, we performed species-specific human artificial chromosome (HAC) engineering and tested these engineered HAC in cattle. Our previous study has demonstrated that site-specific genomic chimerization of pre-B cell receptor/B cell receptor (pre-BCR/BCR) components on HAC vectors significantly improves human IgG expression in cattle where the endogenous bovine immunoglobulin genes were knocked out. In this report, hIgG1 class switch regulatory elements were subjected to site-specific genomic chimerization on HAC vectors to further enhance hIgG expression and improve hIgG subclass distribution in cattle. These species-specific modifications in a chromosome scale resulted in much higher production levels of fully hIgG of up to 15 g/L in sera or plasma, the highest ever reported for a transgenic animal system. Transchromosomic (Tc) cattle containing engineered HAC vectors generated hpAbs with high titers against human-origin antigens following immunization. This study clearly demonstrates that species-specific sequence differences in pre-BCR/BCR components and IgG1 class switch regulatory elements between human and bovine are indeed functionally distinct across the two species, and therefore, are responsible for low production of fully hIgG in our early versions of Tc cattle. The high production levels of fully hIgG with hIgG1 subclass dominancy in a large farm animal species achieved here is an important milestone towards broad therapeutic applications of hpAbs.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal, Humanized/biosynthesis
- Antibodies, Monoclonal, Humanized/genetics
- Antibodies, Monoclonal, Humanized/immunology
- Antigens/chemistry
- Antigens/immunology
- Cattle
- Cell Line, Tumor
- Chickens
- Chromosome Mapping
- Chromosomes, Artificial, Human/chemistry
- Chromosomes, Artificial, Human/immunology
- Gene Knockout Techniques
- Genetic Engineering
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Humans
- Immunization
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/genetics
- Immunoglobulin G/immunology
- Lymphocytes/cytology
- Lymphocytes/immunology
- Pre-B Cell Receptors/genetics
- Pre-B Cell Receptors/immunology
- Species Specificity
Collapse
Affiliation(s)
- Hiroaki Matsushita
- SAB Biotherapeutics, Inc., Sioux Falls, South Dakota, United States of America
- Hematech, Inc., Sioux Falls, South Dakota, United States of America
| | - Akiko Sano
- Kyowa Hakko Kirin, Co., Ltd., Chiyoda-ku, Tokyo, Japan
- Hematech, Inc., Sioux Falls, South Dakota, United States of America
| | - Hua Wu
- SAB Biotherapeutics, Inc., Sioux Falls, South Dakota, United States of America
- Hematech, Inc., Sioux Falls, South Dakota, United States of America
| | - Zhongde Wang
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
- Hematech, Inc., Sioux Falls, South Dakota, United States of America
| | - Jin-an Jiao
- SAB Biotherapeutics, Inc., Sioux Falls, South Dakota, United States of America
- Hematech, Inc., Sioux Falls, South Dakota, United States of America
| | - Poothappillai Kasinathan
- Trans Ova Genetics, Sioux Center, Iowa, United States of America
- Hematech, Inc., Sioux Falls, South Dakota, United States of America
| | - Eddie J. Sullivan
- SAB Biotherapeutics, Inc., Sioux Falls, South Dakota, United States of America
- Hematech, Inc., Sioux Falls, South Dakota, United States of America
- * E-mail:
| | - Yoshimi Kuroiwa
- Kyowa Hakko Kirin, Co., Ltd., Chiyoda-ku, Tokyo, Japan
- Hematech, Inc., Sioux Falls, South Dakota, United States of America
| |
Collapse
|
40
|
Hiratsuka M, Ueda K, Uno N, Uno K, Fukuhara S, Kurosaki H, Takehara S, Osaki M, Kazuki Y, Kurosawa Y, Nakamura T, Katoh M, Oshimura M. Retargeting of microcell fusion towards recipient cell-oriented transfer of human artificial chromosome. BMC Biotechnol 2015; 15:58. [PMID: 26088202 PMCID: PMC4472177 DOI: 10.1186/s12896-015-0142-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/17/2015] [Indexed: 11/30/2022] Open
Abstract
Background Human artificial chromosome (HAC) vectors have some unique characteristics as compared with conventional vectors, carrying large transgenes without size limitation, showing persistent expression of transgenes, and existing independently from host genome in cells. With these features, HACs are expected to be promising vectors for modifications of a variety of cell types. However, the method of introduction of HACs into target cells is confined to microcell-mediated chromosome transfer (MMCT), which is less efficient than other methods of vector introduction. Application of Measles Virus (MV) fusogenic proteins to MMCT instead of polyethylene glycol (PEG) has partly solved this drawback, whereas the tropism of MV fusogenic proteins is restricted to human CD46- or SLAM-positive cells. Results Here, we show that retargeting of microcell fusion by adding anti-Transferrin receptor (TfR) single chain antibodies (scFvs) to the extracellular C-terminus of the MV-H protein improves the efficiency of MV-MMCT to human fibroblasts which originally barely express both native MV receptors, and are therefore resistant to MV-MMCT. Efficacy of chimeric fusogenic proteins was evaluated by the evidence that the HAC, tagged with a drug-resistant gene and an EGFP gene, was transferred from CHO donor cells into human fibroblasts. Furthermore, it was demonstrated that no perturbation of either the HAC status or the functions of transgenes was observed on account of retargeted MV-MMCT when another HAC carrying four reprogramming factors (iHAC) was transferred into human fibroblasts. Conclusions Retargeted MV-MMCT using chimeric H protein with scFvs succeeded in extending the cell spectrum for gene transfer via HAC vectors. Therefore, this technology could facilitate the systematic cell engineering by HACs. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0142-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Masaharu Hiratsuka
- Division of Molecular and Cell Genetics, Department of Molecular and Cellular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| | - Kana Ueda
- Division of Molecular Genetics and Biofunction, Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| | - Narumi Uno
- Division of Molecular Genetics and Biofunction, Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan. .,Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| | - Katsuhiro Uno
- Division of Molecular Genetics and Biofunction, Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| | - Sayaka Fukuhara
- Division of Molecular Genetics and Biofunction, Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| | - Hajime Kurosaki
- Division of Integrative Bioscience, Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan.
| | - Shoko Takehara
- Division of Molecular Genetics and Biofunction, Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| | - Mitsuhiko Osaki
- Division of Pathological Biochemistry, Department of Biomedical Sciences, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| | - Yasuhiro Kazuki
- Division of Molecular Genetics and Biofunction, Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan. .,Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| | - Yoshikazu Kurosawa
- Division of Antibody Project, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| | - Takafumi Nakamura
- Division of Integrative Bioscience, Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan.
| | - Motonobu Katoh
- Division of Human Genome Science, Department of Molecular and Cellular Biology, School of Life Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan.
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan. .,Japan Science and Technology Agency, CREST, 5, Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan.
| |
Collapse
|
41
|
Chen F, Wang Y, Yuan Y, Zhang W, Ren Z, Jin Y, Liu X, Xiong Q, Chen Q, Zhang M, Li X, Zhao L, Li Z, Wu Z, Zhang Y, Hu F, Huang J, Li R, Dai Y. Generation of B cell-deficient pigs by highly efficient CRISPR/Cas9-mediated gene targeting. J Genet Genomics 2015; 42:437-44. [PMID: 26336800 DOI: 10.1016/j.jgg.2015.05.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/01/2015] [Accepted: 05/19/2015] [Indexed: 12/19/2022]
Abstract
Generating B cell-deficient mutant is the first step to produce human antibody repertoires in large animal models. In this study, we applied the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system to target the JH region of the pig IgM heavy chain gene which is crucial for B cell development and differentiation. Transfection of IgM-targeting Cas9 plasmid in primary porcine fetal fibroblasts (PFFs) enabled inducing gene knock out (KO) in up to 53.3% of colonies analyzed, a quarter of which harbored biallelic modification, which was much higher than that of the traditional homologous recombination (HR). With the aid of somatic cell nuclear transfer (SCNT) technology, three piglets with the biallelic IgM heavy chain gene mutation were produced. The piglets showed no antibody-producing B cells which indicated that the biallelic mutation of the IgM heavy chain gene effectively knocked out the function of the IgM and resulted in a B cell-deficient phenotype. Our study suggests that the CRISPR/Cas9 system combined with SCNT technology is an efficient genome-editing approach in pigs.
Collapse
Affiliation(s)
- Fengjiao Chen
- State Key Laboratory of Reproductive Medicine and Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 210029, China
| | - Ying Wang
- State Key Laboratory of Reproductive Medicine and Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 210029, China
| | - Yilin Yuan
- State Key Laboratory of Reproductive Medicine and Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 210029, China
| | - Wei Zhang
- State Key Laboratory of Reproductive Medicine and Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 210029, China
| | - Zijian Ren
- State Key Laboratory of Reproductive Medicine and Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 210029, China
| | - Yong Jin
- State Key Laboratory of Reproductive Medicine and Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 210029, China
| | - Xiaorui Liu
- State Key Laboratory of Reproductive Medicine and Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 210029, China
| | - Qiang Xiong
- State Key Laboratory of Reproductive Medicine and Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 210029, China
| | - Qin Chen
- State Key Laboratory of Reproductive Medicine and Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 210029, China
| | - Manling Zhang
- State Key Laboratory of Reproductive Medicine and Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 210029, China
| | - Xiaokang Li
- State Key Laboratory of Reproductive Medicine and Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 210029, China
| | - Lihua Zhao
- State Key Laboratory of Reproductive Medicine and Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 210029, China
| | - Ze Li
- State Key Laboratory of Reproductive Medicine and Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 210029, China
| | - Zhaoqiang Wu
- State Key Laboratory of Reproductive Medicine and Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 210029, China
| | - Yanfei Zhang
- State Key Laboratory of Reproductive Medicine and Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 210029, China
| | - Feifei Hu
- State Key Laboratory of Reproductive Medicine and Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 210029, China
| | - Juan Huang
- State Key Laboratory of Reproductive Medicine and Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 210029, China
| | - Rongfeng Li
- State Key Laboratory of Reproductive Medicine and Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 210029, China.
| | - Yifan Dai
- State Key Laboratory of Reproductive Medicine and Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
42
|
Abstract
The mammary gland (MG) lacks a mucosa but is part of the mucosal immune system because of its role in passive mucosal immunity. The MG is not an inductive site for mucosal immunity. Rather, synthesis of immunoglobulin (Ig)A by plasma cells stimulated at distal inductive sites dominate in the milk of rodents, humans, and swine whereas IgG1 derived from serum predominates in ruminants. Despite the considerable biodiversity in the role of the MG, IgG passively transfers the maternal systemic immunological experience whereas IgA transfers the mucosal immunological experience. Although passive antibodies are protective, they and other lacteal constituents can be immunoregulatory. Immune protection of the MG largely depends on the innate immune system; the monocytes–macrophages group together with intraepithelial lymphocytes is dominant in the healthy gland. An increase in somatic cells (neutrophils) and various interleukins signal infection (mastitis) and a local immune response in the MG. The major role of the MG to mucosal immunity is the passive immunity supplied to the suckling neonate.
Collapse
|
43
|
Wilmut I. From germ cell preservation to regenerative medicine: an exciting research career in biotechnology. Annu Rev Anim Biosci 2014; 2:1-21. [PMID: 25384132 DOI: 10.1146/annurev-animal-022513-114214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Collection, manipulation, assessment, and storage of mammalian gametes, embryos, and stem cells are providing important opportunities in agriculture, research, and medicine. Semen and embryo freezing in livestock are used in breeding schemes, especially in cattle and for international trade, with no risk of spreading disease. In human medicine, they are used in treatment of infertility. Usually, knowledge gained in one species is applicable in the others. In one exception, some ruminant embryos cultured according to protocols used in human in vitro fertilization become unusually large offspring. This is due to disturbances in expression of imprinted genes. The nuclear transfer procedure developed at the Roslin Institute is being used to make genetic modifications in livestock to either direct production of biomedical proteins, create animal models of human disease, or enhance animal health and productivity. Human pluripotent cells are being used in Edinburgh to identify drugs to treat degenerative diseases.
Collapse
Affiliation(s)
- Ian Wilmut
- Professor Emeritus, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom;
| |
Collapse
|
44
|
Suzuki T, Kazuki Y, Oshimura M, Hara T. A novel system for simultaneous or sequential integration of multiple gene-loading vectors into a defined site of a human artificial chromosome. PLoS One 2014; 9:e110404. [PMID: 25303219 PMCID: PMC4193884 DOI: 10.1371/journal.pone.0110404] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/15/2014] [Indexed: 11/19/2022] Open
Abstract
Human artificial chromosomes (HACs) are gene-delivery vectors suitable for introducing large DNA fragments into mammalian cells. Although a HAC theoretically incorporates multiple gene expression cassettes of unlimited DNA size, its application has been limited because the conventional gene-loading system accepts only one gene-loading vector (GLV) into a HAC. We report a novel method for the simultaneous or sequential integration of multiple GLVs into a HAC vector (designated as the SIM system) via combined usage of Cre, FLP, Bxb1, and φC31 recombinase/integrase. As a proof of principle, we first attempted simultaneous integration of three GLVs encoding EGFP, Venus, and TdTomato into a gene-loading site of a HAC in CHO cells. These cells successfully expressed all three fluorescent proteins. Furthermore, microcell-mediated transfer of HACs enabled the expression of those fluorescent proteins in recipient cells. We next demonstrated that GLVs could be introduced into a HAC one-by-one via reciprocal usage of recombinase/integrase. Lastly, we introduced a fourth GLV into a HAC after simultaneous integration of three GLVs by FLP-mediated DNA recombination. The SIM system expands the applicability of HAC vectors and is useful for various biomedical studies, including cell reprogramming.
Collapse
Affiliation(s)
- Teruhiko Suzuki
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, Japan
- * E-mail:
| | - Yasuhiro Kazuki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, Yonago, Tottori, Japan
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, Japan
| | - Mitsuo Oshimura
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori, Japan
| | - Takahiko Hara
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, Japan
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
45
|
Kouprina N, Tomilin AN, Masumoto H, Earnshaw WC, Larionov V. Human artificial chromosome-based gene delivery vectors for biomedicine and biotechnology. Expert Opin Drug Deliv 2014; 11:517-35. [DOI: 10.1517/17425247.2014.882314] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Hust M, Frenzel A, Schirrmann T, Dübel S. Selection of recombinant antibodies from antibody gene libraries. Methods Mol Biol 2014; 1101:305-20. [PMID: 24233787 DOI: 10.1007/978-1-62703-721-1_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Antibodies are indispensable detection reagents for research and diagnostics and represent the biggest class of biological therapeutics on the market. In vitro antibody selection systems offer many advantages over animal-based technologies because the whole selection process is independent of the in vivo immune response. In the last two decades antibody phage display has evolved to the most robust and widely used method and has already yielded thousands of antibodies. The selection of binders by phage display is also referred to as "panning" and based on the specific molecular interaction of antibody phage with an immobilized antigen thus allowing the enrichment and isolation of antigen-specific monoclonal binders from very large antibody gene libraries. Here, we give detailed protocols for the selection of recombinant antibody fragments from antibody gene libraries in microtiter plates.
Collapse
Affiliation(s)
- Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | |
Collapse
|
47
|
Frenzel A, Kügler J, Wilke S, Schirrmann T, Hust M. Construction of human antibody gene libraries and selection of antibodies by phage display. Methods Mol Biol 2014; 1060:215-243. [PMID: 24037844 DOI: 10.1007/978-1-62703-586-6_12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Antibody phage display is the most commonly used in vitro selection technology and has yielded thousands of useful antibodies for research, diagnostics, and therapy.The prerequisite for successful generation and development of human recombinant antibodies using phage display is the construction of a high-quality antibody gene library. Here, we describe the methods for the construction of human immune and naive scFv gene libraries.The success also depends on the panning strategy for the selection of binders from these libraries. In this article, we describe a panning strategy that is high-throughput compatible and allows parallel selection in microtiter plates.
Collapse
Affiliation(s)
- André Frenzel
- Abteilung Biotechnologie Technische Universität Braunschweig, Institut für Biochemie, Biotechnologie und Bioinformatik, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
48
|
Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells. Proc Natl Acad Sci U S A 2013; 110:20170-5. [PMID: 24282302 DOI: 10.1073/pnas.1317106110] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Gene targeting by homologous recombination or by sequence-specific nucleases allows the precise modification of genomes and genes to elucidate their functions. Although gene targeting has been used extensively to modify the genomes of mammals, fish, and amphibians, a targeting technology has not been available for the avian genome. Many of the principles of humoral immunity were discovered in chickens, yet the lack of gene targeting technologies in birds has limited biomedical research using this species. Here we describe targeting the joining (J) gene segment of the chicken Ig heavy chain gene by homologous recombination in primordial germ cells to establish fully transgenic chickens carrying the knockout. In homozygous knockouts, Ig heavy chain production is eliminated, and no antibody response is elicited on immunization. Migration of B-lineage precursors into the bursa of Fabricius is unaffected, whereas development into mature B cells and migration from the bursa are blocked in the mutants. Other cell types in the immune system appear normal. Chickens lacking the peripheral B-cell population will provide a unique experimental model to study avian immune responses to infectious disease. More generally, gene targeting in avian primordial germ cells will foster advances in diverse fields of biomedical research such as virology, stem cells, and developmental biology, and provide unique approaches in biotechnology, particularly in the field of antibody discovery.
Collapse
|
49
|
Kazuki K, Takehara S, Uno N, Imaoka N, Abe S, Takiguchi M, Hiramatsu K, Oshimura M, Kazuki Y. Highly stable maintenance of a mouse artificial chromosome in human cells and mice. Biochem Biophys Res Commun 2013; 442:44-50. [PMID: 24216103 DOI: 10.1016/j.bbrc.2013.10.171] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 10/31/2013] [Indexed: 01/08/2023]
Abstract
Human artificial chromosomes (HACs) and mouse artificial chromosomes (MACs) display several advantages as gene delivery vectors, such as stable episomal maintenance that avoids insertional mutations and the ability to carry large gene inserts including the regulatory elements. Previously, we showed that a MAC vector developed from a natural mouse chromosome by chromosome engineering was more stably maintained in adult tissues and hematopoietic cells in mice than HAC vectors. In this study, to expand the utility for a gene delivery vector in human cells and mice, we investigated the long-term stability of the MACs in cultured human cells and transchromosomic mice. We also investigated the chromosomal copy number-dependent expression of genes on the MACs in mice. The MAC was stably maintained in human HT1080 cells in vitro during long-term culture. The MAC was stably maintained at least to the F8 and F4 generations in ICR and C57BL/6 backgrounds, respectively. The MAC was also stably maintained in hematopoietic cells and tissues derived from old mice. Transchromosomic mice containing two or four copies of the MAC were generated by breeding. The DNA contents were comparable to the copy number of the MACs in each tissue examined, and the expression of the EGFP gene on the MAC was dependent on the chromosomal copy number. Therefore, the MAC vector may be useful not only for gene delivery in mammalian cells but also for animal transgenesis.
Collapse
Affiliation(s)
- Kanako Kazuki
- Department of Biomedical Science, Institute of Regenerative Medicine and Biofunction, Graduate School of Medical Science, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan; Chromosome Engineering Research Center, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sano A, Matsushita H, Wu H, Jiao JA, Kasinathan P, Sullivan EJ, Wang Z, Kuroiwa Y. Physiological level production of antigen-specific human immunoglobulin in cloned transchromosomic cattle. PLoS One 2013; 8:e78119. [PMID: 24205120 PMCID: PMC3813428 DOI: 10.1371/journal.pone.0078119] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 09/16/2013] [Indexed: 11/29/2022] Open
Abstract
Therapeutic human polyclonal antibodies (hpAbs) derived from pooled plasma from human donors are Food and Drug Administration approved biologics used in the treatment of a variety of human diseases. Powered by the natural diversity of immune response, hpAbs are effective in treating diseases caused by complex or quickly-evolving antigens such as viruses. We previously showed that transchromosomic (Tc) cattle carrying a human artificial chromosome (HAC) comprising the entire unrearranged human immunoglobulin heavy-chain (hIGH) and kappa-chain (hIGK) germline loci (named as κHAC) are capable of producing functional hpAbs when both of the bovine immunoglobulin mu heavy-chains, bIGHM and bIGHML1, are homozygously inactivated (double knockouts or DKO). However, B lymphocyte development in these Tc cattle is compromised, and the overall production of hpAbs is low. Here, we report the construction of an improved HAC, designated as cKSL-HACΔ, by incorporating all of the human immunoglobulin germline loci into the HAC. Furthermore, for avoiding the possible human-bovine interspecies incompatibility between the human immunoglobulin mu chain protein (hIgM) and bovine transmembrane α and β immunoglobulins (bIgα and bIgβ) in the pre-B cell receptor (pre-BCR) complex, we partially replaced (bovinized) the hIgM constant domain with the counterpart of bovine IgM (bIgM) that is involved in the interaction between bIgM and bIgα/Igβ; human IgM bovinization would also improve the functionality of hIgM in supporting B cell activation and proliferation. We also report the successful production of DKO Tc cattle carrying the cKSL-HACΔ (cKSL-HACΔ/DKO), the dramatic improvement of B cell development in these cattle and the high level production of hpAbs (as measured for the human IgG isotype) in the plasma. We further demonstrate that, upon immunization by tumor immunogens, high titer tumor immunogen-specific human IgG (hIgG) can be produced from such Tc cattle.
Collapse
Affiliation(s)
- Akiko Sano
- Kyowa Hakko Kirin, Co., Ltd., Chiyoda-ku, Tokyo, Japan
- Hematech, Inc., Sioux Falls, South Dakota, United States of America
| | - Hiroaki Matsushita
- Sanford Applied Biosciences L.L.C., Sioux Falls, South Dakota, United States of America
- Hematech, Inc., Sioux Falls, South Dakota, United States of America
| | - Hua Wu
- Sanford Applied Biosciences L.L.C., Sioux Falls, South Dakota, United States of America
- Hematech, Inc., Sioux Falls, South Dakota, United States of America
| | - Jin-An Jiao
- Sanford Applied Biosciences L.L.C., Sioux Falls, South Dakota, United States of America
- Hematech, Inc., Sioux Falls, South Dakota, United States of America
| | - Poothappillai Kasinathan
- Trans Ova Genetics, Sioux Center, Iowa, United States of America
- Hematech, Inc., Sioux Falls, South Dakota, United States of America
| | - Eddie J. Sullivan
- Sanford Applied Biosciences L.L.C., Sioux Falls, South Dakota, United States of America
- Hematech, Inc., Sioux Falls, South Dakota, United States of America
- * E-mail: (ES); (ZW)
| | - Zhongde Wang
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
- Hematech, Inc., Sioux Falls, South Dakota, United States of America
- * E-mail: (ES); (ZW)
| | - Yoshimi Kuroiwa
- Kyowa Hakko Kirin, Co., Ltd., Chiyoda-ku, Tokyo, Japan
- Hematech, Inc., Sioux Falls, South Dakota, United States of America
| |
Collapse
|