1
|
Mahoney BJ, Lyman LR, Ford J, Soule J, Cheung NA, Goring AK, Ellis-Guardiola K, Collazo MJ, Cascio D, Ton-That H, Schmitt MP, Clubb RT. Molecular basis of hemoglobin binding and heme removal in Corynebacterium diphtheriae. Proc Natl Acad Sci U S A 2025; 122:e2411833122. [PMID: 39739808 PMCID: PMC11725911 DOI: 10.1073/pnas.2411833122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/06/2024] [Indexed: 01/02/2025] Open
Abstract
To successfully mount infections, nearly all bacterial pathogens must acquire iron, a key metal cofactor that primarily resides within human hemoglobin. Corynebacterium diphtheriae causes the life-threatening respiratory disease diphtheria and captures hemoglobin for iron scavenging using the surface-displayed receptor HbpA. Here, we show using X-ray crystallography, NMR, and in situ binding measurements that C. diphtheriae selectively captures iron-loaded hemoglobin by partially ensconcing the heme molecules of its α subunits. Quantitative growth and heme release measurements are compatible with C. diphtheriae acquiring heme passively released from hemoglobin's β subunits. We propose a model in which HbpA and heme-binding receptors collectively function on the C. diphtheriae surface to capture hemoglobin and its spontaneously released heme. Acquisition mechanisms that exploit the propensity of hemoglobin's β subunit to release heme likely represent a common strategy used by bacterial pathogens to obtain iron during infections.
Collapse
Affiliation(s)
- Brendan J. Mahoney
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Lindsey R. Lyman
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD20903
| | - Jordan Ford
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Jess Soule
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Nicole A. Cheung
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| | - Andrew K. Goring
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Kat Ellis-Guardiola
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Michael J. Collazo
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Duilio Cascio
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Hung Ton-That
- Molecular Biology Institute, University of California, Los Angeles, CA90095
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA90095
| | - Michael P. Schmitt
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD20903
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| |
Collapse
|
2
|
Etzerodt A, Mikkelsen JH, Torvund-Jensen M, Hennig D, Boesen T, Graversen JH, Moestrup SK, Kollman JM, Andersen CBF. The Cryo-EM structure of human CD163 bound to haptoglobin-hemoglobin reveals molecular mechanisms of hemoglobin scavenging. Nat Commun 2024; 15:10871. [PMID: 39738064 PMCID: PMC11685794 DOI: 10.1038/s41467-024-55171-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 12/02/2024] [Indexed: 01/01/2025] Open
Abstract
CD163, a macrophage-specific receptor, plays a critical role in scavenging hemoglobin released during hemolysis, protecting against oxidative effects of heme iron. In the bloodstream, hemoglobin is bound by haptoglobin, leading to its immediate endocytosis by CD163. While haptoglobin's structure and function are well understood, CD163's structure and its interaction with the haptoglobin-hemoglobin complex have remained elusive. Here, we present the cryo-electron microscopy structure of the entire extracellular domain of human CD163 in complex with haptoglobin-hemoglobin. The structure reveals that CD163 assembles into trimers (and to some extent dimers), binding haptoglobin-hemoglobin in their center. Key acidic residues in CD163 interact with lysine residues from both haptoglobin and hemoglobin. Calcium-binding sites located near the haptoglobin-hemoglobin interface in CD163 provide explanation for the calcium dependence of the interaction. Furthermore, we show that the interaction facilitating CD163 oligomerization mimics ligand binding and is also calcium dependent. This structural insight into CD163 advances our understanding of its role in hemoglobin scavenging as well as its broader relevance to structurally related scavenger receptors.
Collapse
Affiliation(s)
- Anders Etzerodt
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | | | | | - Dorle Hennig
- Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, 5000, Odense C, Denmark
| | - Thomas Boesen
- Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus C, Denmark
| | - Jonas Heilskov Graversen
- Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, 5000, Odense C, Denmark
| | - Søren Kragh Moestrup
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
- Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, 5000, Odense C, Denmark
| | - Justin M Kollman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
3
|
Horáková E, Vrbacký M, Tesařová M, Stříbrná E, Pilný J, Vavrušková Z, Vancová M, Sobotka R, Lukeš J, Perner J. Haptoglobin is dispensable for haemoglobin uptake by Trypanosoma brucei. Front Immunol 2024; 15:1441131. [PMID: 39114668 PMCID: PMC11304504 DOI: 10.3389/fimmu.2024.1441131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 08/10/2024] Open
Abstract
Haptoglobin is a plasma protein of mammals that plays a crucial role in vascular homeostasis by binding free haemoglobin released from ruptured red blood cells. Trypanosoma brucei can exploit this by internalising haptoglobin-haemoglobin complex to acquire host haem. Here, we investigated the impact of haptoglobin deficiency (Hp-/-) on T. brucei brucei infection and the parasite´s capacity to internalise haemoglobin in a Hp-/- mouse model. The infected Hp-/- mice exhibited normal disease progression, with minimal weight loss and no apparent organ pathology, similarly to control mice. While the proteomic profile of mouse sera significantly changed in response to T. b. brucei, no differences in the infection response markers of blood plasma between Hp-/- and control Black mice were observed. Similarly, very few quantitative differences were observed between the proteomes of parasites harvested from Hp-/- and Black mice, including both endogenous proteins and internalised host proteins. While haptoglobin was indeed absent from parasites isolated from Hp-/-mice, haemoglobin peptides were unexpectedly detected in parasites from both Hp-/- and Black mice. Combined, the data support the dispensability of haptoglobin for haemoglobin internalisation by T. b. brucei during infection in mice. Since the trypanosomes knock-outs for their haptoglobin-haemoglobin receptor (HpHbR) internalised significantly less haemoglobin from Hp-/- mice compared to those isolated from Black mice, it suggests that T. b. brucei employs also an HpHbR-independent haptoglobin-mediated mode for haemoglobin internalisation. Our study reveals a so-far hidden flexibility of haemoglobin acquisition by T. b. brucei and offers novel insights into alternative haemoglobin uptake pathways.
Collapse
Affiliation(s)
- Eva Horáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia
| | - Marek Vrbacký
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Martina Tesařová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Eva Stříbrná
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Jan Pilný
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia
| | - Zuzana Vavrušková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Marie Vancová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Roman Sobotka
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Jan Perner
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| |
Collapse
|
4
|
Delanghe JR, Delrue C, Speeckaert R, Speeckaert MM. Unlocking the link between haptoglobin polymorphism and noninfectious human diseases: insights and implications. Crit Rev Clin Lab Sci 2024; 61:275-297. [PMID: 38013410 DOI: 10.1080/10408363.2023.2285929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Haptoglobin (Hp) is a polymorphic protein that was initially described as a hemoglobin (Hb)-binding protein. The major functions of Hp are to scavenge Hb, prevent iron loss, and prevent heme-based oxidation. Hp regulates angiogenesis, nitric oxide homeostasis, immune responses, and prostaglandin synthesis. Genetic polymorphisms in the Hp gene give rise to different phenotypes, including Hp 1-1, Hp 2-1, and Hp 2-2. Extensive research has been conducted to investigate the association between Hp polymorphisms and several medical conditions including cardiovascular disease, inflammatory bowel disease, cancer, transplantation, and hemoglobinopathies. Generally, the Hp 2-2 phenotype is associated with increased disease risk and poor outcomes. Over the years, the Hp 2 allele has spread under genetic pressures. Individuals with the Hp 2-2 phenotype generally exhibit lower levels of CD163 expression in macrophages. The decreased expression of CD163 may be associated with the poor antioxidant capacity in the serum of subjects carrying the Hp 2-2 phenotype. However, the Hp 1-1 phenotype may confer protection in some cases. The Hp1 allele has strong antioxidant, anti-inflammatory, and immunomodulatory properties. It is important to note that the benefits of the Hp1 allele may vary depending on genetic and environmental factors as well as the specific disease or condition under consideration. Therefore, the Hp1 allele may not necessarily confer advantages in all situations, and its effects may be context-dependent. This review highlights the current understanding of the role of Hp polymorphisms in cardiovascular disease, inflammatory bowel disease, cancer, transplantation, hemoglobinopathies, and polyuria.
Collapse
Affiliation(s)
- Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
| | | | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium
- Research Foundation-Flanders (FWO), Brussels, Belgium
| |
Collapse
|
5
|
Mikkelsen JH, Stødkilde K, Jensen MP, Hansen AG, Wu Q, Lorentzen J, Graversen JH, Andersen GR, Fenton RA, Etzerodt A, Thiel S, Andersen CBF. Trypanosoma brucei Invariant Surface Glycoprotein 75 Is an Immunoglobulin Fc Receptor Inhibiting Complement Activation and Antibody-Mediated Cellular Phagocytosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1334-1344. [PMID: 38391367 DOI: 10.4049/jimmunol.2300862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Various subspecies of the unicellular parasite Trypanosoma brucei cause sleeping sickness, a neglected tropical disease affecting millions of individuals and domestic animals. Immune evasion mechanisms play a pivotal role in parasite survival within the host and enable the parasite to establish a chronic infection. In particular, the rapid switching of variant surface glycoproteins covering a large proportion of the parasite's surface enables the parasite to avoid clearance by the adaptive immune system of the host. In this article, we present the crystal structure and discover an immune-evasive function of the extracellular region of the T. brucei invariant surface gp75 (ISG75). Structural analysis determined that the ISG75 ectodomain is organized as a globular head domain and a long slender coiled-coil domain. Subsequent ligand screening and binding analysis determined that the head domain of ISG75 confers interaction with the Fc region of all subclasses of human IgG. Importantly, the ISG75-IgG interaction strongly inhibits both activation of the classical complement pathway and Ab-dependent cellular phagocytosis by competing with C1q and host cell FcγR CD32. Our data reveal a novel immune evasion mechanism of T. brucei, with ISG75 able to inactivate the activities of Abs recognizing the parasite surface proteins.
Collapse
Affiliation(s)
| | | | | | | | - Qi Wu
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Josefine Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jonas Heilskov Graversen
- Department of Cancer and Inflammation, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Gregers Rom Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
6
|
Reyes-López M, Aguirre-Armenta B, Piña-Vázquez C, de la Garza M, Serrano-Luna J. Hemoglobin uptake and utilization by human protozoan parasites: a review. Front Cell Infect Microbiol 2023; 13:1150054. [PMID: 37360530 PMCID: PMC10289869 DOI: 10.3389/fcimb.2023.1150054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
The protozoan disease is a major global health concern. Amoebiasis, leishmaniasis, Chagas disease, and African sleeping sickness affect several million people worldwide, leading to millions of deaths annually and immense social and economic problems. Iron is an essential nutrient for nearly all microbes, including invading pathogens. The majority of iron in mammalian hosts is stored intracellularly in proteins, such as ferritin and hemoglobin (Hb). Hb, present in blood erythrocytes, is a very important source of iron and amino acids for pathogenic microorganisms ranging from bacteria to eukaryotic pathogens, such as worms, protozoa, yeast, and fungi. These organisms have developed adequate mechanisms to obtain Hb or its byproducts (heme and globin) from the host. One of the major virulence factors identified in parasites is parasite-derived proteases, essential for host tissue degradation, immune evasion, and nutrient acquisition. The production of Hb-degrading proteases is a Hb uptake mechanism that degrades globin in amino acids and facilitates heme release. This review aims to provide an overview of the Hb and heme-uptake mechanisms utilized by human pathogenic protozoa to survive inside the host.
Collapse
|
7
|
Sülzen H, Began J, Dhillon A, Kereïche S, Pompach P, Votrubova J, Zahedifard F, Šubrtova A, Šafner M, Hubalek M, Thompson M, Zoltner M, Zoll S. Cryo-EM structures of Trypanosoma brucei gambiense ISG65 with human complement C3 and C3b and their roles in alternative pathway restriction. Nat Commun 2023; 14:2403. [PMID: 37105991 PMCID: PMC10140031 DOI: 10.1038/s41467-023-37988-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
African Trypanosomes have developed elaborate mechanisms to escape the adaptive immune response, but little is known about complement evasion particularly at the early stage of infection. Here we show that ISG65 of the human-infective parasite Trypanosoma brucei gambiense is a receptor for human complement factor C3 and its activation fragments and that it takes over a role in selective inhibition of the alternative pathway C5 convertase and thus abrogation of the terminal pathway. No deposition of C4b, as part of the classical and lectin pathway convertases, was detected on trypanosomes. We present the cryo-electron microscopy (EM) structures of native C3 and C3b in complex with ISG65 which reveal a set of modes of complement interaction. Based on these findings, we propose a model for receptor-ligand interactions as they occur at the plasma membrane of blood-stage trypanosomes and may facilitate innate immune escape of the parasite.
Collapse
Affiliation(s)
- Hagen Sülzen
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic
- Faculty of Science, Charles University, Albertov 6, 12800, Prague 2, Czech Republic
| | - Jakub Began
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic
- Department of Immunobiology, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Arun Dhillon
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic
| | - Sami Kereïche
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Albertov 4, 12800, Prague, Czech Republic
| | - Petr Pompach
- Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czech Republic
| | - Jitka Votrubova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic
| | - Farnaz Zahedifard
- Department of Parasitology, Faculty of Science, Charles University Prague, Biocev, 25250, Vestec, Czech Republic
| | - Adriana Šubrtova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic
| | - Marie Šafner
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic
| | - Martin Hubalek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic
| | - Maaike Thompson
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic
- University of Antwerp, Antwerp, Belgium
- Agidens, Industrial Machinery Manufacturing, Zwijndrecht, Antwerp, Belgium
| | - Martin Zoltner
- Department of Parasitology, Faculty of Science, Charles University Prague, Biocev, 25250, Vestec, Czech Republic
| | - Sebastian Zoll
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic.
| |
Collapse
|
8
|
Casas-Sanchez A, Ramaswamy R, Perally S, Haines LR, Rose C, Aguilera-Flores M, Portillo S, Verbeelen M, Hussain S, Smithson L, Yunta C, Lehane MJ, Vaughan S, van den Abbeele J, Almeida IC, Boulanger MJ, Acosta-Serrano Á. The Trypanosoma brucei MISP family of invariant proteins is co-expressed with BARP as triple helical bundle structures on the surface of salivary gland forms, but is dispensable for parasite development within the tsetse vector. PLoS Pathog 2023; 19:e1011269. [PMID: 36996244 PMCID: PMC10089363 DOI: 10.1371/journal.ppat.1011269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/11/2023] [Accepted: 03/08/2023] [Indexed: 04/01/2023] Open
Abstract
Trypanosoma brucei spp. develop into mammalian-infectious metacyclic trypomastigotes inside tsetse salivary glands. Besides acquiring a variant surface glycoprotein (VSG) coat, little is known about the metacyclic expression of invariant surface antigens. Proteomic analyses of saliva from T. brucei-infected tsetse flies identified, in addition to VSG and Brucei Alanine-Rich Protein (BARP) peptides, a family of glycosylphosphatidylinositol (GPI)-anchored surface proteins herein named as Metacyclic Invariant Surface Proteins (MISP) because of its predominant expression on the surface of metacyclic trypomastigotes. The MISP family is encoded by five paralog genes with >80% protein identity, which are exclusively expressed by salivary gland stages of the parasite and peak in metacyclic stage, as shown by confocal microscopy and immuno-high resolution scanning electron microscopy. Crystallographic analysis of a MISP isoform (MISP360) and a high confidence model of BARP revealed a triple helical bundle architecture commonly found in other trypanosome surface proteins. Molecular modelling combined with live fluorescent microscopy suggests that MISP N-termini are potentially extended above the metacyclic VSG coat, and thus could be tested as a transmission-blocking vaccine target. However, vaccination with recombinant MISP360 isoform did not protect mice against a T. brucei infectious tsetse bite. Lastly, both CRISPR-Cas9-driven knock out and RNAi knock down of all MISP paralogues suggest they are not essential for parasite development in the tsetse vector. We suggest MISP may be relevant during trypanosome transmission or establishment in the vertebrate's skin.
Collapse
Affiliation(s)
- Aitor Casas-Sanchez
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Samïrah Perally
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Lee R. Haines
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Clair Rose
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Marcela Aguilera-Flores
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Susana Portillo
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | | | | | - Laura Smithson
- Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Cristina Yunta
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Michael J. Lehane
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sue Vaughan
- Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | | | - Igor C. Almeida
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Martin J. Boulanger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Álvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
9
|
Lin HJ, James I, Hyer CD, Haderlie CT, Zackrison MJ, Bateman TM, Berg M, Park JS, Daley SA, Zuniga Pina NR, Tseng YJJ, Moody JD, Price JC. Quantifying In Situ Structural Stabilities of Human Blood Plasma Proteins Using a Novel Iodination Protein Stability Assay. J Proteome Res 2022; 21:2920-2935. [PMID: 36356215 PMCID: PMC9724711 DOI: 10.1021/acs.jproteome.2c00323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 11/12/2022]
Abstract
Many of the diseases that plague society today are driven by a loss of protein quality. One method to quantify protein quality is to measure the protein folding stability (PFS). Here, we present a novel mass spectrometry (MS)-based approach for PFS measurement, iodination protein stability assay (IPSA). IPSA quantifies the PFS by tracking the surface-accessibility differences of tyrosine, histidine, methionine, and cysteine under denaturing conditions. Relative to current methods, IPSA increases protein coverage and granularity to track the PFS changes of a protein along its sequence. To our knowledge, this study is the first time the PFS of human serum proteins has been measured in the context of the blood serum (in situ). We show that IPSA can quantify the PFS differences between different transferrin iron-binding states in near in vivo conditions. We also show that the direction of the denaturation curve reflects the in vivo surface accessibility of the amino acid residue and reproducibly reports a residue-specific PFS. Along with IPSA, we introduce an analysis tool Chalf that provides a simple workflow to calculate the residue-specific PFS. The introduction of IPSA increases the potential to use protein structural stability as a structural quality metric in understanding the etiology and progression of human disease. Data is openly available at Chorusproject.org (project ID 1771).
Collapse
Affiliation(s)
- Hsien-Jung
L. Lin
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Isabella James
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Chad D. Hyer
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Connor T. Haderlie
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Michael J. Zackrison
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Tyler M. Bateman
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Monica Berg
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Ji-Sun Park
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - S. Anisha Daley
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Nathan R. Zuniga Pina
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - Yi-Jie J. Tseng
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - James D. Moody
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| | - John C. Price
- Department of Chemistry and
Biochemistry, Brigham Young University, Provo, Utah84602, United States
| |
Collapse
|
10
|
Heme-deficient metabolism and impaired cellular differentiation as an evolutionary trade-off for human infectivity in Trypanosoma brucei gambiense. Nat Commun 2022; 13:7075. [PMID: 36400774 PMCID: PMC9674590 DOI: 10.1038/s41467-022-34501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Resistance to African trypanosomes in humans relies in part on the high affinity targeting of a trypanosome lytic factor 1 (TLF1) to a trypanosome haptoglobin-hemoglobin receptor (HpHbR). While TLF1 avoidance by the inactivation of HpHbR contributes to Trypanosoma brucei gambiense human infectivity, the evolutionary trade-off of this adaptation is unknown, as the physiological function of the receptor remains to be elucidated. Here we show that uptake of hemoglobin via HpHbR constitutes the sole heme import pathway in the trypanosome bloodstream stage. T. b. gambiense strains carrying the inactivating mutation in HpHbR, as well as genetically engineered T. b. brucei HpHbR knock-out lines show only trace levels of intracellular heme and lack hemoprotein-based enzymatic activities, thereby providing an uncommon example of aerobic parasitic proliferation in the absence of heme. We further show that HpHbR facilitates the developmental progression from proliferating long slender forms to cell cycle-arrested stumpy forms in T. b. brucei. Accordingly, T. b. gambiense was found to be poorly competent for slender-to-stumpy differentiation unless a functional HpHbR receptor derived from T. b. brucei was genetically restored. Altogether, we identify heme-deficient metabolism and disrupted cellular differentiation as two distinct HpHbR-dependent evolutionary trade-offs for T. b. gambiense human infectivity.
Collapse
|
11
|
Skytthe MK, Sørensen AL, Hennig D, Sandberg MB, Rasmussen LM, Højrup P, Møller HJ, Skjødt K, Moestrup SK, Graversen JH. Haptoglobin-related protein in human plasma correlates to haptoglobin concentrations and phenotypes. Scandinavian Journal of Clinical and Laboratory Investigation 2022; 82:461-466. [PMID: 36129375 DOI: 10.1080/00365513.2022.2122076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Haptoglobin-related protein (Hpr) is a plasma protein with high sequence similarity to haptoglobin (Hp). Like Hp, Hpr also binds hemoglobin (Hb) with high affinity, but it does not bind to the Hb-Hp receptor CD163 on macrophages. The Hpr concentration is markedly lower than Hp in plasma and its regulation is not understood. In the present study, we have developed non-crossreactive antibodies to Hpr to analyze the Hpr concentration in 112 plasma samples from anonymized individuals and compared it to Hp. The results show that plasma Hpr correlated with Hp concentrations (rho = 0.46, p = .0001). Hpr accounts for on average 0.35% of the Hp/Hpr pool but up to 29% at low Hp levels. Furthermore, the Hpr concentrations were significantly lower in individuals with the Hp2-2 phenotype compared to those with the Hp2-1 or Hp1-1 phenotypes. Experimental binding analysis did not provide evidence that Hpr associates with Hp and in this way is removed via CD163. In conclusion, the Hpr concentration correlates to Hp concentrations and Hp-phenotypes by yet unknown mechanisms independent of CD163-mediated removal of Hb-Hp complexes.
Collapse
Affiliation(s)
- Maria Kløjgaard Skytthe
- Department of Molecular Medicine-Cancer and Inflammation Research, University of Southern Denmark, Odense C, Denmark
| | - Anna Lahn Sørensen
- Department of Molecular Medicine-Cancer and Inflammation Research, University of Southern Denmark, Odense C, Denmark
| | - Dorle Hennig
- Department of Molecular Medicine-Cancer and Inflammation Research, University of Southern Denmark, Odense C, Denmark
| | - Maria Boysen Sandberg
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark
| | - Lars Melholt Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark
| | - Peter Højrup
- Department of Biochemistry and molecular biology, University of Southern Denmark, Odense M, Denmark
| | - Holger J Møller
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus N, Denmark
| | - Karsten Skjødt
- Department of Molecular Medicine-Cancer and Inflammation Research, University of Southern Denmark, Odense C, Denmark
| | - Søren Kragh Moestrup
- Department of Molecular Medicine-Cancer and Inflammation Research, University of Southern Denmark, Odense C, Denmark.,Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus N, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jonas Heilskov Graversen
- Department of Molecular Medicine-Cancer and Inflammation Research, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
12
|
Identification and Tetramer Structure of Hemin-Binding Protein SPD_0310 Linked to Iron Homeostasis and Virulence of Streptococcus pneumoniae. mSystems 2022; 7:e0022122. [PMID: 35414267 PMCID: PMC9238395 DOI: 10.1128/msystems.00221-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron and iron-containing compounds are essential for bacterial virulence and host infection. Hemin is an important supplement compound for bacterial survival in an iron-deficient environment. Despite strong interest in hemin metabolism, the detailed mechanism of hemin transportation in Gram-positive bacteria is yet to be reported. The results of our study revealed that the homologous proteins of SPD_0310 were significantly conservative in Gram-positive bacteria (P < 0.001), and these proteins were identified as belonging to an uncharacterized protein family (UPF0371). The results of thermodynamic and kinetic studies have shown that SPD_0310 has a high hemin-binding affinity. Interestingly, we found that the crystal structure of SPD_0310 presented a homotetramer conformation, which is required for hemin binding. SPD_0310 can interact with many hemin-binding proteins (SPD_0090, SPD_1609, and GAPDH) located on the cell surface, which contributes to hemin transfer to the cytoplasm. It also has a high affinity with other iron transporters in the cytoplasm (SPD_0226 and SPD_0227), which facilitates iron redistribution in cells. More importantly, the knockout of the spd_0310 gene (Δspd_0310) resulted in a decrease in the iron content and protein expression levels of many bacterial adhesion factors. Moreover, the animal model showed that the Δspd_0310 strain has a lower virulence than the wild type. Based on the crystallographic and biochemical studies, we inferred that SPD_0310 is a hemin intermediate transporter which contributes to iron homeostasis and further affects the virulence of Streptococcus pneumoniae in the host. Our study provides not only an important theoretical basis for the in-depth elucidation of the hemin transport mechanism in bacteria but also an important candidate target for the development of novel antimicrobial agents based on metal transport systems. IMPORTANCE Iron is an essential element for bacterial virulence and infection of the host. The detailed hemin metabolism in Gram-positive bacteria has rarely been studied. SPD_0310 belongs to the UPF0371 family of proteins, and results of homology analysis and evolutionary tree analysis suggested that it was widely distributed and highly conserved in Gram-positive bacteria. However, the function of the UPF0371 family remains unknown. We successfully determined the crystal structure of apo-SPD_0310, which is a homotetramer. We found that cytoplasmic protein SPD_0310 with a special tetramer structure has a strong hemin-binding ability and interacts with many iron transporters, which facilitates hemin transfer from the extracellular space to the cytoplasm. The results of detailed functional analyses indicated that SPD_0310 may function as a hemin transporter similar to hemoglobin in animals and contributes to bacterial iron homeostasis and virulence. This study provides a novel target for the development of antimicrobial drugs against pathogenic Gram-positive bacteria.
Collapse
|
13
|
The dynamics of hemoglobin-haptoglobin complexes. Relevance for oxidative stress. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Loginov DS, Fiala J, Brechlin P, Kruppa G, Novak P. Hydroxyl radical footprinting analysis of a human haptoglobin-hemoglobin complex. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140735. [PMID: 34742912 DOI: 10.1016/j.bbapap.2021.140735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 09/22/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
Methods of structural mass spectrometry have become more popular to study protein structure and dynamics. Among them, fast photochemical oxidation of proteins (FPOP) has several advantages such as irreversibility of modifications and more facile determination of the site of modification with single residue resolution. In the present study, FPOP analysis was applied to study the hemoglobin (Hb) - haptoglobin (Hp) complex allowing identification of respective regions altered upon the complex formation. FPOP footprinting using a timsTOF Pro mass spectrometer revealed structural information for 84 and 76 residues in Hp and Hb, respectively, including statistically significant differences in the modification extent below 0.3%. The most affected residues upon complex formation were Met76 and Tyr140 in Hbα, and Tyr280 and Trp284 in Hpβ. The data allowed determination of amino acids directly involved in Hb - Hp interactions and those located outside of the interaction interface yet affected by the complex formation. Also, previously modeled interaction between Hb βTrp37 and Hp βPhe292 was not confirmed by our data. Data are available via ProteomeXchange with identifier PXD021621.
Collapse
Affiliation(s)
- Dmitry S Loginov
- BioCeV - Institute of Microbiology of the CAS, Prumyslova 595, CZ-252 50 Vestec, Czech Republic; Orekhovich Institute of Biomedical Chemistry, Pogodinskaja str. 10, 119191 Moscow, Russia.
| | - Jan Fiala
- BioCeV - Institute of Microbiology of the CAS, Prumyslova 595, CZ-252 50 Vestec, Czech Republic; Faculty of Science, Charles University, Hlavova 8, CZ-128 20 Prague, Czech Republic
| | - Peter Brechlin
- Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - Gary Kruppa
- Bruker s.r.o., Prazakova 60, 619 00, Brno, Czech Republic
| | - Petr Novak
- BioCeV - Institute of Microbiology of the CAS, Prumyslova 595, CZ-252 50 Vestec, Czech Republic.
| |
Collapse
|
15
|
Fojtík L, Fiala J, Pompach P, Chmelík J, Matoušek V, Beier P, Kukačka Z, Novák P. Fast Fluoroalkylation of Proteins Uncovers the Structure and Dynamics of Biological Macromolecules. J Am Chem Soc 2021; 143:20670-20679. [PMID: 34846870 DOI: 10.1021/jacs.1c07771] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Covalent labeling of proteins in combination with mass spectrometry has been established as a complementary technique to classical structural methods, such as X-ray, NMR, or cryogenic electron microscopy (Cryo-EM), used for protein structure determination. Although the current covalent labeling techniques enable the protein solvent accessible areas with sufficient spatial resolution to be monitored, there is still high demand for alternative, less complicated, and inexpensive approaches. Here, we introduce a new covalent labeling method based on fast fluoroalkylation of proteins (FFAP). FFAP uses fluoroalkyl radicals formed by reductive decomposition of Togni reagents with ascorbic acid to label proteins on a time scale of seconds. The feasibility of FFAP to effectively label proteins was demonstrated by monitoring the differential amino acids modification of native horse heart apomyoglobin/holomyoglobin and the human haptoglobin-hemoglobin complex. The obtained data confirmed the Togni reagent-mediated FFAP is an advantageous alternative method for covalent labeling in applications such as protein footprinting and epitope mapping of proteins (and their complexes) in general. Data are accessible via the ProteomeXchange server with the data set identifier PXD027310.
Collapse
Affiliation(s)
- Lukáš Fojtík
- Institute of Microbiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, 12843 Prague, Czech Republic
| | - Jan Fiala
- Institute of Microbiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, 12843 Prague, Czech Republic
| | - Petr Pompach
- Institute of Microbiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic.,Institute of Biotechnology of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Josef Chmelík
- Institute of Microbiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, 12843 Prague, Czech Republic
| | | | - Petr Beier
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Zdeněk Kukačka
- Institute of Microbiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Petr Novák
- Institute of Microbiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| |
Collapse
|
16
|
Bateman TJ, Shah M, Ho TP, Shin HE, Pan C, Harris G, Fegan JE, Islam EA, Ahn SK, Hooda Y, Gray-Owen SD, Chen W, Moraes TF. A Slam-dependent hemophore contributes to heme acquisition in the bacterial pathogen Acinetobacter baumannii. Nat Commun 2021; 12:6270. [PMID: 34725337 PMCID: PMC8560813 DOI: 10.1038/s41467-021-26545-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 10/06/2021] [Indexed: 12/02/2022] Open
Abstract
Nutrient acquisition systems are often crucial for pathogen growth and survival during infection, and represent attractive therapeutic targets. Here, we study the protein machinery required for heme uptake in the opportunistic pathogen Acinetobacter baumannii. We show that the hemO locus, which includes a gene encoding the heme-degrading enzyme, is required for high-affinity heme acquisition from hemoglobin and serum albumin. The hemO locus includes a gene coding for a heme scavenger (HphA), which is secreted by a Slam protein. Furthermore, heme uptake is dependent on a TonB-dependent receptor (HphR), which is important for survival and/or dissemination into the vasculature in a mouse model of pulmonary infection. Our results indicate that A. baumannii uses a two-component receptor system for the acquisition of heme from host heme reservoirs.
Collapse
Affiliation(s)
- Thomas J Bateman
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Megha Shah
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Timothy Pham Ho
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | - Chuxi Pan
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Greg Harris
- National Research Council Canada, Human Health Therapeutics (HHT) Research Center, Ottawa, ON, Canada
| | - Jamie E Fegan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Epshita A Islam
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Sang Kyun Ahn
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Yogesh Hooda
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Wangxue Chen
- National Research Council Canada, Human Health Therapeutics (HHT) Research Center, Ottawa, ON, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
Loginov DS, Fiala J, Chmelik J, Brechlin P, Kruppa G, Novak P. Benefits of Ion Mobility Separation and Parallel Accumulation-Serial Fragmentation Technology on timsTOF Pro for the Needs of Fast Photochemical Oxidation of Protein Analysis. ACS OMEGA 2021; 6:10352-10361. [PMID: 34056188 PMCID: PMC8153767 DOI: 10.1021/acsomega.1c00732] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/29/2021] [Indexed: 05/07/2023]
Abstract
Fast photochemical oxidation of proteins (FPOP) is a recently developed technique for studying protein folding, conformations, interactions, etc. In this method, hydroxyl radicals, usually generated by KrF laser photolysis of H2O2, are used for irreversible labeling of solvent-exposed side chains of amino acids. Mapping of the oxidized residues to the protein's structure requires pinpointing of modifications using a bottom-up proteomic approach. In this work, a quadrupole time-of-flight (QTOF) mass spectrometer coupled with trapped ion mobility spectrometry (timsTOF Pro) was used for identification of oxidative modifications in a model protein. Multiple modifications on the same residues, including six modifications of histidine, were successfully resolved. Moreover, parallel accumulation-serial fragmentation (PASEF) technology allows successful sequencing of even minor populations of modified peptides. The data obtained indicate a clear improvement of the quality of the FPOP analysis from the viewpoint of the number of identified peptides bearing oxidative modifications and their precise localization. Data are available via ProteomeXchange with identifier PXD020509.
Collapse
Affiliation(s)
- Dmitry S. Loginov
- Institute
of Microbiology, The Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
- Faculty
of Science, Charles University, Hlavova 8, 128 20 Prague, Czech Republic
| | - Jan Fiala
- Orekhovich
Institute of Biomedical Chemistry, Pogodinskaja str. 10, 119191 Moscow, Russia
| | - Josef Chmelik
- Institute
of Microbiology, The Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Peter Brechlin
- Bruker
Daltonik GmbH, Fahrenheitstraße 4, 28359 Bremen, Germany
| | - Gary Kruppa
- Bruker
s.r.o., Prazakova 60, 619 00 Brno, Czech
Republic
| | - Petr Novak
- Institute
of Microbiology, The Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| |
Collapse
|
18
|
Ellis-Guardiola K, Mahoney BJ, Clubb RT. NEAr Transporter (NEAT) Domains: Unique Surface Displayed Heme Chaperones That Enable Gram-Positive Bacteria to Capture Heme-Iron From Hemoglobin. Front Microbiol 2021; 11:607679. [PMID: 33488548 PMCID: PMC7815599 DOI: 10.3389/fmicb.2020.607679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Iron is an important micronutrient that is required by bacteria to proliferate and to cause disease. Many bacterial pathogens forage iron from human hemoglobin (Hb) during infections, which contains this metal within heme (iron-protoporphyrin IX). Several clinically important pathogenic species within the Firmicutes phylum scavenge heme using surface-displayed or secreted NEAr Transporter (NEAT) domains. In this review, we discuss how these versatile proteins function in the Staphylococcus aureus Iron-regulated surface determinant system that scavenges heme-iron from Hb. S. aureus NEAT domains function as either Hb receptors or as heme-binding chaperones. In vitro studies have shown that heme-binding NEAT domains can rapidly exchange heme amongst one another via transiently forming transfer complexes, leading to the interesting hypothesis that they may form a protein-wire within the peptidoglycan layer through which heme flows from the microbial surface to the membrane. In Hb receptors, recent studies have revealed how dedicated heme- and Hb-binding NEAT domains function synergistically to extract Hb's heme molecules, and how receptor binding to the Hb-haptoglobin complex may block its clearance by macrophages, prolonging microbial access to Hb's iron. The functions of NEAT domains in other Gram-positive bacteria are also reviewed.
Collapse
Affiliation(s)
- Ken Ellis-Guardiola
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Brendan J. Mahoney
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
19
|
De Simone G, Pasquadibisceglie A, Polticelli F, di Masi A, Ascenzi P. Haptoglobin and the related haptoglobin protein: the N-terminus makes the difference. J Biomol Struct Dyn 2020; 40:2244-2253. [DOI: 10.1080/07391102.2020.1837675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | | | - Fabio Polticelli
- Dipartimento di Scienze, Università Roma Tre, Roma, Italy
- Istituto Nazionale di Fisica Nucleare, Roma Tre Section, Roma, Italy
| | | | - Paolo Ascenzi
- Laboratorio Interdipartimentale di Microscopia Elettronica, Università Roma Tre, Roma, Italy
| |
Collapse
|
20
|
di Masi A, De Simone G, Ciaccio C, D'Orso S, Coletta M, Ascenzi P. Haptoglobin: From hemoglobin scavenging to human health. Mol Aspects Med 2020; 73:100851. [PMID: 32660714 DOI: 10.1016/j.mam.2020.100851] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 02/07/2023]
Abstract
Haptoglobin (Hp) belongs to the family of acute-phase plasma proteins and represents the most important plasma detoxifier of hemoglobin (Hb). The basic Hp molecule is a tetrameric protein built by two α/β dimers. Each Hp α/β dimer is encoded by a single gene and is synthesized as a single polypeptide. Following post-translational protease-dependent cleavage of the Hp polypeptide, the α and β chains are linked by disulfide bridge(s) to generate the mature Hp protein. As human Hp gene is characterized by two common Hp1 and Hp2 alleles, three major genotypes can result (i.e., Hp1-1, Hp2-1, and Hp2-2). Hp regulates Hb clearance from circulation by the macrophage-specific receptor CD163, thus preventing Hb-mediated severe consequences for health. Indeed, the antioxidant and Hb binding properties of Hp as well as its ability to stimulate cells of the monocyte/macrophage lineage and to modulate the helper T-cell type 1 and type 2 balance significantly associate with a variety of pathogenic disorders (e.g., infectious diseases, diabetes, cardiovascular diseases, and cancer). Alternative functions of the variants Hp1 and Hp2 have been reported, particularly in the susceptibility and protection against infectious (e.g., pulmonary tuberculosis, HIV, and malaria) and non-infectious (e.g., diabetes, cardiovascular diseases and obesity) diseases. Both high and low levels of Hp are indicative of clinical conditions: Hp plasma levels increase during infections, inflammation, and various malignant diseases, and decrease during malnutrition, hemolysis, hepatic disease, allergic reactions, and seizure disorders. Of note, the Hp:Hb complexes display heme-based reactivity; in fact, they bind several ferrous and ferric ligands, including O2, CO, and NO, and display (pseudo-)enzymatic properties (e.g., NO and peroxynitrite detoxification). Here, genetic, biochemical, biomedical, and biotechnological aspects of Hp are reviewed.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Giovanna De Simone
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Via Montpellier 1, I-00133, Roma, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126, Bari, Italy
| | - Silvia D'Orso
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Via Montpellier 1, I-00133, Roma, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126, Bari, Italy
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, I-00146, Roma, Italy.
| |
Collapse
|
21
|
Tamara S, Franc V, Heck AJR. A wealth of genotype-specific proteoforms fine-tunes hemoglobin scavenging by haptoglobin. Proc Natl Acad Sci U S A 2020; 117:15554-15564. [PMID: 32561649 PMCID: PMC7355005 DOI: 10.1073/pnas.2002483117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The serum haptoglobin protein (Hp) scavenges toxic hemoglobin (Hb) leaked into the bloodstream from erythrocytes. In humans, there are two frequently occurring allelic forms of Hp, resulting in three genotypes: Homozygous Hp 1-1 and Hp 2-2, and heterozygous Hp 2-1. The Hp genetic polymorphism has an intriguing effect on the quaternary structure of Hp. The simplest form, Hp 1-1, forms dimers consisting of two α1β units, connected by disulfide bridges. Hp 2-1 forms mixtures of linear (α1)2(α2)n-2(β)n oligomers (n > 1) while Hp 2-2 occurs in cyclic (α2)n(β)n oligomers (n > 2). Different Hp genotypes bind Hb with different affinities, with Hp 2-2 being the weakest binder. This behavior has a significant influence on Hp's antioxidant capacity, with potentially distinctive personalized clinical consequences. Although Hp has been studied extensively in the past, the finest molecular details of the observed differences in interactions between Hp and Hb are not yet fully understood. Here, we determined the full proteoform profiles and proteoform assemblies of all three most common genetic Hp variants. We combined several state-of-the-art analytical methods, including various forms of chromatography, mass photometry, and different tiers of mass spectrometry, to reveal how the tens to hundreds distinct proteoforms and their assemblies influence Hp's capacity for Hb binding. We extend the current knowledge by showing that Hb binding does not just depend on the donor's genotype, but is also affected by variations in Hp oligomerization, glycosylation, and proteolytic processing of the Hp α-chain.
Collapse
Affiliation(s)
- Sem Tamara
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, 3584 CH Utrecht, The Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, 3584 CH Utrecht, The Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, The Netherlands;
- Netherlands Proteomics Center, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
22
|
Ascenzi P, De Simone G, Tundo GR, Coletta M. Kinetics of cyanide and carbon monoxide dissociation from ferrous human haptoglobin:hemoglobin(II) complexes. J Biol Inorg Chem 2020; 25:351-360. [DOI: 10.1007/s00775-020-01766-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/12/2020] [Indexed: 12/17/2022]
|
23
|
Mulindwa J, Matovu E, Enyaru J, Clayton C. Blood signatures for second stage human African trypanosomiasis: a transcriptomic approach. BMC Med Genomics 2020; 13:14. [PMID: 32000760 PMCID: PMC6993467 DOI: 10.1186/s12920-020-0666-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/20/2020] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Rhodesiense sleeping sickness is caused by infection with T. b rhodesiense parasites resulting in an acute disease that is fatal if not treated in time. The aim of this study was to understand the global impact of active T. b rhodesiense infection on the patient's immune response in the early and late stages of the disease. METHODS RNASeq was carried out on blood and cerebral spinal fluid (CSF) samples obtained from T. b. rhodesiense infected patients. The control samples used were from healthy individuals in the same foci. The Illumina sequenced reads were analysed using the Tuxedo suite pipeline (Tophat, Cufflinks, Cuffmerge, Cuffdiff) and differential expression analysis carried out using the R package DESeq2. The gene enrichment and function annotation analysis were done using the ToppCluster, DAVID and InnateDB algorithms. RESULTS We previously described the transcriptomes of T. b rhodesiense from infected early stage blood (n = 3) and late stage CSF (n = 3) samples from Eastern Uganda. We here identify human transcripts that were differentially expressed (padj < 0.05) in the early stage blood versus healthy controls (n = 3) and early stage blood versus late stage CSF. Differential expression in infected blood showed an enrichment of innate immune response genes whereas that of the CSF showed enrichment for anti-inflammatory and neuro-degeneration signalling pathways. We also identified genes (C1QC, MARCO, IGHD3-10) that were up-regulated (log2 FC > 2.5) in both the blood and CSF. CONCLUSION The data yields insights into the host's response to T. b rhodesiense parasites in the blood and central nervous system. We identified key pathways and signalling molecules for the predominant innate immune response in the early stage infection; and anti-inflammatory and neuro-degeneration pathways associated with sleep disorders in second stage infection. We further identified potential blood biomarkers that can be used for diagnosis of late stage disease without the need for lumbar puncture.
Collapse
Affiliation(s)
- Julius Mulindwa
- Department of Biochemistry and Sports Sciences, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda.
| | - Enock Matovu
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - John Enyaru
- Department of Biochemistry and Sports Sciences, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Christine Clayton
- Centre for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany
| |
Collapse
|
24
|
Ligand-dependent inequivalence of the α and β subunits of ferric human hemoglobin bound to haptoglobin. J Inorg Biochem 2020; 202:110814. [DOI: 10.1016/j.jinorgbio.2019.110814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 12/16/2022]
|
25
|
Mikkelsen JH, Runager K, Andersen CBF. The human protein haptoglobin inhibits IsdH-mediated heme-sequestering by Staphylococcus aureus. J Biol Chem 2019; 295:1781-1791. [PMID: 31819010 DOI: 10.1074/jbc.ra119.011612] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/26/2019] [Indexed: 12/29/2022] Open
Abstract
Iron is an essential nutrient for all living organisms. To acquire iron, many pathogens have developed elaborate systems to steal it from their hosts. The iron acquisition system in the opportunistic pathogen Staphylococcus aureus comprises nine proteins, called iron-regulated surface determinants (Isds). The Isd components enable S. aureus to extract heme from hemoglobin (Hb), transport it into the bacterial cytoplasm, and ultimately release iron from the porphyrin ring. IsdB and IsdH act as hemoglobin receptors and are known to actively extract heme from extracellular Hb. To limit microbial pathogenicity during infection, host organisms attempt to restrict the availability of nutrient metals at the host-pathogen interface. The human acute phase protein haptoglobin (Hp) protects the host from oxidative damage by clearing hemoglobin that has leaked from red blood cells and also restricts the availability of extracellular Hb-bound iron to invading pathogens. To investigate whether Hp serves an additional role in nutritional immunity through a direct inhibition of IsdH-mediated iron acquisition, here we measured heme extraction from the Hp-Hb complex by UV-visible spectroscopy and determined the crystal structure of the Hp-Hb-IsdH complex at 2.9 Å resolution. We found that Hp strongly inhibits IsdH-mediated heme extraction and that Hp binding prevents local unfolding of the Hb heme pocket, leaving IsdH unable to wrest the heme from Hb. Furthermore, we noted that the Hp-Hb binding appears to trap IsdH in an initial state before heme transfer. Our findings provide insights into Hp-mediated IsdH inhibition and the dynamics of IsdH-mediated heme extraction.
Collapse
Affiliation(s)
- Jakob H Mikkelsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Kasper Runager
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | | |
Collapse
|
26
|
Schöwe MJ, Keiper O, Unverzagt C, Wittmann V. A Tripeptide Approach to the Solid-Phase Synthesis of Peptide Thioacids and N-Glycopeptides. Chemistry 2019; 25:15759-15764. [PMID: 31628819 PMCID: PMC6916195 DOI: 10.1002/chem.201904688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Indexed: 12/12/2022]
Abstract
A general and robust method for the incorporation of aspartates with a thioacid side chain into peptides has been developed. Pseudoproline tripeptides served as building blocks for the efficient fluorenylmethyloxycarbonyl (Fmoc) solid‐phase synthesis of thioacid‐containing peptides. These peptides were readily converted to complex N‐glycopeptides by using a fast and chemoselective one‐pot deprotection/ligation procedure. Furthermore, a novel side reaction that can lead to site‐selective peptide cleavage using thioacids (CUT) was discovered and studied in detail.
Collapse
Affiliation(s)
| | - Odin Keiper
- Department of Chemistry, University of Konstanz, 78457, Konstanz, Germany
| | - Carlo Unverzagt
- Bioorganic Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Valentin Wittmann
- Department of Chemistry, University of Konstanz, 78457, Konstanz, Germany
| |
Collapse
|
27
|
MacGregor P, Gonzalez-Munoz AL, Jobe F, Taylor MC, Rust S, Sandercock AM, Macleod OJS, Van Bocxlaer K, Francisco AF, D’Hooge F, Tiberghien A, Barry CS, Howard P, Higgins MK, Vaughan TJ, Minter R, Carrington M. A single dose of antibody-drug conjugate cures a stage 1 model of African trypanosomiasis. PLoS Negl Trop Dis 2019; 13:e0007373. [PMID: 31120889 PMCID: PMC6532856 DOI: 10.1371/journal.pntd.0007373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/09/2019] [Indexed: 02/02/2023] Open
Abstract
Infections of humans and livestock with African trypanosomes are treated with drugs introduced decades ago that are not always fully effective and often have severe side effects. Here, the trypanosome haptoglobin-haemoglobin receptor (HpHbR) has been exploited as a route of uptake for an antibody-drug conjugate (ADC) that is completely effective against Trypanosoma brucei in the standard mouse model of infection. Recombinant human anti-HpHbR monoclonal antibodies were isolated and shown to be internalised in a receptor-dependent manner. Antibodies were conjugated to a pyrrolobenzodiazepine (PBD) toxin and killed T. brucei in vitro at picomolar concentrations. A single therapeutic dose (0.25 mg/kg) of a HpHbR antibody-PBD conjugate completely cured a T. brucei mouse infection within 2 days with no re-emergence of infection over a subsequent time course of 77 days. These experiments provide a demonstration of how ADCs can be exploited to treat protozoal diseases that desperately require new therapeutics.
Collapse
Affiliation(s)
- Paula MacGregor
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Fatoumatta Jobe
- Department of Antibody Discovery and Protein Engineering, Medimmune, Cambridge, United Kingdom
| | - Martin C. Taylor
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Steven Rust
- Department of Antibody Discovery and Protein Engineering, Medimmune, Cambridge, United Kingdom
| | - Alan M. Sandercock
- Department of Antibody Discovery and Protein Engineering, Medimmune, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | - Matthew K. Higgins
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Tristan J. Vaughan
- Department of Antibody Discovery and Protein Engineering, Medimmune, Cambridge, United Kingdom
| | - Ralph Minter
- Department of Antibody Discovery and Protein Engineering, Medimmune, Cambridge, United Kingdom
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Svistunenko DA, Manole A. Tyrosyl radical in haemoglobin and haptoglobin-haemoglobin complex: how does haptoglobin make haemoglobin less toxic? J Biomed Res 2019; 34:281-291. [PMID: 32475850 PMCID: PMC7386409 DOI: 10.7555/jbr.33.20180084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One of the difficulties in creating a blood substitute on the basis of human haemoglobin (Hb) is the toxic nature of Hb when it is outside the safe environment of the red blood cells. The plasma protein haptoglobin (Hp) takes care of the Hb physiologically leaked into the plasma – it binds Hb and makes it much less toxic while retaining the Hb's high oxygen transporting capacity. We used Electron Paramagnetic Resonance (EPR) spectroscopy to show that the protein bound radical induced by H2O2 in Hb and Hp-Hb complex is formed on the same tyrosine residue(s), but, in the complex, the radical is found in a more hydrophobic environment and decays slower than in unbound Hb, thus mitigating its oxidative capacity. The data obtained in this study might set new directions in engineering blood substitutes for transfusion that would have the oxygen transporting efficiency typical of Hb, but which would be non-toxic.
Collapse
Affiliation(s)
- Dimitri A Svistunenko
- Biomedical EPR Facility, School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Andreea Manole
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
29
|
Oxygen dissociation from ferrous oxygenated human hemoglobin:haptoglobin complexes confirms that in the R-state α and β chains are functionally heterogeneous. Sci Rep 2019; 9:6780. [PMID: 31043649 PMCID: PMC6494993 DOI: 10.1038/s41598-019-43190-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/15/2019] [Indexed: 01/25/2023] Open
Abstract
The adverse effects of extra-erythrocytic hemoglobin (Hb) are counterbalanced by several plasma proteins devoted to facilitate the clearance of free heme and Hb. In particular, haptoglobin (Hp) traps the αβ dimers of Hb, which are delivered to the reticulo-endothelial system by CD163 receptor-mediated endocytosis. Since Hp:Hb complexes show heme-based reactivity, kinetics of O2 dissociation from the ferrous oxygenated human Hp1-1:Hb and Hp2-2:Hb complexes (Hp1-1:Hb(II)-O2 and Hp2-2:Hb(II)-O2, respectively) have been determined. O2 dissociation from Hp1-1:Hb(II)-O2 and Hp2-2:Hb(III)-O2 follows a biphasic process. The relative amplitude of the fast and slow phases ranges between 0.47 and 0.53 of the total amplitude, with values of koff1 (ranging between 25.6 ± 1.4 s-1 and 29.1 ± 1.3 s-1) being about twice faster than those of koff2 (ranging between 13.8 ± 1.6 s-1 and 16.1 ± 1.2 s-1). Values of koff1 and koff2 are essentially the same independently on whether O2 dissociation has been followed after addition of a dithionite solution or after O2 displacement by a CO solution in the presence of dithionite. They correspond to those reported for the dissociation of the first O2 molecule from tetrameric Hb(II)-O2, indicating that in the R-state α and β chains are functionally heterogeneous and the tetramer and the dimer behave identically. Accordingly, the structural conformation of the α and β chains of the Hb dimer bound to Hp corresponds to that of the subunits of the Hb tetramer in the R-state.
Collapse
|
30
|
Fluoride and azide binding to ferric human hemoglobin:haptoglobin complexes highlights the ligand-dependent inequivalence of the α and β hemoglobin chains. J Biol Inorg Chem 2019; 24:247-255. [DOI: 10.1007/s00775-019-01642-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/31/2018] [Indexed: 01/21/2023]
|
31
|
Macdonald R, Cascio D, Collazo MJ, Phillips M, Clubb RT. The Streptococcus pyogenes Shr protein captures human hemoglobin using two structurally unique binding domains. J Biol Chem 2018; 293:18365-18377. [PMID: 30301765 DOI: 10.1074/jbc.ra118.005261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/03/2018] [Indexed: 12/19/2022] Open
Abstract
In order to proliferate and mount an infection, many bacterial pathogens need to acquire iron from their host. The most abundant iron source in the body is the oxygen transporter hemoglobin (Hb). Streptococcus pyogenes, a potentially lethal human pathogen, uses the Shr protein to capture Hb on the cell surface. Shr is an important virulence factor, yet the mechanism by which it captures Hb and acquires its heme is not well-understood. Here, we show using NMR and biochemical methods that Shr binds Hb using two related modules that were previously defined as domains of unknown function (DUF1533). These hemoglobin-interacting domains (HIDs), called HID1 and HID2, are autonomously folded and independently bind Hb. The 1.5 Å resolution crystal structure of HID2 revealed that it is a structurally unique Hb-binding domain. Mutagenesis studies revealed a conserved tyrosine in both HIDs that is essential for Hb binding. Our biochemical studies indicate that HID2 binds Hb with higher affinity than HID1 and that the Hb tetramer is engaged by two Shr receptors. NMR studies reveal the presence of a third autonomously folded domain between HID2 and a heme-binding NEAT1 domain, suggesting that this linker domain may position NEAT1 near Hb for heme capture.
Collapse
Affiliation(s)
- Ramsay Macdonald
- From the Department of Chemistry and Biochemistry,; UCLA-DOE Institute of Genomics and Proteomics and
| | | | | | | | - Robert T Clubb
- From the Department of Chemistry and Biochemistry,; UCLA-DOE Institute of Genomics and Proteomics and; Molecular Biology Institute, UCLA, Los Angeles, California 90095.
| |
Collapse
|
32
|
Mozzi A, Forni D, Clerici M, Cagliani R, Sironi M. The Diversity of Mammalian Hemoproteins and Microbial Heme Scavengers Is Shaped by an Arms Race for Iron Piracy. Front Immunol 2018; 9:2086. [PMID: 30271410 PMCID: PMC6142043 DOI: 10.3389/fimmu.2018.02086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/23/2018] [Indexed: 11/13/2022] Open
Abstract
Iron is an essential micronutrient for most living species. In mammals, hemoglobin (Hb) stores more than two thirds of the body's iron content. In the bloodstream, haptoglobin (Hp) and hemopexin (Hpx) sequester free Hb or heme. Pathogenic microorganisms usually acquire iron from their hosts and have evolved complex systems of iron piracy to circumvent nutritional immunity. Herein, we performed an evolutionary analysis of genes coding for mammalian heme-binding proteins and heme-scavengers in pathogen species. The underlying hypothesis is that these molecules are engaged in a molecular arms race. We show that positive selection drove the evolution of mammalian Hb and Hpx. Positively selected sites in Hb are located at the interaction surface with Neisseria meningitidis heme scavenger HpuA and with Staphylococcus aureus iron-regulated surface determinant B (IsdB). In turn, positively selected sites in HpuA and IsdB are located in the flexible protein regions that contact Hb. A residue in Hb (S45H) was also selected on the Caprinae branch. This site stabilizes the interaction with Trypanosoma brucei hemoglobin-haptoglobin (HbHp) receptor (TbHpHbR), a molecule that also mediates trypanosome lytic factor (TLF) entry. In TbHpHbR, positive selection drove the evolution of a variant (L210S) which allows evasion from TLF but reduces affinity for HbHp. Finally, selected sites in Hpx are located at the interaction surface with the Haemophilus influenzae hemophore HxuA, which in turn displays fast evolving sites at the Hpx-binding interface. These results shed light into host-pathogens conflicts and establish the importance of nutritional immunity as an evolutionary force.
Collapse
Affiliation(s)
- Alessandra Mozzi
- Scientific Institute, IRCCS E. Medea, Bioinformatics, Lecco, Italy
| | - Diego Forni
- Scientific Institute, IRCCS E. Medea, Bioinformatics, Lecco, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Rachele Cagliani
- Scientific Institute, IRCCS E. Medea, Bioinformatics, Lecco, Italy
| | - Manuela Sironi
- Scientific Institute, IRCCS E. Medea, Bioinformatics, Lecco, Italy
| |
Collapse
|
33
|
The nitrite reductase activity of ferrous human hemoglobin:haptoglobin 1-1 and 2-2 complexes. J Inorg Biochem 2018; 187:116-122. [DOI: 10.1016/j.jinorgbio.2018.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/14/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022]
|
34
|
Abstract
Glycosylation is one of the most common and complex posttranslation modifications that significantly influences protein structure and function. However, linking individual glycan structures to protein interactions remains challenging and typically requires multiple techniques. Here, we establish a mass-spectrometric approach to systematically dissect the microheterogeneity of two important serum proteins, α1-acid glycoprotein and haptoglobin, and relate glycan features to drug and protein-binding interaction kinetics. We found that the degree of N-glycan branching and extent of terminal fucosylation can attenuate or enhance these interactions, providing important insight into drug transport in plasma. Our study demonstrates an approach capable of investigating how protein glycosylation fine-tunes protein–drug interactions at the glycan-specific level and will prove universally useful for studying glycoprotein interactions. Altered glycosylation patterns of plasma proteins are associated with autoimmune disorders and pathogenesis of various cancers. Elucidating glycoprotein microheterogeneity and relating subtle changes in the glycan structural repertoire to changes in protein–protein, or protein–small molecule interactions, remains a significant challenge in glycobiology. Here, we apply mass spectrometry-based approaches to elucidate the global and site-specific microheterogeneity of two plasma proteins: α1-acid glycoprotein (AGP) and haptoglobin (Hp). We then determine the dissociation constants of the anticoagulant warfarin to different AGP glycoforms and reveal how subtle N-glycan differences, namely, increased antennae branching and terminal fucosylation, reduce drug-binding affinity. Conversely, similar analysis of the haptoglobin–hemoglobin (Hp–Hb) complex reveals the contrary effects of fucosylation and N-glycan branching on Hp–Hb interactions. Taken together, our results not only elucidate how glycoprotein microheterogeneity regulates protein–drug/protein interactions but also inform the pharmacokinetics of plasma proteins, many of which are drug targets, and whose glycosylation status changes in various disease states.
Collapse
|
35
|
Ascenzi P, Coletta M. Peroxynitrite Detoxification by Human Haptoglobin:Hemoglobin Complexes: A Comparative Study. J Phys Chem B 2018; 122:11100-11107. [DOI: 10.1021/acs.jpcb.8b05340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, I-00146 Roma, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma “Tor Vergata”, Via Montpellier 1, I-00133 Roma, Italy
- Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, I-70126 Bari, Italy
| |
Collapse
|
36
|
Miao X, He J, Zhang L, Zhao X, Ge R, He QY, Sun X. A Novel Iron Transporter SPD_1590 in Streptococcus pneumoniae Contributing to Bacterial Virulence Properties. Front Microbiol 2018; 9:1624. [PMID: 30079056 PMCID: PMC6062600 DOI: 10.3389/fmicb.2018.01624] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/28/2018] [Indexed: 12/27/2022] Open
Abstract
Streptococcus pneumoniae, a Gram-positive human pathogen, has evolved three main transporters for iron acquisition from the host: PiaABC, PiuABC, and PitABC. Our previous study had shown that the mRNA and protein levels of SPD_1590 are significantly upregulated in the ΔpiuA/ΔpiaA/ΔpitA triple mutant, suggesting that SPD_1590 might be a novel iron transporter in S. pneumoniae. In the present study, using spd1590-knockout, -complemented, and -overexpressing strains and the purified SPD_1590 protein, we show that SPD_1590 can bind hemin, probably supplementing the function of PiuABC, to provide the iron necessary for the bacterium. Furthermore, the results of iTRAQ quantitative proteomics and cell-infection studies demonstrate that, similarly to other metal-ion uptake proteins, SPD_1590 is important for bacterial virulence properties. Overall, these results provide a better understanding of the biology of this clinically important bacterium.
Collapse
Affiliation(s)
- Xinyu Miao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jiaojiao He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Liang Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xinlu Zhao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ruiguang Ge
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xuesong Sun
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
37
|
Ascenzi P, De Simone G, Polticelli F, Gioia M, Coletta M. Reductive nitrosylation of ferric human hemoglobin bound to human haptoglobin 1-1 and 2-2. J Biol Inorg Chem 2018; 23:437-445. [PMID: 29605886 DOI: 10.1007/s00775-018-1551-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/09/2018] [Indexed: 12/22/2022]
Abstract
Haptoglobin (Hp) sequesters hemoglobin (Hb) preventing the Hb-based damage occurring upon its physiological release into plasma. Here, reductive nitrosylation of ferric human hemoglobin [Hb(III)] bound to human haptoglobin (Hp) 1-1 and 2-2 [Hp1-1:Hb(III) and Hp2-2:Hb(III), respectively] has been investigated between pH 7.5 and 9.5, at T=20.0 °C. Over the whole pH range explored, only one process is detected reflecting NO binding to Hp1-1:Hb(III) and Hp2-2:Hb(III). Values of the pseudo-first-order rate constant for Hp1-1:Hb(III) and Hp2-2:Hb(III) nitrosylation (k) do not depend linearly on the ligand concentration but tend to level off. The conversion of Hp1-1:Hb(III)-NO to Hp1-1:Hb(II)-NO and of Hp2-2:Hb(III)-NO to Hp2-2:Hb(II)-NO is limited by the OH-- and H2O-based catalysis. In fact, bimolecular NO binding to Hp1-1:Hb(III), Hp2-2:Hb(III), Hp1-1:Hb(II), and Hp2-2:Hb(II) proceeds very rapidly. The analysis of data allowed to determine the values of the dissociation equilibrium constant for Hp1-1:Hb(III) and Hp2-2:Hb(III) nitrosylation [K = (1.2 ± 0.1) × 10-4 M], which is pH-independent, and of the first-order rate constant for Hp1-1:Hb(III) and Hp2-2:Hb(III) conversion to Hp1-1:Hb(II)-NO and Hp2-2:Hb(II)-NO, respectively (k'). From the dependence of k' on [OH-], values of hOH- [(4.9 ± 0.6) × 103 M-1 s-1 and (6.79 ± 0.7) × 103 M-1 s-1, respectively] and of [Formula: see text] [(2.6 ± 0.3) × 10-3 s-1] were determined. Values of kinetic and thermodynamic parameters for Hp1-1:Hb(III) and Hp2-2:Hb(III) reductive nitrosylation match well with those of the Hb R-state, which is typical of the αβ dimers of Hb bound to Hp.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory of Electron Microscopy, Roma Tre University, Via Della Vasca Navale 79, 00146, Rome, Italy.
| | - Giovanna De Simone
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy
| | - Fabio Polticelli
- Department of Sciences, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy.,Roma Tre Section, National Institute of Nuclear Physics, Via Della Vasca Navale 84, 00146, Rome, Italy
| | - Magda Gioia
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.,Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, 70126, Bari, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy.,Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Via Celso Ulpiani 27, 70126, Bari, Italy
| |
Collapse
|
38
|
The structure of serum resistance-associated protein and its implications for human African trypanosomiasis. Nat Microbiol 2018; 3:295-301. [PMID: 29358741 DOI: 10.1038/s41564-017-0085-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/27/2017] [Indexed: 11/08/2022]
Abstract
Only two trypanosome subspecies are able to cause human African trypanosomiasis. To establish an infection in human blood, they must overcome the innate immune system by resisting the toxic effects of trypanolytic factor 1 and trypanolytic factor 2 (refs. 1,2). These lipoprotein complexes contain an active, pore-forming component, apolipoprotein L1 (ApoL1), that causes trypanosome cell death 3 . One of the two human-infective subspecies, Trypanosoma brucei rhodesiense, differs from non-infective trypanosomes solely by the presence of the serum resistance-associated protein, which binds directly to ApoL1 and blocks its pore-forming capacity3-5. Since this interaction is the single critical event that renders T. b. rhodesiense human- infective, detailed structural information that allows identification of binding determinants is crucial to understand immune escape by the parasite. Here, we present the structure of serum resistance-associated protein and reveal the adaptations that occurred as it diverged from other trypanosome surface molecules to neutralize ApoL1. We also present our mapping of residues important for ApoL1 binding, giving molecular insight into this interaction at the heart of human sleeping sickness.
Collapse
|
39
|
Andersen CBF, Stødkilde K, Sæderup KL, Kuhlee A, Raunser S, Graversen JH, Moestrup SK. Haptoglobin. Antioxid Redox Signal 2017; 26:814-831. [PMID: 27650279 DOI: 10.1089/ars.2016.6793] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Haptoglobin (Hp) is an abundant human plasma protein that tightly captures hemoglobin (Hb) during hemolysis. The Hb-Hp complex formation reduces the oxidative properties of heme/Hb and promotes recognition by the macrophage scavenger receptor CD163. This leads to Hb-Hp breakdown and heme catabolism by heme oxygenase and biliverdin reductase. Gene duplications of a part of or the entire Hp gene in the primate evolution have led to variant Hp gene products that collectively may be designated "the haptoglobins (Hps)" as they all bind Hb. These variant products include the human-specific multimeric Hp phenotypes in individuals, which are hetero- or homozygous for an Hp2 gene allele. The Hp-related protein (Hpr) is another Hp duplication product in humans and other primates. Alternative functions of the variant Hps are indicated by numerous reports on association between Hp phenotypes and disease as well as the elucidation of a specific role of Hpr in the innate immune defense. Recent Advances: Recent functional and structural information on Hp and receptor systems for Hb removal now provides insight on how Hp carries out essential functions such as the Hb detoxification/removal, and how Hpr, by acting as an Hp-lookalike, can sneak a lethal toxin into trypanosome parasites that cause mammalian sleeping sickness. Critical Issues and Future Directions: The new structural insight may facilitate ongoing attempts of developing Hp derivatives for prevention of Hb toxicity in hemolytic diseases such as sickle cell disease and other hemoglobinopathies. Furthermore, the new structural knowledge may help identifying yet unknown functions based on other disease-relevant biological interactions involving Hps. Antioxid. Redox Signal. 26, 814-831.
Collapse
Affiliation(s)
| | | | - Kirstine Lindhardt Sæderup
- 2 Cancer and Inflammation, Department of Molecular Medicine, University of Southern Denmark , Odense C, Denmark
| | - Anne Kuhlee
- 3 Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology , Dortmund, Germany
| | - Stefan Raunser
- 3 Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology , Dortmund, Germany
| | - Jonas H Graversen
- 2 Cancer and Inflammation, Department of Molecular Medicine, University of Southern Denmark , Odense C, Denmark
| | - Søren Kragh Moestrup
- 1 Department of Biomedicine, University of Aarhus , Aarhus C, Denmark .,2 Cancer and Inflammation, Department of Molecular Medicine, University of Southern Denmark , Odense C, Denmark .,4 Department of Clinical Biochemistry and Pharmacology, Odense University Hospital , Odense C, Denmark
| |
Collapse
|
40
|
Higgins MK, Lane-Serff H, MacGregor P, Carrington M. A Receptor's Tale: An Eon in the Life of a Trypanosome Receptor. PLoS Pathog 2017; 13:e1006055. [PMID: 28125726 PMCID: PMC5268388 DOI: 10.1371/journal.ppat.1006055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
African trypanosomes have complex life cycles comprising at least ten developmental forms, variously adapted to different niches in their tsetse fly vector and their mammalian hosts. Unlike many other protozoan pathogens, they are always extracellular and have evolved intricate surface coats that allow them to obtain nutrients while also protecting them from the immune defenses of either insects or mammals. The acquisition of macromolecular nutrients requires receptors that function within the context of these surface coats. The best understood of these is the haptoglobin-hemoglobin receptor (HpHbR) of Trypanosoma brucei, which is used by the mammalian bloodstream form of the parasite, allowing heme acquisition. However, in some primates it also provides an uptake route for trypanolytic factor-1, a mediator of innate immunity against trypanosome infection. Recent studies have shown that during the evolution of African trypanosome species the receptor has diversified in function from a hemoglobin receptor predominantly expressed in the tsetse fly to a haptoglobin-hemoglobin receptor predominantly expressed in the mammalian bloodstream. Structural and functional studies of homologous receptors from different trypanosome species have allowed us to propose an evolutionary history for how one receptor has adapted to different roles in different trypanosome species. They also highlight the challenges that a receptor faces in operating on the complex trypanosome surface and show how these challenges can be met.
Collapse
Affiliation(s)
- Matthew K. Higgins
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Harriet Lane-Serff
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
41
|
Sæderup KL, Stødkilde K, Graversen JH, Dickson CF, Etzerodt A, Hansen SWK, Fago A, Gell D, Andersen CBF, Moestrup SK. The Staphylococcus aureus Protein IsdH Inhibits Host Hemoglobin Scavenging to Promote Heme Acquisition by the Pathogen. J Biol Chem 2016; 291:23989-23998. [PMID: 27681593 DOI: 10.1074/jbc.m116.755934] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 09/25/2016] [Indexed: 12/30/2022] Open
Abstract
Hemolysis is a complication in septic infections with Staphylococcus aureus, which utilizes the released Hb as an iron source. S. aureus can acquire heme in vitro from hemoglobin (Hb) by a heme-sequestering mechanism that involves proteins from the S. aureus iron-regulated surface determinant (Isd) system. However, the host has its own mechanism to recapture the free Hb via haptoglobin (Hp) binding and uptake of Hb-Hp by the CD163 receptor in macrophages. It has so far remained unclear how the Isd system competes with this host iron recycling system in situ to obtain the important nutrient. By binding and uptake studies, we now show that the IsdH protein, which serves as an Hb receptor in the Isd system, directly interferes with the CD163-mediated clearance by binding the Hb-Hp complex and inhibiting CD163 recognition. Analysis of truncated IsdH variants including one or more of three near iron transporter domains, IsdHN1, IsdHN2, and IsdHN3, revealed that Hb binding of IsdHN1 and IsdHN2 accounted for the high affinity for Hb-Hp complexes. The third near iron transporter domain, IsdHN3, exhibited redox-dependent heme extraction, when Hb in the Hb-Hp complex was in the oxidized met form but not in the reduced oxy form. IsdB, the other S. aureus Hb receptor, failed to extract heme from Hb-Hp, and it was a poor competitor for Hb-Hp binding to CD163. This indicates that Hb recognition by IsdH, but not by IsdB, sterically inhibits the receptor recognition of Hb-Hp. This function of IsdH may have an overall stimulatory effect on S. aureus heme acquisition and growth.
Collapse
Affiliation(s)
| | | | | | - Claire F Dickson
- the School of Medicine, University of Tasmania, Hobart, Tasmania 7005, Australia, and
| | | | | | - Angela Fago
- Zoophysiology Section, Department of Bioscience, Aarhus University, DK-8000 Aarhus, Denmark
| | - David Gell
- the School of Medicine, University of Tasmania, Hobart, Tasmania 7005, Australia, and
| | | | - Søren Kragh Moestrup
- From the Department of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark, .,the Department of Biomedicine and.,the Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000 Odense, Denmark
| |
Collapse
|
42
|
Cabello-Donayre M, Malagarie-Cazenave S, Campos-Salinas J, Gálvez FJ, Rodríguez-Martínez A, Pineda-Molina E, Orrego LM, Martínez-García M, Sánchez-Cañete MP, Estévez AM, Pérez-Victoria JM. Trypanosomatid parasites rescue heme from endocytosed hemoglobin through lysosomal HRG transporters. Mol Microbiol 2016; 101:895-908. [PMID: 27328668 DOI: 10.1111/mmi.13430] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2016] [Indexed: 12/24/2022]
Abstract
Pathogenic trypanosomatid parasites are auxotrophic for heme and they must scavenge it from their human host. Trypanosoma brucei (responsible for sleeping sickness) and Leishmania (leishmaniasis) can fulfill heme requirement by receptor-mediated endocytosis of host hemoglobin. However, the mechanism used to transfer hemoglobin-derived heme from the lysosome to the cytosol remains unknown. Here we provide strong evidence that HRG transporters mediate this essential step. In bloodstream T. brucei, TbHRG localizes to the endolysosomal compartment where endocytosed hemoglobin is known to be trafficked. TbHRG overexpression increases cytosolic heme levels whereas its downregulation is lethal for the parasites unless they express the Leishmania orthologue LmHR1. LmHR1, known to be an essential plasma membrane protein responsible for the uptake of free heme in Leishmania, is also present in its acidic compartments which colocalize with endocytosed hemoglobin. Moreover, LmHR1 levels modulated by its overexpression or the abrogation of an LmHR1 allele correlate with the mitochondrial bioavailability of heme from lysosomal hemoglobin. In addition, using heme auxotrophic yeasts we show that TbHRG and LmHR1 transport hemoglobin-derived heme from the digestive vacuole to the cytosol. Collectively, these results show that trypanosomatid parasites rescue heme from endocytosed hemoglobin through endolysosomal HRG transporters, which could constitute novel drug targets.
Collapse
Affiliation(s)
- María Cabello-Donayre
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - Sophie Malagarie-Cazenave
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - Jenny Campos-Salinas
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - Francisco J Gálvez
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - Alba Rodríguez-Martínez
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - Estela Pineda-Molina
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - Lina M Orrego
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - Marta Martínez-García
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - María P Sánchez-Cañete
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - Antonio M Estévez
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain
| | - José M Pérez-Victoria
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, (IPBLN-CSIC), PTS Granada, Avda. del Conocimiento s/n, Granada, 18016, Spain.
| |
Collapse
|
43
|
Stijlemans B, Caljon G, Van Den Abbeele J, Van Ginderachter JA, Magez S, De Trez C. Immune Evasion Strategies of Trypanosoma brucei within the Mammalian Host: Progression to Pathogenicity. Front Immunol 2016; 7:233. [PMID: 27446070 PMCID: PMC4919330 DOI: 10.3389/fimmu.2016.00233] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/30/2016] [Indexed: 12/26/2022] Open
Abstract
The diseases caused by African trypanosomes (AT) are of both medical and veterinary importance and have adversely influenced the economic development of sub-Saharan Africa. Moreover, so far not a single field applicable vaccine exists, and chemotherapy is the only strategy available to treat the disease. These strictly extracellular protozoan parasites are confronted with different arms of the host's immune response (cellular as well as humoral) and via an elaborate and efficient (vector)-parasite-host interplay they have evolved efficient immune escape mechanisms to evade/manipulate the entire host immune response. This is of importance, since these parasites need to survive sufficiently long in their mammalian/vector host in order to complete their life cycle/transmission. Here, we will give an overview of the different mechanisms AT (i.e. T. brucei as a model organism) employ, comprising both tsetse fly saliva and parasite-derived components to modulate host innate immune responses thereby sculpturing an environment that allows survival and development within the mammalian host.
Collapse
Affiliation(s)
- Benoît Stijlemans
- Laboratory of Myeloid Cell Immunology, VIB Inflammation Research Center, Ghent, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Guy Caljon
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium; Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
| | - Jan Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM) , Antwerp , Belgium
| | - Jo A Van Ginderachter
- Laboratory of Myeloid Cell Immunology, VIB Inflammation Research Center, Ghent, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Structural Biology, VIB, Brussels, Belgium
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Structural Biology, VIB, Brussels, Belgium
| |
Collapse
|
44
|
Cenci U, Moog D, Curtis BA, Tanifuji G, Eme L, Lukeš J, Archibald JM. Heme pathway evolution in kinetoplastid protists. BMC Evol Biol 2016; 16:109. [PMID: 27193376 PMCID: PMC4870792 DOI: 10.1186/s12862-016-0664-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 04/21/2016] [Indexed: 01/09/2023] Open
Abstract
Background Kinetoplastea is a diverse protist lineage composed of several of the most successful parasites on Earth, organisms whose metabolisms have coevolved with those of the organisms they infect. Parasitic kinetoplastids have emerged from free-living, non-pathogenic ancestors on multiple occasions during the evolutionary history of the group. Interestingly, in both parasitic and free-living kinetoplastids, the heme pathway—a core metabolic pathway in a wide range of organisms—is incomplete or entirely absent. Indeed, Kinetoplastea investigated thus far seem to bypass the need for heme biosynthesis by acquiring heme or intermediate metabolites directly from their environment. Results Here we report the existence of a near-complete heme biosynthetic pathway in Perkinsela spp., kinetoplastids that live as obligate endosymbionts inside amoebozoans belonging to the genus Paramoeba/Neoparamoeba. We also use phylogenetic analysis to infer the evolution of the heme pathway in Kinetoplastea. Conclusion We show that Perkinsela spp. is a deep-branching kinetoplastid lineage, and that lateral gene transfer has played a role in the evolution of heme biosynthesis in Perkinsela spp. and other Kinetoplastea. We also discuss the significance of the presence of seven of eight heme pathway genes in the Perkinsela genome as it relates to its endosymbiotic relationship with Paramoeba. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0664-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ugo Cenci
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada
| | - Daniel Moog
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada
| | - Bruce A Curtis
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada
| | - Goro Tanifuji
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Laura Eme
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, České Budӗjovice, Czech Republic.,Canadian Institute for Advanced Research, Toronto, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada. .,Centre for Comparative Genomics and Evolutionary Bioinformatics, Halifax, Nova Scotia, Canada. .,Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
45
|
Lane-Serff H, MacGregor P, Peacock L, Macleod OJ, Kay C, Gibson W, Higgins MK, Carrington M. Evolutionary diversification of the trypanosome haptoglobin-haemoglobin receptor from an ancestral haemoglobin receptor. eLife 2016; 5. [PMID: 27083048 PMCID: PMC4889325 DOI: 10.7554/elife.13044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 04/14/2016] [Indexed: 01/27/2023] Open
Abstract
The haptoglobin-haemoglobin receptor of the African trypanosome species, Trypanosoma brucei, is expressed when the parasite is in the bloodstream of the mammalian host, allowing it to acquire haem through the uptake of haptoglobin-haemoglobin complexes. Here we show that in Trypanosoma congolense this receptor is instead expressed in the epimastigote developmental stage that occurs in the tsetse fly, where it acts as a haemoglobin receptor. We also present the structure of the T. congolense receptor in complex with haemoglobin. This allows us to propose an evolutionary history for this receptor, charting the structural and cellular changes that took place as it adapted from a role in the insect to a new role in the mammalian host. DOI:http://dx.doi.org/10.7554/eLife.13044.001 Trypanosomes are single-celled parasites that infect a range of animal hosts. These parasites need a molecule called haem to grow properly and are mostly spread by insects that feed on the blood of mammals. Most haem in mammals is found in red blood cells and is bound to a protein called haemoglobin. When it is released from these cells, haemoglobin forms a complex with another protein called haptoglobin as well. The best-studied trypanosomes from Africa have a receptor protein on their surface that recognizes the haptoglobin-haemoglobin complex and allows the parasites to obtain haem from their hosts. An African trypanosome called T. brucei causes sleeping sickness in humans, and has a receptor that can only recognize haemoglobin when it is in complex with haptoglobin. However, few trypanosome receptors have been studied to date, and so it was not clear if they all work in the same way. Trypanosoma congolense is a trypanosome that has a big impact on livestock farmers in sub-Saharan Africa and infects cattle, pigs and goats. Lane-Serff, MacGregor et al. now report that the receptor protein from T. congolense can bind to haemoglobin on its own. A technique called X-ray crystallography was used to reveal the three-dimensional structure of the T. congolense receptor and haemoglobin in fine detail. Further experiments then confirmed that the receptor actually binds more strongly to haemoglobin than it does to the haptoglobin-haemoglobin complex. Experiments with living parasites showed that T. congolense produces its receptor when it is in the mouthparts of its insect host, the tsetse fly. This is unlike what occurs in T. brucei, which only produces its receptor while it is in the bloodstream of its mammalian host. Lane-Serff, MacGregor et al. suggest that T. congolense’s receptor is more like the receptor found in ancestor of the trypanosomes. This means that, at least once during the evolution of these parasites, this receptor evolved from being a haemoglobin receptor produced in the tsetse fly to a haptoglobin-haemoglobin receptor produced in an infected mammal. The next step is to investigate the details of the role played by the T. congolense receptor when the parasite is in the tsetse fly. It will also be important to understand how this parasite is still able to grow in the mammalian host’s bloodstream even though it does not produce much of the receptor during this stage. DOI:http://dx.doi.org/10.7554/eLife.13044.002
Collapse
Affiliation(s)
- Harriet Lane-Serff
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Paula MacGregor
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Lori Peacock
- School of Veterinary Science, University of Bristol, Bristol, United Kingdom.,School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Olivia Js Macleod
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Christopher Kay
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Wendy Gibson
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
46
|
Fatunmbi O, Abzalimov RR, Savinov SN, Gershenson A, Kaltashov IA. Interactions of Haptoglobin with Monomeric Globin Species: Insights from Molecular Modeling and Native Electrospray Ionization Mass Spectrometry. Biochemistry 2016; 55:1918-28. [DOI: 10.1021/acs.biochem.5b00807] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ololade Fatunmbi
- Department of Chemistry and ‡Department of
Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Rinat R. Abzalimov
- Department of Chemistry and ‡Department of
Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Sergey N. Savinov
- Department of Chemistry and ‡Department of
Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Anne Gershenson
- Department of Chemistry and ‡Department of
Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Igor A. Kaltashov
- Department of Chemistry and ‡Department of
Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|