1
|
Kweon J, Lee H, Park J, Hong T, An G, Song G, Lim W, Jeong W. Developmental and organ toxicity of fenpropimorph in zebrafish: Involvement of apoptosis and inflammation. Chem Biol Interact 2025; 415:111512. [PMID: 40239885 DOI: 10.1016/j.cbi.2025.111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025]
Abstract
Pesticides are increasingly the focus as a prominent factor in environmental pollution. Fenpropimorph, a widely utilized morpholine fungicide, is a significant water pollutant. Because of its extensive usage, fenpropimorph is readily detected in diverse aquatic ecosystems. Despite its well-known toxicity to aquatic organisms, its toxicity to zebrafish development and accompanying mechanics remain unexplored. To assess fenpropimorph's toxicity and potential mechanism, we employed the zebrafish model, a representative tool in toxicological studies. Our results showed that exposure to fenpropimorph reduced embryonic viability during the early stages of development and reduced head and body size. Moreover, fenpropimorph triggered apoptosis, DNA fragmentation, and inflammation. Aberrations in the vascular network were observed in the fli1:eGFP transgenic zebrafish model. Additionally, neurotoxic impacts were further assessed using transgenic olig2:dsRed zebrafish, accompanied by a reduction of liver size and fluorescence intensity of fabp10a:dsRed zebrafish. mRNA expression analysis related to corresponding organ development further supported our data. Overall, our research suggests that fenpropimorph may cause aberrations in aquatic organisms.
Collapse
Affiliation(s)
- Junhun Kweon
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hojun Lee
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Junho Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Garam An
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Wooyoung Jeong
- Department of Biomedical Sciences, Catholic Kwandong University, Gangneung, 25601, Republic of Korea.
| |
Collapse
|
2
|
Tallei TE, Kapantow NH, Niode NJ, Hessel SS, Savitri M, Fatimawali F, Kang S, Park MN, Raihan M, Hardiyanti W, Nainu F, Kim B. Integrative in silico and in vivo Drosophila model studies reveal the anti-inflammatory, antioxidant, and anticancer properties of red radish microgreen extract. Sci Rep 2025; 15:18533. [PMID: 40425671 PMCID: PMC12116942 DOI: 10.1038/s41598-025-02999-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
Red radish microgreens (RRM) have gained considerable attention for their promising therapeutic potential. However, the molecular mechanisms underlying their bioactivity remain inadequately characterized. This study explores the anti-inflammatory, antioxidant, and anticancer properties of RRM extract using in silico and in vivo Drosophila model analyses. The metabolite profile of the RRM extract was characterized using comprehensive metabolomics techniques, including Gas Chromatography-Mass Spectrometry (GC-MS) and Liquid Chromatography High-Resolution Mass Spectrometry (LC-HRMS). Furthermore, in silico analysis utilizing network pharmacology identified target proteins of RRM compounds associated with cancer, inflammation, and oxidative stress. Concurrently, in vivo experiments with Drosophila melanogaster PGRP-LBΔ (Dm PGRP-LBΔ) larvae was conducted to assess the extract's impact on immune and oxidative stress pathways. In silico analysis revealed that RRM compounds interacted with key proteins (AKT1, ESR1, MAPK1, SRC, TP53), modulating pathways related to cancer, inflammation, and oxidative stress. Molecular dynamics simulations reinforced the docking results by confirming robust binding of kaempferitrin to AKT1. In vivo studies showed that RRM extract suppressed immune-related genes (dptA, totA) through the NFκB and JAK-STAT pathways, reduced ROS levels, and selectively regulated antioxidant gene expression by enhancing sod1 while decreasing sod2 and cat. These results suggest RRM extract as a functional food for managing oxidative stress, inflammation, and cancer. Further research in higher organisms and clinical settings is needed.
Collapse
Grants
- 084/E5/PG.02.00.PL/2024 Directorate of Research, Technology, and Community Service and the Directorate General of Higher Education, Research, and Technology of the Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia
- 084/E5/PG.02.00.PL/2024 Directorate of Research, Technology, and Community Service and the Directorate General of Higher Education, Research, and Technology of the Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia
- 084/E5/PG.02.00.PL/2024 Directorate of Research, Technology, and Community Service and the Directorate General of Higher Education, Research, and Technology of the Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia
- 084/E5/PG.02.00.PL/2024 Directorate of Research, Technology, and Community Service and the Directorate General of Higher Education, Research, and Technology of the Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia
- 084/E5/PG.02.00.PL/2024 Directorate of Research, Technology, and Community Service and the Directorate General of Higher Education, Research, and Technology of the Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia
- 084/E5/PG.02.00.PL/2024 Directorate of Research, Technology, and Community Service and the Directorate General of Higher Education, Research, and Technology of the Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia
- 084/E5/PG.02.00.PL/2024 Directorate of Research, Technology, and Community Service and the Directorate General of Higher Education, Research, and Technology of the Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia
- 084/E5/PG.02.00.PL/2024 Directorate of Research, Technology, and Community Service and the Directorate General of Higher Education, Research, and Technology of the Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia
- 084/E5/PG.02.00.PL/2024 Directorate of Research, Technology, and Community Service and the Directorate General of Higher Education, Research, and Technology of the Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia
- NRF-2020R1I1A2066868 Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education
- NRF-2020R1I1A2066868 Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education
- NRF-2020R1I1A2066868 Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education
Collapse
Affiliation(s)
- Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, 95115, North Sulawesi, Indonesia.
- Department of Biology, Faculty of Medicine, Sam Ratulangi University, Manado, 95115, North Sulawesi, Indonesia.
| | - Nova Hellen Kapantow
- Department of Nutrition, Faculty of Medicine, Sam Ratulangi University, Manado, 95115, North Sulawesi, Indonesia
| | - Nurdjannah Jane Niode
- Department of Dermatology and Venereology, Faculty of Medicine, Sam Ratulangi University, Prof. Dr. R.D. Kandou Hospital Manado, Manado, 95115, North Sulawesi, Indonesia
| | - Sofia Safitri Hessel
- Department of Biotechnology, Indonesia Biodiversity and Biogeography Research Institute (INABIG), Bandung, 40132, West Java, Indonesia
| | - Maghfirah Savitri
- Faculty of Medicine, Sam Ratulangi University, Manado, 95115, North Sulawesi, Indonesia
| | - Fatimawali Fatimawali
- Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, 95115, North Sulawesi, Indonesia
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul, 02447, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul, 02447, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea
| | - Muhammad Raihan
- Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Universitas Hasanuddin, Tamalanrea, 90245, Makassar, Indonesia
| | - Widya Hardiyanti
- Faculty of Pharmacy, UNHAS Fly Research Group, Hasanuddin University, Tamalanrea, 90245, Makassar, Indonesia
| | - Firzan Nainu
- Faculty of Pharmacy, UNHAS Fly Research Group, Hasanuddin University, Tamalanrea, 90245, Makassar, Indonesia
- Department of Pharmacy, Faculty of Pharmacy, Universitas Hasanuddin, Tamalanrea, 90245, Makassar, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul, 02447, South Korea.
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, South Korea.
| |
Collapse
|
3
|
Monteiro Neto JR, de Souza GF, Dos Santos VM, de Holanda Paranhos L, Ribeiro GD, Magalhães RSS, Queiroz DD, Eleutherio ECA. SOD1, A Crucial Protein for Neural Biochemistry: Dysfunction and Risk of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2025:10.1007/s12035-025-05067-1. [PMID: 40419749 DOI: 10.1007/s12035-025-05067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 05/12/2025] [Indexed: 05/28/2025]
Abstract
Neurons are very susceptible to oxidative stress. They are the major consumers of oxygen in the brain, which is used to provide energy through oxidative phosphorylation, the major source of reactive oxygen species (ROS). In addition, compared to other tissues, neurons have lower levels of catalase and glutathione and increased susceptibility to lipid peroxidation due to the elevated levels of unsaturated fatty acids. These characteristics increasingly emphasize the antioxidant enzyme Cu/Zn superoxide dismutase 1 (SOD1) to maintain neuronal redox homeostasis. In the last decade, SOD1 gained additional roles which are also important to the metabolism of neurons. SOD1 controls the production of ROS by the electron transport chain, activates the expression of genes involved in the protection against oxidative stress, and regulates the shift from oxidative to fermentative metabolism involved in astrocyte-neuron metabolic cooperation. Furthermore, impaired interaction between the phosphatase calcineurin and SOD1 seems to result in TDP-43 hyperphosphorylation, the main proteinopathy found in amyotrophic lateral sclerosis (ALS) patients. However, this enzyme is ubiquitously expressed, mutated, and damaged forms of SOD1 cause disease in motor neurons. In this review, we discuss the pivotal functions of SOD1 in neuronal biochemistry and their implications for ALS.
Collapse
Affiliation(s)
- José Raphael Monteiro Neto
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Gabriel Freitas de Souza
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Vanessa Mattos Dos Santos
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Luan de Holanda Paranhos
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Gabriela Delaqua Ribeiro
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Rayne Stfhany Silva Magalhães
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Daniela Dias Queiroz
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Elis Cristina Araujo Eleutherio
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro, RJ, 21941-909, Brazil.
| |
Collapse
|
4
|
Antonakoudis A, Kyriakoudi SA, Chatzi D, Dermitzakis I, Gargani S, Meditskou S, Manthou ME, Theotokis P. Genetic Basis of Motor Neuron Diseases: Insights, Clinical Management, and Future Directions. Int J Mol Sci 2025; 26:4904. [PMID: 40430041 PMCID: PMC12112488 DOI: 10.3390/ijms26104904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/03/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Motor neuron diseases (MNDs) are a heterogeneous group of neurodegenerative disorders characterized by the progressive loss of motor neurons, resulting in debilitating physical decline. Advances in genetics have revolutionized the understanding of MNDs, elucidating critical genes such as SOD1, TARDBP, FUS, and C9orf72, which are implicated in their pathogenesis. Despite these breakthroughs, significant gaps persist in understanding the interplay between genetic and environmental factors, the role of rare variants, and epigenetic contributions. This review synthesizes current knowledge on the genetic landscape of MNDs, highlights challenges in linking genotype to phenotype, and discusses the promise of precision medicine approaches. Emphasis is placed on emerging strategies, such as gene therapy and targeted molecular interventions, offering hope for personalized treatments. Addressing these challenges is imperative to harness the full potential of genomics for improving outcomes in MNDs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.A.); (S.A.K.); (D.C.); (I.D.); (S.G.); (S.M.); (M.E.M.)
| |
Collapse
|
5
|
Lu K, Wijaya CS, Yao Q, Jin H, Feng L. Cuproplasia and cuproptosis, two sides of the coin. Cancer Commun (Lond) 2025; 45:505-524. [PMID: 39865459 PMCID: PMC12067395 DOI: 10.1002/cac2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/03/2025] [Accepted: 01/19/2025] [Indexed: 01/28/2025] Open
Abstract
Copper is an essential micronutrient in the human body, mainly acting as a crucial cofactor required for a wide range of physiological processes across nearly all cell types. Recent advances revealed that tumor cells seize copper to fulfill their rapid proliferation, metastasis, immune evasion, and so on by reprogramming the copper regulatory network, defined as cuproplasia. Thus, targeting copper chelation to reduce copper levels has been considered a rational tumor therapy strategy. However, overloaded copper ions could be toxic, which leads to the aggregation of lipoylated mitochondrial proteins and the depletion of iron-sulfur clusters, ultimately resulting in cell death, termed cuproptosis. Upon its discovery, cuproptosis has attracted great interest from oncologists, and targeting cuproptosis by copper ionophores exhibits as a potential anti-tumor therapy. In this review, we present the underlying mechanisms involved in cuproplasia and cuproptosis. Additionally, we sum up the chemicals targeting either cuproplasia or cuproptosis for cancer therapy. Further attention should be paid to distinguishing cancer patients who are suitable for targeting cuproplasia or cuproptosis.
Collapse
Affiliation(s)
- Kaizhong Lu
- Department of Medical OncologyZhejiang Key Laboratory of Multi‐omics Precision Diagnosis and Treatment of Liver DiseasesCancer Center of Zhejiang UniversitySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Chandra Sugiarto Wijaya
- Department of Medical OncologyZhejiang Key Laboratory of Multi‐omics Precision Diagnosis and Treatment of Liver DiseasesCancer Center of Zhejiang UniversitySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Qinghua Yao
- Department of OncologyThe Second Affiliated Hospital of Zhejiang Chinese Medical UniversityXinhua Hospital of Zhejiang ProvinceHangzhouZhejiangP. R. China
- Key Laboratory for Research on the Pathogenesis of Inflammation‐Cancer Transformation in Intestinal DiseasesZhejiang Engineering Research Center of Intelligent Equipment of Chronic Chinese and Western MedicineHangzhouZhejiangP. R. China
| | - Hongchuan Jin
- Department of Medical OncologyZhejiang Key Laboratory of Multi‐omics Precision Diagnosis and Treatment of Liver DiseasesCancer Center of Zhejiang UniversitySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Lifeng Feng
- Department of Medical OncologyZhejiang Key Laboratory of Multi‐omics Precision Diagnosis and Treatment of Liver DiseasesCancer Center of Zhejiang UniversitySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| |
Collapse
|
6
|
Shiryaeva O, Tolochko C, Alekseeva T, Dyachuk V. Targets and Gene Therapy of ALS (Part 1). Int J Mol Sci 2025; 26:4063. [PMID: 40362304 PMCID: PMC12071412 DOI: 10.3390/ijms26094063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective death of motor neurons, which causes muscle atrophy. Genetic forms of ALS are recorded only in 10% of cases. However, over the past decade, studies in genetics have substantially contributed to our understanding of the molecular mechanisms underlying ALS. The identification of key mutations such as SOD1, C9orf72, FUS, and TARDBP has led to the development of targeted therapy that is gradually being introduced into clinical trials, opening up a broad range of opportunities for correcting these mutations. In this review, we aimed to present an extensive overview of the currently known mechanisms of motor neuron degeneration associated with mutations in these genes and also the gene therapy methods for inhibiting the expression of their mutant proteins. Among these, antisense oligonucleotides, RNA interference (siRNA and miRNA), and gene-editing (CRISPR/Cas9) methods are of particular interest. Each has shown its efficacy in animal models when targeting mutant genes, whereas some of them have proven to be efficient in human clinical trials.
Collapse
Affiliation(s)
| | | | | | - Vyacheslav Dyachuk
- Almazov Federal Medical Research Centre, 197341 Saint Petersburg, Russia; (O.S.); (C.T.); (T.A.)
| |
Collapse
|
7
|
De Smet B, Yang X, Plskova Z, Castell C, Fernández-Fernández A, Dard A, Masood J, Mhamdi A, Huang J, Vertommen D, Chan KX, Pyr Dit Ruys S, Messens J, Kerchev PI, Van Breusegem F. The nuclear sulfenome of Arabidopsis: spotlight on histone acetyltransferase GCN5 regulation through functional thiols. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1569-1584. [PMID: 39726278 DOI: 10.1093/jxb/erae514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 12/26/2024] [Indexed: 12/28/2024]
Abstract
In aerobic life forms, reactive oxygen species (ROS) are produced by the partial reduction of oxygen during energy-generating metabolic processes. In plants, ROS production increases during periods of both abiotic and biotic stress, severely overloading the antioxidant systems. Hydrogen peroxide (H2O2) plays a central role in cellular redox homeostasis and signalling by oxidizing crucial cysteines to sulfenic acid, which is considered a biologically relevant post-translational modification (PTM). Until now, the impact of the nucleus on cellular redox homeostasis has been relatively unexplored. The regulation of histone-modifying enzymes by oxidative PTMs at redox-sensitive cysteine or tyrosine residues is particularly intriguing because it allows the integration of redox signalling mechanisms with chromatin control of transcriptional activity. One of the most extensively studied histone acetyltransferases is the conserved GENERAL CONTROL NONDEPRESSIBLE 5 (GCN5) complex. This study investigated the nuclear sulfenome in Arabidopsis thaliana by expressing a nuclear variant of the Yeast Activation Protein-1 (YAP1) probe and identified 225 potential redox-active proteins undergoing S-sulfenylation. Mass spectrometry analysis further confirmed the S-sulfenylation of GCN5 at Cys293, Cys368, and Cys400, and their functional significance and impact on the GCN5 protein-protein interaction network were assessed using cysteine-to-serine mutagenesis.
Collapse
Affiliation(s)
- Barbara De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Structural Biology Brussels Laboratory, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium
- Brussels Center for Redox Biology, 1050 Brussels, Belgium
| | - Xi Yang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Zuzana Plskova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Carmen Castell
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Alvaro Fernández-Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Avilien Dard
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jan Masood
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jingjing Huang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Didier Vertommen
- de Duve Institute and MASSPROT platform, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Kai Xun Chan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Research School of Biology, The Australian National University, Acton ACT 2601, Australia
| | - Sébastien Pyr Dit Ruys
- de Duve Institute and MASSPROT platform, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Joris Messens
- Structural Biology Brussels Laboratory, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium
- Brussels Center for Redox Biology, 1050 Brussels, Belgium
| | - Pavel I Kerchev
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
8
|
Routh S, Lindsay RJ, Gudelj I, Dhar R. Metabolic remodeling and de novo mutations transcend cryptic variation as drivers of adaptation in yeast. Evolution 2025; 79:650-664. [PMID: 39918269 DOI: 10.1093/evolut/qpaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/18/2024] [Accepted: 02/04/2025] [Indexed: 04/04/2025]
Abstract
Many organisms live in predictable environments with periodic variations in growth conditions. Adaptation to these conditions can lead to loss of nonessential functions, which could be maladaptive in new environments. Alternatively, living in a predictable environment can allow populations to accumulate cryptic genetic variation that may have no fitness benefit in that condition, but can facilitate adaptation to new environments. However, how these processes together shape the fitness of populations growing in predictable environments remains unclear. Through laboratory evolution experiments in yeast, we show that populations grown in a nutrient-rich environment for 1,000 generations generally have reduced fitness and lower adaptability to novel stressful environments. These populations showed metabolic remodeling and increased lipid accumulation in rich medium which seemed to provide osmotic protection in salt stress. Subsequent adaptation to stressors was primarily driven by de novo mutations, with very little contribution from the mutations accumulated prior to the exposure. Thus, our work suggests that without exposure to new environments, populations might lose their ability to respond effectively to these environments. Furthermore, our findings highlight a major role of exaptation and de novo mutations in adaptation to new environments but do not reveal a significant contribution of cryptic variation in this process.
Collapse
Affiliation(s)
- Shreya Routh
- Department of Bioscience and Biotechnology, IIT Kharagpur, Kharagpur, India
| | - Richard J Lindsay
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Ivana Gudelj
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Riddhiman Dhar
- Department of Bioscience and Biotechnology, IIT Kharagpur, Kharagpur, India
| |
Collapse
|
9
|
Boutin RCT, Shobeirian F, Adam S, Lehman A, Salvarinova R, Friedman JM. Immune Dysregulation in a Child With SOD1-Related Neurological Disease. Am J Med Genet A 2025; 197:e63949. [PMID: 39629626 DOI: 10.1002/ajmg.a.63949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 11/15/2024] [Indexed: 03/08/2025]
Abstract
Spastic tetraplegia and axial hypotonia (STAHP) associated with biallelic SOD1 deficiency is a recently described neurological disorder affecting children. Five studies have described a total of nine cases thus far, all characterized by the onset of progressive spastic tetraplegia beginning before 2 years of age. All but two of these cases are associated with homozygosity for the same genetic variant (NM_000454.4:c.335dupG; NP_000445.1:p.Cys112Trpfs*11) that leads to a non-functional enzyme product. More recently, a homozygous 3-base pair in-frame deletion (NM_000454.5: c.357_357+2delGGT) and a truncating frameshift variant (NM_000454.5: c.52_56del5ins154) in SOD1 have been described in similarly affected patients lacking SOD1 activity. Here we expand on the neurological and extra-neuronal phenotypes of STAHP in a patient with a novel homozygous SOD1 variant predicted to result in disrupted calcium- and zinc-binding activity of the encoded enzyme. We describe a 19-year-old male born to consanguineous parents who is homozygous for an NM_000454.4:c.369_371del SOD1 variant. The patient had progressive neuromuscular degeneration with onset before 1 year of age, consistent with a diagnosis of STAHP. Brain MRI at 7 years of age showed cerebellar atrophy, as has previously been described in this condition, as well as small optic nerves and a hypoplastic optic chiasm, which have not been reported previously. Our patient also exhibited clinical features of immune dysregulation with treatment-refractory inflammatory bowel disease, asthma, recurrent infections, and dermatitis. Overall, the early-onset progressive neurological disorder in our patient, found in association with homozygosity for an SOD1 variant that is predicted to result in impaired function of the transcribed protein, is consistent with a diagnosis of STAHP. Our patient also demonstrates optic atrophy and disrupted immune homeostasis, which have not been previously described as part of this condition. Taken together with previous case studies in children carrying loss-of-function variants of SOD1, this case highlights a possible role for antioxidant therapy in slowing disease progression in patients lacking SOD1 activity. These cases also draw attention to the need for careful consideration of possible harmful neuronal and extra-neuronal complications of proposed SOD1 knockdown therapies against ALS.
Collapse
Affiliation(s)
- Rozlyn Claire Thomas Boutin
- Provincial Medical Genetics Program, British Columbia Women's Hospital, Vancouver, British Columbia, Canada
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Farzaneh Shobeirian
- Department of Pediatric Radiology, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Shelin Adam
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna Lehman
- Adult Metabolic Diseases Clinic, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Ramona Salvarinova
- Division of Biochemical Genetics, Department of Pediatrics, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Jan M Friedman
- Department of Medical Genetics, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Abdeen AH, Trist BG, Nikseresht S, Harwood R, Roudeau S, Rowlands BD, Kreilaus F, Cottam V, Mor D, Richardson M, Siciliano J, Forkgen J, Schaffer G, Genoud S, Li AA, Proschogo N, Antonio B, Falkenberg G, Brueckner D, Kysenius K, Liddell JR, Fat SCM, Wu S, Fifita J, Lockwood TE, Bishop DP, Blair I, Ortega R, Crouch PJ, Double KL. Parkinson-like wild-type superoxide dismutase 1 pathology induces nigral dopamine neuron degeneration in a novel murine model. Acta Neuropathol 2025; 149:22. [PMID: 40042537 PMCID: PMC11882636 DOI: 10.1007/s00401-025-02859-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 03/09/2025]
Abstract
Atypical wild-type superoxide dismutase 1 (SOD1) protein misfolding and deposition occurs specifically within the degenerating substantia nigra pars compacta (SNc) in Parkinson disease. Mechanisms driving the formation of this pathology and relationship with SNc dopamine neuron health are yet to be fully understood. We applied proteomic mass spectrometry and synchrotron-based biometal quantification to post-mortem brain tissues from the SNc of Parkinson disease patients and age-matched controls to uncover key factors underlying the formation of wild-type SOD1 pathology in this disorder. We also engineered two of these factors - brain copper deficiency and upregulated SOD1 protein levels - into a novel mouse strain, termed the SOCK mouse, to verify their involvement in the development of Parkinson-like wild-type SOD1 pathology and their impact on dopamine neuron health. Soluble SOD1 protein in the degenerating Parkinson disease SNc exhibited altered post-translational modifications, which may underlie changes to the enzymatic activity and aggregation of the protein in this region. These include decreased copper binding, dysregulation of physiological glycosylation, and atypical oxidation and glycation of key SOD1 amino acid residues. We demonstrated that the biochemical profile introduced in SOCK mice promotes the same post-translational modifications and the development of Parkinson-like wild-type SOD1 pathology in the midbrain and cortex. This pathology accumulates progressively with age and is accompanied by nigrostriatal degeneration and dysfunction, which occur in the absence of α-synuclein deposition. These mice do not exhibit weight loss nor spinal cord motor neuron degeneration, distinguishing them from transgenic mutant SOD1 mouse models. This study provides the first in vivo evidence that mismetallation and altered post-translational modifications precipitates wild-type SOD1 misfolding, dysfunction, and deposition in the Parkinson disease brain, which may contribute to SNc dopamine neuron degeneration. Our data position this pathology as a novel drug target for this disorder, with a particular focus on therapies capable of correcting alterations to SOD1 post-translational modifications.
Collapse
Affiliation(s)
- Amr H Abdeen
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Benjamin G Trist
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Sara Nikseresht
- Department of Anatomy & Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Richard Harwood
- Sydney Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Stéphane Roudeau
- Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, 33170, Gradignan, France
| | - Benjamin D Rowlands
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Fabian Kreilaus
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Veronica Cottam
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - David Mor
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Miriam Richardson
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Joel Siciliano
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Julia Forkgen
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Greta Schaffer
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Sian Genoud
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Anne A Li
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia
| | - Nicholas Proschogo
- Mass Spectrometry Facility, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Bernadeth Antonio
- Mass Spectrometry Facility, Faculty of Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Gerald Falkenberg
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Dennis Brueckner
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Kai Kysenius
- Department of Anatomy & Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Jeffrey R Liddell
- Department of Anatomy & Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Sandrine Chan Moi Fat
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Sharlynn Wu
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Jennifer Fifita
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Thomas E Lockwood
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - David P Bishop
- Hyphenated Mass Spectrometry Laboratory, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Ian Blair
- Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Richard Ortega
- Univ. Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, 33170, Gradignan, France
| | - Peter J Crouch
- Department of Anatomy & Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Kay L Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, 94-100 Mallett Street, Camperdown, Sydney, NSW, 2006, Australia.
| |
Collapse
|
11
|
Ren ZQ, Chang RR, Wang H, Li GF, Huang BC, Jin RC. Polyphenolic compounds mitigate the oxidative damage of anammox sludge under long-term light irradiation. BIORESOURCE TECHNOLOGY 2025; 419:132038. [PMID: 39756662 DOI: 10.1016/j.biortech.2025.132038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/07/2025]
Abstract
Continuous high-intensity light exposure can inhibit anaerobic ammonium oxidation (anammox) bacteria activity, though the specific impacts on anammox reactor performance remain unclear. This study investigates the effects of long-term light stress on anammox sludge reactors and explores the use of tea polyphenols as an engineering interventions to mitigate photo oxidation damage. The results showed that the nitrogen removal efficiency (NRE) of the reactor rapidly deteriorated to 41.4 % under 10,000 lx light conditions. However, reactors supplemented with 1 mg·L-1 and 5 mg·L-1 tea polyphenols sustained NREs of 75.2 % and 82.5 %, respectively. The addition of tea polyphenols alleviated oxidative stress by scavenging reactive oxygen species such as ·OH and H2O2, and by enhancing the activities of antioxidant enzymes including total superoxide dismutase and glutathione peroxidase. Candidatus Kuenenia was negatively impacted by light, while unclassified_f__Brocadiaceae thrived under light stress. These findings provide insights for the development of stable nitrogen removal systems under light exposure.
Collapse
Affiliation(s)
- Zhi-Qi Ren
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121 China
| | - Rong-Rong Chang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121 China
| | - Hao Wang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121 China
| | - Gui-Feng Li
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121 China
| | - Bao-Cheng Huang
- School of Engineering, Hangzhou Normal University, Hangzhou 310018 China.
| | - Ren-Cun Jin
- School of Engineering, Hangzhou Normal University, Hangzhou 310018 China
| |
Collapse
|
12
|
Nagar S, Mehta R, Kaur P, Sadia FZ, Reddy S, Olorunnimbe OR, Vancurova I, Vancura A. The yeast checkpoint kinase Dun1p represses transcription of RNR genes independently of catalytic activity or Rad53p during respiratory growth. J Biol Chem 2025; 301:108232. [PMID: 39880091 PMCID: PMC11914510 DOI: 10.1016/j.jbc.2025.108232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
One of the key events in DNA damage response is activation of checkpoint kinases leading to activation of ribonucleotide reductase (RNR) and increased synthesis of deoxyribonucleotide triphosphates (dNTPs) required for DNA repair. Among other mechanisms, the activation of dNTP synthesis is driven by derepression of genes encoding RNR subunits RNR2, RNR3, and RNR4, following checkpoint activation and checkpoint kinase Dun1p-mediated phosphorylation and inactivation of transcriptional repressor Crt1p. We report here that in the absence of genotoxic stress during respiratory growth on nonfermentable carbon source acetate, inactivation of checkpoint kinases results in significant growth defect and alters transcriptional regulation of RNR2-4 genes and genes encoding enzymes of the tricarboxylic acid and glyoxylate cycles and gluconeogenesis. Dun1p, independently of its kinase activity or signaling from the upstream checkpoint kinase Rad53p, represses RNR2, RNR3, and RNR4 genes by maintaining Crt1p occupancy in the corresponding promoters. Consistently with the role of dNTPs in the regulation of mitochondrial DNA copy number, DUN1 inactivation elevates mitochondrial DNA copy number in acetate-grown cells. Together, our data reveal an unexpected role for Dun1p in transcriptional regulation of RNR2-4 and metabolic genes during growth on nonfermentable carbon source and suggest that Dun1p contributes to transcription regulation independently of its kinase activity as a structural component by binding to protein(s) involved in gene regulation.
Collapse
Affiliation(s)
- Shreya Nagar
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Riddhi Mehta
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Pritpal Kaur
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Fatema Zohra Sadia
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Suprataptha Reddy
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | | | - Ivana Vancurova
- Department of Biological Sciences, St John's University, Queens, New York, USA
| | - Ales Vancura
- Department of Biological Sciences, St John's University, Queens, New York, USA.
| |
Collapse
|
13
|
Wu X, Luo L, Wang M, Dong L, Fan J, Zeng Y, Li S, Wang K. PRDX6 Prevents NNMT Ubiquitination and Degradation as a Nonenzymatic Mechanism to Promote Ovarian Cancer Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416484. [PMID: 39887931 PMCID: PMC11948025 DOI: 10.1002/advs.202416484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Indexed: 02/01/2025]
Abstract
Cancer cells cope with oxidative stress for their proliferation and metastasis by equipping antioxidant systems, among which the antioxidant enzymes peroxiredoxins (PRDXs) play crucial roles. However, whether PRDXs exhibit nonenzymatic functions remains unclear. Here, it is shown that the 1-cysteine PRDX (PRDX6) upregulates nicotinamide N-methyltransferase (NNMT) to promote the growth and metastasis of ovarian cancer cells, independently of PRDX6's enzymatic activities. Mechanistically, PRDX6 interacts with NNMT to prevent its binding to the E3 ubiquitin ligase tripartite-motif protein 56 (TRIM56), leading to the inhibition of NNMT ubiquitination at lysine 23 and 210 and suppression of subsequent proteasomal degradation. In addition, PRDX6-mediated NNMT upregulation activates mitogen-activated protein kinase (MAPK) signaling, thereby promoting the growth and metastasis of ovarian cancer cells. Notably, PRDX6 overexpression is associated with higher NNMT protein levels in human ovarian cancer tissues and is predictive of poor prognosis of ovarian cancer patients. Overall, the findings illustrate a critical oncogenic mechanism of the antioxidant enzyme PRDX6 in promoting ovarian cancer progression beyond its enzymatic mechanisms.
Collapse
Affiliation(s)
- Xingyun Wu
- West China School of Basic Medical Sciences & Forensic MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Li Luo
- Center for Reproductive MedicineDepartment of Gynecology and ObstetricsWest China Second University HospitalSichuan UniversityChengdu610041P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University)Ministry of EducationChengdu610041P. R. China
| | - Mao Wang
- West China School of Basic Medical Sciences & Forensic MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Lixia Dong
- West China School of Basic Medical Sciences & Forensic MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Jiawu Fan
- West China School of Basic Medical Sciences & Forensic MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Yan Zeng
- West China School of Basic Medical Sciences & Forensic MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Sijia Li
- West China School of Basic Medical Sciences & Forensic MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Kui Wang
- West China School of Basic Medical Sciences & Forensic MedicineState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengdu610041P. R. China
| |
Collapse
|
14
|
Ahrens FM, do Prado PFV, Hillen HS, Pfannschmidt T. The plastid-encoded RNA polymerase of plant chloroplasts. TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00031-7. [PMID: 40011163 DOI: 10.1016/j.tplants.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/28/2025]
Abstract
Plant chloroplasts possess a dedicated genome (plastome) and a prokaryotic-type plastid-encoded RNA polymerase (PEP) that mediates its expression. PEP is composed of five bacteria-like core proteins and 16 nucleus-encoded PEP-associated proteins (PAPs). These are essential for PEP-driven transcription and chloroplast biogenesis, but their functions and structural arrangement in the PEP complex remained largely enigmatic. Recently, four independently determined cryogenic-electron microscopy (cryo-EM) structures of purified plant PEP complexes reported features of the prokaryotic core and the arrangement of PAPs around it, identified potential functional domains and cofactors, and described the interactions of PEP with DNA. We explore these data and critically discuss the proposed regulatory impact of PAPs on the transcription process. We further address the evolutionary implications and describe fields for future investigation.
Collapse
Affiliation(s)
- Frederik M Ahrens
- Institute for Botany and Plant Physiology, Gottfried-Wilhelm-Leibniz University Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Paula F V do Prado
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany; Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Hauke S Hillen
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany; Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, 37075 Göttingen, Germany; Research Group Structure and Function of Molecular Machines, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany
| | - Thomas Pfannschmidt
- Institute for Botany and Plant Physiology, Gottfried-Wilhelm-Leibniz University Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany.
| |
Collapse
|
15
|
Saponara I, Aloisio Caruso E, Cofano M, De Nunzio V, Pinto G, Centonze M, Notarnicola M. Anti-Inflammatory and Anti-Fibrotic Effects of a Mixture of Polyphenols Extracted from "Navelina" Orange in Human Hepa-RG and LX-2 Cells Mediated by Cannabinoid Receptor 2. Int J Mol Sci 2025; 26:512. [PMID: 39859241 PMCID: PMC11765147 DOI: 10.3390/ijms26020512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Navelina oranges (Citrus sinensis) are rich in phytonutrients and bioactive compounds, especially flavonoids like hesperidin. This study investigates the anti-inflammatory and anti-fibrotic properties of hesperidin (HE) and a polyphenol mixture from Navelina oranges (OE) in human hepatocytes (Hepa-RG) and hepatic stellate cells (LX-2), in order to elucidate the underlying molecular mechanisms. In Hepa-RG cells, HE treatment increased expression of cannabinoid receptor 2 (CB2R), which was associated with down-regulation of p38 mitogen-activated protein kinases (p38 MAPK) but had minimal impact on cyclooxygenase-2 (COX-2) and transforming growth factor-β (TGF-β) levels. Conversely, OE treatment not only enhanced CB2R levels and reduced p38 MAPK, but also promoted a significant reduction in both COX-2 and TGF-β levels, suggesting that OE might be more effective in mitigating inflammatory and fibrotic processes than HE. In LX-2 cells, HE treatment caused a notable decrease in both COX-2 and TGF-β levels, reflecting its efficacy in targeting fibrosis-associated inflammation. OE treatment, on the other hand, reduced Nuclear Factor-Kappa B p65 (NF-κB) expression, a critical transcription factor involved in inflammatory responses, though it did not significantly affect COX-2. LX-2 cells induced to fibrosis with TGF-β and treated with HE and OE showed a reduction in the expression levels of several fibrosis markers. In addition, HE and OE showed antioxidant effects by increasing protein levels of Cu, Zn superoxide dismutase (SOD1), Mn superoxide dismutase (SOD2) and catalase (CAT) and influencing the state of lipid peroxidation. Further research is needed to explore the effects of the treatments in activated hepatic stellate cells and in vivo liver disease models.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maria Notarnicola
- Laboratory of Nutritional Biochemistry, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (I.S.); (E.A.C.); (M.C.); (V.D.N.); (G.P.); (M.C.)
| |
Collapse
|
16
|
Morton L, Garza AP, Debska‐Vielhaber G, Villafuerte LE, Henneicke S, Arndt P, Meuth SG, Schreiber S, Dunay IR. Pericytes and Extracellular Vesicle Interactions in Neurovascular Adaptation to Chronic Arterial Hypertension. J Am Heart Assoc 2025; 14:e038457. [PMID: 39719419 PMCID: PMC12054408 DOI: 10.1161/jaha.124.038457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Chronic arterial hypertension restructures the vascular architecture of the brain, leading to a series of pathological responses that culminate in cerebral small-vessel disease. Pericytes respond dynamically to vascular challenges; however, how they manifest under the continuous strain of hypertension has not been elucidated. METHODS AND RESULTS In this study, we characterized pericyte behavior alongside hypertensive states in the spontaneously hypertensive stroke-prone rat model, focusing on their phenotypic and metabolic transformation. Flow cytometry was used to characterize pericytes by their expression of platelet-derived growth factor receptor β, neuroglial antigen 2, cluster of differentiation 13-alanyl aminopeptidase, and antigen Kiel 67. Microvessels were isolated for gene expression profiling and in vitro pericyte expansion. Immunofluorescence validated the cell culture model. Plasma-derived extracellular vesicles from hypertensive rodents were applied as a treatment to assess their effects on pericyte function and detailed metabolic assessments on enriched pericytes measured oxidative phosphorylation and glycolysis. Our results reveal a shift in platelet-derived growth factor receptor β+ pericytes toward increased neuroglial antigen 2 and cluster of differentiation 13-alanyl aminopeptidase coexpression, indicative of their critical role in vascular stabilization and inflammatory responses within the hypertensive milieu. Significant alterations were found within key pathways including angiogenesis, blood-brain barrier integrity, hypoxia, and inflammation. Circulating extracellular vesicles from hypertensive rodents distinctly influenced pericyte mitochondrial function, evidencing their dual role as carriers of disease pathology and potential therapeutic agents. Furthermore, a shift toward glycolytic metabolism in hypertensive pericytes was confirmed, coupled with ATP production dysregulation. CONCLUSIONS Our findings demonstrate that cerebral pericytes undergo phenotypic and metabolic reprogramming in response to hypertension, with hypertensive-derived plasma-derived extracellular vesicles impairing their mitochondrial function. Importantly, plasma-derived extracellular vesicles from normotensive controls restore this function, suggesting their potential as both therapeutic agents and precision biomarkers for hypertensive vascular complications. Further investigation into plasma-derived extracellular vesicle cargo is essential to further explore their therapeutic potential in vascular health.
Collapse
Affiliation(s)
- Lorena Morton
- Medical Faculty, Institute of Inflammation and NeurodegenerationOtto‐von‐Guericke University MagdeburgMagdeburgGermany
| | - Alejandra P. Garza
- Medical Faculty, Institute of Inflammation and NeurodegenerationOtto‐von‐Guericke University MagdeburgMagdeburgGermany
| | | | - Luis E. Villafuerte
- Medical Faculty, Institute of Inflammation and NeurodegenerationOtto‐von‐Guericke University MagdeburgMagdeburgGermany
| | - Solveig Henneicke
- Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, MagdeburgMagdeburgGermany
| | - Philipp Arndt
- Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, MagdeburgMagdeburgGermany
| | - Sven G. Meuth
- Department of NeurologyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Stefanie Schreiber
- Department of NeurologyOtto von Guericke University MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, MagdeburgMagdeburgGermany
- Center for Behavioral Brain Sciences (CBBS)MagdeburgGermany
- German Center for Mental Health (DZPG)Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C‐I‐R‐C)Halle‐Jena‐MagdeburgGermany
| | - Ildiko R. Dunay
- Medical Faculty, Institute of Inflammation and NeurodegenerationOtto‐von‐Guericke University MagdeburgMagdeburgGermany
- Center for Behavioral Brain Sciences (CBBS)MagdeburgGermany
- German Center for Mental Health (DZPG)Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C‐I‐R‐C)Halle‐Jena‐MagdeburgGermany
| |
Collapse
|
17
|
Svobodová G, Horní M, Velecká E, Boušová I. Metabolic dysfunction-associated steatotic liver disease-induced changes in the antioxidant system: a review. Arch Toxicol 2025; 99:1-22. [PMID: 39443317 PMCID: PMC11748479 DOI: 10.1007/s00204-024-03889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a heterogeneous condition characterized by liver steatosis, inflammation, consequent fibrosis, and cirrhosis. Chronic impairment of lipid metabolism is closely related to oxidative stress, leading to cellular lipotoxicity, mitochondrial dysfunction, and endoplasmic reticulum stress. The detrimental effect of oxidative stress is usually accompanied by changes in antioxidant defense mechanisms, with the alterations in antioxidant enzymes expression/activities during MASLD development and progression reported in many clinical and experimental studies. This review will provide a comprehensive overview of the present research on MASLD-induced changes in the catalytic activity and expression of the main antioxidant enzymes (superoxide dismutases, catalase, glutathione peroxidases, glutathione S-transferases, glutathione reductase, NAD(P)H:quinone oxidoreductase) and in the level of non-enzymatic antioxidant glutathione. Furthermore, an overview of the therapeutic effects of vitamin E on antioxidant enzymes during the progression of MASLD will be presented. Generally, at the beginning of MASLD development, the expression/activity of antioxidant enzymes usually increases to protect organisms against the increased production of reactive oxygen species. However, in advanced stage of MASLD, the expression/activity of several antioxidants generally decreases due to damage to hepatic and extrahepatic cells, which further exacerbates the damage. Although the results obtained in patients, in various experimental animal or cell models have been inconsistent, taken together the importance of antioxidant enzymes in MASLD development and progression has been clearly shown.
Collapse
Affiliation(s)
- Gabriela Svobodová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Martin Horní
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Eva Velecká
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
18
|
Mayer E, Winkler I, Huber E, Urbanek M, Kiechl-Kohlendorfer U, Griesmaier E, Posod A. Effects of DHEA and DHEAS in Neonatal Hypoxic-Ischemic Brain Injury. Antioxidants (Basel) 2024; 13:1542. [PMID: 39765870 PMCID: PMC11726961 DOI: 10.3390/antiox13121542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/15/2025] Open
Abstract
Neonatal brain injury remains a significant issue with limited treatment options. This study investigates the potential of the endogenous neurosteroid dehydroepiandrosterone (DHEA) and its sulfate ester (DHEAS) as neuroprotective agents, building on evidence of their mechanisms in adult brain injury models. The primary objective was to evaluate their neuroprotective and anti-oxidative properties in a mouse model of neonatal hypoxic-ischemic brain injury. Using the modified Rice-Vannucci model, brain injury was induced in 7-day-old mouse pups, followed by treatment with various concentrations of DHEA and DHEAS (0.1, 1, and 10 µg/g body weight) via intraperitoneal injection after a 2 h recovery period. Mice were sacrificed after 24 hours for analysis of somatometry, brain injury, apoptosis, microglial activation, and oxidative stress markers (NOX2, 4-HNE, 8-OHdG), along with the anti-oxidant marker SOD1. While no statistically significant effects of DHEA or DHEAS were observed at the tested doses and time points, the absence of toxic or adverse effects highlights their safety profile. These findings provide a foundation for further research into optimizing dosing strategies, timing, and delivery methods. Future studies should refine these variables to maximize neuroprotective efficacy, investigate DHEA(S)' exact mechanisms of action, and explore their potential for clinical application in neonatal care.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anna Posod
- Department of Pediatrics II (Neonatology), Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| |
Collapse
|
19
|
Soubannier V, Chaineau M, Gursu L, Lépine S, Kalaydjian D, Sirois J, Haghi G, Rouleau G, Durcan TM, Stifani S. Early nuclear phenotypes and reactive transformation in human iPSC-derived astrocytes from ALS patients with SOD1 mutations. Glia 2024; 72:2079-2094. [PMID: 39092466 DOI: 10.1002/glia.24598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive death of motor neurons (MNs). Glial cells play roles in MN degeneration in ALS. More specifically, astrocytes with mutations in the ALS-associated gene Cu/Zn superoxide dismutase 1 (SOD1) promote MN death. The mechanisms by which SOD1-mutated astrocytes reduce MN survival are incompletely understood. To characterize the impact of SOD1 mutations on astrocyte physiology, we generated astrocytes from human induced pluripotent stem cell (iPSC) derived from ALS patients carrying SOD1 mutations, together with control isogenic iPSCs. We report that astrocytes harboring SOD1(A4V) and SOD1(D90A) mutations exhibit molecular and morphological changes indicative of reactive astrogliosis when compared to isogenic astrocytes. We show further that a number of nuclear phenotypes precede, or coincide with, reactive transformation. These include increased nuclear oxidative stress and DNA damage, and accumulation of the SOD1 protein in the nucleus. These findings reveal early cell-autonomous phenotypes in SOD1-mutated astrocytes that may contribute to the acquisition of a reactive phenotype involved in alterations of astrocyte-MN communication in ALS.
Collapse
Affiliation(s)
- Vincent Soubannier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Mathilde Chaineau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Lale Gursu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Sarah Lépine
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - David Kalaydjian
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Julien Sirois
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Ghazal Haghi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Guy Rouleau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Thomas M Durcan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Structural Genomics Consortium, Toronto, Ontario, Canada
| | - Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Zhang S, Huang Q, Ji T, Li Q, Hu C. Copper homeostasis and copper-induced cell death in tumor immunity: implications for therapeutic strategies in cancer immunotherapy. Biomark Res 2024; 12:130. [PMID: 39482784 PMCID: PMC11529036 DOI: 10.1186/s40364-024-00677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
Copper is an important trace element for maintaining key biological functions such as cellular respiration, nerve conduction, and antioxidant defense. Maintaining copper homeostasis is critical for human health, and its imbalance has been linked to various diseases, especially cancer. Cuproptosis, a novel mechanism of copper-induced cell death, provides new therapeutic opportunities for metal ion regulation to interact with cell fate. This review provides insights into the complex mechanisms of copper metabolism, the molecular basis of cuproptosis, and its association with cancer development. We assess the role of cuproptosis-related genes (CRGs) associated with tumorigenesis, their importance as prognostic indicators and therapeutic targets, and the impact of copper homeostasis on the tumor microenvironment (TME) and immune response. Ultimately, this review highlights the complex interplay between copper, cuproptosis, and cancer immunotherapy.
Collapse
Affiliation(s)
- Suhang Zhang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430030, China
| | - Qibo Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tuo Ji
- School of Medicine, New York Medical College, Valhalla, NY, 10595, USA
| | - Qilin Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430030, China.
| | - Chuanyu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430030, China.
| |
Collapse
|
21
|
Wang R, Xu S, Zhang M, Feng W, Wang C, Qiu X, Li J, Zhao W. Multifunctional chitosan-based hydrogels loaded with iridium nanoenzymes for skin wound repair. Carbohydr Polym 2024; 342:122325. [PMID: 39048214 DOI: 10.1016/j.carbpol.2024.122325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 07/27/2024]
Abstract
Hemostasis, infection, oxidative stress, and inflammation still severely impede the wound repair process. It is significant to develop multifunctional wound dressings that can function as needed in various stages of wound healing. In this study, iridium nanoparticles (IrNPs) with multi-enzyme mimetic activity were complexed with chitosan (CS) and fucoidan (FD) for the first time to make a multifunctional CS/FD/IrNPs hydrogel with excellent antioxidant effect. The hydrogel has excellent physicochemical properties. In particular, the incorporation of IrNPs imparts excellent antioxidant properties to the hydrogel, which could scavenge reactive oxygen species (ROS). In addition, the hydrogel shows excellent hemostatic and antibacterial properties. The CS/FD/IrNPs hydrogel performs fast and efficient hemostasis in 21 s. Moreover, the blood loss of the CS/FD/IrNPs hydrogel group was approximately 10% of that in the control group and the antibacterial rate of CS/FD/IrNPs hydrogel against E. coli and S. aureus was up to 95 %. In vivo results demonstrate that CS/FD/IrNPs hydrogel promotes wound healing by attenuating ROS levels, reducing oxidative damage, mitigating inflammation, and accelerating angiogenesis. To summarize, the CS/FD/IrNPs hydrogel system, with hemostatic, antibacterial, antioxidant, anti-inflammatory and pro-healing activities, can be a promising and effective strategy for the treatment of clinically difficult-to-heal wounds.
Collapse
Affiliation(s)
- Ruoying Wang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shixin Xu
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Miaomiao Zhang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wei Feng
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chengwei Wang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xuefeng Qiu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jierui Li
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wen Zhao
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
22
|
Frohn S, Haas FB, Chavez BG, Dreyer BH, Reiss EV, Ziplys A, Weichert H, Hiltemann S, Ugalde JM, Meyer AJ, D'Auria JC, Rensing SA, Schippers JHM. Evolutionary Conserved and Divergent Responses to Copper Zinc Superoxide Dismutase Inhibition in Plants. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39400938 DOI: 10.1111/pce.15198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
After an initial evolution in a reducing environment, life got successively challenged by reactive oxygen species (ROS), especially during the great oxidation event (GOE) that followed the development of photosynthesis. Therefore, ROS are deeply intertwined into the physiological, morphological and transcriptional responses of most present-day organisms. Copper-zinc superoxide dismutases (CuZnSODs) evolved during the GOE and are present in charophytes and extant land plants, but nearly absent from chlorophytes. The chemical inhibitor of CuZnSOD, lung cancer screen 1 (LCS-1), could greatly facilitate the study of SODs in diverse plants. Here, we determined the impact of chemical inhibition of plant CuZnSOD activity, on plant growth, transcription and metabolism. We followed a comparative approach by using different plant species, including Marchantia Polymorpha and Physcomitrium patens, representing bryophytes, the sister lineage to vascular plants, and Arabidopsis thaliana. We show that LCS-1 causes oxidative stress in plants and that the inhibition of CuZnSODs provoked a similar core response that mainly impacted glutathione homoeostasis in all plant species analysed. That said, Physcomitrium and Arabidopsis, which contain multiple CuZnSOD isoforms showed a more complex and exacerbated response. In addition, an untargeted metabolomics approach revealed a specific metabolic signature for each plant species. Our comparative analysis exposes a conserved core response at the physiological and transcriptional level towards LCS-1, while the metabolic response largely varies. These differences correlate with the number and localization of the CuZnSOD isoforms present in each species.
Collapse
Affiliation(s)
- Stephanie Frohn
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Fabian B Haas
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Benjamin G Chavez
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Bernd H Dreyer
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Erik V Reiss
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Anne Ziplys
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Heiko Weichert
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Saskia Hiltemann
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| | - José M Ugalde
- Institute of Crop Science and Resource Conservation (INRES) - Chemical Signalling, University of Bonn, Bonn, Germany
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES) - Chemical Signalling, University of Bonn, Bonn, Germany
| | - John C D'Auria
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Department of Biology, University of Marburg, Marburg, Germany
- Center for Biological Signaling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| | - Jos H M Schippers
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| |
Collapse
|
23
|
Li S, Gui J, Passarelli MN, Andrew AS, Sullivan KM, Cornell KA, Traynor BJ, Stark A, Chia R, Kuenzler RM, Pioro EP, Bradley WG, Stommel EW. Genome-Wide and Transcriptome-Wide Association Studies on Northern New England and Ohio Amyotrophic Lateral Sclerosis Cohorts. Neurol Genet 2024; 10:e200188. [PMID: 39246739 PMCID: PMC11380502 DOI: 10.1212/nxg.0000000000200188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/23/2024] [Indexed: 09/10/2024]
Abstract
Background and Objectives Amyotrophic lateral sclerosis (ALS) is an age-associated, fatal neurodegenerative disorder causing progressive paralysis and respiratory failure. The genetic architecture of ALS is still largely unknown. Methods We performed a genome-wide association study (GWAS) and transcriptome-wide association study (TWAS) to understand genetic risk factors for ALS using a population-based case-control study of 435 ALS cases and 279 controls from Northern New England and Ohio. Single nucleotide polymorphism (SNP) genotyping was conducted using the Illumina NeuroChip array. Odds ratios were estimated using covariate-adjusted logistic regression. We also performed a genome-wide SNP-smoking interaction screening. TWAS analyses used PrediXcan to estimate associations between predicted gene expression levels across 15 tissues (13 brain tissues, skeletal muscle, and whole blood) and ALS risk. Results GWAS analyses identified the p.A382T missense variant (rs367543041, p = 3.95E-6) in the TARDBP gene, which has previously been reported in association with increased ALS risk and was found to share a close affinity with the Sardinian haplotype. Both GWAS and TWAS analyses suggested that ZNF235 is associated with decreased ALS risk. Discussion Our results support the need for future evaluation to clarify the role of these potential genetic risk factors for ALS and to understand genetic susceptibility to environmental risk factors.
Collapse
Affiliation(s)
- Siting Li
- From the Departments of Biomedical Data Science (S.L., J.G.), Epidemiology (S.L., M.N.P.), and Neurology, Geisel School of Medicine at Dartmouth (E.W.S.), Dartmouth College, Hanover; Dartmouth Health (A.S.A., K.M.S., K.A.C., E.W.S.), Lebanon, NH; Neuromuscular Diseases Research Section (B.J.T., A.S., R.C.), National Institute on Aging; National Institute of Neurological Disorders and Stroke (B.J.T.), National Institutes of Health, Bethesda; RNA Therapeutics Laboratory (B.J.T.), National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD; Cleveland Clinic (R.M.K.), OH; Department of Medicine (E.P.P.), University of British Columbia, Vancouver, BC, Canada; and University of Miami Miller School of Medicine (W.G.B.), FL
| | - Jiang Gui
- From the Departments of Biomedical Data Science (S.L., J.G.), Epidemiology (S.L., M.N.P.), and Neurology, Geisel School of Medicine at Dartmouth (E.W.S.), Dartmouth College, Hanover; Dartmouth Health (A.S.A., K.M.S., K.A.C., E.W.S.), Lebanon, NH; Neuromuscular Diseases Research Section (B.J.T., A.S., R.C.), National Institute on Aging; National Institute of Neurological Disorders and Stroke (B.J.T.), National Institutes of Health, Bethesda; RNA Therapeutics Laboratory (B.J.T.), National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD; Cleveland Clinic (R.M.K.), OH; Department of Medicine (E.P.P.), University of British Columbia, Vancouver, BC, Canada; and University of Miami Miller School of Medicine (W.G.B.), FL
| | - Michael N Passarelli
- From the Departments of Biomedical Data Science (S.L., J.G.), Epidemiology (S.L., M.N.P.), and Neurology, Geisel School of Medicine at Dartmouth (E.W.S.), Dartmouth College, Hanover; Dartmouth Health (A.S.A., K.M.S., K.A.C., E.W.S.), Lebanon, NH; Neuromuscular Diseases Research Section (B.J.T., A.S., R.C.), National Institute on Aging; National Institute of Neurological Disorders and Stroke (B.J.T.), National Institutes of Health, Bethesda; RNA Therapeutics Laboratory (B.J.T.), National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD; Cleveland Clinic (R.M.K.), OH; Department of Medicine (E.P.P.), University of British Columbia, Vancouver, BC, Canada; and University of Miami Miller School of Medicine (W.G.B.), FL
| | - Angeline S Andrew
- From the Departments of Biomedical Data Science (S.L., J.G.), Epidemiology (S.L., M.N.P.), and Neurology, Geisel School of Medicine at Dartmouth (E.W.S.), Dartmouth College, Hanover; Dartmouth Health (A.S.A., K.M.S., K.A.C., E.W.S.), Lebanon, NH; Neuromuscular Diseases Research Section (B.J.T., A.S., R.C.), National Institute on Aging; National Institute of Neurological Disorders and Stroke (B.J.T.), National Institutes of Health, Bethesda; RNA Therapeutics Laboratory (B.J.T.), National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD; Cleveland Clinic (R.M.K.), OH; Department of Medicine (E.P.P.), University of British Columbia, Vancouver, BC, Canada; and University of Miami Miller School of Medicine (W.G.B.), FL
| | - Kathleen M Sullivan
- From the Departments of Biomedical Data Science (S.L., J.G.), Epidemiology (S.L., M.N.P.), and Neurology, Geisel School of Medicine at Dartmouth (E.W.S.), Dartmouth College, Hanover; Dartmouth Health (A.S.A., K.M.S., K.A.C., E.W.S.), Lebanon, NH; Neuromuscular Diseases Research Section (B.J.T., A.S., R.C.), National Institute on Aging; National Institute of Neurological Disorders and Stroke (B.J.T.), National Institutes of Health, Bethesda; RNA Therapeutics Laboratory (B.J.T.), National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD; Cleveland Clinic (R.M.K.), OH; Department of Medicine (E.P.P.), University of British Columbia, Vancouver, BC, Canada; and University of Miami Miller School of Medicine (W.G.B.), FL
| | - Kevin A Cornell
- From the Departments of Biomedical Data Science (S.L., J.G.), Epidemiology (S.L., M.N.P.), and Neurology, Geisel School of Medicine at Dartmouth (E.W.S.), Dartmouth College, Hanover; Dartmouth Health (A.S.A., K.M.S., K.A.C., E.W.S.), Lebanon, NH; Neuromuscular Diseases Research Section (B.J.T., A.S., R.C.), National Institute on Aging; National Institute of Neurological Disorders and Stroke (B.J.T.), National Institutes of Health, Bethesda; RNA Therapeutics Laboratory (B.J.T.), National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD; Cleveland Clinic (R.M.K.), OH; Department of Medicine (E.P.P.), University of British Columbia, Vancouver, BC, Canada; and University of Miami Miller School of Medicine (W.G.B.), FL
| | - Bryan J Traynor
- From the Departments of Biomedical Data Science (S.L., J.G.), Epidemiology (S.L., M.N.P.), and Neurology, Geisel School of Medicine at Dartmouth (E.W.S.), Dartmouth College, Hanover; Dartmouth Health (A.S.A., K.M.S., K.A.C., E.W.S.), Lebanon, NH; Neuromuscular Diseases Research Section (B.J.T., A.S., R.C.), National Institute on Aging; National Institute of Neurological Disorders and Stroke (B.J.T.), National Institutes of Health, Bethesda; RNA Therapeutics Laboratory (B.J.T.), National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD; Cleveland Clinic (R.M.K.), OH; Department of Medicine (E.P.P.), University of British Columbia, Vancouver, BC, Canada; and University of Miami Miller School of Medicine (W.G.B.), FL
| | - Ali Stark
- From the Departments of Biomedical Data Science (S.L., J.G.), Epidemiology (S.L., M.N.P.), and Neurology, Geisel School of Medicine at Dartmouth (E.W.S.), Dartmouth College, Hanover; Dartmouth Health (A.S.A., K.M.S., K.A.C., E.W.S.), Lebanon, NH; Neuromuscular Diseases Research Section (B.J.T., A.S., R.C.), National Institute on Aging; National Institute of Neurological Disorders and Stroke (B.J.T.), National Institutes of Health, Bethesda; RNA Therapeutics Laboratory (B.J.T.), National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD; Cleveland Clinic (R.M.K.), OH; Department of Medicine (E.P.P.), University of British Columbia, Vancouver, BC, Canada; and University of Miami Miller School of Medicine (W.G.B.), FL
| | - Ruth Chia
- From the Departments of Biomedical Data Science (S.L., J.G.), Epidemiology (S.L., M.N.P.), and Neurology, Geisel School of Medicine at Dartmouth (E.W.S.), Dartmouth College, Hanover; Dartmouth Health (A.S.A., K.M.S., K.A.C., E.W.S.), Lebanon, NH; Neuromuscular Diseases Research Section (B.J.T., A.S., R.C.), National Institute on Aging; National Institute of Neurological Disorders and Stroke (B.J.T.), National Institutes of Health, Bethesda; RNA Therapeutics Laboratory (B.J.T.), National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD; Cleveland Clinic (R.M.K.), OH; Department of Medicine (E.P.P.), University of British Columbia, Vancouver, BC, Canada; and University of Miami Miller School of Medicine (W.G.B.), FL
| | - Rebecca M Kuenzler
- From the Departments of Biomedical Data Science (S.L., J.G.), Epidemiology (S.L., M.N.P.), and Neurology, Geisel School of Medicine at Dartmouth (E.W.S.), Dartmouth College, Hanover; Dartmouth Health (A.S.A., K.M.S., K.A.C., E.W.S.), Lebanon, NH; Neuromuscular Diseases Research Section (B.J.T., A.S., R.C.), National Institute on Aging; National Institute of Neurological Disorders and Stroke (B.J.T.), National Institutes of Health, Bethesda; RNA Therapeutics Laboratory (B.J.T.), National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD; Cleveland Clinic (R.M.K.), OH; Department of Medicine (E.P.P.), University of British Columbia, Vancouver, BC, Canada; and University of Miami Miller School of Medicine (W.G.B.), FL
| | - Erik P Pioro
- From the Departments of Biomedical Data Science (S.L., J.G.), Epidemiology (S.L., M.N.P.), and Neurology, Geisel School of Medicine at Dartmouth (E.W.S.), Dartmouth College, Hanover; Dartmouth Health (A.S.A., K.M.S., K.A.C., E.W.S.), Lebanon, NH; Neuromuscular Diseases Research Section (B.J.T., A.S., R.C.), National Institute on Aging; National Institute of Neurological Disorders and Stroke (B.J.T.), National Institutes of Health, Bethesda; RNA Therapeutics Laboratory (B.J.T.), National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD; Cleveland Clinic (R.M.K.), OH; Department of Medicine (E.P.P.), University of British Columbia, Vancouver, BC, Canada; and University of Miami Miller School of Medicine (W.G.B.), FL
| | - Walter G Bradley
- From the Departments of Biomedical Data Science (S.L., J.G.), Epidemiology (S.L., M.N.P.), and Neurology, Geisel School of Medicine at Dartmouth (E.W.S.), Dartmouth College, Hanover; Dartmouth Health (A.S.A., K.M.S., K.A.C., E.W.S.), Lebanon, NH; Neuromuscular Diseases Research Section (B.J.T., A.S., R.C.), National Institute on Aging; National Institute of Neurological Disorders and Stroke (B.J.T.), National Institutes of Health, Bethesda; RNA Therapeutics Laboratory (B.J.T.), National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD; Cleveland Clinic (R.M.K.), OH; Department of Medicine (E.P.P.), University of British Columbia, Vancouver, BC, Canada; and University of Miami Miller School of Medicine (W.G.B.), FL
| | - Elijah W Stommel
- From the Departments of Biomedical Data Science (S.L., J.G.), Epidemiology (S.L., M.N.P.), and Neurology, Geisel School of Medicine at Dartmouth (E.W.S.), Dartmouth College, Hanover; Dartmouth Health (A.S.A., K.M.S., K.A.C., E.W.S.), Lebanon, NH; Neuromuscular Diseases Research Section (B.J.T., A.S., R.C.), National Institute on Aging; National Institute of Neurological Disorders and Stroke (B.J.T.), National Institutes of Health, Bethesda; RNA Therapeutics Laboratory (B.J.T.), National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD; Cleveland Clinic (R.M.K.), OH; Department of Medicine (E.P.P.), University of British Columbia, Vancouver, BC, Canada; and University of Miami Miller School of Medicine (W.G.B.), FL
| |
Collapse
|
24
|
Yang Y, Wu J, Wang L, Ji G, Dang Y. Copper homeostasis and cuproptosis in health and disease. MedComm (Beijing) 2024; 5:e724. [PMID: 39290254 PMCID: PMC11406047 DOI: 10.1002/mco2.724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Copper is a vital trace element in human physiology, essential for the synthesis of numerous crucial metabolic enzymes and facilitation of various biological processes. Regulation of copper levels within a narrow range is imperative for maintaining metabolic homeostasis. Numerous studies have demonstrated the significant roles of copper homeostasis and cuproptosis in health and disease pathogenesis. However, a comprehensive and up-to-date systematic review in this domain remains absent. This review aims to consolidate recent advancements in understanding the roles of cuproptosis and copper homeostasis in health and disease, focusing on the underlying mechanisms and potential therapeutic interventions. Dysregulation of copper homeostasis, manifesting as either copper excess or deficiency, is implicated in the etiology of various diseases. Cuproptosis, a recently identified form of cell death, is characterized by intracellular copper overload. This phenomenon mediates a diverse array of evolutionary processes in organisms, spanning from health to disease, and is implicated in genetic disorders, liver diseases, neurodegenerative disorders, and various cancers. This review provides a comprehensive summary of the pathogenic mechanisms underlying cuproptosis and copper homeostasis, along with associated targeted therapeutic agents. Furthermore, it explores future research directions with the potential to yield significant advancements in disease treatment, health management, and disease prevention.
Collapse
Affiliation(s)
- Yunuo Yang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Jiaxuan Wu
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- China‐Canada Centre of Research for Digestive DiseasesUniversity of OttawaOttawaOntarioCanada
| | - Guang Ji
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Yanqi Dang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| |
Collapse
|
25
|
Li X, Tie J, Sun Y, Gong C, Deng S, Chen X, Li S, Wang Y, Wang Z, Wu F, Liu H, Wu Y, Zhang G, Guo Q, Yang Y, Wang Y. Targeting DNM1L/DRP1-FIS1 axis inhibits high-grade glioma progression by impeding mitochondrial respiratory cristae remodeling. J Exp Clin Cancer Res 2024; 43:273. [PMID: 39350223 PMCID: PMC11440692 DOI: 10.1186/s13046-024-03194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The dynamics of mitochondrial respiratory cristae (MRC) and its impact on oxidative phosphorylation (OXPHOS) play a crucial role in driving the progression of high-grade glioma (HGG). However, the underlying mechanism remains unclear. METHODS In the present study, we employed machine learning-based transmission electron microscopy analysis of 7141 mitochondria from 54 resected glioma patients. Additionally, we conducted bioinformatics analysis and multiplex immunohistochemical (mIHC) staining of clinical glioma microarrays to identify key molecules involved in glioma. Subsequently, we modulated the expression levels of mitochondrial dynamic-1-like protein (DNM1L/DRP1), and its two receptors, mitochondrial fission protein 1 (FIS1) and mitochondrial fission factor (MFF), via lentiviral transfection to further investigate the central role of these molecules in the dynamics of glioblastoma (GBM) cells and glioma stem cells (GSCs). We then evaluated the potential impact of DNM1L/DRP1, FIS1, and MFF on the proliferation and progression of GBM cells and GSCs using a combination of CCK-8 assay, Transwell assay, Wound Healing assay, tumor spheroid formation assay and cell derived xenograft assay employing NOD/ShiLtJGpt-Prkdcem26Cd52Il2rgem26Cd22/Gpt (NCG) mouse model. Subsequently, we validated the ability of the DNM1L/DRP1-FIS1 axis to remodel MRC structure through mitophagy by utilizing Seahorse XF analysis technology, mitochondrial function detection, MRC abundance detection and monitoring dynamic changes in mitophagy. RESULTS Our findings revealed that compared to low-grade glioma (LGG), HGG exhibited more integrated MRC structures. Further research revealed that DNM1L/DRP1, FIS1, and MFF played pivotal roles in governing mitochondrial fission and remodeling MRC in HGG. The subsequent validation demonstrated that DNM1L/DRP1 exerts a positive regulatory effect on FIS1, whereas the interaction between MFF and FIS1 demonstrates a competitive inhibition relationship. The down-regulation of the DNM1L/DRP1-FIS1 axis significantly impaired mitophagy, thereby hindering the remodeling of MRC and inhibiting OXPHOS function in glioma, ultimately leading to the inhibition of its aggressive progression. In contrast, MFF exerts a contrasting effect on MRC integrity, OXPHOS activity, and glioma progression. CONCLUSIONS This study highlights that the DNM1L/DRP1-FIS1 axis stabilizes MRC structures through mitophagy in HGG cells while driving their OXPHOS activity ultimately leading to robust disease progression. The inhibition of the DNM1L/DRP1-FIS1 axis hinders MRC remodeling and suppresses GBM progression. We propose that down-regulation of the DNM1L/DRP1-FIS1 axis could be a potential therapeutic strategy for treating HGG.
Collapse
Affiliation(s)
- Xiaodong Li
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jingjing Tie
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Human Anatomy, Histology and Embryology, Medical School of Yan'an University, Yan'an, China
| | - Yuze Sun
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Chengrong Gong
- Department of Computer Fundamentals, The Fourth Military Medical University, Xi'an, 710032, China
| | - Shizhou Deng
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiyu Chen
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Shujiao Li
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yaoliang Wang
- Department of Neurosurgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhenhua Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Feifei Wu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Liu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yousheng Wu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Guopeng Zhang
- Department of Computer Fundamentals, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Qingdong Guo
- Department of Neurosurgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yanling Yang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yayun Wang
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
26
|
Yang Y, Hao X, Zhang J, Gao T, Huo M, Liu W, Hu T, Ma T, Yuan B, Zhang M, Teng X, Yu H, Huang W, Wang Y. The E3 ligase TRIM22 functions as a tumor suppressor in breast cancer by targeting CCS for proteasomal degradation to inhibit STAT3 signaling. Cancer Lett 2024; 600:217157. [PMID: 39127340 DOI: 10.1016/j.canlet.2024.217157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/02/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Deregulation of E3 ubiquitin ligases drives the proliferation and metastasis of various cancers; however, the underlying mechanisms remain unknown. This study aimed to investigate the role of tripartite motif-containing 22 (TRIM22), a poorly investigated E3 ubiquitin ligase in the TRIM family, as a tumor suppressor in breast cancer. High expression of TRIM22 in breast cancer correlated with better prognosis. Functional experiments demonstrated that TRIM22 significantly inhibited the proliferation and invasion of breast cancer cells. Label-free proteomics and biochemical analyses revealed that the copper chaperone for superoxide dismutase (CCS), an oncoprotein that is upregulated in breast cancer and promotes the growth and invasion of breast cancer cells, was a target of TRIM22 for degradation via K27-linked ubiquitination. Notably, the ability of the coiled-coil domain-defective mutants of TRIM22 to induce CCS ubiquitination and degradation diminished, with lysine 76 of the CCS serving as the ubiquitination site. Moreover, the TRIM22-mediated inhibition of the proliferation and invasion of breast cancer cells was restored by ectopic CCS expression. RNA-sequencing experiments using Gene Set Enrichment Analysis demonstrated that TRIM22 is involved in the JAK-STAT signaling pathway. TRIM22 overexpression also improved reactive oxygen species levels in breast cancer cells and inhibited STAT3 phosphorylation, which was restored via CCS overexpression or N-acetyl-l-cysteine treatment. Chromatin immunoprecipitation-quantitative polymerase chain reaction results showed that TRIM22 overexpression decreased the enrichment of phosphorylated STAT3 in FN1, VIM and JARID2 promoters. Clinically, low TRIM22 expression correlated with high CCS expression and decreased survival rates in patients with breast cancer. Moreover, TRIM22 upregulation was associated with a better prognosis in patients with breast cancer who received classical therapy. TRIM22 expression was downregulated in many cancer types, including colon, kidney, lung, and prostate cancers. To the best of our knowledge, the E3 ubiquitin ligase TRIM22 was first reported as a tumor suppressor that inhibits the proliferation and invasion of breast cancer cells through CCS ubiquitination and degradation. TRIM22 is a potential prognostic biomarker in patients with breast cancer.
Collapse
Affiliation(s)
- Yunkai Yang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xinhui Hao
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jingyao Zhang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianyang Gao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Miaomiao Huo
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ting Hu
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianyu Ma
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Baowen Yuan
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Min Zhang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xu Teng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Hefen Yu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Institute of Cancer Research, Henan Academy of Innovations in Medical Sciences, Zhengzhou, Henan Province, 450000, China; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China; Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
27
|
Thapak P, Gomez-Pinilla F. The bioenergetics of traumatic brain injury and its long-term impact for brain plasticity and function. Pharmacol Res 2024; 208:107389. [PMID: 39243913 DOI: 10.1016/j.phrs.2024.107389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Mitochondria provide the energy to keep cells alive and functioning and they have the capacity to influence highly complex molecular events. Mitochondria are essential to maintain cellular energy homeostasis that determines the course of neurological disorders, including traumatic brain injury (TBI). Various aspects of mitochondria metabolism such as autophagy can have long-term consequences for brain function and plasticity. In turn, mitochondria bioenergetics can impinge on molecular events associated with epigenetic modifications of DNA, which can extend cellular memory for a long time. Mitochondrial dysfunction leads to pathological manifestations such as oxidative stress, inflammation, and calcium imbalance that threaten brain plasticity and function. Hence, targeting mitochondrial function may have great potential to lessen the outcomes of TBI.
Collapse
Affiliation(s)
- Pavan Thapak
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
28
|
Lee CY, Khan G, Hyun DY, Kim SH, Park ES. Effect of umbilical cord mesenchymal stem cell-derived mitochondrial transplantation on ischemia-reperfusion injury in a rat model. Skin Res Technol 2024; 30:e70022. [PMID: 39221632 PMCID: PMC11367251 DOI: 10.1111/srt.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Despite advancements in reconstructive procedures, ischemia-reperfusion (I/R) injury remains a significant challenge in reconstructive surgery, with mitochondrial dysfunction playing a pivotal role. Mitochondrial transplantation has emerged as a promising therapeutic strategy to address this issue. This study aims to evaluate the impact of umbilical cord mesenchymal stem cell-derived mitochondrial transplantation on skin flap I/R models in rats. MATERIAL AND METHODS Twenty male rats underwent I/R injury on skin flaps, with or without mitochondrial transplantation administered via intravenous or subcutaneous routes. Analysis encompassed histopathology, inflammatory, apoptotic, oxidative stress, and hypoxia markers. RESULTS Results revealed a reduction in inflammation, apoptosis, oxidative stress, and hypoxia in the transplantation group compared to controls. CONCLUSION The findings suggest that umbilical cord mesenchymal stem cell-derived mitochondrial transplantation shows promise in enhancing flap viability and attenuating I/R injury, offering valuable insights for improved outcomes in reconstructive surgery. However, further exploration in larger animal models and refinement of delivery methods and dosage are warranted to fully elucidate its clinical translatability.
Collapse
Affiliation(s)
- Chan Yeong Lee
- Department of Plastic and Reconstructive SurgerySoonchunhyang University Bucheon HospitalSoonchunhyang University College of MedicineBucheonRepublic of Korea
| | - Galina Khan
- Department of Plastic and Reconstructive SurgerySoonchunhyang University Bucheon HospitalSoonchunhyang University College of MedicineBucheonRepublic of Korea
| | - Dong Yun Hyun
- Department of Plastic and Reconstructive SurgerySoonchunhyang University Bucheon HospitalSoonchunhyang University College of MedicineBucheonRepublic of Korea
| | - Sang Hun Kim
- Department of Plastic and Reconstructive SurgerySoonchunhyang University Bucheon HospitalSoonchunhyang University College of MedicineBucheonRepublic of Korea
| | - Eun Soo Park
- Department of Plastic and Reconstructive SurgerySoonchunhyang University Bucheon HospitalSoonchunhyang University College of MedicineBucheonRepublic of Korea
| |
Collapse
|
29
|
Zhong Y, Xia S, Wang G, Liu Q, Ma F, Yu Y, Zhang Y, Qian L, Hu L, Xie J. The interplay between mitophagy and mitochondrial ROS in acute lung injury. Mitochondrion 2024; 78:101920. [PMID: 38876297 DOI: 10.1016/j.mito.2024.101920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/27/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Mitochondria orchestrate the production of new mitochondria and the removal of damaged ones to dynamically maintain mitochondrial homeostasis through constant biogenesis and clearance mechanisms. Mitochondrial quality control particularly relies on mitophagy, defined as selective autophagy with mitochondria-targeting specificity. Most ROS are derived from mitochondria, and the physiological concentration of mitochondrial ROS (mtROS) is no longer considered a useless by-product, as it has been proven to participate in immune and autophagy pathway regulation. However, excessive mtROS appears to be a pathogenic factor in several diseases, including acute lung injury (ALI). The interplay between mitophagy and mtROS is complex and closely related to ALI. Here, we review the pathways of mitophagy, the intricate relationship between mitophagy and mtROS, the role of mtROS in the pathogenesis of ALI, and their effects and related progression in ALI induced by different conditions.
Collapse
Affiliation(s)
- Yizhi Zhong
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Siwei Xia
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Gaojian Wang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Qinxue Liu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Fengjie Ma
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Yijin Yu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Yaping Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Lu Qian
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China
| | - Li Hu
- Department of Anesthesiology, Second Affiliated Hospital of Jiaxing University, No.1518 North Huancheng Road, Nanhu District, Jiaxing 314000, China
| | - Junran Xie
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No.3 East Qingchun Road, Jianggan District, Hangzhou 310016, China.
| |
Collapse
|
30
|
Pang X, Zhou B, Wu J, Mo Q, Yang L, Liu T, Jin G, Zhang L, Liu X, Xu X, Wang B, Cao H. Lacticaseibacillus rhamnosus GG alleviates sleep deprivation-induced intestinal barrier dysfunction and neuroinflammation in mice. Food Funct 2024; 15:8740-8758. [PMID: 39101469 DOI: 10.1039/d4fo00244j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Consuming probiotic products is a solution that people are willing to choose to augment health. As a global health hazard, sleep deprivation (SD) can cause both physical and mental diseases. The present study investigated the protective effects of Lacticaseibacillus rhamnosus GG (LGG), a widely used probiotic, on a SD mouse model. Here, it has been shown that SD induced intestinal damage in mice, while LGG supplementation attenuated disruption of the intestinal barrier and enhanced the antioxidant capacity. Microbiome analysis revealed that SD caused dysbiosis in the gut microbiota, characterized by increased levels of Clostridium XlVa, Alistipes, and Desulfovibrio, as well as decreased levels of Ruminococcus, which were partially ameliorated by LGG. Moreover, SD resulted in elevated pro-inflammatory cytokine concentrations in both the intestine and the brain, while LGG provided protection in both organs. LGG supplementation significantly improved locomotor activity in SD mice. Although heat-killed LGG showed some protective effects in SD mice, its overall efficacy was inferior to that of live LGG. In terms of mechanism, it was found that AG1478, an inhibitor of the epidermal growth factor receptor (EGFR) tyrosine kinase, could diminish the protective effects of LGG. In conclusion, LGG demonstrated the ability to alleviate SD-induced intestinal barrier dysfunction through EGFR activation and alleviate neuroinflammation.
Collapse
Affiliation(s)
- Xiaoqi Pang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Anshan Road No. 154, Heping District, Tianjin, 300052, China.
| | - Bingqian Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Anshan Road No. 154, Heping District, Tianjin, 300052, China.
| | - Jingyi Wu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Anshan Road No. 154, Heping District, Tianjin, 300052, China.
| | - Qi Mo
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Anshan Road No. 154, Heping District, Tianjin, 300052, China.
| | - Lijiao Yang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Anshan Road No. 154, Heping District, Tianjin, 300052, China.
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, China
| | - Ge Jin
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Anshan Road No. 154, Heping District, Tianjin, 300052, China.
| | - Lan Zhang
- Department of Geriatrics, General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Xiang Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Anshan Road No. 154, Heping District, Tianjin, 300052, China.
| | - Xin Xu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Anshan Road No. 154, Heping District, Tianjin, 300052, China.
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Anshan Road No. 154, Heping District, Tianjin, 300052, China.
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Anshan Road No. 154, Heping District, Tianjin, 300052, China.
| |
Collapse
|
31
|
König S, Strassheimer F, Brandner NI, Schröder JH, Urban H, Harwart LF, Hehlgans S, Steinbach JP, Ronellenfitsch MW, Luger AL. Superoxide dismutase 1 mediates adaptation to the tumor microenvironment of glioma cells via mammalian target of rapamycin complex 1. Cell Death Discov 2024; 10:379. [PMID: 39187509 PMCID: PMC11347576 DOI: 10.1038/s41420-024-02145-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
In glioblastoma (GB) cells oxidative stress is induced by both, conditions of the tumor microenvironment as well as by therapeutic interventions. Upregulation of superoxide dismutase 1 (SOD1), a key enzyme for oxidative defense and downstream target of mammalian target of rapamycin complex 1 (mTORC1) is a candidate mechanism to sustain survival and proliferation of tumor cells. SOD1 was inhibited by shRNA mediated gene suppression, CRISPR/Cas9 knockout and pharmacological inhibition in human (primary) GB cells. SOD1 activity was determined by SOD1/2 activity assay. ROS levels, cell death and the NADPH/NADP-ratio were measured under normal and starvation conditions. To study the mTORC1-SOD1 axis, mTORC1 activated TSC2 knockdown cells (TSC2sh) were analyzed. Genetic and pharmacological inhibition of SOD1 correlated with decreased SOD1 activity, increased ROS and enhanced the sensitivity of glioma cells towards starvation- and hypoxia-induced cell death. This was accompanied by a decreased NADPH/NADP-ratio. Furthermore, combination therapy of SOD1 and mTORC1 inhibition partially rescued the protective effect of mTORC1 inhibitor monotherapy. SOD1 mediates adaptation of GB cells to stress conditions in the tumor microenvironment in a mTORC1-dependent manner. Moreover, SOD1 activation contributes to the cell death resistance conferred by mTORC1 inhibitors under hypoxic conditions.
Collapse
Affiliation(s)
- Sven König
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Florian Strassheimer
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Nadja I Brandner
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Jan-Hendrik Schröder
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Hans Urban
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Leander F Harwart
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Stephanie Hehlgans
- Goethe University Frankfurt, University Hospital, Department of Radiotherapy and Oncology, Frankfurt am Main, Germany
| | - Joachim P Steinbach
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Michael W Ronellenfitsch
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany
| | - Anna-Luisa Luger
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Neurooncology, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, a partnership between DKFZ and University Hospital Frankfurt, Frankfurt am Main, Germany.
- Goethe University Frankfurt, Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany.
- Goethe University Frankfurt, University Hospital, University Cancer Center (UCT), Frankfurt am Main, Germany.
| |
Collapse
|
32
|
Martin LJ, Koh SJ, Price A, Park D, Kim BW. Nuclear Localization of Human SOD1 in Motor Neurons in Mouse Model and Patient Amyotrophic Lateral Sclerosis: Possible Links to Cholinergic Phenotype, NADPH Oxidase, Oxidative Stress, and DNA Damage. Int J Mol Sci 2024; 25:9106. [PMID: 39201793 PMCID: PMC11354607 DOI: 10.3390/ijms25169106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease that causes degeneration of motor neurons (MNs) and paralysis. ALS can be caused by mutations in the gene that encodes copper/zinc superoxide dismutase (SOD1). SOD1 is known mostly as a cytosolic antioxidant protein, but SOD1 is also in the nucleus of non-transgenic (tg) and human SOD1 (hSOD1) tg mouse MNs. SOD1's nuclear presence in different cell types and subnuclear compartmentations are unknown, as are the nuclear functions of SOD1. We examined hSOD1 nuclear localization and DNA damage in tg mice expressing mutated and wildtype variants of hSOD1 (hSOD1-G93A and hSOD1-wildtype). We also studied ALS patient-derived induced pluripotent stem (iPS) cells to determine the nuclear presence of SOD1 in undifferentiated and differentiated MNs. In hSOD1-G93A and hSOD1-wildtype tg mice, choline acetyltransferase (ChAT)-positive MNs had nuclear hSOD1, but while hSOD1-wildtype mouse MNs also had nuclear ChAT, hSOD1-G93A mouse MNs showed symptom-related loss of nuclear ChAT. The interneurons had preserved parvalbumin nuclear positivity in hSOD1-G93A mice. hSOD1-G93A was seen less commonly in spinal cord astrocytes and, notably, oligodendrocytes, but as the disease emerged, the oligodendrocytes had increased mutant hSOD1 nuclear presence. Brain and spinal cord subcellular fractionation identified mutant hSOD1 in soluble nuclear extracts of the brain and spinal cord, but mutant hSOD1 was concentrated in the chromatin nuclear extract only in the spinal cord. Nuclear extracts from mutant hSOD1 tg mouse spinal cords had altered protein nitration, footprinting peroxynitrite presence, and the intact nuclear extracts had strongly increased superoxide production as well as the active NADPH oxidase marker, p47phox. The comet assay showed that MNs from hSOD1-G93A mice progressively (6-14 weeks of age) accumulated DNA single-strand breaks. Ablation of the NCF1 gene, encoding p47phox, and pharmacological inhibition of NADPH oxidase with systemic treatment of apocynin (10 mg/kg, ip) extended the mean lifespan of hSOD1-G93A mice by about 25% and mitigated genomic DNA damage progression. In human postmortem CNS, SOD1 was found in the nucleus of neurons and glia; nuclear SOD1 was increased in degenerating neurons in ALS cases and formed inclusions. Human iPS cells had nuclear SOD1 during directed differentiation to MNs, but mutant SOD1-expressing cells failed to establish wildtype MN nuclear SOD1 levels. We conclude that SOD1 has a prominent nuclear presence in the central nervous system, perhaps adopting aberrant contexts to participate in ALS pathobiology.
Collapse
Affiliation(s)
- Lee J. Martin
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA (D.P.)
- Pathobiology Graduate Program, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| | - Shannon J. Koh
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA (D.P.)
- Texas Health Presbyterian Hospital, Dallas, TX 75231, USA
| | - Antionette Price
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA (D.P.)
| | - Dongseok Park
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA (D.P.)
| | - Byung Woo Kim
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA (D.P.)
- Pathobiology Graduate Program, Johns Hopkins University School of Medicine, 558 Ross Building, 720 Rutland Avenue, Baltimore, MD 21205-2196, USA
| |
Collapse
|
33
|
Rishi JK, Timme K, White HE, Kerns KC, Keating AF. Trajectory of primordial follicle depletion is accelerated in obese mice in response to 7,12-dimethylbenz[a]anthracene exposure†. Biol Reprod 2024; 111:483-495. [PMID: 38625059 PMCID: PMC11327319 DOI: 10.1093/biolre/ioae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/11/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024] Open
Abstract
Both obesity and exposure to environmental genotoxicants, such as 7,12-dimethylbenz[a]anthracene, negatively impair female reproductive health. Hyperphagic lean KK.Cg-a/a (n = 8) and obese KK.Cg-Ay/J (n = 10) mice were exposed to corn oil as vehicle control (CT) or 7,12-dimethylbenz[a]anthracene (1 mg/kg/day) for 7d intraperitoneally, followed by a recovery period. Obesity increased liver and spleen weight (P < 0.05), and 7,12-dimethylbenz[a]anthracene exposure decreased uterine weight (P < 0.05) in obese mice. Primordial follicle loss (P < 0.05) caused by 7,12-dimethylbenz[a]anthracene exposure was observed in obese mice only. Primary (lean P < 0.1; obese P < 0.05) and secondary (lean P < 0.05, obese P < 0.1) follicle loss initiated by 7,12-dimethylbenz[a]anthracene exposure continued across recovery. Reduced pre-antral follicle number in lean mice (P < 0.05), regardless of 7,12-dimethylbenz[a]anthracene exposure, was evident with no effect on antral follicles or corpora lutea number. Immunofluorescence staining of DNA damage marker, γH2AX, did not indicate ongoing DNA damage but TRP53 abundance was decreased in follicles (P < 0.05) of 7,12-dimethylbenz[a]anthracene-exposed obese mice. In contrast, increased (P < 0.05) superoxide dismutase was observed in the corpora lutea of 7,12-dimethylbenz[a]anthracene-exposed obese mice and reduced (P < 0.05) TRP53 abundance was noted in preantral and antral follicles of 7,12-dimethylbenz[a]anthracene-exposed obese mice. This study indicates that obesity influences ovotoxicity caused by a genotoxicant, potentially involving accelerated primordial follicle activation and hampering normal follicular dynamics.
Collapse
Affiliation(s)
- Jaspreet K Rishi
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States
| | - Kelsey Timme
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States
| | - Hunter E White
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States
| | - Karl C Kerns
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States
| |
Collapse
|
34
|
Karpinska B, Foyer CH. Superoxide signalling and antioxidant processing in the plant nucleus. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4599-4610. [PMID: 38460122 PMCID: PMC11317529 DOI: 10.1093/jxb/erae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/08/2024] [Indexed: 03/11/2024]
Abstract
The superoxide anion radical (O2·-) is a one-electron reduction product of molecular oxygen. Compared with other forms of reactive oxygen species (ROS), superoxide has limited reactivity. Nevertheless, superoxide reacts with nitric oxide, ascorbate, and the iron moieties of [Fe-S] cluster-containing proteins. Superoxide has largely been neglected as a signalling molecule in the plant literature in favour of the most stable ROS form, hydrogen peroxide. However, superoxide can accumulate in plant cells, particularly in meristems, where superoxide dismutase activity and ascorbate accumulation are limited (or absent), or when superoxide is generated within the lipid environment of membranes. Moreover, oxidation of the nucleus in response to environmental stresses is a widespread phenomenon. Superoxide is generated in many intracellular compartments including mitochondria, chloroplasts, and on the apoplastic/cell wall face of the plasma membrane. However, nuclear superoxide production and functions remain poorly documented in plants. Accumulating evidence suggests that the nuclear pools of antioxidants such as glutathione are discrete and separate from the cytosolic pools, allowing compartment-specific signalling in the nucleus. We consider the potential mechanisms of superoxide generation and targets in the nucleus, together with the importance of antioxidant processing in regulating superoxide signalling.
Collapse
Affiliation(s)
- Barbara Karpinska
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
35
|
Dard A, Van Breusegem F, Mhamdi A. Redox regulation of gene expression: proteomics reveals multiple previously undescribed redox-sensitive cysteines in transcription complexes and chromatin modifiers. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4476-4493. [PMID: 38642390 DOI: 10.1093/jxb/erae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Redox signalling is crucial for regulating plant development and adaptation to environmental changes. Proteins with redox-sensitive cysteines can sense oxidative stress and modulate their functions. Recent proteomics efforts have comprehensively mapped the proteins targeted by oxidative modifications. The nucleus, the epicentre of transcriptional reprogramming, contains a large number of proteins that control gene expression. Specific redox-sensitive transcription factors have long been recognized as key players in decoding redox signals in the nucleus and thus in regulating transcriptional responses. Consequently, the redox regulation of the nuclear transcription machinery and its cofactors has received less attention. In this review, we screened proteomic datasets for redox-sensitive cysteines on proteins of the core transcription complexes and chromatin modifiers in Arabidopsis thaliana. Our analysis indicates that redox regulation affects every step of gene transcription, from initiation to elongation and termination. We report previously undescribed redox-sensitive subunits in transcription complexes and discuss the emerging challenges in unravelling the landscape of redox-regulated processes involved in nuclear gene transcription.
Collapse
Affiliation(s)
- Avilien Dard
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| |
Collapse
|
36
|
Bedja-Iacona L, Richard E, Marouillat S, Brulard C, Alouane T, Beltran S, Andres CR, Blasco H, Corcia P, Veyrat-Durebex C, Vourc’h P. Post-Translational Variants of Major Proteins in Amyotrophic Lateral Sclerosis Provide New Insights into the Pathophysiology of the Disease. Int J Mol Sci 2024; 25:8664. [PMID: 39201350 PMCID: PMC11354932 DOI: 10.3390/ijms25168664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Post-translational modifications (PTMs) affecting proteins during or after their synthesis play a crucial role in their localization and function. The modification of these PTMs under pathophysiological conditions, i.e., their appearance, disappearance, or variation in quantity caused by a pathological environment or a mutation, corresponds to post-translational variants (PTVs). These PTVs can be directly or indirectly involved in the pathophysiology of diseases. Here, we present the PTMs and PTVs of four major amyotrophic lateral sclerosis (ALS) proteins, SOD1, TDP-43, FUS, and TBK1. These modifications involve acetylation, phosphorylation, methylation, ubiquitination, SUMOylation, and enzymatic cleavage. We list the PTM positions known to be mutated in ALS patients and discuss the roles of PTVs in the pathophysiological processes of ALS. In-depth knowledge of the PTMs and PTVs of ALS proteins is needed to better understand their role in the disease. We believe it is also crucial for developing new therapies that may be more effective in ALS.
Collapse
Affiliation(s)
- Léa Bedja-Iacona
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
| | - Elodie Richard
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
| | - Sylviane Marouillat
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
| | | | | | - Stéphane Beltran
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Neurologie, CHRU de Tours, 37000 Tours, France
| | - Christian R. Andres
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Hélène Blasco
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Philippe Corcia
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- Service de Neurologie, CHRU de Tours, 37000 Tours, France
| | - Charlotte Veyrat-Durebex
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- UTTIL, CHRU de Tours, 37000 Tours, France
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| | - Patrick Vourc’h
- UMR 1253, iBraiN, Université de Tours, Inserm, 37000 Tours, France; lea.bedja-- (L.B.-I.); (E.R.)
- UTTIL, CHRU de Tours, 37000 Tours, France
- Service de Biochimie et de Biologie Moléculaire, CHRU de Tours, 37000 Tours, France
| |
Collapse
|
37
|
Ma W, Luo H, Lv J, Wen P, Liu G, Yu Z, Yang Z, Huang W. Immunoregulatory Engineering of Semiconducting Charge-Reversal Nanoantioxidant for Ameliorating Cancer Radioimmunotheranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402929. [PMID: 38847976 DOI: 10.1002/adma.202402929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Radiotherapy (RT) is a crucial clinical modality for cancer. However, nonselectivity, toxicity to normal tissues, and radio-resistance severely limit RT applications. This study develops a versatile X-ray theranostic nano-antioxidant (XTN) to prevent normal tissues from oxidative damage and induce systematic and robust anticancer immunity. XTN owns NIR-II photoacoustic (PA) imaging properties for precise discrimination of the tumor margin through, thereby improving the accuracy of RT. Additionally, XTN is a nano-antioxidant to enhance the cell viability of normal cells after irradiation. Most importantly, XTN scavenges reactive oxygen species (ROS) in the TME to preserve the stimulatory activity of released high mobility group protein B1 to dendritic cells (DCs) and recover T cells' immune function. Meanwhile, XTN achieves charge-reversal specifically releasing an immunomodulator (demethylcantharidin, DMC) in the acidic TME. Moreover, the specifically released DMC inhibits protein phosphatase-2A activity and reduces regulatory T cell (Treg) differentiation. In the bilateral 4T1 tumor model, XTN-mediated radioimmunotherapy remarkably boosts a systemic antitumor immune response and induces durable immunological memory against tumor growth.
Collapse
Affiliation(s)
- Wen Ma
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Haifen Luo
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Jingqi Lv
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Peiye Wen
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang an Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong, 523018, China
| | - Zhen Yang
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Wei Huang
- Strait Laboratory of Flexible Electronics (SLoFE), Fujian Key Laboratory of Flexible Electronics, Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
38
|
de Holanda Paranhos L, Magalhães RSS, de Araújo Brasil A, Neto JRM, Ribeiro GD, Queiroz DD, Dos Santos VM, Eleutherio ECA. The familial amyotrophic lateral sclerosis-associated A4V SOD1 mutant is not able to regulate aerobic glycolysis. Biochim Biophys Acta Gen Subj 2024; 1868:130634. [PMID: 38788983 DOI: 10.1016/j.bbagen.2024.130634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Under certain stress conditions, astrocytes operate in aerobic glycolysis, a process controlled by pyruvate dehydrogenase (PDH) inhibition through its E1 α subunit (Pda1) phosphorylation. This supplies lactate to neurons, which save glucose to obtain NADPH to, among other roles, counteract reactive oxygen species. A failure in this metabolic cooperation causes severe damage to neurons. In this work, using humanized Saccharomyces cerevisiae cells in which its endogenous Cu/Zn Superoxide Dismutase (SOD1) was replaced by human ortholog, we investigated the role of human SOD1 (hSOD1) in aerobic glycolysis regulation and its implications to amyotrophic lateral sclerosis (ALS), a neurodegenerative disease. Yeast cells ferment glucose even in the presence of oxygen and switch to respiratory metabolism after glucose exhaustion. However, like cells of SOD1-knockout strain, cells expressing A4V mutant of hSOD1 growing on glucose showed a respiratory phenotype, i.e., low glucose and high oxygen consumptions and low intracellular oxidation levels in response to peroxide stress, contrary to cells expressing wild-type (WT) SOD1 (yeast or human). The A4V mutation in hSOD1 is linked to ALS. In contrast to WT SOD1 strains, PDH activity of both sod1Δ and A4V hSOD1 cells did not change in response to a metabolic shift toward oxidative metabolism, which was associated to lower Pda1 phosphorylation levels under growth on glucose. Taken together, our results suggest that A4V mutant cannot regulate aerobic glycolysis via Pda1 phosphorylation the same way WT hSOD1, which might be linked to problems observed in the motor neurons of ALS patients with the SOD1 A4V mutation.
Collapse
Affiliation(s)
- Luan de Holanda Paranhos
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Brazil
| | | | - Aline de Araújo Brasil
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Brazil
| | | | - Gabriela Delaqua Ribeiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Daniela Dias Queiroz
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Vanessa Mattos Dos Santos
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Brazil
| | | |
Collapse
|
39
|
Cobley JN, Margaritelis NV, Chatzinikolaou PN, Nikolaidis MG, Davison GW. Ten "Cheat Codes" for Measuring Oxidative Stress in Humans. Antioxidants (Basel) 2024; 13:877. [PMID: 39061945 PMCID: PMC11273696 DOI: 10.3390/antiox13070877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Formidable and often seemingly insurmountable conceptual, technical, and methodological challenges hamper the measurement of oxidative stress in humans. For instance, fraught and flawed methods, such as the thiobarbituric acid reactive substances assay kits for lipid peroxidation, rate-limit progress. To advance translational redox research, we present ten comprehensive "cheat codes" for measuring oxidative stress in humans. The cheat codes include analytical approaches to assess reactive oxygen species, antioxidants, oxidative damage, and redox regulation. They provide essential conceptual, technical, and methodological information inclusive of curated "do" and "don't" guidelines. Given the biochemical complexity of oxidative stress, we present a research question-grounded decision tree guide for selecting the most appropriate cheat code(s) to implement in a prospective human experiment. Worked examples demonstrate the benefits of the decision tree-based cheat code selection tool. The ten cheat codes define an invaluable resource for measuring oxidative stress in humans.
Collapse
Affiliation(s)
- James N. Cobley
- The University of Dundee, Dundee DD1 4HN, UK
- Ulster University, Belfast BT15 1ED, Northern Ireland, UK;
| | - Nikos V. Margaritelis
- Aristotle University of Thessaloniki, 62122 Serres, Greece; (N.V.M.); (P.N.C.); (M.G.N.)
| | | | - Michalis G. Nikolaidis
- Aristotle University of Thessaloniki, 62122 Serres, Greece; (N.V.M.); (P.N.C.); (M.G.N.)
| | | |
Collapse
|
40
|
Min JH, Sarlus H, Harris RA. Copper toxicity and deficiency: the vicious cycle at the core of protein aggregation in ALS. Front Mol Neurosci 2024; 17:1408159. [PMID: 39050823 PMCID: PMC11267976 DOI: 10.3389/fnmol.2024.1408159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The pathophysiology of ALS involves many signs of a disruption in copper homeostasis, with both excess free levels and functional deficiency likely occurring simultaneously. This is crucial, as many important physiological functions are performed by cuproenzymes. While it is unsurprising that many ALS symptoms are related to signs of copper deficiency, resulting in vascular, antioxidant system and mitochondrial oxidative respiration deficiencies, there are also signs of copper toxicity such as ROS generation and enhanced protein aggregation. We discuss how copper also plays a key role in proteostasis and interacts either directly or indirectly with many of the key aggregate-prone proteins implicated in ALS, such as TDP-43, C9ORF72, SOD1 and FUS as well as the effect of their aggregation on copper homeostasis. We suggest that loss of cuproprotein function is at the core of ALS pathology, a condition that is driven by a combination of unbound copper and ROS that can either initiate and/or accelerate protein aggregation. This could trigger a positive feedback cycle whereby protein aggregates trigger the aggregation of other proteins in a chain reaction that eventually captures elements of the proteostatic mechanisms in place to counteract them. The end result is an abundance of aggregated non-functional cuproproteins and chaperones alongside depleted intracellular copper stores, resulting in a general lack of cuproenzyme function. We then discuss the possible aetiology of ALS and illustrate how strong risk factors including environmental toxins such as BMAA and heavy metals can functionally behave to promote protein aggregation and disturb copper metabolism that likely drives this vicious cycle in sporadic ALS. From this synthesis, we propose restoration of copper balance using copper delivery agents in combination with chaperones/chaperone mimetics, perhaps in conjunction with the neuroprotective amino acid serine, as a promising strategy in the treatment of this incurable disease.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
41
|
Rajabloo Y, Latifi H, Akhlaghipour I, Taghehchian N, Moghbeli M. MicroRNA-409: Molecular functions and clinical applications in cancer. Biochem Biophys Rep 2024; 38:101728. [PMID: 38737729 PMCID: PMC11087923 DOI: 10.1016/j.bbrep.2024.101728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/30/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024] Open
Abstract
Late diagnosis is one of the main reasons for high mortality rates in cancer patients. Therefore, investigating the molecular mechanisms involved in tumor progression can improve the cancer diagnosis in the early stages of the tumor progression. MicroRNAs (miRNAs) have important roles in regulation of cell growth, proliferation, metabolism, and migration. Since, deregulation of miR-409 has been reported in a wide range of cancers, in the present review, we investigated the molecular mechanisms of miR-409 during tumor progression and invasion. It has been shown that miR-409 functions as a tumor suppressor in different tumor types. MiR-409 can reduce tumor cell proliferation, growth, and migration by regulation of signaling pathways, cellular metabolism, transcription factors, and cellular adhesion. This review can be an effective step in introducing miR-409 as a non-invasive marker in cancer patients.
Collapse
Affiliation(s)
- Yasamin Rajabloo
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Latifi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
42
|
Masanta S, Wiesyk A, Panja C, Pilch S, Ciesla J, Sipko M, De A, Enkhbaatar T, Maslanka R, Skoneczna A, Kucharczyk R. Fmp40 ampylase regulates cell survival upon oxidative stress by controlling Prx1 and Trx3 oxidation. Redox Biol 2024; 73:103201. [PMID: 38795545 PMCID: PMC11140801 DOI: 10.1016/j.redox.2024.103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024] Open
Abstract
Reactive oxygen species (ROS), play important roles in cellular signaling, nonetheless are toxic at higher concentrations. Cells have many interconnected, overlapped or backup systems to neutralize ROS, but their regulatory mechanisms remain poorly understood. Here, we reveal an essential role for mitochondrial AMPylase Fmp40 from budding yeast in regulating the redox states of the mitochondrial 1-Cys peroxiredoxin Prx1, which is the only protein shown to neutralize H2O2 with the oxidation of the mitochondrial glutathione and the thioredoxin Trx3, directly involved in the reduction of Prx1. Deletion of FMP40 impacts a cellular response to H2O2 treatment that leads to programmed cell death (PCD) induction and an adaptive response involving up or down regulation of genes encoding, among others the catalase Cta1, PCD inducing factor Aif1, and mitochondrial redoxins Trx3 and Grx2. This ultimately perturbs the reduced glutathione and NADPH cellular pools. We further demonstrated that Fmp40 AMPylates Prx1, Trx3, and Grx2 in vitro and interacts with Trx3 in vivo. AMPylation of the threonine residue 66 in Trx3 is essential for this protein's proper endogenous level and its precursor forms' maturation under oxidative stress conditions. Additionally, we showed the Grx2 involvement in the reduction of Trx3 in vivo. Taken together, Fmp40, through control of the reduction of mitochondrial redoxins, regulates the hydrogen peroxide, GSH and NADPH signaling influencing the yeast cell survival.
Collapse
Affiliation(s)
- Suchismita Masanta
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Aneta Wiesyk
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Chiranjit Panja
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Sylwia Pilch
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Jaroslaw Ciesla
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Marta Sipko
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Abhipsita De
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Tuguldur Enkhbaatar
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Roman Maslanka
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland.
| |
Collapse
|
43
|
Zeinoun B, Teixeira MT, Barascu A. Hog1 acts in a Mec1-independent manner to counteract oxidative stress following telomerase inactivation in Saccharomyces cerevisiae. Commun Biol 2024; 7:761. [PMID: 38909140 PMCID: PMC11193714 DOI: 10.1038/s42003-024-06464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/18/2024] [Indexed: 06/24/2024] Open
Abstract
Replicative senescence is triggered when telomeres reach critically short length and activate permanent DNA damage checkpoint-dependent cell cycle arrest. Mitochondrial dysfunction and increase in oxidative stress are both features of replicative senescence in mammalian cells. However, how reactive oxygen species levels are controlled during senescence is elusive. Here, we show that reactive oxygen species levels increase in the telomerase-negative cells of Saccharomyces cerevisiae during replicative senescence, and that this coincides with the activation of Hog1, a mammalian p38 MAPK ortholog. Hog1 counteracts increased ROS levels during replicative senescence. While Hog1 deletion accelerates replicative senescence, we found this could stem from a reduced cell viability prior to telomerase inactivation. ROS levels also increase upon telomerase inactivation when Mec1, the yeast ortholog of ATR, is mutated, suggesting that oxidative stress is not simply a consequence of DNA damage checkpoint activation in budding yeast. We speculate that oxidative stress is a conserved hallmark of telomerase-negative eukaryote cells, and that its sources and consequences can be dissected in S. cerevisiae.
Collapse
Affiliation(s)
- Bechara Zeinoun
- Sorbonne Université, PSL, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005, Paris, France
| | - Maria Teresa Teixeira
- Sorbonne Université, PSL, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005, Paris, France.
| | - Aurélia Barascu
- Sorbonne Université, PSL, CNRS, UMR8226, Institut de Biologie Physico-Chimique, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, F-75005, Paris, France.
| |
Collapse
|
44
|
Consoli GML, Maugeri L, Musso N, Gulino A, D'Urso L, Bonacci P, Buscarino G, Forte G, Petralia S. One-Pot Synthesis of Luminescent and Photothermal Carbon Boron-Nitride Quantum Dots Exhibiting Cell Damage Protective Effects. Adv Healthc Mater 2024; 13:e2303692. [PMID: 38508224 DOI: 10.1002/adhm.202303692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/26/2024] [Indexed: 03/22/2024]
Abstract
Zero-dimensional boron nitride quantum dots (BNQDs) are arousing interest for their versatile optical, chemical, and biochemical properties. Introducing carbon contents in BNQDs nanostructures is a great challenge to modulate their physicochemical properties. Among the carbon moieties, phenolic groups have attracted attention for their biochemical properties and phenol-containing nanomaterials are showing great promise for biomedical applications. Herein, the first example of direct synthesis of water dispersible BNQDs exposing phenolic and carboxylic groups is presented. The carbon-BNQDs are prepared in a single-step by solvent-assisted reaction of urea with boronic reagents and are characterized by optical absorption, luminescence, Raman, Fourier transform infrared and NMR spectroscopy, X-ray photoelectron spectroscopy, dynamic light scattering, and atomic force microscopy. The carbon-BNQDs exhibit nanodimension, stability, high photothermal conversion efficiency, pH-responsive luminescence and Z-potential. The potential of the carbon-BNQDs to provide photothermal materials in solid by embedding in agarose substrate is successfully investigated. The carbon-BNQDs exhibit biocompatibility on colorectal adenocarcinoma cells (Caco-2) and protective effects from chemical and oxidative stress on Caco-2, osteosarcoma (MG-63), and microglial (HMC-3) cells. Amplicon mRNA-seq analyses for the expression of 56 genes involve in oxidative-stress and inflammation are performed to evaluate the molecular events responsible for the cell protective effects of the carbon-BNQDs.
Collapse
Affiliation(s)
- Grazia M L Consoli
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, Catania, 95126, Italy
- CIB-Interuniversity Consortium for Biotechnologies U.O. of Catania, Via Flavia, 23/1, Trieste, 34148, Italy
| | - Ludovica Maugeri
- Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, Catania, 95125, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, Catania, Italy
| | - Antonino Gulino
- Department of Chemical Science, University of Catania and I.N.S.T.M. UdR of Catania, Via Santa Sofia 64, Catania, 95125, Italy
| | - Luisa D'Urso
- Department of Chemical Science, University of Catania and I.N.S.T.M. UdR of Catania, Via Santa Sofia 64, Catania, 95125, Italy
| | - Paolo Bonacci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, Catania, Italy
| | - Gianpiero Buscarino
- Department of Physic and Chemistry, University of Palermo, Via Archirafi 36, Palermo, Italy
| | - Giuseppe Forte
- Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, Catania, 95125, Italy
| | - Salvatore Petralia
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, Catania, 95126, Italy
- CIB-Interuniversity Consortium for Biotechnologies U.O. of Catania, Via Flavia, 23/1, Trieste, 34148, Italy
- Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, Catania, 95125, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, Catania, 95124, Italy
| |
Collapse
|
45
|
Liu Z, Wang T, Zhang L, Luo Y, Zhao J, Chen Y, Wang Y, Cao W, Zhao X, Lu B, Chen F, Zhou Z, Zheng L. Metal-Phenolic Networks-Reinforced Extracellular Matrix Scaffold for Bone Regeneration via Combining Radical-Scavenging and Photo-Responsive Regulation of Microenvironment. Adv Healthc Mater 2024; 13:e2304158. [PMID: 38319101 DOI: 10.1002/adhm.202304158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/24/2024] [Indexed: 02/07/2024]
Abstract
The limited regulation strategies of the regeneration microenvironment significantly hinder bone defect repair effectiveness. One potential solution is using biomaterials capable of releasing bioactive ions and biomolecules. However, most existing biomaterials lack real-time control features, failing to meet high regulation requirements. Herein, a new Strontium (Sr) and epigallocatechin-3-gallate (EGCG) based metal-phenolic network with polydopamine (PMPNs) modification is prepared. This material reinforces a biomimetic scaffold made of extracellular matrix (ECM) and hydroxyapatite nanowires (nHAW). The PMPNs@ECM/nHAW scaffold demonstrates exceptional scavenging of free radicals and reactive oxygen species (ROS), promoting HUVECs cell migration and angiogenesis, inducing stem cell osteogenic differentiation, and displaying high biocompatibility. Additionally, the PMPNs exhibit excellent photothermal properties, further enhancing the scaffold's bioactivities. In vivo studies confirm that PMPNs@ECM/nHAW with near-infrared (NIR) stimulation significantly promotes angiogenesis and osteogenesis, effectively regulating the microenvironment and facilitating bone tissue repair. This research not only provides a biomimetic scaffold for bone regeneration but also introduces a novel strategy for designing advanced biomaterials. The combination of real-time photothermal intervention and long-term chemical intervention, achieved through the release of bioactive molecules/ions, represents a promising direction for future biomaterial development.
Collapse
Affiliation(s)
- Zhiqing Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Tianlong Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Lei Zhang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yiping Luo
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Jinhui Zhao
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yixing Chen
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yao Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Wentao Cao
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xinyu Zhao
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Bingqiang Lu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Feng Chen
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Zifei Zhou
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Longpo Zheng
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Shanghai Trauma Emergency Center, Shanghai, 200072, China
- Orthopedic Intelligent Minimally Invasive Diagnosis & Treatment Center, Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| |
Collapse
|
46
|
Bonetti M, Giugno L, Borsani E, Bonomini F. Potential Neuroprotective Effect of Melatonin in the Hippocampus of Male BTBR Mice. Nutrients 2024; 16:1652. [PMID: 38892585 PMCID: PMC11174678 DOI: 10.3390/nu16111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder identified by impairments in common social interactions and repetitive behaviors. In ASD patients, substantial morphological alterations have been observed in the hippocampus, which represents an important region for the development of social skills. Melatonin, commonly found in many foods and plants, is also produced by the pineal gland. This indolamine, known to regulate the circadian rhythm, shows antioxidant and anti-inflammatory properties. We therefore hypothesized that melatonin may reduce oxidative stress and inflammation in the hippocampus of ASD patients. We explored our hypothesis using the BTBR mouse, a well-regarded murine transgenic model for ASD. Immediately after weaning, male BTBR and C57BL/6 mice underwent an 8-week treatment with melatonin or vehicle. Later, through immunohistochemistry and the immunoblotting analysis of the hippocampus, we evaluated the overall expression and cellular localization of Nrf2 and SOD1, two enzymes involved in the oxidative stress response. Similarly, we evaluated NLRP3 and NFkB, two mediators of inflammation, and GAD67, an enzyme responsible for the synthesis of GABA. Ultimately, we addressed melatonin's potential to regulate iron metabolism through a DAB-enhanced Perls reaction assay. Results showed melatonin's potential for modulating the analyzed markers in BTBR mice, suggesting a potential neuroprotective effect in ASD patients.
Collapse
Affiliation(s)
- Matteo Bonetti
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.B.); (L.G.); (E.B.)
| | - Lorena Giugno
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.B.); (L.G.); (E.B.)
| | - Elisa Borsani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.B.); (L.G.); (E.B.)
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
| | - Francesca Bonomini
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (M.B.); (L.G.); (E.B.)
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
47
|
Nguyen L. Updates on Disease Mechanisms and Therapeutics for Amyotrophic Lateral Sclerosis. Cells 2024; 13:888. [PMID: 38891021 PMCID: PMC11172142 DOI: 10.3390/cells13110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS), or Lou Gehrig's disease, is a motor neuron disease. In ALS, upper and lower motor neurons in the brain and spinal cord progressively degenerate during the course of the disease, leading to the loss of the voluntary movement of the arms and legs. Since its first description in 1869 by a French neurologist Jean-Martin Charcot, the scientific discoveries on ALS have increased our understanding of ALS genetics, pathology and mechanisms and provided novel therapeutic strategies. The goal of this review article is to provide a comprehensive summary of the recent findings on ALS mechanisms and related therapeutic strategies to the scientific audience. Several highlighted ALS research topics discussed in this article include the 2023 FDA approved drug for SOD1 ALS, the updated C9orf72 GGGGCC repeat-expansion-related mechanisms and therapeutic targets, TDP-43-mediated cryptic splicing and disease markers and diagnostic and therapeutic options offered by these recent discoveries.
Collapse
Affiliation(s)
- Lien Nguyen
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
48
|
Ramos-Acosta C, Huerta-Pantoja L, Salazar-Hidalgo ME, Mayol E, Jiménez-Vega S, García-Peña P, Jordi-Cruz J, Baquero C, Porras A, Íñigo-Rodríguez B, Benavente CM, López-Pastor AR, Gómez-Delgado I, Urcelay E, Candel FJ, Anguita E. Tigecycline Opposes Bortezomib Effect on Myeloma Cells Decreasing Mitochondrial Reactive Oxygen Species Production. Int J Mol Sci 2024; 25:4887. [PMID: 38732105 PMCID: PMC11084384 DOI: 10.3390/ijms25094887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Multiple myeloma is an incurable plasma cell malignancy. Most patients end up relapsing and developing resistance to antineoplastic drugs, like bortezomib. Antibiotic tigecycline has activity against myeloma. This study analyzed tigecycline and bortezomib combination on cell lines and plasma cells from myeloma patients. Apoptosis, autophagic vesicles, mitochondrial mass, mitochondrial superoxide, cell cycle, and hydrogen peroxide were studied by flow cytometry. In addition, mitochondrial antioxidants and electron transport chain complexes were quantified by reverse transcription real-time PCR (RT-qPCR) or western blot. Cell metabolism and mitochondrial activity were characterized by Seahorse and RT-qPCR. We found that the addition of tigecycline to bortezomib reduces apoptosis in proportion to tigecycline concentration. Supporting this, the combination of both drugs counteracts bortezomib in vitro individual effects on the cell cycle, reduces autophagy and mitophagy markers, and reverts bortezomib-induced increase in mitochondrial superoxide. Changes in mitochondrial homeostasis and MYC upregulation may account for some of these findings. These data not only advise to avoid considering tigecycline and bortezomib combination for treating myeloma, but caution on the potential adverse impact of treating infections with this antibiotic in myeloma patients under bortezomib treatment.
Collapse
Affiliation(s)
- Carlos Ramos-Acosta
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Laura Huerta-Pantoja
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Milton Eduardo Salazar-Hidalgo
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Elsa Mayol
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Selene Jiménez-Vega
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Pablo García-Peña
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Jenifeer Jordi-Cruz
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Cristina Baquero
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (C.B.); (A.P.)
| | - Almudena Porras
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (C.B.); (A.P.)
| | - Belén Íñigo-Rodríguez
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Celina M. Benavente
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Andrea R. López-Pastor
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (I.G.-D.); (E.U.)
- Networks for Cooperative Research in Health Results (RICORS, REI), 28089 Madrid, Spain
| | - Irene Gómez-Delgado
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (I.G.-D.); (E.U.)
- Networks for Cooperative Research in Health Results (RICORS, REI), 28089 Madrid, Spain
| | - Elena Urcelay
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (I.G.-D.); (E.U.)
- Networks for Cooperative Research in Health Results (RICORS, REI), 28089 Madrid, Spain
| | - Francisco Javier Candel
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Clinical Microbiology & Infectious Diseases, Transplant Coordination, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Eduardo Anguita
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| |
Collapse
|
49
|
Yuan B, Wang WB, Wang YT, Zhao XQ. Regulatory mechanisms underlying yeast chemical stress response and development of robust strains for bioproduction. Curr Opin Biotechnol 2024; 86:103072. [PMID: 38330874 DOI: 10.1016/j.copbio.2024.103072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
Yeast is widely studied in producing biofuels and biochemicals using renewable biomass. Among various yeasts, Saccharomyces cerevisiae has been particularly recognized as an important yeast cell factory. However, economic bioproduction using S. cerevisiae is challenged by harsh environments during fermentation, among which inhibitory chemicals in the culture media or toxic products are common experiences. Understanding the stress-responsive mechanisms is conducive to developing robust yeast strains. Here, we review recent progress in mechanisms underlying yeast stress response, including regulation of cell wall integrity, membrane transport, antioxidative system, and gene transcription. We highlight epigenetic regulation of stress response and summarize manipulation of yeast stress tolerance for improved bioproduction. Prospects in the application of machine learning to improve production efficiency are also discussed.
Collapse
Affiliation(s)
- Bing Yuan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei-Bin Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ya-Ting Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
50
|
Gumusoglu SB, Kiel MD, Gugel A, Schickling BM, Weaver KR, Lauffer MC, Sullivan HR, Coulter KJ, Blaine BM, Kamal M, Zhang Y, Devor EJ, Santillan DA, Gantz SC, Santillan MK. Anti-angiogenic mechanisms and serotonergic dysfunction in the Rgs2 knockout model for the study of psycho-obstetric risk. Neuropsychopharmacology 2024; 49:864-875. [PMID: 37848733 PMCID: PMC10948883 DOI: 10.1038/s41386-023-01749-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
Psychiatric and obstetric diseases are growing threats to public health and share high rates of co-morbidity. G protein-coupled receptor signaling (e.g., vasopressin, serotonin) may be a convergent psycho-obstetric risk mechanism. Regulator of G Protein Signaling 2 (RGS2) mutations increase risk for both the gestational disease preeclampsia and for depression. We previously found preeclampsia-like, anti-angiogenic obstetric phenotypes with reduced placental Rgs2 expression in mice. Here, we extend this to test whether conserved cerebrovascular and serotonergic mechanisms are also associated with risk for neurobiological phenotypes in the Rgs2 KO mouse. Rgs2 KO exhibited anxiety-, depression-, and hedonic-like behaviors. Cortical vascular density and vessel length decreased in Rgs2 KO; cortical and white matter thickness and cell densities were unchanged. In Rgs2 KO, serotonergic gene expression was sex-specifically changed (e.g., cortical Htr2a, Maoa increased in females but all serotonin targets unchanged or decreased in males); redox-related expression increased in paraventricular nucleus and aorta; and angiogenic gene expression was changed in male but not female cortex. Whole-cell recordings from dorsal raphe serotonin neurons revealed altered 5-HT1A receptor-dependent inhibitory postsynaptic currents (5-HT1A-IPSCs) in female but not male KO neurons. Additionally, serotonin transporter blockade by the SSRI sertraline increased the amplitude and time-to-peak of 5-HT1A-IPSCs in KO neurons to a greater extent than in WT neurons in females only. These results demonstrate behavioral, cerebrovascular, and sertraline hypersensitivity phenotypes in Rgs2 KOs, some of which are sex-specific. Disruptions may be driven by vascular and cell stress mechanisms linking the shared pathogenesis of psychiatric and obstetric disease to reveal future targets.
Collapse
Affiliation(s)
- Serena B Gumusoglu
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, USA
| | - Michaela D Kiel
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Aleigha Gugel
- Iowa Neuroscience Institute, University of Iowa, Iowa City, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Brandon M Schickling
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Kaylee R Weaver
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Marisol C Lauffer
- Iowa Neuroscience Institute, University of Iowa, Iowa City, USA
- Neural Circuits and Behavior Core, Iowa Neuroscience Institute, University of Iowa, Iowa City, USA
| | - Hannah R Sullivan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Kaylie J Coulter
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Brianna M Blaine
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Mushroor Kamal
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Yuping Zhang
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Eric J Devor
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Donna A Santillan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Stephanie C Gantz
- Iowa Neuroscience Institute, University of Iowa, Iowa City, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Mark K Santillan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, USA.
| |
Collapse
|