1
|
Peng Y, Liu J, Fu J, Luo Y, Zhao X, Wei X. Emerging Thermal Detectors Based on Low-Dimensional Materials: Strategies and Progress. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:459. [PMID: 40137632 PMCID: PMC11945977 DOI: 10.3390/nano15060459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Thermal detectors, owing to their broadband spectral response and ambient operating temperature capabilities, represent a key technological avenue for surpassing the inherent limitations of traditional photon detectors. A fundamental trade-off exists between the thermal properties and the response performance of conventional thermosensitive materials (e.g., vanadium oxide and amorphous silicon), significantly hindering the simultaneous enhancement of device sensitivity and response speed. Recently, low-dimensional materials, with their atomically thin thickness leading to ultralow thermal capacitance and tunable thermoelectric properties, have emerged as a promising perspective for addressing these bottlenecks. Integrating low-dimensional materials with metasurfaces enables the utilization of subwavelength periodic configurations and localized electromagnetic field enhancements. This not only overcomes the limitation of low light absorption efficiency in thermal detectors based on low-dimensional materials (TDLMs) but also imparts full Stokes polarization detection capability, thus offering a paradigm shift towards multidimensional light field sensing. This review systematically elucidates the working principle and device architecture of TDLMs. Subsequently, it reviews recent research advancements in this field, delving into the unique advantages of metasurface design in terms of light localization and interfacial heat transfer optimization. Furthermore, it summarizes the cutting-edge applications of TDLMs in wideband communication, flexible sensing, and multidimensional photodetection. Finally, it analyzes the major challenges confronting TDLMs and provides an outlook on their future development prospects.
Collapse
Affiliation(s)
- Yang Peng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Jun Liu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- Hangzhou Hikmicro Sensing Technology Co., Ltd., Hangzhou 311599, China
| | - Jintao Fu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Ying Luo
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiangrui Zhao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xingzhan Wei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Peng Y, Gao L, Liu C, Guo H, Huang W, Zheng D. Gel-Based Electrolytes for Organic Electrochemical Transistors: Mechanisms, Applications, and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409384. [PMID: 39901575 DOI: 10.1002/smll.202409384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/06/2024] [Indexed: 02/05/2025]
Abstract
Organic electrochemical transistors (OECTs) have emerged as the core component of specialized bioelectronic technologies due to their high signal amplification capability, low operating voltage (<1 V), and biocompatibility. Under a gate bias, OECTs modulate device operation via ionic drift between the electrolyte and the channel. Compared to common electrolytes with a fluid nature (including salt aqueous solutions and ion liquids), gel electrolytes, with an intriguing structure consisting of a physically and/or chemically crosslinked polymer network where the interstitial spaces between polymers are filled with liquid electrolytes or mobile ion species, are promising candidates for quasi-solid electrolytes. Due to relatively high ionic conductivity, the potential for large-scale integration, and the capability to suppress channel swelling, gel electrolytes have been a research highlight in OECTs in recent years. This review summarizes recent progress on OECTs with gel electrolytes that demonstrate good mechanical as well as physical and chemical stabilities. Moreover, various components in forming gel electrolytes, including different mobile liquid phases and polymer components, are introduced. Furthermore, applications of these OECTs in the areas of sensors, neuromorphics, and organic circuits, are discussed. Last, future perspectives of OECTs based on gel electrolytes are discussed along with possible solutions for existing challenges.
Collapse
Affiliation(s)
- Yujie Peng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Lin Gao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Changjian Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Haihong Guo
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| | - Wei Huang
- School of Automation Engineering, UESTC, Chengdu, 611731, P. R. China
| | - Ding Zheng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, P. R. China
| |
Collapse
|
3
|
Wu Y, Song D, An M, Chi C, Zhao C, Yao B, Ma W, Zhang X. Unlocking new possibilities in ionic thermoelectric materials: a machine learning perspective. Natl Sci Rev 2025; 12:nwae411. [PMID: 39764506 PMCID: PMC11702661 DOI: 10.1093/nsr/nwae411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/07/2024] [Accepted: 11/12/2024] [Indexed: 01/18/2025] Open
Abstract
The high thermopower of ionic thermoelectric (i-TE) materials holds promise for miniaturized waste-heat recovery devices and thermal sensors. However, progress is hampered by laborious trial-and-error experimentations, which lack theoretical underpinning. Herein, by introducing the simplified molecular-input line-entry system, we have addressed the challenge posed by the inconsistency of i-TE material types, and present a machine learning model that evaluates the Seebeck coefficient with an R 2 of 0.98 on the test dataset. Using this tool, we experimentally identify a waterborne polyurethane/potassium iodide ionogel with a Seebeck coefficient of 41.39 mV/K. Furthermore, interpretable analysis reveals that the number of rotatable bonds and the octanol-water partition coefficient of ions negatively affect Seebeck coefficients, which is corroborated by molecular dynamics simulations. This machine learning-assisted framework represents a pioneering effort in the i-TE field, offering significant promise for accelerating the discovery and development of high-performance i-TE materials.
Collapse
Affiliation(s)
- Yidan Wu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Dongxing Song
- Key Laboratory of Process Heat Transfer and Energy Saving of Henan Province, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Meng An
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Cheng Chi
- Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
| | - Chunyu Zhao
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bing Yao
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Weigang Ma
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xing Zhang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Wu P, Gu J, Liu X, Ren Y, Mi X, Zhan W, Zhang X, Wang H, Ji X, Yue Z, Liang J. A Robust Core-Shell Nanofabric with Personal Protection, Health Monitoring and Physical Comfort for Smart Sportswear. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411131. [PMID: 39370585 DOI: 10.1002/adma.202411131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Smart textiles with a high level of personal protection, health monitoring, physical comfort, and wearing durability are highly demanded in clothing for harsh application scenarios, such as modern sportswear. However, seamlessly integrating such a smart clothing system has been a long-sought but challenging goal. Herein, based on coaxial electrospinning techniques, a smart non-woven textile (Smart-NT) integrated with high impact resistance is developed, multisensory functions, and radiative cooling effects. This Smart-NT is comprised of core-shell nanofibers with an ionic conductive polymer sheath and an impact-stiffening polymer core. The soft smart textile, with a thickness of only 800 µm, can attenuate over 60% of impact force, sense pressure stimulus with sensitivity up to 201.5 kPa-1, achieve temperature sensing resolution of 0.1 °C, and reduce skin temperature by ≈17 °C under a solar intensity of 1 kW m-2. In addition, the stretchable Smart-NT is highly durable and robust, retaining its multifunction features over 10 000 bending and multiple washing cycles. Finally, application scenarios are demonstrated for real-time health monitoring, body protection, and physical comfort of smart sportswear based on Smart-NT for outdoor sports. The strategy opens a new avenue for seamless integration of smart clothing systems.
Collapse
Affiliation(s)
- Peiqi Wu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Jianfeng Gu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Xue Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yichen Ren
- Department of Microelectronics, Nankai University, Tianjin, 300350, P. R. China
| | - Xiaoqian Mi
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Weiqing Zhan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Xinmin Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Huihui Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Xinyi Ji
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Zhao Yue
- Department of Microelectronics, Nankai University, Tianjin, 300350, P. R. China
| | - Jiajie Liang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
5
|
Luo X, Chen C, He Z, Wang M, Pan K, Dong X, Li Z, Liu B, Zhang Z, Wu Y, Ban C, Chen R, Zhang D, Wang K, Wang Q, Li J, Lu G, Liu J, Liu Z, Huang W. A bionic self-driven retinomorphic eye with ionogel photosynaptic retina. Nat Commun 2024; 15:3086. [PMID: 38600063 PMCID: PMC11006927 DOI: 10.1038/s41467-024-47374-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Bioinspired bionic eyes should be self-driving, repairable and conformal to arbitrary geometries. Such eye would enable wide-field detection and efficient visual signal processing without requiring external energy, along with retinal transplantation by replacing dysfunctional photoreceptors with healthy ones for vision restoration. A variety of artificial eyes have been constructed with hemispherical silicon, perovskite and heterostructure photoreceptors, but creating zero-powered retinomorphic system with transplantable conformal features remains elusive. By combining neuromorphic principle with retinal and ionoelastomer engineering, we demonstrate a self-driven hemispherical retinomorphic eye with elastomeric retina made of ionogel heterojunction as photoreceptors. The receptor driven by photothermoelectric effect shows photoperception with broadband light detection (365 to 970 nm), wide field-of-view (180°) and photosynaptic (paired-pulse facilitation index, 153%) behaviors for biosimilar visual learning. The retinal photoreceptors are transplantable and conformal to any complex surface, enabling visual restoration for dynamic optical imaging and motion tracking.
Collapse
Affiliation(s)
- Xu Luo
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Chen Chen
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Zixi He
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Min Wang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Keyuan Pan
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Xuemei Dong
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Zifan Li
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Bin Liu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Zicheng Zhang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Yueyue Wu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Chaoyi Ban
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Rong Chen
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Dengfeng Zhang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Kaili Wang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Qiye Wang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Junyue Li
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Gang Lu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Juqing Liu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China.
| | - Zhengdong Liu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China.
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China.
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, China.
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, China.
| |
Collapse
|
6
|
Trifiletti V, Massetti M, Calloni A, Luong S, Pianetti A, Milita S, Schroeder BC, Bussetti G, Binetti S, Fabiano S, Fenwick O. Bismuth-Based Perovskite Derivates with Thermal Voltage Exceeding 40 mV/K. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:5408-5417. [PMID: 38595774 PMCID: PMC11000217 DOI: 10.1021/acs.jpcc.3c06324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
Heat is an inexhaustible source of energy, and it can be exploited by thermoelectronics to produce electrical power or electrical responses. The search for a low-cost thermoelectric material that could achieve high efficiencies and can also be straightforwardly scalable has turned significant attention to the halide perovskite family. Here, we report the thermal voltage response of bismuth-based perovskite derivates and suggest a path to increase the electrical conductivity by applying chalcogenide doping. The films were produced by drop-casting or spin coating, and sulfur was introduced in the precursor solution using bismuth triethylxanthate. The physical-chemical analysis confirms the substitution. The sulfur introduction caused resistivity reduction by 2 orders of magnitude, and the thermal voltage exceeded 40 mV K-1 near 300 K in doped and undoped bismuth-based perovskite derivates. X-ray diffraction, Raman spectroscopy, and grazing-incidence wide-angle X-ray scattering were employed to confirm the structure. X-ray photoelectron spectroscopy, elemental analysis, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were employed to study the composition and morphology of the produced thin films. UV-visible absorbance, photoluminescence, inverse photoemission, and ultraviolet photoelectron spectroscopies have been used to investigate the energy band gap.
Collapse
Affiliation(s)
- Vanira Trifiletti
- Department
of Materials Science and L-NESS, University
of Milano-Bicocca, Via
Cozzi 55, I-20125 Milan, Italy
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Matteo Massetti
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping SE-601
74, Sweden
| | - Alberto Calloni
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano, Italy
| | - Sally Luong
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | - Andrea Pianetti
- Department
of Materials Science and L-NESS, University
of Milano-Bicocca, Via
Cozzi 55, I-20125 Milan, Italy
| | - Silvia Milita
- Institute
for Microelectronics and Microsystems (CNRIMM), Via Piero Gobetti 101, 40129 Bologna, Italy
| | - Bob C. Schroeder
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Gianlorenzo Bussetti
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano, Italy
| | - Simona Binetti
- Department
of Materials Science and L-NESS, University
of Milano-Bicocca, Via
Cozzi 55, I-20125 Milan, Italy
| | - Simone Fabiano
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping SE-601
74, Sweden
| | - Oliver Fenwick
- School
of Engineering and Materials Science, Queen
Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
7
|
Yao Y, Huang W, Chen J, Liu X, Bai L, Chen W, Cheng Y, Ping J, Marks TJ, Facchetti A. Flexible and Stretchable Organic Electrochemical Transistors for Physiological Sensing Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209906. [PMID: 36808773 DOI: 10.1002/adma.202209906] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Flexible and stretchable bioelectronics provides a biocompatible interface between electronics and biological systems and has received tremendous attention for in situ monitoring of various biological systems. Considerable progress in organic electronics has made organic semiconductors, as well as other organic electronic materials, ideal candidates for developing wearable, implantable, and biocompatible electronic circuits due to their potential mechanical compliance and biocompatibility. Organic electrochemical transistors (OECTs), as an emerging class of organic electronic building blocks, exhibit significant advantages in biological sensing due to the ionic nature at the basis of the switching behavior, low driving voltage (<1 V), and high transconductance (in millisiemens range). During the past few years, significant progress in constructing flexible/stretchable OECTs (FSOECTs) for both biochemical and bioelectrical sensors has been reported. In this regard, to summarize major research accomplishments in this emerging field, this review first discusses structure and critical features of FSOECTs, including working principles, materials, and architectural engineering. Next, a wide spectrum of relevant physiological sensing applications, where FSOECTs are the key components, are summarized. Last, major challenges and opportunities for further advancing FSOECT physiological sensors are discussed.
Collapse
Affiliation(s)
- Yao Yao
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Wei Huang
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Jianhua Chen
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Xiaoxue Liu
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Libing Bai
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Wei Chen
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Yuhua Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan, 611731, P. R. China
| | - Jianfeng Ping
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Sheridan Road, Evanston, IL, 60208, USA
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 60174, Sweden
| |
Collapse
|
8
|
Prete D, Colosimo A, Demontis V, Medda L, Zannier V, Bellucci L, Tozzini V, Sorba L, Beltram F, Pisignano D, Rossella F. Heat-Driven Iontronic Nanotransistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204120. [PMID: 36698263 PMCID: PMC9982553 DOI: 10.1002/advs.202204120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Thermoelectric polyelectrolytes are emerging as ideal material platform for self-powered bio-compatible electronic devices and sensors. However, despite the nanoscale nature of the ionic thermodiffusion processes underlying thermoelectric efficiency boost in polyelectrolytes, to date no evidence for direct probing of ionic diffusion on its relevant length and time scale has been reported. This gap is bridged by developing heat-driven hybrid nanotransistors based on InAs nanowires embedded in thermally biased Na+ -functionalized (poly)ethyleneoxide, where the semiconducting nanostructure acts as a nanoscale probe sensitive to the local arrangement of the ionic species. The impact of ionic thermoelectric gating on the nanodevice electrical response is addressed, investigating the effect of device architecture, bias configuration and frequency of the heat stimulus, and inferring optimal conditions for the heat-driven nanotransistor operation. Microscopic quantities of the polyelectrolyte such as the ionic diffusion coefficient are extracted from the analysis of hysteretic behaviors rising in the nanodevices. The reported experimental platform enables simultaneously the ionic thermodiffusion and nanoscale resolution, providing a framework for direct estimation of polyelectrolytes microscopic parameters. This may open new routes for heat-driven nanoelectronic applications and boost the rational design of next-generation polymer-based thermoelectric materials.
Collapse
Affiliation(s)
- Domenic Prete
- NESTScuola Normale Superiore and Istituto Nanoscienze‐CNRPiazza San Silvestro 12PisaI‐56127Italy
| | - Alessia Colosimo
- NESTScuola Normale Superiore and Istituto Nanoscienze‐CNRPiazza San Silvestro 12PisaI‐56127Italy
- Universitá di PisaDipartimento di FisicaLargo Bruno Pontecorvo, 3Pisa56127Italy
| | - Valeria Demontis
- NESTScuola Normale Superiore and Istituto Nanoscienze‐CNRPiazza San Silvestro 12PisaI‐56127Italy
| | - Luca Medda
- NESTScuola Normale Superiore and Istituto Nanoscienze‐CNRPiazza San Silvestro 12PisaI‐56127Italy
| | - Valentina Zannier
- NESTScuola Normale Superiore and Istituto Nanoscienze‐CNRPiazza San Silvestro 12PisaI‐56127Italy
| | - Luca Bellucci
- NESTScuola Normale Superiore and Istituto Nanoscienze‐CNRPiazza San Silvestro 12PisaI‐56127Italy
| | - Valentina Tozzini
- NESTScuola Normale Superiore and Istituto Nanoscienze‐CNRPiazza San Silvestro 12PisaI‐56127Italy
| | - Lucia Sorba
- NESTScuola Normale Superiore and Istituto Nanoscienze‐CNRPiazza San Silvestro 12PisaI‐56127Italy
| | - Fabio Beltram
- NESTScuola Normale Superiore and Istituto Nanoscienze‐CNRPiazza San Silvestro 12PisaI‐56127Italy
| | - Dario Pisignano
- Universitá di PisaDipartimento di FisicaLargo Bruno Pontecorvo, 3Pisa56127Italy
| | - Francesco Rossella
- NESTScuola Normale Superiore and Istituto Nanoscienze‐CNRPiazza San Silvestro 12PisaI‐56127Italy
- Scuola di Ingegneria | Dipartimento di Scienze FisicheInformatiche e MatematicheUniversitá di Modena e Reggio Emiliavia Campi 213/aModena41125Italy
| |
Collapse
|
9
|
Chi C, Liu G, An M, Zhang Y, Song D, Qi X, Zhao C, Wang Z, Du Y, Lin Z, Lu Y, Huang H, Li Y, Lin C, Ma W, Huang B, Du X, Zhang X. Reversible bipolar thermopower of ionic thermoelectric polymer composite for cyclic energy generation. Nat Commun 2023; 14:306. [PMID: 36658195 PMCID: PMC9852232 DOI: 10.1038/s41467-023-36018-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
The giant thermopower of ionic thermoelectric materials has attracted great attention for waste-heat recovery technologies. However, generating cyclic power by ionic thermoelectric modules remains challenging, since the ions cannot travel across the electrode interface. Here, we reported a reversible bipolar thermopower (+20.2 mV K-1 to -10.2 mV K-1) of the same composite by manipulating the interactions of ions and electrodes. Meanwhile, a promising ionic thermoelectric generator was proposed to achieve cyclic power generation under a constant heat course only by switching the external electrodes that can effectively realize the alternating dominated thermodiffusion of cations and anions. It eliminates the necessity to change the thermal contact between material and heat, nor does it require re-establish the temperature differences, which can favor improving the efficiency of the ionic thermoelectrics. Furthermore, the developed micro-thermal sensors demonstrated high sensitivity and responsivity in light detecting, presenting innovative impacts on exploring next-generation ionic thermoelectric devices.
Collapse
Affiliation(s)
- Cheng Chi
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, 100084, Beijing, China
- Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, 102206, Beijing, China
| | - Gongze Liu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Meng An
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, 100084, Beijing, China
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, 710021, Xi'an, China
| | - Yufeng Zhang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, 100084, Beijing, China
| | - Dongxing Song
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, 100084, Beijing, China
| | - Xin Qi
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, 100084, Beijing, China
| | - Chunyu Zhao
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, 100084, Beijing, China
| | - Zequn Wang
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, 710021, Xi'an, China
| | - Yanzheng Du
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, 100084, Beijing, China
| | - Zizhen Lin
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, 100084, Beijing, China
| | - Yang Lu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, 100084, Beijing, China
| | - He Huang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Yang Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Chongjia Lin
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Weigang Ma
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, 100084, Beijing, China.
| | - Baoling Huang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.
| | - Xiaoze Du
- Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, 102206, Beijing, China
| | - Xing Zhang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
10
|
Wang H, Chen Y, Ni Z, Samorì P. An Electrochemical-Electret Coupled Organic Synapse with Single-Polarity Driven Reversible Facilitation-to-Depression Switching. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205945. [PMID: 36201378 DOI: 10.1002/adma.202205945] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Neuromorphic engineering and artificial intelligence demands hardware elements that emulates synapse algorithms. During the last decade electrolyte-gated organic conjugated materials have been explored as a platform for artificial synapses for neuromorphic computing. Unlike biological synapses, in current devices the synaptic facilitation and depression are triggered by voltages with opposite polarity. To enhance the reliability and simplify the operation of the synapse without lowering its sophisticated functionality, here, an electrochemical-electret coupled organic synapse (EECS) possessing a reversible facilitation-to-depression switch, is devised. Electret charging counterbalances channel conductance changes due to electrochemical doping, inducing depression without inverting the gate polarity. Overall, EECS functions as a threshold-controlled synaptic switch ruled by its amplitude-dependent, dual-modal operation, which can well emulate information storage and erase as in real synapses. By varying the energy level offset between the channel material and the electret, the EECS's transition threshold can be adjusted for specific applications, e.g., imparting additional light responsiveness to the device operation. The novel device architecture represents a major step forward in the development of artificial organic synapses with increased functional complexity and it opens new perspectives toward the fabrication of abiotic neural networks with higher reliability, efficiency, and endurance.
Collapse
Affiliation(s)
- Hanlin Wang
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Yusheng Chen
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Zhenjie Ni
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| |
Collapse
|
11
|
Xiao T, Wang J, Guo J, Zhao X, Yan Y. Magnetic-field-controlled counterion migration within polyionic liquid micropores enables nano-energy harvest. NANOSCALE HORIZONS 2022; 7:1523-1532. [PMID: 36274634 DOI: 10.1039/d2nh00323f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Efficient separation of positive and negative charges is essential for developing high-performance nanogenerators. In this article, we describe a method that was not previously demonstrated to separate charges which enables us to fabricate a magnetic energy harvesting device. The magnetic field induces the migration of the mobile magnetic counterions (Dy(NO3)4-) which establishes anion gradients within a layer of polyionic liquid micropores (PLM). The PLM is covalently cross-linked on which the positive charges are fixed on the matrix, that is, immobile. In a device with a structure of Au/dielectric//mag-PLM//dielectric/Au, the charge gradient is subsequently transformed into the output voltage through electrostatic induction. Removing the magnetic field leads to the backflow of magnetic anions which produces a voltage with a similar magnitude but reversed polarity. The parameters in fabricating the magnetic PLM such as photoinitiator concentration, UV irradiation time, water treatment time, and temperature are found to dramatically influence the size of micropores and the effective concentration of magnetic anions. Under optimized conditions, an output voltage with an amplitude of approximately 4 V is finally achieved. We expect this new method could find practical applications in further improving the output performance.
Collapse
Affiliation(s)
- Tao Xiao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyu Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiahui Guo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Yong Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
12
|
Wang J, Feng K, Jeong SY, Liu B, Wang Y, Wu W, Hou Y, Woo HY, Guo X. Acceptor-acceptor type polymers based on cyano-substituted benzochalcogenadiazole and diketopyrrolopyrrole for high-efficiency n-type organic thermoelectrics. Polym J 2022. [DOI: 10.1038/s41428-022-00717-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Zhou Y, Dong Z, He Y, Zhu W, Yuan Y, Zeng H, Li C, Chen S, Sun K. Multi-ionic Hydrogel with outstanding heat-to-electrical performance for low-grade heat harvesting. Chem Asian J 2022; 17:e202200850. [PMID: 36074542 DOI: 10.1002/asia.202200850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/01/2022] [Indexed: 11/11/2022]
Abstract
Ionic thermoelectric (i-TE) materials have attracted much attention due to their ability to generate ionic Seebeck coefficient of tens of millivolts per Kelvin. In this work, we demonstrate that the ionic thermopower can be enhanced by the introduction of multiple ions. The multi-ionic hydrogel possesses a record thermal-to-electrical energy conversion factor (TtoE factor) of 89.6 mV K-1 and an ionic conductivity of 6.8 mS cm-1, which are both better than single salt contact hydrogel. Subsequently we build a model to explain thermal diffusion of the ions in multi-ionic hydrogels. Finally, the possibility of large-scale integrated applications of multi-ionic hydrogels is demonstrated. By connecting 7 i-TEs hydrogels, we obtained an open-circuit voltage of 1.86 V at ΔT = 3 K. Our work provides a new pathway for the design of i-TEs and low-grade heat harvesting.
Collapse
Affiliation(s)
- Yongli Zhou
- Chongqing University, School of Energy & Power Engineering, CHINA
| | - Zixian Dong
- Chongqing University, School of Energy & Power Engineering, CHINA
| | - Yongjie He
- Chongqing University, School of Energy & Power Engineering, CHINA
| | - Wentao Zhu
- Chongqing University, School of Energy & Power Engineering, CHINA
| | - Youlan Yuan
- Chongqing University, School of Energy & Power Engineering, CHINA
| | - Haoran Zeng
- Chongqing University, School of Energy & Power Engineering, CHINA
| | - Chen Li
- Chongqing University, School of Energy & Power Engineering, CHINA
| | - Shanshan Chen
- Chongqing University, School of Energy & Power Engineering, CHINA
| | - Kuan Sun
- Chongqing University, School of Energy & Power Engineering, 178 Shazhengjie, Shapingba District, 400044, Chongqing, CHINA
| |
Collapse
|
14
|
Ding Y, Liu G, Long Z, Zhou Y, Qiu X, Ren B, Zhang Q, Chi C, Wan Z, Huang B, Fan Z. Uncooled self-powered hemispherical biomimetic pit organ for mid- to long-infrared imaging. SCIENCE ADVANCES 2022; 8:eabq8432. [PMID: 36044578 PMCID: PMC9432836 DOI: 10.1126/sciadv.abq8432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Infrared vision is highly desirable for applications in multifarious fields. Of the few species with this visual capability, snakes have exceptional infrared perception with the assistance of pit organs. Inspired by the pit organ design we present here a hemispherical biomimetic infrared imaging device. The devices use high-density ionic thermoelectric polymer nanowire arrays that serve as the sensing nerve cells. The individual nanowires exhibit notable voltage response to temperature variation in test objects. An infrared sensor array with 625 pixels on the hemispherical substrate is successfully demonstrated with an ultrawide field of view up to 135°. The device can image body temperature objects without a cooling system and external power supply. This work opens up opportunities for the design and fabrication of bioinspired infrared imaging devices based on emerging ionic thermoelectric materials.
Collapse
Affiliation(s)
- Yucheng Ding
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Microelectronics Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, , HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Gongze Liu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhenghao Long
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, , HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, , HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Xiao Qiu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, , HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Beitao Ren
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, , HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Qianpeng Zhang
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, , HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Cheng Chi
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhu’an Wan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, , HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Baoling Huang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, , HKUST, Clear Water Bay, Kowloon, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
15
|
Brooke R, Lay M, Jain K, Francon H, Say MG, Belaineh D, Wang X, Håkansson KMO, Wågberg L, Engquist I, Edberg J, Berggren M. Nanocellulose and PEDOT:PSS composites and their applications. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2106491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Robert Brooke
- Digital Systems, Smart Hardware, Bio- and Organic Electronics, RISE Research Institutes of Sweden, Norrköping, Sweden
| | - Makara Lay
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden
- INM- Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Karishma Jain
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hugo Francon
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mehmet Girayhan Say
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden
| | - Dagmawi Belaineh
- Digital Systems, Smart Hardware, Bio- and Organic Electronics, RISE Research Institutes of Sweden, Norrköping, Sweden
| | - Xin Wang
- Digital Systems, Smart Hardware, Bio- and Organic Electronics, RISE Research Institutes of Sweden, Norrköping, Sweden
| | | | - Lars Wågberg
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Isak Engquist
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden
| | - Jesper Edberg
- Digital Systems, Smart Hardware, Bio- and Organic Electronics, RISE Research Institutes of Sweden, Norrköping, Sweden
| | - Magnus Berggren
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden
| |
Collapse
|
16
|
Akbar ZA, Malik YT, Kim DH, Cho S, Jang SY, Jeon JW. Self-Healable and Stretchable Ionic-Liquid-Based Thermoelectric Composites with High Ionic Seebeck Coefficient. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106937. [PMID: 35344267 DOI: 10.1002/smll.202106937] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The advancement of wearable electronics, particularly self-powered wearable electronic devices, necessitates the development of efficient energy conversion technologies with flexible mechanical properties. Recently, ionic thermoelectric (TE) materials have attracted great attention because of their enormous thermopower, which can operate capacitors or supercapacitors by harvesting low-grade heat. This study presents self-healable, stretchable, and flexible ionic TE composites comprising an ionic liquid (IL), 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMIM:OTf); a polymer matrix, poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP); and a fluoro-surfactant (FS). The self-healability of the IL-based composites originates from dynamic ion-dipole interactions between the IL, the PVDF-HFP, and the FS. The composites demonstrate excellent ionic TE properties with an ionic Seebeck coefficient (Si ) of ≈38.3 mV K-1 and an ionic figure of merit of ZTi = 2.34 at 90% relative humidity, which are higher than the values reported for other IL-based TE materials. The IL-based ionic TE composites developed in this study can maintain excellent ionic TE properties under harsh conditions, including severe strain (75%) and multiple cutting-healing cycles.
Collapse
Affiliation(s)
- Zico Alaia Akbar
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yoga Trianzar Malik
- Department of Chemistry, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 136-702, Republic of Korea
| | - Dong-Hu Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Sangho Cho
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Nano & Information Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sung-Yeon Jang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ju-Won Jeon
- Department of Chemistry, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 136-702, Republic of Korea
| |
Collapse
|
17
|
Kukhta N, Marks A, Luscombe CK. Molecular Design Strategies toward Improvement of Charge Injection and Ionic Conduction in Organic Mixed Ionic-Electronic Conductors for Organic Electrochemical Transistors. Chem Rev 2022; 122:4325-4355. [PMID: 34902244 PMCID: PMC8874907 DOI: 10.1021/acs.chemrev.1c00266] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 12/23/2022]
Abstract
Expanding the toolbox of the biology and electronics mutual conjunction is a primary aim of bioelectronics. The organic electrochemical transistor (OECT) has undeniably become a predominant device for mixed conduction materials, offering impressive transconduction properties alongside a relatively simple device architecture. In this review, we focus on the discussion of recent material developments in the area of mixed conductors for bioelectronic applications by means of thorough structure-property investigation and analysis of current challenges. Fundamental operation principles of the OECT are revisited, and characterization methods are highlighted. Current bioelectronic applications of organic mixed ionic-electronic conductors (OMIECs) are underlined. Challenges in the performance and operational stability of OECT channel materials as well as potential strategies for mitigating them, are discussed. This is further expanded to sketch a synopsis of the history of mixed conduction materials for both p- and n-type channel operation, detailing the synthetic challenges and milestones which have been overcome to frequently produce higher performing OECT devices. The cumulative work of multiple research groups is summarized, and synthetic design strategies are extracted to present a series of design principles that can be utilized to drive figure-of-merit performance values even further for future OMIEC materials.
Collapse
Affiliation(s)
- Nadzeya
A. Kukhta
- Materials
Science and Engineering Department, University
of Washington, Seattle, Washington 98195, United States
| | - Adam Marks
- Department
of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Christine K. Luscombe
- Materials
Science and Engineering Department, University
of Washington, Seattle, Washington 98195, United States
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Molecular
Engineering & Sciences Institute, University
of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
18
|
Chi C, An M, Qi X, Li Y, Zhang R, Liu G, Lin C, Huang H, Dang H, Demir B, Wang Y, Ma W, Huang B, Zhang X. Selectively tuning ionic thermopower in all-solid-state flexible polymer composites for thermal sensing. Nat Commun 2022; 13:221. [PMID: 35017492 PMCID: PMC8752756 DOI: 10.1038/s41467-021-27885-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/17/2021] [Indexed: 12/26/2022] Open
Abstract
There has been increasing interest in the emerging ionic thermoelectric materials with huge ionic thermopower. However, it's challenging to selectively tune the thermopower of all-solid-state polymer materials because the transportation of ions in all-solid-state polymers is much more complex than those of liquid-dominated gels. Herein, this work provides all-solid-state polymer materials with a wide tunable thermopower range (+20~-6 mV K-1), which is different from previously reported gels. Moreover, the mechanism of p-n conversion in all-solid-state ionic thermoelectric polymer material at the atomic scale was presented based on the analysis of Eastman entropy changes by molecular dynamics simulation, which provides a general strategy for tuning ionic thermopower and is beneficial to understand the fundamental mechanism of the p-n conversion. Furthermore, a self-powered ionic thermoelectric thermal sensor fabricated by the developed p- and n-type polymers demonstrated high sensitivity and durability, extending the application of ionic thermoelectric materials.
Collapse
Affiliation(s)
- Cheng Chi
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Meng An
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- College of Mechanical & Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Xin Qi
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Yang Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Ruihan Zhang
- Department of Mechanical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Gongze Liu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Chongjia Lin
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - He Huang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Hao Dang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| | - Baris Demir
- Centre for Theoretical and Computational Molecular Science, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yan Wang
- Department of Mechanical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA, 01609, USA
| | - Weigang Ma
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China.
| | - Baoling Huang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China.
| | - Xing Zhang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
19
|
Abstract
The rapid growth of wearable electronics, Internet of Things, smart packaging, and advanced healthcare technologies demand a large number of flexible, thin, lightweight, and ultralow-cost sensors. The accurate and precise determination of temperature in a narrow range (~0–50 °C) around ambient temperatures and near-body temperatures is critical for most of these applications. Temperature sensors based on organic field-effect transistors (OFETs) have the advantages of low manufacturing cost, excellent mechanical flexibility, easy integration with other devices, low cross-sensitivity, and multi-stimuli detectability and, therefore, are very suitable for the above applications. This article provides a timely overview of research progress in the development of OFET-based temperature sensors. First, the working mechanism of OFETs, the fundamental theories of charge transport in organic semiconductors, and common types of OFET temperature sensors based on the sensing element are briefly introduced. Next, notable advances in the development of OFET temperature sensors using small-molecule and polymer semiconductors are discussed separately. Finally, the progress of OFET temperature sensors is summarized, and the challenges associated with OFET temperature sensors and the perspectives of research directions in this field are presented.
Collapse
|
20
|
Massetti M, Jiao F, Ferguson AJ, Zhao D, Wijeratne K, Würger A, Blackburn JL, Crispin X, Fabiano S. Unconventional Thermoelectric Materials for Energy Harvesting and Sensing Applications. Chem Rev 2021; 121:12465-12547. [PMID: 34702037 DOI: 10.1021/acs.chemrev.1c00218] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heat is an abundant but often wasted source of energy. Thus, harvesting just a portion of this tremendous amount of energy holds significant promise for a more sustainable society. While traditional solid-state inorganic semiconductors have dominated the research stage on thermal-to-electrical energy conversion, carbon-based semiconductors have recently attracted a great deal of attention as potential thermoelectric materials for low-temperature energy harvesting, primarily driven by the high abundance of their atomic elements, ease of processing/manufacturing, and intrinsically low thermal conductivity. This quest for new materials has resulted in the discovery of several new kinds of thermoelectric materials and concepts capable of converting a heat flux into an electrical current by means of various types of particles transporting the electric charge: (i) electrons, (ii) ions, and (iii) redox molecules. This has contributed to expanding the applications envisaged for thermoelectric materials far beyond simple conversion of heat into electricity. This is the motivation behind this review. This work is divided in three sections. In the first section, we present the basic principle of the thermoelectric effects when the particles transporting the electric charge are electrons, ions, and redox molecules and describe the conceptual differences between the three thermodiffusion phenomena. In the second section, we review the efforts made on developing devices exploiting these three effects and give a thorough understanding of what limits their performance. In the third section, we review the state-of-the-art thermoelectric materials investigated so far and provide a comprehensive understanding of what limits charge and energy transport in each of these classes of materials.
Collapse
Affiliation(s)
- Matteo Massetti
- Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Fei Jiao
- Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Andrew J Ferguson
- National Renewable Energy Laboratory, Golden, Colorado, 80401 United States
| | - Dan Zhao
- Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Kosala Wijeratne
- Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Alois Würger
- Laboratoire Ondes et Matière d'Aquitaine, Université de Bordeaux, 351 cours de la Libération, F-33405 Talence Cedex, France
| | | | - Xavier Crispin
- Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Simone Fabiano
- Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| |
Collapse
|
21
|
Tang T, Kyaw AKK, Zhu Q, Xu J. Water-dispersible conducting polyazulene and its application in thermoelectrics. Chem Commun (Camb) 2020; 56:9388-9391. [PMID: 32672784 DOI: 10.1039/d0cc03840g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report on the facile synthesis of a water-dispersible conducting polymer, polyazulene-polystyrenesulfonate (PAZ:PSS), using PSS as a template. PAZ:PSS can achieve an overall conductivity up to 0.1 S cm-1, and an ion Seebeck coefficient as high as 4500 μV K-1, demonstrating that PAZ:PSS is another promising water-dispersible polymer for thermoelectrics.
Collapse
Affiliation(s)
- Tao Tang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, 138634, Singapore.
| | | | | | | |
Collapse
|
22
|
Hu Y, Guo LQ, Huo C, Dai M, Webster TJ, Ding J. Transparent Nano Thin-Film Transistors for Medical Sensors, OLED and Display Applications. Int J Nanomedicine 2020; 15:3597-3603. [PMID: 32547016 PMCID: PMC7250528 DOI: 10.2147/ijn.s228940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/29/2020] [Indexed: 11/23/2022] Open
Abstract
Background Transparent thin-film transistors (TFTs) have received a great deal of attention for medical sensors, OLED and medical display applications. Moreover, ultrathin nanomaterial layers are favored due to their more compact design architectures. Methods Here, transparent TFTs are proposed and were investigated under different stress conditions such as temperature and biases. Results Key electrical characteristics of the sensors, such as threshold voltage changes, illustrate their linear dependence on temperature with a suitable recovery, suggesting the potential of the devices to serve as medical temperature sensors. The temperature conditions changed in the range of 28°C to 40°C, which is within the standard human temperature testing range. The thickness of the indium-gallium-zinc oxide semiconductor layer was as thin as only 5–6 nm, deposited by mature radio-frequency sputtering which also showed good repeatability. Optimal bending durability caused by mechanical deformation was demonstrated via suitable electrical properties after up to 600 bending cycles, and by testing the flexible device at a different bending radii ranging from 48 mm to 18 mm. Conclusion In summary, this study suggests that the present transparent nano TFTs are promising candidates for medical sensors, OLED and displays which require transparency and stability.
Collapse
Affiliation(s)
- Yongbin Hu
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Li-Qiang Guo
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Changhe Huo
- Ningbo Institute of Materials and Technology Engineering, Chinese Academy of Sciences, Zhejiang 315201, People's Republic of China
| | - Mingzhi Dai
- Ningbo Institute of Materials and Technology Engineering, Chinese Academy of Sciences, Zhejiang 315201, People's Republic of China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02806, USA
| | - Jianning Ding
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
23
|
Abstract
We consider heat conduction in a superlattice with mobile defects, which reduce the thermal conductivity of the material. If the defects may be dragged by the heat flux, and if they are stopped at the interfaces of the superlattice, it is seen that the effective thermal resistance of the layers will depend on the heat flux. Thus, the concentration dependence of the transport coefficients plus the mobility of the defects lead to a strongly nonlinear behavior of heat transport, which may be used in some cases as a basis for thermal transistors.
Collapse
Affiliation(s)
- David Jou
- Grup de Fisíca Estadística, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
- Correspondence:
| | - Liliana Restuccia
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale F. Stagno d’Alcontres, Salita Sperone 31, 98166 Messina, Italy;
| |
Collapse
|
24
|
Berggren M, Crispin X, Fabiano S, Jonsson MP, Simon DT, Stavrinidou E, Tybrandt K, Zozoulenko I. Ion Electron-Coupled Functionality in Materials and Devices Based on Conjugated Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805813. [PMID: 30620417 DOI: 10.1002/adma.201805813] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/16/2018] [Indexed: 05/23/2023]
Abstract
The coupling between charge accumulation in a conjugated polymer and the ionic charge compensation, provided from an electrolyte, defines the mode of operation in a vast array of different organic electrochemical devices. The most explored mixed organic ion-electron conductor, serving as the active electrode in these devices, is poly(3,4-ethyelenedioxythiophene) doped with polystyrelensulfonate (PEDOT:PSS). In this progress report, scientists of the Laboratory of Organic Electronics at Linköping University review some of the achievements derived over the last two decades in the field of organic electrochemical devices, in particular including PEDOT:PSS as the active material. The recently established understanding of the volumetric capacitance and the mixed ion-electron charge transport properties of PEDOT are described along with examples of various devices and phenomena utilizing this ion-electron coupling, such as the organic electrochemical transistor, ionic-electronic thermodiffusion, electrochromic devices, surface switches, and more. One of the pioneers in this exciting research field is Prof. Olle Inganäs and the authors of this progress report wish to celebrate and acknowledge all the fantastic achievements and inspiration accomplished by Prof. Inganäs all since 1981.
Collapse
Affiliation(s)
- Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
| | - Xavier Crispin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
| | - Magnus P Jonsson
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
| | - Daniel T Simon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
| | - Igor Zozoulenko
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
| |
Collapse
|
25
|
Wang C, Wang Y, Lu Y, He H, Huo F, Dong K, Wei N, Zhang S. Height-driven structure and thermodynamic properties of confined ionic liquids inside carbon nanochannels from molecular dynamics study. Phys Chem Chem Phys 2019; 21:12767-12776. [PMID: 31020276 DOI: 10.1039/c9cp00732f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the structural transition of ionic liquids (ILs) confined in a nanospace is imperative for the application of ILs in energy storage, gas separation, and other chemical engineering techniques. In this work, the quantitative relations between the properties and height of the nanochannel (H) for the ([Emim]+[TF2N]-) IL are explored through molecular dynamics simulations. Interestingly, the entropy of the confined IL exhibits a nonmonotonic behavior as H increases: initially increasing for H < 1.0 nm and then decreasing for 1.0 < H < 1.1 nm, followed by increasing again for H > 1.1 nm; it finally approaches that of liquid bulk ILs. The vibrational spectrum of the confined IL is analyzed to investigate the nature of nonmonotonic entropy, showing that the liquidity and partial solidity will be respectively attenuated and enhanced as H decreases from 5.0 to 0.75 nm. Moreover, the hydrogen bond (HB) network and external force are also calculated, showing similar nonmonotonic behaviors when compared with the thermodynamic properties. The entropy gain of the confined IL originates from the reduced HB interactions, weaker external force, and partial solid nature, where more phase space sampling for ILs inside a bilayer graphene nanochannel (BLGC) can be achieved. All the above relations demonstrate that there exists a critical height of the nanochannel (HCR = 1.0 nm) at which the confined IL possesses weaker HB interaction, higher entropy, and better stability. The critical height of the nanochannel is also identified in the analysis of the local structures of cation head groups and anions, indicating that the confined IL could have a faster in-plane diffusive ability. These factors can serve as key indicators in quantitatively characterizing the mechanism for the structural transition of ILs inside a nanochannel and facilitate the rational design of nanopores and nanochannels to regulate the properties and structures of ILs in practical application scenarios.
Collapse
Affiliation(s)
- Chenlu Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China. and Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, People's Republic of China.
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| | - Yumiao Lu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| | - Feng Huo
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| | - Kun Dong
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| | - Ning Wei
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, People's Republic of China.
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| |
Collapse
|
26
|
Zhao D, Martinelli A, Willfahrt A, Fischer T, Bernin D, Khan ZU, Shahi M, Brill J, Jonsson MP, Fabiano S, Crispin X. Polymer gels with tunable ionic Seebeck coefficient for ultra-sensitive printed thermopiles. Nat Commun 2019; 10:1093. [PMID: 30842422 PMCID: PMC6403253 DOI: 10.1038/s41467-019-08930-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 02/08/2019] [Indexed: 11/16/2022] Open
Abstract
Measuring temperature and heat flux is important for regulating any physical, chemical, and biological processes. Traditional thermopiles can provide accurate and stable temperature reading but they are based on brittle inorganic materials with low Seebeck coefficient, and are difficult to manufacture over large areas. Recently, polymer electrolytes have been proposed for thermoelectric applications because of their giant ionic Seebeck coefficient, high flexibility and ease of manufacturing. However, the materials reported to date have positive Seebeck coefficients, hampering the design of ultra-sensitive ionic thermopiles. Here we report an "ambipolar" ionic polymer gel with giant negative ionic Seebeck coefficient. The latter can be tuned from negative to positive by adjusting the gel composition. We show that the ion-polymer matrix interaction is crucial to control the sign and magnitude of the ionic Seebeck coefficient. The ambipolar gel can be easily screen printed, enabling large-area device manufacturing at low cost.
Collapse
Affiliation(s)
- Dan Zhao
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Anna Martinelli
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
| | - Andreas Willfahrt
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
- Innovative Applications of The Printing Technologies, Stuttgart Media University, Stuttgart, 70569, Germany
| | - Thomas Fischer
- Innovative Applications of The Printing Technologies, Stuttgart Media University, Stuttgart, 70569, Germany
| | - Diana Bernin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
| | - Zia Ullah Khan
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Maryam Shahi
- Department of Physics and Astronomy, University of Kentucky, Lexington, KY40506-0055, USA
| | - Joseph Brill
- Department of Physics and Astronomy, University of Kentucky, Lexington, KY40506-0055, USA
| | - Magnus P Jonsson
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden.
| | - Xavier Crispin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden.
| |
Collapse
|
27
|
Liu H, Wang C, Wang LQ, Ren J. Strong system-bath coupling induces negative differential thermal conductance and heat amplification in nonequilibrium two-qubit systems. Phys Rev E 2019; 99:032114. [PMID: 30999465 DOI: 10.1103/physreve.99.032114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Quantum heat transfer is analyzed in nonequilibrium two-qubits systems by applying the nonequilibrium polaron-transformed Redfield equation combined with full counting statistics. Steady-state heat currents with weak and strong qubit-bath couplings are clearly unified. Within the two-terminal setup, the negative differential thermal conductance is unraveled with strong qubit-bath coupling and finite qubit splitting energy. The partially strong spin-boson interaction is sufficient to show the negative differential thermal conductance. Based on the three-terminal setup, in which two qubits are asymmetrically coupled to three thermal baths, a giant heat amplification factor is observed with strong qubit-bath coupling. Moreover, the strong interaction of either the left or right spin-boson coupling is able to exhibit the apparent heat amplification effect.
Collapse
Affiliation(s)
- Huan Liu
- Department of Physics, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
| | - Chen Wang
- Department of Physics, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
| | - Lu-Qing Wang
- Center for Phononics and Thermal Energy Science, China-EU Joint Center for Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Sciences and Engineering, Tongji University, Shanghai 200092, China
| | - Jie Ren
- Center for Phononics and Thermal Energy Science, China-EU Joint Center for Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Sciences and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
28
|
Lin CC, Huang YC, Usman M, Chao WH, Lin WK, Luo TT, Whang WT, Chen CH, Lu KL. Zr-MOF/Polyaniline Composite Films with Exceptional Seebeck Coefficient for Thermoelectric Material Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3400-3406. [PMID: 30580511 DOI: 10.1021/acsami.8b17308] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Controlling the polymerization of aniline in the presence of zirconium-based metal-organic frameworks (Zr-MOFs) using polystyrene sulfonic acid as a dopant resulted in the formation of a new type of free-standing thermoelectric composite film. Polyaniline chains interpenetrate into the Zr-MOFs to enhance the crystallinity of polyaniline, resulting in an improved degree of electrical conductivity. In addition, the inherent porosity of the Zr-MOFs functions to suppress the increase in thermal conductivity, thus dramatically promoting a negative Seebeck coefficient. When 20 wt % Zr-MOF was used, a power factor of up to 664 μW/(m K2) was obtained, which was accompanied by a surprisingly large, negative Seebeck coefficient. The new class of MOF-based composites offers a new direction for developing new types of efficient thermoelectric materials.
Collapse
Affiliation(s)
- Chih-Chien Lin
- Department of Materials Science and Engineering , National Chiao Tung University , Hsinchu 300 , Taiwan
| | - Yi-Chia Huang
- Department of Materials Science and Engineering , National Chiao Tung University , Hsinchu 300 , Taiwan
| | - Muhammad Usman
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| | - Wen-Hsuan Chao
- Material and Chemical Research Laboratory , Industrial Technology Research Institute , Hsinchu 310 , Taiwan
| | - Wei-Keng Lin
- Department of Engineering and System Science , National Tsing Hua University , Hsinchu 300 , Taiwan
| | - Tzuoo-Tsair Luo
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| | - Wha-Tzong Whang
- Department of Materials Science and Engineering , National Chiao Tung University , Hsinchu 300 , Taiwan
| | - Chun-Hua Chen
- Department of Materials Science and Engineering , National Chiao Tung University , Hsinchu 300 , Taiwan
| | - Kuang-Lieh Lu
- Institute of Chemistry , Academia Sinica , Taipei 115 , Taiwan
| |
Collapse
|
29
|
Zhang T, Wang Z, Srinivasan B, Wang Z, Zhang J, Li K, Boussard-Pledel C, Troles J, Bureau B, Wei L. Ultraflexible Glassy Semiconductor Fibers for Thermal Sensing and Positioning. ACS APPLIED MATERIALS & INTERFACES 2019; 11:2441-2447. [PMID: 30576098 DOI: 10.1021/acsami.8b20307] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Flexible, large-area, and low-cost thermal sensing networks with high spatial and temporal resolution are of profound importance in addressing the increasing needs for industrial processing, medical diagnosis, and military defense. Here, a thermoelectric (TE) fiber is fabricated by thermally codrawing a macroscopic preform containing a semiconducting glass core and a polymer cladding to deliver thermal sensor functionalities at fiber-optic length scales, flexibility, and uniformity. The resulting TE fiber sensor operates in a wide temperature range with high thermal detection sensitivity and accuracy, while offering ultraflexibility with the bending curvature radius below 2.5 mm. Additionally, a single TE fiber can either sense the spot temperature variation or locate the heat/cold spot on the fiber. As a proof of concept, a two-dimensional 3 × 3 fiber array is woven into a textile to simultaneously detect the temperature distribution and the position of heat/cold source with the spatial resolution of millimeter. Achieving this may lead to the realization of large-area, flexible, and wearable temperature sensing fabrics for wearable electronics and advanced artificial intelligence applications.
Collapse
Affiliation(s)
- Ting Zhang
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Zhe Wang
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Bhuvanesh Srinivasan
- Institut des Sciences Chimiques de Rennes, UMR CNRS 6226, University of Rennes , F-35000 Rennes , France
| | - Zhixun Wang
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Jing Zhang
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Kaiwei Li
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Catherine Boussard-Pledel
- Institut des Sciences Chimiques de Rennes, UMR CNRS 6226, University of Rennes , F-35000 Rennes , France
| | - Johann Troles
- Institut des Sciences Chimiques de Rennes, UMR CNRS 6226, University of Rennes , F-35000 Rennes , France
| | - Bruno Bureau
- Institut des Sciences Chimiques de Rennes, UMR CNRS 6226, University of Rennes , F-35000 Rennes , France
| | - Lei Wei
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| |
Collapse
|
30
|
Jin W, Liu L, Yang T, Shen H, Zhu J, Xu W, Li S, Li Q, Chi L, Di CA, Zhu D. Exploring Peltier effect in organic thermoelectric films. Nat Commun 2018; 9:3586. [PMID: 30181592 PMCID: PMC6123419 DOI: 10.1038/s41467-018-05999-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/11/2018] [Indexed: 12/02/2022] Open
Abstract
Organic materials are emerging thermoelectric candidates for flexible power generation and solid-cooling applications. Although the Peltier effect is a fundamental thermoelectric effect that enables site-specific and on-demand cooling applications, the Peltier effect in organic thermoelectric films have not been investigated. Here we experimentally observed and quasi-quantitatively evaluated the Peltier effect in a poly(Ni-ett) film through the fabrication of thermally suspended devices combined with an infrared imaging technique. The experimental and simulation results confirm effective extraction of the Peltier effect and verify the Thomson relations in organic materials. More importantly, the working device based on poly(Ni-ett) film yields maximum temperature differences as large as 41 K at the two contacts and a cooling of 0.2 K even under heat-insulated condition. This exploration of the Peltier effect in organic thermoelectric films predicts that organic materials hold the ultimate potential to enable flexible solid-cooling applications. Observing the Peltier effect, e.g. cooling/heating at material junctions due to current flow, in organic thermoelectric films remains a challenge due the inherent properties of these materials. Here, the authors use IR imaging to experimentally observe the Peltier effect in poly(Ni-ett)-based films.
Collapse
Affiliation(s)
- Wenlong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Liyao Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China.,Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Hongguang Shen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jia Zhu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 100875, Beijing, China.
| | - Wei Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Shuzhou Li
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| | - Qing Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
| |
Collapse
|
31
|
Kundu A, Fisher TS. Harnessing the thermogalvanic effect of the ferro/ferricyanide redox couple in a thermally chargeable supercapacitor. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.164] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
|
32
|
Wang B, Huang W, Chi L, Al-Hashimi M, Marks TJ, Facchetti A. High- k Gate Dielectrics for Emerging Flexible and Stretchable Electronics. Chem Rev 2018; 118:5690-5754. [PMID: 29785854 DOI: 10.1021/acs.chemrev.8b00045] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Recent advances in flexible and stretchable electronics (FSE), a technology diverging from the conventional rigid silicon technology, have stimulated fundamental scientific and technological research efforts. FSE aims at enabling disruptive applications such as flexible displays, wearable sensors, printed RFID tags on packaging, electronics on skin/organs, and Internet-of-things as well as possibly reducing the cost of electronic device fabrication. Thus, the key materials components of electronics, the semiconductor, the dielectric, and the conductor as well as the passive (substrate, planarization, passivation, and encapsulation layers) must exhibit electrical performance and mechanical properties compatible with FSE components and products. In this review, we summarize and analyze recent advances in materials concepts as well as in thin-film fabrication techniques for high- k (or high-capacitance) gate dielectrics when integrated with FSE-compatible semiconductors such as organics, metal oxides, quantum dot arrays, carbon nanotubes, graphene, and other 2D semiconductors. Since thin-film transistors (TFTs) are the key enablers of FSE devices, we discuss TFT structures and operation mechanisms after a discussion on the needs and general requirements of gate dielectrics. Also, the advantages of high- k dielectrics over low- k ones in TFT applications were elaborated. Next, after presenting the design and properties of high- k polymers and inorganic, electrolyte, and hybrid dielectric families, we focus on the most important fabrication methodologies for their deposition as TFT gate dielectric thin films. Furthermore, we provide a detailed summary of recent progress in performance of FSE TFTs based on these high- k dielectrics, focusing primarily on emerging semiconductor types. Finally, we conclude with an outlook and challenges section.
Collapse
Affiliation(s)
- Binghao Wang
- Department of Chemistry and the Materials Research Center , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States.,Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , 199 Ren'ai Road , Suzhou 215123 , China
| | - Wei Huang
- Department of Chemistry and the Materials Research Center , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices , Soochow University , 199 Ren'ai Road , Suzhou 215123 , China
| | - Mohammed Al-Hashimi
- Department of Chemistry , Texas A&M University at Qatar , PO Box 23874, Doha , Qatar
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States.,Flexterra Corporation , 8025 Lamon Avenue , Skokie , Illinois 60077 , United States
| |
Collapse
|
33
|
Sun H, Vagin M, Wang S, Crispin X, Forchheimer R, Berggren M, Fabiano S. Complementary Logic Circuits Based on High-Performance n-Type Organic Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30. [PMID: 29318706 DOI: 10.1002/adma.201704916] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 11/23/2017] [Indexed: 06/07/2023]
Abstract
Organic electrochemical transistors (OECTs) have been the subject of intense research in recent years. To date, however, most of the reported OECTs rely entirely on p-type (hole transport) operation, while electron transporting (n-type) OECTs are rare. The combination of efficient and stable p-type and n-type OECTs would allow for the development of complementary circuits, dramatically advancing the sophistication of OECT-based technologies. Poor stability in air and aqueous electrolyte media, low electron mobility, and/or a lack of electrochemical reversibility, of available high-electron affinity conjugated polymers, has made the development of n-type OECTs troublesome. Here, it is shown that ladder-type polymers such as poly(benzimidazobenzophenanthroline) (BBL) can successfully work as stable and efficient n-channel material for OECTs. These devices can be easily fabricated by means of facile spray-coating techniques. BBL-based OECTs show high transconductance (up to 9.7 mS) and excellent stability in ambient and aqueous media. It is demonstrated that BBL-based n-type OECTs can be successfully integrated with p-type OECTs to form electrochemical complementary inverters. The latter show high gains and large worst-case noise margin at a supply voltage below 0.6 V.
Collapse
Affiliation(s)
- Hengda Sun
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
| | - Mikhail Vagin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - Suhao Wang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
| | - Xavier Crispin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
| | - Robert Forchheimer
- Department of Electrical Engineering, Linköping University, SE-581 83, Linköping, Sweden
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
| |
Collapse
|
34
|
Lee YH, Jang M, Lee MY, Kweon OY, Oh JH. Flexible Field-Effect Transistor-Type Sensors Based on Conjugated Molecules. Chem 2017. [DOI: 10.1016/j.chempr.2017.10.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Huang D, Yao H, Cui Y, Zou Y, Zhang F, Wang C, Shen H, Jin W, Zhu J, Diao Y, Xu W, Di CA, Zhu D. Conjugated-Backbone Effect of Organic Small Molecules for n-Type Thermoelectric Materials with ZT over 0.2. J Am Chem Soc 2017; 139:13013-13023. [PMID: 28820584 DOI: 10.1021/jacs.7b05344] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Conjugated backbones play a fundamental role in determining the electronic properties of organic semiconductors. On the basis of two solution-processable dihydropyrrolo[3,4-c]pyrrole-1,4-diylidenebis(thieno[3,2-b]thiophene) derivatives with aromatic and quinoid structures, we have carried out a systematic study of the relationship between the conjugated-backbone structure and the thermoelectric properties. In particular, a combination of UV-vis-NIR spectra, photoemission spectroscopy, and doping optimization are utilized to probe the interplay between energy levels, chemical doping, and thermoelectric performance. We found that a moderate change in the conjugated backbone leads to varied doping mechanisms and contributes to dramatic changes in the thermoelectric performance. Notably, the chemically doped A-DCV-DPPTT, a small molecule with aromatic structure, exhibits an electrical conductivity of 5.3 S cm-1 and a high power factor (PF373 K) up to 236 μW m-1 K-2, which is 50 times higher than that of Q-DCM-DPPTT with a quinoid structure. More importantly, the low thermal conductivity enables A-DCV-DPPTT to possess a figure of merit (ZT) of 0.23 ± 0.03, which is the highest value reported to date for thermoelectric materials based on organic small molecules. These results demonstrate that the modulation of the conjugated backbone represents a powerful strategy for tuning the electronic structure and mobility of organic semiconductors toward a maximum thermoelectric performance.
Collapse
Affiliation(s)
- Dazhen Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Huiying Yao
- Department of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Yutao Cui
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Ye Zou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Fengjiao Zhang
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign , 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Chao Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Hongguang Shen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Wenlong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jia Zhu
- Department of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Ying Diao
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign , 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Wei Xu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| |
Collapse
|
36
|
Vegiraju S, Chang BC, Priyanka P, Huang DY, Wu KY, Li LH, Chang WC, Lai YY, Hong SH, Yu BC, Wang CL, Chang WJ, Liu CL, Chen MC, Facchetti A. Intramolecular Locked Dithioalkylbithiophene-Based Semiconductors for High-Performance Organic Field-Effect Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1702414. [PMID: 28707742 DOI: 10.1002/adma.201702414] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/11/2017] [Indexed: 06/07/2023]
Abstract
New 3,3'-dithioalkyl-2,2'-bithiophene (SBT)-based small molecular and polymeric semiconductors are synthesized by end-capping or copolymerization with dithienothiophen-2-yl units. Single-crystal, molecular orbital computations, and optical/electrochemical data indicate that the SBT core is completely planar, likely via S(alkyl)⋯S(thiophene) intramolecular locks. Therefore, compared to semiconductors based on the conventional 3,3'-dialkyl-2,2'-bithiophene, the resulting SBT systems are planar (torsional angle <1°) and highly π-conjugated. Charge transport is investigated for solution-sheared films in field-effect transistors demonstrating that SBT can enable good semiconducting materials with hole mobilities ranging from ≈0.03 to 1.7 cm2 V-1 s-1 . Transport difference within this family is rationalized by film morphology, as accessed by grazing incidence X-ray diffraction experiments.
Collapse
Affiliation(s)
- Sureshraju Vegiraju
- Department of Chemistry, National Central University, Taoyuan, 32001, Taiwan
| | - Bo-Chin Chang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Pragya Priyanka
- Department of Chemistry, National Central University, Taoyuan, 32001, Taiwan
| | - Deng-Yi Huang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Kuan-Yi Wu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Long-Huan Li
- Department of Chemistry, National Central University, Taoyuan, 32001, Taiwan
| | - Wei-Chieh Chang
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Yi-Yo Lai
- Department of Chemistry, National Central University, Taoyuan, 32001, Taiwan
| | - Shao-Huan Hong
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Bo-Chun Yu
- Department of Chemistry, National Central University, Taoyuan, 32001, Taiwan
| | - Chien-Lung Wang
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Wen-Jung Chang
- Department of Chemistry, National Central University, Taoyuan, 32001, Taiwan
| | - Cheng-Liang Liu
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, 32001, Taiwan
| | - Ming-Chou Chen
- Department of Chemistry, National Central University, Taoyuan, 32001, Taiwan
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
37
|
Bisri SZ, Shimizu S, Nakano M, Iwasa Y. Endeavor of Iontronics: From Fundamentals to Applications of Ion-Controlled Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1607054. [PMID: 28582588 DOI: 10.1002/adma.201607054] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/16/2017] [Indexed: 05/28/2023]
Abstract
Iontronics is a newly emerging interdisciplinary concept which bridges electronics and ionics, covering electrochemistry, solid-state physics, electronic engineering, and biological sciences. The recent developments of electronic devices are highlighted, based on electric double layers formed at the interface between ionic conductors (but electronically insulators) and various electronic conductors including organics and inorganics (oxides, chalcogenide, and carbon-based materials). Particular attention is devoted to electric-double-layer transistors (EDLTs), which are producing a significant impact, particularly in electrical control of phase transitions, including superconductivity, which has been difficult or impossible in conventional all-solid-state electronic devices. Besides that, the current state of the art and the future challenges of iontronics are also reviewed for many applications, including flexible electronics, healthcare-related devices, and energy harvesting.
Collapse
Affiliation(s)
- Satria Zulkarnaen Bisri
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Sunao Shimizu
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Masaki Nakano
- Quantum Phase Electronic Center (QPEC) and Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoshihiro Iwasa
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
- Quantum Phase Electronic Center (QPEC) and Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
38
|
Tordera D, Zhao D, Volkov AV, Crispin X, Jonsson MP. Thermoplasmonic Semitransparent Nanohole Electrodes. NANO LETTERS 2017; 17:3145-3151. [PMID: 28441500 DOI: 10.1021/acs.nanolett.7b00574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nonradiative decay of plasmons in metallic nanostructures offers unique means for light-to-heat conversion at the nanoscale. Typical thermoplasmonic systems utilize discrete particles, while metal nanohole arrays were instead considered suitable as heat sinks to reduce heating effects. By contrast, we show for the first time that under uniform broadband illumination (e.g., the sun) ultrathin plasmonic nanohole arrays can be highly competitive plasmonic heaters and provide significantly higher temperatures than analogous nanodisk arrays. Our plasmonic nanohole arrays also heat significantly more than nonstructured metal films, while simultaneously providing superior light transmission. Besides being efficient light-driven heat sources, these thin perforated gold films can simultaneously be used as electrodes. We used this feature to develop "plasmonic thermistors" for electrical monitoring of plasmon-induced temperature changes. The nanohole arrays provided temperature changes up to 7.5 K by simulated sunlight, which is very high compared to previously reported plasmonic systems under similar conditions (solar illumination and ambient conditions). Both temperatures and heating profiles quantitatively agree with combined optical and thermal simulations. Finally, we demonstrate the use of a thermoplasmonic nanohole electrode to power the first hybrid plasmonic ionic thermoelectric device, resulting in strong solar-induced heat gradients and corresponding thermoelectric voltages.
Collapse
Affiliation(s)
- Daniel Tordera
- Laboratory of Organic Electronics, Linköping University , SE-601 74 Norrköping, Sweden
| | - Dan Zhao
- Laboratory of Organic Electronics, Linköping University , SE-601 74 Norrköping, Sweden
| | - Anton V Volkov
- Laboratory of Organic Electronics, Linköping University , SE-601 74 Norrköping, Sweden
| | - Xavier Crispin
- Laboratory of Organic Electronics, Linköping University , SE-601 74 Norrköping, Sweden
| | - Magnus P Jonsson
- Laboratory of Organic Electronics, Linköping University , SE-601 74 Norrköping, Sweden
| |
Collapse
|