1
|
Awad W, Abdelaal MR, Letoga V, McCluskey J, Rossjohn J. Molecular Insights Into MR1-Mediated T Cell Immunity: Lessons Learned and Unanswered Questions. Immunol Rev 2025; 331:e70033. [PMID: 40338831 PMCID: PMC12058573 DOI: 10.1111/imr.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Accepted: 04/11/2025] [Indexed: 05/10/2025]
Abstract
The major histocompatibility complex class-I related protein, MR1, is an evolutionarily conserved antigen presenting molecule that binds and displays organic metabolites to T cells, including mucosal associated invariant T (MAIT) cells and diverse MR1-restricted T cells (MR1T). Structural studies have elucidated how MR1 can accommodate a range of chemical scaffolds that arise from foreign, synthetic, and self-metabolites, although the full spectrum of metabolites that MR1 presents remains unclear. Presently, MAIT and MR1T cell recognition of MR1-antigen complexes represents a new immune recognition paradigm and is emerging as a critical player in protective immunity, aberrant immunity, tumor immunity, and tissue repair. Moreover, the limited allelic variation of MR1 makes it an attractive therapeutic target. This review will address the unique features and capability of the MR1 molecule to display several classes of small molecules for T cell surveillance. We will also address the molecular basis underlying MAIT and MR1T TCR recognition of MR1-binding ligands.
Collapse
Affiliation(s)
- Wael Awad
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Mohamed R. Abdelaal
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - Victoria Letoga
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and ImmunityUniversity of MelbourneMelbourneVictoriaAustralia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery InstituteMonash UniversityClaytonVictoriaAustralia
- Institute of Infection and Immunity, Cardiff University School of MedicineCardiffUK
| |
Collapse
|
2
|
Zhang Y, Yang Z, Jiang N, Tan X, Jiang P, Cao G, Yang Q. MAIT cell deficiency exacerbates neuroinflammation in P301S human tau transgenic mice. J Neuroinflammation 2025; 22:90. [PMID: 40114233 PMCID: PMC11927249 DOI: 10.1186/s12974-025-03413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND The role of immune cells in neurodegeneration remains incompletely understood. Accumulation of misfolded tau proteins is a hallmark of neurodegenerative diseases. Our recent study revealed the presence of mucosal-associated invariant T (MAIT) cells in the meninges, where they express antioxidant molecules to maintain meningeal barrier integrity. However, the role of MAIT cells in tau-related neuroinflammation and neurodegeneration remains unknown. METHODS Flow cytometry analysis was performed to examine MAIT cells in human Tau P301S transgenic mice. Tau pathology, hippocampus atrophy, meningeal integrity, and microglial gene expression were examined in Mr1-/- P301S mice that lacked MAIT cells and control P301S transgenic mice, as well as Mr1-/- P301S mice with adoptive transfer of MAIT cells. RESULTS The meninges of P301S mutant human tau transgenic mice had increased numbers of MAIT cells, which retained their expression of antioxidant molecules. Mr1-/-P301S mice that lacked MAIT cells exhibited increased tau pathology and hippocampus atrophy compared to control Mr1+/+P301S mice. Adoptive transfer of MAIT cells reduced tau pathology and hippocampus atrophy in Mr1-/- P301S mice. Meningeal barrier integrity was compromised in Mr1-/-P301S mice, but not in control Mr1+/+P301S mice. A distinctive microglia subset with a proinflammatory gene expression profile (M-inflammatory) was enriched in the hippocampus of Mr1-/-P301S mice. The transcriptomes of the remaining microglia in these mice also shifted towards a proinflammatory state, with increased expression of inflammatory cytokines, chemokines, and genes related to ribosome biogenesis and immune responses to toxic substances. The transfer of MAIT cells restored meningeal barrier integrity and suppressed microglial inflammation in the Mr1-/- P301S mice. CONCLUSIONS Our data indicate an important role for MAIT cells in regulating tau-pathology-related neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Yuanyue Zhang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French St, New Brunswick, NJ, 08901, USA
| | - Zhi Yang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French St, New Brunswick, NJ, 08901, USA
| | - Na Jiang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French St, New Brunswick, NJ, 08901, USA
| | - Xiaosheng Tan
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French St, New Brunswick, NJ, 08901, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Gaoyuan Cao
- Rutgers Institute for Translational Medicine and Science, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Qi Yang
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French St, New Brunswick, NJ, 08901, USA.
- Rutgers Institute for Translational Medicine and Science, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
- Department of Pediatrics, Johnson Medical School, Rutgers Robert Wood, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
3
|
Chancellor A, Constantin D, Berloffa G, Yang Q, Nosi V, Loureiro JP, Colombo R, Jakob RP, Joss D, Pfeffer M, De Simone G, Morabito A, Schaefer V, Vacchini A, Brunelli L, Montagna D, Heim M, Zippelius A, Davoli E, Häussinger D, Maier T, Mori L, De Libero G. The carbonyl nucleobase adduct M 3Ade is a potent antigen for adaptive polyclonal MR1-restricted T cells. Immunity 2025; 58:431-447.e10. [PMID: 39701104 DOI: 10.1016/j.immuni.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/04/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024]
Abstract
The major histocompatibility complex (MHC) class I-related molecule MHC-class-I-related protein 1 (MR1) presents metabolites to distinct MR1-restricted T cell subsets, including mucosal-associated invariant T (MAIT) and MR1T cells. However, self-reactive MR1T cells and the nature of recognized antigens remain underexplored. Here, we report a cell endogenous carbonyl adduct of adenine (8-(9H-purin-6-yl)-2-oxa-8-azabicyclo[3.3.1]nona-3,6-diene-4,6-dicarbaldehyde [M3Ade]) sequestered in the A' pocket of MR1. M3Ade induced in vitro MR1-mediated stimulation of MR1T cell clones that bound MR1-M3Ade tetramers. MR1-M3Ade tetramers identified heterogeneous MR1-reactive T cells ex vivo in healthy donors, individuals with acute myeloid leukemia, and tumor-infiltrating lymphocytes from non-small cell lung adenocarcinoma and hepatocarcinoma. These cells displayed phenotypic, transcriptional, and functional diversity at distinct differentiation stages, indicating their adaptive nature. They were also polyclonal, with some preferential T cell receptor (TCRαβ) pair usage. Thus, M3Ade is an MR1-presented self-metabolite that enables stimulation and tracking of human-MR1T cells from blood and tissue, aiding our understanding of their roles in health and disease.
Collapse
Affiliation(s)
- Andrew Chancellor
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland.
| | - Daniel Constantin
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Giuliano Berloffa
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Qinmei Yang
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Vladimir Nosi
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - José Pedro Loureiro
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Rodrigo Colombo
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Roman P Jakob
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Daniel Joss
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Michael Pfeffer
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Giulia De Simone
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Aurelia Morabito
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Verena Schaefer
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Alessandro Vacchini
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Laura Brunelli
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Daniela Montagna
- Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia and Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Markus Heim
- Hepatology Laboratory, Department of Biomedicine, University of Basel and University Hospital Basel, 4031 Basel, Switzerland
| | - Alfred Zippelius
- Cancer Immunology, Department of Biomedicine, University of Basel and University Hospital Basel, 4031 Basel, Switzerland
| | - Enrico Davoli
- Department of Environmental Health Science, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, 4056 Basel, Switzerland
| | - Timm Maier
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
4
|
Kaur R, Mehanna N, Pradhan A, Xie D, Li K, Aubѐ J, Rosati B, Carlson D, Vorkas CK. CD4 + Mucosal-associated Invariant T (MAIT) cells express highly diverse T cell receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636785. [PMID: 39975233 PMCID: PMC11839023 DOI: 10.1101/2025.02.06.636785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Mucosal-associated invariant T cells are highly conserved innate-like T cells in mammals recognized for their high baseline frequency in human blood and cytotoxic effector functions during infectious diseases, autoimmunity, and cancer. While the majority of these cells express a conserved CD8αβ+ TRAV1-2 T cell receptor recognizing microbially-derived Vitamin B2 intermediates presented by the evolutionarily conserved major histocompatibility complex I-related molecule, MR1, there is an emerging appreciation for diverse subsets that may be selected for in humans with distinct functions, including subpopulations that co-express CD4. Prior work has not examined T cell receptor (TCR) heterogeneity in CD4 + MAIT cells, largely due to bias of identifying human MAIT cells as CD8 + TRAV1-2 + cells. In this study, we adopted an unbiased single-cell TCR-sequencing approach of total MR1-5-OP-RU-tetramer-reactive T cells and discovered that CD4 + MAIT cells express highly diverse TRAV1-2 negative TCRs. To specifically characterize this TCR repertoire, we analyzed VDJ sequences of single MR1-5-OP-RU tetramer + MAIT cells across two datasets and identified distinct TCR usage among CD4 + MAIT cells including TRAV21, TRAV8 (TRAV8-1, TRAV8-2, TRAV8-3), and TRAV12 families (TRAV12-2, TRAV12-3), as well as more variable J chain and CDR3 sequences. Non-TRAV1-2 MAIT cell TCRs were also enriched after in vitro expansion, including with Mycobacterial tuberculosis . These results indicate that mature human CD4 + MAIT cells adopt distinct TCR usage from the canonical TRAV1-2 + CD8 + subset and suggest that alternative MR1 ligands in addition to riboflavin intermediates may select them.
Collapse
|
5
|
Awad W, Mayall JR, Xu W, Johansen MD, Patton T, Lim XY, Galvao I, Howson LJ, Brown AC, Haw TJ, Donovan C, Das S, Albers GJ, Pai TY, Hortle E, Gillis CM, Hansbro NG, Horvat JC, Liu L, Mak JY, McCluskey J, Fairlie DP, Corbett AJ, Hansbro PM, Rossjohn J. Cigarette smoke components modulate the MR1-MAIT axis. J Exp Med 2025; 222:e20240896. [PMID: 39820322 PMCID: PMC11740918 DOI: 10.1084/jem.20240896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/16/2024] [Accepted: 11/27/2024] [Indexed: 01/19/2025] Open
Abstract
Tobacco smoking is prevalent across the world and causes numerous diseases. Cigarette smoke (CS) compromises immunity, yet little is known of the components of CS that impact T cell function. MR1 is a ubiquitous molecule that presents bacterial metabolites to MAIT cells, which are highly abundant in the lungs. Using in silico, cellular, and biochemical approaches, we identified components of CS that bind MR1 and impact MR1 cell surface expression. Compounds, including nicotinaldehyde, phenylpropanoid, and benzaldehyde-related scaffolds, bound within the A' pocket of MR1. CS inhibited MAIT cell activation, ex vivo, via TCR-dependent and TCR-independent mechanisms. Chronic CS exposure altered MAIT cell phenotype and function and attenuated MAIT cell responses to influenza A virus infection in vivo. MR1-deficient mice were partially protected from the development of chronic obstructive pulmonary disease (COPD) features that were associated with CS exposure. Thus, CS can impair MAIT cell function by diverse mechanisms, and potentially contribute to infection susceptibility and disease exacerbations.
Collapse
Affiliation(s)
- Wael Awad
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Jemma R. Mayall
- Immune Health Program, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Weijun Xu
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Matt D. Johansen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Timothy Patton
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Australia
| | - Xin Yi Lim
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Izabela Galvao
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Lauren J. Howson
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Alexandra C. Brown
- Immune Health Program, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Tatt Jhong Haw
- Immune Health Program, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Chantal Donovan
- Immune Health Program, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, Australia
| | - Shatarupa Das
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Gesa J. Albers
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Tsung-Yu Pai
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Elinor Hortle
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Caitlin M. Gillis
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Nicole G. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Jay C. Horvat
- Immune Health Program, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Ligong Liu
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Jeffrey Y.W. Mak
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - James McCluskey
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David P. Fairlie
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Alexandra J. Corbett
- Department of Immunology and Microbiology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Cardiff, UK
| |
Collapse
|
6
|
Lagattuta KA, Kohlgruber AC, Abdelfattah NS, Nathan A, Rumker L, Birnbaum ME, Elledge SJ, Raychaudhuri S. The T cell receptor sequence influences the likelihood of T cell memory formation. Cell Rep 2025; 44:115098. [PMID: 39731734 PMCID: PMC11785489 DOI: 10.1016/j.celrep.2024.115098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 12/02/2024] [Indexed: 12/30/2024] Open
Abstract
The amino acid sequence of the T cell receptor (TCR) varies between T cells of an individual's immune system. Particular TCR residues nearly guarantee mucosal-associated invariant T (MAIT) and natural killer T (NKT) cell transcriptional fates. To define how the TCR sequence affects T cell fates, we analyze the paired αβTCR sequence and transcriptome of 961,531 single cells. We find that hydrophobic complementarity-determining region (CDR)3 residues promote regulatory T cell fates in both the CD8 and CD4 lineages. Most strikingly, we find a set of TCR sequence features that promote the T cell transition from naive to memory. We quantify the extent of these features through our TCR scoring function "TCR-mem." Using TCR transduction experiments, we demonstrate that increased TCR-mem promotes T cell activation, even among T cells that recognize the same antigen. Our results reveal a common set of TCR sequence features that enable T cell activation and immunological memory.
Collapse
MESH Headings
- Immunologic Memory/immunology
- Animals
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Mice
- Memory T Cells/immunology
- Amino Acid Sequence
- Lymphocyte Activation/immunology
- Complementarity Determining Regions/immunology
- Mice, Inbred C57BL
- Receptors, Antigen, T-Cell, alpha-beta
- CD8-Positive T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Kaitlyn A Lagattuta
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ayano C Kohlgruber
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA; Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Nouran S Abdelfattah
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Aparna Nathan
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Laurie Rumker
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael E Birnbaum
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Stephen J Elledge
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Ryu A, Clagett BM, Freeman ML. Inflammation and Microbial Translocation Correlate with Reduced MAIT Cells in People with HIV. Pathog Immun 2024; 10:19-46. [PMID: 39635460 PMCID: PMC11613984 DOI: 10.20411/pai.v10i1.746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/05/2024] [Indexed: 12/07/2024] Open
Abstract
Background Optimal control of microbial infections requires mucosal-associated invariant T (MAIT) cells. People living with HIV (PWH) on antiretroviral therapy (ART) can be divided into 2 groups: immune responders (IR) who recover or retain CD4 T cell numbers, and immune non-responders (INR) who do not. Compared to IR, INR have fewer MAIT cells and increased systemic inflammation and microbial translocation, but how these factors affect MAIT cells is unknown. Methods MAIT cells from IR, INR, and from controls without HIV were enumerated and characterized by flow cytometry. To determine the links among MAIT cells, inflammation, and microbial translocation, the correlations of MAIT cell numbers to previously published soluble inflammatory markers and plasma microbial genetic sequences were assessed by Spearman analysis. In vitro assays were used to support our findings. Results MAIT cell numbers were significantly negatively correlated with levels of IL-6 and IP-10 (markers of inflammation); CD14, LPS, and FABP2 (markers of microbial translocation); and with abundance of Serratia and other Proteobacteria genetic sequences in plasma. In a separate analysis of PWH on ART receiving the IL-6 receptor antagonist tocilizumab (TCZ), we found that blocking IL-6 signaling with TCZ increased IL-7 receptor expression on MAIT cells and reduced plasma IL-7 levels, consistent with improved uptake of IL-7 in vivo. Conclusions Our findings suggest inflammation and microbial translocation in PWH on ART lead to a loss of MAIT cells via impaired IL-7 responsiveness, resulting in further increased microbial translocation and inflammation.
Collapse
Affiliation(s)
- Angela Ryu
- Rustbelt Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Brian M. Clagett
- Rustbelt Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Michael L. Freeman
- Rustbelt Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
8
|
Takasaki R, Ito E, Nagae M, Takahashi Y, Matsuoka T, Yasue W, Arichi N, Ohno H, Yamasaki S, Inuki S. Development of Ribityllumazine Analogue as Mucosal-Associated Invariant T Cell Ligands. J Am Chem Soc 2024; 146:29964-29976. [PMID: 39432319 DOI: 10.1021/jacs.4c12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of innate-like T cells abundant in human tissues that play a significant role in defense against bacterial and viral infections and in tissue repair. MAIT cells are activated by recognizing microbial-derived small-molecule ligands presented by the MHC class I related-1 protein. Although several MAIT cell modulators have been identified in the past decade, potent and chemically stable ligands remain limited. Herein, we carried out a structure-activity relationship study of ribityllumazine derivatives and found a chemically stable MAIT cell ligand with a pteridine core and a 2-oxopropyl group as the Lys-reactive group. The ligand showed high potency in a cocultivation assay using model cell lines of antigen-presenting cells and MAIT cells. The X-ray crystallographic analysis revealed the binding mode of the ligand to MR1 and the T cell receptor, indicating that it forms a covalent bond with MR1 via Schiff base formation. Furthermore, we found that the ligand stimulated proliferation of human MAIT cells in human peripheral blood mononuclear cells and showed an adjuvant effect in mice. Our developed ligand is one of the most potent among chemically stable MAIT cell ligands, contributing to accelerating therapeutic applications of MAIT cells.
Collapse
Affiliation(s)
- Ryosuke Takasaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Emi Ito
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Masamichi Nagae
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuki Takahashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Takuro Matsuoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Wakana Yasue
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Sho Yamasaki
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Tokushima 770-8505, Japan
| |
Collapse
|
9
|
Walkenhorst M, Sonner JK, Meurs N, Engler JB, Bauer S, Winschel I, Woo MS, Raich L, Winkler I, Vieira V, Unger L, Salinas G, Lantz O, Friese MA, Willing A. Protective effect of TCR-mediated MAIT cell activation during experimental autoimmune encephalomyelitis. Nat Commun 2024; 15:9287. [PMID: 39468055 PMCID: PMC11519641 DOI: 10.1038/s41467-024-53657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells express semi-invariant T cell receptors (TCR) for recognizing bacterial and yeast antigens derived from riboflavin metabolites presented on the non-polymorphic MHC class I-related protein 1 (MR1). Neuroinflammation in multiple sclerosis (MS) is likely initiated by autoreactive T cells and perpetuated by infiltration of additional immune cells, but the precise role of MAIT cells in MS pathogenesis remains unknown. Here, we use experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, and find an accumulation of MAIT cells in the inflamed central nervous system (CNS) enriched for MAIT17 (RORγt+) and MAIT1/17 (T-bet+RORγt+) subsets with inflammatory and protective features. Results from transcriptome profiling and Nur77GFP reporter mice show that these CNS MAIT cells are activated via cytokines and TCR. Blocking TCR activation with an anti-MR1 antibody exacerbates EAE, whereas enhancing TCR activation with the cognate antigen, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil, ameliorates EAE severity, potentially via the induction of amphiregulin (AREG). In summary, our findings suggest that TCR-mediated MAIT cell activation is protective in CNS inflammation, likely involving an induction of AREG.
Collapse
Affiliation(s)
- Mark Walkenhorst
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana K Sonner
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Meurs
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Bauer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingo Winschel
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcel S Woo
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Raich
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Iris Winkler
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa Vieira
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Unger
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit, Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Olivier Lantz
- Institut National de la Santé et de la Recherche Médicale U932, PSL University, Institut Curie, Paris, France
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Anne Willing
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
10
|
López-Rodríguez JC, Barral P. Mucosal associated invariant T cells: Powerhouses of the lung. Immunol Lett 2024; 269:106910. [PMID: 39128630 PMCID: PMC11835791 DOI: 10.1016/j.imlet.2024.106910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The lungs face constant environmental challenges from harmless molecules, airborne pathogens and harmful agents that can damage the tissue. The lungs' immune system includes numerous tissue-resident lymphocytes that contribute to maintain tissue homeostasis and to the early initiation of immune responses. Amongst tissue-resident lymphocytes, Mucosal Associated Invariant T (MAIT) cells are present in human and murine lungs and emerging evidence supports their contribution to immune responses during infections, chronic inflammatory disorders and cancer. This review explores the mechanisms underpinning MAIT cell functions in the airways, their impact on lung immunity and the potential for targeting pulmonary MAIT cells in a therapeutic context.
Collapse
Affiliation(s)
- J C López-Rodríguez
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK.
| | - P Barral
- Centre for Inflammation Biology and Cancer Immunology, The Peter Gorer Department of Immunobiology, King's College London, London, UK; The Francis Crick Institute, London, UK.
| |
Collapse
|
11
|
Sok CL, Rossjohn J, Gully BS. The Evolving Portrait of γδ TCR Recognition Determinants. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:543-552. [PMID: 39159405 PMCID: PMC11335310 DOI: 10.4049/jimmunol.2400114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/14/2024] [Indexed: 08/21/2024]
Abstract
In αβ T cells, immunosurveillance is enabled by the αβ TCR, which corecognizes peptide, lipid, or small-molecule Ags presented by MHC- and MHC class I-like Ag-presenting molecules, respectively. Although αβ TCRs vary in their Ag recognition modes, in general they corecognize the presented Ag and the Ag-presenting molecule and do so in an invariable "end-to-end" manner. Quite distinctly, γδ T cells, by way of their γδ TCR, can recognize ligands that extend beyond the confines of MHC- and MHC class I-like restrictions. From structural studies, it is now becoming apparent that γδ TCR recognition modes can break the corecognition paradigm and deviate markedly from the end-to-end docking mechanisms of αβ TCR counterparts. This brief review highlights the emerging portrait of how γδ TCRs can recognize diverse epitopes of their Ags in a manner reminiscent to how Abs recognize Ags.
Collapse
MESH Headings
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Humans
- Animals
- Antigen Presentation/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Epitopes, T-Lymphocyte/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Chhon Ling Sok
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Cardiff, UK
| | - Benjamin S. Gully
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Maerz MD, Cross DL, Seshadri C. Functional and biological implications of clonotypic diversity among human donor-unrestricted T cells. Immunol Cell Biol 2024; 102:474-486. [PMID: 38659280 PMCID: PMC11236517 DOI: 10.1111/imcb.12751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/04/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
T cells express a T-cell receptor (TCR) heterodimer that is the product of germline rearrangement and junctional editing resulting in immense clonotypic diversity. The generation of diverse TCR repertoires enables the recognition of pathogen-derived peptide antigens presented by polymorphic major histocompatibility complex (MHC) molecules. However, T cells also recognize nonpeptide antigens through nearly monomorphic antigen-presenting systems, such as cluster of differentiation 1 (CD1), MHC-related protein 1 (MR1) and butyrophilins (BTNs). This potential for shared immune responses across genetically diverse populations led to their designation as donor-unrestricted T cells (DURTs). As might be expected, some CD1-, MR1- and BTN-restricted T cells express a TCR that is conserved across unrelated individuals. However, several recent studies have reported unexpected diversity among DURT TCRs, and increasing evidence suggests that this diversity has functional consequences. Recent reports also challenge the dogma that immune cells are either innate or adaptive and suggest that DURT TCRs may act in both capacities. Here, we review this evidence and propose an expanded view of the role for clonotypic diversity among DURTs in humans, including new perspectives on how DURT TCRs may integrate their adaptive and innate immune functions.
Collapse
Affiliation(s)
- Megan D Maerz
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, Molecular Medicine and Mechanisms of Disease Program, University of Washington, Seattle, WA, USA
| | - Deborah L Cross
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Chetan Seshadri
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
13
|
Ito E, Yamasaki S. Regulation of MAIT cells through host-derived antigens. Front Immunol 2024; 15:1424987. [PMID: 38979423 PMCID: PMC11228242 DOI: 10.3389/fimmu.2024.1424987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a major subset of innate-like T cells that function at the interface between innate and acquired immunity. MAIT cells recognize vitamin B2-related metabolites produced by microbes, through semi-invariant T cell receptor (TCR) and contribute to protective immunity. These foreign-derived antigens are presented by a monomorphic antigen presenting molecule, MHC class I-related molecule 1 (MR1). MR1 contains a malleable ligand-binding pocket, allowing for the recognition of compounds with various structures. However, interactions between MR1 and self-derived antigens are not fully understood. Recently, bile acid metabolites were identified as host-derived ligands for MAIT cells. In this review, we will highlight recent findings regarding the recognition of self-antigens by MAIT cells.
Collapse
Affiliation(s)
- Emi Ito
- Department of Molecular Immunology, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases (RIMD), Osaka University, Suita, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
| |
Collapse
|
14
|
Edmans MD, Connelley TK, Morgan S, Pediongco TJ, Jayaraman S, Juno JA, Meehan BS, Dewar PM, Maze EA, Roos EO, Paudyal B, Mak JYW, Liu L, Fairlie DP, Wang H, Corbett AJ, McCluskey J, Benedictus L, Tchilian E, Klenerman P, Eckle SBG. MAIT cell-MR1 reactivity is highly conserved across multiple divergent species. J Biol Chem 2024; 300:107338. [PMID: 38705391 PMCID: PMC11190491 DOI: 10.1016/j.jbc.2024.107338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T cells that recognize small molecule metabolites presented by major histocompatibility complex class I related protein 1 (MR1), via an αβ T cell receptor (TCR). MAIT TCRs feature an essentially invariant TCR α-chain, which is highly conserved between mammals. Similarly, MR1 is the most highly conserved major histocompatibility complex-I-like molecule. This extreme conservation, including the mode of interaction between the MAIT TCR and MR1, has been shown to allow for species-mismatched reactivities unique in T cell biology, thereby allowing the use of selected species-mismatched MR1-antigen (MR1-Ag) tetramers in comparative immunology studies. However, the pattern of cross-reactivity of species-mismatched MR1-Ag tetramers in identifying MAIT cells in diverse species has not been formally assessed. We developed novel cattle and pig MR1-Ag tetramers and utilized these alongside previously developed human, mouse, and pig-tailed macaque MR1-Ag tetramers to characterize cross-species tetramer reactivities. MR1-Ag tetramers from each species identified T cell populations in distantly related species with specificity that was comparable to species-matched MR1-Ag tetramers. However, there were subtle differences in staining characteristics with practical implications for the accurate identification of MAIT cells. Pig MR1 is sufficiently conserved across species that pig MR1-Ag tetramers identified MAIT cells from the other species. However, MAIT cells in pigs were at the limits of phenotypic detection. In the absence of sheep MR1-Ag tetramers, a MAIT cell population in sheep blood was identified phenotypically, utilizing species-mismatched MR1-Ag tetramers. Collectively, our results validate the use and define the limitations of species-mismatched MR1-Ag tetramers in comparative immunology studies.
Collapse
Affiliation(s)
- Matthew D Edmans
- Department of Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom; Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom.
| | - Timothy K Connelley
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Roslin, United Kingdom
| | - Sophie Morgan
- Department of Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Troi J Pediongco
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Siddharth Jayaraman
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Roslin, United Kingdom
| | - Jennifer A Juno
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Bronwyn S Meehan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Phoebe M Dewar
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Emmanuel A Maze
- Department of Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Eduard O Roos
- Department of Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Basudev Paudyal
- Department of Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Jeffrey Y W Mak
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Ligong Liu
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David P Fairlie
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Huimeng Wang
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia; State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lindert Benedictus
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Roslin, United Kingdom; Faculty of Veterinary Medicine, Department of Population Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Elma Tchilian
- Department of Enhanced Host Responses, The Pirbright Institute, Pirbright, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Sidonia B G Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
15
|
Ciacchi L, Mak JYW, Le JP, Fairlie DP, McCluskey J, Corbett AJ, Rossjohn J, Awad W. Mouse mucosal-associated invariant T cell receptor recognition of MR1 presenting the vitamin B metabolite, 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil. J Biol Chem 2024; 300:107229. [PMID: 38537698 PMCID: PMC11066510 DOI: 10.1016/j.jbc.2024.107229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Mucosal-associated invariant T (MAIT) cells can elicit immune responses against riboflavin-based antigens presented by the evolutionary conserved MHC class I related protein, MR1. While we have an understanding of the structural basis of human MAIT cell receptor (TCR) recognition of human MR1 presenting a variety of ligands, how the semi-invariant mouse MAIT TCR binds mouse MR1-ligand remains unknown. Here, we determine the crystal structures of 2 mouse TRAV1-TRBV13-2+ MAIT TCR-MR1-5-OP-RU ternary complexes, whose TCRs differ only in the composition of their CDR3β loops. These mouse MAIT TCRs mediate high affinity interactions with mouse MR1-5-OP-RU and cross-recognize human MR1-5-OP-RU. Similarly, a human MAIT TCR could bind mouse MR1-5-OP-RU with high affinity. This cross-species recognition indicates the evolutionary conserved nature of this MAIT TCR-MR1 axis. Comparing crystal structures of the mouse versus human MAIT TCR-MR1-5-OP-RU complexes provides structural insight into the conserved nature of this MAIT TCR-MR1 interaction and conserved specificity for the microbial antigens, whereby key germline-encoded interactions required for MAIT activation are maintained. This is an important consideration for the development of MAIT cell-based therapeutics that will rely on preclinical mouse models of disease.
Collapse
Affiliation(s)
- Lisa Ciacchi
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jeffrey Y W Mak
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Jeremy P Le
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - David P Fairlie
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK.
| | - Wael Awad
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
16
|
Krawic JR, Ladd NA, Cansler M, McMurtrey C, Devereaux J, Worley A, Ahmed T, Froyd C, Kulicke CA, Swarbrick G, Nilsen A, Lewinsohn DM, Adams EJ, Hildebrand W. Multiple Isomers of Photolumazine V Bind MR1 and Differentially Activate MAIT Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:933-940. [PMID: 38275935 PMCID: PMC10909690 DOI: 10.4049/jimmunol.2300609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024]
Abstract
In response to microbial infection, the nonclassical Ag-presenting molecule MHC class I-related protein 1 (MR1) presents secondary microbial metabolites to mucosal-associated invariant T (MAIT) cells. In this study, we further characterize the repertoire of ligands captured by MR1 produced in Hi5 (Trichoplusia ni) cells from Mycobacterium smegmatis via mass spectrometry. We describe the (to our knowledge) novel MR1 ligand photolumazine (PL)V, a hydroxyindolyl-ribityllumazine with four isomers differing in the positioning of a hydroxyl group. We show that all four isomers are produced by M. smegmatis in culture and that at least three can induce MR1 surface translocation. Furthermore, human MAIT cell clones expressing distinct TCR β-chains differentially responded to the PLV isomers, demonstrating that the subtle positioning of a single hydroxyl group modulates TCR recognition. This study emphasizes structural microheterogeneity within the MR1 Ag repertoire and the remarkable selectivity of MAIT cell TCRs.
Collapse
Affiliation(s)
- Jason R. Krawic
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Nicole A. Ladd
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - Meghan Cansler
- Department of Pediatrics, Oregon Health and Sciences University, Portland, OR
| | | | - Jordan Devereaux
- Oregon Health and Sciences University Medicinal Chemistry Core, Portland, OR
| | - Aneta Worley
- Research and Development, VA Portland Health Care System, Portland, OR
| | - Tania Ahmed
- Department of Pediatrics, Oregon Health and Sciences University, Portland, OR
| | - Cara Froyd
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - Corinna A. Kulicke
- Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, Por
| | - Gwendolyn Swarbrick
- Department of Pediatrics, Oregon Health and Sciences University, Portland, OR
| | - Aaron Nilsen
- Oregon Health and Sciences University Medicinal Chemistry Core, Portland, OR
| | - David M. Lewinsohn
- Research and Development, VA Portland Health Care System, Portland, OR
- Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, Por
| | - Erin J. Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL
| | - William Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
17
|
McWilliam HEG, Villadangos JA. MR1 antigen presentation to MAIT cells and other MR1-restricted T cells. Nat Rev Immunol 2024; 24:178-192. [PMID: 37773272 PMCID: PMC11108705 DOI: 10.1038/s41577-023-00934-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2023] [Indexed: 10/01/2023]
Abstract
MHC antigen presentation plays a fundamental role in adaptive and semi-invariant T cell immunity. Distinct MHC molecules bind antigens that differ in chemical structure, origin and location and present them to specialized T cells. MHC class I-related protein 1 (MR1) presents a range of small molecule antigens to MR1-restricted T (MR1T) lymphocytes. The best studied MR1 ligands are derived from microbial metabolism and are recognized by a major class of MR1T cells known as mucosal-associated invariant T (MAIT) cells. Here, we describe the MR1 antigen presentation pathway: the known types of antigens presented by MR1, the location where MR1-antigen complexes form, the route followed by the complexes to the cell surface, the mechanisms involved in termination of MR1 antigen presentation and the accessory cellular proteins that comprise the MR1 antigen presentation machinery. The current road map of the MR1 antigen presentation pathway reveals potential strategies for therapeutic manipulation of MR1T cell function and provides a foundation for further studies that will lead to a deeper understanding of MR1-mediated immunity.
Collapse
Affiliation(s)
- Hamish E G McWilliam
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.
| | - Jose A Villadangos
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
18
|
Wu S, Yang X, Lou Y, Xiao X. MAIT cells in bacterial infectious diseases: heroes, villains, or both? Clin Exp Immunol 2023; 214:144-153. [PMID: 37624404 PMCID: PMC10714195 DOI: 10.1093/cei/uxad102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
Due to the aggravation of bacterial drug resistance and the lag in the development of new antibiotics, it is crucial to develop novel therapeutic regimens for bacterial infectious diseases. Currently, immunotherapy is a promising regimen for the treatment of infectious diseases. Mucosal-associated invariant T (MAIT) cells, a subpopulation of innate-like T cells, are abundant in humans and can mount a rapid immune response to pathogens, thus becoming a potential target of immunotherapy for infectious diseases. At the site of infection, activated MAIT cells perform complex biological functions by secreting a variety of cytokines and cytotoxic substances. Many studies have shown that MAIT cells have immunoprotective effects because they can bridge innate and adaptive immune responses, leading to bacterial clearance, tissue repair, and homeostasis maintenance. MAIT cells also participate in cytokine storm generation, tissue fibrosis, and cancer progression, indicating that they play a role in immunopathology. In this article, we review recent studies of MAIT cells, discuss their dual roles in bacterial infectious diseases and provide some promising MAIT cell-targeting strategies for the treatment of bacterial infectious diseases.
Collapse
Affiliation(s)
- Sihong Wu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Yang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xingxing Xiao
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
19
|
Wei L, Chen Z, Lv Q. Mucosal-associated invariant T cells display both pathogenic and protective roles in patients with inflammatory bowel diseases. Amino Acids 2023; 55:1819-1827. [PMID: 37819474 DOI: 10.1007/s00726-023-03344-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
An important subtype of the innate-like T lymphocytes is mucosal-associated invariant T (MAIT) cells expressing a semi-invariant T cell receptor α (TCR-α) chain. MAIT cells could be activated mainly by TCR engagement or cytokines. They have been found to have essential roles in various immune mediated. There have been growing preclinical and clinical findings that show an association between MAIT cells and the physiopathology of inflammatory bowel diseases (IBD). Of note, published reports demonstrate contradictory findings regarding the role of MAIT cells in IBD patients. A number of reports suggests a protective effect, whereas others show a pathogenic impact. The present review article aimed to explore and discuss the findings of experimental and clinical investigations evaluating the effects of MAIT cells in IBD subjects and animal models. Findings indicate that MAIT cells could exert opposite effects in the course of IBD, including an anti-inflammatory protective effect of blood circulating MAIT cells and an effector pathogenic effect of colonic MAIT cells. Another important finding is that blood levels of MAIT cells can be considered as a potential biomarker in IBD patients.
Collapse
Affiliation(s)
- Lei Wei
- Department of General Surgery, Pudong New District Gongli Hospital of Shanghai, Shanghai, 200120, China
| | - Zhigang Chen
- Department of General Surgery, Pudong New District Gongli Hospital of Shanghai, Shanghai, 200120, China
| | - Qiang Lv
- Department of General Surgery, Pudong New District Gongli Hospital of Shanghai, Shanghai, 200120, China.
| |
Collapse
|
20
|
Chengalroyen MD. Current Perspectives and Challenges of MAIT Cell-Directed Therapy for Tuberculosis Infection. Pathogens 2023; 12:1343. [PMID: 38003807 PMCID: PMC10675005 DOI: 10.3390/pathogens12111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a distinct population of non-conventional T cells that have been preserved through evolution and possess properties of both innate and adaptive immune cells. They are activated through the recognition of antigens presented by non-polymorphic MR1 proteins or, alternately, can be stimulated by specific cytokines. These cells are multifaceted and exert robust antimicrobial activity against bacterial and viral infections, direct the immune response through the modulation of other immune cells, and exhibit a specialized tissue homeostasis and repair function. These distinct characteristics have instigated interest in MAIT cell biology for immunotherapy and vaccine development. This review describes the current understanding of MAIT cell activation, their role in infections and diseases with an emphasis on tuberculosis (TB) infection, and perspectives on the future use of MAIT cells in immune-mediated therapy.
Collapse
Affiliation(s)
- Melissa D Chengalroyen
- Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine, Department of Pathology, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
21
|
Zheng Y, Han F, Ho A, Xue Y, Wu Z, Chen X, Sandberg JK, Ma S, Leeansyah E. Role of MAIT cells in gastrointestinal tract bacterial infections in humans: More than a gut feeling. Mucosal Immunol 2023; 16:740-752. [PMID: 37353006 DOI: 10.1016/j.mucimm.2023.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Mucosa-associated invariant T (MAIT) cells are the largest population of unconventional T cells in humans. These antimicrobial T cells are poised with rapid effector responses following recognition of the cognate riboflavin (vitamin B2)-like metabolite antigens derived from microbial riboflavin biosynthetic pathway. Presentation of this unique class of small molecule metabolite antigens is mediated by the highly evolutionarily conserved major histocompatibility complex class I-related protein. In humans, MAIT cells are widely found along the upper and lower gastrointestinal tracts owing to their high expression of chemokine receptors and homing molecules directing them to these tissue sites. In this review, we discuss recent findings regarding the roles MAIT cells play in various gastrointestinal bacterial infections, and how their roles appear to differ depending on the etiological agents and the anatomical location. We further discuss the potential mechanisms by which MAIT cells contribute to pathogen control, orchestrate adaptive immunity, as well as their potential contribution to inflammation and tissue damage during gastrointestinal bacterial infections, and the ensuing tissue repair following resolution. Finally, we propose and discuss the use of the emerging three-dimensional organoid technology to test different hypotheses regarding the role of MAIT cells in gastrointestinal bacterial infections, inflammation, and immunity.
Collapse
Affiliation(s)
- Yichao Zheng
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Fei Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Amanda Ho
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Yiting Xue
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Zhengyu Wu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xingchi Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shaohua Ma
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
22
|
Matsuoka T, Hattori A, Oishi S, Araki M, Ma B, Fujii T, Arichi N, Okuno Y, Kakeya H, Yamasaki S, Ohno H, Inuki S. Establishment of an MR1 Presentation Reporter Screening System and Identification of Phenylpropanoid Derivatives as MR1 Ligands. J Med Chem 2023; 66:12520-12535. [PMID: 37638616 DOI: 10.1021/acs.jmedchem.3c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells that are modulated by ligands presented on MHC class I-related proteins (MR1). These cells have attracted attention as potential drug targets because of their involvement in the initial response to infection and various disorders. Herein, we have established the MR1 presentation reporter assay system employing split-luciferase, which enables the efficient exploration of MR1 ligands. Using our screening system, we identified phenylpropanoid derivatives as MR1 ligands, including coniferyl aldehyde, which have an ability to inhibit the MR1-MAIT cell axis. Further, the structure-activity relationship study of coniferyl aldehyde analogs revealed the key structural features of ligands required for MR1 recognition. These results will contribute to identifying a broad range of endogenous and exogenous MR1 ligands and to developing novel MAIT cell modulators.
Collapse
Affiliation(s)
- Takuro Matsuoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akira Hattori
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsugu Araki
- Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Biao Ma
- RIKEN Center for Computational Science, Chuo-ku, Kobe 650-0047, Japan
| | - Toshiki Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasushi Okuno
- Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
- RIKEN Center for Computational Science, Chuo-ku, Kobe 650-0047, Japan
| | - Hideaki Kakeya
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sho Yamasaki
- Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
23
|
Chancellor A, Alan Simmons R, Khanolkar RC, Nosi V, Beshirova A, Berloffa G, Colombo R, Karuppiah V, Pentier JM, Tubb V, Ghadbane H, Suckling RJ, Page K, Crean RM, Vacchini A, De Gregorio C, Schaefer V, Constantin D, Gligoris T, Lloyd A, Hock M, Srikannathasan V, Robinson RA, Besra GS, van der Kamp MW, Mori L, Calogero R, Cole DK, De Libero G, Lepore M. Promiscuous recognition of MR1 drives self-reactive mucosal-associated invariant T cell responses. J Exp Med 2023; 220:e20221939. [PMID: 37382893 PMCID: PMC10309188 DOI: 10.1084/jem.20221939] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/02/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells use canonical semi-invariant T cell receptors (TCR) to recognize microbial riboflavin precursors displayed by the antigen-presenting molecule MR1. The extent of MAIT TCR crossreactivity toward physiological, microbially unrelated antigens remains underexplored. We describe MAIT TCRs endowed with MR1-dependent reactivity to tumor and healthy cells in the absence of microbial metabolites. MAIT cells bearing TCRs crossreactive toward self are rare but commonly found within healthy donors and display T-helper-like functions in vitro. Experiments with MR1-tetramers loaded with distinct ligands revealed significant crossreactivity among MAIT TCRs both ex vivo and upon in vitro expansion. A canonical MAIT TCR was selected on the basis of extremely promiscuous MR1 recognition. Structural and molecular dynamic analyses associated promiscuity to unique TCRβ-chain features that were enriched within self-reactive MAIT cells of healthy individuals. Thus, self-reactive recognition of MR1 represents a functionally relevant indication of MAIT TCR crossreactivity, suggesting a potentially broader role of MAIT cells in immune homeostasis and diseases, beyond microbial immunosurveillance.
Collapse
Affiliation(s)
- Andrew Chancellor
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | | | - Vladimir Nosi
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Aisha Beshirova
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Giuliano Berloffa
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Rodrigo Colombo
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | | | | | | | | | | | - Rory M. Crean
- Department of Biology and Biochemistry, University of Bath, Bath, UK
- Doctoral Training Centre in Sustainable Chemical Technologies, University of Bath, Bath, UK
| | - Alessandro Vacchini
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Corinne De Gregorio
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Verena Schaefer
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Daniel Constantin
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | | | | | | | | | - Gurdyal S. Besra
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, UK
| | | | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Raffaele Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | | | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | | |
Collapse
|
24
|
Garner LC, Amini A, FitzPatrick MEB, Lett MJ, Hess GF, Filipowicz Sinnreich M, Provine NM, Klenerman P. Single-cell analysis of human MAIT cell transcriptional, functional and clonal diversity. Nat Immunol 2023; 24:1565-1578. [PMID: 37580605 PMCID: PMC10457204 DOI: 10.1038/s41590-023-01575-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/26/2023] [Indexed: 08/16/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells that recognize microbial metabolites through a semi-invariant T cell receptor (TCR). Major questions remain regarding the extent of human MAIT cell functional and clonal diversity. To address these, we analyzed the single-cell transcriptome and TCR repertoire of blood and liver MAIT cells and developed functional RNA-sequencing, a method to integrate function and TCR clonotype at single-cell resolution. MAIT cell clonal diversity was comparable to conventional memory T cells, with private TCR repertoires shared across matched tissues. Baseline functional diversity was low and largely related to tissue site. MAIT cells showed stimulus-specific transcriptional responses in vitro, with cells positioned along gradients of activation. Clonal identity influenced resting and activated transcriptional profiles but intriguingly was not associated with the capacity to produce IL-17. Overall, MAIT cells show phenotypic and functional diversity according to tissue localization, stimulation environment and clonotype.
Collapse
Affiliation(s)
- Lucy C Garner
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Ali Amini
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Michael E B FitzPatrick
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Martin J Lett
- Department of Biomedicine, Liver Immunology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Gabriel F Hess
- Division of Visceral Surgery, Clarunis University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Magdalena Filipowicz Sinnreich
- Department of Biomedicine, Liver Immunology, University Hospital Basel and University of Basel, Basel, Switzerland
- Gastroenterology and Hepatology, University Department of Medicine, Cantonal Hospital Baselland, Liestal, Switzerland
| | - Nicholas M Provine
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
25
|
Nelson AG, Wang H, Dewar PM, Eddy EM, Li S, Lim XY, Patton T, Zhou Y, Pediongco TJ, Meehan LJ, Meehan BS, Mak JYW, Fairlie DP, Stent AW, Kjer-Nielsen L, McCluskey J, Eckle SBG, Corbett AJ, Souter MNT, Chen Z. Synthetic 5-amino-6-D-ribitylaminouracil paired with inflammatory stimuli facilitates MAIT cell expansion in vivo. Front Immunol 2023; 14:1109759. [PMID: 37720229 PMCID: PMC10500299 DOI: 10.3389/fimmu.2023.1109759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/12/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Mucosal-associated invariant T (MAIT) cells are a population of innate-like T cells, which mediate host immunity to microbial infection by recognizing metabolite antigens derived from microbial riboflavin synthesis presented by the MHC-I-related protein 1 (MR1). Namely, the potent MAIT cell antigens, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU) and 5-(2-oxoethylideneamino)-6-D-ribitylaminouracil (5-OE-RU), form via the condensation of the riboflavin precursor 5-amino-6-D-ribitylaminouracil (5-A-RU) with the reactive carbonyl species (RCS) methylglyoxal (MG) and glyoxal (G), respectively. Although MAIT cells are abundant in humans, they are rare in mice, and increasing their abundance using expansion protocols with antigen and adjuvant has been shown to facilitate their study in mouse models of infection and disease. Methods Here, we outline three methods to increase the abundance of MAIT cells in C57BL/6 mice using a combination of inflammatory stimuli, 5-A-RU and MG. Results Our data demonstrate that the administration of synthetic 5-A-RU in combination with one of three different inflammatory stimuli is sufficient to increase the frequency and absolute numbers of MAIT cells in C57BL/6 mice. The resultant boosted MAIT cells are functional and can provide protection against a lethal infection of Legionella longbeachae. Conclusion These results provide alternative methods for expanding MAIT cells with high doses of commercially available 5-A-RU (± MG) in the presence of various danger signals.
Collapse
Affiliation(s)
- Adam G. Nelson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Huimeng Wang
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Phoebe M. Dewar
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Eleanor M. Eddy
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Songyi Li
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Xin Yi Lim
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Timothy Patton
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Yuchen Zhou
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Troi J. Pediongco
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Lucy J. Meehan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Bronwyn S. Meehan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jeffrey Y. W. Mak
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - David P. Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | | | - Lars Kjer-Nielsen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Michael N. T. Souter
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
26
|
Awad W, Ciacchi L, McCluskey J, Fairlie DP, Rossjohn J. Molecular insights into metabolite antigen recognition by mucosal-associated invariant T cells. Curr Opin Immunol 2023; 83:102351. [PMID: 37276819 PMCID: PMC11056607 DOI: 10.1016/j.coi.2023.102351] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Metabolite-based T-cell immunity is emerging as a major player in antimicrobial immunity, autoimmunity, and cancer. Here, small-molecule metabolites were identified to be captured and presented by the major histocompatibility complex class-I-related molecule (MR1) to T cells, namely mucosal-associated invariant T cells (MAIT) and diverse MR1-restricted T cells. Both MR1 and MAIT are evolutionarily conserved in many mammals, suggesting important roles in host immunity. Rational chemical modifications of these naturally occurring metabolites, termed altered metabolite ligands (AMLs), have advanced our understanding of the molecular correlates of MAIT T cell receptor (TCR)-MR1 recognition. This review provides a generalized framework for metabolite recognition and modulation of MAIT cells.
Collapse
Affiliation(s)
- Wael Awad
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| | - Lisa Ciacchi
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - David P Fairlie
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
27
|
Shamsara J, Schüürmann G. Improvement of binding pose prediction of the MR1 covalent ligands by inclusion of simple pharmacophore constraints and structural waters in the docking process. 3 Biotech 2023; 13:279. [PMID: 37483466 PMCID: PMC10356737 DOI: 10.1007/s13205-023-03694-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
The major histocompatibility complex (MHC) class I-related molecule, MR1, is a key component of the immune system, presenting antigens to T-cell receptors (TCRs) and modulating the immune response against various antigens. MR1 possesses a compact ligand-binding pocket despite its ability to interact with ligands that can have either agonistic or antagonistic effects on the immune system. Agonistic ligands can stimulate the immune response, while antagonistic ligands do not elicit an immune response. In most cases, ligand binding to MR1 is mediated through a covalent bond with Lys43. However, recent studies have suggested that a variety of small molecules can interact with the MR1-binding site. In this study, we have used several approaches to improve the binding pose prediction of covalent ligands to MR1, including docking in mutated receptors, and imposing simple pharmacophore constraints and structural water molecules. The careful assignment of pharmacophore constraints and inclusion of structural water molecules in the challenging docking process of covalent docking improved the binding pose prediction and virtual screening performance. In a retrospective virtual screening, the proposed approach exhibited EF1% and EF2% values of 7.4 and 5.5, respectively. Conversely, when using the mutated receptor, both EF1% and EF2% were recorded as 0 for the conventional docking method. The performance of the pharmacophore constraints was also evaluated on other covalent docking cases, and compared to previously reported results for common covalent docking methods. The proposed approach achieved an average RMSD of 2.55, while AutoDock4, CovDock, FITTED, GOLD, ICM-Pro, and MOE exhibited average RMSD values of 3.0, 2.93, 3.04, 4.93, 2.44, and 3.36, respectively. Our results demonstrate that the inclusion of simple pharmacophore constraints and structural waters can improve the prediction of binding poses of covalent ligands to MR1, which can aid in the discovery of novel immunotherapeutic agents. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03694-w.
Collapse
Affiliation(s)
- Jamal Shamsara
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Gerrit Schüürmann
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Leipzig, Germany
- Institute of Organic Chemistry, Technical University Bergakademie Freiberg, Freiberg, Germany
| |
Collapse
|
28
|
Lagattuta KA, Nathan A, Rumker L, Birnbaum ME, Raychaudhuri S. The T cell receptor sequence influences the likelihood of T cell memory formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549939. [PMID: 37502994 PMCID: PMC10370203 DOI: 10.1101/2023.07.20.549939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
T cell differentiation depends on activation through the T cell receptor (TCR), whose amino acid sequence varies cell to cell. Particular TCR amino acid sequences nearly guarantee Mucosal-Associated Invariant T (MAIT) and Natural Killer T (NKT) cell fates. To comprehensively define how TCR amino acids affects all T cell fates, we analyze the paired αβTCR sequence and transcriptome of 819,772 single cells. We find that hydrophobic CDR3 residues promote regulatory T cell transcriptional states in both the CD8 and CD4 lineages. Most strikingly, we find a set of TCR sequence features, concentrated in CDR2α, that promotes positive selection in the thymus as well as transition from naïve to memory in the periphery. Even among T cells that recognize the same antigen, these TCR sequence features help to explain which T cells form immunological memory, which is essential for effective pathogen response.
Collapse
Affiliation(s)
- Kaitlyn A. Lagattuta
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Aparna Nathan
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Laurie Rumker
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael E. Birnbaum
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Department of Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Pankhurst TE, Buick KH, Lange JL, Marshall AJ, Button KR, Palmer OR, Farrand KJ, Montgomerie I, Bird TW, Mason NC, Kuang J, Compton BJ, Comoletti D, Salio M, Cerundolo V, Quiñones-Mateu ME, Painter GF, Hermans IF, Connor LM. MAIT cells activate dendritic cells to promote T FH cell differentiation and induce humoral immunity. Cell Rep 2023; 42:112310. [PMID: 36989114 PMCID: PMC10045373 DOI: 10.1016/j.celrep.2023.112310] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/02/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Protective immune responses against respiratory pathogens, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus, are initiated by the mucosal immune system. However, most licensed vaccines are administered parenterally and are largely ineffective at inducing mucosal immunity. The development of safe and effective mucosal vaccines has been hampered by the lack of a suitable mucosal adjuvant. In this study we explore a class of adjuvant that harnesses mucosal-associated invariant T (MAIT) cells. We show evidence that intranasal immunization of MAIT cell agonists co-administered with protein, including the spike receptor binding domain from SARS-CoV-2 virus and hemagglutinin from influenza virus, induce protective humoral immunity and immunoglobulin A production. MAIT cell adjuvant activity is mediated by CD40L-dependent activation of dendritic cells and subsequent priming of T follicular helper cells. In summary, we show that MAIT cells are promising vaccine targets that can be utilized as cellular adjuvants in mucosal vaccines.
Collapse
Affiliation(s)
- Theresa E Pankhurst
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Kaitlin H Buick
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Joshua L Lange
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Andrew J Marshall
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Kaileen R Button
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Olga R Palmer
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Kathryn J Farrand
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Isabelle Montgomerie
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Thomas W Bird
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Ngarangi C Mason
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Joanna Kuang
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Benjamin J Compton
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Davide Comoletti
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Mariolina Salio
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | | | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Ian F Hermans
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Lisa M Connor
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand; Malaghan Institute of Medical Research, Wellington 6242, New Zealand.
| |
Collapse
|
30
|
Purohit SK, Corbett AJ, Slobedman B, Abendroth A. Varicella Zoster Virus infects mucosal associated Invariant T cells. Front Immunol 2023; 14:1121714. [PMID: 37006246 PMCID: PMC10063790 DOI: 10.3389/fimmu.2023.1121714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
IntroductionMucosal Associated Invariant T (MAIT) cells are innate-like T cells that respond to conserved pathogen-derived vitamin B metabolites presented by the MHC class I related-1 molecule (MR1) antigen presentation pathway. Whilst viruses do not synthesize these metabolites, we have reported that varicella zoster virus (VZV) profoundly suppresses MR1 expression, implicating this virus in manipulation of the MR1:MAIT cell axis. During primary infection, the lymphotropism of VZV is likely to be instrumental in hematogenous dissemination of virus to gain access to cutaneous sites where it clinically manifests as varicella (chickenpox). However, MAIT cells, which are found in the blood and at mucosal and other organ sites, have yet to be examined in the context of VZV infection. The goal of this study was to examine any direct impact of VZV on MAIT cells.MethodsUsing flow cytometry, we interrogated whether primary blood derived MAIT cells are permissive to infection by VZV whilst further analysing differential levels of infection between various MAIT cell subpopulations. Changes in cell surface extravasation, skin homing, activation and proliferation markers after VZV infection of MAIT cells was also assessed via flow cytometry. Finally the capacity of MAIT cells to transfer infectious virus was tested through an infectious center assay and imaged via fluorescence microscopy.ResultsWe identify primary blood-derived MAIT cells as being permissive to VZV infection. A consequence of VZV infection of MAIT cells was their capacity to transfer infectious virus to other permissive cells, consistent with MAIT cells supporting productive infection. When subgrouping MAIT cells by their co- expression of a variety cell surface markers, there was a higher proportion of VZV infected MAIT cells co-expressing CD4+ and CD4+/CD8+ MAIT cells compared to the more phenotypically dominant CD8+ MAIT cells, whereas infection was not associated with differences in co-expression of CD56 (MAIT cell subset with enhanced responsiveness to innate cytokine stimulation), CD27 (co-stimulatory) or PD-1 (immune checkpoint). Infected MAIT cells retained high expression of CCR2, CCR5, CCR6, CLA and CCR4, indicating a potentially intact capacity for transendothelial migration, extravasation and trafficking to skin sites. Infected MAIT cells also displayed increased expression of CD69 (early activation) and CD71 (proliferation) markers.DiscussionThese data identify MAIT cells as being permissive to VZV infection and identify impacts of such infection on co- expressed functional markers.
Collapse
Affiliation(s)
- Shivam K. Purohit
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Barry Slobedman
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- *Correspondence: Allison Abendroth, ; Barry Slobedman,
| | - Allison Abendroth
- Infection, Immunity and Inflammation, School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- *Correspondence: Allison Abendroth, ; Barry Slobedman,
| |
Collapse
|
31
|
Korkmaz FT, Traber KE. Innate immune responses in pneumonia. Pneumonia (Nathan) 2023; 15:4. [PMID: 36829255 PMCID: PMC9957695 DOI: 10.1186/s41479-023-00106-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/05/2023] [Indexed: 02/26/2023] Open
Abstract
The lungs are an immunologically unique environment; they are exposed to innumerable pathogens and particulate matter daily. Appropriate clearance of pathogens and response to pollutants is required to prevent overwhelming infection, while preventing tissue damage and maintaining efficient gas exchange. Broadly, the innate immune system is the collection of immediate, intrinsic immune responses to pathogen or tissue injury. In this review, we will examine the innate immune responses of the lung, with a particular focus on their role in pneumonia. We will discuss the anatomic barriers and antimicrobial proteins of the lung, pathogen and injury recognition, and the role of leukocytes (macrophages, neutrophils, and innate lymphocytes) and lung stromal cells in innate immunity. Throughout the review, we will focus on new findings in innate immunity as well as features that are unique to the lung.
Collapse
Affiliation(s)
- Filiz T Korkmaz
- Department of Medicine, Division of Immunology & Infectious Disease, University of Massachusetts, Worcester, MA, USA
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA
| | - Katrina E Traber
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA.
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
32
|
Zhang H, Shen H, Zhou L, Xie L, Kong D, Wang H. Mucosal-Associated Invariant T Cells in the Digestive System: Defender or Destroyer? Cell Mol Gastroenterol Hepatol 2023; 15:809-819. [PMID: 36584816 PMCID: PMC9971522 DOI: 10.1016/j.jcmgh.2022.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of innate T lymphocytes that express the semi-invariant T cell receptor and recognize riboflavin metabolites via the major histocompatibility complex class I-related protein. Given the abundance of MAIT cells in the human body, their role in human diseases has been increasingly studied in recent years. MAIT cells may serve as targets for clinical therapy. Specifically, this review discusses how MAIT cells are altered in gastric, esophageal, intestinal, and hepatobiliary diseases and describes their protective or pathogenic roles. A greater understanding of MAIT cells will provide a more favorable therapeutic approach for digestive diseases in the clinical field.
Collapse
Affiliation(s)
- Hejiao Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haiyuan Shen
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Liangliang Zhou
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Linxi Xie
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Derun Kong
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.
| |
Collapse
|
33
|
Jin H, Ladd NA, Peev AM, Swarbrick GM, Cansler M, Null M, Boughter CT, McMurtrey C, Nilsen A, Dobos KM, Hildebrand WH, Lewinsohn DA, Adams EJ, Lewinsohn DM, Harriff MJ. Deaza-modification of MR1 ligands modulates recognition by MR1-restricted T cells. Sci Rep 2022; 12:22539. [PMID: 36581641 PMCID: PMC9800373 DOI: 10.1038/s41598-022-26259-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/13/2022] [Indexed: 12/30/2022] Open
Abstract
MR1-restricted T (MR1T) cells recognize microbial small molecule metabolites presented on the MHC Class I-like molecule MR1 and have been implicated in early effector responses to microbial infection. As a result, there is considerable interest in identifying chemical properties of metabolite ligands that permit recognition by MR1T cells, for consideration in therapeutic or vaccine applications. Here, we made chemical modifications to known MR1 ligands to evaluate the effect on MR1T cell activation. Specifically, we modified 6,7-dimethyl-8-D-ribityllumazine (DMRL) to generate 6,7-dimethyl-8-D-ribityldeazalumazine (DZ), and then further derivatized DZ to determine the requirements for retaining MR1 surface stabilization and agonistic properties. Interestingly, the IFN-γ response toward DZ varied widely across a panel of T cell receptor (TCR)-diverse MR1T cell clones; while one clone was agnostic toward the modification, most displayed either an enhancement or depletion of IFN-γ production when compared with its response to DMRL. To gain insight into a putative mechanism behind this phenomenon, we used in silico molecular docking techniques for DMRL and its derivatives and performed molecular dynamics simulations of the complexes. In assessing the dynamics of each ligand in the MR1 pocket, we found that DMRL and DZ exhibit differential dynamics of both the ribityl moiety and the aromatic backbone, which may contribute to ligand recognition. Together, our results support an emerging hypothesis for flexibility in MR1:ligand-MR1T TCR interactions and enable further exploration of the relationship between MR1:ligand structures and MR1T cell recognition for downstream applications targeting MR1T cells.
Collapse
Affiliation(s)
- Haihong Jin
- Medicinal Chemistry Core, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Nicole A Ladd
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Andrew M Peev
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Gwendolyn M Swarbrick
- Division of Infectious Diseases, Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Meghan Cansler
- Division of Infectious Diseases, Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Megan Null
- Division of Infectious Diseases, Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Christopher T Boughter
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, 60637, USA
| | | | - Aaron Nilsen
- Medicinal Chemistry Core, Oregon Health & Science University, Portland, OR, 97239, USA
- VA Portland Health Care System, Portland, OR, 97239, USA
| | - Karen M Dobos
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - William H Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Deborah A Lewinsohn
- Division of Infectious Diseases, Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Erin J Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - David M Lewinsohn
- Division of Infectious Diseases, Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, USA
- VA Portland Health Care System, Portland, OR, 97239, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Melanie J Harriff
- VA Portland Health Care System, Portland, OR, 97239, USA.
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, 97239, USA.
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
34
|
Quantitative affinity measurement of small molecule ligand binding to major histocompatibility complex class-I-related protein 1 MR1. J Biol Chem 2022; 298:102714. [PMID: 36403855 PMCID: PMC9764189 DOI: 10.1016/j.jbc.2022.102714] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
The Major Histocompatibility Complex class I-related protein 1 (MR1) presents small molecule metabolites, drugs, and drug-like molecules that are recognized by MR1-reactive T cells. While we have an understanding of how antigens bind to MR1 and upregulate MR1 cell surface expression, a quantitative, cell-free, assessment of MR1 ligand-binding affinity was lacking. Here, we developed a fluorescence polarization-based assay in which fluorescent MR1 ligand was loaded into MR1 protein in vitro and competitively displaced by candidate ligands over a range of concentrations. Using this assay, ligand affinity for MR1 could be differentiated as strong (IC50 < 1 μM), moderate (1 μM < IC50 < 100 μM), and weak (IC50 > 100 μM). We demonstrated a clear correlation between ligand-binding affinity for MR1, the presence of a covalent bond between MR1 and ligand, and the number of salt bridge and hydrogen bonds formed between MR1 and ligand. Using this newly developed fluorescence polarization-based assay to screen for candidate ligands, we identified the dietary molecules vanillin and ethylvanillin as weak bona fide MR1 ligands. Both upregulated MR1 on the surface of C1R.MR1 cells and the crystal structure of a MAIT cell T cell receptor-MR1-ethylvanillin complex revealed that ethylvanillin formed a Schiff base with K43 of MR1 and was buried within the A'-pocket. Collectively, we developed and validated a method to quantitate the binding affinities of ligands for MR1 that will enable an efficient and rapid screening of candidate MR1 ligands.
Collapse
|
35
|
Darrigues J, Almeida V, Conti E, Ribot JC. The multisensory regulation of unconventional T cell homeostasis. Semin Immunol 2022; 61-64:101657. [PMID: 36370671 DOI: 10.1016/j.smim.2022.101657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/29/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Abstract
Unconventional T cells typically group γδ T cells, invariant Natural Killer T cells (NKT) and Mucosal Associated Invariant T (MAIT) cells. With their pre-activated status and biased tropism for non-lymphoid organs, they provide a rapid (innate-like) and efficient first line of defense against pathogens at strategical barrier sites, while they can also trigger chronic inflammation, and unexpectedly contribute to steady state physiology. Thus, a tight control of their homeostasis is critical to maintain tissue integrity. In this review, we discuss the recent advances of our understanding of the factors, from neuroimmune to inflammatory regulators, shaping the size and functional properties of unconventional T cell subsets in non-lymphoid organs. We present a general overview of the mechanisms common to these populations, while also acknowledging specific aspects of their diversity. We mainly focus on their maintenance at steady state and upon inflammation, highlighting some key unresolved issues and raising upcoming technical, fundamental and translational challenges.
Collapse
Affiliation(s)
- Julie Darrigues
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| | - Vicente Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Eller Conti
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Julie C Ribot
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
36
|
Abstract
Multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), a pathologically similar disease used to model MS in rodents, are typical CD4+ T cell-dominated autoimmune diseases. CD4+ interleukin (IL)17+ T cells (Th17 cells) have been well studied and have shown that they play a critical role in the pathogenesis of MS/EAE. However, studies have suggested that CD8+IL17+ T cells (Tc17 cells) have a similar phenotype and cytokine and transcription factor profiles to those of Th17 cells and have been found to be crucial in the pathogenesis of autoimmune diseases, including MS/EAE, psoriasis, type I diabetes, rheumatoid arthritis, and systemic lupus erythematosus. However, the evidence for this is indirect and insufficient. Therefore, we searched for related publications and attempted to summarize the current knowledge on the role of Tc17 cells in the pathogenesis of MS/EAE, as well as in the pathogenesis of other autoimmune diseases, and to find out whether Tc17 cells or Th17 cells play a more critical role in autoimmune disease, especially in MS and EAE pathogenesis, or whether the interaction between these two cell types plays a critical role in the development of the disease.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412000, China
| | - Xiang Deng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412000, China
| | - Qiuming Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yandan Tang
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412000, China
| |
Collapse
|
37
|
Souter MN, Awad W, Li S, Pediongco TJ, Meehan BS, Meehan LJ, Tian Z, Zhao Z, Wang H, Nelson A, Le Nours J, Khandokar Y, Praveena T, Wubben J, Lin J, Sullivan LC, Lovrecz GO, Mak JY, Liu L, Kostenko L, Kedzierska K, Corbett AJ, Fairlie DP, Brooks AG, Gherardin NA, Uldrich AP, Chen Z, Rossjohn J, Godfrey DI, McCluskey J, Pellicci DG, Eckle SB. CD8 coreceptor engagement of MR1 enhances antigen responsiveness by human MAIT and other MR1-reactive T cells. J Exp Med 2022; 219:213423. [PMID: 36018322 PMCID: PMC9424912 DOI: 10.1084/jem.20210828] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/24/2022] [Accepted: 07/21/2022] [Indexed: 11/04/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells detect microbial infection via recognition of riboflavin-based antigens presented by the major histocompatibility complex class I (MHC-I)-related protein 1 (MR1). Most MAIT cells in human peripheral blood express CD8αα or CD8αβ coreceptors, and the binding site for CD8 on MHC-I molecules is relatively conserved in MR1. Yet, there is no direct evidence of CD8 interacting with MR1 or the functional consequences thereof. Similarly, the role of CD8αα in lymphocyte function remains ill-defined. Here, using newly developed MR1 tetramers, mutated at the CD8 binding site, and by determining the crystal structure of MR1-CD8αα, we show that CD8 engaged MR1, analogous to how it engages MHC-I molecules. CD8αα and CD8αβ enhanced MR1 binding and cytokine production by MAIT cells. Moreover, the CD8-MR1 interaction was critical for the recognition of folate-derived antigens by other MR1-reactive T cells. Together, our findings suggest that both CD8αα and CD8αβ act as functional coreceptors for MAIT and other MR1-reactive T cells.
Collapse
Affiliation(s)
- Michael N.T. Souter
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Wael Awad
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Shihan Li
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Troi J. Pediongco
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Bronwyn S. Meehan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Lucy J. Meehan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zehua Tian
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zhe Zhao
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Huimeng Wang
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Adam Nelson
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Yogesh Khandokar
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - T. Praveena
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Jacinta Wubben
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Jie Lin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Lucy C. Sullivan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - George O. Lovrecz
- Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Melbourne, Australia
| | - Jeffrey Y.W. Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Lyudmila Kostenko
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Andrew G. Brooks
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Adam P. Uldrich
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia,Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Daniel G. Pellicci
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia,Murdoch Children’s Research Institute, Parkville, Melbourne, Australia
| | - Sidonia B.G. Eckle
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
38
|
Jensen O, Trivedi S, Li K, Aubé J, Hale JS, Ryan ET, Leung DT. Use of a MAIT-Activating Ligand, 5-OP-RU, as a Mucosal Adjuvant in a Murine Model of Vibrio cholerae O1 Vaccination. Pathog Immun 2022; 7:122-144. [PMID: 36072570 PMCID: PMC9438945 DOI: 10.20411/pai.v7i1.525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Background Mucosal-associated invariant T (MAIT) cells are innate-like T cells enriched in the mucosa with capacity for B-cell help. We hypothesize that targeting MAIT cells, using a MAIT-activating ligand as an adjuvant, could improve mucosal vaccine responses to bacterial pathogens such as Vibrio cholerae. Methods We utilized murine models of V. cholerae vaccination to test the adjuvant potential of the MAIT-activating ligand, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-OP-RU). We measured V. cholerae-specific antibody and antibody-secreting cell responses and used flow cytometry to examine MAIT-cell and B-cell phenotype, in blood, bronchoalveolar lavage fluid (BALF), and mucosal tissues, following intranasal vaccination with live V. cholerae O1 or a V. cholerae O1 polysaccharide conjugate vaccine. Results We report significant expansion of MAIT cells in the lungs (P < 0.001) and BALF (P < 0.001) of 5-OP-RU treated mice, and higher mucosal (BALF, P = 0.045) but not systemic (serum, P = 0.21) V. cholerae O-specific-polysaccharide IgG responses in our conjugate vaccine model when adjuvanted with low-dose 5-OP-RU. In contrast, despite significant MAIT cell expansion, no significant differences in V. cholerae-specific humoral responses were found in our live V. cholerae vaccination model. Conclusions Using a murine model, we demonstrate the potential, as well as the limitations, of targeting MAIT cells to improve antibody responses to mucosal cholera vaccines. Our study highlights the need for future research optimizing MAIT-cell targeting for improving mucosal vaccines.
Collapse
Affiliation(s)
- Owen Jensen
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Shubhanshi Trivedi
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - J. Scott Hale
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Edward T. Ryan
- Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Immunology and Infectious diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Daniel T. Leung
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
39
|
Hernandez-Jaimes OA, Cazares-Olvera DV, Line J, Moreno-Eutimio MA, Gómez-Castro CZ, Naisbitt DJ, Castrejón-Flores JL. Advances in Our Understanding of the Interaction of Drugs with T-cells: Implications for the Discovery of Biomarkers in Severe Cutaneous Drug Reactions. Chem Res Toxicol 2022; 35:1162-1183. [PMID: 35704769 DOI: 10.1021/acs.chemrestox.1c00434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drugs can activate different cells of the immune system and initiate an immune response that can lead to life-threatening diseases collectively known as severe cutaneous adverse reactions (SCARs). Antibiotics, anticonvulsants, and antiretrovirals are involved in the development of SCARs by the activation of αβ naïve T-cells. However, other subsets of lymphocytes known as nonconventional T-cells with a limited T-cell receptor repertoire and innate and adaptative functions also recognize drugs and drug-like molecules, but their role in the pathogenesis of SCARs has only just begun to be explored. Despite 30 years of advances in our understanding of the mechanisms in which drugs interact with T-cells and the pathways for tissue injury seen during T-cell activation, at present, the development of useful clinical biomarkers for SCARs or predictive preclinical in vitro assays that could identify immunogenic moieties during drug discovery is an unmet goal. Therefore, the present review focuses on (i) advances in the understanding of the pathogenesis of SCARs reactions, (ii) a description of the interaction of drugs with conventional and nonconventional T-cells, and (iii) the current state of soluble blood circulating biomarker candidates for SCARs.
Collapse
Affiliation(s)
| | - Diana Valeria Cazares-Olvera
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, México City 07340, México
| | - James Line
- MRC Centre for Drug Safety Science, Department of Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | | | | | - Dean J Naisbitt
- MRC Centre for Drug Safety Science, Department of Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - José Luis Castrejón-Flores
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, México City 07340, México
| |
Collapse
|
40
|
Ayres CM, Baker BM. Peptide-dependent tuning of major histocompatibility complex motional properties and the consequences for cellular immunity. Curr Opin Immunol 2022; 76:102184. [PMID: 35550277 PMCID: PMC10052791 DOI: 10.1016/j.coi.2022.102184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/15/2022] [Accepted: 04/05/2022] [Indexed: 12/22/2022]
Abstract
T cell receptors (TCRs) and other receptors of the immune system recognize peptides presented by class I or class II major histocompatibility complex (MHC) proteins. Although we generally distinguish between the MHC protein and its peptide, at an atomic level the two form a structural composite, which allows peptides to influence MHC properties and vice versa. One consequence is the peptide-dependent tuning of MHC structural dynamics, which contributes to protein structural adaptability and influences how receptors identify and bind targets. Peptide-dependent tuning of MHC protein dynamics can impact processes such as antigenicity, TCR cross-reactivity, and T cell repertoire selection. Motional tuning extends beyond the binding groove, influencing peptide selection and exchange, as well as interactions with other immune receptors. Here, we review recent findings showing how peptides can affect the dynamic and adaptable nature of MHC proteins. We highlight consequences for immunity and demonstrate how MHC proteins have evolved to be highly sensitive dynamic reporters, with broad immunological consequences.
Collapse
Affiliation(s)
- Cory M Ayres
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Brian M Baker
- Department of Chemistry & Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
41
|
Pishesha N, Harmand TJ, Ploegh HL. A guide to antigen processing and presentation. Nat Rev Immunol 2022; 22:751-764. [PMID: 35418563 DOI: 10.1038/s41577-022-00707-2] [Citation(s) in RCA: 331] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2022] [Indexed: 12/13/2022]
Abstract
Antigen processing and presentation are the cornerstones of adaptive immunity. B cells cannot generate high-affinity antibodies without T cell help. CD4+ T cells, which provide such help, use antigen-specific receptors that recognize major histocompatibility complex (MHC) molecules in complex with peptide cargo. Similarly, eradication of virus-infected cells often depends on cytotoxic CD8+ T cells, which rely on the recognition of peptide-MHC complexes for their action. The two major classes of glycoproteins entrusted with antigen presentation are the MHC class I and class II molecules, which present antigenic peptides to CD8+ T cells and CD4+ T cells, respectively. This Review describes the essentials of antigen processing and presentation. These pathways are divided into six discrete steps that allow a comparison of the various means by which antigens destined for presentation are acquired and how the source proteins for these antigens are tagged for degradation, destroyed and ultimately displayed as peptides in complex with MHC molecules for T cell recognition.
Collapse
Affiliation(s)
- Novalia Pishesha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Society of Fellows, Harvard University, Cambridge, MA, USA.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Thibault J Harmand
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Li Y, Du J, Wei W. Emerging Roles of Mucosal-Associated Invariant T Cells in Rheumatology. Front Immunol 2022; 13:819992. [PMID: 35317168 PMCID: PMC8934402 DOI: 10.3389/fimmu.2022.819992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 12/22/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are an unconventional T cell subset expressing a semi-invariant TCR and recognize microbial riboflavin metabolites presented by major histocompatibility complex class 1-related molecule (MR1). MAIT cells serve as innate-like T cells bridging innate and adaptive immunity, which have attracted increasing attention in recent years. The involvement of MAIT cells has been described in various infections, autoimmune diseases and malignancies. In this review, we first briefly introduce the biology of MAIT cells, and then summarize their roles in rheumatic diseases including systemic lupus erythematosus, rheumatoid arthritis, primary Sjögren’s syndrome, psoriatic arthritis, systemic sclerosis, vasculitis and dermatomyositis. An increased knowledge of MAIT cells will inform the development of novel biomarkers and therapeutic approaches in rheumatology.
Collapse
|
43
|
Gasser O, Tang J, Cait A. Commentary on "properties and reactivity of the folic acid and folate photoproduct 6-formylpterin" by Goossens et al. [Free radic. Biol. Med. (2021) May 6;S0891-5849(21)00283-5]. Free Radic Biol Med 2022; 179:413-415. [PMID: 34246775 DOI: 10.1016/j.freeradbiomed.2021.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 01/05/2023]
Affiliation(s)
- Olivier Gasser
- Malaghan Institute of Medical Research, Wellington, 6242, New Zealand; High-Value Nutrition National Science Challenge, Auckland, New Zealand.
| | - Jeffry Tang
- Malaghan Institute of Medical Research, Wellington, 6242, New Zealand; High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Alissa Cait
- Malaghan Institute of Medical Research, Wellington, 6242, New Zealand
| |
Collapse
|
44
|
Seneviratna R, Redmond SJ, McWilliam HE, Reantragoon R, Villadangos JA, McCluskey J, Godfrey DI, Gherardin NA. Differential antigenic requirements by diverse MR1-restricted T cells. Immunol Cell Biol 2021; 100:112-126. [PMID: 34940995 PMCID: PMC9033883 DOI: 10.1111/imcb.12519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/04/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022]
Abstract
MHC-related protein 1 (MR1) presents microbial riboflavin metabolites to mucosal-associated invariant T (MAIT) cells for surveillance of microbial presence. MAIT cells express a semi-invariant T cell receptor (TCR) which recognises MR1-antigen complexes in a pattern-recognition-like manner. Recently, diverse populations of MR1-restricted T cells have been described that exhibit broad recognition of tumour cells and appear to recognise MR1 in association with tumour-derived self-antigens, though the identity of these antigens remains unclear. Here, we have used TCR gene transfer and engineered MR1-expressing antigen-presenting cells (APCs) to probe the MR1-restriction and antigen reactivity of a range of MR1-restricted TCRs, including model tumour-reactive TCRs. We confirm MR1 reactivity by these TCRs, show differential dependence on lysine at position 43 of MR1 (K43), and demonstrate competitive inhibition by MR1 ligand 6-formylpterin (6-FP). TCR-expressing reporter lines, however, failed to recapitulate the robust tumour specificity previously reported, suggesting an importance of accessory molecules for MR1-dependent tumour-reactivity. Finally, MR1-mutant cell lines showed that distinct residues on the α1/α2 helices were required for TCR-binding by different MR1-restricted T cells and suggested central but distinct docking modes by the broad family of MR1-restrictd αβ TCRs. Collectively, these data are consistent with recognition of distinct antigens by diverse MR1-restricted T cells.
Collapse
Affiliation(s)
- Rebecca Seneviratna
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Samuel J Redmond
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hamish E McWilliam
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia.,Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Rangsima Reantragoon
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia.,Present address: Immunology Division, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Centre of Excellence in Immunology and Immune-mediated Diseases, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jose A Villadangos
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia.,Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - James McCluskey
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia
| | - Dale I Godfrey
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Nicholas A Gherardin
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, VIC 3000, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
45
|
Recognition of the antigen-presenting molecule MR1 by a Vδ3 + γδ T cell receptor. Proc Natl Acad Sci U S A 2021; 118:2110288118. [PMID: 34845016 DOI: 10.1073/pnas.2110288118] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 02/05/2023] Open
Abstract
Unlike conventional αβ T cells, γδ T cells typically recognize nonpeptide ligands independently of major histocompatibility complex (MHC) restriction. Accordingly, the γδ T cell receptor (TCR) can potentially recognize a wide array of ligands; however, few ligands have been described to date. While there is a growing appreciation of the molecular bases underpinning variable (V)δ1+ and Vδ2+ γδ TCR-mediated ligand recognition, the mode of Vδ3+ TCR ligand engagement is unknown. MHC class I-related protein, MR1, presents vitamin B metabolites to αβ T cells known as mucosal-associated invariant T cells, diverse MR1-restricted T cells, and a subset of human γδ T cells. Here, we identify Vδ1/2- γδ T cells in the blood and duodenal biopsy specimens of children that showed metabolite-independent binding of MR1 tetramers. Characterization of one Vδ3Vγ8 TCR clone showed MR1 reactivity was independent of the presented antigen. Determination of two Vδ3Vγ8 TCR-MR1-antigen complex structures revealed a recognition mechanism by the Vδ3 TCR chain that mediated specific contacts to the side of the MR1 antigen-binding groove, representing a previously uncharacterized MR1 docking topology. The binding of the Vδ3+ TCR to MR1 did not involve contacts with the presented antigen, providing a basis for understanding its inherent MR1 autoreactivity. We provide molecular insight into antigen-independent recognition of MR1 by a Vδ3+ γδ TCR that strengthens an emerging paradigm of antibody-like ligand engagement by γδ TCRs.
Collapse
|
46
|
Gao MG, Hong Y, Zhao XY, Pan XA, Sun YQ, Kong J, Wang ZD, Wang FR, Wang JZ, Yan CH, Wang Y, Huang XJ, Zhao XS. The Potential Roles of Mucosa-Associated Invariant T Cells in the Pathogenesis of Gut Graft-Versus-Host Disease After Hematopoietic Stem Cell Transplantation. Front Immunol 2021; 12:720354. [PMID: 34539656 PMCID: PMC8448388 DOI: 10.3389/fimmu.2021.720354] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022] Open
Abstract
Gut acute graft-versus-host disease (aGVHD) is a serious complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and is associated with high mortality. Mucosa-associated invariant T (MAIT) cells are a group of innate-like T cells enriched in the intestine that can be activated by riboflavin metabolites from various microorganisms. However, little is known about the function or mechanism of action of MAIT cells in the occurrence of gut aGVHD in humans. In our study, multiparameter flow cytometry (FCM) was used to evaluate the number of MAIT cells and functional cytokines. 16S V34 region amplicon sequencing analysis was used to analyze the intestinal flora of transplant patients. In vitro stimulation and coculture assays were used to study the activation and function of MAIT cells. The number and distribution of MAIT cells in intestinal tissues were analyzed by immunofluorescence technology. Our study showed that the number and frequency of MAIT cells in infused grafts in gut aGVHD patients were lower than those in no-gut aGVHD patients. Recipients with a high number of MAITs in infused grafts had a higher abundance of intestinal flora in the early posttransplantation period (+14 days). At the onset of gut aGVHD, the number of MAIT cells decreased in peripheral blood, and the activation marker CD69, chemokine receptors CXCR3 and CXCR4, and transcription factors Rorγt and T-bet tended to increase. Furthermore, when gut aGVHD occurred, the proportion of MAIT17 was higher than that of MAIT1. The abundance of intestinal flora with non-riboflavin metabolic pathways tended to increase in gut aGVHD patients. MAIT cells secreted more granzyme B, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ under the interleukin (IL)-12/IL-18 stimulation [non-T-cell receptor (TCR) signal] and secreted most of the IL-17 under the cluster of differentiation (CD)3/CD28 stimulation (TCR signal). MAIT cells inhibited the proliferation of CD4+ T cells in vitro. In conclusion, the lower number of MAIT cells in infused grafts was related to the higher incidence of gut aGVHD, and the number of MAIT cells in grafts may affect the composition of the intestinal flora of recipients early after transplantation. The flora of the riboflavin metabolism pathway activated MAIT cells and promoted the expression of intestinal protective factors to affect the occurrence of gut aGVHD in humans.
Collapse
Affiliation(s)
- Meng-Ge Gao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yan Hong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xin-An Pan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Yu-Qian Sun
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jun Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Zhi-Dong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Feng-Rong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Jing-Zhi Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Chen-Hua Yan
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
47
|
Yasutomi Y, Chiba A, Haga K, Murayama G, Makiyama A, Kuga T, Watanabe M, Okamoto R, Nagahara A, Nagaishi T, Miyake S. Activated Mucosal-associated Invariant T Cells Have a Pathogenic Role in a Murine Model of Inflammatory Bowel Disease. Cell Mol Gastroenterol Hepatol 2021; 13:81-93. [PMID: 34461283 PMCID: PMC8593615 DOI: 10.1016/j.jcmgh.2021.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Mucosal-associated invariant T (MAIT) cells are innate-like T cells restricted by major histocompatibility complex-related molecule 1 (MR1) and express a semi-invariant T cell receptor. Previously, we reported the activation status of circulating MAIT cells in patients with ulcerative colitis (UC) was associated with disease activity and that these cells had infiltrated the inflamed colonic mucosa. These findings suggest MAIT cells are involved in the pathogenesis of inflammatory bowel disease. We investigated the role of MAIT cells in the pathogenesis of colitis by using MR1-/- mice lacking MAIT cells and a synthetic antagonistic MR1 ligand. METHODS Oxazolone colitis was induced in MR1-/- mice (C57BL/6 background), their littermate wild-type controls, and C57BL/6 mice orally administered an antagonistic MR1 ligand, isobutyl 6-formyl pterin (i6-FP). Cytokine production of splenocytes and colonic lamina propria lymphocytes from mice receiving i6-FP was analyzed. Intestinal permeability was assessed in MR1-/- and i6-FP-treated mice and their controls. The effect of i6-FP on cytokine production by MAIT cells from patients with UC was assessed. RESULTS MR1 deficiency or i6-FP treatment reduced the severity of oxazolone colitis. i6-FP treatment reduced cytokine production in MAIT cells from mice and patients with UC. Although MR1 deficiency increased the intestinal permeability, i6-FP administration did not affect gut integrity in mice. CONCLUSIONS These results indicate MAIT cells have a pathogenic role in colitis and suppression of MAIT cell activation might reduce the severity of colitis without affecting gut integrity. Thus, MAIT cells are potential therapeutic targets for inflammatory bowel disease including UC.
Collapse
Affiliation(s)
- Yusuke Yasutomi
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Asako Chiba
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan,Correspondence Address correspondence to: Asako Chiba, MD, PhD and Sachiko Miyake, MD, PhD, Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan. tel: +81-3-5812-1045; fax: +81-3-3813-0421.
| | - Keiichi Haga
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan,Department of Gastroenterology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Goh Murayama
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan,Department of Internal Medicine and Rheumatology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ayako Makiyama
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan,Department of Internal Medicine and Rheumatology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Taiga Kuga
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan,Department of Internal Medicine and Rheumatology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mamoru Watanabe
- Advanced Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akihito Nagahara
- Department of Gastroenterology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Nagaishi
- Department of Gastroenterology, Graduate School of Medical Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sachiko Miyake
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan,Correspondence Address correspondence to: Asako Chiba, MD, PhD and Sachiko Miyake, MD, PhD, Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan. tel: +81-3-5812-1045; fax: +81-3-3813-0421.
| |
Collapse
|
48
|
Goossens JF, Thuru X, Bailly C. Properties and reactivity of the folic acid and folate photoproduct 6-formylpterin. Free Radic Biol Med 2021; 171:1-10. [PMID: 33965562 DOI: 10.1016/j.freeradbiomed.2021.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/20/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022]
Abstract
Folates (vitamin B9) are essential components of our diet and our gut microbiota. They are omnipresent in our cells and blood. Folates are necessary for DNA synthesis, methylation, and other vital bioprocesses. Folic acid (FA), as the synthetic form of folates, is largely found in supplements and fortified foods. FA and folate drugs are also extensively used as therapeutics. Therefore, we are continuously exposed to the pterin derivatives, and their photo-degradation products, such as 6-formylpterin (6-FPT) and pterin-6-carboxylic acid. During ultraviolet radiation, these two photolytic products generate reactive oxygen species (ROS) responsible for the cellular oxidative stress. 6-FPT can exhibit variable pro/anti-oxidative roles depending on the cell type and its environment (acting as a cell protector in normal cells, or as an enhancer of drug-induced cell death in cancer cells). The ROS-modulating capacity of 6-FPT is well-known, whereas its intrinsic reactivity has been much less investigated. Here, we have reviewed the properties of 6-FPT and highlighted its capacity to form covalent adducts with the ROS-scavenging drug edaravone (used to treat stroke and amyotrophic lateral sclerosis) as well as its implication in immune surveillance. 6-FPT and its analogue acetyl-6-FPT function as small molecule antigens, recognized by the major histocompatibility complex-related class I-like molecule, MR1, for presentation to mucosal-associated invariant T (MAIT) cells. As modulators of the MR1/MAIT machinery, 6-FPT derivatives could play a significant immuno-regulatory role in different diseases. This brief review shed light on the multiple properties and cellular activities of 6-FPT, well beyond its primary ROS-generating activity.
Collapse
Affiliation(s)
- Jean-François Goossens
- Univ. Lille, CHU Lille, ULR 7365 - GRITA - Groupe de Recherche sur les formes Injectables et les Technologies Associées, F-59000, Lille, France.
| | - Xavier Thuru
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France.
| | | |
Collapse
|
49
|
Francisella tularensis induces Th1 like MAIT cells conferring protection against systemic and local infection. Nat Commun 2021; 12:4355. [PMID: 34272362 PMCID: PMC8285429 DOI: 10.1038/s41467-021-24570-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Mucosal-associated Invariant T (MAIT) cells are recognized for their antibacterial functions. The protective capacity of MAIT cells has been demonstrated in murine models of local infection, including in the lungs. Here we show that during systemic infection of mice with Francisella tularensis live vaccine strain results in evident MAIT cell expansion in the liver, lungs, kidney and spleen and peripheral blood. The responding MAIT cells manifest a polarised Th1-like MAIT-1 phenotype, including transcription factor and cytokine profile, and confer a critical role in controlling bacterial load. Post resolution of the primary infection, the expanded MAIT cells form stable memory-like MAIT-1 cell populations, suggesting a basis for vaccination. Indeed, a systemic vaccination with synthetic antigen 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil in combination with CpG adjuvant similarly boosts MAIT cells, and results in enhanced protection against both systemic and local infections with different bacteria. Our study highlights the potential utility of targeting MAIT cells to combat a range of bacterial pathogens.
Collapse
|
50
|
Czaja AJ. Incorporating mucosal-associated invariant T cells into the pathogenesis of chronic liver disease. World J Gastroenterol 2021; 27:3705-3733. [PMID: 34321839 PMCID: PMC8291028 DOI: 10.3748/wjg.v27.i25.3705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/22/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells have been described in liver and non-liver diseases, and they have been ascribed antimicrobial, immune regulatory, protective, and pathogenic roles. The goals of this review are to describe their biological properties, indicate their involvement in chronic liver disease, and encourage investigations that clarify their actions and therapeutic implications. English abstracts were identified in PubMed by multiple search terms, and bibliographies were developed. MAIT cells are activated by restricted non-peptides of limited diversity and by multiple inflammatory cytokines. Diverse pro-inflammatory, anti-inflammatory, and immune regulatory cytokines are released; infected cells are eliminated; and memory cells emerge. Circulating MAIT cells are hyper-activated, immune exhausted, dysfunctional, and depleted in chronic liver disease. This phenotype lacks disease-specificity, and it does not predict the biological effects. MAIT cells have presumed protective actions in chronic viral hepatitis, alcoholic hepatitis, non-alcoholic fatty liver disease, primary sclerosing cholangitis, and decompensated cirrhosis. They have pathogenic and pro-fibrotic actions in autoimmune hepatitis and mixed actions in primary biliary cholangitis. Local factors in the hepatic microenvironment (cytokines, bile acids, gut-derived bacterial antigens, and metabolic by-products) may modulate their response in individual diseases. Investigational manipulations of function are warranted to establish an association with disease severity and outcome. In conclusion, MAIT cells constitute a disease-nonspecific, immune response to chronic liver inflammation and infection. Their pathological role has been deduced from their deficiencies during active liver disease, and future investigations must clarify this role, link it to outcome, and explore therapeutic interventions.
Collapse
Affiliation(s)
- Albert J Czaja
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, United States
| |
Collapse
|