1
|
Alperovich M, Tonello C, Mayes LC, Kahle KT. Non-syndromic craniosynostosis. Nat Rev Dis Primers 2025; 11:24. [PMID: 40210850 DOI: 10.1038/s41572-025-00607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2025] [Indexed: 04/12/2025]
Abstract
Craniosynostosis is characterized by the premature fusion of one or more major cranial sutures at birth or soon after. Single-suture non-syndromic craniosynostosis (NSC) is the most common form of craniosynostosis and includes the sagittal, metopic, unicoronal and unilambdoid subtypes. Characterized by an abnormal head shape specific to the fused suture type, NSC can cause increased intracranial pressure. Cranial sutures either originate from the neural crest or arise from mesoderm-derived mesenchymal stem cells. A mixture of environmental and genetic factors contributes to NSC, with genetic causes following a largely polygenic model. Physical examination is used to identify the majority of patients, but accompanying radiographic imaging can be confirmatory. The three major surgical techniques in use to treat NSC are cranial vault remodelling, strip craniectomy and spring-assisted cranioplasty. Surgical intervention is ideally performed in the first year of life, with a mortality of <1%. Health-care disparities contribute to delayed initial presentation and timely repair. Optimal timing of surgery and comparative outcomes by surgical technique remain under active study. School-age children with treated NSC on average have subtle, but lower cognitive and behavioural performance. However, patient-reported quality of life outcomes are comparable to those in control individuals.
Collapse
Affiliation(s)
- Michael Alperovich
- Division of Plastic Surgery, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA.
| | - Cristiano Tonello
- Hospital for Rehabilitation of Craniofacial Anomalies, University of Sao Paulo, Sao Paulo, Brazil
| | - Linda C Mayes
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Madsen EJ, Rhee S, Wahlsten M, Calabrese TC, Kohn DH. Dual-Functional Peptide DPI-VTK Promotes Mesenchymal Stem Cell Migration for Bone Regeneration. J Biomed Mater Res A 2025; 113:e37908. [PMID: 40186383 PMCID: PMC11991734 DOI: 10.1002/jbm.a.37908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Targeting specific populations of host cells with chemotactic and adhesion factors is a promising strategy for inducing bone regeneration without the use of exogenous cells. Two peptide sequences have been derived from phage display: the mesenchymal stem cell (MSC) binding DPI (DPIYALSWSGMA) sequence and the apatite binding VTK (VTKHLNQISQSY) sequence. When combined into the dual-functional sequence, DPI-VTK increases the adhesion strength of MSCs to apatite surfaces and the amount of bone formation with transplanted MSCs. Because many adhesion molecules can stimulate chemotaxis, and cell adhesion to peptide DPI-VTK is mediated by integrins also critical to migration, we hypothesized that DPI-VTK serves as an MSC-specific chemotactic factor and can increase bone regeneration by promoting the osteogenesis of the migrated host MSCs in vivo. In transwell assays, induced pluripotent stem cell-derived human MSCs (p < 0.0001) and primary mouse calvarial cells (p < 0.0001) showed significantly increased migration in vitro when DPI-VTK was used as a chemoattractant. Further characterization of DPI-VTK binding cells from mouse calvaria using flow cytometry showed specificity toward cells expressing MSC markers (CD29, CD73, CD90, CD105, CD106, Sca-1, CD44, and CD200). When conjugated to a mineralized scaffold in vivo, DPI-VTK increased the migration of CD90 and CD200 positive cells (p < 0.05) and increased bone formation versus no-peptide controls (p < 0.05). These results demonstrate the utility of phage display in creating multifunctional peptides that can increase migration, adhesion, and bone formation in vivo, a strategy that could be applied to numerous different cell types and systems. Results advance biomaterials-based bone regeneration in two ways-demonstrating the ability of the phage-derived peptides to increase the migration of MSCs in vivo and increase host-mediated bone regeneration-potentially bypassing cell transplantation.
Collapse
Affiliation(s)
- Eric J Madsen
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, Michigan
| | - Seungmeen Rhee
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, Michigan
| | - Madison Wahlsten
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, Michigan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor Michigan
| | - Tia C Calabrese
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, Michigan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor Michigan
| | - David H Kohn
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, Michigan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor Michigan
| |
Collapse
|
3
|
Cai XY, Zheng CX, Guo H, Fan SY, Huang XY, Chen J, Liu JX, Gao YR, Liu AQ, Liu JN, Zhang XH, Ma C, Wang H, Fu F, Peng P, Xu HK, Sui BD, Xuan K, Jin Y. Inflammation-triggered Gli1 + stem cells engage with extracellular vesicles to prime aberrant neutrophils to exacerbate periodontal immunopathology. Cell Mol Immunol 2025; 22:371-389. [PMID: 40016585 PMCID: PMC11955562 DOI: 10.1038/s41423-025-01271-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/12/2025] [Indexed: 03/01/2025] Open
Abstract
Periodontitis is a prevalent and progressive detrimental disease characterized by chronic inflammation, and the immunopathological mechanisms are not yet fully understood. Mesenchymal stem cells (MSCs) play crucial roles as immunoregulators and maintain tissue homeostasis and regeneration, but their in vivo function in immunopathology and periodontal tissue deterioration is still unclear. Here, we utilized multiple transgenic mouse models to specifically mark, ablate and modulate Gli1+ cells, a critical and representative subset of MSCs in the periodontium, to explore their specific role in periodontal immunopathology. We revealed that Gli1+ cells, upon challenge with an inflammatory microenvironment, significantly induce rapid trafficking and aberrant activation of neutrophils, thus exacerbating alveolar bone destruction. Mechanistically, extracellular vesicles (EVs) released by Gli1+ cells act as crucial immune regulators in periodontal tissue, mediating the recruitment and activation of neutrophils through increased neutrophil generation of reactive oxygen species and stimulation of nuclear factor kappa-B signaling. Furthermore, we discovered that CXC motif chemokine ligand 1 (CXCL1) is exposed on the surface of EVs derived from inflammation-challenged Gli1+ cells to prime aberrant neutrophils via the CXCL1-CXC motif chemokine receptor 2 (CXCR2) axis. Importantly, specific inhibition of EV release from Gli1+ cells or pharmacological therapy with GANT61 ameliorates periodontal inflammation and alveolar bone loss. Collectively, our findings identify previously unrecognized roles of Gli1+ cells in orchestrating infiltration and promoting aberrant activation of neutrophils under inflammation, which provides pathological insights and potential therapeutic targets for periodontitis.
Collapse
Affiliation(s)
- Xin-Yue Cai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi key Laboratory of Stomatology, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hao Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi key Laboratory of Stomatology, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Si-Yuan Fan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi key Laboratory of Stomatology, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiao-Yao Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi key Laboratory of Stomatology, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Ji Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jie-Xi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yu-Ru Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - An-Qi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi key Laboratory of Stomatology, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jia-Ning Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiao-Hui Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chao Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Fei Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi key Laboratory of Stomatology, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Peng Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi key Laboratory of Stomatology, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Hao-Kun Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Bing-Dong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Kun Xuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi key Laboratory of Stomatology, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Yan Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
4
|
Li W, Jiang H, Hu L, Shen T, Chen Q. The Role of Gli1 + Mesenchymal Stem Cells in Craniofacial Development and Disease Treatment. J Oral Rehabil 2025; 52:531-539. [PMID: 39794930 DOI: 10.1111/joor.13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 11/23/2024] [Accepted: 12/01/2024] [Indexed: 01/13/2025]
Abstract
OBJECTIVE This review summarises the role of Gli1+ (Glioma-associated oncogene homologue 1) mesenchymal stem cells in craniofacial growth and development or tissue repair, and their application in the treatment of some diseases. DESIGN The search for this narrative review was conducted in PubMed and Web of Science using relevant keywords, including checking reference lists of journal articles by hand searching. RESULTS Gli1+ mesenchymal stem cells play an important role in the growth and development of the skull, tooth, periodontium and mandibular condyle. They can be applied to the treatment of pulp and periodontal diseases, temporomandibular joint osteoarthritis and other diseases. CONCLUSIONS Gli1+ mesenchymal stem cells are crucial for the development and repair of craniofacial tissue.
Collapse
Affiliation(s)
- Wen Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Han Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Longshuang Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Tianjiao Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
Liao J, Huang Y, Sun F, Zheng C, Yao Y, Zhang C, Zhou C, Zhang X, Wu M, Chen G. Nf2-FAK signaling axis is critical for cranial bone ossification and regeneration. Nat Commun 2025; 16:2478. [PMID: 40075076 PMCID: PMC11903865 DOI: 10.1038/s41467-025-57808-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Skeletal mesenchymal stem cells (MSCs) possess self-renewal capacities and play a leading role in the craniofacial system. However, their engagement in controlling cranial bone development and regeneration remains largely unidentified. Herein, we discovered the neurofibromin 2 (Nf2)-encoded regulator Merlin, demonstrating indispensableness in the craniofacial system. Mice lacking Nf2 in MSCs exhibit malformed cranial bones, diminished proliferation, increased apoptosis, and more severe osteogenesis impairment. Mechanically, we substantiate that Nf2 physically interacts with focal adhesion kinase (FAK) to preferentially mediate Erk1/2 and PI3K catalytic p110 subunit/Akt signaling. Meanwhile, Nf2-FAK disturbance in MSCs results in deficient migration, cytoskeletal organization and focal adhesion dynamics, and develops retarded regeneration of cranial bone defects. Collectively, our findings underscore an unrecognized scaffolding role for Nf2-FAK as upstream element in regulating PI3K/Akt and Erk1/2 action in osteoblasts, and illuminate its essentialness in coordinating cell migration, osteogenic lineage development, cranial bone ossification and regeneration.
Collapse
Affiliation(s)
- Junguang Liao
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuping Huang
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Fuju Sun
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Chenggong Zheng
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yifeng Yao
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Cui Zhang
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenhe Zhou
- Department of Orthopedics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, 314001, China.
| | - Mengrui Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, China.
| | - Guiqian Chen
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
6
|
Weldon KC, Longaker MT, Ambrosi TH. Harnessing the diversity and potential of endogenous skeletal stem cells for musculoskeletal tissue regeneration. Stem Cells 2025; 43:sxaf006. [PMID: 39945760 PMCID: PMC11892563 DOI: 10.1093/stmcls/sxaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/21/2025] [Indexed: 03/11/2025]
Abstract
In our aging society, the degeneration of the musculoskeletal system and adjacent tissues is a growing orthopedic concern. As bones age, they become more fragile, increasing the risk of fractures and injuries. Furthermore, tissues like cartilage accumulate damage, leading to widespread joint issues. Compounding this, the regenerative capacity of these tissues declines with age, exacerbating the consequences of fractures and cartilage deterioration. With rising demand for fracture and cartilage repair, bone-derived stem cells have attracted significant research interest. However, the therapeutic use of stem cells has produced inconsistent results, largely due to ongoing debates and uncertainties regarding the precise identity of the stem cells responsible for musculoskeletal growth, maintenance and repair. This review focuses on the potential to leverage endogenous skeletal stem cells (SSCs)-a well-defined population of stem cells with specific markers, reliable isolation techniques, and functional properties-in bone repair and cartilage regeneration. Understanding SSC behavior in response to injury, including their activation to a functional state, could provide insights into improving treatment outcomes. Techniques like microfracture surgery, which aim to stimulate SSC activity for cartilage repair, are of particular interest. Here, we explore the latest advances in how such interventions may modulate SSC function to enhance bone healing and cartilage regeneration.
Collapse
Affiliation(s)
- Kelly C Weldon
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, United States
- School of Medicine, University of California, Sacramento, CA 95817, United States
| | - Michael T Longaker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Thomas H Ambrosi
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817, United States
| |
Collapse
|
7
|
Melis S, Trompet D, Chagin AS, Maes C. Skeletal stem and progenitor cells in bone physiology, ageing and disease. Nat Rev Endocrinol 2025; 21:135-153. [PMID: 39379711 DOI: 10.1038/s41574-024-01039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/10/2024]
Abstract
Skeletal stem cells (SSCs) and related progenitors with osteogenic potential, collectively termed skeletal stem and/or progenitor cells (SSPCs), are crucial for providing osteoblasts for bone formation during homeostatic tissue turnover and fracture repair. Besides mediating normal bone physiology, they also have important roles in various metabolic bone diseases, including osteoporosis. SSPCs are of tremendous interest because they represent prime future targets for osteoanabolic therapies and bone regenerative medicine. Remarkable progress has been made in characterizing various SSC and SSPC populations in postnatal bone. SSPCs exist in the periosteum and within the bone marrow stroma, including subsets localizing around arteriolar and sinusoidal blood vessels; they can display osteogenic, chondrogenic, adipogenic and/or fibroblastic potential, and exert critical haematopoiesis-supportive functions. However, much remains to be clarified. By the current markers, bona fide SSCs are commonly contained within broader SSPC populations characterized by considerable heterogeneity and overlap, whose common versus specific functions in health and disease have not been fully unravelled. Here, we review the present knowledge of the identity, fates and relationships of SSPC populations in the postnatal bone environment, their contributions to bone maintenance, the changes observed upon ageing, and the effect of metabolic diseases such as osteoporosis and diabetes mellitus.
Collapse
Affiliation(s)
- Seppe Melis
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Dana Trompet
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Andrei S Chagin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
Xu W, Ran B, Aizawa T, Liu W, Zhao J, Niu R, Liu Z, Gu R. The Hedgehog-GLI1 Pathway Regulates Osteogenic Differentiation of Human Cervical Posterior Longitudinal Ligament Cells by BMP Signalling Pathway. J Cell Mol Med 2025; 29:e70393. [PMID: 39910703 PMCID: PMC11798735 DOI: 10.1111/jcmm.70393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 12/17/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025] Open
Abstract
Cervical ossification of the posterior longitudinal ligament (OPLL) is an ectopic ossification disorder characterised by endochondral ossification. Its aetiology remains to be fully elucidated. This study aimed to clarify its pathogenesis through RNA sequencing of primary cells cultured from patients without cervical OPLL (control, PLL) and patients with cervical OPLL (disease, OPLL). We revealed for the first time the role of GLI1 within OPLL cells. Functional experiments indicated that GLI1, acting as a pivotal mediator between the upstream Hedgehog pathway and downstream BMP pathway, influences the pathogenesis of OPLL. The positive/negative effects on osteogenic differentiation following activation/inhibition of the Hedgehog pathway can be rescued by manipulating GLI1 expression. Overexpression of GLI1 activates BMP signalling, enhancing osteogenic capacity in PLL cells, while GLI1 knockdown suppresses BMP signal transduction, attenuating osteogenic differentiation in OPLL cells. Our findings highlight the significant role of the canonical Hedgehog signalling pathway and its interaction with the BMP pathway in the pathogenesis of OPLL.
Collapse
Affiliation(s)
- Wenbo Xu
- Department of Orthopaedic SurgeryChina‐Japan Union Hospital of Jilin UniversityJilinPeople's Republic of China
| | - Bingbing Ran
- Department of UltrasoundThe First Hospital of Jilin UniversityJilinPeople's Republic of China
| | - Toshimi Aizawa
- Department of Orthopaedic SurgeryTohoku University School of MedicineSendaiJapan
| | - Wanguo Liu
- Department of Orthopaedic SurgeryChina‐Japan Union Hospital of Jilin UniversityJilinPeople's Republic of China
| | - Jianhui Zhao
- Department of Orthopaedic SurgeryChina‐Japan Union Hospital of Jilin UniversityJilinPeople's Republic of China
| | - Renrui Niu
- Department of Orthopaedic SurgeryChina‐Japan Union Hospital of Jilin UniversityJilinPeople's Republic of China
| | - Zeping Liu
- Department of Orthopaedic SurgeryChina‐Japan Union Hospital of Jilin UniversityJilinPeople's Republic of China
| | - Rui Gu
- Department of Orthopaedic SurgeryChina‐Japan Union Hospital of Jilin UniversityJilinPeople's Republic of China
| |
Collapse
|
9
|
Takahashi Y, Ishida Y, Yoshida S, Shin HW, Katoh Y, Nakayama K. Counterregulatory roles of GLI2 and GLI3 in osteogenic differentiation via Gli1 expression. J Cell Sci 2025; 138:jcs263556. [PMID: 39801296 DOI: 10.1242/jcs.263556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/31/2024] [Indexed: 02/11/2025] Open
Abstract
The GLI1, GLI2 and GLI3 transcription factors mediate Hedgehog (Hh) signaling, which is crucial for bone development. During intramembranous ossification, mesenchymal stem cells (MSCs) are directly differentiated into osteoblasts. Under basal and Hh pathway-stimulated conditions, primary cilia play essential roles in proteolytic processing of GLI3 to its repressor form (GLI3R) and in activation of GLI2. Although previous studies in mice have suggested that Gli1 expression depends on GLI2 and GLI3, coordinated roles of GLI1, GLI2 and GLI3 in osteogenic differentiation are not fully understood at the cellular level. From the MSC line C3H10T1/2, we established Gli2-knockout (KO) and Gli3-KO cells, as well as constitutively GLI3R-producing (cGLI3R) cells, and expressed GLI1, GLI2 and GLI3 constructs in these cell lines. The results demonstrate at the cellular level that GLI2 and GLI3R counterregulate osteogenic differentiation via activation and repression of Gli1 expression, respectively; GLI3R, which results from GLI3 processing requiring protein kinase A-mediated phosphorylation, downregulates expression of Gli2 as well as Gli1; and GLI1 upregulates expression of Gli1 itself and Gli2, constituting a GLI1-GLI2 positive feedback loop.
Collapse
Affiliation(s)
- Yuto Takahashi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yamato Ishida
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Saishu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Hye-Won Shin
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yohei Katoh
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
10
|
White HE, Tucker AS, Goswami A. Divergent patterns of cranial suture fusion in marsupial and placental mammals. Zool J Linn Soc 2025; 203:zlae060. [PMID: 39995683 PMCID: PMC7617424 DOI: 10.1093/zoolinnean/zlae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Cranial sutures, both open and closed, support a myriad of skull functions, including redistributing strain, accommodating brain expansion, supporting cranial bone growth, and protecting the brain. Thus, variation in the degree, timing, and pattern of suture fusion has functional implications. Using a comparative ontogenetic framework across Mammalia, we quantified degree and pattern of suture fusion through ontogeny for 22 mammalian species (N = 165). Suture closure was scored on a discrete scale for 31 cranial sutures and used to calculate closure scores for individual sutures and specimens. Ancestral state estimations found the degree of ancestral marsupial fusion to be more derived, differing from both the ancestral placental and ancestral therian. The average placental pattern followed the Krogman pattern of suture fusion (cranial vault, cranial base, circum-meatal, palatal, facial, and cranio-facial), whereas marsupials showed a distinct pattern. We propose a new pattern of suture fusion for marsupials: vault, cranio-facial, facial, circum-meatal, palate, cranial base. Delayed fusion of the marsupial cranial base is hypothesized here to support prolonged postnatal growth of the marsupial brain. Collectively, our study has identified a clear marsupial-placental dichotomy in the degree, timing, and pattern of suture fusion, with implications for understanding skull function and ontogeny.
Collapse
Affiliation(s)
- Heather E White
- Centre for Craniofacial and Regenerative Biology, King's College London, Great Maze Pond, London SE1 9RT, United Kingdom
- Science Department, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
- Division of Biosciences, University College London, Gower Street, London WC1E 6DE, United Kingdom
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, Great Maze Pond, London SE1 9RT, United Kingdom
| | - Anjali Goswami
- Science Department, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
- Division of Biosciences, University College London, Gower Street, London WC1E 6DE, United Kingdom
| |
Collapse
|
11
|
Lee J, Park JC, Kim H, Bae HS, Lee DS. Nuclear factor I-C regulates intramembranous bone formation via control of FGF signalling. Heliyon 2025; 11:e41789. [PMID: 39882457 PMCID: PMC11774937 DOI: 10.1016/j.heliyon.2025.e41789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/31/2025] Open
Abstract
Our previous studies indicate that NFI-C is essential for tooth root development and endochondral ossification. However, its exact role in calvarial intramembranous bone formation remains unclear. In this study, we demonstrate that the disruption of the Nfic gene leads to defects in intramembranous bone formation, characterized by decreased osteogenic proliferative activity and reduced osteoblast differentiation during postnatal osteogenesis. Additionally, Nfic-deficient mice exhibited incomplete suture closure, although Nfic disruption did not affect prenatal calvarial bone development. We found that the expression levels of Fgfr1 and Fgfr2 were reduced in the primary calvarial mesenchymal cells of Nfic-deficient mice. In contrast, NFI-C overexpression in human bone marrow stromal cells (hBMSCs) significantly increased the expression of these factors. Furthermore, NFI-C regulates FGFR1 expression by directly binding to its promoter. These results indicate that NFI-C is crucial in regulating calvarial bone formation and suture closure by controlling Fgfr1 expression and cellular proliferation.
Collapse
Affiliation(s)
- Jieun Lee
- Department of Oral Hygiene, Namseoul University, Cheonan, Republic of Korea
| | - Joo-Cheol Park
- Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Regenerative Dental Medicine R and D Center, Hysensbio Co., Ltd., Seoul, Republic of Korea
| | - Heung‐Joong Kim
- Department of Anatomy and Orofacial Development School of Dentistry Chosun University, Dong-gu, Gwangju, Republic of Korea
| | - Hyun Sook Bae
- Department of Oral Hygiene, Namseoul University, Cheonan, Republic of Korea
| | - Dong-Seol Lee
- Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
- Regenerative Dental Medicine R and D Center, Hysensbio Co., Ltd., Seoul, Republic of Korea
| |
Collapse
|
12
|
Welsh IC, Feiler ME, Lipman D, Mormile I, Hansen K, Percival CJ. Palatal segment contributions to midfacial anterior-posterior growth. J Anat 2025. [PMID: 39831750 DOI: 10.1111/joa.14222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/31/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
Anterior-posterior (A-P) elongation of the palate is a critical aspect of integrated midfacial morphogenesis. Reciprocal epithelial-mesenchymal interactions drive secondary palate elongation that is coupled to the periodic formation of signaling centers within the rugae growth zone (RGZ). However, the relationship between RGZ-driven morphogenetic processes, the differentiative dynamics of underlying palatal bone mesenchymal precursors, and the segmental organization of the upper jaw has remained enigmatic. A detailed ontogenetic study of these relationships is important because palatal segment growth is a critical aspect of normal midfacial growth, can produce dysmorphology when altered, and is a likely basis for evolutionary differences in upper jaw morphology. We completed a combined whole mount gene expression and morphometric analysis of normal murine palatal segment growth dynamics and resulting upper jaw morphology. Our results demonstrated that the first formed palatal ruga (ruga 1), found just posterior to the RGZ, maintained an association with important nasal, neurovascular and palatal structures throughout early midfacial development. This suggested that these features are positioned at a proximal source of embryonic midfacial directional growth. Our detailed characterization of midfacial morphogenesis revealed a one-to-one relationship between palatal segments and upper jaw bones during the earliest stages of palatal elongation. Growth of the maxillary anlage within the anterior secondary palate is uniquely coupled to RGZ-driven morphogenesis. This may help drive the unequaled proportional elongation of the anterior secondary palate segment prior to palatal shelf fusion. Our results also demonstrated that the future maxillary-palatine suture, approximated by the position of ruga 1 and consistently associated with the palatine anlage, formed predominantly via the posterior differentiation of the maxilla within the expanding anterior secondary palate. Our ontogenetic analysis provides a novel and detailed picture of the earliest spatiotemporal dynamics of intramembranous midfacial skeletal specification and differentiation within the context of the surrounding palatal segment A-P elongation and associated rugae formation.
Collapse
Affiliation(s)
- Ian C Welsh
- Program in Craniofacial Biology, University of California at San Francisco, San Francisco, California, USA
- Department of Orofacial Sciences, University of California at San Francisco, San Francisco, California, USA
- Department of Anatomy, University of California at San Francisco, San Francisco, California, USA
| | - Maria E Feiler
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Danika Lipman
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
| | - Isabel Mormile
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Karissa Hansen
- Program in Craniofacial Biology, University of California at San Francisco, San Francisco, California, USA
- Department of Orofacial Sciences, University of California at San Francisco, San Francisco, California, USA
- Department of Anatomy, University of California at San Francisco, San Francisco, California, USA
| | | |
Collapse
|
13
|
Wang Z, Wang K, Yu Y, Fu J, Zhang S, Li M, Yang J, Zhang X, Liu X, Lv F, Ma L, Cai H, Tian W, Liao L. Identification of human cranio-maxillofacial skeletal stem cells for mandibular development. SCIENCE ADVANCES 2025; 11:eado7852. [PMID: 39742474 PMCID: PMC11691644 DOI: 10.1126/sciadv.ado7852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025]
Abstract
Compared with long bone that arises from the mesoderm, the major portion of the maxillofacial bones and the front bone of the skull are derived from cranial neural crest cells and undergo intramembranous ossification. Human skeletal stem cells have been identified in embryonic and fetal long bones. Here, we describe a single-cell atlas of the human embryonic mandible and identify a population of cranio-maxillofacial skeletal stem cells (CMSSCs). These CMSSCs are marked by interferon-induced transmembrane protein 5 (IFITM5) and are specifically located around the periosteum of the jawbone and frontal bone. Additionally, these CMSSCs exhibit strong self-renewal and osteogenic differentiation capacities but lower chondrogenic differentiation potency, mediating intramembranous bone formation without cartilage formation. IFITM5+ cells are also observed in the adult jawbone and exhibit functions similar to those of embryonic CMSSCs. Thus, this study identifies CMSSCs that orchestrate the intramembranous ossification of cranio-maxillofacial bones, providing a deeper understanding of cranio-maxillofacial skeletal development and promising seed cells for bone repair.
Collapse
Affiliation(s)
- Zhuo Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Kun Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yejia Yu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Jing Fu
- Department of Reproductive Endocrinology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
| | - Siyuan Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Maojiao Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Jian Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Xuanhao Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Xiaodong Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Fengqiong Lv
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
- Department of Operating Room Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Ma
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
- Department of Operating Room Nursing, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Haoyang Cai
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| | - Li Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Engineering Research Center of Oral Translational Medicine, Ministry of Education and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, People’s Republic of China
| |
Collapse
|
14
|
Buchanan C, Chen S, Yuan Y, Guo T, Feng J, Zhang M, Carey G, Howard I, Sanchez J, Ho TV, Chai Y. Loss of Runx2 in Gli1 + osteogenic progenitors prevents bone loss following ovariectomy. JBMR Plus 2025; 9:ziae141. [PMID: 39996169 PMCID: PMC11848843 DOI: 10.1093/jbmrpl/ziae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 02/26/2025] Open
Abstract
Osteoporosis is a metabolic bone disorder characterized by low bone mass and bone mineral density. It is the most prevalent bone disease and a common cause of fracture in aging adults. Low bone mass, as seen in osteoporosis, results from an imbalance between osteoblast and osteoclast activity. Gli1+ cells are indispensable to the maintenance of bone tissue homeostasis. These cells give rise to osteoprogenitors and are present at the osteogenic fronts of long bones in adult mice. Runx2 is a key regulator of osteogenesis and plays a crucial role in osteoblastic differentiation and maturation during development. However, its function in maintaining adult bone tissue homeostasis remains unclear. In this study, we investigated the role of Runx2 in maintaining adult bone homeostasis in the context of ovariectomy-induced estrogen deficiency, a model for postmenopausal osteoporosis. Our results show that deletion of Runx2 in the Gli1+ osteogenic progenitor population prevents loss of both cortical and trabecular bone mass and mineralization after ovariectomy. At the cellular level, loss of Runx2 leads to a decrease in osteoclast activity. Our study indicates that Runx2 is essential for maintaining adult bone tissue homeostasis by regulating osteoclast differentiation.
Collapse
Affiliation(s)
- Connor Buchanan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Shuo Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Mingyi Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Grace Carey
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Ishmael Howard
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Janet Sanchez
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
15
|
Reeves J, Tournier P, Becquart P, Carton R, Tang Y, Vigilante A, Fang D, Habib SJ. Rejuvenating aged osteoprogenitors for bone repair. eLife 2024; 13:RP104068. [PMID: 39692737 DOI: 10.7554/elife.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Aging is marked by a decline in tissue regeneration, posing significant challenges to an increasingly older population. Here, we investigate age-related impairments in calvarial bone healing and introduce a novel two-part rejuvenation strategy to restore youthful repair. We demonstrate that aging negatively impacts the calvarial bone structure and its osteogenic tissues, diminishing osteoprogenitor number and function and severely impairing bone formation. Notably, increasing osteogenic cell numbers locally fails to rescue repair in aged mice, identifying the presence of intrinsic cellular deficits. Our strategy combines Wnt-mediated osteoprogenitor expansion with intermittent fasting, which leads to a striking restoration of youthful levels of bone healing. We find that intermittent fasting improves osteoprogenitor function, benefits that can be recapitulated by modulating NAD+-dependent pathways or the gut microbiota, underscoring the multifaceted nature of this intervention. Mechanistically, we identify mitochondrial dysfunction as a key component in age-related decline in osteoprogenitor function and show that both cyclical nutrient deprivation and Nicotinamide mononucleotide rejuvenate mitochondrial health, enhancing osteogenesis. These findings offer a promising therapeutic avenue for restoring youthful bone repair in aged individuals, with potential implications for rejuvenating other tissues.
Collapse
Affiliation(s)
- Joshua Reeves
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- Centre for Gene Therapy and Regenerative Medicine King's College London, London, United Kingdom
| | - Pierre Tournier
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Pierre Becquart
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Robert Carton
- Centre for Gene Therapy and Regenerative Medicine King's College London, London, United Kingdom
| | - Yin Tang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Zhejiang University, Zhejiang, China
- Department of Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Alessandra Vigilante
- Centre for Gene Therapy and Regenerative Medicine King's College London, London, United Kingdom
| | - Dong Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute Zhejiang University, Zhejiang, China
- Department of Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Shukry J Habib
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Mizoguchi T. In vivo dynamics of hard tissue-forming cell origins: Insights from Cre/loxP-based cell lineage tracing studies. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:109-119. [PMID: 38406212 PMCID: PMC10885318 DOI: 10.1016/j.jdsr.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Bone tissue provides structural support for our bodies, with the inner bone marrow (BM) acting as a hematopoietic organ. Within the BM tissue, two types of stem cells play crucial roles: mesenchymal stem cells (MSCs) (or skeletal stem cells) and hematopoietic stem cells (HSCs). These stem cells are intricately connected, where BM-MSCs give rise to bone-forming osteoblasts and serve as essential components in the BM microenvironment for sustaining HSCs. Despite the mid-20th century proposal of BM-MSCs, their in vivo identification remained elusive owing to a lack of tools for analyzing stemness, specifically self-renewal and multipotency. To address this challenge, Cre/loxP-based cell lineage tracing analyses are being employed. This technology facilitated the in vivo labeling of specific cells, enabling the tracking of their lineage, determining their stemness, and providing a deeper understanding of the in vivo dynamics governing stem cell populations responsible for maintaining hard tissues. This review delves into cell lineage tracing studies conducted using commonly employed genetically modified mice expressing Cre under the influence of LepR, Gli1, and Axin2 genes. These studies focus on research fields spanning long bones and oral/maxillofacial hard tissues, offering insights into the in vivo dynamics of stem cell populations crucial for hard tissue homeostasis.
Collapse
|
17
|
Herring SW, Rafferty KL, Shin DU, Smith K, Baldwin MC. Cyclic loading failed to promote growth in a pig model of midfacial hypoplasia. J Anat 2024; 245:879-893. [PMID: 38562033 PMCID: PMC11442677 DOI: 10.1111/joa.14043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Yucatan miniature pigs, often used as large animal models in clinical research, are distinguished by a breed-specific midfacial hypoplasia with anterior crossbite. Although this deformity can be corrected by distraction osteogenesis, a less invasive method is desirable. We chose a mechanical cyclic stimulation protocol that has been successful in enhancing sutural growth in small animals and in a pilot study on standard pigs. Yucatan minipigs (n = 14) were obtained in pairs, with one of each pair randomly assigned to sham or loaded groups. All animals had loading implants installed on the right nasal and frontal bones and received labels for cell proliferation and mineral apposition. After a week of healing and under anesthesia, experimental animals received cyclic tensile loads (2.5 Hz, 30 min) delivered to the right nasofrontal suture daily for 5 days. Sutural strains were recorded at the final session for experimental animals. Sham animals received the same treatment except without loading or strain gauge placement. In contrast to pilot results on standard pigs, the treatment did not produce the expected sutural widening and increased growth. Although sutures were not fused and strains were in the normal range, the targeted right nasofrontal suture was narrowed rather than widened, with no statistically significant changes in sutural cell proliferation, mineral apposition, or vascularity. In general, Yucatan minipig sutures were more vascular than those of standard pigs and also tended to have more proliferating cells. In conclusion, either because the sutures themselves are abnormal or because of growth restrictions elsewhere in the skull, this cyclic loading protocol was unable to produce the desired response of sutural widening and growth. This treatment, effective in normal animals, did not improve naturally occurring midfacial hypoplasia in Yucatan minipigs.
Collapse
Affiliation(s)
- Susan W Herring
- Department of Orthodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Katherine L Rafferty
- Department of Orthodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - David U Shin
- Department of Orthodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Kelsey Smith
- Department of Orthodontics, School of Dentistry, University of Washington, Seattle, Washington, USA
| | - Michael C Baldwin
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
18
|
Liu M, Zhang H, Li Y, Huang D, Zuo H, Yang J, Chen Z. Loss of MMP9 disturbs cranial suture fusion via suppressing cell proliferation, chondrogenesis and osteogenesis in mice. Matrix Biol 2024; 134:93-106. [PMID: 39374863 DOI: 10.1016/j.matbio.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Cranial sutures function as growth centers for calvarial bones. Abnormal suture closure will cause permanent cranium deformities. MMP9 is a member of the gelatinases that degrades components of the extracellular matrix. MMP9 has been reported to regulate bone development and remodeling. However, the function of MMP9 in cranial suture development is still unknown. Here, we identified that the expression of Mmp9 was specifically elevated during fusion of posterior frontal (PF) suture compared with other patent sutures in mice. Interestingly, inhibition of MMP9 ex vivo or knockout of Mmp9 in mice (Mmp9-/-) disturbed the fusion of PF suture. Histological analysis showed that knockout of Mmp9 resulted in wider distance between osteogenic fronts, suppressed cell condensation and endocranial bone formation in PF suture. Proliferation, chondrogenesis and osteogenesis of suture cells were decreased in Mmp9-/- mice, leading to the PF suture defects. Moreover, transcriptome analysis of PF suture revealed upregulated ribosome biogenesis and downregulated IGF signaling associated with abnormal closure of PF suture in Mmp9-/- mice. Inhibition of the ribosome biogenesis partially rescued PF suture defects caused by Mmp9 knockout. Altogether, these results indicate that MMP9 is critical for the fusion of cranial sutures, thus suggesting MMP9 as a potential therapeutic target for cranial suture diseases.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hanshu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yuanyuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Delan Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Huanyan Zuo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jingwen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Pediatric Dentistry, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Cariology and Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
19
|
Lin P, Qian Z, Liu S, Ye X, Xue P, Shao Y, Zhao J, Guan Y, Liu Z, Chen Y, Wang Q, Yi Z, Zhu M, Yu M, Ling D, Li F. A Single-Cell RNA Sequencing Guided Multienzymatic Hydrogel Design for Self-Regenerative Repair in Diabetic Mandibular Defects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410962. [PMID: 39436107 DOI: 10.1002/adma.202410962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/10/2024] [Indexed: 10/23/2024]
Abstract
Conventional bone tissue engineering materials struggle to reinstate physiological bone remodeling in a diabetic context, primarily due to the compromised repolarization of proinflammatory macrophages to anti-inflammatory macrophages. Here, leveraging single-cell RNA sequencing (scRNA-seq) technology, the pivotal role of nitric oxide (NO) and reactive oxygen species (ROS) is unveiled in impeding macrophage repolarization during physiological bone remodeling amidst diabetes. Guided by scRNA-seq analysis, we engineer a multienzymatic bone tissue engineering hydrogel scaffold (MEBTHS) composed is engineered of methylpropenylated gelatin hydrogel integrated with ruthenium nanozymes, possessing both Ru0 and Ru4+ components. This design facilitates efficient NO elimination via Ru0 while simultaneously exhibiting ROS scavenging properties through Ru4+. Consequently, MEBTHS orchestrates macrophage reprogramming by neutralizing ROS and reversing NO-mediated mitochondrial metabolism, thereby rejuvenating bone marrow-derived mesenchymal stem cells and endothelial cells within diabetic mandibular defects, producing newly formed bone with quality comparable to that of normal bone. The scRNA-seq guided multienzymatic hydrogel design fosters the restoration of self-regenerative repair, marking a significant advancement in bone tissue engineering.
Collapse
Affiliation(s)
- Peihua Lin
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
- Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Zhouyang Qian
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanbiao Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin Ye
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengpeng Xue
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yangjie Shao
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yunan Guan
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhichao Liu
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuhua Chen
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhigao Yi
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Mingjian Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mengfei Yu
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fangyuan Li
- Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| |
Collapse
|
20
|
Li B, Ding Z, Ouchi T, Liao Y, Li B, Gong J, Xie Y, Zhao Z, Li L. Deciphering the spatial distribution of Gli1-lineage cells in dental, oral, and craniofacial regions. J Bone Miner Res 2024; 39:1809-1820. [PMID: 39303104 DOI: 10.1093/jbmr/zjae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
The craniofacial bone, crucial for protecting brain tissue and supporting facial structure, undergoes continuous remodeling through mesenchymal (MSCs) or skeletal stem cells in their niches. Gli1 is an ideal marker for labeling MSCs and osteoprogenitors in this region, and Gli1-lineage cells are identified as pivotal for bone growth, development, repair, and regeneration. Despite its significance, the distribution of Gli1-lineage cells across the dental, oral, and craniofacial (DOC) regions remains to be systematically explored. Utilizing tissue-clearing and light sheet fluorescence microscopy with a Gli1CreER; tdTomatoAi14 mouse model, we mapped the spatial distribution of Gli1-lineage cells throughout the skull, focusing on calvarial bones, sutures, bone marrow, teeth, periodontium, jaw bones, and the temporomandibular joint. We found Gli1-lineage cells widespread in these areas, underscoring their significance in DOC regions. Additionally, we observed their role in repairing calvarial bone defects, providing novel insights into craniofacial biology and stem cell niches and enhancing our understanding of stem cells and their progeny's behavior in vivo.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhangfan Ding
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Takehito Ouchi
- Department of Physiology, Tokyo Dental College, 2-9-18 Kanda-Misaki-cho, Chiyoda-ku, Tokyo 1010061, Japan
| | - Yueqi Liao
- Department of Biomedical Engineering, School of Big Health and Intelligent Engineering, Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Bingzhi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiajing Gong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuhang Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
21
|
Cui C, Lu C, Cai Y, Xiong Y, Duan Y, Lan K, Fan Y, Zhou X, Wei X. PTH1R Suppressed Apoptosis of Mesenchymal Progenitors in Mandibular Growth. Int J Mol Sci 2024; 25:12607. [PMID: 39684319 DOI: 10.3390/ijms252312607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Genetic abnormalities of the parathyroid hormone 1 receptor (PTH1R) lead to profound craniomaxillofacial bone and dentition defects on account of inappropriate tissue metabolism and cellular differentiation. The coordinated activity of differentiation and viability in bone cells is indispensable for bone metabolism. Recent research demonstrates mesenchymal progenitors are responsive to PTH1R signaling for osteogenic differentiation, whereas the effect of PTH1R on cellular survival remains incompletely understood. Here, we report that mice with deletion of PTH1R in Prx1-positive mesenchymal cells (Prx1Cre;PTH1Rfl/fl) exhibit decreased alveolar bone mass due in part to apoptotic response activation. The exploration of oral bone-derived mesenchymal stem cells (OMSCs) with PTH1R deficiency suggests PTH1R signaling modulates OMSCs' apoptosis by interfering mitochondrial function and morphology. The underlying molecular mechanisms are studied by transcriptome sequencing analysis, finding that inositol trisphosphate receptor-3 (IP3R-3), an endoplasmic reticulum calcium channel protein, serves as a modulator of pro-apoptosis in OMSCs. Furthermore, we find PTH1R and its downstream protein kinase A (PKA) pathway dampen IP3R-3's expression. Of note, OMSCs with IP3R-3 overexpression recapitulate the PTH1R-deletion phenotypes, while IP3R-3 silence rescues mitochondrial dysfunction. Altogether, our study uncovers the anti-apoptotic function of PTH1R signaling in OMSCs and proves that excess apoptosis partly contributes to a weakening potential of osteogenic differentiation and aberrant mandibular development.
Collapse
Affiliation(s)
- Chen Cui
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Chuang Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yanling Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yuhua Xiong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yihong Duan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Kaiwen Lan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| |
Collapse
|
22
|
Welsh IC, Feiler ME, Lipman D, Mormile I, Hansen K, Percival CJ. Palatal segment contributions to midfacial anterior-posterior growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560703. [PMID: 37873353 PMCID: PMC10592893 DOI: 10.1101/2023.10.03.560703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Anterior-posterior (A-P) elongation of the palate is a critical aspect of integrated midfacial morphogenesis. Reciprocal epithelial-mesenchymal interactions drive secondary palate elongation that is coupled to the periodic formation of signaling centers within the rugae growth zone (RGZ). However, the relationship between RGZ-driven morphogenetic processes, the differentiative dynamics of underlying palatal bone mesenchymal precursors, and the segmental organization of the upper jaw has remained enigmatic. A detailed ontogenetic study of these relationships is important because palatal segment growth is a critical aspect of normal midfacial growth, can produce dysmorphology when altered, and is a likely basis for evolutionary differences in upper jaw morphology. We completed a combined whole mount gene expression and morphometric analysis of normal murine palatal segment growth dynamics and resulting upper jaw morphology. Our results demonstrated that the first formed palatal ruga (ruga 1), found just posterior to the RGZ, maintained an association with important nasal, neurovascular and palatal structures throughout early midfacial development. This suggested that these features are positioned at a proximal source of embryonic midfacial directional growth. Our detailed characterization of midfacial morphogenesis revealed a one-to-one relationship between palatal segments and upper jaw bones during the earliest stages of palatal elongation. Growth of the maxillary anlage within the anterior secondary palate is uniquely coupled to RGZ-driven morphogenesis. This may help drive the unequaled proportional elongation of the anterior secondary palate segment prior to palatal shelf fusion. Our results also demonstrated that the future maxillary-palatine suture, approximated by the position of ruga 1 and consistently associated with the palatine anlage, formed predominantly via the posterior differentiation of the maxilla within the expanding anterior secondary palate. Our ontogenetic analysis provides a novel and detailed picture of the earliest spatiotemporal dynamics of intramembranous midfacial skeletal specification and differentiation within the context of the surrounding palatal segment AP elongation and associated rugae formation.
Collapse
Affiliation(s)
- Ian C. Welsh
- Program in Craniofacial Biology, University of California at San Francisco, San Francisco, California 94143, USA
- Department of Orofacial Sciences, University of California at San Francisco, San Francisco, California 94143, USA
- Department of Anatomy, University of California at San Francisco, San Francisco, California 94143, USA
| | - Maria E. Feiler
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY 11790
| | - Danika Lipman
- Department of Cell Biology and Anatomy, University of Calgary
| | - Isabel Mormile
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY 11790
| | - Karissa Hansen
- Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA 94143
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA 94143
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143
| | | |
Collapse
|
23
|
To K, Fei L, Pett JP, Roberts K, Blain R, Polański K, Li T, Yayon N, He P, Xu C, Cranley J, Moy M, Li R, Kanemaru K, Huang N, Megas S, Richardson L, Kapuge R, Perera S, Tuck E, Wilbrey-Clark A, Mulas I, Memi F, Cakir B, Predeus AV, Horsfall D, Murray S, Prete M, Mazin P, He X, Meyer KB, Haniffa M, Barker RA, Bayraktar O, Chédotal A, Buckley CD, Teichmann SA. A multi-omic atlas of human embryonic skeletal development. Nature 2024; 635:657-667. [PMID: 39567793 PMCID: PMC11578895 DOI: 10.1038/s41586-024-08189-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/09/2024] [Indexed: 11/22/2024]
Abstract
Human embryonic bone and joint formation is determined by coordinated differentiation of progenitors in the nascent skeleton. The cell states, epigenetic processes and key regulatory factors that underlie lineage commitment of these cells remain elusive. Here we applied paired transcriptional and epigenetic profiling of approximately 336,000 nucleus droplets and spatial transcriptomics to establish a multi-omic atlas of human embryonic joint and cranium development between 5 and 11 weeks after conception. Using combined modelling of transcriptional and epigenetic data, we characterized regionally distinct limb and cranial osteoprogenitor trajectories across the embryonic skeleton and further described regulatory networks that govern intramembranous and endochondral ossification. Spatial localization of cell clusters in our in situ sequencing data using a new tool, ISS-Patcher, revealed mechanisms of progenitor zonation during bone and joint formation. Through trajectory analysis, we predicted potential non-canonical cellular origins for human chondrocytes from Schwann cells. We also introduce SNP2Cell, a tool to link cell-type-specific regulatory networks to polygenic traits such as osteoarthritis. Using osteolineage trajectories characterized here, we simulated in silico perturbations of genes that cause monogenic craniosynostosis and implicate potential cell states and disease mechanisms. This work forms a detailed and dynamic regulatory atlas of bone and cartilage maturation and advances our fundamental understanding of cell-fate determination in human skeletal development.
Collapse
Affiliation(s)
- Ken To
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Lijiang Fei
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - J Patrick Pett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Kenny Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Raphael Blain
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Tong Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Nadav Yayon
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Peng He
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Chuan Xu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - James Cranley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Madelyn Moy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Ruoyan Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Ni Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Stathis Megas
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Centre for AI in Medicine, Department of Applied Mathematics and Theoretical Physics, Cambridge, UK
| | | | - Rakesh Kapuge
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Shani Perera
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Elizabeth Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Ilaria Mulas
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Fani Memi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Batuhan Cakir
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - David Horsfall
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Simon Murray
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Pavel Mazin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Xiaoling He
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Newcastle University, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Omer Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Institut de Pathologie, Groupe Hospitalier Est, Hospices Civils de Lyon, Lyon, France
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, Lyon, France
| | | | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Centre for AI in Medicine, Department of Applied Mathematics and Theoretical Physics, Cambridge, UK.
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK.
- CIFAR Macmillan Multi-scale Human Programme, CIFAR, Toronto, Canada.
| |
Collapse
|
24
|
Yin B, Shen F, Ma Q, Liu Y, Han X, Cai X, Shi Y, Ye L. Identification of Postn+ periosteal progenitor cells with bone regenerative potential. JCI Insight 2024; 9:e182524. [PMID: 39377227 PMCID: PMC11466188 DOI: 10.1172/jci.insight.182524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/13/2024] [Indexed: 10/09/2024] Open
Abstract
Bone contains multiple pools of skeletal stem/progenitor cells (SSPCs), and SSPCs in periosteal compartments are known to exhibit higher regenerative potential than those in BM and endosteal compartments. However, the in vivo identity and hierarchical relationships of periosteal SSPCs (P-SSPCs) remain unclear due to a lack of reliable markers to distinguish BM SSPCs and P-SSPCs. Here, we found that periosteal mesenchymal progenitor cells (P-MPs) in periosteum can be identified based on Postn-CreERT2 expression. Postn-expressing periosteal subpopulation produces osteolineage descendants that fuel bones to maintain homeostasis and support regeneration. Notably, Postn+ P-MPs are likely derived from Gli1+ skeletal stem cells (SSCs). Ablation of Postn+ cells results in impairments in homeostatic cortical bone architecture and defects in fracture repair. Genetic deletion of Igf1r in Postn+ cells dampens bone fracture healing. In summary, our study provides a mechanistic understanding of bone regeneration through the regulation of region-specific Postn+ P-MPs.
Collapse
Affiliation(s)
- Bei Yin
- State Key Laboratory of Oral Diseases
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology
- Department of Endodontics, West China School of Stomatology
| | - Fangyuan Shen
- State Key Laboratory of Oral Diseases
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology
| | - Qingge Ma
- State Key Laboratory of Oral Diseases
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology
- Department of Endodontics, West China School of Stomatology
| | | | - Xianglong Han
- State Key Laboratory of Oral Diseases
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology
- Department of Orthodontics, West China School of Stomatology, and
| | - Xuyu Cai
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology
| | - Ling Ye
- State Key Laboratory of Oral Diseases
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology
- Department of Endodontics, West China School of Stomatology
| |
Collapse
|
25
|
Ye J, Wang J, Zhao J, Xia M, Wang H, Sun L, Zhang WB. RhoA/ROCK-TAZ Axis regulates bone formation within calvarial trans-sutural distraction osteogenesis. Cell Signal 2024; 121:111300. [PMID: 39004327 DOI: 10.1016/j.cellsig.2024.111300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Craniofacial skeletal deformities can be addressed by applying tensile force to sutures to prompt sutural bone formation. The intricate process of mechanical modulation in craniofacial sutures involves complex biomechanical signal transduction. The small GTPase Ras homolog gene family member A (RhoA) functions as a key mechanotransduction protein, orchestrating the dynamic assembly of the cytoskeleton by activating the Rho-associated coiled-coil containing protein kinase (ROCK). Transcriptional coactivator with PDZ-binding motif (TAZ) serves as a crucial mediator in the regulation of genes and the orchestration of biological functions within the mechanotransduction signaling pathway. However, the role of RhoA/ROCK-TAZ in trans-sutural distraction osteogenesis has not been reported. METHODS We utilized pre-osteoblast-specific RhoA deletion mice to establish an in vivo calvarial trans-sutural distraction model and an in vitro mechanical stretch model for pre-osteoblasts isolated from neonatal mice. Micro-CT and histological staining were utilized to detect the formation of new bone in the sagittal suture of the skull as well as the activation of RhoA, Osterix and TAZ. The activation of ROCK-limk-cofilin and the nuclear translocation of TAZ in pre-osteoblasts under mechanical tension were detected through Western blot, qRT-PCR, and immunofluorescence. RESULTS The osteogenic differentiation of pre-osteoblasts was facilitated by mechanical tension through the activation of RhoA and Rho-associated kinase (ROCK), while ablation of RhoA impaired osteogenesis by inhibiting pre-osteoblast differentiation after suture expansion. Furthermore, inhibiting RhoA expression could block tensile-stimulated nuclear translocation of TAZ by preventing F-actin assembly through ROCK-LIM-domain kinase (LIMK)-cofilin pathway. In addition, the TAZ agonist TM-25659 could attenuate impaired osteogenesis caused by ablation of RhoA in pre-osteoblasts by increasing TAZ nuclear accumulation. CONCLUSIONS This study demonstrates that mechanical stretching promotes the osteogenic differentiation of pre-osteoblasts in trans-sutural distraction osteogenesis, and this process is mediated by the RhoA/ROCK-TAZ signaling axis. Overall, our results may provide an insight for potential treatment strategies for craniosynostosis patients through trans-sutural distraction osteogenesis.
Collapse
Affiliation(s)
- Junjie Ye
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Jialu Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210000, China
| | - Jing Zhao
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Meng Xia
- Changsha Stomatological Hospital, Changsha, Hunan 410000, China
| | - Hua Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Lian Sun
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China.
| | - Wei-Bing Zhang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China; The Fourth Affiliated Hospital of Soochow University, Medical Center of Soochow University, Suzhou 215000, China.
| |
Collapse
|
26
|
Raftery RM, Gonzalez Vazquez AG, Walsh DP, Chen G, Laiva AL, Keogh MB, O'Brien FJ. Mobilizing Endogenous Progenitor Cells Using pSDF1α-Activated Scaffolds Accelerates Angiogenesis and Bone Repair in Critical-Sized Bone Defects. Adv Healthc Mater 2024; 13:e2401031. [PMID: 38850118 DOI: 10.1002/adhm.202401031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/05/2024] [Indexed: 06/09/2024]
Abstract
Mobilizing endogenous progenitor cells to repair damaged tissue in situ has the potential to revolutionize the field of regenerative medicine, while the early establishment of a vascular network will ensure survival of newly generated tissue. In this study, a gene-activated scaffold containing a stromal derived factor 1α plasmid (pSDF1α), a pro-angiogenic gene that is also thought to be involved in the recruitment of mesenchymal stromal cells (MSCs) to sites of injury is described. It is shown that over-expression of SDF1α protein enhanced MSC recruitment and induced vessel-like structure formation by endothelial cells in vitro. When implanted subcutaneously, transcriptomic analysis reveals that endogenous MSCs are recruited and significant angiogenesis is stimulated. Just 1-week after implantation into a calvarial critical-sized bone defect, pSDF1α-activated scaffolds are recruited MSCs and rapidly activate angiogenic and osteogenic programs, upregulating Runx2, Dlx5, and Sp7. At the same time-point, pVEGF-activated scaffolds are recruited a variety of cell types, activating endochondral ossification. The early response induced by both scaffolds leads to complete bridging of the critical-sized bone defects within 4-weeks. The versatile cell-free gene-activated scaffold described in this study is capable of harnessing and enhancing the body's own regenerative capacity and has immense potential in a myriad of applications.
Collapse
Affiliation(s)
- Rosanne M Raftery
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, D02 PN40, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, D02 YN77, Ireland
- iEd Hub and Department of Anatomy and Neuroscience, College of Medicine and Health, University College Cork, Cork, T12 CY82, Ireland
| | - Arlyng G Gonzalez Vazquez
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, D02 PN40, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, D02 YN77, Ireland
| | - David P Walsh
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, D02 PN40, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, D02 YN77, Ireland
- Translational Research in Nanomedical Devices, School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Gang Chen
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Microsurgical Research and Training Facility (MRTF), Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Ashang L Laiva
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Tisse Engineering Research Group, Royal College of Surgeons in Ireland - Medical University of Bahrain, Adliya, Bahrain
| | - Michael B Keogh
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Tisse Engineering Research Group, Royal College of Surgeons in Ireland - Medical University of Bahrain, Adliya, Bahrain
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, D02 PN40, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, D02 YN77, Ireland
| |
Collapse
|
27
|
Xing X, Li Z, Xu J, Chen AZ, Archer M, Wang Y, Xu M, Wang Z, Zhu M, Qin Q, Thottappillil N, Zhou M, James AW. Requirement of Pdgfrα+ cells for calvarial bone repair. Stem Cells Transl Med 2024; 13:791-802. [PMID: 38986535 PMCID: PMC11328938 DOI: 10.1093/stcltm/szae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/19/2024] [Indexed: 07/12/2024] Open
Abstract
Platelet-derived growth factor receptor α (PDGFRα) is often considered as a general marker of mesenchymal cells and fibroblasts, but also shows expression in a portion of osteoprogenitor cells. Within the skeleton, Pdgfrα+ mesenchymal cells have been identified in bone marrow and periosteum of long bones, where they play a crucial role in participating in fracture repair. A similar examination of Pdgfrα+ cells in calvarial bone healing has not been examined. Here, we utilize Pdgfrα-CreERTM;mT/mG reporter animals to examine the contribution of Pdgfrα+ mesenchymal cells to calvarial bone repair through histology and single-cell RNA sequencing (scRNA-Seq). Results showed that Pdgfrα+ mesenchymal cells are present in several cell clusters by scRNA-Seq, and by histology a dramatic increase in Pdgfrα+ cells populated the defect site at early timepoints to give rise to healed bone tissue overtime. Notably, diphtheria toxin-mediated ablation of Pdgfrα reporter+ cells resulted in significantly impaired calvarial bone healing. Our findings suggest that Pdgfrα-expressing cells within the calvarial niche play a critical role in the process of calvarial bone repair.
Collapse
Affiliation(s)
- Xin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Austin Z Chen
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Mary Archer
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Mingxin Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Ziyi Wang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Manyu Zhu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Neelima Thottappillil
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Myles Zhou
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| |
Collapse
|
28
|
Farmer DT, Dukov JE, Chen HJ, Arata C, Hernandez-Trejo J, Xu P, Teng CS, Maxson RE, Crump JG. Cellular transitions during cranial suture establishment in zebrafish. Nat Commun 2024; 15:6948. [PMID: 39138165 PMCID: PMC11322166 DOI: 10.1038/s41467-024-50780-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
Cranial sutures separate neighboring skull bones and are sites of bone growth. A key question is how osteogenic activity is controlled to promote bone growth while preventing aberrant bone fusions during skull expansion. Using single-cell transcriptomics, lineage tracing, and mutant analysis in zebrafish, we uncover key developmental transitions regulating bone formation at sutures during skull expansion. In particular, we identify a subpopulation of mesenchyme cells in the mid-suture region that upregulate a suite of genes including BMP antagonists (e.g. grem1a) and pro-angiogenic factors. Lineage tracing with grem1a:nlsEOS reveals that this mid-suture subpopulation is largely non-osteogenic. Moreover, combinatorial mutation of BMP antagonists enriched in this mid-suture subpopulation results in increased BMP signaling in the suture, misregulated bone formation, and abnormal suture morphology. These data reveal establishment of a non-osteogenic mesenchyme population in the mid-suture region that restricts bone formation through local BMP antagonism, thus ensuring proper suture morphology.
Collapse
Affiliation(s)
- D'Juan T Farmer
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA.
| | - Jennifer E Dukov
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Hung-Jhen Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Claire Arata
- Eli and Edythe Broad Center for Regenerative Medicine, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Jose Hernandez-Trejo
- Eli and Edythe Broad Center for Regenerative Medicine, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Pengfei Xu
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Camilla S Teng
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Robert E Maxson
- Department of Biochemistry, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - J Gage Crump
- Eli and Edythe Broad Center for Regenerative Medicine, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
29
|
Pi HJ, Huang B, Yuan Q, Jing JJ. Neural regulation of mesenchymal stem cells in craniofacial bone: development, homeostasis and repair. Front Physiol 2024; 15:1423539. [PMID: 39135707 PMCID: PMC11318092 DOI: 10.3389/fphys.2024.1423539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Mesenchymal stem cells endow various functions, including proliferation, multipotency, migration, etc. Craniofacial bones originate from the cranial neural crest and are developed mainly through intramembranous ossification, which are different from long bones. There are varied mesenchymal stem cells existing in the craniofacial bone, including Gli1 + cells, Axin2 + cells, Prx1 + cells, etc. Nerves distributed in craniofacial area are also derived from the neural crest, and the trigeminal nerve is the major sensory nerve in craniofacial area. The nerves and the skeleton are tightly linked spatially, and the skeleton is broadly innervated by sensory and sympathetic nerves, which also participate in bone development, homeostasis and healing process. In this review, we summarize mesenchymal stem cells located in craniofacial bone or, to be more specific, in jaws, temporomandibular joint and cranial sutures. Then we discuss the research advance concerning neural regulation of mesenchymal stem cells in craniofacial bone, mainly focused on development, homeostasis and repair. Discovery of neural regulation of mesenchymal stem cells may assist in treatment in the craniofacial bone diseases or injuries.
Collapse
Affiliation(s)
| | | | - Quan Yuan
- *Correspondence: Quan Yuan, ; Jun-Jun Jing,
| | | |
Collapse
|
30
|
Trompet D, Melis S, Chagin AS, Maes C. Skeletal stem and progenitor cells in bone development and repair. J Bone Miner Res 2024; 39:633-654. [PMID: 38696703 DOI: 10.1093/jbmr/zjae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
Bone development, growth, and repair are complex processes involving various cell types and interactions, with central roles played by skeletal stem and progenitor cells. Recent research brought new insights into the skeletal precursor populations that mediate intramembranous and endochondral bone development. Later in life, many of the cellular and molecular mechanisms determining development are reactivated upon fracture, with powerful trauma-induced signaling cues triggering a variety of postnatal skeletal stem/progenitor cells (SSPCs) residing near the bone defect. Interestingly, in this injury context, the current evidence suggests that the fates of both SSPCs and differentiated skeletal cells can be considerably flexible and dynamic, and that multiple cell sources can be activated to operate as functional progenitors generating chondrocytes and/or osteoblasts. The combined implementation of in vivo lineage tracing, cell surface marker-based cell selection, single-cell molecular analyses, and high-resolution in situ imaging has strongly improved our insights into the diversity and roles of developmental and reparative stem/progenitor subsets, while also unveiling the complexity of their dynamics, hierarchies, and relationships. Albeit incompletely understood at present, findings supporting lineage flexibility and possibly plasticity among sources of osteogenic cells challenge the classical dogma of a single primitive, self-renewing, multipotent stem cell driving bone tissue formation and regeneration from the apex of a hierarchical and strictly unidirectional differentiation tree. We here review the state of the field and the newest discoveries in the origin, identity, and fates of skeletal progenitor cells during bone development and growth, discuss the contributions of adult SSPC populations to fracture repair, and reflect on the dynamism and relationships among skeletal precursors and differentiated cell lineages. Further research directed at unraveling the heterogeneity and capacities of SSPCs, as well as the regulatory cues determining their fate and functioning, will offer vital new options for clinical translation toward compromised fracture healing and bone regenerative medicine.
Collapse
Affiliation(s)
- Dana Trompet
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Seppe Melis
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Andrei S Chagin
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
31
|
Yuan G, Lin X, Liu Y, Greenblatt MB, Xu R. Skeletal stem cells in bone development, homeostasis, and disease. Protein Cell 2024; 15:559-574. [PMID: 38442300 PMCID: PMC11259547 DOI: 10.1093/procel/pwae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
Tissue-resident stem cells are essential for development and repair, and in the skeleton, this function is fulfilled by recently identified skeletal stem cells (SSCs). However, recent work has identified that SSCs are not monolithic, with long bones, craniofacial sites, and the spine being formed by distinct stem cells. Recent studies have utilized techniques such as fluorescence-activated cell sorting, lineage tracing, and single-cell sequencing to investigate the involvement of SSCs in bone development, homeostasis, and disease. These investigations have allowed researchers to map the lineage commitment trajectory of SSCs in different parts of the body and at different time points. Furthermore, recent studies have shed light on the characteristics of SSCs in both physiological and pathological conditions. This review focuses on discussing the spatiotemporal distribution of SSCs and enhancing our understanding of the diversity and plasticity of SSCs by summarizing recent discoveries.
Collapse
Affiliation(s)
- Guixin Yuan
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xixi Lin
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Ying Liu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Matthew B Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
- Research Division, Hospital for Special Surgery, New York, NY 10065, USA
| | - Ren Xu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen 361102, China
| |
Collapse
|
32
|
Jin M, An Y, Wang Z, Wang G, Lin Z, Ding P, Lu E, Zhao Z, Bi H. Distraction force promotes the osteogenic differentiation of Gli1 + cells in facial sutures via primary cilia-mediated Hedgehog signaling pathway. Stem Cell Res Ther 2024; 15:198. [PMID: 38971766 PMCID: PMC11227703 DOI: 10.1186/s13287-024-03811-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/21/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Trans-sutural distraction osteogenesis (TSDO) involves the application of distraction force to facial sutures to stimulate osteogenesis. Gli1+ cells in the cranial sutures play an important role in bone growth. However, whether Gli1+ cells in facial sutures differentiate into bone under distraction force is unknown. METHODS 4-week-old Gli1ER/Td and C57BL/6 mice were used to establish a TSDO model to explore osteogenesis of zygomaticomaxillary sutures. A Gli1+ cell lineage tracing model was used to observe the distribution of Gli1+ cells and explore the role of Gli1+ cells in facial bone remodeling. RESULTS Distraction force promoted bone remodeling during TSDO. Fluorescence and two-photon scanning images revealed the distribution of Gli1+ cells. Under distraction force, Gli1-lineage cells proliferated significantly and co-localized with Runx2+ cells. Hedgehog signaling was upregulated in Gli1+ cells. Inhibition of Hedgehog signaling suppresses the proliferation and osteogenesis of Gli1+ cells induced by distraction force. Subsequently, the stem cell characteristics of Gli1+ cells were identified. Cell-stretching experiments verified that mechanical force promoted the osteogenic differentiation of Gli1+ cells through Hh signaling. Furthermore, immunofluorescence staining and RT-qPCR experiments demonstrated that the primary cilia in Gli1+ cells exhibit Hedgehog-independent mechanosensitivity, which was required for the osteogenic differentiation induced by mechanical force. CONCLUSIONS Our study indicates that the primary cilia of Gli1+ cells sense mechanical stimuli, mediate Hedgehog signaling activation, and promote the osteogenic differentiation of Gli1+ cells in zygomaticomaxillary sutures.
Collapse
Affiliation(s)
- Mengying Jin
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
- Department of Plastic and Cosmetic Surgery, Henan Provincial People's Hospital, Henan, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Zheng Wang
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Guanhuier Wang
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Zhiyu Lin
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Pengbing Ding
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Enhang Lu
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Zhenmin Zhao
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| | - Hongsen Bi
- Department of Plastic Surgery, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
33
|
Xu R, Sheng R, Lin W, Jiang S, Zhang D, Liu L, Lei K, Li X, Liu Z, Zhang X, Wang Y, Seriwatanachai D, Zhou X, Yuan Q. METTL3 Modulates Ctsk + Lineage Supporting Cranial Osteogenesis via Hedgehog. J Dent Res 2024; 103:734-744. [PMID: 38752256 DOI: 10.1177/00220345241245033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
N6-methyladenosine (m6A) modification, a eukaryotic messenger RNA modification catalyzed by methyltransferase-like 3 (METTL3), plays a pivotal role in stem cell fate determination. Calvarial bone development and maintenance are orchestrated by the cranial sutures. Cathepsin K (CTSK)-positive calvarial stem cells (CSCs) contribute to mice calvarial ossification. However, the role of m6A modification in regulating Ctsk+ lineage cells during calvarial development remains elusive. Here, we showed that METTL3 was colocalized with cranial nonosteoclastic Ctsk+ lineage cells, which were also associated with GLI1 expression. During neonatal development, depletion of Mettl3 in the Ctsk+ lineage cells delayed suture formation and decreased mineralization. During adulthood maintenance, loss of Mettl3 in the Ctsk+ lineage cells impaired calvarial bone formation, which was featured by the increased bone porosity, enhanced bone marrow cavity, and decreased number of osteocytes with the less-developed cellular outline. The analysis of methylated RNA immunoprecipitation sequencing and RNA sequencing data indicated that loss of METTL3 reduced Hedgehog (Hh) signaling pathway. Restoration of Hh signaling pathway by crossing Sufufl/+ alleles or by local administration of SAG21 partially rescued the abnormity. Our data indicate that METTL3 modulates Ctsk+ lineage cells supporting calvarial bone formation by regulating the Hh signaling pathway, providing new insights for clinical treatment of skull vault osseous diseases.
Collapse
Affiliation(s)
- R Xu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - R Sheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - W Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - S Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - D Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - L Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - K Lei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - X Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Z Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - X Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Y Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - D Seriwatanachai
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - X Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Q Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
34
|
Li D, Jiang X, Xiao J, Liu C. A novel perspective of calvarial development: the cranial morphogenesis and differentiation regulated by dura mater. Front Cell Dev Biol 2024; 12:1420891. [PMID: 38979034 PMCID: PMC11228331 DOI: 10.3389/fcell.2024.1420891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
There are lasting concerns on calvarial development because cranium not only accommodates the growing brain, but also safeguards it from exogenous strikes. In the past decades, most studies attributed the dynamic expansion and remodeling of cranium to the proliferation of osteoprecursors in cranial primordium, and the proliferation of osteoprogenitors at the osteogenic front of cranial suture mesenchyme. Further investigations identified series genes expressed in suture mesenchymal cells as the markers of the progenitors, precursors and postnatal stem cells in cranium. However, similar to many other organs, it is suggested that the reciprocal interactions among different tissues also play essential roles in calvarial development. Actually, there are increasing evidence indicating that dura mater (DM) is indispensable for the calvarial morphogenesis and osteogenesis by secreting multiple growth factors, cytokines and extracellular matrix (ECM). Thus, in this review, we first briefly introduce the development of cranium, suture and DM, and then, comprehensively summarize the latest studies exploring the involvement of ECM in DM and cranium development. Eventually, we discussed the reciprocal interactions between calvarium and DM in calvarial development. Actually, our review provides a novel perspective for cranium development by integrating previous classical researches with a spotlight on the mutual interplay between the developing DM and cranium.
Collapse
Affiliation(s)
| | | | - Jing Xiao
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Chao Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| |
Collapse
|
35
|
Wang Y, Qin Q, Wang Z, Negri S, Sono T, Tower RJ, Li Z, Xing X, Archer M, Thottappillil N, Zhu M, Suarez A, Kim DH, Harvey T, Fan CM, James AW. The Mohawk homeobox gene represents a marker and osteo-inhibitory factor in calvarial suture osteoprogenitor cells. Cell Death Dis 2024; 15:420. [PMID: 38886383 PMCID: PMC11183145 DOI: 10.1038/s41419-024-06813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
The regeneration of the mammalian skeleton's craniofacial bones necessitates the action of intrinsic and extrinsic inductive factors from multiple cell types, which function hierarchically and temporally to control the differentiation of osteogenic progenitors. Single-cell transcriptomics of developing mouse calvarial suture recently identified a suture mesenchymal progenitor population with previously unappreciated tendon- or ligament-associated gene expression profile. Here, we developed a Mohawk homeobox (MkxCG; R26RtdT) reporter mouse and demonstrated that this reporter identifies an adult calvarial suture resident cell population that gives rise to calvarial osteoblasts and osteocytes during homeostatic conditions. Single-cell RNA sequencing (scRNA-Seq) data reveal that Mkx+ suture cells display a progenitor-like phenotype with expression of teno-ligamentous genes. Bone injury with Mkx+ cell ablation showed delayed bone healing. Remarkably, Mkx gene played a critical role as an osteo-inhibitory factor in calvarial suture cells, as knockdown or knockout resulted in increased osteogenic differentiation. Localized deletion of Mkx in vivo also resulted in robustly increased calvarial defect repair. We further showed that mechanical stretch dynamically regulates Mkx expression, in turn regulating calvarial cell osteogenesis. Together, we define Mkx+ cells within the suture mesenchyme as a progenitor population for adult craniofacial bone repair, and Mkx acts as a mechanoresponsive gene to prevent osteogenic differentiation within the stem cell niche.
Collapse
Affiliation(s)
- Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ziyi Wang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Stefano Negri
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
- Orthopaedic and Trauma Surgery Unit, Department of Surgery, Dentistry, Paediatrics and Gynaecology of the University of Verona, 37134, Verona, Italy
| | - Takashi Sono
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Robert J Tower
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Xin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Mary Archer
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | | | - Manyu Zhu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Allister Suarez
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Tyler Harvey
- Department of Embryology, Carnegie Institution of Washington, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution of Washington, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
36
|
Pereur R, Dambroise E. Insights into Craniofacial Development and Anomalies: Exploring Fgf Signaling in Zebrafish Models. Curr Osteoporos Rep 2024; 22:340-352. [PMID: 38739352 DOI: 10.1007/s11914-024-00873-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
PURPOSE OF REVIEW To illustrate the value of using zebrafish to understand the role of the Fgf signaling pathway during craniofacial skeletal development under normal and pathological conditions. RECENT FINDINGS Recent data obtained from studies on zebrafish have demonstrated the genetic redundancy of Fgf signaling pathway and have identified new molecular partners of this signaling during the early stages of craniofacial skeletal development. Studies on zebrafish models demonstrate the involvement of the Fgf signaling pathway at every stage of craniofacial development. They particularly emphasize the central role of Fgf signaling pathway during the early stages of the development, which significantly impacts the formation of the various structures making up the craniofacial skeleton. This partly explains the craniofacial abnormalities observed in disorders associated with FGF signaling. Future research efforts should focus on investigating zebrafish Fgf signaling during more advanced stages, notably by establishing zebrafish models expressing mutations responsible for diseases such as craniosynostoses.
Collapse
Affiliation(s)
- Rachel Pereur
- Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Université Paris Cité, INSERM UMR 1163, Imagine Institut, 24 boulevard Montparnasse, 75015, Paris, France
| | - Emilie Dambroise
- Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Université Paris Cité, INSERM UMR 1163, Imagine Institut, 24 boulevard Montparnasse, 75015, Paris, France.
| |
Collapse
|
37
|
Sun Q, Huang J, Tian J, Lv C, Li Y, Yu S, Liu J, Zhang J. Key Roles of Gli1 and Ihh Signaling in Craniofacial Development. Stem Cells Dev 2024; 33:251-261. [PMID: 38623785 DOI: 10.1089/scd.2024.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
The Hedgehog (Hh) signaling pathway orchestrates its influence through a dynamic interplay of Hh proteins, the cell surface receptor Ptch1, Smo, and Gli transcription factors, contributing to a myriad of developmental events. Indian Hedgehog (Ihh) and Gli zinc finger transcription factor 1 (Gli1) play crucial roles in developmental regulation within the Hh signaling pathway. Ihh regulates chondrocyte proliferation, differentiation, and bone formation, impacting the development of cranial bones, cartilage, and the temporomandibular joint (TMJ). Losing Ihh results in cranial bone malformation and decreased ossification and affects the formation of cranial base cartilage unions, TMJ condyles, and joint discs. Gli1 is predominantly expressed during early craniofacial development, and Gli1+ cells are identified as the primary mesenchymal stem cells (MSCs) for craniofacial bones, crucial for cell differentiation and morphogenesis. In addition, a complex mutual regulatory mechanism exists between Gli1 and Ihh, ensuring the normal function of the Hh signaling pathway by directly or indirectly regulating each other's expression levels. And the interaction between Ihh and Gli1 significantly impacts the normal development of craniofacial tissues. This review summarizes the pivotal roles of Gli1 and Ihh in the intricate landscape of mammalian craniofacial development and outlines the molecular regulatory mechanisms and intricate interactions governing the growth of bone and cartilage exhibited by Gli1 and Ihh, which provides new insights into potential therapeutic strategies for related diseases or researches of tissue regeneration.
Collapse
Affiliation(s)
- Qi Sun
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
| | - Jie Huang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
| | - Jingjun Tian
- Department of Orthodontics, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
| | - Changhai Lv
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
| | - Yanhong Li
- Department of Preventive Dentistry, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
| | - Siyuan Yu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
| | - Juan Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
- Department of Preventive Dentistry, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
| | - Jun Zhang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, Kunming, Yunnan, Republic of China
| |
Collapse
|
38
|
Chu X, Kheirollahi V, Lingampally A, Chelladurai P, Valasarajan C, Vazquez-Armendariz AI, Hadzic S, Khadim A, Pak O, Rivetti S, Wilhelm J, Bartkuhn M, Crnkovic S, Moiseenko A, Heiner M, Kraut S, Atefi LS, Koepke J, Valente G, Ruppert C, Braun T, Samakovlis C, Alexopoulos I, Looso M, Chao CM, Herold S, Seeger W, Kwapiszewska G, Huang X, Zhang JS, Pullamsetti SS, Weissmann N, Li X, El Agha E, Bellusci S. GLI1+ Cells Contribute to Vascular Remodeling in Pulmonary Hypertension. Circ Res 2024; 134:e133-e149. [PMID: 38639105 DOI: 10.1161/circresaha.123.323736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/01/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND The precise origin of newly formed ACTA2+ (alpha smooth muscle actin-positive) cells appearing in nonmuscularized vessels in the context of pulmonary hypertension is still debatable although it is believed that they predominantly derive from preexisting vascular smooth muscle cells (VSMCs). METHODS Gli1Cre-ERT2; tdTomatoflox mice were used to lineage trace GLI1+ (glioma-associated oncogene homolog 1-positive) cells in the context of pulmonary hypertension using 2 independent models of vascular remodeling and reverse remodeling: hypoxia and cigarette smoke exposure. Hemodynamic measurements, right ventricular hypertrophy assessment, flow cytometry, and histological analysis of thick lung sections followed by state-of-the-art 3-dimensional reconstruction and quantification using Imaris software were used to investigate the contribution of GLI1+ cells to neomuscularization of the pulmonary vasculature. RESULTS The data show that GLI1+ cells are abundant around distal, nonmuscularized vessels during steady state, and this lineage contributes to around 50% of newly formed ACTA2+ cells around these normally nonmuscularized vessels. During reverse remodeling, cells derived from the GLI1+ lineage are largely cleared in parallel to the reversal of muscularization. Partial ablation of GLI1+ cells greatly prevented vascular remodeling in response to hypoxia and attenuated the increase in right ventricular systolic pressure and right heart hypertrophy. Single-cell RNA sequencing on sorted lineage-labeled GLI1+ cells revealed an Acta2high fraction of cells with pathways in cancer and MAPK (mitogen-activated protein kinase) signaling as potential players in reprogramming these cells during vascular remodeling. Analysis of human lung-derived material suggests that GLI1 signaling is overactivated in both group 1 and group 3 pulmonary hypertension and can promote proliferation and myogenic differentiation. CONCLUSIONS Our data highlight GLI1+ cells as an alternative cellular source of VSMCs in pulmonary hypertension and suggest that these cells and the associated signaling pathways represent an important therapeutic target for further studies.
Collapse
MESH Headings
- Animals
- Zinc Finger Protein GLI1/metabolism
- Zinc Finger Protein GLI1/genetics
- Mice
- Vascular Remodeling
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Mice, Inbred C57BL
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Mice, Transgenic
- Male
- Humans
- Hypoxia/metabolism
- Hypoxia/physiopathology
Collapse
Affiliation(s)
- Xuran Chu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) (X.C., S.B.), Wenzhou Medical University, China
- School of Pharmaceutical Sciences (X.C., X.L.), Wenzhou Medical University, China
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
| | - Vahid Kheirollahi
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
| | - Arun Lingampally
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control (A.L., A.I.V.-A., A.K., M.H., I.A., S. Herold, E.E.A.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
| | - Prakash Chelladurai
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
| | - Chanil Valasarajan
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
| | - Ana Ivonne Vazquez-Armendariz
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control (A.L., A.I.V.-A., A.K., M.H., I.A., S. Herold, E.E.A.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
| | - Stefan Hadzic
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
| | - Ali Khadim
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control (A.L., A.I.V.-A., A.K., M.H., I.A., S. Herold, E.E.A.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
| | - Oleg Pak
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
| | - Stefano Rivetti
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
| | - Jochen Wilhelm
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
| | - Marek Bartkuhn
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
| | - Slaven Crnkovic
- Ludwig Boltzmann Institute for Lung Vascular Research, Medical University Graz, Austria (S.C., G.K.)
| | - Alena Moiseenko
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
| | - Monika Heiner
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control (A.L., A.I.V.-A., A.K., M.H., I.A., S. Herold, E.E.A.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
| | - Simone Kraut
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
| | | | - Janine Koepke
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
| | - Guilherme Valente
- Max Planck Institute for Lung and Heart, Bad Nauheim, Germany (G.V., T.B., M.L., W.S.)
| | - Clemens Ruppert
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
| | - Thomas Braun
- Max Planck Institute for Lung and Heart, Bad Nauheim, Germany (G.V., T.B., M.L., W.S.)
| | - Christos Samakovlis
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
| | - Ioannis Alexopoulos
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control (A.L., A.I.V.-A., A.K., M.H., I.A., S. Herold, E.E.A.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
| | - Mario Looso
- Max Planck Institute for Lung and Heart, Bad Nauheim, Germany (G.V., T.B., M.L., W.S.)
| | - Cho-Ming Chao
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Department of Pediatrics, HELIOS University Medical Center, Witten/Herdecke University, Wuppertal, Germany (C.-M.C.)
| | - Susanne Herold
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control (A.L., A.I.V.-A., A.K., M.H., I.A., S. Herold, E.E.A.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
| | - Werner Seeger
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
- Max Planck Institute for Lung and Heart, Bad Nauheim, Germany (G.V., T.B., M.L., W.S.)
| | - Grazyna Kwapiszewska
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
- Ludwig Boltzmann Institute for Lung Vascular Research, Medical University Graz, Austria (S.C., G.K.)
| | - Xiaoying Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, China (X.H., J.-S.Z.)
| | - Jin-San Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, China (X.H., J.-S.Z.)
| | - Soni Savai Pullamsetti
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
| | - Norbert Weissmann
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
| | - Xiaokun Li
- School of Pharmaceutical Sciences (X.C., X.L.), Wenzhou Medical University, China
| | - Elie El Agha
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control (A.L., A.I.V.-A., A.K., M.H., I.A., S. Herold, E.E.A.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
| | - Saverio Bellusci
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) (X.C., S.B.), Wenzhou Medical University, China
- Cardio-Pulmonary Institute (X.C., V.K., A.L., P.C., C.V., A.I.V.-A., S. Hadzic, A.K., O.P., S.R., J.W., M.B., A.M., M.H., S.K., L.S., J.K., C.R., C.S., I.A., C.-M.C., S. Herold, W.S., G.K., S.S.P., N.W., E.E.A., S.B.), Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Justus Liebig University Giessen, Germany
- Institute for Lung Health, Giessen, Germany (P.C., C.V., A.I.V.-A., A.K., J.W., M.B., J.K., C.S., I.A., S. Herold, W.S., G.K., S.S.P., E.E.A., S.B.)
| |
Collapse
|
39
|
Wang X, Ma C, Zhang X, Yuan P, Wang Y, Fu M, Zhang Z, Shi R, Wei N, Wang J, Wu W. Mussel inspired 3D elastomer enabled rapid calvarial bone regeneration through recruiting more osteoprogenitors from the dura mater. Regen Biomater 2024; 11:rbae059. [PMID: 38911700 PMCID: PMC11193312 DOI: 10.1093/rb/rbae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/17/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Currently, the successful healing of critical-sized calvarial bone defects remains a considerable challenge. The immune response plays a key role in regulating bone regeneration after material grafting. Previous studies mainly focused on the relationship between macrophages and bone marrow mesenchymal stem cells (BMSCs), while dural cells were recently found to play a vital role in the calvarial bone healing. In this study, a series of 3D elastomers with different proportions of polycaprolactone (PCL) and poly(glycerol sebacate) (PGS) were fabricated, which were further supplemented with polydopamine (PDA) coating. The physicochemical properties of the PCL/PGS and PCL/PGS/PDA grafts were measured, and then they were implanted as filling materials for 8 mm calvarial bone defects. The results showed that a matched and effective PDA interface formed on a well-proportioned elastomer, which effectively modulated the polarization of M2 macrophages and promoted the recruitment of dural cells to achieve full-thickness bone repair through both intramembranous and endochondral ossification. Single-cell RNA sequencing analysis revealed the predominance of dural cells during bone healing and their close relationship with macrophages. The findings illustrated that the crosstalk between dural cells and macrophages determined the vertical full-thickness bone repair for the first time, which may be the new target for designing bone grafts for calvarial bone healing.
Collapse
Affiliation(s)
- Xuqiao Wang
- The College of Life Sciences, Northwest University, Xi'an, 710127, PR China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Chaoqun Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Xinchi Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Pingping Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Yujiao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Mingdi Fu
- The College of Life Sciences, Northwest University, Xi'an, 710127, PR China
| | - Zheqian Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Ruiying Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Na Wei
- The College of Life Sciences, Northwest University, Xi'an, 710127, PR China
| | - Juncheng Wang
- Institute of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Wei Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| |
Collapse
|
40
|
Chen S, Liang B, Xu J. Unveiling heterogeneity in MSCs: exploring marker-based strategies for defining MSC subpopulations. J Transl Med 2024; 22:459. [PMID: 38750573 PMCID: PMC11094970 DOI: 10.1186/s12967-024-05294-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/11/2024] [Indexed: 05/19/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) represent a heterogeneous cell population distributed throughout various tissues, demonstrating remarkable adaptability to microenvironmental cues and holding immense promise for disease treatment. However, the inherent diversity within MSCs often leads to variability in therapeutic outcomes, posing challenges for clinical applications. To address this heterogeneity, purification of MSC subpopulations through marker-based isolation has emerged as a promising approach to ensure consistent therapeutic efficacy. In this review, we discussed the reported markers of MSCs, encompassing those developed through candidate marker strategies and high-throughput approaches, with the aim of explore viable strategies for addressing the heterogeneity of MSCs and illuminate prospective research directions in this field.
Collapse
Affiliation(s)
- Si Chen
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Bowei Liang
- Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Jianyong Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Fuqiang Avenue 1001, Shenzhen, 518060, Guangdong, People's Republic of China.
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-Implantation, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
41
|
Yue Y, Chen Z, Dong X, Song G, Jin X. Construction of a Lentiviral Vector for Fgfr2 Overexpression and its Impact on the Biological Behavior of Cranial Suture Mesenchymal Stem Cells. J Craniofac Surg 2024:00001665-990000000-01477. [PMID: 38688023 DOI: 10.1097/scs.0000000000010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/18/2024] [Indexed: 05/02/2024] Open
Abstract
OBJECTIVE Suture mesenchymal stem cells (SuSCs), possessing self-renewal and multilineage differentiation abilities, play a crucial role in cranial bone growth. However, the impact of the disease-causing fibroblast growth factor receptor 2 (FGFR2) mutation on SuSCs in Crouzon syndrome has not been explored. This study aims to employ a lentivirus to overexpress Fgfr2 and investigate its role in the pathogenesis of Crouzon syndrome. METHODS Starting with the prevalent FGFR2 mutation site in patients with Crouzon syndrome, a lentiviral vector carrying the Fgfr2.C361Y mutation was developed and transfected into SuSCs, with a determined multiplicity of infection values. The experimental group, SuSCs+Fgfr2.C361Y, was compared with the empty vector and normal SuSC groups. Cell proliferation, cycle, apoptosis, and osteogenic functionality were assessed using CCK-8 assays, flow cytometry, ALP activity assays, and real-time quantitative polymerase chain reaction. RESULTS The lentiviral vector effectively infected SuSCs, leading to heightened Fgfr2 expression, with optimal multiplicity of infection values of 80. The experimental group demonstrated decreased proliferation activity and a higher apoptosis rate compared with controls (P < 0.05). After osteogenic induction, the experimental group showed significantly higher ALP activity than controls (P < 0.05). Real-time quantitative polymerase chain reaction indicated lower mRNA expression levels of Gli1, Axin2, Pcna, Cdk2, and Bcl-2 in the experimental group than controls, whereas Bax, Runx2, and Bmp-2 showed higher expression (P < 0.05). CONCLUSION This study constructed a lentivirus vector to upregulate Fgfr2 expression in SuSCs, suppressing stem cell stemness by inhibiting proliferation, promoting apoptosis, and accelerating premature osteogenic differentiation, resulting in premature suture closure. These findings establish the groundwork for further understanding the pathogenesis of Crouzon syndrome.
Collapse
Affiliation(s)
- Yingying Yue
- Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | |
Collapse
|
42
|
Wu J, Li F, Yu P, Yu C, Han C, Wang Y, Yu F, Ye L. Transcriptomic and cellular decoding of scaffolds-induced suture mesenchyme regeneration. Int J Oral Sci 2024; 16:33. [PMID: 38654018 PMCID: PMC11039626 DOI: 10.1038/s41368-024-00295-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 04/25/2024] Open
Abstract
Precise orchestration of cell fate determination underlies the success of scaffold-based skeletal regeneration. Despite extensive studies on mineralized parenchymal tissue rebuilding, regenerating and maintaining undifferentiated mesenchyme within calvarial bone remain very challenging with limited advances yet. Current knowledge has evidenced the indispensability of rebuilding suture mesenchymal stem cell niches to avoid severe brain or even systematic damage. But to date, the absence of promising therapeutic biomaterials/scaffolds remains. The reason lies in the shortage of fundamental knowledge and methodological evidence to understand the cellular fate regulations of scaffolds. To address these issues, in this study, we systematically investigated the cellular fate determinations and transcriptomic mechanisms by distinct types of commonly used calvarial scaffolds. Our data elucidated the natural processes without scaffold transplantation and demonstrated how different scaffolds altered in vivo cellular responses. A feasible scaffold, polylactic acid electrospinning membrane (PLA), was next identified to precisely control mesenchymal ingrowth and self-renewal to rebuild non-osteogenic suture-like tissue at the defect center, meanwhile supporting proper osteointegration with defect bony edges. Especially, transcriptome analysis and cellular mechanisms underlying the well-orchestrated cell fate determination of PLA were deciphered. This study for the first time cellularly decoded the fate regulations of scaffolds in suture-bony composite defect healing, offering clinicians potential choices for regenerating such complicated injuries.
Collapse
Affiliation(s)
- Jiayi Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peng Yu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changhao Yu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chuyi Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yitian Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
43
|
Gou Y, Huang Y, Luo W, Li Y, Zhao P, Zhong J, Dong X, Guo M, Li A, Hao A, Zhao G, Wang Y, Zhu Y, Zhang H, Shi Y, Wagstaff W, Luu HH, Shi LL, Reid RR, He TC, Fan J. Adipose-derived mesenchymal stem cells (MSCs) are a superior cell source for bone tissue engineering. Bioact Mater 2024; 34:51-63. [PMID: 38186960 PMCID: PMC10770370 DOI: 10.1016/j.bioactmat.2023.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024] Open
Abstract
Effective bone regeneration through tissue engineering requires a combination of osteogenic progenitors, osteoinductive biofactors and biocompatible scaffold materials. Mesenchymal stem cells (MSCs) represent the most promising seed cells for bone tissue engineering. As multipotent stem cells that can self-renew and differentiate into multiple lineages including bone and fat, MSCs can be isolated from numerous tissues and exhibit varied differentiation potential. To identify an optimal progenitor cell source for bone tissue engineering, we analyzed the proliferative activity and osteogenic potential of four commonly-used mouse MSC sources, including immortalized mouse embryonic fibroblasts (iMEF), immortalized mouse bone marrow stromal stem cells (imBMSC), immortalized mouse calvarial mesenchymal progenitors (iCAL), and immortalized mouse adipose-derived mesenchymal stem cells (iMAD). We found that iMAD exhibited highest osteogenic and adipogenic capabilities upon BMP9 stimulation in vitro, whereas iMAD and iCAL exhibited highest osteogenic capability in BMP9-induced ectopic osteogenesis and critical-sized calvarial defect repair. Transcriptomic analysis revealed that, while each MSC line regulated a distinct set of target genes upon BMP9 stimulation, all MSC lines underwent osteogenic differentiation by regulating osteogenesis-related signaling including Wnt, TGF-β, PI3K/AKT, MAPK, Hippo and JAK-STAT pathways. Collectively, our results demonstrate that adipose-derived MSCs represent optimal progenitor sources for cell-based bone tissue engineering.
Collapse
Affiliation(s)
- Yannian Gou
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Yanran Huang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wenping Luo
- Laboratory Animal Center, Southwest University, Chongqing, 400715, China
| | - Yanan Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, The Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Piao Zhao
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiamin Zhong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Xiangyu Dong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Meichun Guo
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Aohua Li
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ailing Hao
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Geriatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200000, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Orthopaedic Surgery, Beijing Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Hui Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- The Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, 4000430, China
| | - Yunhan Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Department of Psychology, School of Arts and Sciences, University of Rochester, Rochester, NY, 14627, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
44
|
Feng X, Molteni H, Gregory M, Lanza J, Polsani N, Gupta I, Wyetzner R, Hawkins MB, Holmes G, Hopyan S, Harris MP, Atit RP. Apical expansion of calvarial osteoblasts and suture patency is dependent on fibronectin cues. Development 2024; 151:dev202371. [PMID: 38602508 PMCID: PMC11165720 DOI: 10.1242/dev.202371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024]
Abstract
The skull roof, or calvaria, is comprised of interlocking plates of bones that encase the brain. Separating these bones are fibrous sutures that permit growth. Currently, we do not understand the instructions for directional growth of the calvaria, a process which is error-prone and can lead to skeletal deficiencies or premature suture fusion (craniosynostosis, CS). Here, we identify graded expression of fibronectin (FN1) in the mouse embryonic cranial mesenchyme (CM) that precedes the apical expansion of calvaria. Conditional deletion of Fn1 or Wasl leads to diminished frontal bone expansion by altering cell shape and focal actin enrichment, respectively, suggesting defective migration of calvarial progenitors. Interestingly, Fn1 mutants have premature fusion of coronal sutures. Consistently, syndromic forms of CS in humans exhibit dysregulated FN1 expression, and we also find FN1 expression altered in a mouse CS model of Apert syndrome. These data support a model of FN1 as a directional substrate for calvarial osteoblast migration that may be a common mechanism underlying many cranial disorders of disparate genetic etiologies.
Collapse
Affiliation(s)
- Xiaotian Feng
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Helen Molteni
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Megan Gregory
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jennifer Lanza
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nikaya Polsani
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Isha Gupta
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rachel Wyetzner
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - M. Brent Hawkins
- Department of Genetics, Harvard Medical School, Department of Orthopedics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Greg Holmes
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sevan Hopyan
- Department of Developmental Biology, Hospital for Sick Kids, Toronto ON, M5G 0A4, Canada
| | - Matthew P. Harris
- Department of Genetics, Harvard Medical School, Department of Orthopedics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Radhika P. Atit
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Genome Sciences and Genetics, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
45
|
He L. Biomaterials for Regenerative Cranioplasty: Current State of Clinical Application and Future Challenges. J Funct Biomater 2024; 15:84. [PMID: 38667541 PMCID: PMC11050949 DOI: 10.3390/jfb15040084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Acquired cranial defects are a prevalent condition in neurosurgery and call for cranioplasty, where the missing or defective cranium is replaced by an implant. Nevertheless, the biomaterials in current clinical applications are hardly exempt from long-term safety and comfort concerns. An appealing solution is regenerative cranioplasty, where biomaterials with/without cells and bioactive molecules are applied to induce the regeneration of the cranium and ultimately repair the cranial defects. This review examines the current state of research, development, and translational application of regenerative cranioplasty biomaterials and discusses the efforts required in future research. The first section briefly introduced the regenerative capacity of the cranium, including the spontaneous bone regeneration bioactivities and the presence of pluripotent skeletal stem cells in the cranial suture. Then, three major types of biomaterials for regenerative cranioplasty, namely the calcium phosphate/titanium (CaP/Ti) composites, mineralised collagen, and 3D-printed polycaprolactone (PCL) composites, are reviewed for their composition, material properties, and findings from clinical trials. The third part discusses perspectives on future research and development of regenerative cranioplasty biomaterials, with a considerable portion based on issues identified in clinical trials. This review aims to facilitate the development of biomaterials that ultimately contribute to a safer and more effective healing of cranial defects.
Collapse
Affiliation(s)
- Lizhe He
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| |
Collapse
|
46
|
Sui H, Dou J, Shi B, Cheng X. The reciprocity of skeletal muscle and bone: an evolving view from mechanical coupling, secretory crosstalk to stem cell exchange. Front Physiol 2024; 15:1349253. [PMID: 38505709 PMCID: PMC10949226 DOI: 10.3389/fphys.2024.1349253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction: Muscle and bone constitute the two main parts of the musculoskeletal system and generate an intricately coordinated motion system. The crosstalk between muscle and bone has been under investigation, leading to revolutionary perspectives in recent years. Method and results: In this review, the evolving concept of muscle-bone interaction from mechanical coupling, secretory crosstalk to stem cell exchange was explained in sequence. The theory of mechanical coupling stems from the observation that the development and maintenance of bone mass are largely dependent on muscle-derived mechanical loads, which was later proved by Wolff's law, Utah paradigm and Mechanostat hypothesis. Then bone and muscle are gradually recognized as endocrine organs, which can secrete various cytokines to modulate the tissue homeostasis and remodeling to each other. The latest view presented muscle-bone interaction in a more direct way: the resident mesenchymal stromal cell in the skeletal muscle, i.e., fibro-adipogenic progenitors (FAPs), could migrate to the bone injury site and contribute to bone regeneration. Emerging evidence even reveals the ectopic source of FAPs from tissue outside the musculoskeletal system, highlighting its dynamic property. Conclusion: FAPs have been established as the critical cell connecting muscle and bone, which provides a new modality to study inter-tissue communication. A comprehensive and integrated perspective of muscle and bone will facilitate in-depth research in the musculoskeletal system and promote novel therapeutic avenues in treating musculoskeletal disorders.
Collapse
Affiliation(s)
| | | | | | - Xu Cheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Yang G, He Q, Guo X, Li RY, Lin J, Lang Y, Tao W, Liu W, Lin H, Xing S, Qi Y, Xie Z, Han JDJ, Zhou B, Teng Y, Yang X. Identification of the metaphyseal skeletal stem cell building trabecular bone. SCIENCE ADVANCES 2024; 10:eadl2238. [PMID: 38394209 PMCID: PMC10889359 DOI: 10.1126/sciadv.adl2238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Skeletal stem cells (SSCs) that are capable of self-renewal and multipotent differentiation contribute to bone development and homeostasis. Several populations of SSCs at different skeletal sites have been reported. Here, we identify a metaphyseal SSC (mpSSC) population whose transcriptional landscape is distinct from other bone mesenchymal stromal cells (BMSCs). These mpSSCs are marked by Sstr2 or Pdgfrb+Kitl-, located just underneath the growth plate, and exclusively derived from hypertrophic chondrocytes (HCs). These HC-derived mpSSCs have properties of self-renewal and multipotency in vitro and in vivo, producing most HC offspring postnatally. HC-specific deletion of Hgs, a component of the endosomal sorting complex required for transport, impairs the HC-to-mpSSC conversion and compromises trabecular bone formation. Thus, mpSSC is the major source of BMSCs and osteoblasts in bone marrow, supporting the postnatal trabecular bone formation.
Collapse
Affiliation(s)
- Guan Yang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Qi He
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Xiaoxiao Guo
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing 100871, China
| | - Rong-Yu Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jingting Lin
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yiming Lang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Wanyu Tao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing 100871, China
| | - Wenjia Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Huisang Lin
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Shilai Xing
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou 325027, China
| | - Yini Qi
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Zhongliang Xie
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jing-Dong J. Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing 100871, China
| | - Bin Zhou
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yan Teng
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiao Yang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
48
|
Liu T, You Z, Shen F, Yang P, Chen J, Meng S, Wang C, Xiong D, You C, Wang Z, Shi Y, Ye L. Tricarboxylic Acid Cycle Metabolite-Coordinated Biohydrogels Augment Cranial Bone Regeneration Through Neutrophil-Stimulated Mesenchymal Stem Cell Recruitment and Histone Acetylation-Mediated Osteogenesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5486-5503. [PMID: 38284176 DOI: 10.1021/acsami.3c15473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Cranial bone defects remain a major clinical challenge, increasing patients' life burdens. Tricarboxylic acid (TCA) cycle metabolites play crucial roles in facilitating bone tissue regeneration. However, the development of TCA cycle metabolite-modified biomimetic grafts for skull bone regeneration still needs to be improved. The mechanism underlying the release of TCA cycle metabolites from biomaterials in regulating immune responses and mesenchymal stem cell (MSC) fate (migration and differentiation) remains unknown. Herein, this work constructs biomimetic hydrogels composed of gelatin and chitosan networks covalently cross-linked by genipin (CGG hydrogels). A series of TCA cycle metabolite-coordinated CGG hydrogels with strong mechanical and antiswelling performances are subsequently developed. Remarkably, the citrate (Na3Cit, Cit)-coordinated CGG hydrogels (CGG-Cit hydrogels) with the highest mechanical modulus and strength significantly promote skull bone regeneration in rat and murine cranial defects. Mechanistically, using a transgenic mouse model, bulk RNA sequencing, and single-cell RNA sequencing, this work demonstrates that CGG-Cit hydrogels promote Gli1+ MSC migration via neutrophil-secreted oncostatin M. Results also indicate that citrate improves osteogenesis via enhanced histone H3K9 acetylation on osteogenic master genes. Taken together, the immune microenvironment- and MSC fate-regulated CGG-Cit hydrogels represent a highly efficient and facile approach toward skull bone tissue regeneration with great potential for bench-to-bedside translation.
Collapse
Affiliation(s)
- Tingjun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ziying You
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Fangyuan Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Puying Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuhuai Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ding Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chengjia You
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhenming Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
49
|
Doro D, Liu A, Lau JS, Rajendran AK, Healy C, Krstic M, Grigoriadis AE, Iseki S, Liu KJ. Cranial suture lineage and contributions to repair of the mouse skull. Development 2024; 151:dev202116. [PMID: 38345329 PMCID: PMC10911112 DOI: 10.1242/dev.202116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024]
Abstract
The cranial sutures are proposed to be a stem cell niche, harbouring skeletal stem cells that are directly involved in development, homeostasis and healing. Like the craniofacial bones, the sutures are formed from both mesoderm and neural crest. During cranial bone repair, neural crest cells have been proposed to be key players; however, neural crest contributions to adult sutures are not well defined, and the relative importance of suture proximity is unclear. Here, we use genetic approaches to re-examine the neural crest-mesoderm boundaries in the adult mouse skull. These are combined with calvarial wounding experiments suggesting that suture proximity improves the efficiency of cranial repair. Furthermore, we demonstrate that Gli1+ and Axin2+ skeletal stem cells are present in all calvarial sutures examined. We propose that the position of the defect determines the availability of neural crest-derived progenitors, which appear to be a key element in the repair of calvarial defects.
Collapse
Affiliation(s)
- Daniel Doro
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
- Department of Molecular Craniofacial Embryology and Oral Histology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Annie Liu
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Jia Shang Lau
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Arun Kumar Rajendran
- Department of Molecular Craniofacial Embryology and Oral Histology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Christopher Healy
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Marko Krstic
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Agamemnon E. Grigoriadis
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Sachiko Iseki
- Department of Molecular Craniofacial Embryology and Oral Histology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Karen J. Liu
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
50
|
Soliman L, Sobti N, Rao V, Klinge P, Woo AS. Spontaneous Reossification Following Craniectomy in a Pediatric Patient. Cleft Palate Craniofac J 2024; 61:166-171. [PMID: 35918810 DOI: 10.1177/10556656221118426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Spontaneous reossification following a cranial defect is described by only a few case reports. A 6-month-old male with epidural hematoma underwent decompressive craniotomy, subsequently complicated by scalp abscess requiring removal of the bone flap. On serial outpatient follow-up, the patient demonstrated near-complete resolution of cranial defect over the course of 18 months, thus deferring the need for future cranioplasty. Prior articles have identified this occurrence in children and young adults; however, the present case is the first to report of this phenomenon in an infant less than 1 year of age. A brief review of the literature is provided with the proposed physiologic underpinning for the spontaneous reossification observed. While prior studies propose that recranialization is mediated by contact with the dura mater and pericranium, new investigations suggest that calvarial bone repair is also mediated by stem cells from the suture mesenchyme.
Collapse
Affiliation(s)
- Luke Soliman
- Division of Plastic and Reconstructive Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Nikhil Sobti
- Division of Plastic and Reconstructive Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Vinay Rao
- Division of Plastic and Reconstructive Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Petra Klinge
- Division of Neurosurgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Albert S Woo
- Division of Plastic and Reconstructive Surgery, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|