1
|
Shen SY, Wu C, Yang ZQ, Wang KX, Shao ZH, Yan W. Advances in cannabinoid receptors pharmacology: from receptor structural insights to ligand discovery. Acta Pharmacol Sin 2025:10.1038/s41401-024-01472-9. [PMID: 39910211 DOI: 10.1038/s41401-024-01472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/26/2024] [Indexed: 02/07/2025]
Abstract
The medicinal and recreational uses of Cannabis sativa have been recognized for thousands of years. Today, cannabis-derived medicines are used to treat a variety of conditions, including chronic pain, epilepsy, multiple sclerosis, and chemotherapy-induced nausea. However, cannabis use disorder (CUD) has become the third most prevalent substance use disorder globally. Cannabinoid receptors are the primary targets that mediate the effects of cannabis and its analogs. Despite their importance, the mechanisms of modulation and the full therapeutic potential of cannabinoid receptors remain unclear, hindering the development of the next generation of cannabinoid-based drugs. This review summarizes the discovery and medicinal potential of phytocannabinoids and explores the distribution, signaling pathways, and functional roles of cannabinoid receptors. It also discusses classical cannabinoid drugs, as well as agonists, antagonists, and inverse agonists, which serve as key therapeutic agents. Recent advancements in the development of allosteric drugs are highlighted, with a focus on positive and negative allosteric modulators (PAMs and NAMs) that target CB1 and CB2 receptors. The identification of multiple allosteric sites on the CB1 receptor and the structural basis for allosteric modulation are emphasized, along with the structure-based discovery of ago-BAMs for CB1. This review concludes by examining the future potential of allosteric modulators in cannabinoid drug development, noting that ongoing progress in cannabinoid-derived drugs continues to open new avenues for therapeutic use and paves the way for future research into their full medicinal potential.
Collapse
Affiliation(s)
- Si-Yuan Shen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chao Wu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhi-Qian Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke-Xin Wang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhen-Hua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, Frontier Medical Center, Chengdu, 610212, China.
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Kumar U. Cannabinoids: Role in Neurological Diseases and Psychiatric Disorders. Int J Mol Sci 2024; 26:152. [PMID: 39796008 PMCID: PMC11720483 DOI: 10.3390/ijms26010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
An impact of legalization and decriminalization of marijuana is the gradual increase in the use of cannabis for recreational purposes, which poses a potential threat to society and healthcare systems worldwide. However, the discovery of receptor subtypes, endogenous endocannabinoids, and enzymes involved in synthesis and degradation, as well as pharmacological characterization of receptors, has led to exploration of the use of cannabis in multiple peripheral and central pathological conditions. The role of cannabis in the modulation of crucial events involving perturbed physiological functions and disease progression, including apoptosis, inflammation, oxidative stress, perturbed mitochondrial function, and the impaired immune system, indicates medicinal values. These events are involved in most neurological diseases and prompt the gradual progression of the disease. At present, several synthetic agonists and antagonists, in addition to more than 70 phytocannabinoids, are available with distinct efficacy as a therapeutic alternative in different pathological conditions. The present review aims to describe the use of cannabis in neurological diseases and psychiatric disorders.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
3
|
Prince S, Maguemoun K, Ferdebouh M, Querido E, Derumier A, Tremblay S, Chartrand P. CoPixie, a novel algorithm for single-particle track colocalization, enables efficient quantification of telomerase dynamics at telomeres. Nucleic Acids Res 2024; 52:9417-9430. [PMID: 39082280 PMCID: PMC11381360 DOI: 10.1093/nar/gkae669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 09/10/2024] Open
Abstract
Single-particle imaging and tracking can be combined with colocalization analysis to study the dynamic interactions between macromolecules in living cells. Indeed, single-particle tracking has been extensively used to study protein-DNA interactions and dynamics. Still, unbiased identification and quantification of binding events at specific genomic loci remains challenging. Herein, we describe CoPixie, a new software that identifies colocalization events between a theoretically unlimited number of imaging channels, including single-particle movies. CoPixie is an object-based colocalization algorithm that relies on both pixel and trajectory overlap to determine colocalization between molecules. We employed CoPixie with live-cell single-molecule imaging of telomerase and telomeres, to test the model that cancer-associated POT1 mutations facilitate telomere accessibility. We show that POT1 mutants Y223C, D224N or K90E increase telomere accessibility for telomerase interaction. However, unlike the POT1-D224N mutant, the POT1-Y223C and POT1-K90E mutations also increase the duration of long-lasting telomerase interactions at telomeres. Our data reveal that telomere elongation in cells expressing cancer-associated POT1 mutants arises from the dual impact of these mutations on telomere accessibility and telomerase retention at telomeres. CoPixie can be used to explore a variety of questions involving macromolecular interactions in living cells, including between proteins and nucleic acids, from multicolor single-particle tracks.
Collapse
Affiliation(s)
- Samuel Prince
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Kamélia Maguemoun
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Mouna Ferdebouh
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Emmanuelle Querido
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Amélie Derumier
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Stéphanie Tremblay
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Pascal Chartrand
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
4
|
Andersen HK, Vardakas DG, Lamothe JA, Perault TEA, Walsh KB, Laprairie RB. Comparing CB1 receptor GIRK channel responses to receptor internalization using a kinetic imaging assay. Sci Rep 2024; 14:18314. [PMID: 39112591 PMCID: PMC11306342 DOI: 10.1038/s41598-024-68451-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
The type 1 cannabinoid receptor (CB1R) mediates neurotransmitter release and synaptic plasticity in the central nervous system. Endogenous, plant-derived, synthetic cannabinoids bind to CB1R, initiating the inhibitory G-protein (Gi) and the β-arrestin signaling pathways. Within the Gi signaling pathway, CB1R activates G protein-gated, inwardly-rectifying potassium (GIRK) channels. The β-arrestin pathway reduces CB1R expression on the cell surface through receptor internalization. Because of their association with analgesia and drug tolerance, GIRK channels and receptor internalization are of interest to the development of pharmaceuticals. This research used immortalized mouse pituitary gland cells transduced with a pH-sensitive, fluorescently-tagged human CB1R (AtT20-SEPCB1) to measure GIRK channel activity and CB1R internalization. Cannabinoid-induced GIRK channel activity is measured by using a fluorescent membrane-potential sensitive dye. We developed a kinetic imaging assay that visualizes and measures CB1R internalization. All cannabinoids stimulated a GIRK channel response with a rank order potency of WIN55,212-2 > (±)CP55,940 > Δ9-THC > AEA. Efficacy was expressed relative to (±)CP55,940 with a rank order efficacy of (±)CP55,940 > WIN55, 212-2 > AEA > Δ9-THC. All cannabinoids stimulated CB1R internalization with a rank order potency of (±)CP55,940 > WIN55, 212-2 > AEA > Δ9-THC. Internalization efficacy was normalized to (±)CP55,940 with a rank order efficacy of WIN55,212-2 > AEA > (±)CP55,940 > Δ9-THC. (±)CP55,940 was significantly more potent and efficacious than AEA and Δ9-THC at stimulating a GIRK channel response; no significant differences between potency and efficacy were observed with CB1R internalization. No significant differences were found when comparing a cannabinoid's GIRK channel and CB1R internalization response. In conclusion, AtT20-SEPCB1 cells can be used to assess cannabinoid-induced CB1R internalization. While cannabinoids display differential Gi signaling when compared to each other, this did not extend to CB1R internalization.
Collapse
Affiliation(s)
- Haley K Andersen
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Duncan G Vardakas
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Julie A Lamothe
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tannis E A Perault
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kenneth B Walsh
- Pharmacology, Physiology, and Neuroscience, School of Medicine Columbia, University of South Carolina, Columbia, SC, USA
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
5
|
Manning JJ, Finlay DB, Glass M. GPCR kinase subtype requirements for arrestin-2 and -3 translocation to the cannabinoid CB 1 receptor and the consequences on G protein signalling. Biochem Pharmacol 2024; 224:116190. [PMID: 38604257 DOI: 10.1016/j.bcp.2024.116190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
Arrestins are key negative regulators of G Protein-Coupled Receptors (GPCRs) through mediation of G protein desensitisation and receptor internalisation. Arrestins can also contribute to signal transduction by scaffolding downstream signalling effectors for activation. GPCR kinase (GRK) enzymes phosphorylate the intracellular C-terminal domain, or intracellular loop regions of GPCRs to promote arrestin interaction. There are seven different GRK subtypes, which may uniquely phosphorylate the C-terminal tail in a type of 'phosphorylation barcode,' potentially differentially contributing to arrestin translocation and arrestin-dependent signalling. Such contributions may be exploited to develop arrestin-biased ligands. Here, we examine the effect of different GRK subtypes on the ability to promote translocation of arrestin-2 and arrestin-3 to the cannabinoid CB1 receptor (CB1) with a range of ligands. We find that most GRK subtypes (including visual GRK1) can enhance arrestin-2 and -3 translocation to CB1, and that GRK-dependent changes in arrestin-2 and arrestin-3 translocation were broadly shared for most agonists tested. GRK2/3 generally enhanced arrestin translocation more than the other GRK subtypes, with some small differences between ligands. We also explore the interplay between G protein activity and GRK2/3-dependent arrestin translocation, highlighting that high-efficacy G protein agonists will cause GRK2/3 dependent arrestin translocation. This study supports the hypothesis that arrestin-biased ligands for CB1 must engage GRK5/6 rather than GRK2/3, and G protein-biased ligands must have inherently low efficacy.
Collapse
Affiliation(s)
- Jamie J Manning
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David B Finlay
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Michelle Glass
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
6
|
Wu Y, Jensen N, Rossner MJ, Wehr MC. Exploiting Cell-Based Assays to Accelerate Drug Development for G Protein-Coupled Receptors. Int J Mol Sci 2024; 25:5474. [PMID: 38791511 PMCID: PMC11121687 DOI: 10.3390/ijms25105474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are relevant targets for health and disease as they regulate various aspects of metabolism, proliferation, differentiation, and immune pathways. They are implicated in several disease areas, including cancer, diabetes, cardiovascular diseases, and mental disorders. It is worth noting that about a third of all marketed drugs target GPCRs, making them prime pharmacological targets for drug discovery. Numerous functional assays have been developed to assess GPCR activity and GPCR signaling in living cells. Here, we review the current literature of genetically encoded cell-based assays to measure GPCR activation and downstream signaling at different hierarchical levels of signaling, from the receptor to transcription, via transducers, effectors, and second messengers. Singleplex assay formats provide one data point per experimental condition. Typical examples are bioluminescence resonance energy transfer (BRET) assays and protease cleavage assays (e.g., Tango or split TEV). By contrast, multiplex assay formats allow for the parallel measurement of multiple receptors and pathways and typically use molecular barcodes as transcriptional reporters in barcoded assays. This enables the efficient identification of desired on-target and on-pathway effects as well as detrimental off-target and off-pathway effects. Multiplex assays are anticipated to accelerate drug discovery for GPCRs as they provide a comprehensive and broad identification of compound effects.
Collapse
Affiliation(s)
- Yuxin Wu
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
| | - Niels Jensen
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
- Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Moritz J. Rossner
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
- Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Michael C. Wehr
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
| |
Collapse
|
7
|
Su B, Wang A, Lin J, Xie D, Shan X. Signal-specific spatiotemporal organization of AtRGS1 in plant pattern-triggered immunity. THE NEW PHYTOLOGIST 2024; 242:841-852. [PMID: 38453800 DOI: 10.1111/nph.19658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Affiliation(s)
- Bodan Su
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- National State Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Anqi Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jinxing Lin
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Daoxin Xie
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaoyi Shan
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Hassan FU, Liu C, Mehboob M, Bilal RM, Arain MA, Siddique F, Chen F, Li Y, Zhang J, Shi P, Lv B, Lin Q. Potential of dietary hemp and cannabinoids to modulate immune response to enhance health and performance in animals: opportunities and challenges. Front Immunol 2023; 14:1285052. [PMID: 38111585 PMCID: PMC10726122 DOI: 10.3389/fimmu.2023.1285052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Cannabinoids are a group of bioactive compounds abundantly present in Cannabis sativa plant. The active components of cannabis with therapeutic potential are known as cannabinoids. Cannabinoids are divided into three groups: plant-derived cannabinoids (phytocannabinoids), endogenous cannabinoids (endocannabinoids), and synthetic cannabinoids. These compounds play a crucial role in the regulation various physiological processes including the immune modulation by interacting with the endocannabinoid system (A complex cell-signaling system). Cannabinoid receptor type 1 (CB1) stimulates the binding of orexigenic peptides and inhibits the attachment of anorexigenic proteins to hypothalamic neurons in mammals, increasing food intake. Digestibility is unaffected by the presence of any cannabinoids in hemp stubble. Endogenous cannabinoids are also important for the peripheral control of lipid processing in adipose tissue, in addition to their role in the hypothalamus regulation of food intake. Regardless of the kind of synaptic connection or the length of the transmission, endocannabinoids play a crucial role in inhibiting synaptic transmission through a number of mechanisms. Cannabidiol (CBD) mainly influences redox equilibrium through intrinsic mechanisms. Useful effects of cannabinoids in animals have been mentioned e.g., for disorders of the cardiovascular system, pain treatment, disorders of the respiratory system or metabolic disorders. Dietary supplementation of cannabinoids has shown positive effects on health, growth and production performance of small and large animals. Animal fed diet supplemented with hemp seeds (180 g/day) or hemp seed cake (143 g/kg DM) had achieved batter performance without any detrimental effects. But the higher level of hemp or cannabinoid supplementation suppress immune functions and reduce productive performance. With an emphasis on the poultry and ruminants, this review aims to highlight the properties of cannabinoids and their derivatives as well as their significance as a potential feed additive in their diets to improve the immune status and health performance of animals.
Collapse
Affiliation(s)
- Faiz-ul Hassan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Chunjie Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Maryam Mehboob
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Rana Muhammad Bilal
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Asif Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan
| | - Faisal Siddique
- Faculty of Animal Production and Technology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Fengming Chen
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, China
| | - Yuying Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jingmeng Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Pengjun Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Biguang Lv
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Qian Lin
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
9
|
Patel M, Grimsey NL, Banister SD, Finlay DB, Glass M. Evaluating signaling bias for synthetic cannabinoid receptor agonists at the cannabinoid CB 2 receptor. Pharmacol Res Perspect 2023; 11:e01157. [PMID: 38018694 PMCID: PMC10685394 DOI: 10.1002/prp2.1157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023] Open
Abstract
The rapid structural evolution and emergence of novel synthetic cannabinoid receptor agonists (SCRAs) in the recreational market remains a key public health concern. Despite representing one of the largest classes of new psychoactive substances, pharmacological data on new SCRAs is limited, particularly at the cannabinoid CB2 receptor (CB2 ). Hence, the current study aimed to characterize the molecular pharmacology of a structurally diverse panel of SCRAs at CB2 , including 4-cyano MPP-BUT7AICA, 4F-MDMB-BUTINACA, AMB-FUBINACA, JWH-018, MDMB-4en-PINACA, and XLR-11. The activity of SCRAs was assessed in a battery of in vitro assays in CB2 -expressing HEK 293 cells: G protein activation (Gαi3 and GαoB ), phosphorylation of ERK1/2, and β-arrestin 1/2 translocation. The activity profiles of the ligands were further evaluated using the operational analysis to identify ligand bias. All SCRAs activated the CB2 signaling pathways in a concentration-dependent manner, although with varying potencies and efficacies. Despite the detection of numerous instances of statistically significant bias, compound activities generally appeared only subtly distinct in comparison with the reference ligand, CP55940. In contrast, the phytocannabinoid THC exhibited an activity profile distinct from the SCRAs; most notably in the translocation of β-arrestins. These findings demonstrate that CB2 is able to accommodate a structurally diverse array of SCRAs to generate canonical agonist activity. Further research is required to elucidate whether the activation of CB2 contributes to the toxicity of these compounds.
Collapse
Affiliation(s)
- Monica Patel
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand
| | - Natasha L. Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| | - Samuel D. Banister
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind CentreUniversity of SydneyNew South WalesAustralia
- School of Chemistry, Faculty of ScienceUniversity of SydneyNew South WalesAustralia
| | - David B. Finlay
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand
| | - Michelle Glass
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
10
|
Piscura MK, Henderson-Redmond AN, Barnes RC, Mitra S, Guindon J, Morgan DJ. Mechanisms of cannabinoid tolerance. Biochem Pharmacol 2023; 214:115665. [PMID: 37348821 PMCID: PMC10528043 DOI: 10.1016/j.bcp.2023.115665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Cannabis has been used recreationally and medically for centuries, yet research into understanding the mechanisms of its therapeutic effects has only recently garnered more attention. There is evidence to support the use of cannabinoids for the treatment of chronic pain, muscle spasticity, nausea and vomiting due to chemotherapy, improving weight gain in HIV-related cachexia, emesis, sleep disorders, managing symptoms in Tourette syndrome, and patient-reported muscle spasticity from multiple sclerosis. However, tolerance and the risk for cannabis use disorder are two significant disadvantages for cannabinoid-based therapies in humans. Recent work has revealed prominent sex differences in the acute response and tolerance to cannabinoids in both humans and animal models. This review will discuss evidence demonstrating cannabinoid tolerance in rodents, non-human primates, and humans and our current understanding of the neuroadaptations occurring at the cannabinoid type 1 receptor (CB1R) that are responsible tolerance. CB1R expression is downregulated in tolerant animals and humans while there is strong evidence of CB1R desensitization in cannabinoid tolerant rodent models. Throughout the review, critical knowledge gaps are indicated and discussed, such as the lack of a neuroimaging probe to assess CB1R desensitization in humans. The review discusses the intracellular signaling pathways that are responsible for mediating CB1R desensitization and downregulation including the action of G protein-coupled receptor kinases, β-arrestin2 recruitment, c-Jun N-terminal kinases, protein kinase A, and the intracellular trafficking of CB1R. Finally, the review discusses approaches to reduce cannabinoid tolerance in humans based on our current understanding of the neuroadaptations and mechanisms responsible for this process.
Collapse
Affiliation(s)
- Mary K Piscura
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA; Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine, Auburn, AL 36832, USA
| | | | - Robert C Barnes
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Swarup Mitra
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Daniel J Morgan
- Department of Biomedical Sciences, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
11
|
Durydivka O, Mackie K, Blahos J. SGIP1 in axons prevents internalization of desensitized CB1R and modifies its function. Front Neurosci 2023; 17:1213094. [PMID: 37547151 PMCID: PMC10397514 DOI: 10.3389/fnins.2023.1213094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
In the central nervous system (CNS), cannabinoid receptor 1 (CB1R) is preferentially expressed in axons where it has a unique property, namely resistance to agonist-driven endocytosis. This review aims to summarize what we know about molecular mechanisms of CB1R cell surface stability in axonal compartments, how these impact CB1R signaling, and to consider their physiological consequences. This review then focuses on a potential candidate for maintaining axonal CB1R at the cell surface, Src homology 3-domain growth factor receptor-bound 2-like endophilin interacting protein 1 (SGIP1). SGIP1 may contribute to the polarized distribution of CB1R and modify its signaling in axons. In addition, deletion of SGIP1 results in discrete behavioral changes in modalities controlled by the endocannabinoid system in vivo. Several drugs acting directly via CB1R have important therapeutic potential, however their adverse effects limit their clinical use. Future studies might reveal chemical approaches to target the SGIP1-CB1R interaction, with the aim to exploit the endocannabinoid system pharmaceutically in a discrete way, with minimized undesired consequences.
Collapse
Affiliation(s)
- Oleh Durydivka
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States
| | - Jaroslav Blahos
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
12
|
Su B, Wang A, Xie D, Shan X. VA-TIRFM-based SM kymograph analysis for dwell time and colocalization of plasma membrane protein in plant cells. PLANT METHODS 2023; 19:70. [PMID: 37422677 DOI: 10.1186/s13007-023-01047-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND The plasma membrane (PM) proteins function in a highly dynamic state, including protein trafficking and protein homeostasis, to regulate various biological processes. The dwell time and colocalization of PM proteins are considered to be two important dynamic features determining endocytosis and protein interactions, respectively. Dwell-time and colocalization detected using traditional fluorescence microscope techniques are often misestimated due to bulk measurement. In particular, analyzing these two features of PM proteins at the single-molecule level with spatiotemporal continuity in plant cells remains greatly challenging. RESULTS We developed a single molecular (SM) kymograph method, which is based on variable angle-total internal reflection fluorescence microscopy (VA-TIRFM) observation and single-particle (co-)tracking (SPT) analysis, to accurately analyze the dwell time and colocalization of PM proteins in a spatial and temporal manner. Furthermore, we selected two PM proteins with distinct dynamic behaviors, including AtRGS1 (Arabidopsis regulator of G protein signaling 1) and AtREM1.3 (Arabidopsis remorin 1.3), to analyze their dwell time and colocalization upon jasmonate (JA) treatment by SM kymography. First, we established new 3D (2D+t) images to view all trajectories of the interest protein by rotating these images, and then we chose the appropriate point without changing the trajectory for further analysis. Upon JA treatment, the path lines of AtRGS1-YFP appeared curved and short, while the horizontal lines of mCherry-AtREM1.3 demonstrated limited changes, indicating that JA might initiate the endocytosis of AtRGS1. Analysis of transgenic seedlings coexpressing AtRGS1-YFP/mCherry-AtREM1.3 revealed that JA induces a change in the trajectory of AtRGS1-YFP, which then merges into the kymography line of mCherry-AtREM1.3, implying that JA increases the colocalization degree between AtRGS1 and AtREM1.3 on the PM. These results illustrate that different types of PM proteins exhibit specific dynamic features in line with their corresponding functions. CONCLUSIONS The SM-kymograph method provides new insight into quantitively analyzing the dwell time and correlation degree of PM proteins at the single-molecule level in living plant cells.
Collapse
Affiliation(s)
- Bodan Su
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Anqi Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Daoxin Xie
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaoyi Shan
- MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, and School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
13
|
Xu B, Zhang Q, Chen D, Zhang M, Zhang R, Zhao W, Qiu Y, Xu K, Xiao J, Niu J, Shi Y, Li N, Fang Q. OCP002, a Mixed Agonist of Opioid and Cannabinoid Receptors, Produces Potent Antinociception With Minimized Side Effects. Anesth Analg 2023; 136:373-386. [PMID: 36638515 DOI: 10.1213/ane.0000000000006266] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Increasing attention has been attracted to the development of bifunctional compounds to minimize the side effects of opioid analgesics. Pharmacological studies have verified the functional interaction between opioid and cannabinoid systems in pain management, suggesting that coactivation of the opioid and cannabinoid receptors may provide synergistic analgesia with fewer adverse reactions. Herein, we developed and characterized a novel bifunctional compound containing the pharmacophores of the mu-opioid receptor agonist DALDA and the cannabinoid peptide VD-Hpα-NH2, named OCP002. METHODS The opioid and cannabinoid agonistic activities of OCP002 were investigated in calcium mobilization and western blotting assays, respectively. Moreover, the central and peripheral antinociceptive effects of OCP002 were evaluated in mouse preclinical models of tail-flick test, carrageenan-induced inflammatory pain, and acetic acid-induced visceral pain, respectively. Furthermore, the potential opioid and cannabinoid side effects of OCP002 were systematically investigated in mice after intracerebroventricular (ICV) and subcutaneous (SC) administrations. RESULTS OCP002 functioned as a mixed agonist toward mu-opioid, kappa-opioid, and cannabinoid CB1 receptors in vitro. ICV and SC injections of OCP002 produced dose-dependent antinociception in mouse models of nociceptive (the median effective dose [ED50] values with 95% confidence interval [CI] are 0.14 [0.12-0.15] nmol and 0.32 [0.29-0.35] μmol/kg for ICV and SC injections, respectively), inflammatory (mechanical stimulation: ED50 values [95% CI] are 0.76 [0.64-0.90] nmol and 1.23 [1.10-1.38] μmol/kg for ICV and SC injections, respectively; thermal stimulation: ED50 values [95% CI] are 0.13 [0.10-0.17] nmol and 0.23 [0.08-0.40] μmol/kg for ICV and SC injections, respectively), and visceral pain (ED50 values [95% CI] are 0.0069 [0.0050-0.0092] nmol and 1.47 [1.13-1.86] μmol/kg for ICV and SC injections, respectively) via opioid and cannabinoid receptors. Encouragingly, OCP002 cannot cross the blood-brain barrier and exerted nontolerance-forming analgesia over 6-day treatment at both supraspinal and peripheral levels. Consistent with these behavioral results, repeated OCP002 administration did not elicit microglial hypertrophy and proliferation, the typical features of opioid-induced tolerance, in the spinal cord. Furthermore, at the effective analgesic doses, SC OCP002 exhibited minimized opioid and cannabinoid side effects on motor performance, body temperature, gastric motility, physical and psychological dependence, as well as sedation in mice. CONCLUSIONS This study demonstrates that OCP002 produces potent and nontolerance-forming antinociception in mice with reduced opioid- and cannabinoid-related side effects, which strengthen the candidacy of bifunctional drugs targeting opioid/cannabinoid receptors for translational-medical development to replace or assist the traditional opioid analgesics.
Collapse
Affiliation(s)
- Biao Xu
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Qinqin Zhang
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Dan Chen
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Mengna Zhang
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Run Zhang
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Weidong Zhao
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Yu Qiu
- School of Medicine' Shanghai Jiao Tong University' Shanghai, China
| | - Kangtai Xu
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Jian Xiao
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Jiandong Niu
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Yonghang Shi
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Ning Li
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| | - Quan Fang
- From the Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou, China
| |
Collapse
|
14
|
Dasram MH, Walker RB, Khamanga SM. Recent Advances in Endocannabinoid System Targeting for Improved Specificity: Strategic Approaches to Targeted Drug Delivery. Int J Mol Sci 2022; 23:13223. [PMID: 36362014 PMCID: PMC9658826 DOI: 10.3390/ijms232113223] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022] Open
Abstract
Opportunities for developing innovative and intelligent drug delivery technologies by targeting the endocannabinoid system are becoming more apparent. This review provides an overview of strategies to develop targeted drug delivery using the endocannabinoid system (ECS). Recent advances in endocannabinoid system targeting showcase enhanced pharmaceutical therapy specificity while minimizing undesirable side effects and overcoming formulation challenges associated with cannabinoids. This review identifies advances in targeted drug delivery technologies that may permit access to the full pharmacotherapeutic potential of the ECS. The design of optimized nanocarriers that target specific tissues can be improved by understanding the nature of the signaling pathways, distribution in the mammalian body, receptor structure, and enzymatic degradation of the ECS. A closer look at ligand-receptor complexes, endocannabinoid tone, tissue distribution, and G-protein activity leads to a better understanding of the potential of the ECS toolkit for therapeutics. The signal transduction pathways examine the modulation of downstream effector proteins, desensitization, signaling cascades, and biased signaling. An in-depth and overall view of the targeted system is achieved through homology modeling where mutagenesis and ligand binding examine the binding site and allow sequence analysis and the formation of libraries for molecular docking and molecular dynamic simulations. Internalization routes exploring receptor-mediated endocytosis and lipid rafts are also considered for explicit signaling. Furthermore, the review highlights nanotechnology and surface modification aspects as a possible future approach for specific targeting.
Collapse
Affiliation(s)
| | | | - Sandile M. Khamanga
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6139, South Africa
| |
Collapse
|
15
|
Transducer Cascades for Biological Literature-Based Discovery. INFORMATION 2022. [DOI: 10.3390/info13050262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
G protein-coupled receptors (GPCRs) control the response of cells to many signals, and as such, are involved in most cellular processes. As membrane receptors, they are accessible at the surface of the cell. GPCRs are also the largest family of membrane receptors, with more than 800 representatives in mammal genomes. For this reason, they are ideal targets for drugs. Although about one third of approved drugs target GPCRs, only about 16% of GPCRs are targeted by drugs. One of the difficulties comes from the lack of knowledge on the intra-cellular events triggered by these molecules. In the last two decades, scientists have started mapping the signaling networks triggered by GPCRs. However, it soon appeared that the system is very complex, which led to the publication of more than 320,000 scientific papers. Clearly, a human cannot take into account such massive sources of information. These papers represent a mine of information about both ontological knowledge and experimental results related to GPCRs, which have to be exploited in order to build signaling networks. The ABLISS project aims at the automatic building of GPCRs networks using automated deductive reasoning, allowing to integrate all available data. Therefore, we processed the automatic extraction of network information from the literature using Natural Language Processing (NLP). We mainly focused on the experimental results about GPCRs reported in the scientific papers, as so far there is no source gathering all these experimental results. We designed a relational database in order to make them available to the scientific community later. After introducing the more general objectives of the ABLISS project, we describe the formalism in detail. We then explain the NLP program using the finite state methods (Unitex graph cascades) we implemented and discuss the extracted facts obtained. Finally, we present the design of the relational database that stores the facts extracted from the selected papers.
Collapse
|
16
|
Lott J, Jutkiewicz EM, Puthenveedu MA. The Synthetic Cannabinoid WIN55,212-2 Can Disrupt the Golgi Apparatus Independent of Cannabinoid Receptor-1. Mol Pharmacol 2022; 101:371-380. [PMID: 35236771 PMCID: PMC9092469 DOI: 10.1124/molpharm.121.000377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/22/2022] [Indexed: 11/22/2022] Open
Abstract
The synthetic cannabinoid WIN55,212-2 (WIN) is widely used as a pharmacological tool to study the biologic activity of cannabinoid receptors. In contrast to many other cannabinoid agonists, however, WIN also causes broad effects outside of neurons, such as reducing inflammatory responses, causing cell cycle arrest, and reducing general protein expression. How exactly WIN causes these broad effects is not known. Here we show that WIN partially disrupts the Golgi apparatus at nanomolar concentrations and fully disperses the Golgi apparatus in neuronal and non-neuronal cells at micromolar concentrations. WIN55,212-3, the enantiomer of WIN; JWH-018, a related alkylindole; or 2-arachidonoylglycerol, an endocannabinoid, did not cause Golgi disruption, suggesting that the effect was specific to the chirality of WIN. WIN treatment also perturbed the microtubule network. Importantly, WIN disrupted the Golgi in primary cortical neurons derived from mice where cannabinoid receptor-1 (CB1) was genetically knocked out, indicating that the effects were independent of CB1 signaling. The Golgi dispersion could not be explained by WIN's action on peroxisome proliferator-activated receptors. Our results show that WIN can disrupt the Golgi apparatus independent of CB1 in cultured cells. These effects could contribute to the unique physiologic effects that WIN exhibits in neuronal behavior, as well as its role as an antiproliferative and anti-inflammatory agent. SIGNIFICANCE STATEMENT: The synthetic cannabinoid WIN55,212-2 (WIN), widely used to investigate the cannabinoid system, also shows unique broader effects at cellular and organismal levels compared to endogenous cannabinoids. Our study shows that WIN can disrupt the Golgi apparatus and the microtubule network in multiple cell types, independent of cannabinoid receptors. These results could explain how WIN reduces surface levels of proteins and contributes to the unique physiological effects observed with WIN.
Collapse
Affiliation(s)
- Joshua Lott
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Emily M Jutkiewicz
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan
| | | |
Collapse
|
17
|
Smythe E. Clathrin coated pits as signaling platforms for Akt signaling. J Cell Biol 2022; 221:e202203026. [PMID: 35320342 PMCID: PMC8952812 DOI: 10.1083/jcb.202203026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Signaling by the activated epidermal growth factor receptor (EGFR) results in diverse cell fates. In this issue, Cabral-Dias et al. (2022. J. Cell Biol.https://doi.org/10.1083/jcb.201808181) demonstrate how plasma membrane clathrin coated pits can act as a signaling platform for one branch of EGFR downstream signaling.
Collapse
|
18
|
Sotolongo Bellón J, Birkholz O, Richter CP, Eull F, Kenneweg H, Wilmes S, Rothbauer U, You C, Walter MR, Kurre R, Piehler J. Four-color single-molecule imaging with engineered tags resolves the molecular architecture of signaling complexes in the plasma membrane. CELL REPORTS METHODS 2022; 2:100165. [PMID: 35474965 PMCID: PMC9017138 DOI: 10.1016/j.crmeth.2022.100165] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/19/2021] [Accepted: 01/13/2022] [Indexed: 12/22/2022]
Abstract
Localization and tracking of individual receptors by single-molecule imaging opens unique possibilities to unravel the assembly and dynamics of signaling complexes in the plasma membrane. We present a comprehensive workflow for imaging and analyzing receptor diffusion and interaction in live cells at single molecule level with up to four colors. Two engineered, monomeric GFP variants, which are orthogonally recognized by anti-GFP nanobodies, are employed for efficient and selective labeling of target proteins in the plasma membrane with photostable fluorescence dyes. This labeling technique enables us to quantitatively resolve the stoichiometry and dynamics of the interferon-γ (IFNγ) receptor signaling complex in the plasma membrane of living cells by multicolor single-molecule imaging. Based on versatile spatial and spatiotemporal correlation analyses, we identify ligand-induced receptor homo- and heterodimerization. Multicolor single-molecule co-tracking and quantitative single-molecule Förster resonance energy transfer moreover reveals transient assembly of IFNγ receptor heterotetramers and confirms its structural architecture.
Collapse
Affiliation(s)
- Junel Sotolongo Bellón
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Oliver Birkholz
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Christian P. Richter
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Florian Eull
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Hella Kenneweg
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Stephan Wilmes
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
- Division of Cell Signalling and Immunology, University of Dundee, School of Life Sciences, Dundee, UK
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard-Karls-University, Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Changjiang You
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Mark R. Walter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rainer Kurre
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Jacob Piehler
- Department of Biology and Center for Cellular Nanoanalytics (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
19
|
Alfonzo-Méndez MA, Sochacki KA, Strub MP, Taraska JW. Dual clathrin and integrin signaling systems regulate growth factor receptor activation. Nat Commun 2022; 13:905. [PMID: 35173166 PMCID: PMC8850434 DOI: 10.1038/s41467-022-28373-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
The crosstalk between growth factor and adhesion receptors is key for cell growth and migration. In pathological settings, these receptors are drivers of cancer. Yet, how growth and adhesion signals are spatially organized and integrated is poorly understood. Here we use quantitative fluorescence and electron microscopy to reveal a mechanism where flat clathrin lattices partition and activate growth factor signals via a coordinated response that involves crosstalk between epidermal growth factor receptor (EGFR) and the adhesion receptor β5-integrin. We show that ligand-activated EGFR, Grb2, Src, and β5-integrin are captured by clathrin coated-structures at the plasma membrane. Clathrin structures dramatically grow in response to EGF into large flat plaques and provide a signaling platform that link EGFR and β5-integrin through Src-mediated phosphorylation. Disrupting this EGFR/Src/β5-integrin axis prevents both clathrin plaque growth and dampens receptor signaling. Our study reveals a reciprocal regulation between clathrin lattices and two different receptor systems to coordinate and enhance signaling. These findings have broad implications for the regulation of growth factor signaling, adhesion, and endocytosis.
Collapse
Affiliation(s)
- Marco A Alfonzo-Méndez
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Building 50, Bethesda, MD, 20892, USA
| | - Kem A Sochacki
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Building 50, Bethesda, MD, 20892, USA
| | - Marie-Paule Strub
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Building 50, Bethesda, MD, 20892, USA
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 South Drive, Building 50, Bethesda, MD, 20892, USA.
| |
Collapse
|
20
|
Xu C, Abbas S, Qian H, Yu M, Zhang X, Li X, Cui Y, Lin J. Environmental Cues Contribute to Dynamic Plasma Membrane Organization of Nanodomains Containing Flotillin-1 and Hypersensitive Induced Reaction-1 Proteins in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:897594. [PMID: 35620697 PMCID: PMC9127874 DOI: 10.3389/fpls.2022.897594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/14/2022] [Indexed: 05/11/2023]
Abstract
Plasma membranes are heterogeneous and contain multiple functional nanodomains. Although several signaling proteins have been shown to function by moving into or out of nanodomains, little is known regarding the effects of environmental cues on nanodomain organization. In this study, we investigated the heterogeneity and organization of distinct nanodomains, including those containing Arabidopsis thaliana flotillin-1 (AtFlot1) and hypersensitive induced reaction-1 proteins (AtHIR1), in response to biotic and abiotic stress. Variable-angle total internal reflection fluorescence microscopy coupled with single-particle tracking (SPT) revealed that AtFlot1 and AtHIR1 exhibit different lateral dynamics and inhabit different types of nanodomains. Furthermore, via SPT and fluorescence correlation spectroscopy, we observed lower density and intensity of AtFlot1 fluorescence in the plasma membrane after biotic stress. In contrast, the density and intensity of signal indicating AtHIR1 markedly increased in response to biotic stress. In response to abiotic stress, the density and intensity of both AtFlot1 and AtHIR1 signals decreased significantly. Importantly, SPT coupled with fluorescence recovery after photobleaching revealed that biotic and abiotic stress can regulate the dynamics of AtFlot1; however, only the abiotic stress can regulate AtHIR1 dynamics. Taken together, these findings suggest that a plethora of highly distinct nanodomains coexist in the plasma membrane (PM) and that different nanodomains may perform distinct functions in response to biotic and abiotic stresses. These phenomena may be explained by the spatial clustering of plasma membrane proteins with their associated signaling components within dedicated PM nanodomains.
Collapse
Affiliation(s)
- Changwen Xu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Sammar Abbas
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Hongping Qian
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Meng Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Xi Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiaojuan Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yaning Cui
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- *Correspondence: Yaning Cui,
| | - Jinxing Lin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Jinxing Lin,
| |
Collapse
|
21
|
Pashkova N, Gakhar L, Yu L, Schnicker NJ, Minard AY, Winistorfer S, Johnson IE, Piper RC. ANTH domains within CALM, HIP1R, and Sla2 recognize ubiquitin internalization signals. eLife 2021; 10:72583. [PMID: 34821552 PMCID: PMC8648300 DOI: 10.7554/elife.72583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Attachment of ubiquitin (Ub) to cell surface proteins serves as a signal for internalization via clathrin-mediated endocytosis (CME). How ubiquitinated membrane proteins engage the internalization apparatus remains unclear. The internalization apparatus contains proteins such as Epsin and Eps15, which bind Ub, potentially acting as adaptors for Ub-based internalization signals. Here, we show that additional components of the endocytic machinery including CALM, HIP1R, and Sla2 bind Ub via their N-terminal ANTH domain, a domain belonging to the superfamily of ENTH and VHS domains. Structural studies revealed that Ub binds with µM affinity to a unique C-terminal region within the ANTH domain not found in ENTH domains. Functional studies showed that combined loss of Ub-binding by ANTH-domain proteins and other Ub-binding domains within the yeast internalization apparatus caused defects in the Ub-dependent internalization of the GPCR Ste2 that was engineered to rely exclusively on Ub as an internalization signal. In contrast, these mutations had no effect on the internalization of Ste2 engineered to use an alternate Ub-independent internalization signal. These studies define new components of the internalization machinery that work collectively with Epsin and Eps15 to specify recognition of Ub as an internalization signal.
Collapse
Affiliation(s)
- Natalya Pashkova
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Lokesh Gakhar
- Carver College of Medicine Protein Crystallography Core, University of Iowa, Iowa City, United States.,Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, United States
| | - Liping Yu
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, United States.,Carver College of Medicine NMR Core, University of Iowa, Iowa City, United States
| | - Nicholas J Schnicker
- Carver College of Medicine Protein Crystallography Core, University of Iowa, Iowa City, United States
| | - Annabel Y Minard
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Stanley Winistorfer
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Ivan E Johnson
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| |
Collapse
|
22
|
Axonal CB1 Receptors Mediate Inhibitory Bouton Formation via cAMP Increase and PKA. J Neurosci 2021; 41:8279-8296. [PMID: 34413209 DOI: 10.1523/jneurosci.0851-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/30/2021] [Accepted: 07/25/2021] [Indexed: 12/11/2022] Open
Abstract
Experience-dependent formation and removal of inhibitory synapses are essential throughout life. For instance, GABAergic synapses are removed to facilitate learning, and strong excitatory activity is accompanied by the formation of inhibitory synapses to maintain coordination between excitation and inhibition. We recently discovered that active dendrites trigger the growth of inhibitory synapses via CB1 receptor-mediated endocannabinoid signaling, but the underlying mechanism remained unclear. Using two-photon microscopy to monitor the formation of individual inhibitory boutons in hippocampal organotypic slices from mice (both sexes), we found that CB1 receptor activation mediated the formation of inhibitory boutons and promoted their subsequent stabilization. Inhibitory bouton formation did not require neuronal activity and was independent of Gi/o-protein signaling, but was directly induced by elevating cAMP levels using forskolin and by activating Gs-proteins using DREADDs. Blocking PKA activity prevented CB1 receptor-mediated inhibitory bouton formation. Our findings reveal that axonal CB1 receptors signal via unconventional downstream pathways and that inhibitory bouton formation is triggered by an increase in axonal cAMP levels. Our results demonstrate an unexpected role for axonal CB1 receptors in axon-specific, and context-dependent, inhibitory synapse formation.SIGNIFICANCE STATEMENT Coordination between excitation and inhibition is required for proper brain function throughout life. It was previously shown that new inhibitory synapses can be formed in response to strong excitation to maintain this coordination, and this was mediated by endocannabinoid signaling via CB1 receptors. As activation of CB1 receptors generally results in the suppression of synaptic transmission, it remained unclear how CB1 receptors can mediate the formation of inhibitory synapses. Here we show that CB1 receptors on inhibitory axons signal via unconventional intracellular pathways and that inhibitory bouton formation is triggered by an increase in axonal cAMP levels and requires PKA activity. Our findings point to a central role for axonal cAMP signaling in activity-dependent inhibitory synapse formation.
Collapse
|
23
|
Manning JJ, Green HM, Glass M, Finlay DB. Pharmacological selection of cannabinoid receptor effectors: Signalling, allosteric modulation and bias. Neuropharmacology 2021; 193:108611. [PMID: 34000272 DOI: 10.1016/j.neuropharm.2021.108611] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022]
Abstract
The type-1 cannabinoid receptor (CB1) is a promising drug target for a wide range of diseases. However, many existing and novel candidate ligands for CB1 have shown only limited therapeutic potential. Indeed, no ligands are currently approved for the clinic except formulations of the phytocannabinoids Δ9-THC and CBD and a small number of analogues. A key limitation of many promising CB1 ligands are their on-target adverse effects, notably including psychoactivity (agonists) and depression/suicidal ideation (inverse agonists). Recent drug development attempts have therefore focussed on altering CB1 signalling profiles in two ways. Firstly, with compounds that enhance or reduce the signalling of endogenous (endo-) cannabinoids, namely allosteric modulators. Secondly, with compounds that probe the capability of selectively targeting specific cellular signalling pathways that may mediate therapeutic effects using biased ligands. This review will summarise the current paradigm of CB1 signalling in terms of the intracellular transduction pathways acted on by the receptor. The development of compounds that selectively activate CB1 signalling pathways, whether allosterically or via orthosteric agonist bias, will also be addressed.
Collapse
Affiliation(s)
- Jamie J Manning
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand, PO Box 56, Dunedin, 9054, New Zealand
| | - Hayley M Green
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand, PO Box 56, Dunedin, 9054, New Zealand
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand, PO Box 56, Dunedin, 9054, New Zealand
| | - David B Finlay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand, PO Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
24
|
Mizuno I, Matsuda S. The role of endocannabinoids in consolidation, retrieval, reconsolidation, and extinction of fear memory. Pharmacol Rep 2021; 73:984-1003. [PMID: 33954935 DOI: 10.1007/s43440-021-00246-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/07/2021] [Indexed: 12/19/2022]
Abstract
Endocannabinoids are involved in various physiological functions, including synaptic plasticity and memory, and some psychiatric disorders, such as posttraumatic stress disorder (PTSD), through the activation of cannabinoid (CB) receptors. Patients with PTSD often show excessive fear memory and impairment of fear extinction (FE). It has been reported that the stability of acquired fear memory is altered through multiple memory stages, such as consolidation and reconsolidation. FE also affects the stability of fear memory. Each stage of fear memory formation and FE are regulated by different molecular mechanisms, including the CB system. However, to the best of our knowledge, no review summarizes the role of the CB system during each stage of fear memory formation and FE. In this review, we summarize the roles of endocannabinoids in fear memory formation and FE. Moreover, based on the summary, we propose a new hypothesis for the role of endocannabinoids in fear regulation, and discuss treatment for PTSD using CB system-related drugs.
Collapse
Affiliation(s)
- Ikumi Mizuno
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, 3-3165, Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Shingo Matsuda
- Department of Pharmacotherapeutics, Showa Pharmaceutical University, 3-3165, Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan. .,Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chiba, Chiba, 260-8670, Japan. .,Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
25
|
Cui Y, Zhao Y, Lu Y, Su X, Chen Y, Shen Y, Lin J, Li X. In vivo single-particle tracking of the aquaporin AtPIP2;1 in stomata reveals cell type-specific dynamics. PLANT PHYSIOLOGY 2021; 185:1666-1681. [PMID: 33569600 PMCID: PMC8133650 DOI: 10.1093/plphys/kiab007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/23/2020] [Indexed: 05/20/2023]
Abstract
Aquaporins such as the plasma membrane intrinsic proteins (PIPs) allow water to move through cell membranes and are vital for stomatal movement in plants. Despite their importance, the dynamic changes in aquaporins during water efflux and influx have not been directly observed in real time in vivo. Here, to determine which factors regulate these changes during the bidirectional translocation of water, we examined aquaporin dynamics during the stomatal immune response to the bacterial flagellin-derived peptide flg22. The Arabidopsis (Arabidopsis thaliana) aquaporin mutant pip2;1 showed defects in the flg22-induced stomatal response. Variable-angle total internal reflection fluorescence microscopy revealed that the movement dynamics and dwell times of AQ6]GFP-AtPIP2;1 in guard cells and subsidiary cells exhibited cell type-specific dependencies on flg22. The cytoskeleton, rather than the cell wall, was the major factor regulating AtPIP2;1 dynamics, although both the cytoskeleton and cell wall might form bounded domains that restrict the diffusion of AtPIP2;1 in guard cells and subsidiary cells. Finally, our analysis revealed the different roles of cortical actin and microtubules in regulating AtPIP2;1 dynamics in guard cells, as well as subsidiary cells, under various conditions. Our observations shed light on the heterogeneous mechanisms that regulate membrane protein dynamics in plants in response to pathogens.
Collapse
Affiliation(s)
- Yaning Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences & Technology, Beijing Forestry University, Beijing 100083, China
| | - Yanxia Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences & Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuqing Lu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences & Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences & Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences & Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingbai Shen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences & Technology, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences & Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaojuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences & Technology, Beijing Forestry University, Beijing 100083, China
- Author for communication:
| |
Collapse
|
26
|
Liu Z, Iyer MR, Godlewski G, Jourdan T, Liu J, Coffey NJ, Zawatsky CN, Puhl HL, Wess J, Meister J, Liow JS, Innis RB, Hassan SA, Lee YS, Kunos G, Cinar R. Functional Selectivity of a Biased Cannabinoid-1 Receptor (CB 1R) Antagonist. ACS Pharmacol Transl Sci 2021; 4:1175-1187. [PMID: 34151207 PMCID: PMC8204328 DOI: 10.1021/acsptsci.1c00048] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Indexed: 12/31/2022]
Abstract
Seven-transmembrane receptors signal via G-protein- and β-arrestin-dependent pathways. We describe a peripheral CB1R antagonist (MRI-1891) highly biased toward inhibiting CB1R-induced β-arrestin-2 (βArr2) recruitment over G-protein activation. In obese wild-type and βArr2-knockout (KO) mice, MRI-1891 treatment reduces food intake and body weight without eliciting anxiety even at a high dose causing partial brain CB1R occupancy. By contrast, the unbiased global CB1R antagonist rimonabant elicits anxiety in both strains, indicating no βArr2 involvement. Interestingly, obesity-induced muscle insulin resistance is improved by MRI-1891 in wild-type but not in βArr2-KO mice. In C2C12 myoblasts, CB1R activation suppresses insulin-induced akt-2 phosphorylation, preventable by MRI-1891, βArr2 knockdown or overexpression of CB1R-interacting protein. MRI-1891, but not rimonabant, interacts with nonpolar residues on the N-terminal loop, including F108, and on transmembrane helix-1, including S123, a combination that facilitates βArr2 bias. Thus, CB1R promotes muscle insulin resistance via βArr2 signaling, selectively mitigated by a biased CB1R antagonist at reduced risk of central nervous system (CNS) side effects.
Collapse
Affiliation(s)
- Ziyi Liu
- Laboratory of Physiologic Studies and Section on Cellular Biophotonics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9304, United States
| | - Malliga R Iyer
- Laboratory of Physiologic Studies and Section on Cellular Biophotonics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9304, United States
| | - Grzegorz Godlewski
- Laboratory of Physiologic Studies and Section on Cellular Biophotonics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9304, United States
| | - Tony Jourdan
- Laboratory of Physiologic Studies and Section on Cellular Biophotonics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9304, United States
| | - Jie Liu
- Laboratory of Physiologic Studies and Section on Cellular Biophotonics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9304, United States
| | - Nathan J Coffey
- Laboratory of Physiologic Studies and Section on Cellular Biophotonics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9304, United States
| | - Charles N Zawatsky
- Laboratory of Physiologic Studies and Section on Cellular Biophotonics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9304, United States
| | - Henry L Puhl
- Laboratory of Physiologic Studies and Section on Cellular Biophotonics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9304, United States
| | - Jürgen Wess
- Laboratory of Bioorganic Chemistry, National Institute on Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892-0001, United States
| | - Jaroslawna Meister
- Laboratory of Bioorganic Chemistry, National Institute on Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892-0001, United States
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland 20892-9663, United States
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland 20892-9663, United States
| | - Sergio A Hassan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yong Sok Lee
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - George Kunos
- Laboratory of Physiologic Studies and Section on Cellular Biophotonics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9304, United States
| | - Resat Cinar
- Laboratory of Physiologic Studies and Section on Cellular Biophotonics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9304, United States
| |
Collapse
|
27
|
Vecchini Rodríguez CM, Escalona Meléndez Y, Flores-Otero J. Cannabinoid Receptors and Ligands: Lessons from CNS Disorders and the Quest for Novel Treatment Venues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1297:43-64. [PMID: 33537936 PMCID: PMC8502072 DOI: 10.1007/978-3-030-61663-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The potential use of cannabinoids for therapeutic purposes is at the forefront of cannabinoid research which aims to develop innovative strategies to prevent, manage and treat a broad spectrum of human diseases. This chapter briefly reviews the pivotal role of the endocannabinoid system in modulating the central nervous system and its roles on neurodegenerative diseases and brain disorders. Ligand-induced modulation of cannabinoid 1 and 2 receptors to modulate immune response, decrease neurodegeneration and pain are aspects that are also discussed.
Collapse
Affiliation(s)
- Clara M Vecchini Rodríguez
- Department of Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR, USA
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, USA
| | | | - Jacqueline Flores-Otero
- Department of Anatomy and Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR, USA.
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, PR, USA.
| |
Collapse
|
28
|
Horváth VB, Soltész-Katona E, Wisniewski É, Rajki A, Halász E, Enyedi B, Hunyady L, Tóth AD, Szanda G. Optimization of the Heterologous Expression of the Cannabinoid Type-1 (CB 1) Receptor. Front Endocrinol (Lausanne) 2021; 12:740913. [PMID: 34745007 PMCID: PMC8564136 DOI: 10.3389/fendo.2021.740913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
The G protein-coupled type 1 cannabinoid receptor (CB1R) mediates virtually all classic cannabinoid effects, and both its agonists and antagonists hold major therapeutic potential. Heterologous expression of receptors is vital for pharmacological research, however, overexpression of these proteins may fundamentally alter their localization pattern, change the signalling partner preference and may also spark artificial clustering. Additionally, recombinant CB1Rs are prone to intense proteasomal degradation, which may necessitate substantial modifications, such as N-terminal truncation or signal sequence insertion, for acceptable cell surface expression. We report here that tuning down the expression intensity of the full-length CB1R reduces proteasomal degradation and offers receptor levels that are comparable to those of endogenous CB1 receptors. As opposed to high-efficiency expression with conventional promoters, weak promoter-driven CB1R expression provides ERK 1/2 and p38 MAPK signalling that closely resemble the activity of endogenous CB1Rs. Moreover, weakly expressed CB1R variants exhibit plasma membrane localization, preserve canonical Gi-signalling but prevent CB1R-Gs coupling observed with high-expression variants. Based on these findings, we propose that lowering the expression level of G protein-coupled receptors should always be considered in heterologous expression systems in order to reduce the pressure on the proteasomal machinery and to avoid potential signalling artefacts.
Collapse
Affiliation(s)
| | - Eszter Soltész-Katona
- Department of Physiology, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
| | - Éva Wisniewski
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Anikó Rajki
- Department of Physiology, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
| | - Eszter Halász
- Department of Physiology, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
| | - Balázs Enyedi
- Department of Physiology, Semmelweis University, Budapest, Hungary
- MTA-SE Lendület Tissue Damage Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, Budapest, Hungary
| | - László Hunyady
- Department of Physiology, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
| | - András Dávid Tóth
- MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Gergő Szanda
- Department of Physiology, Semmelweis University, Budapest, Hungary
- MTA-SE Laboratory of Molecular Physiology, Eötvös Loránd Research Network, Budapest, Hungary
- *Correspondence: Gergő Szanda,
| |
Collapse
|
29
|
Oliver EE, Hughes EK, Puckett MK, Chen R, Lowther WT, Howlett AC. Cannabinoid Receptor Interacting Protein 1a (CRIP1a) in Health and Disease. Biomolecules 2020; 10:biom10121609. [PMID: 33261012 PMCID: PMC7761089 DOI: 10.3390/biom10121609] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
Endocannabinoid signaling depends upon the CB1 and CB2 cannabinoid receptors, their endogenous ligands anandamide and 2-arachidonoylglycerol, and intracellular proteins that mediate responses via the C-terminal and other intracellular receptor domains. The CB1 receptor regulates and is regulated by associated G proteins predominantly of the Gi/o subtypes, β-arrestins 1 and 2, and the cannabinoid receptor-interacting protein 1a (CRIP1a). Evidence for a physiological role for CRIP1a is emerging as data regarding the cellular localization and function of CRIP1a are generated. Here we summarize the neuronal distribution and role of CRIP1a in endocannabinoid signaling, as well as discuss investigations linking CRIP1a to development, vision and hearing sensory systems, hippocampus and seizure regulation, and psychiatric disorders including schizophrenia. We also examine the genetic and epigenetic association of CRIP1a within a variety of cancer subtypes. This review provides evidence upon which to base future investigations on the function of CRIP1a in health and disease.
Collapse
Affiliation(s)
- Emily E. Oliver
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 20157, USA; (E.E.O.); (E.K.H.); (M.K.P.); (R.C.)
- Department of Biochemistry and Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 20157, USA;
| | - Erin K. Hughes
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 20157, USA; (E.E.O.); (E.K.H.); (M.K.P.); (R.C.)
- Department of Biochemistry and Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 20157, USA;
| | - Meaghan K. Puckett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 20157, USA; (E.E.O.); (E.K.H.); (M.K.P.); (R.C.)
| | - Rong Chen
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 20157, USA; (E.E.O.); (E.K.H.); (M.K.P.); (R.C.)
| | - W. Todd Lowther
- Department of Biochemistry and Center for Structural Biology, Wake Forest School of Medicine, Winston-Salem, NC 20157, USA;
| | - Allyn C. Howlett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 20157, USA; (E.E.O.); (E.K.H.); (M.K.P.); (R.C.)
- Correspondence: ; Tel.: +1-336-716-8545
| |
Collapse
|
30
|
Structural Insights into β-arrestin/CB1 Receptor Interaction: NMR and CD Studies on Model Peptides. Int J Mol Sci 2020; 21:ijms21218111. [PMID: 33143110 PMCID: PMC7662265 DOI: 10.3390/ijms21218111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/30/2022] Open
Abstract
Activation of the cannabinoid CB1 receptor induces different cellular signaling cascades through coupling to different effector proteins (G-proteins and β-arrestins), triggering numerous therapeutic effects. Conformational changes and rearrangements at the intracellular domain of this GPCR receptor that accompany ligand binding dictate the signaling pathways. The GPCR-binding interface for G proteins has been extensively studied, whereas β-arrestin/GPCR complexes are still poorly understood. To gain knowledge in this direction, we designed peptides that mimic the motifs involved in the putative interacting region: β-arrestin1 finger loop and the transmembrane helix 7-helix 8 (TMH7-H8) elbow located at the intracellular side of the CB1 receptor. According to circular dichroism and NMR data, these peptides form a native-like, helical conformation and interact with each other in aqueous solution, in the presence of trifluoroethanol, and using zwitterionic detergent micelles as membrane mimics. These results increase our understanding of the binding mode of β-arrestin and CB1 receptor and validate minimalist approaches to structurally comprehend complex protein systems.
Collapse
|
31
|
Haspula D, Clark MA. Cannabinoid Receptors: An Update on Cell Signaling, Pathophysiological Roles and Therapeutic Opportunities in Neurological, Cardiovascular, and Inflammatory Diseases. Int J Mol Sci 2020; 21:E7693. [PMID: 33080916 PMCID: PMC7590033 DOI: 10.3390/ijms21207693] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The identification of the human cannabinoid receptors and their roles in health and disease, has been one of the most significant biochemical and pharmacological advancements to have occurred in the past few decades. In spite of the major strides made in furthering endocannabinoid research, therapeutic exploitation of the endocannabinoid system has often been a challenging task. An impaired endocannabinoid tone often manifests as changes in expression and/or functions of type 1 and/or type 2 cannabinoid receptors. It becomes important to understand how alterations in cannabinoid receptor cellular signaling can lead to disruptions in major physiological and biological functions, as they are often associated with the pathogenesis of several neurological, cardiovascular, metabolic, and inflammatory diseases. This review focusses mostly on the pathophysiological roles of type 1 and type 2 cannabinoid receptors, and it attempts to integrate both cellular and physiological functions of the cannabinoid receptors. Apart from an updated review of pre-clinical and clinical studies, the adequacy/inadequacy of cannabinoid-based therapeutics in various pathological conditions is also highlighted. Finally, alternative strategies to modulate endocannabinoid tone, and future directions are also emphasized.
Collapse
Affiliation(s)
- Dhanush Haspula
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA;
| | - Michelle A. Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
32
|
Babwah AV. The wonderful and masterful G protein-coupled receptor (GPCR): A focus on signaling mechanisms and the neuroendocrine control of fertility. Mol Cell Endocrinol 2020; 515:110886. [PMID: 32574585 DOI: 10.1016/j.mce.2020.110886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 12/18/2022]
Abstract
Human GnRH deficiency, both clinically and genetically, is a heterogeneous disorder comprising of congenital GnRH deficiency with anosmia (Kallmann syndrome), or with normal olfaction [normosmic idiopathic hypogonadotropic hypogonadism (IHH)], and adult-onset hypogonadotropic hypogonadism. Our understanding of the neural mechanisms underlying GnRH secretion and GnRH signaling continues to increase at a rapid rate and strikingly, the heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) continue to emerge as essential players in these processes. GPCRs were once viewed as binary on-off switches, where in the "on" state they are bound to their Gα protein, but now we understand that view is overly simplistic and does not adequately characterize GPCRs. Instead, GPCRs have emerged as masterful signaling molecules exploiting different physical conformational states of itself to elicit an array of downstream signaling events via their G proteins and the β-arrestins. The "one receptor-multiple signaling conformations" model is likely an evolved strategy that can be used to our advantage as researchers have shown that targeting specific receptor conformations via biased ligands is proving to be a powerful tool in the effective treatment of human diseases. Can biased ligands be used to selectively modulate signaling by GPCR regulators of the neuroendocrine axis in the treatment of IHH? As discussed in this review, the grand possibility exists. However, while we are still very far from developing these treatments, this exciting likelihood can happen through a much greater mechanistic understanding of how GPCRs signal within the cell.
Collapse
Affiliation(s)
- Andy V Babwah
- Department of Pediatrics, Laboratory of Human Growth and Reproductive Development, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States; Child Health Institute of New Jersey, New Brunswick, NJ, United States.
| |
Collapse
|
33
|
Pardo-García TR, Yusif-Rodriguez N, Yudowski G, Maldonado-Vlaar CS. Blockade of the endovanilloid receptor, TRPV1, and of the endocannabinoid enzyme, FAAH, within the nucleus accumbens shell elicits anxiolytic-like effects in male rats. Neurosci Lett 2020; 732:135023. [PMID: 32422166 DOI: 10.1016/j.neulet.2020.135023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 11/17/2022]
Abstract
RATIONALE The functional role of the endocannabinoid system (ECS) and Transient Receptor Potential Vanilloid type-1 (TRPV1) within the Nucleus Accumbens shell (NAc shell) remains unknown. Preclinical studies in rodents have reported that the ECS modulates emotional responses such as anxiety. The NAc shell has a high density of synaptically co-localized cannabinoid receptor type-1 (CB1R) and TRPV1, suggesting a potential involvement in the modulation of anxiety. OBJECTIVES The present study aims to establish the role of ECS-TRPV1 interactions within the NAc shell and its effects on anxiety. It is hypothesized that the neurochemical regulation elicited by ECS within the NAc shell mediates anxiety-like behaviors in rodents. METHODS In this study, male Sprague Dawley rats were implanted with bilateral brain cannula targeting the NAc shell. Following recovery from surgery, animals received microinfusion pretreatments (0, 0.125, 0.5 nmol/0.4 μl) of N-arachidonoyl-serotonin (AA-5-HT), a dual blocker of the endocannabinoid-inactivating enzyme, fatty acid amide hydrolase (FAAH) and a TRPV1 antagonist in the NAc shell. Following treatment, animals were tested in an elevated plus maze (EPM) paradigm for a period of 5 minutes. At the end of the experiment, animals were sacrificed and their brains collected for histological and biochemical analysis. RESULTS Results showed that animals treated with AA-5-HT in a dose dependent manner spent significantly more time in the open arms than vehicle-treated animals. In addition, AA-5-HT administration induced a significant downregulation of CB1R expression in the NAc shell. CONCLUSIONS The present findings suggest that the ECS within the NAc shell modulates anxiety-like behaviors via FAAH and CB1R activity.
Collapse
Affiliation(s)
- Thibaut R Pardo-García
- University of Puerto Rico-Rio Piedras Campus, Department of Biology, PO Box 23360, San Juan, 00931, Puerto Rico.
| | - Nadira Yusif-Rodriguez
- University of Puerto Rico-Rio Piedras Campus, Department of Biology, PO Box 23360, San Juan, 00931, Puerto Rico.
| | - Guillermo Yudowski
- University of Puerto Rico-Medical School, Institute of Neurobiology, San Juan, 00936, Puerto Rico
| | - Carmen S Maldonado-Vlaar
- University of Puerto Rico-Rio Piedras Campus, Department of Biology, PO Box 23360, San Juan, 00931, Puerto Rico.
| |
Collapse
|
34
|
Kovalchuk O, Kovalchuk I. Cannabinoids as anticancer therapeutic agents. Cell Cycle 2020; 19:961-989. [PMID: 32249682 PMCID: PMC7217364 DOI: 10.1080/15384101.2020.1742952] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/16/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022] Open
Abstract
The recent announcement of marijuana legalization in Canada spiked many discussions about potential health benefits of Cannabis sativa. Cannabinoids are active chemical compounds produced by cannabis, and their numerous effects on the human body are primarily exerted through interactions with cannabinoid receptor types 1 (CB1) and 2 (CB2). Cannabinoids are broadly classified as endo-, phyto-, and synthetic cannabinoids. In this review, we will describe the activity of cannabinoids on the cellular level, comprehensively summarize the activity of all groups of cannabinoids on various cancers and propose several potential mechanisms of action of cannabinoids on cancer cells.
Collapse
Affiliation(s)
- Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
- Pathway Rx Inc., Lethbridge, Alberta, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
- Pathway Rx Inc., Lethbridge, Alberta, Canada
| |
Collapse
|
35
|
Retamal JS, Ramírez-García PD, Shenoy PA, Poole DP, Veldhuis NA. Internalized GPCRs as Potential Therapeutic Targets for the Management of Pain. Front Mol Neurosci 2019; 12:273. [PMID: 31798411 PMCID: PMC6874167 DOI: 10.3389/fnmol.2019.00273] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/28/2019] [Indexed: 01/14/2023] Open
Abstract
Peripheral and central neurons in the pain pathway are well equipped to detect and respond to extracellular stimuli such as pro-inflammatory mediators and neurotransmitters through the cell surface expression of receptors that can mediate rapid intracellular signaling. Following injury or infection, activation of cell surface G protein-coupled receptors (GPCRs) initiates cell signaling processes that lead to the generation of action potentials in neurons or inflammatory responses such as cytokine secretion by immune cells. However, it is now appreciated that cell surface events alone may not be sufficient for all receptors to generate their complete signaling repertoire. Following an initial wave of signaling at the cell surface, active GPCRs can engage with endocytic proteins such as the adaptor protein β-arrestin (βArr) to promote clathrin-mediated internalization. Classically, βArr-mediated internalization of GPCRs was hypothesized to terminate signaling, yet for multiple GPCRs known to contribute to pain, it has been demonstrated that endocytosis can also promote a unique "second wave" of signaling from intracellular membranes, including those of endosomes and the Golgi, that is spatiotemporally distinct from initial cell-surface events. In the context of pain, understanding the cellular and molecular mechanisms that drive spatiotemporal signaling of GPCRs is invaluable for understanding how pain occurs and persists, and how current analgesics achieve efficacy or promote side-effects. This review article discusses the importance of receptor localization for signaling outcomes of pro- and anti-nociceptive GPCRs, and new analgesic opportunities emerging through the development of "location-biased" ligands that favor binding with intracellular GPCR populations.
Collapse
Affiliation(s)
- Jeffri S Retamal
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.,Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC, Australia
| | - Paulina D Ramírez-García
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.,Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC, Australia
| | - Priyank A Shenoy
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.,Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC, Australia
| | - Daniel P Poole
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.,Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Nicholas A Veldhuis
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.,Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC, Australia
| |
Collapse
|
36
|
Wouters E, Walraed J, Robertson MJ, Meyrath M, Szpakowska M, Chevigné A, Skiniotis G, Stove C. Assessment of Biased Agonism among Distinct Synthetic Cannabinoid Receptor Agonist Scaffolds. ACS Pharmacol Transl Sci 2019; 3:285-295. [PMID: 32296768 DOI: 10.1021/acsptsci.9b00069] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Indexed: 12/13/2022]
Abstract
Cannabinoid receptor 1 (CB1) is a key drug target for a number of diseases, including metabolic syndromes and neuropathic pain. Most of the typical cannabinoid ligands provoke psychotropic side effects that impair their therapeutic utility. As of today, it is not yet clearly known which structural features of cannabinoid ligands determine a preference toward specific signaling pathways. Distinct bioassays are typically used to elucidate signaling preferences. However, these are often based on different cell lines and use different principles and/or read-outs, which makes straightforward assessment of "ligand bias" difficult. Within this context, this study is the first to investigate ligand bias among synthetic cannabinoid receptor agonists (SCRAs) in as closely analogous conditions as possible, by applying a new functional complementation-based assay panel to assess the recruitment of Gαi protein or β-arrestin2 to CB1. In a panel of 21 SCRAs, chosen to cover a broad diversity in chemical structures, distinct, although often subtle, preferences toward specific signaling pathways were observed. Relative to CP55940, here considered as a "balanced" reference agonist, most of the selected SCRAs (e.g., 5F-APINACA, CUMYL-PEGACLONE, among others) displayed preferred signaling through the β-arrestin2 pathway, whereas MMB-CHMICA could serve as a potential "balanced" agonist. Interestingly, EG-018 was the only SCRA showing a significant (10-fold) preference toward G protein over β-arrestin2 recruitment. While it is currently unclear what this exactly means in terms of abuse potential and/or toxicity, the approach proposed here may allow construction of a knowledge base that in the end may allow better insight into the structure-"functional" activity relationship of these compounds. This may aid the development of new therapeutics with less unwanted psychoactive effects.
Collapse
Affiliation(s)
- Elise Wouters
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Jolien Walraed
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Michael Joseph Robertson
- Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, 94305 California, United States.,Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, 94305 California, United States
| | - Max Meyrath
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen 1445, Luxembourg
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen 1445, Luxembourg
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Strassen 1445, Luxembourg
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, 94305 California, United States.,Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, 94305 California, United States
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
37
|
Laprairie RB, Vemuri K, Stahl EL, Korde A, Ho JH, Grim TW, Hua T, Wu Y, Stevens RC, Liu ZJ, Makriyannis A, Bohn LM. Probing the CB 1 Cannabinoid Receptor Binding Pocket with AM6538, a High-Affinity Irreversible Antagonist. Mol Pharmacol 2019; 96:619-628. [PMID: 31515283 PMCID: PMC6785652 DOI: 10.1124/mol.119.116483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 08/17/2019] [Indexed: 01/12/2023] Open
Abstract
Cannabinoid receptor 1 (CB1) is a potential therapeutic target for the treatment of pain, obesity and obesity-related metabolic disorders, and addiction. The crystal structure of human CB1 has been determined in complex with the stabilizing antagonist AM6538. In the present study, we characterize AM6538 as a tight-binding/irreversible antagonist of CB1, as well as two derivatives of AM6538 (AM4112 and AM6542) as slowly dissociating CB1 antagonists across binding simulations and cellular signaling assays. The long-lasting nature of AM6538 was explored in vivo wherein AM6538 continues to block CP55,940-mediated behaviors in mice up to 5 days after a single injection. In contrast, the effects of SR141716A abate in mice 2 days after injection. These studies demonstrate the functional outcome of CB1 antagonist modification and open the path for development of long-lasting CB1 antagonists.
Collapse
Affiliation(s)
- Robert B Laprairie
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, Florida (R.B.L., E.L.S., J.-H.H., T.W.G., L.M.B.); Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (K.V., A.K., A.M.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H., Y.W., Z.-J.L.); and Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California (R.C.S.)
| | - Kiran Vemuri
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, Florida (R.B.L., E.L.S., J.-H.H., T.W.G., L.M.B.); Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (K.V., A.K., A.M.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H., Y.W., Z.-J.L.); and Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California (R.C.S.)
| | - Edward L Stahl
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, Florida (R.B.L., E.L.S., J.-H.H., T.W.G., L.M.B.); Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (K.V., A.K., A.M.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H., Y.W., Z.-J.L.); and Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California (R.C.S.)
| | - Anisha Korde
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, Florida (R.B.L., E.L.S., J.-H.H., T.W.G., L.M.B.); Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (K.V., A.K., A.M.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H., Y.W., Z.-J.L.); and Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California (R.C.S.)
| | - Jo-Hao Ho
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, Florida (R.B.L., E.L.S., J.-H.H., T.W.G., L.M.B.); Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (K.V., A.K., A.M.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H., Y.W., Z.-J.L.); and Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California (R.C.S.)
| | - Travis W Grim
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, Florida (R.B.L., E.L.S., J.-H.H., T.W.G., L.M.B.); Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (K.V., A.K., A.M.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H., Y.W., Z.-J.L.); and Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California (R.C.S.)
| | - Tian Hua
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, Florida (R.B.L., E.L.S., J.-H.H., T.W.G., L.M.B.); Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (K.V., A.K., A.M.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H., Y.W., Z.-J.L.); and Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California (R.C.S.)
| | - Yiran Wu
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, Florida (R.B.L., E.L.S., J.-H.H., T.W.G., L.M.B.); Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (K.V., A.K., A.M.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H., Y.W., Z.-J.L.); and Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California (R.C.S.)
| | - Raymond C Stevens
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, Florida (R.B.L., E.L.S., J.-H.H., T.W.G., L.M.B.); Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (K.V., A.K., A.M.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H., Y.W., Z.-J.L.); and Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California (R.C.S.)
| | - Zhi-Jie Liu
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, Florida (R.B.L., E.L.S., J.-H.H., T.W.G., L.M.B.); Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (K.V., A.K., A.M.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H., Y.W., Z.-J.L.); and Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California (R.C.S.)
| | - Alexandros Makriyannis
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, Florida (R.B.L., E.L.S., J.-H.H., T.W.G., L.M.B.); Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (K.V., A.K., A.M.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H., Y.W., Z.-J.L.); and Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California (R.C.S.)
| | - Laura M Bohn
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, Jupiter, Florida (R.B.L., E.L.S., J.-H.H., T.W.G., L.M.B.); Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (K.V., A.K., A.M.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H., Y.W., Z.-J.L.); and Departments of Biological Sciences and Chemistry, Bridge Institute, Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California (R.C.S.)
| |
Collapse
|
38
|
Seyedabadi M, Ghahremani MH, Albert PR. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol Ther 2019; 200:148-178. [PMID: 31075355 DOI: 10.1016/j.pharmthera.2019.05.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
G protein coupled receptors (GPCRs) convey signals across membranes via interaction with G proteins. Originally, an individual GPCR was thought to signal through one G protein family, comprising cognate G proteins that mediate canonical receptor signaling. However, several deviations from canonical signaling pathways for GPCRs have been described. It is now clear that GPCRs can engage with multiple G proteins and the line between cognate and non-cognate signaling is increasingly blurred. Furthermore, GPCRs couple to non-G protein transducers, including β-arrestins or other scaffold proteins, to initiate additional signaling cascades. Receptor/transducer selectivity is dictated by agonist-induced receptor conformations as well as by collateral factors. In particular, ligands stabilize distinct receptor conformations to preferentially activate certain pathways, designated 'biased signaling'. In this regard, receptor sequence alignment and mutagenesis have helped to identify key receptor domains for receptor/transducer specificity. Furthermore, molecular structures of GPCRs bound to different ligands or transducers have provided detailed insights into mechanisms of coupling selectivity. However, receptor dimerization, compartmentalization, and trafficking, receptor-transducer-effector stoichiometry, and ligand residence and exposure times can each affect GPCR coupling. Extrinsic factors including cell type or assay conditions can also influence receptor signaling. Understanding these factors may lead to the development of improved biased ligands with the potential to enhance therapeutic benefit, while minimizing adverse effects. In this review, evidence for ligand-specific GPCR signaling toward different transducers or pathways is elaborated. Furthermore, molecular determinants of biased signaling toward these pathways and relevant examples of the potential clinical benefits and pitfalls of biased ligands are discussed.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Iran; Education Development Center, Bushehr University of Medical Sciences, Iran
| | | | - Paul R Albert
- Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, Canada.
| |
Collapse
|
39
|
Banister SD, Krishna Kumar K, Kumar V, Kobilka BK, Malhotra SV. Selective modulation of the cannabinoid type 1 (CB 1) receptor as an emerging platform for the treatment of neuropathic pain. MEDCHEMCOMM 2019; 10:647-659. [PMID: 31191856 PMCID: PMC6533890 DOI: 10.1039/c8md00595h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/12/2019] [Indexed: 12/27/2022]
Abstract
Neuropathic pain is caused by a lesion or dysfunction in the nervous system, and it may arise from illness, be drug-induced or caused by toxin exposure. Since the discovery of two G-protein-coupled cannabinoid receptors (CB1 and CB2) nearly three decades ago, there has been a rapid expansion in our understanding of cannabinoid pharmacology. This is currently one of the most active fields of neuropharmacology, and interest has emerged in developing cannabinoids and other small molecule modulators of CB1 and CB2 as therapeutics for neuropathic pain. This short review article provides an overview of the chemotypes currently under investigation for the development of novel neuropathic pain treatments targeting CB1 receptors.
Collapse
Affiliation(s)
- Samuel D Banister
- Department of Radiation Oncology , Stanford University School of Medicine , Stanford , CA 94305 , USA .
| | - Kaavya Krishna Kumar
- Department of Molecular and Cellular Physiology , Stanford University School of Medicine , Stanford , CA 94305 , USA
| | - Vineet Kumar
- Department of Radiation Oncology , Stanford University School of Medicine , Stanford , CA 94305 , USA .
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology , Stanford University School of Medicine , Stanford , CA 94305 , USA
| | - Sanjay V Malhotra
- Department of Radiation Oncology , Stanford University School of Medicine , Stanford , CA 94305 , USA .
| |
Collapse
|
40
|
Al-Zoubi R, Morales P, Reggio PH. Structural Insights into CB1 Receptor Biased Signaling. Int J Mol Sci 2019; 20:E1837. [PMID: 31013934 PMCID: PMC6515405 DOI: 10.3390/ijms20081837] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/21/2022] Open
Abstract
The endocannabinoid system has emerged as a promising target for the treatment of numerous diseases, including cancer, neurodegenerative disorders, and metabolic syndromes. Thus far, two cannabinoid receptors, CB1 and CB2, have been discovered, which are found predominantly in the central nervous system (CB1) or the immune system (CB2), among other organs and tissues. CB1 receptor ligands have been shown to induce a complex pattern of intracellular effects. The binding of a ligand induces distinct conformational changes in the receptor, which will eventually translate into distinct intracellular signaling pathways through coupling to specific intracellular effector proteins. These proteins can mediate receptor desensitization, trafficking, or signaling. Ligand specificity and selectivity, complex cellular components, and the concomitant expression of other proteins (which either regulate the CB1 receptor or are regulated by the CB1 receptor) will affect the therapeutic outcome of its targeting. With an increased interest in G protein-coupled receptors (GPCR) research, in-depth studies using mutations, biological assays, and spectroscopic techniques (such as NMR, EPR, MS, FRET, and X-ray crystallography), as well as computational modelling, have begun to reveal a set of concerted structural features in Class A GPCRs which relate to signaling pathways and the mechanisms of ligand-induced activation, deactivation, or activity modulation. This review will focus on the structural features of the CB1 receptor, mutations known to bias its signaling, and reported studies of CB1 receptor ligands to control its specific signaling.
Collapse
Affiliation(s)
- Rufaida Al-Zoubi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science & Technology, P.O.BOX 3030, Irbid 22110, Jordan.
| | - Paula Morales
- Departamento de Química-Física Biológica, Instituto de Química Física Rocasolano (IQFR-CSIC), Serrano 119, 28006 Madrid, Spain.
| | - Patricia H Reggio
- Chemistry and Biochemistry Department, UNC Greensboro, Greensboro, NC 27412, USA.
| |
Collapse
|
41
|
Ibsen MS, Finlay DB, Patel M, Javitch JA, Glass M, Grimsey NL. Cannabinoid CB1 and CB2 Receptor-Mediated Arrestin Translocation: Species, Subtype, and Agonist-Dependence. Front Pharmacol 2019; 10:350. [PMID: 31024316 PMCID: PMC6468047 DOI: 10.3389/fphar.2019.00350] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/21/2019] [Indexed: 01/01/2023] Open
Abstract
Arrestin translocation and signaling have come to the fore of the G protein-coupled receptor molecular pharmacology field. Some receptor–arrestin interactions are relatively well understood and considered responsible for specific therapeutic or adverse outcomes. Coupling of arrestins with cannabinoid receptors 1 (CB1) and 2 (CB2) has been reported, though the majority of studies have not systematically characterized the differential ligand dependence of this activity. In addition, many prior studies have utilized bovine (rather than human) arrestins, and the most widely applied assays require reporter-tagged receptors, which prevent meaningful comparison between receptor types. We have employed a bioluminescence resonance energy transfer (BRET) method that does not require the use of tagged receptors and thereby allows comparisons of arrestin translocation between receptor types, as well as with cells lacking the receptor of interest – an important control. The ability of a selection of CB1 and CB2 agonists to stimulate cell surface translocation of human and bovine β-arrestin-1 and -2 was assessed. We find that some CB1 ligands induce moderate β-arrestin-2 translocation in comparison with vasopressin V2 receptor (a robust arrestin recruiter); however, CB1 coupling with β-arrestin-1 and CB2 with either arrestin elicited low relative efficacies. A range of efficacies between ligands was evident for both receptors and arrestins. Endocannabinoid 2-arachidonoylglycerol stood out as a high efficacy ligand for translocation of β-arrestin-2 via CB1. Δ9-tetrahydrocannabinol was generally unable to elicit translocation of either arrestin subtype via CB1 or CB2; however, control experiments revealed translocation in cells not expressing CB1/CB2, which may assist in explaining some discrepancy with the literature. Overexpression of GRK2 had modest influence on CB1/CB2-induced arrestin translocation. Results with bovine and human arrestins were largely analogous, but a few instances of inconsistent rank order potencies/efficacies between bovine and human arrestins raise the possibility that subtle differences in receptor conformation stabilized by these ligands manifest in disparate affinities for the two arrestin species, with important potential consequences for interpretation in ligand bias studies. As well as contributing important information regarding CB1/CB2 ligand-dependent arrestin coupling, our study raises a number of points for consideration in the design and interpretation of arrestin recruitment assays.
Collapse
Affiliation(s)
- Mikkel Søes Ibsen
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - David B Finlay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Monica Patel
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jonathan A Javitch
- Department of Psychiatry and Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Natasha Lillia Grimsey
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
42
|
Nealon CM, Henderson-Redmond AN, Hale DE, Morgan DJ. Tolerance to WIN55,212-2 is delayed in desensitization-resistant S426A/S430A mice. Neuropharmacology 2019; 148:151-159. [PMID: 30629988 PMCID: PMC6535342 DOI: 10.1016/j.neuropharm.2018.12.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 12/05/2018] [Accepted: 12/21/2018] [Indexed: 02/08/2023]
Abstract
Tolerance to cannabinoid agonists can develop through desensitization of the cannabinoid receptor 1 (CB1) following prolonged administration. Desensitization results from phosphorylation of CB1 by a G protein-coupled receptor kinase (GRK), and subsequent association of the receptor with arrestin. Mice expressing a mutant form of CB1, in which the serine residues at two putative phosphorylation sites necessary for desensitization have been replaced by non-phosphorylatable alanines (S426A/S430A), display reduced tolerance to Δ9-tetrahydrocannabinol (Δ9-THC). Tolerance to the antinociceptive effects of WIN55,212-2 was delayed in S426A/S430A mutants using the tail-flick and formalin tests. However, tolerance to the antinociceptive effects of once daily CP55,940 injections was not significantly delayed in S426A/S430A mutant mice using either of these tests. Interestingly, the dose response curve shifts for the hypothermic and antinociceptive effects of CP55,940 that were induced by chronic treatment with this agonist in wild-type mice were blocked in S426A/S430A mutant mice. Assessment of mechanical allodynia in mice exhibiting chronic cisplatin-evoked neuropathic pain found that tolerance to the anti-allodynic effects WIN55,212-2 but not CP55,940 was delayed in S426A/S430A mice compared to wild-type littermates. Despite these deficits in tolerance, S426A/S430A mutant mice eventually developed tolerance to both WIN55,212-2 and CP55,940 for all pain assays that were examined, suggesting that other mechanisms likely contribute to tolerance for these cannabinoid agonists. These findings suggest that GRK- and βarrestin2-mediated desensitization of CB1 may strongly contribute to the rate of tolerance to the antinociceptive effects of WIN55,212-2, and raises the possibility of agonist-specific mechanisms of cannabinoid tolerance.
Collapse
Affiliation(s)
- Caitlin M Nealon
- Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Angela N Henderson-Redmond
- Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - David E Hale
- Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Daniel J Morgan
- Department of Anesthesiology and Perioperative Medicine, Penn State University College of Medicine, Hershey, PA, 17033, USA; Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, 17033, USA; Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
43
|
Weinberg ZY, Puthenveedu MA. Regulation of G protein-coupled receptor signaling by plasma membrane organization and endocytosis. Traffic 2019; 20:121-129. [PMID: 30536564 PMCID: PMC6415975 DOI: 10.1111/tra.12628] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022]
Abstract
The trafficking of G protein coupled-receptors (GPCRs) is one of the most exciting areas in cell biology because of recent advances demonstrating that GPCR signaling is spatially encoded. GPCRs, acting in a diverse array of physiological systems, can have differential signaling consequences depending on their subcellular localization. At the plasma membrane, GPCR organization could fine-tune the initial stages of receptor signaling by determining the magnitude of signaling and the type of effectors to which receptors can couple. This organization is mediated by the lipid composition of the plasma membrane, receptor-receptor interactions, and receptor interactions with intracellular scaffolding proteins. GPCR organization is subsequently changed by ligand binding and the regulated endocytosis of these receptors. Activated GPCRs can modulate the dynamics of their own endocytosis through changing clathrin-coated pit dynamics, and through the scaffolding adaptor protein β-arrestin. This endocytic regulation has signaling consequences, predominantly through modulation of the MAPK cascade. This review explores what is known about receptor sorting at the plasma membrane, protein partners that control receptor endocytosis, and the ways in which receptor sorting at the plasma membrane regulates downstream trafficking and signaling.
Collapse
Affiliation(s)
- Zara Y Weinberg
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan
| | | |
Collapse
|
44
|
Weinberg ZY, Crilly SE, Puthenveedu MA. Spatial encoding of GPCR signaling in the nervous system. Curr Opin Cell Biol 2019; 57:83-89. [PMID: 30708280 DOI: 10.1016/j.ceb.2018.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023]
Abstract
Several GPCRs, including receptors previously thought to signal primarily from the cell surface, have been recently shown to signal from many intracellular compartments. This raises the idea that signaling by any given receptor is spatially encoded in the cell, with distinct sites of signal origin dictating distinct downstream consequences. We will discuss recent developments that address this novel facet of GPCR physiology, focusing on the spatial segregation of signaling from the cell surface, endosomes, and the Golgi by receptors relevant to the nervous system.
Collapse
Affiliation(s)
- Zara Y Weinberg
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Stephanie E Crilly
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Manojkumar A Puthenveedu
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States; Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
45
|
Jagla CAD, Scott CE, Tang Y, Qiao C, Mateo-Semidey GE, Yudowski GA, Lu D, Kendall DA. Pyrimidinyl Biphenylureas Act as Allosteric Modulators to Activate Cannabinoid Receptor 1 and Initiate β-Arrestin-Dependent Responses. Mol Pharmacol 2019; 95:1-10. [PMID: 30322873 PMCID: PMC6277924 DOI: 10.1124/mol.118.112854] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 10/12/2018] [Indexed: 01/14/2023] Open
Abstract
Cannabinoid receptor 1 (CB1) is a G-protein-coupled receptor that is abundant in the central nervous system. It binds several compounds in its orthosteric site, including the endocannabinoids, arachidonoyl ethanolamide (anandamide) and 2-arachidonoyl glycerol, and the plant-derived Δ9-tetrahydrocannabinol, one of the main psychoactive components of marijuana. It primarily couples to Gi/o proteins to inhibit adenylate cyclase activity and typically induces downstream signaling that is Gi-dependent. Since this receptor is implicated in several maladies, such as obesity, pain, and neurodegenerative disorders, there is interest in developing therapeutics that selectively target this receptor. Allosteric modulators of CB1 offer one new approach that has tremendous therapeutic potential. Here, we reveal receptor- and cellular-level properties consistent with receptor activation by a series of pyrimidinyl biphenylureas (LDK1285, LDK1288, LDK1305, and PSNCBAM1), including promoting binding of the agonist CP55940 with positive cooperativity and inhibiting binding of the inverse agonist SR141716A with negative cooperativity, demonstrated via radioligand binding studies. Consistent with these findings, the allosteric modulators induced cellular internalization of the receptor and recruitment of β-arrestin 2 in human embryonic kidney cell line 293 cells monitored with confocal and total internal reflective fluorescence microscopy, respectively. These allosteric modulators, however, caused G-protein-independent but β-arrestin 1-dependent phosphorylation of the downstream kinases extracellular signal-regulated kinase 1/2, mitogen-activated protein kinase, and Src, shown by immunoblotting studies. These results are consistent with the involvement of β-arrestin and suggest that these allosteric modulators induce biased signaling.
Collapse
Affiliation(s)
- Caitlin A D Jagla
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (C.Q., D.L.)
| | - Caitlin E Scott
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (C.Q., D.L.)
| | - Yaliang Tang
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (C.Q., D.L.)
| | - Changjiang Qiao
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (C.Q., D.L.)
| | - Gabriel E Mateo-Semidey
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (C.Q., D.L.)
| | - Guillermo A Yudowski
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (C.Q., D.L.)
| | - Dai Lu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (C.Q., D.L.)
| | - Debra A Kendall
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut (C.A.D.J., C.E.S., Y.T., D.A.K.); Department of Anatomy and Neurobiology (G.E.M.-S., G.A.Y.) and Institute of Neurobiology (G.E.M.-S., G.A.Y.), University of Puerto Rico, San Juan, Puerto Rico; and Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, Texas (C.Q., D.L.)
| |
Collapse
|
46
|
Frank JA, Broichhagen J, Yushchenko DA, Trauner D, Schultz C, Hodson DJ. Optical tools for understanding the complexity of β-cell signalling and insulin release. Nat Rev Endocrinol 2018; 14:721-737. [PMID: 30356209 DOI: 10.1038/s41574-018-0105-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Following stimulation, pancreatic β-cells must orchestrate a plethora of signalling events to ensure the appropriate release of insulin and maintenance of normal glucose homeostasis. Failure at any point in this cascade leads to impaired insulin secretion, elevated blood levels of glucose and eventually type 2 diabetes mellitus. Likewise, β-cell replacement or regeneration strategies for the treatment of both type 1 and type 2 diabetes mellitus might fail if the correct cell signalling phenotype cannot be faithfully recreated. However, current understanding of β-cell function is complicated because of the highly dynamic nature of their intracellular and intercellular signalling as well as insulin release itself. β-Cells must precisely integrate multiple signals stemming from multiple cues, often with differing intensities, frequencies and cellular and subcellular localizations, before converging these signals onto insulin exocytosis. In this respect, optical approaches with high resolution in space and time are extremely useful for properly deciphering the complexity of β-cell signalling. An increased understanding of β-cell signalling might identify new mechanisms underlying insulin release, with relevance for future drug therapy and de novo stem cell engineering of functional islets.
Collapse
Affiliation(s)
- James A Frank
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Johannes Broichhagen
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Dmytro A Yushchenko
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Dirk Trauner
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, New York University, New York, NY, USA
| | - Carsten Schultz
- European Molecular Biology Laboratory (EMBL), Cell Biology and Biophysics Unit, Heidelberg, Germany.
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA.
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, UK.
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.
| |
Collapse
|
47
|
Cui Y, Yu M, Yao X, Xing J, Lin J, Li X. Single-Particle Tracking for the Quantification of Membrane Protein Dynamics in Living Plant Cells. MOLECULAR PLANT 2018; 11:1315-1327. [PMID: 30296600 DOI: 10.1016/j.molp.2018.09.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 05/25/2023]
Abstract
The plasma membrane is a sophisticated, organized, and highly heterogeneous structure that compartmentalizes cellular processes. To decipher the biological processes involving membrane proteins, it is necessary to analyze their spatiotemporal dynamics. However, it is difficult to directly assess the dynamics and interactions of biomolecules in living cells using traditional biochemical methods. Single-particle tracking (SPT) methods for imaging and tracking single particles conjugated with fluorescent probes offer an ideal approach to acquire valuable and complementary information about dynamic intracellular processes. SPT can be used to quantitatively monitor the diverse motions of individual particles in living cells. SPT also provides super-spatiotemporal resolution that allows early-stage or rapid response information to be obtained for a better understanding of molecular basis of associated signal transduction processes. More importantly, SPT can be used to detect the motion paths of individual biomolecules in vivo and in situ, thus unveiling the dynamic behavior of the biomolecules that support developmental processes in living cells. In this review, we give an overview of SPT methods, from image acquisition to the detection of single particles, as well as tracking and data analysis. We also discuss recent applications of SPT methods in the field of plant biology to reveal the complex biological functions of membrane proteins.
Collapse
Affiliation(s)
- Yaning Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Meng Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaomin Yao
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jingjing Xing
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Jinming Street, Kaifeng 475001, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaojuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
48
|
Cui Y, Li X, Yu M, Li R, Fan L, Zhu Y, Lin J. Sterols regulate endocytic pathways during flg22-induced defense responses in Arabidopsis. Development 2018; 145:dev.165688. [PMID: 30228101 DOI: 10.1242/dev.165688] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022]
Abstract
The plant transmembrane receptor kinase FLAGELLIN SENSING 2 (FLS2) is crucial for innate immunity. Although previous studies have reported FLS2-mediated signal transduction and endocytosis via the clathrin-mediated pathway, whether additional endocytic pathways affect FLS2-mediated defense responses remains unclear. Here, we show that the Arabidopsis thaliana sterol-deficient mutant steroid methyltransferase 1 displays defects in immune responses induced by the flagellin-derived peptide flg22. Variable-angle total internal reflection fluorescence microscopy (VA-TIRFM) coupled with single-particle tracking showed that the spatiotemporal dynamics of FLS2-GFP changed on a millisecond time scale and that the FLS2-GFP dwell time at the plasma membrane increased in cells treated with a sterol-extracting reagent when compared with untreated counterparts. We further demonstrate that flg22-induced FLS2 clustering and endocytosis involves the sterol-associated endocytic pathway, which is distinct from the clathrin-mediated pathway. Moreover, flg22 enhanced the colocalization of FLS2-GFP with the membrane microdomain marker Flot 1-mCherry and FLS2 endocytosis via the sterol-associated pathway. This indicates that plants may respond to pathogen attacks by regulating two different endocytic pathways. Taken together, our results suggest the key role of sterol homeostasis in flg22-induced plant defense responses.
Collapse
Affiliation(s)
- Yaning Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.,College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaojuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.,College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Meng Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.,College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Ruili Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China.,College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Lusheng Fan
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Yingfang Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.,Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Jinming Street, Kaifeng 475001, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China .,College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
49
|
Morales P, Goya P, Jagerovic N. Emerging strategies targeting CB 2 cannabinoid receptor: Biased agonism and allosterism. Biochem Pharmacol 2018; 157:8-17. [PMID: 30055149 DOI: 10.1016/j.bcp.2018.07.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/23/2018] [Indexed: 01/24/2023]
Abstract
During these last years, the CB2 cannabinoid receptor has emerged as a potential anti-inflammatory target in diseases such as multiple sclerosis, amyotrophic lateral sclerosis, Huntington's disease, ischemic stroke, autoimmune diseases, osteoporosis, and cancer. However, the development of clinically useful CB2 agonists reveals to be very challenging. Allosterism and biased-signaling mechanisms at CB2 receptor may offer new avenues for the development of improved CB2 receptor-targeted therapies. Although there has been some exploration of CB1 receptor activation by new CB1 allosteric or biased-signaling ligands, the CB2 receptor is still at initial stages in this domain. In an effort to understand the molecular basis behind these pharmacological approaches, we have analyzed and summarized the structural data reported so far at CB2 receptor.
Collapse
Affiliation(s)
- Paula Morales
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Unidad Asociada I+D+i IQM/Universidad Rey Juan Carlos (URJC), Calle Juan de la Cierva, 3, E-28006 Madrid, Spain
| | - Pilar Goya
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Unidad Asociada I+D+i IQM/Universidad Rey Juan Carlos (URJC), Calle Juan de la Cierva, 3, E-28006 Madrid, Spain
| | - Nadine Jagerovic
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas, Unidad Asociada I+D+i IQM/Universidad Rey Juan Carlos (URJC), Calle Juan de la Cierva, 3, E-28006 Madrid, Spain.
| |
Collapse
|
50
|
Gorzkiewicz A, Szemraj J. Brain endocannabinoid signaling exhibits remarkable complexity. Brain Res Bull 2018; 142:33-46. [PMID: 29953913 DOI: 10.1016/j.brainresbull.2018.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/06/2018] [Accepted: 06/21/2018] [Indexed: 01/04/2023]
Abstract
The endocannabinoid (eCB) signaling system is one of the most extensive of the mammalian brain. Despite the involvement of only few specific ligands and receptors, the system encompasses a vast diversity of triggered mechanisms and driven effects. It mediates a wide range of phenomena, including the regulation of transmitter release, neural excitability, synaptic plasticity, impulse spread, long-term neuronal potentiation, neurogenesis, cell death, lineage segregation, cell migration, inflammation, oxidative stress, nociception and the sleep cycle. It is also known to be involved in the processes of learning and memory formation. This extensive scope of action is attained by combining numerous variables. In a properly functioning brain, the correlations of these variables are kept in a strictly controlled balance; however, this balance is disrupted in many pathological conditions. However, while this balance is known to be disrupted by drugs in the case of addicts, the stimuli and mechanisms influencing the neurodegenerating brain remain elusive. This review examines the multiple factors and phenomena affecting the eCB signaling system in the brain. It evaluates techniques of controlling the eCB system to identify the obstacles in their applications and highlights the crucial interdependent variables that may influence biomedical research outcomes.
Collapse
Affiliation(s)
- Anna Gorzkiewicz
- Medical University of Lodz, ul.Mazowiecka 6/8, 92-215, Lodz, Poland.
| | - Janusz Szemraj
- Medical University of Lodz, ul.Mazowiecka 6/8, 92-215, Lodz, Poland
| |
Collapse
|