1
|
Jin X, Wang J, Ding F, Cai B, Li Y. Real-time reliable detection of adrenocorticotropic hormone using reduced graphene oxide field-effect transistors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 40377061 DOI: 10.1039/d5ay00312a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Adrenocorticotropic hormone (ACTH), a pivotal regulator in stress response and cortisol production, poses substantial detection challenges owing to its low plasma concentration, susceptibility to fluctuations, and storage-related stability issues. We developed an innovative nano-immunobiosensor platform to overcome these limitations that integrates reduced graphene oxide (RGO) with field-effect transistor (FET) technology. This platform employs anti-ACTH-directed detection to achieve rapid, sensitive, and real-time quantification of ACTH levels. The RGO-FET design capitalizes on the binding capacity of ACTH to pre-arrange anti-ACTH, thereby enhancing target engagement and enabling swift recognition of unlabeled ACTH. The sensor exhibits remarkable sensitivity, detecting ACTH concentrations as low as 0.124 fM in PBS. Furthermore, Bland-Altman analysis comparing our method with existing techniques using clinical samples reveals a high degree of methodological agreement, with 96% of results falling within the 95% confidence interval, underscoring its excellent precision. The principal advantage of this nano-immunobiosensor is its capability for real-time ACTH detection in clinical samples, making it an up-and-coming candidate for a sensitive point-of-care (POCT) diagnostic solution.
Collapse
Affiliation(s)
- Xin Jin
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
- Hubei Provincial Clinical Research Center for Molecular Diagnostics, Wuhan, China
| | - Jiaying Wang
- Department of Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province 442000, China
| | - Fan Ding
- Department of Clinical Laboratory, Wuhan Sixth Hospital of Jianghan University, Wuhan 430015, China
| | - Bingjie Cai
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China.
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
- Hubei Provincial Clinical Research Center for Molecular Diagnostics, Wuhan, China
| |
Collapse
|
2
|
Wang C, Wang Z, Gao M, Zhu Y, Zhu H, Zhou L, Zhou Y, Tian X, Liu Y, Zhang Y, Sun S, Meng C, Hong X, Wang Y, Yang M, Fan N, Huang H, Chen Z, Ge Y, Li J, Jiang K, Zhang H, Qiu M, Wang H. Highly Stable and Integrable Graphene/Molybdenum Disulfide Heterojunction Field-Effect Transistor-Based miRNA Biosensor. ACS APPLIED MATERIALS & INTERFACES 2025; 17:28585-28596. [PMID: 40313004 DOI: 10.1021/acsami.5c03827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
MicroRNAs (miRNAs) are important noncoding RNA molecules that participate in gene regulation and are widely associated with the occurrence and development of various cancers. Developing rapid, highly sensitive, low-cost, and highly stable miRNA detection methods is of great significance for clinical diagnosis. Field-effect transistors (FETs) based on two-dimensional (2D) materials have been proven to have great potential in the field of miRNA detection due to their label-free, rapid, highly sensitive, low-power, and portable features. However, biosensors based on 2D material FETs require the application of an external gate voltage in solution, which seriously hinders the integration, miniaturization, and signal stability of the devices. This study proposes a graphene-molybdenum disulfide heterojunction (G/MoS2) FET biosensing platform to detect miRNA-21 and miRNA-155 without the need for an external gate voltage. The results demonstrate a detection time of approximately 30 min, a linear response range spanning from 10 fM to 10 nM, and limits of detection of 6.06 fM for miRNA-21 and 2.59 fM for miRNA-155. Through comparative experiments, the biosensor shows excellent selectivity and can distinguish target miRNAs from nontarget miRNAs. The G/MoS2 FET biosensor developed in this study provides a technical platform for miRNA detection and has a broad application prospect, especially in the early diagnosis of diseases and the screening of biomarkers.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266100, China
| | - Ziqian Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
- School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, Macau999078, China
| | - Ming Gao
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266100, China
| | - Yihan Zhu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Honghai Zhu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Lizhuo Zhou
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Yujie Zhou
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Xilin Tian
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Yi Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Yule Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Shuo Sun
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Changle Meng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Xiangqian Hong
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, 18 Zetian Road, Futian District, Shenzhen 518040, China
| | - Yun Wang
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, 18 Zetian Road, Futian District, Shenzhen 518040, China
| | - Mingmin Yang
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, 18 Zetian Road, Futian District, Shenzhen 518040, China
| | - Ning Fan
- Shenzhen Eye Hospital, Shenzhen Eye Medical Center, Southern Medical University, 18 Zetian Road, Futian District, Shenzhen 518040, China
| | - Hao Huang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Zhi Chen
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
- Department of Chemistry, Korea University, Seoul 02841, South Korea
| | - Yanqi Ge
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| | - Jianqing Li
- School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, Macau999078, China
| | - Ke Jiang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
| | - Han Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ministry of Education), College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao266100, China
| | - Huide Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Institute for Advanced Study in Nuclear Energy and Safety, Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, China
| |
Collapse
|
3
|
Xu X, Zhao S, Xie Y, Zhang L, Shao Y, Lin J, Wu A. Advances in SERS detection method combined with microfluidic technology for bio-analytical applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 332:125797. [PMID: 39899965 DOI: 10.1016/j.saa.2025.125797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/05/2025]
Abstract
With the advancement of research on life systems and disease mechanisms, the precision of analysis tends to be at a single molecule or single gene level. The surface-enhanced Raman scattering (SERS) method is highly anticipated because of its sensitive detection ability down to a single molecule level. The SERS-based microfluidic platforms retain both advantages of SERS and microfluidics, working in a complementary way. The combination of microfluidics and SERS can provide rapid, non-destructive, high-sensitive, and high-throughput analysis for biological samples, which is of great significance to developing potential biomedical applications, thus occupying an outstanding position among the current research hot topics. This review briefly summarized the recent developments and applications of SERS-based microfluidic platforms in biological analysis. This paper first introduced the SERS-based microfluidic platforms and gave a classification of this method including continuous flow-based method, microarrays-based method, droplet-based method, lateral flow assay (LFA)-based method, and digital-based method. In particular, the bioanalytical applications of SERS-based microfluidic platforms in recent years, including biomolecule detection, cell analysis, and disease diagnosis, have been reviewed. It illustrated that SERS-based microfluidic platforms have great potential in bioanalysis.
Collapse
Affiliation(s)
- Xiawei Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, PR China
| | - Songchen Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Yujiao Xie
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Lei Zhang
- Zhejiang Key Laboratory of Digital Technology in Medical Diagnostics, Hangzhou 310030, PR China; The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, PR China.
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Jie Lin
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
| |
Collapse
|
4
|
Pandey M, Bhaiyya M, Rewatkar P, Zalke JB, Narkhede NP, Haick H. Advanced Materials for Biological Field-Effect Transistors (Bio-FETs) in Precision Healthcare and Biosensing. Adv Healthc Mater 2025; 14:e2500400. [PMID: 40207741 PMCID: PMC12083444 DOI: 10.1002/adhm.202500400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/09/2025] [Indexed: 04/11/2025]
Abstract
Biological Field Effect Transistors (Bio-FETs) are redefining the standard of biosensing by enabling label-free, real-time, and extremely sensitive detection of biomolecules. At the center of this innovation is the fundamental empowering role of advanced materials, such as graphene, molybdenum disulfide, carbon nanotubes, and silicon. These materials, when harnessed with the downstream biomolecular probes like aptamers, antibodies, and enzymes, allow Bio-FETs to offer unrivaled sensitivity and precision. This review is an exposition of how advancements in materials science have permitted Bio-FETs to detect biomarkers in extremely low concentrations, from femtomolar to attomolar levels, ensuring device stability and reliability. Specifically, the review examines how the incorporation of cutting-edge materials architectures, like flexible / stretchable and multiplexed designs, is expanding the frontiers of biosensing and contributing to the development of more adaptable and user-friendly Bio-FET platforms. A key focus is placed on the synergy of Bio-FETs with artificial intelligence (AI), the Internet of Things (IoT), and sustainable materials approaches as fast-tracking toward transition from research into practical healthcare applications. The review also explores current challenges such as material reproducibility, operational durability, and cost-effectiveness. It outlines targeted strategies to address these hurdles and facilitate scalable manufacturing. By emphasizing the transformative role played by advanced materials and their cementing position in Bio-FETs, this review positions Bio-FETs as a cornerstone technology for the future healthcare solution for precision applications. These advancements would lead to an era where material innovation would herald massive strides in biomedical diagnostics and subsume.
Collapse
Affiliation(s)
- Minal Pandey
- Department of Electronics EngineeringRamdeobaba UniversityNagpur440013India
| | - Manish Bhaiyya
- Department of Electronics EngineeringRamdeobaba UniversityNagpur440013India
- Department of Chemical Engineering and the Russell Berrie Nanotechnology InstituteTechnionIsrael Institute of TechnologyHaifa3200003Israel
| | - Prakash Rewatkar
- Department of Mechanical EngineeringIsrael Institute of Technology, TechnionHaifa3200003Israel
| | - Jitendra B. Zalke
- Department of Electronics EngineeringRamdeobaba UniversityNagpur440013India
| | - Nitin P. Narkhede
- Department of Electronics EngineeringRamdeobaba UniversityNagpur440013India
| | - Hossam Haick
- Department of Chemical Engineering and the Russell Berrie Nanotechnology InstituteTechnionIsrael Institute of TechnologyHaifa3200003Israel
- Life Science Technology (LiST) GroupDanube Private University, Fakultät Medizin/ZahnmedizinSteiner Landstraße 124Krems‐Stein3500Austria
| |
Collapse
|
5
|
Li J, Wijaya LNA, Jang DW, Hu Y, You J, Cai Y, Gao Z, Mi Y, Luo Z. 2D Materials-Based Field-Effect Transistor Biosensors for Healthcare. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408961. [PMID: 39659061 DOI: 10.1002/smll.202408961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/21/2024] [Indexed: 12/12/2024]
Abstract
The need for accurate point-of-care (POC) tools, driven by increasing demands for precise medical diagnostics and monitoring, has accelerated the evolution of biosensor technology. Integrable 2D materials-based field-effect transistor (2D FET) biosensors offer label-free, rapid, and ultrasensitive detection, aligning perfectly with current biosensor trends. Given these advancements, this review focuses on the progress, challenges, and future prospects in the field of 2D FET biosensors. The distinctive physical properties of 2D materials and recent achievements in scalable synthesis are highlighted that significantly improve the manufacturing process and performance of FET biosensors. Additionally, the advancements of 2D FET biosensors are investigated in fatal disease diagnosis and screening, chronic disease management, and environmental hazards monitoring, as well as their integration in flexible electronics. Their promising capabilities shown in laboratory trials accelerate the development of prototype products, while the challenges are acknowledged, related to sensitivity, stability, and scalability that continue to impede the widespread adoption and commercialization of 2D FET biosensors. Finally, current strategies are discussed to overcome these challenges and envision future implications of 2D FET biosensors, such as their potential as smart and sustainable POC biosensors, thereby advancing human healthcare.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, P. R. China
| | - Leonardo Nicholas Adi Wijaya
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, P. R. China
| | - Dong Wook Jang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, P. R. China
| | - Yunxia Hu
- Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Jiawen You
- Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Yuting Cai
- Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Zhaoli Gao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, P. R. China
| | - Yongli Mi
- Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
6
|
Li Y, Liu Z, Zheng Y, Sun K, Lei P, Gu Y, Song Y, Xue J, Cai W, Wang R, Xu H, Sun L. High-throughput screening method for glycolipids based on substrate modification and their efficient biomanufacturing. BIORESOURCE TECHNOLOGY 2025; 422:132215. [PMID: 39952617 DOI: 10.1016/j.biortech.2025.132215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
The development of a high-throughput screening (HTS) method is crucial for boosting microbial synthesis. However, in non-model strains, genetic editing-based HTS is often not feasible. Here, a substrate-modified HTS strategy using Starmerella bombicola PL0120, a sophorolipids (SLs)-producing strain, was designed. First, the medium was optimized to increase the SLs yield to 248 g/L. Then, 2-benzylstearic acid was synthesized, which PL0120 can use to make SLs analogs. Subsequently, by selecting dark-phenotype strains and using 254 nm absorption, a 51.1 % high-yielding SLs strain screening rate was achieved. Among these strains, strain A6 yielded a concentration of 324 g/L. Moreover, this method has been extended to rhamnolipids (RLs). By engineering a microbubble reactor, the yield of RLs was increased to 70.3 g/L. This HTS methodology is instrumental in augmenting the production output of microbial fermentation products, which in turn, facilitates cost-effective biomanufacturing.
Collapse
Affiliation(s)
- Yuanyi Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhilin Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yiming Zheng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Ke Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yian Gu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yongting Song
- Research Institute of Petroleum Engineering and Technology, Sinopec Shengli Oilfield, Dongying 257000 Shandong, China
| | - Jian Xue
- Nanjing Shineking Biotech Co., Ltd, Nanjing 210061, China
| | - Weidong Cai
- Guilin Fengrunlai Biotech Corp., Guilin 541000, China
| | - Rui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
7
|
Saunders J, Thompson IAP, Soh HT. Generalizable Molecular Switch Designs for In Vivo Continuous Biosensing. Acc Chem Res 2025; 58:703-713. [PMID: 39954262 PMCID: PMC11883736 DOI: 10.1021/acs.accounts.4c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Continuous biosensors have the potential to transform medicine, enabling healthcare to be more preventative and personalized as compared to the current standard of reactive diagnostics. Realizing this transformative potential requires biosensors that can function continuously in vivo without sample preparation and deliver molecular specificity, sensitivity, and high temporal resolution. Molecular switches stand out as a promising solution for creating such sensors for the continuous detection of many different types of molecules. Molecular switches are target-binding receptors designed such that binding causes a conformational change in the switch's structure. This structure switching induces a measurable signal change via reporters incorporated into the molecular switch, enabling highly specific, label-free sensing. However, there remains an outstanding need for generalizable switch designs that can be adapted for the detection of a wide range of molecular targets. In this Account, we chronicle the work our lab has done to develop generalizable molecular switch designs that allow more rapid development of high-performance biosensors across a broad range of biomarkers. Pioneering efforts toward molecular switch-based biosensing have employed aptamers─nucleic acid-based receptors with sequence-specific target affinity. However, most of these early demonstrations relied upon aptamers with intrinsic structure-switching capabilities. To accelerate aptamer switch design for more targets, we have applied rational design and knowledge of an aptamer's structure to engineer switching functionality into pre-existing aptamers. Our designs contained several structural parameters that enabled us to easily tune the sensitivity and binding kinetics of the resulting switches. Using such rationally designed aptamer switches, we demonstrated continuous optical detection of cortisol and dopamine at physiologically relevant concentrations in complex media. In an effort to move beyond aptamers with well-characterized structural properties, we developed a high-throughput screening method that allowed us to simultaneously screen millions of candidates derived from a single aptamer to find sensitive switches without any prior structural knowledge of the parent aptamer. In subsequent work, we reasoned that we could enhance our ability to design a broader range of biosensors by leveraging other classes of receptors besides aptamers. Antibodies offer excellent affinity and specificity for a wide range of targets, but lack the capacity for intrinsic structure switching. We therefore developed a set of strategies to augment antibodies with the capacity to act as molecular switches with a diverse range of target-binding properties. We combined both the high binding affinity of an antibody with the structure-switching capabilities of an aptamer to develop a chimeric switch with 100-fold enhanced sensitivity for a protein target and improved function in interferent-rich samples. In a second design, we developed a competitive immunoassay-inspired scheme to engineer switching behavior into an antibody for minutes-scale temporal resolution with nanomolar sensitivity. We used this competitive antibody-switch to demonstrate the first continuous detection of cortisol directly in whole blood. Together, these advances in molecular switch development have expanded our capability to rapidly engineer new continuous biosensors, thereby increasing opportunities to track health via a wide range of biomarkers to deliver more personalized and preventative medicine.
Collapse
Affiliation(s)
- Jason Saunders
- Department
of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ian A. P. Thompson
- Department
of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hyongsok Tom Soh
- Department
of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department
of Radiology, Stanford University, Stanford, California 94305, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
8
|
Zhang Y, Cai Z, Zou R, Wang R, Tan R, Wang L, Wu Y, He H, He Y, Chang G. Solution-Gated Thin Film Transistor Biosensor-Based SnO 2 Amorphous Film for Label-Free Detection of Epithelial Cell Adhesion Molecules. ACS Sens 2025; 10:1187-1196. [PMID: 39888336 DOI: 10.1021/acssensors.4c03073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Epithelial cell adhesion molecule (EpCAM) was considered to be an important marker of multiple tumors, and its high expression is closely related to the early diagnosis and treatment of tumors. At present, metal oxide semiconductors have become a key component of biosensor and bioelectronics technology. Tin oxide shows great potential for development because of its nontoxic, nonpolluting, low price, and excellent electrical properties. In this study, a novel SnO2 solution-gated thin film transistor (SGTFT) biosensor for the specific detection of EpCAM was successfully developed using SnO2 film prepared by the sol-gel method as the channel material. By selecting the optimal thickness of 100 nm SnO2 film as the channel material, the transconductance value (gm) reached 1432 μS, and the threshold voltage (Vth) remained stable at 0.288 V. In order to achieve qualitative and quantitative detection of EpCAM, SnO2 films were subjected to a specific chemical treatment to fix the aptamer. Through a specific recognition between the aptamer and EpCAM, the gate voltage changes were triggered to regulate the channel current of the device. FE-SEM, EIS, XPS, and electrical performance tests were employed to track and measure the modification process. Based on the optimizations described above, the prepared SGTFT exhibited high detection sensitivity (14.6 mV·dec-1), the limit of detection (LOD) down to 24.4 pg/mL, and the calibration curves in the range of 0.02 ng/mL-500 ng/mL for EpCAM sensing. The developed SnO2-SGTFT biosensor is anticipated to provide a new highly sensitive and specific detection platform for health monitoring and disease diagnosis.
Collapse
Affiliation(s)
- Yaxing Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zhiwei Cai
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Rong Zou
- College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Ruling Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Runan Tan
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Lei Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yuxiang Wu
- College of Physical Education, Jianghan University, Wuhan 430056, China
| | - Hanping He
- College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yunbin He
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Gang Chang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
9
|
Wang W, Du H, Dai C, Ma H, Luo S, Wang X, Guo M, Kong D, Wei D. Amplification-free detection of Mycobacterium tuberculosis using CRISPR-Cas12a and graphene field-effect transistors. NANOSCALE 2025; 17:4603-4609. [PMID: 39810563 DOI: 10.1039/d4nr03852e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Current molecular tests for tuberculosis (TB), such as whole genome sequencing and Xpert Mycobacterium tuberculosis/rifampicin resistance assay, exhibit limited sensitivity and necessitate the pre-amplification step of target DNA. This limitation greatly increases detection time and poses an increased risk of infection. Here, we present a graphene field-effect transistor (GFET) based on the CRISPR/Cas system for detecting Mycobacterium tuberculosis. The CRISPR/Cas12a system has the ability to specifically recognize and cleave target DNA. By integrating the system onto the FET platform and utilizing its electrical amplification capability, we achieve rapid and sensitive detection without requiring sample pre-amplification, with a limit of detection (LoD) as low as 2.42 × 10-18 M. Cas12a-GFET devices can differentiate 30 positive cases from 56 serum samples within 5 minutes. These findings highlight its immense potential in future biological analysis and clinical diagnosis.
Collapse
Affiliation(s)
- Weiqi Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Huanyu Du
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Hongwenjie Ma
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Shi Luo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Mingquan Guo
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| | - Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
- Institute of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
10
|
Joshi R, Ravindran K V, Lahiri I. Graphene-based materials and electrochemical biosensors: an overview. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:143001. [PMID: 39908672 DOI: 10.1088/1361-648x/adb2d0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/05/2025] [Indexed: 02/07/2025]
Abstract
Graphene, an exceptional two-dimensional material, has attracted significant attention from the scientific community. Its unique physiochemical properties make it a suitable candidate for many applications in the field of biotechnology and medical sciences. High specific surface area, exceptionally high electrical conductivity, and good biocompatibility of graphene give it a large scope in disease diagnosis and biosensing applications. This review aims at presenting the advances in the journey of graphene-based materials and their successful implication as electrochemical nanobiosensors. The first part of the review summarizes the history, structure, and recent developments in the large-scale production of graphene. It further includes the sensing mechanism, the recent trends in biosensing, and improvements in graphene-based biosensors. The comparative analysis shows graphene-based electrochemical biosensors to have high sensitivity, long-term stability, and low detection limits compared to the various other biosensors.
Collapse
Affiliation(s)
- Rita Joshi
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Veena Ravindran K
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Indranil Lahiri
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
11
|
Zhang H, Osawa F, Okamoto H, Qiu Y, Liu Z, Ohshima N, Kajisa T, Sakata T, Izumi T, Sone H. Ultrasensitive Specific Detection of Anti-influenza A H1N1 Hemagglutinin Monoclonal Antibody Using Silicon Nanowire Field Effect Biosensors. ACS APPLIED BIO MATERIALS 2025; 8:1038-1049. [PMID: 39815599 DOI: 10.1021/acsabm.4c01263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Rapid and sensitive detection of virus-related antigens and antibodies is crucial for controlling sudden seasonal epidemics and monitoring neutralizing antibody levels after vaccination. However, conventional detection methods still face challenges related to compatibility with rapid, highly sensitive, and compact detection apparatus. In this work, we developed a Si nanowire (SiNW)-based field-effect biosensor by precisely controlling the process conditions to achieve the required electrical properties via complementary metal-oxide-semiconductor (CMOS)-compatible nanofabrication processes. The SiNW surface was chemically modified with 2-aminoethylphosphonic acid, followed by a dehydration condensation reaction with influenza A H1N1 hemagglutinin (HA1), to enable specific detection of anti-HA1 immunoglobulin G (IgG). We successfully detected the anti-influenza IgG with concentrations ranging from 1 aM to 100 nM, achieving a remarkable detection limit of 6.0 aM. To demonstrate specificity, a control experiment was conducted using normal mouse IgG with concentrations of 6 aM to 600 nM. The results showed a high specificity, with the signal being 6-fold greater for the target IgG compared to the control IgG. This work demonstrates the capability of SiNW biosensors to detect anti-influenza A H1N1 hemagglutinin monoclonal antibody with enhanced detection sensitivity and specificity. This work lays the groundwork for future applications in detecting antibodies after vaccination or immunotherapy, contributing to the effective management of infectious pandemics.
Collapse
Affiliation(s)
- Hui Zhang
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma 376-8515, Japan
| | - Fumiya Osawa
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma 376-8515, Japan
| | - Haru Okamoto
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma 376-8515, Japan
| | - Yawei Qiu
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma 376-8515, Japan
| | - Zhiheng Liu
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma 376-8515, Japan
| | - Noriyasu Ohshima
- Graduate School of Medicine, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Taira Kajisa
- SympaFit Company Limited, 16th Floor, Ark Hills South Tower 1-4-5 Roppongi, Minato-ku, Tokyo 106-0032, Japan
| | - Toshiya Sakata
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan
| | - Takashi Izumi
- Graduate School of Medicine, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma 371-8511, Japan
- Faculty of Health Care, Teikyo Heisei University, 2-51-4, Higashiikebukuro, Toshima-Ku, Tokyo 170-8445, Japan
| | - Hayato Sone
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma 376-8515, Japan
| |
Collapse
|
12
|
Domingues T, Liao CD, Prado M, Cerqueira MF, Petrovykh DY, Alpuim P, Borme J, Guerreiro JR. Tailoring DNA Surface Interactions on Single-Layer Graphene: Comparative Analysis of Pyrene, Acridine, and Fluorenyl Methyl Linkers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:263-273. [PMID: 39711174 DOI: 10.1021/acs.langmuir.4c03420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
This study investigates the effect of different linkers and solvents on the immobilization of DNA probes on graphene surfaces, which are crucial for developing high-performance biosensors. Quartz crystal microbalance with dissipation (QCM-D) measurements were used to characterize in situ and real-time the immobilization of ssDNA and hybridization efficiency on model graphene surfaces. The DNA probes immobilization kinetics and thermodynamics were systematically investigated for all the pairings between three bifunctional linkers─1-pyrenebutyric acid succinimidyl ester (PBSE), Fluorenylmethylsuccinimidyl carbonate (FSC), and Acridine Orange (AO) succinimidyl ester─and three organic solvents (DMF, DMSO, and 10% DMF/ethanol). The linker's spatial orientation and effective surface modification for DNA probe attachment were also evaluated based on footprints and DNA probe surface coverage. Graphene surfaces functionalized with PBSE in DMF achieved the highest DNA probe surface density (up to 1.31 × 1013 molecules cm-2) and fastest kinetic, p values above 4, and hybridization efficiencies of at least 70%, with 20 to 30% of ssDNA directly adsorbed nonspecifically on the functionalized graphene surface, which has significant implications for the design of sensitive biosensors. The efficiency of the ethanolamine-NHS blocking reaction was estimated to be 80%. The surface packing density of the linker was estimated at 25% of the entire surface coverage for PBSE, and about 22 and 13% for AO and FSC, respectively. Overall, the surface coverage achieved for probe DNA was in the same order of magnitude as that obtained on flat gold surfaces (≥1013 molecules cm-2), typically used in biosensors. These findings highlight the importance of the selected conditions for graphene surface modification to achieve high DNA probe surface density on graphene materials. These results underscore the critical role of interface engineering in achieving target functional outcomes in biosensing technology.
Collapse
Affiliation(s)
- Telma Domingues
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
- Center of Physics of the Universities of Minho and Porto, University of Minho, 4710-057 Braga, Portugal
| | - Chun-Da Liao
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Marta Prado
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
- LHICA Department of Analytical Chemistry, Nutrition and Bromatology, Campus Terra, University of Santiago de Compostela (USC), 27002 Lugo, Spain
| | - M Fátima Cerqueira
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
- Center of Physics of the Universities of Minho and Porto, University of Minho, 4710-057 Braga, Portugal
| | - Dmitri Y Petrovykh
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Pedro Alpuim
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
- Center of Physics of the Universities of Minho and Porto, University of Minho, 4710-057 Braga, Portugal
| | - Jérôme Borme
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Joana Rafaela Guerreiro
- International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
- CIETI-LabRISE, School of Engineering, Polytechnic of Porto, 4200-072 Porto, Portugal
- CEB─Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
13
|
Ma H, Chen S, Zhang X, Sun T, Huo P, Cui X, Man B, Yang C, Wei D. Cation Enrichment Effect Modulated Nafion/Graphene Field-Effect Transistor for Ultrasensitive RNA Detection. NANO LETTERS 2024; 24:16245-16252. [PMID: 39660777 DOI: 10.1021/acs.nanolett.4c03989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The graphene field-effect transistor (GFET) biosensor serves as a foundational platform for detecting biomolecules, offering high conductivity, label-free operation, and easy integration. These features have garnered significant attention in biomarker detection. However, the presence of free cations in solution often leads to electrostatic shielding of negatively charged biomolecules, reducing GFET detection sensitivity (LOD ≥ 1 fM). Additionally, the limited capacitance change in GFET restricts its use as a response signal. This study introduces a cation enrichment electric field modulation strategy (CEEFMS) to enhance capacitance and Dirac voltage response during detection. The cation-enriched rough Nafion/graphene FET (CENG-FET) achieves RNA detection at the aM level. Utilizing total capacitance change and Dirac voltage shift as response signals, the CENG-FET demonstrates a wide linear range from 1 aM to 1 pM. These findings advance dual-signal detection strategies, reducing accidental inaccuracies in biomolecular sensing and paving the way for further research.
Collapse
Affiliation(s)
- Heqi Ma
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Shuo Chen
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xinhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Tianyu Sun
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Panpan Huo
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xiangyong Cui
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Baoyuan Man
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Cheng Yang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
- Shandong Provincial Engineering and Technical Center of Light Manipulations, Jinan 250014, People's Republic of China
| | - Dongmei Wei
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
14
|
Zou S, Peng G, Ma Z. Surface-Functionalizing Strategies for Multiplexed Molecular Biosensing: Developments Powered by Advancements in Nanotechnologies. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2014. [PMID: 39728549 DOI: 10.3390/nano14242014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Multiplexed biosensing methods for simultaneously detecting multiple biomolecules are important for investigating biological mechanisms associated with physiological processes, developing applications in life sciences, and conducting medical tests. The development of biosensors, especially those advanced biosensors with multiplexing potentials, strongly depends on advancements in nanotechnologies, including the nano-coating of thin films, micro-nano 3D structures, and nanotags for signal generation. Surface functionalization is a critical process for biosensing applications, one which enables the immobilization of biological probes or other structures that assist in the capturing of biomolecules. During this functionalizing process, nanomaterials can either be the objects of surface modification or the materials used to modify other base surfaces. These surface-functionalizing strategies, involving the coordination of sensor structures and materials, as well as the associated modifying methods, are largely determinative in the performance of biosensing applications. This review introduces the current studies on biosensors with multiplexing potentials and focuses specifically on the roles of nanomaterials in the design and functionalization of these biosensors. A detailed description of the paradigms used for method selection has been set forth to assist understanding and accelerate the application of novel nanotechnologies in the development of biosensors.
Collapse
Affiliation(s)
- Shangjie Zou
- Center for Cell Lineage Technology and Engineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Guangdun Peng
- Center for Cell Lineage Technology and Engineering, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhiqiang Ma
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| |
Collapse
|
15
|
Jiang Z, Ye D, Xiang L, He Z, Dai X, Yang J, Xiong Q, Ma Y, Zhi D, Zou Y, Peng Q, Wang S, Li J, Zhang F, Di CA. A drug-mediated organic electrochemical transistor for robustly reusable biosensors. NATURE MATERIALS 2024; 23:1547-1555. [PMID: 39112738 DOI: 10.1038/s41563-024-01970-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/08/2024] [Indexed: 09/15/2024]
Abstract
Reusable point-of-care biosensors offer a cost-effective solution for serial biomarker monitoring, addressing the critical demand for tumour treatments and recurrence diagnosis. However, their realization has been limited by the contradictory requirements of robust reusability and high sensing capability to multiple interactions among transducer surface, sensing probes and target analytes. Here we propose a drug-mediated organic electrochemical transistor as a robust, reusable epidermal growth factor receptor sensor with striking sensitivity and selectivity. By electrostatically adsorbing protonated gefitinib onto poly(3,4-ethylenedioxythiophene):polystyrene sulfonate and leveraging its strong binding to the epidermal growth factor receptor target, the device operates with a unique refresh-in-sensing mechanism. It not only yields an ultralow limit-of-detection concentration down to 5.74 fg ml-1 for epidermal growth factor receptor but, more importantly, also produces an unprecedented regeneration cycle exceeding 200. We further validate the potential of our devices for easy-to-use biomedical applications by creating an 8 × 12 diagnostic drug-mediated organic electrochemical transistor array with excellent uniformity to clinical blood samples.
Collapse
Affiliation(s)
- Ziling Jiang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
- Beijing National Laboratory for Molecular Sciences, CAS Kay Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Dekai Ye
- Beijing National Laboratory for Molecular Sciences, CAS Kay Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- Zhangjiang Laboratory, Shanghai, China
| | - Lanyi Xiang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zihan He
- Beijing National Laboratory for Molecular Sciences, CAS Kay Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Dai
- Beijing National Laboratory for Molecular Sciences, CAS Kay Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Junfang Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qi Xiong
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Yingqiao Ma
- Beijing National Laboratory for Molecular Sciences, CAS Kay Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Danfeng Zhi
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ye Zou
- Beijing National Laboratory for Molecular Sciences, CAS Kay Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, CAS Kay Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Jia Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China.
- National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, China.
| | - Fengjiao Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Chong-An Di
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Beijing National Laboratory for Molecular Sciences, CAS Kay Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Liu Y, Zhao Z, Zeng Y, He M, Lyu Y, Yuan Q. Thermodynamics and Kinetics-Directed Regulation of Nucleic Acid-Based Molecular Recognition. SMALL METHODS 2024:e2401102. [PMID: 39392199 DOI: 10.1002/smtd.202401102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/28/2024] [Indexed: 10/12/2024]
Abstract
Nucleic acid-based molecular recognition plays crucial roles in various fields like biosensing and disease diagnostics. To achieve optimal detection and analysis, it is essential to regulate the response performance of nucleic acid probes or switches to match specific application requirements by regulating thermodynamics and kinetics properties. However, the impacts of thermodynamics and kinetics theories on recognition performance are sometimes obscure and the relative conclusions are not intuitive. To promote the thorough understanding and rational utilization of thermodynamics and kinetics theories, this review focuses on the landmarks and recent advances of nucleic acid thermodynamics and kinetics and summarizes the nucleic acid thermodynamics and kinetics-based strategies for regulation of nucleic acid-based molecular recognition. This work hopes such a review can provide reference and guidance for the development and optimization of nucleic acid probes and switches in the future, as well as for advancements in other nucleic acid-related fields.
Collapse
Affiliation(s)
- Yihao Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Zihan Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yuqi Zeng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Minze He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Furong Laboratory, Changsha, 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, 410082, China
- Institute of Chemical Biology and Nanomedicine, College of Biology, Hunan University, Changsha, 410082, China
| |
Collapse
|
17
|
Zhang Q, Hao Y, Zeng T, Shu W, Xue P, Li Y, Huang C, Ouyang L, Zou X, Zhao Z, Wang J, Yu X, Zhou W. Modular Fabrication of Microfluidic Graphene FET for Nucleic Acids Biosensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401796. [PMID: 39044365 PMCID: PMC11497086 DOI: 10.1002/advs.202401796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/30/2024] [Indexed: 07/25/2024]
Abstract
Graphene field-effect transistors (GFETs) are widely used in biosensing due to their excellent properties in biomolecular signal amplification, exhibiting great potential for high-sensitivity and point-of-care testing in clinical diagnosis. However, difficulties in complicated fabrication steps are the main limitations for the further studies and applications of GFETs. In this study, a modular fabrication technique is introduced to construct microfluidic GFET biosensors within 3 independent steps. The low-melting metal electrodes and intricate flow channels are incorporated to maintain the structural integrity of graphene and facilitate subsequent sensing operations. The as-fabricated GFET biosensor demonstrates excellent long-term stability, and performs effectively in various ion environments. It also exhibits high sensitivity and selectivity for detecting single-stranded nucleic acids at a 10 fm concentration. Furthermore, when combined with the CRISPR/Cas12a system, it facilitates amplification-free and rapid detection of nucleic acids at a concentration of 1 fm. Thus, it is believed that this modular-fabricated microfluidic GFET may shed light on further development of FET-based biosensors in various applications.
Collapse
Affiliation(s)
- Qiongdi Zhang
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Yuxuan Hao
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Tonghua Zeng
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Weiliang Shu
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Pan Xue
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Southern University of Science and TechnologyShenzhen518055China
| | - Yang Li
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Chi Huang
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Liwei Ouyang
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Xuming Zou
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low‐Dimensional Structural Physics and DevicesSchool of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Zhen Zhao
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Jiahong Wang
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Xue‐Feng Yu
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- The Key Laboratory of Biomedical Imaging Science and SystemChinese Academy of SciencesShenzhen518055China
| | - Wenhua Zhou
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- The Key Laboratory of Biomedical Imaging Science and SystemChinese Academy of SciencesShenzhen518055China
| |
Collapse
|
18
|
Liu Q, Chen Y, Qi H. Advances in Genotyping Detection of Fragmented Nucleic Acids. BIOSENSORS 2024; 14:465. [PMID: 39451678 PMCID: PMC11506436 DOI: 10.3390/bios14100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024]
Abstract
Single nucleotide variant (SNV) detection is pivotal in various fields, including disease diagnosis, viral screening, genetically modified organism (GMO) identification, and genotyping. However, detecting SNVs presents significant challenges due to the fragmentation of nucleic acids caused by cellular apoptosis, molecular shearing, and physical degradation processes such as heating. Fragmented nucleic acids often exhibit variable lengths and inconsistent breakpoints, complicating the accurate detection of SNVs. This article delves into the underlying causes of nucleic acid fragmentation and synthesizes the strengths and limitations of next-generation sequencing technology, high-resolution melting curves, molecular probes, and CRISPR-based approaches for SNV detection in fragmented nucleic acids. By providing a detailed comparative analysis, it seeks to offer valuable insights for researchers working to overcome the challenges of SNV detection in fragmented samples, ultimately advancing the accurate and efficient detection of single nucleotide variants across diverse applications.
Collapse
Affiliation(s)
- Qian Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Q.L.); (Y.C.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yun Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Q.L.); (Y.C.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hao Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (Q.L.); (Y.C.)
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
19
|
Liu HY, Zhu Z, He J, Yang Y, Liang Y, Li Z, Zhu M, Xiao M, Zhang Z. Mass Production of Carbon Nanotube Transistor Biosensors for Point-of-Care Tests. NANO LETTERS 2024; 24:10510-10518. [PMID: 39145617 DOI: 10.1021/acs.nanolett.4c02518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Low-dimensional semiconductor-based field-effect transistor (FET) biosensors are promising for label-free detection of biotargets while facing challenges in mass fabrication of devices and reliable reading of small signals. Here, we construct a reliable technology for mass production of semiconducting carbon nanotube (CNT) film and FET biosensors. High-uniformity randomly oriented CNT films were prepared through an improved immersion coating technique, and then, CNT FETs were fabricated with coefficient of performance variations within 6% on 4-in. wafers (within 9% interwafer) based on an industrial standard-level process. The CNT FET-based ion sensors demonstrated threshold voltage standard deviations within 5.1 mV at each ion concentration, enabling direct reading of the concentration information based on the drain current. By integrating bioprobes, we achieved detection of biosignals as low as 100 aM through a plug-and-play portable detection system. The reliable technology will contribute to commercial applications of CNT FET biosensors, especially in point-of-care tests.
Collapse
Affiliation(s)
- Hai-Yang Liu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
| | - Zhibiao Zhu
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan 411105, China
| | - Jianping He
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan 411105, China
| | - Yingjun Yang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
| | - Yuqi Liang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
| | - Zhongyu Li
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan 411105, China
| | - Maguang Zhu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
| | - Mengmeng Xiao
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan 411105, China
| | - Zhiyong Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Hunan 411105, China
| |
Collapse
|
20
|
Shamim S, Mohsin AS, Rahman MM, Hossain Bhuian MB. Recent advances in the metamaterial and metasurface-based biosensor in the gigahertz, terahertz, and optical frequency domains. Heliyon 2024; 10:e33272. [PMID: 39040247 PMCID: PMC11260956 DOI: 10.1016/j.heliyon.2024.e33272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/24/2024] Open
Abstract
Recently, metamaterials and metasurface have gained rapidly increasing attention from researchers due to their extraordinary optical and electrical properties. Metamaterials are described as artificially defined periodic structures exhibiting negative permittivity and permeability simultaneously. Whereas metasurfaces are the 2D analogue of metamaterials in the sense that they have a small but not insignificant depth. Because of their high optical confinement and adjustable optical resonances, these artificially engineered materials appear as a viable photonic platform for biosensing applications. This review paper discusses the recent development of metamaterial and metasurface in biosensing applications based on the gigahertz, terahertz, and optical frequency domains encompassing the whole electromagnetic spectrum. Overlapping features such as material selection, structure, and physical mechanisms were considered during the classification of our biosensing applications. Metamaterials and metasurfaces working in the GHz range provide prospects for better sensing of biological samples, THz frequencies, falling between GHz and optical frequencies, provide unique characteristics for biosensing permitting the exact characterization of molecular vibrations, with an emphasis on molecular identification, label-free analysis, and imaging of biological materials. Optical frequencies on the other hand cover the visible and near-infrared regions, allowing fine regulation of light-matter interactions enabling metamaterials and metasurfaces to offer excellent sensitivity and specificity in biosensing. The outcome of the sensor's sensitivity to an electric or magnetic field and the resonance frequency are, in theory, determined by the frequency domain and features. Finally, the challenges and possible future perspectives in biosensing application areas have been presented that use metamaterials and metasurfaces across diverse frequency domains to improve sensitivity, specificity, and selectivity in biosensing applications.
Collapse
Affiliation(s)
- Shadmani Shamim
- Department of Electrical and Electronic Engineering, Optics and Photonics Research Group, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh
| | - Abu S.M. Mohsin
- Department of Electrical and Electronic Engineering, Optics and Photonics Research Group, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh
| | - Md. Mosaddequr Rahman
- Department of Electrical and Electronic Engineering, Optics and Photonics Research Group, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh
| | - Mohammed Belal Hossain Bhuian
- Department of Electrical and Electronic Engineering, Optics and Photonics Research Group, BRAC University, Kha 224 Bir Uttam Rafiqul Islam Avenue, Merul Badda, Dhaka 1212, Bangladesh
| |
Collapse
|
21
|
Ganguly S, Sengupta J. Graphene-based nanotechnology in the Internet of Things: a mini review. DISCOVER NANO 2024; 19:110. [PMID: 38954113 PMCID: PMC11219675 DOI: 10.1186/s11671-024-04054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Graphene, a 2D nanomaterial, has garnered significant attention in recent years due to its exceptional properties, offering immense potential for revolutionizing various technological applications. In the context of the Internet of Things (IoT), which demands seamless connectivity and efficient data processing, graphene's unique attributes have positioned it as a promising candidate to prevail over challenges and optimize IoT systems. This review paper aims to provide a brief sketch of the diverse applications of graphene in IoT, highlighting its contributions to sensors, communication systems, and energy storage devices. Additionally, it discusses potential challenges and prospects for the integration of graphene in the rapidly evolving IoT landscape.
Collapse
Affiliation(s)
- Sharmi Ganguly
- Department of Electronics & Communication Engineering, Meghnad Saha Institute of Technology, Kolkata, 700150, India
| | - Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata, 700033, India.
| |
Collapse
|
22
|
Liu H, Song J, Zhao Z, Zhao S, Tian Z, Yan F. Organic Electrochemical Transistors for Biomarker Detections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305347. [PMID: 38263718 PMCID: PMC11251571 DOI: 10.1002/advs.202305347] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Indexed: 01/25/2024]
Abstract
The improvement of living standards and the advancement of medical technology have led to an increased focus on health among individuals. Detections of biomarkers are feasible approaches to obtaining information about health status, disease progression, and response to treatment of an individual. In recent years, organic electrochemical transistors (OECTs) have demonstrated high electrical performances and effectiveness in detecting various types of biomarkers. This review provides an overview of the working principles of OECTs and their performance in detecting multiple types of biomarkers, with a focus on the recent advances and representative applications of OECTs in wearable and implantable biomarker detections, and provides a perspective for the future development of OECT-based biomarker sensors.
Collapse
Affiliation(s)
- Hong Liu
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Jiajun Song
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Zeyu Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Sanqing Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Zhiyuan Tian
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Feng Yan
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
- Research Institute of Intelligent Wearable SystemsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| |
Collapse
|
23
|
Zhao W, Zhang W, Chen J, Li H, Han L, Li X, Wang J, Song W, Xu C, Cai X, Wang L. Sensitivity-Enhancing Strategies of Graphene Field-Effect Transistor Biosensors for Biomarker Detection. ACS Sens 2024; 9:2705-2727. [PMID: 38843307 DOI: 10.1021/acssensors.4c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The ultrasensitive recognition of biomarkers plays a crucial role in the precise diagnosis of diseases. Graphene-based field-effect transistors (GFET) are considered the most promising devices among the next generation of biosensors. GFET biosensors possess distinct advantages, including label-free, ease of integration and operation, and the ability to directly detect biomarkers in liquid environments. This review summarized recent advances in GFET biosensors for biomarker detection, with a focus on interface functionalization. Various sensitivity-enhancing strategies have been overviewed for GFET biosensors, from the perspective of optimizing graphene synthesis and transfer methods, refinement of surface functionalization strategies for the channel layer and gate electrode, design of biorecognition elements and reduction of nonspecific adsorption. Further, this review extensively explores GFET biosensors functionalized with antibodies, aptamers, and enzymes. It delves into sensitivity-enhancing strategies employed in the detection of biomarkers for various diseases (such as cancer, cardiovascular diseases, neurodegenerative disorders, infectious viruses, etc.) along with their application in integrated microfluidic systems. Finally, the issues and challenges in strategies for the modulation of biosensing interfaces are faced by GFET biosensors in detecting biomarkers.
Collapse
Affiliation(s)
- Weilong Zhao
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Wenhong Zhang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Jun Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Huimin Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Lin Han
- Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Xinyu Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong 250021, China
| | - Jing Wang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Wei Song
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong 250021, China
| | - Chonghai Xu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| |
Collapse
|
24
|
Xu W, Ma C, Wang G, Fu F, Sha J. Trapping and recapturing single DNA molecules with pore-cavity-pore device. NANOTECHNOLOGY 2024; 35:335302. [PMID: 38772350 DOI: 10.1088/1361-6528/ad4e3d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
Single-molecule detection technology is a technique capable of detecting molecules at the single-molecule level, characterized by high sensitivity, high resolution, and high specificity. Nanopore technology, as one of the single-molecule detection tools, is widely used to study the structure and function of biomolecules. In this study, we constructed a small-sized nanopore with a pore-cavity-pore structure, which can achieve a higher reverse capture rate. Through simulation, we investigated the electrical potential distribution of the nanopore with a pore-cavity-pore structure and analyzed the influence of pore size on the potential distribution. Accordingly, different pore sizes can be designed based on the radius of gyration of the target biomolecules, restricting their escape paths inside the chamber. In the future, nanopores with a pore-cavity-pore structure based on two-dimensional thin film materials are expected to be applied in single-molecule detection research, which provides new insights for various detection needs.
Collapse
Affiliation(s)
- Wei Xu
- Jiangsu Key Laboratory for Design and Manufacture for Micro/Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Chaofan Ma
- Jiangsu Key Laboratory for Design and Manufacture for Micro/Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Gang Wang
- Jiangsu Key Laboratory for Design and Manufacture for Micro/Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Fangzhou Fu
- Jiangsu Key Laboratory for Design and Manufacture for Micro/Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Jingjie Sha
- Jiangsu Key Laboratory for Design and Manufacture for Micro/Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
25
|
Xiong E, Liu P, Deng R, Zhang K, Yang R, Li J. Recent advances in enzyme-free and enzyme-mediated single-nucleotide variation assay in vitro. Natl Sci Rev 2024; 11:nwae118. [PMID: 38742234 PMCID: PMC11089818 DOI: 10.1093/nsr/nwae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 05/16/2024] Open
Abstract
Single-nucleotide variants (SNVs) are the most common type variation of sequence alterations at a specific location in the genome, thus involving significant clinical and biological information. The assay of SNVs has engaged great awareness, because many genome-wide association studies demonstrated that SNVs are highly associated with serious human diseases. Moreover, the investigation of SNV expression levels in single cells are capable of visualizing genetic information and revealing the complexity and heterogeneity of single-nucleotide mutation-related diseases. Thus, developing SNV assay approaches in vitro, particularly in single cells, is becoming increasingly in demand. In this review, we summarized recent progress in the enzyme-free and enzyme-mediated strategies enabling SNV assay transition from sensing interface to the test tube and single cells, which will potentially delve deeper into the knowledge of SNV functions and disease associations, as well as discovering new pathways to diagnose and treat diseases based on individual genetic profiles. The leap of SNV assay achievements will motivate observation and measurement genetic variations in single cells, even within living organisms, delve into the knowledge of SNV functions and disease associations, as well as open up entirely new avenues in the diagnosis and treatment of diseases based on individual genetic profiles.
Collapse
Affiliation(s)
- Erhu Xiong
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Pengfei Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Ronghua Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- Beijing Institute of Life Science and Technology, Beijing 102206, China
| |
Collapse
|
26
|
Brosel-Oliu S, Rius G, Aviñó A, Nakatsuka N, Illa X, Del Corro E, Delgà-Fernández M, Masvidal-Codina E, Rodríguez N, Merino JP, Criado A, Prato M, Tkatchenko R, Eritja R, Godignon P, Garrido JA, Villa R, Guimerà A, Prats-Alfonso E. Single-Step Functionalization Strategy of Graphene Microtransistor Array with Chemically Modified Aptamers for Biosensing Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308857. [PMID: 38072781 DOI: 10.1002/smll.202308857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Indexed: 05/03/2024]
Abstract
Graphene solution-gated field-effect transistors (gSGFETs) offer high potential for chemical and biochemical sensing applications. Among the current trends to improve this technology, the functionalization processes are gaining relevance for its crucial impact on biosensing performance. Previous efforts are focused on simplifying the attachment procedure from standard multi-step to single-step strategies, but they still suffer from overreaction, and impurity issues and are limited to a particular ligand. Herein, a novel strategy for single-step immobilization of chemically modified aptamers with fluorenylmethyl and acridine moieties, based on a straightforward synthetic route to overcome the aforementioned limitations is presented. This approach is benchmarked versus a standard multi-step strategy using thrombin as detection model. In order to assess the reliability of the functionalization strategies 48-gSGFETs arrays are employed to acquire large datasets with multiple replicas. Graphene surface characterization demonstrates robust and higher efficiency in the chemical coupling of the aptamers with the single-step strategy, while the electrical response evaluation validates the sensing capability, allowing to implement different alternatives for data analysis and reduce the sensing variability. In this work, a new tool capable of overcome the functionalization challenges of graphene surfaces is provided, paving the way toward the standardization of gSGFETs for biosensing purposes.
Collapse
Affiliation(s)
- Sergi Brosel-Oliu
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Gemma Rius
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, Barcelona, 08034, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Nako Nakatsuka
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zürich, 8092, Switzerland
| | - Xavi Illa
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Elena Del Corro
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Marta Delgà-Fernández
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Eduard Masvidal-Codina
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, 28029, Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Natalia Rodríguez
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Juan Pedro Merino
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, Donostia-San Sebastián, 20014, Spain
| | - Alejandro Criado
- CICA-Centro Interdisciplinar de Química e Bioloxía, Rúa as Carballeiras, Universidade da Coruña, A Coruña, 15071, Spain
| | - Maurizio Prato
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, Trieste, 3412 7, Italy
| | - Raphaela Tkatchenko
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Ramón Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, Barcelona, 08034, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Philippe Godignon
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - José Antonio Garrido
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Rosa Villa
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Anton Guimerà
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Elisabet Prats-Alfonso
- Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Campus UAB, Bellaterra, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, 28029, Spain
| |
Collapse
|
27
|
Liu Y, Wang M, Chen F, Zhang Y, Hai W. On-site detection of infectious disease based on CaCO 3-based magnetic micromotor integrated with graphene field effect transistor. Mikrochim Acta 2024; 191:257. [PMID: 38600405 DOI: 10.1007/s00604-024-06345-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
A new detection platform based on CaCO3-based magnetic micromotor (CaCO3@Fe3O4) integrated with graphene field effect transistor (GFET) was construct and used for on-site SARS-CoV-2 coronavirus pathogen detection. The CaCO3@Fe3O4 micromotor, which was modified with anti-SARS-CoV-2 (labelled antibody, AntiE1), can self-moved in the solution containing hydrochloric acid (HCl) and effective to capture the SARS-CoV-2 coronavirus pathogens. After magnetic field separation, the capture micromotor was detected by GFET, exhibiting a good linear relationship within the range of 1 ag/mL to 100 ng/mL and low detection limit (0.39 ag/mL). Furthermore, the detection platform was also successfully applied to detection of SARS-CoV-2 coronavirus pathogens in soil solution, indicating the potential use in on-site application.
Collapse
Affiliation(s)
- Yushuang Liu
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao, 028000, People's Republic of China.
- Key Laboratory of Mongolian Medicine Research and Development Engineering, Ministry of Education, Inner Mongolia Minzu University, Tongliao, 028000, People's Republic of China.
| | - Mingxuan Wang
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao, 028000, People's Republic of China
| | - Furong Chen
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao, 028000, People's Republic of China
| | - Ying Zhang
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao, 028000, People's Republic of China
| | - Wenfeng Hai
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao, 028000, People's Republic of China
| |
Collapse
|
28
|
Gao Y, Wang Y. Interplay of graphene-DNA interactions: Unveiling sensing potential of graphene materials. APPLIED PHYSICS REVIEWS 2024; 11:011306. [PMID: 38784221 PMCID: PMC11115426 DOI: 10.1063/5.0171364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Graphene-based materials and DNA probes/nanostructures have emerged as building blocks for constructing powerful biosensors. Graphene-based materials possess exceptional properties, including two-dimensional atomically flat basal planes for biomolecule binding. DNA probes serve as excellent selective probes, exhibiting specific recognition capabilities toward diverse target analytes. Meanwhile, DNA nanostructures function as placement scaffolds, enabling the precise organization of molecular species at nanoscale and the positioning of complex biomolecular assays. The interplay of DNA probes/nanostructures and graphene-based materials has fostered the creation of intricate hybrid materials with user-defined architectures. This advancement has resulted in significant progress in developing novel biosensors for detecting DNA, RNA, small molecules, and proteins, as well as for DNA sequencing. Consequently, a profound understanding of the interactions between DNA and graphene-based materials is key to developing these biological devices. In this review, we systematically discussed the current comprehension of the interaction between DNA probes and graphene-based materials, and elucidated the latest advancements in DNA probe-graphene-based biosensors. Additionally, we concisely summarized recent research endeavors involving the deposition of DNA nanostructures on graphene-based materials and explored imminent biosensing applications by seamlessly integrating DNA nanostructures with graphene-based materials. Finally, we delineated the primary challenges and provided prospective insights into this rapidly developing field. We envision that this review will aid researchers in understanding the interactions between DNA and graphene-based materials, gaining deeper insight into the biosensing mechanisms of DNA-graphene-based biosensors, and designing novel biosensors for desired applications.
Collapse
Affiliation(s)
- Yanjing Gao
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Yichun Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
29
|
Abstract
DNA nanotechnology is a rapidly developing field that uses DNA as a building material for nanoscale structures. Key to the field's development has been the ability to accurately describe the behavior of DNA nanostructures using simulations and other modeling techniques. In this Review, we present various aspects of prediction and control in DNA nanotechnology, including the various scales of molecular simulation, statistical mechanics, kinetic modeling, continuum mechanics, and other prediction methods. We also address the current uses of artificial intelligence and machine learning in DNA nanotechnology. We discuss how experiments and modeling are synergistically combined to provide control over device behavior, allowing scientists to design molecular structures and dynamic devices with confidence that they will function as intended. Finally, we identify processes and scenarios where DNA nanotechnology lacks sufficient prediction ability and suggest possible solutions to these weak areas.
Collapse
Affiliation(s)
- Marcello DeLuca
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Sebastian Sensale
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115, United States
| | - Po-An Lin
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Gaurav Arya
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
30
|
Sharma S, Kumar R, Yadav RM. Polyacrylonitrile as a versatile matrix for gold nanoparticle-based SERS substrates. NANOSCALE ADVANCES 2024; 6:1065-1073. [PMID: 38356638 PMCID: PMC10863703 DOI: 10.1039/d3na01112g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
As an effective and ultrasensitive molecule detection technique, surface-enhanced Raman spectroscopy (SERS) needs efficient and highly responsive substrates to further enhance its sensitivity and utility. In this work, the preparation and characterisation of polyacrylonitrile/gold nanoparticle (PAN/AuNPs) composite porous films have been described for SERS-based detection of methylene blue (MB) dye. The PAN/AuNPs composite films were prepared with a simple dip coating technique, yielding a highly porous structure with uniformly dispersed Au nanoparticles (AuNPs). Scanning electron microscopy (SEM) revealed a linked pore network within the films. In X-ray diffraction (XRD), the characteristic crystal peak of AuNP clusters was observed, proving the presence of AuNPs in the composite. UV-vis absorption spectra also indicated the existence of the AuNPs. The methylene blue (MB) dye has been detected using PAN/AuNPs composite SERS substrates. These substrates showed excellent sensitivity by detecting 50 nM dye concentration and enhancing the Raman peak intensity at 1622 cm-1. The SERS enhancement factor (EF) for MB detection was determined to be around 106, demonstrating the remarkable sensitivity of the PAN/AuNPs composite porous films. The findings demonstrate the enormous potential of PAN/AuNPs composite porous films as reliable SERS substrates, displaying their efficacy in detecting trace levels of analytes in chemical and biological sensing applications.
Collapse
Affiliation(s)
- Saloni Sharma
- Department of Physics, VSSD College, CSJM University Kanpur 208002 U.P. India
| | - Rajesh Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur 208016 U.P. India
| | - Ram Manohar Yadav
- Department of Physics, VSSD College, CSJM University Kanpur 208002 U.P. India
- Department of Physics, University of Allahabad Prayagraj 211002 U.P. India
| |
Collapse
|
31
|
Hu C, Wang L, Liu S, Sheng X, Yin L. Recent Development of Implantable Chemical Sensors Utilizing Flexible and Biodegradable Materials for Biomedical Applications. ACS NANO 2024; 18:3969-3995. [PMID: 38271679 DOI: 10.1021/acsnano.3c11832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Implantable chemical sensors built with flexible and biodegradable materials exhibit immense potential for seamless integration with biological systems by matching the mechanical properties of soft tissues and eliminating device retraction procedures. Compared with conventional hospital-based blood tests, implantable chemical sensors have the capability to achieve real-time monitoring with high accuracy of important biomarkers such as metabolites, neurotransmitters, and proteins, offering valuable insights for clinical applications. These innovative sensors could provide essential information for preventive diagnosis and effective intervention. To date, despite extensive research on flexible and bioresorbable materials for implantable electronics, the development of chemical sensors has faced several challenges related to materials and device design, resulting in only a limited number of successful accomplishments. This review highlights recent advancements in implantable chemical sensors based on flexible and biodegradable materials, encompassing their sensing strategies, materials strategies, and geometric configurations. The following discussions focus on demonstrated detection of various objects including ions, small molecules, and a few examples of macromolecules using flexible and/or bioresorbable implantable chemical sensors. Finally, we will present current challenges and explore potential future directions.
Collapse
Affiliation(s)
- Chen Hu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Liu Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
| | - Shangbin Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, P. R. China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
32
|
Liu Z, Ge D, Zhao C, Shi J, Zeng Z, Fang Z, Liu J, Zhang L. A porous silicon composite with irregular silver nano-dendritic particles: a rapid optical sensor for trace detection of malachite green in freshwater fish. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:608-614. [PMID: 38197306 DOI: 10.1039/d3ay02044d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
This study focused on creating a SERS composite particle specifically designed for detecting malachite green. We synthesized silver nano-dendritic structures on p-type porous silicon using an external electric field, separating them from the silicon wafer. Ultrasonic crushing yielded irregular silver nanodendrite-modified porous silicon composite particles. Upon being tested in an aqueous solution of malachite green, these composite particles demonstrated significant surface-enhanced Raman scattering effects. Our findings highlight the exceptional performance of the SERS substrate composed of porous silicon and irregular silver nano-dendritic particles. It exhibited high sensitivity, specificity, consistent signal strength, and reliability in detecting trace amounts of malachite green in water. Under ideal conditions, the substrate could detect malachite green at concentrations as low as 10-8 M. Moreover, its swift response to trace amounts of malachite green in fish underscores its potential as an effective Raman detector.
Collapse
Affiliation(s)
- Zhen Liu
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Xue Fu Street, Zhen Jiang, Jiangsu Province, China.
| | - Daohan Ge
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Xue Fu Street, Zhen Jiang, Jiangsu Province, China.
| | - Chengxiang Zhao
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Xue Fu Street, Zhen Jiang, Jiangsu Province, China.
| | - Jiakang Shi
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Xue Fu Street, Zhen Jiang, Jiangsu Province, China.
| | - Zhou Zeng
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Xue Fu Street, Zhen Jiang, Jiangsu Province, China.
| | - Zhiwei Fang
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Xue Fu Street, Zhen Jiang, Jiangsu Province, China.
| | - Jingcheng Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Li Hu Street, Wu Xi, Jiangsu Province, China
| | - Liqiang Zhang
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Xue Fu Street, Zhen Jiang, Jiangsu Province, China.
| |
Collapse
|
33
|
Zhang X, Chen S, Ma H, Sun T, Cui X, Huo P, Man B, Yang C. Asymmetric Schottky Barrier-Generated MoS 2/WTe 2 FET Biosensor Based on a Rectified Signal. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:226. [PMID: 38276744 PMCID: PMC10820193 DOI: 10.3390/nano14020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
Field-effect transistor (FET) biosensors can be used to measure the charge information carried by biomolecules. However, insurmountable hysteresis in the long-term and large-range transfer characteristic curve exists and affects the measurements. Noise signal, caused by the interference coefficient of external factors, may destroy the quantitative analysis of trace targets in complex biological systems. In this report, a "rectified signal" in the output characteristic curve, instead of the "absolute value signal" in the transfer characteristic curve, is obtained and analyzed to solve these problems. The proposed asymmetric Schottky barrier-generated MoS2/WTe2 FET biosensor achieved a 105 rectified signal, sufficient reliability and stability (maintained for 60 days), ultra-sensitive detection (10 aM) of the Down syndrome-related DYRK1A gene, and excellent specificity in base recognition. This biosensor with a response range of 10 aM-100 pM has significant application potential in the screening and rapid diagnosis of Down syndrome.
Collapse
Affiliation(s)
- Xinhao Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
| | - Shuo Chen
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
| | - Heqi Ma
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
| | - Tianyu Sun
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
| | - Xiangyong Cui
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
| | - Panpan Huo
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
| | - Baoyuan Man
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
| | - Cheng Yang
- School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (X.Z.); (S.C.); (H.M.); (T.S.); (X.C.); (P.H.)
- Shandong Provincial Engineering and Technical Center of Light Manipulations, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
34
|
Kawabata S, Seki R, Watanabe T, Ohba T. Degradation of Graphene in High- and Low-Humidity Air, and Vacuum Conditions at 300-500 K. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:166. [PMID: 38251131 PMCID: PMC10820515 DOI: 10.3390/nano14020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Graphene is a fundamental unit of carbon materials and, thus, primary sp2-bonded carbon material. Graphene is, however, easily broken macroscopically despite high mechanical strength, although its natural degradation has rarely been considered. In this work, we evaluate the natural degradation of two-layer graphene in vacuo, in low-humidity air, and in high-humidity air at 300, 400, 450, and 500 K. Over 1000 days of degradation at 300 K, the graphene structure was highly maintained in vacuo, whereas the layer number of graphene tended to decrease in high- and low-humidity air. Water was slightly reacted/chemisorbed on graphene to form surface oxygen groups at 300 K. At 450 and 500 K, graphene was moderately volatilized in vacuo and was obviously oxidized in high- and low-humidity air. Surprisingly, the oxidation of graphene was more suppressed in the high-humidity air than in the low-humidity air, indicating that water worked as an anti-oxidizer of graphene by preventing the chemisorption of oxygen on the graphene surface.
Collapse
Affiliation(s)
| | | | | | - Tomonori Ohba
- Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| |
Collapse
|
35
|
Hariri AA, Cartwright AP, Dory C, Gidi Y, Yee S, Thompson IAP, Fu KX, Yang K, Wu D, Maganzini N, Feagin T, Young BE, Afshar BH, Eisenstein M, Digonnet MJF, Vuckovic J, Soh HT. Modular Aptamer Switches for the Continuous Optical Detection of Small-Molecule Analytes in Complex Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304410. [PMID: 37975267 DOI: 10.1002/adma.202304410] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Aptamers are a promising class of affinity reagents because signal transduction mechanisms can be built into the reagent, so that they can directly produce a physically measurable output signal upon target binding. However, endowing the signal transduction functionality into an aptamer remains a trial-and-error process that can compromise its affinity or specificity and typically requires knowledge of the ligand binding domain or its structure. In this work, a design architecture that can convert an existing aptamer into a "reversible aptamer switch" whose kinetic and thermodynamic properties can be tuned without a priori knowledge of the ligand binding domain or its structure is described. Finally, by combining these aptamer switches with evanescent-field-based optical detection hardware that minimizes sample autofluorescence, this study demonstrates the first optical biosensor system that can continuously measure multiple biomarkers (dopamine and cortisol) in complex samples (artificial cerebrospinal fluid and undiluted plasma) with second and subsecond-scale time responses at physiologically relevant concentration ranges.
Collapse
Affiliation(s)
- Amani A Hariri
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Alyssa P Cartwright
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Constantin Dory
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yasser Gidi
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Steven Yee
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ian A P Thompson
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Kaiyu X Fu
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Kiyoul Yang
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Diana Wu
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Nicolò Maganzini
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Trevor Feagin
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Brian E Young
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
| | - Behrad Habib Afshar
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | | | - Michel J F Digonnet
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Jelena Vuckovic
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - H Tom Soh
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
36
|
Jiang S, Qian S, Zhu S, Lu J, Hu Y, Zhang C, Geng Y, Chen X, Guo Y, Chen Z, Pu J, Guo Z, Liu S. A Point-of-Care Testing Device Utilizing Graphene-Enhanced Fiber Optic SPR Sensor for Real-Time Detection of Infectious Pathogens. BIOSENSORS 2023; 13:1029. [PMID: 38131789 PMCID: PMC10741924 DOI: 10.3390/bios13121029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Timely detection of highly infectious pathogens is essential for preventing and controlling public health risks. However, most traditional testing instruments require multiple tedious steps and ultimately testing in hospitals and third-party laboratories. The sample transfer process significantly prolongs the time to obtain test results. To tackle this aspect, a portable fiber optic surface plasmon resonance (FO-SPR) device was developed for the real-time detection of infectious pathogens. The portable device innovatively integrated a compact FO-SPR sensing component, a signal acquisition and processing system, and an embedded power supply unit. A gold-plated fiber is used as the FO-SPR sensing probe. Compared with traditional SPR sensing systems, the device is smaller size, lighter weight, and higher convenience. To enhance the detection capacity of pathogens, a monolayer graphene was coated on the sensing region of the FO-SPR sensing probe. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was used to evaluate the performance of the portable device. The device can accurately detect the SARS-CoV-2 spike S1 protein in phosphate-buffered saline (PBS) and artificial saliva within just 20 min, and the device successfully detected cultured SARS-CoV-2 virus. Furthermore, the FO-SPR probe has long-term stability, remaining stable for up to 8 days. It could distinguish between the SARS-CoV-2 spike protein and the MERS-CoV spike protein. Hence, this FO-SPR device provides reliable, rapid, and portable access to test results. It provides a promising point-of-care testing (POCT) tool for on-site screening of infectious pathogens.
Collapse
Affiliation(s)
- Shiyu Jiang
- Heilongjiang Provincial Key Laboratory of Metamaterials Physics and Device, Heilongjiang University, Harbin 150080, China; (S.J.); (S.Z.); (J.L.); (Y.H.); (Y.G.); (X.C.); (Y.G.)
- School of Electronic Engineering, Heilongjiang University, Harbin 150080, China
| | - Siyu Qian
- Heilongjiang Provincial Key Laboratory of Metamaterials Physics and Device, Heilongjiang University, Harbin 150080, China; (S.J.); (S.Z.); (J.L.); (Y.H.); (Y.G.); (X.C.); (Y.G.)
| | - Shunning Zhu
- Heilongjiang Provincial Key Laboratory of Metamaterials Physics and Device, Heilongjiang University, Harbin 150080, China; (S.J.); (S.Z.); (J.L.); (Y.H.); (Y.G.); (X.C.); (Y.G.)
| | - Jinxin Lu
- Heilongjiang Provincial Key Laboratory of Metamaterials Physics and Device, Heilongjiang University, Harbin 150080, China; (S.J.); (S.Z.); (J.L.); (Y.H.); (Y.G.); (X.C.); (Y.G.)
| | - Yunxin Hu
- Heilongjiang Provincial Key Laboratory of Metamaterials Physics and Device, Heilongjiang University, Harbin 150080, China; (S.J.); (S.Z.); (J.L.); (Y.H.); (Y.G.); (X.C.); (Y.G.)
- School of Electronic Engineering, Heilongjiang University, Harbin 150080, China
| | - Cheng Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (C.Z.); (Z.C.); (J.P.); (Z.G.)
| | - Yikai Geng
- Heilongjiang Provincial Key Laboratory of Metamaterials Physics and Device, Heilongjiang University, Harbin 150080, China; (S.J.); (S.Z.); (J.L.); (Y.H.); (Y.G.); (X.C.); (Y.G.)
| | - Xuefeng Chen
- Heilongjiang Provincial Key Laboratory of Metamaterials Physics and Device, Heilongjiang University, Harbin 150080, China; (S.J.); (S.Z.); (J.L.); (Y.H.); (Y.G.); (X.C.); (Y.G.)
| | - Ying Guo
- Heilongjiang Provincial Key Laboratory of Metamaterials Physics and Device, Heilongjiang University, Harbin 150080, China; (S.J.); (S.Z.); (J.L.); (Y.H.); (Y.G.); (X.C.); (Y.G.)
| | - Zhaoliang Chen
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (C.Z.); (Z.C.); (J.P.); (Z.G.)
| | - Jie Pu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (C.Z.); (Z.C.); (J.P.); (Z.G.)
| | - Zhendong Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (C.Z.); (Z.C.); (J.P.); (Z.G.)
| | - Shengchun Liu
- Heilongjiang Provincial Key Laboratory of Metamaterials Physics and Device, Heilongjiang University, Harbin 150080, China; (S.J.); (S.Z.); (J.L.); (Y.H.); (Y.G.); (X.C.); (Y.G.)
| |
Collapse
|
37
|
Hoffmann C, Murastov G, Tromm JV, Moog JB, Aslam MA, Matkovic A, Milovanovic D. Electric Potential at the Interface of Membraneless Organelles Gauged by Graphene. NANO LETTERS 2023; 23:10796-10801. [PMID: 37862690 PMCID: PMC10722609 DOI: 10.1021/acs.nanolett.3c02915] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/15/2023] [Indexed: 10/22/2023]
Abstract
Eukaryotic cells contain membrane-bound and membrane-less organelles that are often in contact with each other. How the interface properties of membrane-less organelles regulate their interactions with membranes remains challenging to assess. Here, we employ graphene-based sensors to investigate the electrostatic properties of synapsin 1, a major synaptic phosphoprotein, either in a single phase or after undergoing phase separation to form synapsin condensates. Using these graphene-based sensors, we discover that synapsin condensates generate strong electrical responses that are otherwise absent when synapsin is present as a single phase. By introducing atomically thin dielectric barriers, we show that the electrical response originates in an electric double layer whose formation governs the interaction between synapsin condensates and graphene. Our data indicate that the interface properties of the same protein are substantially different when the protein is in a single phase versus within a biomolecular condensate, unraveling that condensates can harbor ion potential differences at their interface.
Collapse
Affiliation(s)
- Christian Hoffmann
- Laboratory
of Molecular Neuroscience, German Center
for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Gennadiy Murastov
- Chair
of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, 8700 Leoben, Austria
| | - Johannes Vincent Tromm
- Laboratory
of Molecular Neuroscience, German Center
for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Jean-Baptiste Moog
- Laboratory
of Molecular Neuroscience, German Center
for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Muhammad Awais Aslam
- Chair
of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, 8700 Leoben, Austria
| | - Aleksandar Matkovic
- Chair
of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, 8700 Leoben, Austria
| | - Dragomir Milovanovic
- Laboratory
of Molecular Neuroscience, German Center
for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| |
Collapse
|
38
|
Sarker BK, Shrestha R, Singh KM, Lombardi J, An R, Islam A, Drummy LF. Label-Free Neuropeptide Detection beyond the Debye Length Limit. ACS NANO 2023; 17:20968-20978. [PMID: 37852196 DOI: 10.1021/acsnano.3c02537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Biosensors with high selectivity, high sensitivity, and real-time detection capabilities are of significant interest for diagnostic applications as well as human health and performance monitoring. Graphene field-effect transistor (GFET) based biosensors are suitable for integration into wearable sensor technology and can potentially demonstrate the sensitivity and selectivity necessary for real-time detection and monitoring of biomarkers. Previously reported DC-mode GFET biosensors showed a high sensitivity for sensing biomarkers in solutions with a low salt concentration. However, due to Debye length screening, the sensitivity of the DC-mode GFET biosensors decreases significantly during operation in a physiological fluid such as sweat or interstitial fluid. To overcome the Debye screening length limitation, we report here alternating current (AC) mode heterodyne-based GFET biosensors for sensing neuropeptide-Y (NPY), a key stress biomarker, in artificial sweat at physiologically relevant ionic concentrations. Our AC-mode GFET biosensors show a record ultralow detection limit of 2 × 10-18 M with an extensive dynamic range of 10 orders of magnitude in sensor response to target NPY concentration. The sensors were characterized for various carrier frequencies (ranging from 30 kHz to 2 MHz) of the applied AC voltages and various salt concentrations (10, 50, and 100 mM). Contrary to DC-mode sensing, the AC-mode sensor response increases with an increase in salt concentration in the electrolyte. The sensor response can be further enhanced by tuning the carrier frequency of the applied AC voltage. The optimum response frequency of our sensor is approximately 400-600 kHz for salt concentrations of 50 and 100 mM, respectively. The salt-concentration- and frequency-dependent sensor response can be explained by an electrolyte-gated capacitance model.
Collapse
Affiliation(s)
- Biddut K Sarker
- Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Ohio 45433, United States
- UES Inc., Dayton, Ohio 45432, United States
| | - Reeshav Shrestha
- Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Ohio 45433, United States
- UES Inc., Dayton, Ohio 45432, United States
| | - Kristi M Singh
- Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Ohio 45433, United States
- UES Inc., Dayton, Ohio 45432, United States
| | - Jack Lombardi
- Information Directorate, Air Force Research Laboratory, Rome, New York 13441, United States
| | - Ran An
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas 77004, United States
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, Texas 77004, United States
- Case Center for Biomolecular Structure and Integration for Sensors (Case-BioSIS), Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Ahmad Islam
- Sensor Directorate, Air Force Research Laboratory, WPAFB, Ohio 45433, United States
| | - Lawrence F Drummy
- Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Ohio 45433, United States
| |
Collapse
|
39
|
Kavitha S, Saxena RS, Singh A, Kumari K, Aneesh M. Hexagonal-shaped graphene quantum plasmonic nano-antenna sensor. Sci Rep 2023; 13:19219. [PMID: 37932312 PMCID: PMC10628248 DOI: 10.1038/s41598-023-46164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/28/2023] [Indexed: 11/08/2023] Open
Abstract
In this manuscript, a hexagonal-shaped graphene quantum plasmonic nanopatch antenna sensor is designed and investigated on silicon dioxide, zinc oxide and silicon substrates for quantum plasmonic biosensing applications. The optical properties of graphene are demonstrated using Kubo modeling to analyze the plasmon resonance characteristics of the nanopatch antenna. Nano-circuit modeling of the hexagonal-shaped graphene nano-antenna is proposed and validated using CST simulations. The parametric analysis of the hexagonal-shaped nanopatch antenna is performed using design parameters such as R (radius of the hexagon), Tp (thickness of the hexagon) and µc (chemical potential of graphene) to obtain optimum characteristics suitable for quantum plasmonic sensing applications. The study demonstrates that the proposed hexagonal-shaped nano-antenna exhibits gain of 4.9 dBi, 2.46 dBi, 14.99 dBi, 8.25 dBi, 5.15 dBi, 10.87 dBi and 2.4 dBi at 29.87 THz, 30 THz, 35 THz, 113.5 THz, 132.5 THz, 85 THz and 24 THz, respectively. The field enhancement factors observed at these frequencies are 794, 779, 584, 255, 234, 654 and 217, respectively.
Collapse
Affiliation(s)
- S Kavitha
- Department of Computer & Communication, NMAMIT (Affiliated to Nitte (Deemed to Be University)), Udupi, India
| | | | - Ashish Singh
- Department of Computer & Communication, NMAMIT (Affiliated to Nitte (Deemed to Be University)), Udupi, India.
| | - Kamakshi Kumari
- Department of Electronics and Communication, University of Allahabad, Prayagraj, India
| | - Mohammed Aneesh
- Department of Electronics and Communication, Veer Bahadhur Singh Purvanchal University, Jaunpur, India
| |
Collapse
|
40
|
Ren Q, Jiang L, Ma S, Li T, Zhu Y, Qiu R, Xing Y, Yin F, Li Z, Ye X, Zhang Y, Zhang M. Multi-Body Biomarker Entrapment System: An All-Encompassing Tool for Ultrasensitive Disease Diagnosis and Epidemic Screening. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304119. [PMID: 37486783 DOI: 10.1002/adma.202304119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/18/2023] [Indexed: 07/26/2023]
Abstract
Ultrasensitive identification of biomarkers in biofluids is essential for the precise diagnosis of diseases. For the gold standard approaches, polymerase chain reaction and enzyme-linked immunosorbent assay, cumbersome operational steps hinder their point-of-care applications. Here, a bionic biomarker entrapment system (BioES) is implemented, which employs a multi-body Y-shaped tetrahedral DNA probe immobilized on carbon nanotube transistors. Clinical identification of endometriosis is successfully realized by detecting an estrogen receptor, ERβ, from the lesion tissue of endometriosis patients and establishing a standard diagnosis procedure. The multi-body Y-shaped BioES achieves a theoretical limit of detection (LoD) of 6.74 aM and a limit of quantification of 141 aM in a complex protein milieu. Furthermore, the BioES is optimized into a multi-site recognition module for enhanced binding efficiency, realizing the first identification of monkeypox virus antigen A35R and unamplified detection of circulating tumor DNA of breast cancer in serum. The rigid and compact probe framework with synergy effect enables the BioES to target A35R and DNA with a LoD down to 991 and 0.21 aM, respectively. Owing to its versatility for proteins and nucleic acids as well as ease of manipulation and ultra-sensitivity, the BioES can be leveraged as an all-encompassing tool for population-wide screening of epidemics and clinical disease diagnosis.
Collapse
Affiliation(s)
- Qinqi Ren
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
| | - Leying Jiang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen, 518055, China
| | - Shenhui Ma
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
| | - Tong Li
- Department of Gynecology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Yang Zhu
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
| | - Rui Qiu
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
| | - Yun Xing
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen, 518055, China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen, 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Xiyang Ye
- Department of Gynecology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Yaping Zhang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Min Zhang
- School of Electronic and Computer Engineering, Peking University, Shenzhen, 518055, China
| |
Collapse
|
41
|
Ho HY, Kao WS, Deval P, Dai CY, Chen YH, Yu ML, Lin CH, Yu LS. Rapid and sensitive LAMP/CRISPR-powered diagnostics to detect different hepatitis C virus genotypes using an ITO-based EG-FET biosensing platform. SENSORS AND ACTUATORS B: CHEMICAL 2023; 394:134278. [DOI: 10.1016/j.snb.2023.134278] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
|
42
|
Tran DM, Son JW, Ju TS, Hwang C, Park BH. Dopamine-Regulated Plasticity in MoO 3 Synaptic Transistors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49329-49337. [PMID: 37819637 DOI: 10.1021/acsami.3c06866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Field-effect transistor-based biosensors have gained increasing interest due to their reactive surface to external stimuli and the adaptive feedback required for advanced sensing platforms in biohybrid neural interfaces. However, complex probing methods for surface functionalization remain a challenge that limits the industrial implementation of such devices. Herein, a simple, label-free biosensor based on molybdenum oxide (MoO3) with dopamine-regulated plasticity is demonstrated. Dopamine oxidation facilitated locally at the channel surface initiates a charge transfer mechanism between the molecule and the oxide, altering the channel conductance and successfully emulating the tunable synaptic weight by neurotransmitter activity. The oxygen level of the channel is shown to heavily affect the device's electrochemical properties, shifting from a nonreactive metallic characteristic to highly responsive semiconducting behavior. Controllable responsivity is achieved by optimizing the channel's dimension, which allows the devices to operate in wide ranges of dopamine concentration, from 100 nM to sub-mM levels, with excellent selectivity compared with K+, Na+, and Ca2+.
Collapse
Affiliation(s)
- Duc Minh Tran
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| | - Jong Wan Son
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
- Quantum Spin Team, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Tae-Seong Ju
- Quantum Spin Team, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Chanyong Hwang
- Quantum Spin Team, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Bae Ho Park
- Division of Quantum Phases and Devices, Department of Physics, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
43
|
Wei S, Dou Y, Song S, Li T. Functionalized-Graphene Field Effect Transistor-Based Biosensor for Ultrasensitive and Label-Free Detection of β-Galactosidase Produced by Escherichia coli. BIOSENSORS 2023; 13:925. [PMID: 37887118 PMCID: PMC10605438 DOI: 10.3390/bios13100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
The detection of β-galactosidase (β-gal) activity produced by Escherichia coli (E. coli) can quickly analyze the pollution degree of seawater bodies in bathing and fishing grounds to avoid large-scale outbreaks of water pollution. Here, a functionalized biosensor based on graphene-based field effect transistor (GFET) modified with heat-denatured casein was developed for the ultrasensitive and label-free detection of the β-gal produced by E. coli in real water samples. The heat-denatured casein coated on the graphene surface, as a probe linker and blocker, plays an important role in fabricating GEFT biosensor. The GFET biosensor response to the β-gal produced by E. coli has a wide concentration dynamic range spanning nine orders of magnitude, in a concentration range of 1 fg·mL-1-100 ng·mL-1, with a limit of detection (LOD) 0.187 fg·mL-1 (1.61 aM). In addition to its attomole sensitivity, the GFET biosensor selectively recognized the β-gal in the water sample and showed good selectivity. Importantly, the detection process of the β-gal produced by E. coli can be completed by a straightforward one-step specific immune recognition reaction. These results demonstrated the usefulness of the approach, meeting environmental monitoring requirements for future use.
Collapse
Affiliation(s)
- Shanhong Wei
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (S.W.); (Y.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanzhi Dou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (S.W.); (Y.D.)
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Shiping Song
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Institute of Materiobiology, College of Science, Shanghai University, Shanghai 200444, China
| | - Tie Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (S.W.); (Y.D.)
| |
Collapse
|
44
|
Huang S, Gao Y, Hu Y, Shen F, Jin Z, Cho Y. Recent development of piezoelectric biosensors for physiological signal detection and machine learning assisted cardiovascular disease diagnosis. RSC Adv 2023; 13:29174-29194. [PMID: 37818271 PMCID: PMC10561672 DOI: 10.1039/d3ra05932d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 10/12/2023] Open
Abstract
As cardiovascular disease stands as a global primary cause of mortality, there has been an urgent need for continuous and real-time heart monitoring to effectively identify irregular heart rhythms and to offer timely patient alerts. However, conventional cardiac monitoring systems encounter challenges due to inflexible interfaces and discomfort during prolonged monitoring. In this review article, we address these issues by emphasizing the recent development of the flexible, wearable, and comfortable piezoelectric passive sensor assisted by machine learning technology for diagnosis. This innovative device not only harmonizes with the dynamic mechanical properties of human skin but also facilitates continuous and real-time collection of physiological signals. Addressing identified challenges and constraints, this review provides insights into recent advances in piezoelectric cardiac sensors, from devices to circuit systems. Furthermore, this review delves into the integration of machine learning technologies, showcasing their pivotal role in facilitating continuous and real-time assessment of cardiac status. The synergistic combination of flexible piezoelectric sensor design and machine learning holds substantial potential in automating the detection of cardiac irregularities with minimal human intervention. This transformative approach has the power to revolutionize patient care paradigms.
Collapse
Affiliation(s)
- Shunyao Huang
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University Minhang District Shanghai 200240 China
| | - Yujia Gao
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University Minhang District Shanghai 200240 China
| | - Yian Hu
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University Minhang District Shanghai 200240 China
| | - Fengyi Shen
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University Minhang District Shanghai 200240 China
| | - Zhangsiyuan Jin
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University Minhang District Shanghai 200240 China
| | - Yuljae Cho
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University Minhang District Shanghai 200240 China
| |
Collapse
|
45
|
Wahab MRA, Palaniyandi T, Ravi M, Viswanathan S, Baskar G, Surendran H, Gangadharan SGD, Rajendran BK. Biomarkers and biosensors for early cancer diagnosis, monitoring and prognosis. Pathol Res Pract 2023; 250:154812. [PMID: 37741139 DOI: 10.1016/j.prp.2023.154812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
Cancers continue to be of major concern due to their serious global socioeconomic impact, apart from the continued increase in the incidence of various cancer types. A major challenge that this disease poses is due to the low "early detection" rates which limit the therapeutic outcomes for the affected individuals. Current research has highlighted the discovering biomarkers that help in early cancer detection and the development of technologies for the detection and quantification of such biomarkers. Biomarkers range from proteins to nucleic acids, and can be specific to a particular cancer type. Detection and quantification of such biomarkers at low levels from biological samples is being made possible by the advent of developing biosensors and by using biomedical engineering technologies such as tumor-on-a-chip models. Here, we present biomarkers that can be helpful for the early detection of breast, colorectal, esophageal, lung, liver, ovarian, and prostate cancer. In addition, we discuss the potential of circulating tumor cell DNA (ctDNA) as an early diagnostic marker. Finally, biosensors available for the detection of cancer biomarkers, which is a recent advancement in this area of research, are discussed.
Collapse
Affiliation(s)
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, Tamil Nadu, India.
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, Tamil Nadu, India
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095
| | - Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Chennai 600095
| | - S G D Gangadharan
- Department of Medical Oncology, Madras Medical College, R. G. G. G. H., Chennai, Tamil Nadu, India
| | | |
Collapse
|
46
|
Gubeljak P, Xu T, Pedrazzetti L, Burton OJ, Magagnin L, Hofmann S, Malliaras GG, Lombardo A. Electrochemically-gated graphene broadband microwave waveguides for ultrasensitive biosensing. NANOSCALE 2023; 15:15304-15317. [PMID: 37682040 DOI: 10.1039/d3nr01239e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Identification of non-amplified DNA sequences and single-base mutations is essential for molecular biology and genetic diagnostics. This paper reports a novel sensor consisting of electrochemically-gated graphene coplanar waveguides coupled with a microfluidic channel. Upon exposure to analytes, propagation of electromagnetic waves in the waveguides is modified as a result of interactions with the fringing field and modulation of graphene dynamic conductivity resulting from electrostatic gating. Probe DNA sequences are immobilised on the graphene surface, and the sensor is exposed to DNA sequences which either perfectly match the probe, contain a single-base mismatch or are unrelated. By monitoring the scattering parameters at frequencies between 50 MHz and 50 GHz, unambiguous and reproducible discrimination of the different strands is achieved at concentrations as low as one attomole per litre (1 aM). By controlling and synchronising frequency sweeps, electrochemical gating, and liquid flow in the microfluidic channel, the sensor generates multidimensional datasets. Advanced data analysis techniques are utilised to take full advantage of the richness of the dataset. A classification accuracy >97% between all three sequences is achieved using different Machine Learning models, even in the presence of simulated noise and low signal-to-noise ratios. The sensor exceeds state-of-the-art sensitivity of field-effect transistors and microwave sensors for the identification of single-base mismatches.
Collapse
Affiliation(s)
- Patrik Gubeljak
- Cambridge Graphene Centre, Department of Engineering, University of Cambridge, UK
- Department of Engineering, University of Cambridge, UK
| | - Tianhui Xu
- Department of Engineering, University of Cambridge, UK
- Department of Electronic and Electrical Engineering, University College London, London, UK
| | - Lorenzo Pedrazzetti
- Department of Engineering, University of Cambridge, UK
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Italy
| | | | - Luca Magagnin
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Italy
| | | | | | - Antonio Lombardo
- Department of Engineering, University of Cambridge, UK
- Department of Electronic and Electrical Engineering, University College London, London, UK
- London Centre for Nanotechnology, University College London, UK.
| |
Collapse
|
47
|
Podlaski F, Cornwell S, Wong K, McKittrick B, Kim JH, Jung D, Jeon Y, Jung KB, Tolias P, Windsor WT. Peptide Nucleic Acids Containing Cationic/Amino-Alkyl Modified Bases Promote Enhanced Hybridization Kinetics and Thermodynamics with Single-Strand DNA. ACS OMEGA 2023; 8:33426-33436. [PMID: 37744819 PMCID: PMC10515352 DOI: 10.1021/acsomega.3c03184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023]
Abstract
Peptide nucleic acids (PNAs) are antisense molecules with excellent polynucleotide hybridization properties; they are resistant to nuclease degradation but often have poor cell permeability leading to moderate cellular activity and limited clinical results. The addition of cationic substitutions (positive charges) to PNA molecules greatly increases cell permeability. In this report, we describe the synthesis and polynucleotide hybridization properties of a novel cationic/amino-alkyl nucleotide base-modified PNA (OPNA). This study was designed to quantitate the effect the cationic/amino-alkyl nucleotide base modification had on the kinetic and thermodynamic properties of OPNA-DNA hybridization using surface plasmon resonance and UV thermal melt studies. Kinetic studies reveal a favorable 10-30 fold increase in affinity for a single cationic modification on the base of an adenine, cytosine, or guanidine OPNA sequence compared to the nonmodified PNA strand. The increase in affinity is correlated directly with a favorable decrease in the dissociation rate constant and increase in the association rate constant. Introducing additional amino-alkyl base modifications further favors a decrease in the dissociation rate (3-10-fold per amino-alkyl). The thermodynamics driving the OPNA hybridization is promoted by an additional favorable -80 kJ/mol enthalpy of binding for a single amino-alkyl modification compared to the PNA strand. This increase in enthalpy is consistent with an ion-ion interaction with the DNA strand. These kinetic and thermodynamic hybridization studies reveal for the first time that this type of cationic/amino-alkyl base-modified PNA has favorable hybridization properties suitable for development as an antisense oligomer.
Collapse
Affiliation(s)
- Frank Podlaski
- Department
of Chemistry and Chemical Biology, Stevens
Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| | - Stephen Cornwell
- Department
of Chemistry and Chemical Biology, Stevens
Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| | - Kenny Wong
- Department
of Chemistry and Chemical Biology, Stevens
Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| | - Brian McKittrick
- Department
of Global Sciences & Strategy, OliPass
Corporation, Yongin, Gyeonggi 17015, Republic of Korea
| | - Jae-Hun Kim
- Department
of Monomer Research, OliPass Corporation, Suwon, Gyeonggi 16229, Republic
of Korea
| | - Daram Jung
- Department
of Oligo Sciences, OliPass Corporation, Yongin, Gyeonggi 17015, Republic
of Korea
| | - Yeasel Jeon
- Department
of Oligo Sciences, OliPass Corporation, Yongin, Gyeonggi 17015, Republic
of Korea
| | - Kwang-Bok Jung
- Department
of Monomer Manufacture, OliPass Corporation, Suwon, Gyeonggi 16229, Republic
of Korea
| | - Peter Tolias
- Department
of Biology, School of Natural and Behavioral Sciences, Brooklyn College, CUNY, Brooklyn, New York 11210, United States
| | - William T. Windsor
- Department
of Chemistry and Chemical Biology, Stevens
Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030, United States
| |
Collapse
|
48
|
Yang Y, Kong D, Wu Y, Chen Y, Dai C, Chen C, Zhao J, Luo S, Liu W, Liu Y, Wei D. Catalytic Hairpin Assembly-Enhanced Graphene Transistor for Ultrasensitive miRNA Detection. Anal Chem 2023; 95:13281-13288. [PMID: 37610301 DOI: 10.1021/acs.analchem.3c02433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
MicroRNAs (miRNAs) have emerged as powerful biomarkers for disease diagnosis and screening. Traditional miRNA analytical techniques are inadequate for point-of-care testing due to their reliance on specialized expertise and instruments. Graphene field-effect transistors (GFETs) offer the prospect of simple and label-free diagnostics. Herein, a GFET biosensor based on tetrahedral DNA nanostructure (TDN)-assisted catalytic hairpin assembly (CHA) reaction (TCHA) has been fabricated and applied to the sensitive and specific detection of miRNA-21. TDN structures are assembled to construct the biosensing interface, facilitating CHA reaction by providing free space and preventing unwanted entanglements, aggregation, and adsorption of probes on the graphene channel. Owing to synergistic effects of TDN-assisted in situ nucleic acid amplification on the sensing surface, as well as inherent signal sensitization of GFETs, the biosensor exhibits ultrasensitive detection of miRNA-21 down to 5.67 × 10-19 M, approximately three orders of magnitude lower than that normally achieved by graphene transistors with channel functionalization of single-stranded DNA probes. In addition, the biosensor demonstrates excellent analytical performance regarding selectivity, stability, and reproducibility. Furthermore, the practicability of the biosensor is verified by analyzing targets in a complex serum environment and cell lysates, showing tremendous potential in bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Yuetong Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Derong Kong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yungen Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yiheng Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Chang Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Junhong Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Shi Luo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Wentao Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
49
|
Zhang X, Fan X, Bao H, Ping J. Nanomechanoelectrical approach to highly sensitive and specific label-free DNA detection. Proc Natl Acad Sci U S A 2023; 120:e2306130120. [PMID: 37549255 PMCID: PMC10433451 DOI: 10.1073/pnas.2306130120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023] Open
Abstract
Electronic detection of DNA oligomers offers the promise of rapid, miniaturized DNA analysis across various biotechnological applications. However, known all-electrical methods, which solely rely on measuring electrical signals in transducers during probe-target DNA hybridization, are prone to nonspecific electrostatic and electrochemical interactions, subsequently limiting their specificity and detection limit. Here, we demonstrate a nanomechanoelectrical approach that delivers ultra-robust specificity and a 100-fold improvement in detection limit. We drive nanostructural DNA strands tethered to a graphene transistor to oscillate in an alternating electric field and show that the transistor-current spectra are characteristic and indicative of DNA hybridization. We find that the inherent difference in pliability between unpaired and paired DNA strands leads to the spectral characteristics with minimal influence from nonspecific electrostatic and electrochemical interactions, resulting in high selectivity and sensitivity. Our results highlight the potential of high-performance DNA analysis based on miniaturized all-electronic settings.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA01003
| | - Xiao Fan
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA01003
| | - Huilu Bao
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA01003
| | - Jinglei Ping
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA01003
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA01003
| |
Collapse
|
50
|
Hu J, Safir F, Chang K, Dagli S, Balch HB, Abendroth JM, Dixon J, Moradifar P, Dolia V, Sahoo MK, Pinsky BA, Jeffrey SS, Lawrence M, Dionne JA. Rapid genetic screening with high quality factor metasurfaces. Nat Commun 2023; 14:4486. [PMID: 37495593 PMCID: PMC10372074 DOI: 10.1038/s41467-023-39721-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 06/20/2023] [Indexed: 07/28/2023] Open
Abstract
Genetic analysis methods are foundational to advancing personalized medicine, accelerating disease diagnostics, and monitoring the health of organisms and ecosystems. Current nucleic acid technologies such as polymerase chain reaction (PCR) and next-generation sequencing (NGS) rely on sample amplification and can suffer from inhibition. Here, we introduce a label-free genetic screening platform based on high quality (high-Q) factor silicon nanoantennas functionalized with nucleic acid fragments. Each high-Q nanoantenna exhibits average resonant quality factors of 2,200 in physiological buffer. We quantitatively detect two gene fragments, SARS-CoV-2 envelope (E) and open reading frame 1b (ORF1b), with high-specificity via DNA hybridization. We also demonstrate femtomolar sensitivity in buffer and nanomolar sensitivity in spiked nasopharyngeal eluates within 5 minutes. Nanoantennas are patterned at densities of 160,000 devices per cm2, enabling future work on highly-multiplexed detection. Combined with advances in complex sample processing, our work provides a foundation for rapid, compact, and amplification-free molecular assays.
Collapse
Affiliation(s)
- Jack Hu
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA.
| | - Fareeha Safir
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA, 94305, USA
| | - Kai Chang
- Department of Electrical Engineering, Stanford University, 350 Jane Stanford Way, Stanford, CA, 94305, USA
| | - Sahil Dagli
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA
| | - Halleh B Balch
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA
| | - John M Abendroth
- Laboratory for Solid State Physics, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Jefferson Dixon
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA, 94305, USA
| | - Parivash Moradifar
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA
| | - Varun Dolia
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA
| | - Malaya K Sahoo
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Stefanie S Jeffrey
- Department of Surgery, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA, 94305, USA
| | - Mark Lawrence
- Department of Electrical & Systems Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO, 63130, USA.
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA, 94305, USA.
| |
Collapse
|