1
|
Shirley S, Ichise H, Di Natale V, Jin J, Wu C, Zou R, Zhang W, Fang Y, Zhang Y, Chen M, Peng S, Basu U, Que J, Huang Y. A vasculature-resident innate lymphoid cell population in mouse lungs. Nat Commun 2025; 16:3718. [PMID: 40253407 PMCID: PMC12009297 DOI: 10.1038/s41467-025-58982-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 04/08/2025] [Indexed: 04/21/2025] Open
Abstract
Tissue-resident immune cells such as innate lymphoid cells (ILC) are known to reside in the parenchymal compartments of tissues and modulate local immune protection. Here we use intravascular cell labeling, parabiosis and multiplex 3D imaging to identify a population of group 3 ILCs in mice that are present within the intravascular space of lung blood vessels (vILC3). vILC3s are distributed broadly in alveolar capillary beds from which inhaled pathogens enter the lung parenchyma. By contrast, conventional ILC3s in tissue parenchyma are enriched in lymphoid clusters in proximity to large veins. In a mouse model of pneumonia, Pseudomonas aeruginosa infection results in rapid vILC3 expansion and production of chemokines including CCL4. Blocking CCL4 in vivo attenuates neutrophil recruitment to the lung at the early stage of infection, resulting in prolonged inflammation and delayed bacterial clearance. Our findings thus define the intravascular space as a site of ILC residence in mice, and reveal a unique immune cell population that interfaces with tissue alarmins and the circulating immune system for timely host defense.
Collapse
Affiliation(s)
- Simon Shirley
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| | - Hiroshi Ichise
- Lymphocyte Biology Section, Laboratory of Immune Systems Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Vincenzo Di Natale
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| | - Jiacheng Jin
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| | - Christine Wu
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| | - Raymond Zou
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| | - Wanwei Zhang
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| | - Yinshan Fang
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, USA
| | - Yingyu Zhang
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| | - Miao Chen
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| | - Sophia Peng
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| | - Uttiya Basu
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| | - Jianwen Que
- Department of Medicine, Columbia Center for Human Development, Columbia University Medical Center, New York, NY, USA.
| | - Yuefeng Huang
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
2
|
Li J, Jacobse J, Pilat JM, Kaur H, Gu W, Kang SW, Rusznak M, Huang HI, Barrera J, Oloo PA, Roland JT, Hawkins CV, Pahnke AP, Khalil M, Washington MK, Wilson KT, Williams CS, Peebles RS, Konnikova L, Choksi YA, Hammer GE, Lau KS, Goettel JA. Interleukin-10 production by innate lymphoid cells restricts intestinal inflammation in mice. Mucosal Immunol 2025:S1933-0219(25)00023-6. [PMID: 39988202 DOI: 10.1016/j.mucimm.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Interleukin-10 (IL-10) is an immunomodulatory cytokine critical for intestinal immune homeostasis. IL-10 is produced by various immune cells but IL-10 receptor signaling in intestinal CX3CR1+ mononuclear phagocytes is necessary to prevent spontaneous colitis in mice. Here, we utilized fluorescent protein reporters and cell-specific targeting and found that Rorc-expressing innate lymphoid cells (ILCs) produce IL-10 in response to anti-CD40-mediated intestinal inflammation. Deletion of Il10 specifically in Rorc-expressing ILCs led to phenotypic changes in intestinal macrophages and exacerbated both innate and adaptive immune-mediated models of experimental colitis. The population of IL-10+ producing ILCs shared markers with both ILC2 and ILC3 with nearly all ILC3s being of the NCR+ subtype. Interestingly, Ccl26 was enriched in IL-10+ ILCs and was markedly reduced in IL-10-deficient ILC3s. Since CCL26 is a ligand for CX3CR1, we employed RNA in situ hybridization and observed increased numbers of ILCs in close proximity to Cx3cr1-expressing cells under inflammatory conditions. Finally, we generated transgenic RorctdTomato reporter mice that faithfully marked RORγt+ cells that could rescue disease pathology and aberrant macrophage phenotype following adoptive transfer into mice with selective Il10 deficiency in ILC3s. These results demonstrate that IL-10 production by a population of ILCs functions to promote immune homeostasis in the intestine possibly via direct effects on intestinal macrophages.
Collapse
Affiliation(s)
- Jing Li
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Justin Jacobse
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN USA 37212
| | - Jennifer M Pilat
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Harsimran Kaur
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Weihong Gu
- Department of Pediatrics, Yale Medical School, New Haven, CT 06520, USA
| | - Seung Woo Kang
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark Rusznak
- Department of Internal Medicine Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hsin-I Huang
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Julio Barrera
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Pauline A Oloo
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Joseph T Roland
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Internal Medicine Vanderbilt University Medical Center, Nashville, TN, USA
| | - Caroline V Hawkins
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew P Pahnke
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marian Khalil
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keith T Wilson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN USA 37212; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher S Williams
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN USA 37212; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - R Stokes Peebles
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN USA 37212; Department of Internal Medicine Vanderbilt University Medical Center, Nashville, TN, USA
| | - Liza Konnikova
- Department of Pediatrics, Yale Medical School, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Center for Systems and Engineering Immunology, Yale School of Medicine, New Haven, CT 06520, USA; Human and Translational Immunology Program, Yale School of Medicine, New Haven, CT 06520, USA; Program in Translational Biomedicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Obstetrics Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yash A Choksi
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN USA 37212; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gianna Elena Hammer
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Ken S Lau
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA; Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Computational Systems Biology, Vanderbilt University, Nashville, TN, USA
| | - Jeremy A Goettel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
3
|
Wu T, Chen S, Zhu X, Ma J, Luo M, Wang Y, Tian Y, Sun Q, Guo X, Zhang J, Zhang X, Zhu Y, Wu L. Dynamic regulation of innate lymphoid cell development during ontogeny. Mucosal Immunol 2024; 17:1285-1300. [PMID: 39159846 DOI: 10.1016/j.mucimm.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
The helper-like ILC contains various functional subsets, such as ILC1, ILC2, ILC3 and LTi cells, mediating the immune responses against viruses, parasites, and extracellular bacteria, respectively. Among them, LTi cells are also crucial for the formation of peripheral lymphoid tissues, such as lymph nodes. Our research, along with others', indicates a high proportion of LTi cells in the fetal ILC pool, which significantly decreases after birth. Conversely, the proportion of non-LTi ILCs increases postnatally, corresponding to the need for LTi cells to mediate lymphoid tissue formation during fetal stages and other ILC subsets to combat diverse pathogen infections postnatally. However, the regulatory mechanism for this transition remains unclear. In this study, we observed a preference for fetal ILC progenitors to differentiate into LTi cells, while postnatal bone marrow ILC progenitors preferentially differentiate into non-LTi ILCs. Particularly, this differentiation shift occurs within the first week after birth in mice. Further analysis revealed that adult ILC progenitors exhibit stronger activation of the Notch signaling pathway compared to fetal counterparts, accompanied by elevated Gata3 expression and decreased Rorc expression, leading to a transition from fetal LTi cell-dominant states to adult non-LTi ILC-dominant states. This study suggests that the body can regulate ILC development by modulating the activation level of the Notch signaling pathway, thereby acquiring different ILC subsets to accommodate the varying demands within the body at different developmental stages.
Collapse
Affiliation(s)
- Tao Wu
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Science, Beijing, China
| | - Sijie Chen
- MOE Key Lab of Bioinformatics/Bioinformatics Division, BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China
| | - Xinyi Zhu
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Science, Beijing, China
| | - Jie Ma
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Maocai Luo
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Yuanhao Wang
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Yujie Tian
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Qingqing Sun
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Xiaohuan Guo
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Jianhong Zhang
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Xuegong Zhang
- MOE Key Lab of Bioinformatics/Bioinformatics Division, BNRIST and Department of Automation, Tsinghua University, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Yunping Zhu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.
| | - Li Wu
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Science, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China.
| |
Collapse
|
4
|
Chang KJ, Shiau LY, Lin SC, Cheong HP, Wang CY, Ma C, Liang YW, Yang YP, Ko PS, Hsu CH, Chiou SH. N 6-methyladenosine and its epitranscriptomic effects on hematopoietic stem cell regulation and leukemogenesis. Mol Med 2024; 30:196. [PMID: 39497033 PMCID: PMC11536562 DOI: 10.1186/s10020-024-00965-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/20/2024] [Indexed: 11/06/2024] Open
Abstract
N6-methyladenosine (m6A) RNA modification orchestrates cellular epitranscriptome through tuning the homeostasis of transcript stability, translation efficiency, and the transcript affinity toward RNA-binding proteins (RBPs). An aberrant m6A deposition on RNA can lead toward oncogenic expression profile (mRNA), impaired mitochondrial metabolism (mtRNA), and translational suppression (rRNA) of tumor suppressor genes. In addition, non-coding RNAs (ncRNAs), such as X-inactive specific transcript (XIST), miRNAs, and α-ketoglutarate-centric metabolic transcripts are also regulated by the m6A epitranscriptome. Notably, recent studies had uncovered a myriad of m6A-modified transcripts the center of hematopoietic stem cell (HSC) regulation, in which m6A modification act as a context dependent switch to the on and off of hematopoietic stem cell (HSC) maintenance, lineage commitment and terminal differentiation. In this review, we sequentially unfold the m6A mediated epithelial-to-hematopoietic transition in progenitor blood cell production, lymphocytic lineage expansion (T cells, B cells, NK cells, and non-NK ILCs), and the m6A crosstalk with the onco-metabolic prospects of leukemogenesis. Together, an encompassing body of evidence highlighted the emerging m6A significance in the regulation of HSC biology and leukemogenesis.
Collapse
Affiliation(s)
- Kao-Jung Chang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Yang Shiau
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shiuan-Chen Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Han-Ping Cheong
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Yun Wang
- Department of Medical Education, Taichung Veterans General Hospital, Taipei, Taiwan
| | - Chun Ma
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yan-Wen Liang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Life Sciences and Institute of Genomic Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Shen Ko
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Hematology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Hung Hsu
- The Fourth Affiliated Hospital, and Department of Environmental Medicine, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Genetics, International School of Medicine, Zhejiang University, Hangzhou, China
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
5
|
Wu T, Wang Y, Wu L. Protocol for in vitro generating innate lymphoid cells from mouse α 4β 7+ lymphoid progenitors. STAR Protoc 2024; 5:103229. [PMID: 39180747 PMCID: PMC11388591 DOI: 10.1016/j.xpro.2024.103229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/05/2024] [Accepted: 07/08/2024] [Indexed: 08/26/2024] Open
Abstract
Building a simple and efficient in vitro differentiation system is crucial for studying the regulatory mechanisms during the development of innate lymphoid cells (ILCs). Here, we present a protocol for generating ILC subsets from α4β7+ lymphoid progenitors (αLPs). We describe steps for murine cell isolation from fetal liver and adult bone marrow, flow cytometry sorting for αLPs, and cell culture. We then detail procedures for flow cytometry analysis of ILCs. This protocol significantly simplifies the differentiation process through ILC differentiation in vitro. For complete details on the use and execution of this protocol, please refer to Wu et al.1.
Collapse
Affiliation(s)
- Tao Wu
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Science, Beijing, China.
| | - Yuanhao Wang
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Li Wu
- School of Medicine, Institute for Immunology, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Science, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China.
| |
Collapse
|
6
|
Bao K, Gu X, Song Y, Zhou Y, Chen Y, Yu X, Yuan W, Shi L, Zheng J, Hong M. TCF-1 and TOX regulate the memory formation of intestinal group 2 innate lymphoid cells in asthma. Nat Commun 2024; 15:7850. [PMID: 39245681 PMCID: PMC11381517 DOI: 10.1038/s41467-024-52252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/31/2024] [Indexed: 09/10/2024] Open
Abstract
Immune memory has been expanded to group 2 innate lymphoid cells (ILC2s), but the cellular and molecular bases remain incompletely understood. Based on house dust mite (HDM)-induced mice asthma models and human samples, we applied flow cytometry, parabiosis, in vivo imaging and adoptive transplantation to confirm the persistence, migration and function of CD45+lineage-CD90.2+NK1.1-NKp46-ST2-KLRG1+IL-17RB+ memory-like ILC2s (ml-ILC2s). Regulated by CCR9/CCL25 and S1P signaling, ml-ILC2s reside in the lamina propria of small intestines (siLP) in asthma remission, and subsequently move to airway upon re-encountering antigens or alarmins. Furthermore, ml-ILC2s possess properties of longevity, potential of rapid proliferation and producing IL-13, and display transcriptional characteristics with up-regulation of Tox and Tcf-7. ml-ILC2s transplantation restore the asthmatic changes abrogated by Tox and Tcf7 knockdown. Our data identify siLP ml-ILC2s as a memory-like subset, which promotes asthma relapse. Targeting TCF-1 and TOX might be promising for preventing asthma recurrence.
Collapse
Affiliation(s)
- Kaifan Bao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Immunology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaoqun Gu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yajun Song
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yijing Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanyan Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xi Yu
- Nanjing Haikerui Pharmaceutical Technology Co., LTD, Nanjing, 210023, China
| | - Weiyuan Yuan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liyun Shi
- Department of Immunology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jie Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Department of Pharmacology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Min Hong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
7
|
Horn V, Sonnenberg GF. Group 3 innate lymphoid cells in intestinal health and disease. Nat Rev Gastroenterol Hepatol 2024; 21:428-443. [PMID: 38467885 PMCID: PMC11144103 DOI: 10.1038/s41575-024-00906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 03/13/2024]
Abstract
The gastrointestinal tract is an immunologically rich organ, containing complex cell networks and dense lymphoid structures that safeguard this large absorptive barrier from pathogens, contribute to tissue physiology and support mucosal healing. Simultaneously, the immune system must remain tolerant to innocuous dietary antigens and trillions of normally beneficial microorganisms colonizing the intestine. Indeed, a dysfunctional immune response in the intestine underlies the pathogenesis of numerous local and systemic diseases, including inflammatory bowel disease, food allergy, chronic enteric infections or cancers. Here, we discuss group 3 innate lymphoid cells (ILC3s), which have emerged as orchestrators of tissue physiology, immunity, inflammation, tolerance and malignancy in the gastrointestinal tract. ILC3s are abundant in the developing and healthy intestine but their numbers or function are altered during chronic disease and cancer. The latest studies provide new insights into the mechanisms by which ILC3s fundamentally shape intestinal homeostasis or disease pathophysiology, and often this functional dichotomy depends on context and complex interactions with other cell types or microorganisms. Finally, we consider how this knowledge could be harnessed to improve current treatments or provoke new opportunities for therapeutic intervention to promote gut health.
Collapse
Affiliation(s)
- Veronika Horn
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory F Sonnenberg
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology & Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
8
|
Noel OD, Hassouneh Z, Svatek RS, Mukherjee N. Innate Lymphoid Cells in Bladder Cancer: From Mechanisms of Action to Immune Therapies. Cancer Immunol Res 2024; 12:149-160. [PMID: 38060011 PMCID: PMC11492724 DOI: 10.1158/2326-6066.cir-23-0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/10/2023] [Accepted: 10/24/2023] [Indexed: 12/08/2023]
Abstract
Bladder tumors have a high mutational burden and tend to be responsive to immune therapies; however, response rates remain modest. To date, immunotherapy in bladder cancer has largely focused on enhancing T-cell immune responses in the bladder tumor microenvironment. It is anticipated that other immune cells, including innate lymphoid cells (ILC), which play an important role in bladder oncogenesis and tumor suppression, could be targeted to improve response to existing therapies. ILCs are classified into five groups: natural killer cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer cells. ILCs are pleiotropic and play dual and sometimes paradoxical roles in cancer development and progression. Here, a comprehensive discussion of the current knowledge and recent advancements in understanding the role of ILCs in bladder cancer is provided. We discuss the multifaceted roles that ILCs play in bladder immune surveillance, tumor protection, and immunopathology of bladder cancer. This review provides a rationale for targeting ILCs in bladder cancer, which is relevant for other solid tumors.
Collapse
Affiliation(s)
- Onika D.V. Noel
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas
| | - Zaineb Hassouneh
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas
| | - Robert S. Svatek
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas
| | - Neelam Mukherjee
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
9
|
Singh A, Sharma A. Lymphoid tissue inducer cells in cancer: a potential therapeutic target. Mol Cell Biochem 2023; 478:2789-2794. [PMID: 36922480 DOI: 10.1007/s11010-023-04699-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/02/2023] [Indexed: 03/17/2023]
Abstract
Tumor cells are dynamic in nature; these cells first acquire immune surveillance and then escape from the immune system. Hence, progressed cancer cells distribute and metastasize to other organs via blood vessels as well as from the lymphatic system. Prognosis and treatment of metastatic cancer patients remain a major challenge nowadays. Till now, lots of target -based and immune checkpoint blocker therapies are used to treat disease patients. But these therapies fail to control the dissemination and metastasis of cancer. Before designing a treatment regimen for metastatic patients, understanding the mechanism of tumor cells spreading within lymph vessels remain undetermined. Construction of lymphoid structures since embryonic to adult stage are depend upon LTi. Foundation of lymph node, payer patches and TLO is initiated and regulated through these cells in any part of the body. During tumor growth, newly developed lymph node contained MDSCs and Treg cells which inhibit the immune response and promote tumor invasion and metastasis. LTi reconstituted lymph node can be used for both early and high risk detection of cancers. High and low risk of tumor growth and invasion depend upon the location and composition of immune cells within lymph nodes. However, LTi are not reported as predictive marker in cancer till date. Recent reports in cancer indicate that LTi cells are engaged in the spreading of tumor cells into a lymphatic vessel. Through this review we are trying to brief the development and role of the LTi in immune system during homeostasis and cancer.
Collapse
Affiliation(s)
- Ashu Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
10
|
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023; 22:187. [PMID: 38008741 PMCID: PMC10680233 DOI: 10.1186/s12943-023-01885-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is determined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Considering that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances in innate arm-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ming Yi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
| | - Bin Zhao
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
11
|
Ryu S, Lim M, Kim J, Kim HY. Versatile roles of innate lymphoid cells at the mucosal barrier: from homeostasis to pathological inflammation. Exp Mol Med 2023; 55:1845-1857. [PMID: 37696896 PMCID: PMC10545731 DOI: 10.1038/s12276-023-01022-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 09/13/2023] Open
Abstract
Innate lymphoid cells (ILCs) are innate lymphocytes that do not express antigen-specific receptors and largely reside and self-renew in mucosal tissues. ILCs can be categorized into three groups (ILC1-3) based on the transcription factors that direct their functions and the cytokines they produce. Their signature transcription factors and cytokines closely mirror those of their Th1, Th2, and Th17 cell counterparts. Accumulating studies show that ILCs are involved in not only the pathogenesis of mucosal tissue diseases, especially respiratory diseases, and colitis, but also the resolution of such diseases. Here, we discuss recent advances regarding our understanding of the biology of ILCs in mucosal tissue health and disease. In addition, we describe the current research on the immune checkpoints by which other cells regulate ILC activities: for example, checkpoint molecules are potential new targets for therapies that aim to control ILCs in mucosal diseases. In addition, we review approved and clinically- trialed drugs and drugs in clinical trials that can target ILCs and therefore have therapeutic potential in ILC-mediated diseases. Finally, since ILCs also play important roles in mucosal tissue homeostasis, we explore the hitherto sparse research on cell therapy with regulatory ILCs. This review highlights various therapeutic approaches that could be used to treat ILC-mediated mucosal diseases and areas of research that could benefit from further investigation.
Collapse
Affiliation(s)
- Seungwon Ryu
- Department of Microbiology, Gachon University College of Medicine, Incheon, 21999, South Korea
| | - MinYeong Lim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
- CIRNO, Sungkyunkwan University, Suwon, South Korea
| | - Jinwoo Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
- CIRNO, Sungkyunkwan University, Suwon, South Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea.
- CIRNO, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
12
|
Li X, Yan X, Wang Y, Kaur B, Han H, Yu J. The Notch signaling pathway: a potential target for cancer immunotherapy. J Hematol Oncol 2023; 16:45. [PMID: 37131214 PMCID: PMC10155406 DOI: 10.1186/s13045-023-01439-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/13/2023] [Indexed: 05/04/2023] Open
Abstract
Dysregulation of the Notch signaling pathway, which is highly conserved across species, can drive aberrant epigenetic modification, transcription, and translation. Defective gene regulation caused by dysregulated Notch signaling often affects networks controlling oncogenesis and tumor progression. Meanwhile, Notch signaling can modulate immune cells involved in anti- or pro-tumor responses and tumor immunogenicity. A comprehensive understanding of these processes can help with designing new drugs that target Notch signaling, thereby enhancing the effects of cancer immunotherapy. Here, we provide an up-to-date and comprehensive overview of how Notch signaling intrinsically regulates immune cells and how alterations in Notch signaling in tumor cells or stromal cells extrinsically regulate immune responses in the tumor microenvironment (TME). We also discuss the potential role of Notch signaling in tumor immunity mediated by gut microbiota. Finally, we propose strategies for targeting Notch signaling in cancer immunotherapy. These include oncolytic virotherapy combined with inhibition of Notch signaling, nanoparticles (NPs) loaded with Notch signaling regulators to specifically target tumor-associated macrophages (TAMs) to repolarize their functions and remodel the TME, combining specific and efficient inhibitors or activators of Notch signaling with immune checkpoint blockers (ICBs) for synergistic anti-tumor therapy, and implementing a customized and effective synNotch circuit system to enhance safety of chimeric antigen receptor (CAR) immune cells. Collectively, this review aims to summarize how Notch signaling intrinsically and extrinsically shapes immune responses to improve immunotherapy.
Collapse
Affiliation(s)
- Xinxin Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Xianchun Yan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Yufeng Wang
- Cancer Institute, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77225, USA
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, 1500 East Duarte, Los Angeles, CA, 91010, USA.
| |
Collapse
|
13
|
van de Pavert SA. Layered origins of lymphoid tissue inducer cells. Immunol Rev 2023; 315:71-78. [PMID: 36705244 DOI: 10.1111/imr.13189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Innate Lymphoid Cell (ILC) family is a relatively recently described immune cell family involved in innate immune responses and tissue homeostasis. Lymphoid Tissue Inducer (LTi) cells are part of the type 3 (ILC3) family. The ILC3 family is the main ILC population within the embryo, in which the LTi cells are critically associated with embryonic lymph node formation. Recent studies have shown more insights in ILC origin and residency from local embryonic and tissue resident precursors. Embryonic LTi cells originating from a different hemogenic endothelial source were shown to be replaced by HSC derived progenitors in adult. This review will discuss the layered origin of the ILC3 family with an emphasis on the LTi cell lineage.
Collapse
Affiliation(s)
- Serge A van de Pavert
- Aix-Marseille Univ, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France
| |
Collapse
|
14
|
Abstract
Innate lymphoid cells (ILCs) are transcriptionally and functionally similar to T cells but lack adaptive antigen receptors. They play critical roles in early defense against pathogens. In this review, we summarize recent discoveries of ILC progenitors and discuss possible mechanisms that separate ILCs from T cells. We consider mechanisms of lineage specification in early ILC development and also examine whether differences exist between adult and fetal ILC development.
Collapse
Affiliation(s)
- Yi Ding
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA.
| | | | - Arundhoti Das
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Avinash Bhandoola
- T Cell Biology and Development Unit, Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Kenney D, Harly C. Purification of Bone Marrow Precursors to T Cells and ILCs. Methods Mol Biol 2023; 2580:211-232. [PMID: 36374460 DOI: 10.1007/978-1-0716-2740-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
T cells and innate lymphoid cells (ILCs) share expression of many key transcription factors during development and at mature stage, resulting in striking functional similarities between these lineages. Taking into account ILC contribution is thus necessary to appreciate T cell functions during immune responses. Furthermore, understanding ILC development and functions helps to understand T cells. Here we provide methods and protocols to isolate pure populations of multipotent precursors to T cells and innate lymphoid cells (ILCs) from adult mouse bone marrow, using flow cytometric sorting. These include precursors to all lymphocytes (viz., LMPPs and ALPs) and multipotent precursors to ILCs that have been recently refined (viz., specified EILPs, committed EILPs, and ILCPs).
Collapse
Affiliation(s)
- Devin Kenney
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA
| | - Christelle Harly
- Nantes Université, INSERM UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France.
- LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France.
| |
Collapse
|
16
|
Hernández-Torres DC, Stehle C. Embryonic ILC-poiesis across tissues. Front Immunol 2022; 13:1040624. [PMID: 36605193 PMCID: PMC9807749 DOI: 10.3389/fimmu.2022.1040624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
The family of innate lymphoid cells (ILCs), consisting of Group 1 ILCs (natural killer cells and ILC1), ILC2, and ILC3, are critical effectors of innate immunity, inflammation, and homeostasis post-natally, but also exert essential functions before birth. Recent studies during critical developmental periods in the embryo have hinted at complex waves of tissue colonization, and highlighted the breadth of multipotent and committed ILC progenitors from both classic fetal hematopoietic organs such as the liver, as well as tissue sites such as the lung, thymus, and intestine. Assessment of the mechanisms driving cell fate and function of the ILC family in the embryo will be vital to the understanding ILC biology throughout fetal life and beyond.
Collapse
Affiliation(s)
- Daniela Carolina Hernández-Torres
- Innate Immunity, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany,Medical Department I, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,*Correspondence: Daniela Carolina Hernández-Torres, ; Christina Stehle,
| | - Christina Stehle
- Innate Immunity, German Rheumatism Research Center (DRFZ), Leibniz Association, Berlin, Germany,Medical Department I, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,*Correspondence: Daniela Carolina Hernández-Torres, ; Christina Stehle,
| |
Collapse
|
17
|
Jowett GM, Read E, Roberts LB, Coman D, Vilà González M, Zabinski T, Niazi U, Reis R, Trieu TJ, Danovi D, Gentleman E, Vallier L, Curtis MA, Lord GM, Neves JF. Organoids capture tissue-specific innate lymphoid cell development in mice and humans. Cell Rep 2022; 40:111281. [PMID: 36044863 PMCID: PMC9638027 DOI: 10.1016/j.celrep.2022.111281] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 01/06/2022] [Accepted: 08/05/2022] [Indexed: 12/21/2022] Open
Abstract
Organoid-based models of murine and human innate lymphoid cell precursor (ILCP) maturation are presented. First, murine intestinal and pulmonary organoids are harnessed to demonstrate that the epithelial niche is sufficient to drive tissue-specific maturation of all innate lymphoid cell (ILC) groups in parallel, without requiring subset-specific cytokine supplementation. Then, more complex human induced pluripotent stem cell (hiPSC)-based gut and lung organoid models are used to demonstrate that human epithelial cells recapitulate maturation of ILC from a stringent systemic human ILCP population, but only when the organoid-associated stromal cells are depleted. These systems offer versatile and reductionist models to dissect the impact of environmental and mucosal niche cues on ILC maturation. In the future, these could provide insight into how ILC activity and development might become dysregulated in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Geraldine M Jowett
- School for Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK; Centre for Host Microbiome Interactions, King's College London, London SE1 9RT, UK; Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK; Centre for Gene Therapy & Regenerative Medicine, King's College London, London SE1 9RT, UK; Wellcome Trust Cell Therapies and Regenerative Medicine Ph.D. Programme, London SE1 9RT, UK
| | - Emily Read
- School for Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK; Centre for Host Microbiome Interactions, King's College London, London SE1 9RT, UK; Centre for Gene Therapy & Regenerative Medicine, King's College London, London SE1 9RT, UK
| | - Luke B Roberts
- School for Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Diana Coman
- Centre for Host Microbiome Interactions, King's College London, London SE1 9RT, UK
| | - Marta Vilà González
- Wellcome and MRC Cambridge Stem Cell Institute, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Hills Road, Cambridge CB2 0QQ, UK
| | - Tomasz Zabinski
- School for Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Umar Niazi
- Guy's and St. Thomas' National Health Service Foundation Trust and King's College London National Institute for Health and Care Research Biomedical Research Centre Translational Bioinformatics Platform, Guy's Hospital, London SE1 9RT, UK
| | - Rita Reis
- School for Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Tung-Jui Trieu
- Centre for Host Microbiome Interactions, King's College London, London SE1 9RT, UK; Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Davide Danovi
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK; bit.bio, Babraham Research Campus, The Dorothy Hodgkin Building, Cambridge CB22 3FH, UK
| | - Eileen Gentleman
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Ludovic Vallier
- Wellcome and MRC Cambridge Stem Cell Institute, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Hills Road, Cambridge CB2 0QQ, UK
| | - Michael A Curtis
- Centre for Host Microbiome Interactions, King's College London, London SE1 9RT, UK
| | - Graham M Lord
- School for Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK; Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Joana F Neves
- School for Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK; Centre for Host Microbiome Interactions, King's College London, London SE1 9RT, UK.
| |
Collapse
|
18
|
Xie M, Zhang M, Dai M, Yue S, Li Z, Qiu J, Lu C, Xu W. IL-18/IL-18R Signaling Is Dispensable for ILC Development But Constrains the Growth of ILCP/ILCs. Front Immunol 2022; 13:923424. [PMID: 35874724 PMCID: PMC9304618 DOI: 10.3389/fimmu.2022.923424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Innate lymphoid cells (ILCs) develop from ILC progenitors in the bone marrow. Various ILC precursors (ILCPs) with different ILC subset lineage potentials have been identified based on the expression of cell surface markers and ILC-associated key transcription factor reporter genes. This study characterized an interleukin (IL)-7Rα+IL-18Rα+ ILC progenitor population in the mouse bone marrow with multi-ILC lineage potential on the clonal level. Single-cell gene expression analysis revealed the heterogeneity of this population and identified several subpopulations with specific ILC subset-biased gene expression profiles. The role of IL-18 signaling in the regulation of IL-18Rα+ ILC progenitors and ILC development was further investigated using Il18- and Il18r1-deficient mice, in vitro differentiation assay, and adoptive transfer model. IL-18/IL-18R-mediated signal was found to not be required for early stages of ILC development. While Il18r1-/- lymphoid progenitors were able to generate all ILC subsets in vitro and in vivo like the wild-type counterpart, increased IL-18 level, as often occurred during infection or under stress, suppressed the growth of ILCP/ILC in an IL-18Ra-dependent manner via inhibiting proliferation and inducing apoptosis.
Collapse
Affiliation(s)
- Mengying Xie
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mingying Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mengyuan Dai
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shan Yue
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhao Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ju Qiu
- Chinese Academy of Sciences (CAS) Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chenqi Lu
- Department of Biostatistics and Computational Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- *Correspondence: Wei Xu, ; Chenqi Lu,
| | - Wei Xu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- *Correspondence: Wei Xu, ; Chenqi Lu,
| |
Collapse
|
19
|
Gao X, Shen X, Liu K, Lu C, Fan Y, Xu Q, Meng X, Hong S, Huang Z, Liu X, Lu L, Wang L. The Transcription Factor ThPOK Regulates ILC3 Lineage Homeostasis and Function During Intestinal Infection. Front Immunol 2022; 13:939033. [PMID: 35844574 PMCID: PMC9285022 DOI: 10.3389/fimmu.2022.939033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
Innate lymphoid cells (ILCs) have been identified as a heterogeneous population of lymphocytes that mirrors the cytokine and transcriptional profile of adaptive T cells. The dynamic balance between key transcription factors determines the heterogeneity, plasticity, and functions of ILC subsets. The transcription factor ThPOK is highly conserved in biological evolution and exerts pivotal functions in the differentiation of T cells. However, the function of ThPOK in ILC3s has not been identified. Here, we found that ThPOK regulated the homeostasis of ILC3s, as mice lacking ThPOK showed decreased NKp46+ ILC3s and increased CCR6- NKp46- ILC3s. ThPOK-deficient mice were more sensitive to S. typhimurium infection due to the impaired IFN-γ secretion of NKp46+ ILC3s. Furthermore, ThPOK participates in ILC3-mediated control of C. rodentium infection by negatively regulating IL-17A secretion. ThPOK preserves the identity of NKp46+ ILC3s by repressing RORγt, which indirectly releases T-bet expression. On the molecular level, ThPOK directly binds to Rorc and Il23r to restrain their expression which further modulates IL-17A secretion. Collectively, our analysis revealed a critical role of ThPOK in the homeostasis and functions of ILC3 subsets.
Collapse
Affiliation(s)
- Xianzhi Gao
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Shen
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kuai Liu
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenyu Lu
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Ying Fan
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | - Qianying Xu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Meng
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Shenghui Hong
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | | | - Xia Liu
- Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Linrong Lu
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lie Wang
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- *Correspondence: Lie Wang,
| |
Collapse
|
20
|
Han J, Wan M, Ma Z, He P. The TOX subfamily: all-round players in the immune system. Clin Exp Immunol 2022; 208:268-280. [PMID: 35485425 PMCID: PMC9226143 DOI: 10.1093/cei/uxac037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022] Open
Abstract
The thymocyte selection-related HMG box protein (TOX) subfamily comprises evolutionarily conserved DNA-binding proteins, and is expressed in certain immune cell subsets and plays key roles in the development of CD4+ T cells, innate lymphoid cells (ILCs), T follicular helper (Tfh) cells, and in CD8+ T-cell exhaustion. Although its roles in CD4+ T and natural killer (NK) cells have been extensively studied, recent findings have demonstrated previously unknown roles for TOX in the development of ILCs, Tfh cells, as well as CD8+ T-cell exhaustion; however, the molecular mechanism underlying TOX regulation of these immune cells remains to be elucidated. In this review, we discuss recent studies on the influence of TOX on the development of various immune cells and CD8+ T-cell exhaustion and the roles of specific TOX family members in the immune system. Moreover, this review suggests candidate regulatory targets for cell therapy and immunotherapies.
Collapse
Affiliation(s)
- Jiawen Han
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Minjie Wan
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin, China.,Department of Hepatology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ping He
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
21
|
Bourayou E, Golub R. Signaling Pathways Tuning Innate Lymphoid Cell Response to Hepatocellular Carcinoma. Front Immunol 2022; 13:846923. [PMID: 35281021 PMCID: PMC8904901 DOI: 10.3389/fimmu.2022.846923] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers worldwide and its incidence continues to rise globally. Various causes can lead to its development such as chronic viral infections causing hepatitis, cirrhosis or nonalcoholic steatohepatitis (NASH). The contribution of immune cells to HCC development and progression has been extensively studied when it comes to adaptive lymphocytes or myeloid populations. However, the role of the innate lymphoid cells (ILCs) is still not well defined. ILCs are a family of lymphocytes comprising five subsets including circulating Natural Killer (NK) cells, ILC1s, ILC2s, ILC3s and lymphocytes tissue-inducer cells (LTi). Mostly located at epithelial surfaces, tissue-resident ILCs and NK cells can rapidly react to environmental changes to mount appropriate immune responses. Here, we provide an overview of their roles and actions in HCC with an emphasis on the importance of diverse signaling pathways (Notch, TGF-β, Wnt/β-catenin…) in the tuning of their response to HCC.
Collapse
Affiliation(s)
- Elsa Bourayou
- Institut Pasteur, Université de Paris, INSERM U1223, Lymphocyte and Immunity Unit, Paris, France
| | - Rachel Golub
- Institut Pasteur, Université de Paris, INSERM U1223, Lymphocyte and Immunity Unit, Paris, France
| |
Collapse
|
22
|
Das A, Harly C, Ding Y, Bhandoola A. ILC Differentiation from Progenitors in the Bone Marrow. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:7-24. [DOI: 10.1007/978-981-16-8387-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
An in vitro platform supports generation of human innate lymphoid cells from CD34 + hematopoietic progenitors that recapitulate ex vivo identity. Immunity 2021; 54:2417-2432.e5. [PMID: 34453879 DOI: 10.1016/j.immuni.2021.07.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/12/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022]
Abstract
Innate lymphoid cells (ILCs) are critical effectors of innate immunity and inflammation, whose development and activation pathways make for attractive therapeutic targets. However, human ILC generation has not been systematically explored, and previous in vitro investigations relied on the analysis of few markers or cytokines, which are suboptimal to assign lineage identity. Here, we developed a platform that reliably generated human ILC lineages from CD34+ hematopoietic progenitors derived from cord blood and bone marrow. We showed that one culture condition is insufficient to generate all ILC subsets, and instead, distinct combination of cytokines and Notch signaling are essential. The identity of natural killer (NK)/ILC1s, ILC2s, and ILC3s generated in vitro was validated by protein expression, functional assays, and both global and single-cell transcriptome analysis, recapitulating the signatures and functions of their ex vivo ILC counterparts. These data represent a resource to aid in clarifying ILC biology and differentiation.
Collapse
|
24
|
Stehle C, Rückert T, Fiancette R, Gajdasik DW, Willis C, Ulbricht C, Durek P, Mashreghi MF, Finke D, Hauser AE, Withers DR, Chang HD, Zimmermann J, Romagnani C. T-bet and RORα control lymph node formation by regulating embryonic innate lymphoid cell differentiation. Nat Immunol 2021; 22:1231-1244. [PMID: 34556887 PMCID: PMC7614953 DOI: 10.1038/s41590-021-01029-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 08/12/2021] [Indexed: 11/09/2022]
Abstract
The generation of lymphoid tissues during embryogenesis relies on group 3 innate lymphoid cells (ILC3) displaying lymphoid tissue inducer (LTi) activity and expressing the master transcription factor RORγt. Accordingly, RORγt-deficient mice lack ILC3 and lymphoid structures, including lymph nodes (LN). Whereas T-bet affects differentiation and functions of ILC3 postnatally, the role of T-bet in regulating fetal ILC3 and LN formation remains completely unknown. Using multiple mouse models and single-cell analyses of fetal ILCs and ILC progenitors (ILCP), here we identify a key role for T-bet during embryogenesis and show that its deficiency rescues LN formation in RORγt-deficient mice. Mechanistically, T-bet deletion skews the differentiation fate of fetal ILCs and promotes the accumulation of PLZFhi ILCP expressing central LTi molecules in a RORα-dependent fashion. Our data unveil an unexpected role for T-bet and RORα during embryonic ILC function and highlight that RORγt is crucial in counteracting the suppressive effects of T-bet.
Collapse
Affiliation(s)
- Christina Stehle
- Innate Immunity, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
| | - Timo Rückert
- Innate Immunity, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
| | - Rémi Fiancette
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Dominika W Gajdasik
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Claire Willis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Carolin Ulbricht
- Immune Dynamics, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany
| | - Pawel Durek
- Cell Biology, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
| | - Mir-Farzin Mashreghi
- Therapeutic Gene Regulation, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Daniela Finke
- Department of Biomedicine and University Children's Hospital of Basel, University of Basel, Basel, Switzerland
| | - Anja Erika Hauser
- Immune Dynamics, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany
| | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Hyun-Dong Chang
- Schwiete Laboratory for Microbiota and Inflammation, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany
- Department of Cytometry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Jakob Zimmermann
- Maurice Müller Laboratories, Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Centre-a Leibniz Institute, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany.
- Leibniz-Science Campus Chronic Inflammation, Berlin, Germany.
| |
Collapse
|
25
|
Yeung SSH, Ho YS, Chang RCC. The role of meningeal populations of type II innate lymphoid cells in modulating neuroinflammation in neurodegenerative diseases. Exp Mol Med 2021; 53:1251-1267. [PMID: 34489558 PMCID: PMC8492689 DOI: 10.1038/s12276-021-00660-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023] Open
Abstract
Recent research into meningeal lymphatics has revealed a never-before appreciated role of type II innate lymphoid cells (ILC2s) in modulating neuroinflammation in the central nervous system (CNS). To date, the role of ILC2-mediated inflammation in the periphery has been well studied. However, the exact distribution of ILC2s in the CNS and therefore their putative role in modulating neuroinflammation in neurodegenerative diseases such as Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD), and major depressive disorder (MDD) remain highly elusive. Here, we review the current evidence of ILC2-mediated modulation of neuroinflammatory cues (i.e., IL-33, IL-25, IL-5, IL-13, IL-10, TNFα, and CXCL16-CXCR6) within the CNS, highlight the distribution of ILC2s in both the periphery and CNS, and discuss some challenges associated with cell type-specific targeting that are important for therapeutics. A comprehensive understanding of the roles of ILC2s in mediating and responding to inflammatory cues may provide valuable insight into potential therapeutic strategies for many dementia-related disorders.
Collapse
Affiliation(s)
- Sherry Sin-Hang Yeung
- grid.194645.b0000000121742757Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Yuen-Shan Ho
- grid.16890.360000 0004 1764 6123School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR China
| | - Raymond Chuen-Chung Chang
- grid.194645.b0000000121742757Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China ,grid.194645.b0000000121742757State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| |
Collapse
|
26
|
Xu Y, Zhang J, Hu Y, Li X, Sun L, Peng Y, Sun Y, Liu B, Bian Z, Rong Z. Single-cell transcriptome analysis reveals the dynamics of human immune cells during early fetal skin development. Cell Rep 2021; 36:109524. [PMID: 34380039 DOI: 10.1016/j.celrep.2021.109524] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/12/2021] [Accepted: 07/22/2021] [Indexed: 01/12/2023] Open
Abstract
The immune system of skin develops in stages in mice. However, the developmental dynamics of immune cells in human skin remains elusive. Here, we perform transcriptome profiling of CD45+ hematopoietic cells in human fetal skin at an estimated gestational age of 10-17 weeks by single-cell RNA sequencing. A total of 13 immune cell types are identified. Skin macrophages show dynamic heterogeneity over the course of skin development. A major shift in lymphoid cell developmental states occurs from the first to the second trimester that implies an in situ differentiation process. Gene expression analysis reveals a typical developmental program in immune cells in accordance with their functional maturation, possibly involving metabolic reprogramming. Finally, we identify transcription factors (TFs) that potentially regulate cellular transitions by comparing TFs and TF target gene networks. These findings provide detailed insight into how the immune system of the human skin is established during development.
Collapse
Affiliation(s)
- Yingping Xu
- Experimental Research Center, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China.
| | - Jun Zhang
- Experimental Research Center, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Yongfei Hu
- Experimental Research Center, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Xuefei Li
- Experimental Research Center, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Lihua Sun
- Development of Gynaecology and Obstetrics, Nanhai Hospital, Southern Medical University, Guangzhou 528200, China
| | - Yu Peng
- Experimental Research Center, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Yuzhe Sun
- Experimental Research Center, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Zhilei Bian
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhili Rong
- Experimental Research Center, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China; Cancer Research Institute, School of Basic Medical Sciences, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Southern Medical University, Guangzhou 510515, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.
| |
Collapse
|
27
|
Kim J, Ryu S, Kim HY. Innate Lymphoid Cells in Tissue Homeostasis and Disease Pathogenesis. Mol Cells 2021; 44:301-309. [PMID: 33972473 PMCID: PMC8175152 DOI: 10.14348/molcells.2021.0053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Innate lymphoid cells (ILCs) are the most recently discovered family of innate immune cells. ILCs can be categorized into three groups on the basis of the transcription factors that direct their functions and the cytokines they produce. Notably, these functions parallel the effector functions of T lymphocytes. ILCs play a frontline role in host defense and tissue homeostasis by responding rapidly to environmental factors, conducting effector responses in a tissue-specific manner, and interacting with hematopoietic and non-hematopoietic cells throughout the body. Moreover, recent studies reveal that ILCs are involved in development of various inflammatory diseases, such as respiratory diseases, autoimmune diseases, or cancer. In this review, we discuss the recent findings regarding the biology of ILCs in health and inflammatory diseases.
Collapse
Affiliation(s)
- Jihyun Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
| | - Seungwon Ryu
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Korea
| |
Collapse
|
28
|
Mirpuri J. The emerging role of group 3 innate lymphoid cells in the neonate: interaction with the maternal and neonatal microbiome. OXFORD OPEN IMMUNOLOGY 2021; 2:iqab009. [PMID: 34151271 PMCID: PMC8208228 DOI: 10.1093/oxfimm/iqab009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/08/2021] [Accepted: 05/04/2021] [Indexed: 12/30/2022] Open
Abstract
Innate lymphoid cells (ILCs) are critical for host defense and are notably important in the context of the newborn when adaptive immunity is immature. There is an increasing evidence that development and function of group 3 ILCs (ILC3) can be modulated by the maternal and neonatal microbiome and is involved in neonatal disease pathogenesis. In this review, we explore the evidence that supports a critical role for ILC3 in resistance to infection and disease pathogenesis in the newborn, with a focus on microbial factors that modulate ILC3 function. We then briefly explore opportunities for research that are focused on the fetus and newborn.
Collapse
Affiliation(s)
- Julie Mirpuri
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Suite F3.302, Dallas, TX 75390-9063, USA
| |
Collapse
|
29
|
Shin SB, McNagny KM. ILC-You in the Thymus: A Fresh Look at Innate Lymphoid Cell Development. Front Immunol 2021; 12:681110. [PMID: 34025680 PMCID: PMC8136430 DOI: 10.3389/fimmu.2021.681110] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/20/2021] [Indexed: 01/20/2023] Open
Abstract
The discovery of innate lymphoid cells (ILCs) has revolutionized our understanding of innate immunity and immune cell interactions at epithelial barrier sites. Their presence and maintenance are critical for modulating immune homeostasis, responding to injury or infection, and repairing damaged tissues. To date, ILCs have been defined by a set of transcription factors, surface antigens and cytokines, and their functions resemble those of three major classes of helper T cell subsets, Th1, Th2 and Th17. Despite this, the lack of antigen-specific surface receptors and the notion that ILCs can develop in the absence of the thymic niche have clearly set them apart from the T-cell lineage and promulgated a dogma that ILCs develop directly from progenitors in the bone marrow. Interestingly however, emerging studies have challenged the BM-centric view of adult ILC development and suggest that ILCs could arise neonatally from developing T cell progenitors. In this review, we discuss ILC development in parallel to T-cell development and summarize key findings that support a T-cell-centric view of ILC ontogeny.
Collapse
Affiliation(s)
- Samuel B Shin
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M McNagny
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
30
|
van de Pavert SA. Lymphoid Tissue inducer (LTi) cell ontogeny and functioning in embryo and adult. Biomed J 2021; 44:123-132. [PMID: 33849806 PMCID: PMC8178546 DOI: 10.1016/j.bj.2020.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Innate Lymphoid Cells (ILC) are involved in homeostasis and immunity. Their dynamic differentiation and characterization depend on their tissue of residency and is adapted to their role within these tissues. Lymphoid Tissue inducer (LTi) cells are an ILC member and essential for embryonic lymph node (LN) formation. LNs are formed at pre-defined and strategic positions throughout the body and how LTi cells are initially attracted towards these areas is under debate. Besides their role in LN formation, LTi-like and the closely related ILC type 3 (ILC3) cells have been observed within the embryonic gut. New studies have now shown more information on their origin and differentiation within the embryo. This review will evaluate the embryonic LTi cell origin from a specific embryonic hemogenic wave, which has recently been described in mouse. Moreover, I will discuss their differentiation and similarities with the closely related ILC3 cells in embryo and adult.
Collapse
Affiliation(s)
- Serge A van de Pavert
- Aix-Marseille University, Centre National de la Recherche Scientifique (CNRS), National Institute for Health and Medical Research (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France.
| |
Collapse
|
31
|
Wang X, Chen H, Jiang R, Hong X, Peng J, Chen W, Jiang J, Li J, Huang D, Dai H, Wang W, Lu J, Zhao Y, Wu W. Interleukin-17 activates and synergizes with the notch signaling pathway in the progression of pancreatic ductal adenocarcinoma. Cancer Lett 2021; 508:1-12. [PMID: 33713738 DOI: 10.1016/j.canlet.2021.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/28/2022]
Abstract
Interleukin (IL)-17 is a prominent cytokine that promotes pancreatic intraepithelial neoplasia (PanIN) and pancreatic ductal adenocarcinoma (PDAC) and is associated with the oncogenic pathways in tumor progression. However, the mechanism and therapeutic value of the IL-17 axis remain unclear. In this study, we verified the activation of the IL-17 and Notch pathways in PanIN/PDAC via complementary approaches and validated their pro-tumor effects on tumor progression. Additionally, we found a positive correlation between IL-17 and Notch; the IL-17 axis can upregulate Notch activity via the canonical NF-κB pathway in vitro, thus synergistically promoting PanIN/PDAC. Furthermore, we observed that the co-inhibition of IL-17 and the Notch pathway can enhance the therapeutic effect by restricting tumor growth in vivo. Our study highlights the synergistic effect of the IL-17 axis and Notch pathway in promoting PanIN/PDAC and further suggests that IL-17-Notch co-inhibition is a novel therapeutic strategy with superior potential in treating PDAC.
Collapse
Affiliation(s)
- Xianze Wang
- Department of Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Hao Chen
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Rui Jiang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xiafei Hong
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Junya Peng
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Wenyan Chen
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jialin Jiang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Jie Li
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Dan Huang
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Hongmei Dai
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Wenze Wang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Junliang Lu
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Yupei Zhao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Wenming Wu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
32
|
Michieletto MF, Henao-Mejia J. Ontogeny and heterogeneity of innate lymphoid cells and the noncoding genome. Immunol Rev 2021; 300:152-166. [PMID: 33559175 DOI: 10.1111/imr.12950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/13/2022]
Abstract
Since their discovery a decade ago, it has become evident that innate lymphoid cells (ILCs) play critical roles in protective immune responses against intracellular and extracellular pathogens but are also central regulators of epithelial barrier integrity and tissue homeostasis. ILCs populate almost every tissue in mammalian organisms; therefore, not surprisingly, dysregulation of their functions contributes to the development and progression of multiple inflammatory and metabolic diseases. Our knowledge of the transcriptional programs governing the development, differentiation, and functions of the different groups of ILCs has increased dramatically in the last ten years. However, with the advent of new technologies, an unprecedented level of heterogeneity, plasticity, and developmental complexity has started to be revealed. In this review, we highlight recent advances in our understanding of ILC development and their biological functions. In particular, we aim to emphasize how our increasing knowledge of the chromatin landscape and the noncoding genome of these innate lymphocytes is allowing us to better understand their development and functions in different contexts during homeostasis and inflammation. Moreover, we propose that the design of more refined genetic tools to study tissue-specific ILCs and their functions can be accomplished by leveraging our understanding of how specific noncoding elements of the genome regulate gene expression in ILCs.
Collapse
Affiliation(s)
- Michaël F Michieletto
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
33
|
Golub R. The Notch signaling pathway involvement in innate lymphoid cell biology. Biomed J 2020; 44:133-143. [PMID: 33863682 PMCID: PMC8178581 DOI: 10.1016/j.bj.2020.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/30/2022] Open
Abstract
The role of Notch in the immune system was first described in the late 90s. Reports revealed that Notch is one of the most conserved developmental pathways involved in diverse biological processes such as the development, differentiation, survival and functions of many immune populations. Here, we provide an extended view of the pleiotropic effects of the Notch signaling on the innate lymphoid cell (ILC) biology. We review the current knowledge on Notch signaling in the regulation of ILC differentiation, plasticity and functions in diverse tissue types and at both the fetal and adult developmental stages. ILCs are early responder cells that secrete a large panel of cytokines after stimulation. By controlling the abundance of ILCs and the specificity of their release, the Notch pathway is also implicated in the regulation of their functions. The Notch pathway is therefore an important player in both ILC cell fate decision and ILC immune response.
Collapse
Affiliation(s)
- Rachel Golub
- Unit of Lymphocytes and Immunity, Department of Immunology, Institut Pasteur, Paris, France.
| |
Collapse
|
34
|
Yu X, Vargas J, Green PH, Bhagat G. Innate Lymphoid Cells and Celiac Disease: Current Perspective. Cell Mol Gastroenterol Hepatol 2020; 11:803-814. [PMID: 33309944 PMCID: PMC7851184 DOI: 10.1016/j.jcmgh.2020.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
Celiac disease (CD) is a common autoimmune disorder triggered by the ingestion of gluten in genetically susceptible individuals. Although the mechanisms underlying gliadin-mediated activation of adaptive immunity in CD have been well-characterized, regulation of innate immune responses and the functions of certain immune cell populations within the epithelium and lamina propria are not well-understood at present. Innate lymphoid cells (ILCs) are types of innate immune cells that have lymphoid morphology, lack antigen-specific receptors, and play important roles in tissue homeostasis, inflammation, and protective immune responses against pathogens. Information regarding the diversity and functions of ILCs in lymphoid organs and at mucosal sites has grown over the past decade, and roles of different ILC subsets in the pathogenesis of some inflammatory intestinal diseases have been proposed. However, our understanding of the contribution of ILCs toward the initiation and progression of CD is still limited. In this review, we discuss current pathophysiological aspects of ILCs within the gastrointestinal tract, findings of recent investigations characterizing ILC alterations in CD and refractory CD, and suggest avenues for future research.
Collapse
Affiliation(s)
- Xuechen Yu
- Department of Medicine, Celiac Disease Center, Columbia University Irving Medical Center, New York, New York
| | - Justin Vargas
- Department of Medicine, Celiac Disease Center, Columbia University Irving Medical Center, New York, New York
| | - Peter H.R. Green
- Department of Medicine, Celiac Disease Center, Columbia University Irving Medical Center, New York, New York
| | - Govind Bhagat
- Department of Medicine, Celiac Disease Center, Columbia University Irving Medical Center, New York, New York,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York,Correspondence Address correspondence to: Govind Bhagat, MD, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, VC 14-228, New York, New York 10032. fax: (212) 305-2301.
| |
Collapse
|
35
|
Tufa DM, Yingst AM, Trahan GD, Shank T, Jones D, Shim S, Lake J, Winkler K, Cobb L, Woods R, Jones K, Verneris MR. Human innate lymphoid cell precursors express CD48 that modulates ILC differentiation through 2B4 signaling. Sci Immunol 2020; 5:eaay4218. [PMID: 33219153 PMCID: PMC8294935 DOI: 10.1126/sciimmunol.aay4218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/15/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
Innate lymphoid cells (ILCs) develop from common lymphoid progenitors (CLPs), which further differentiate into the common ILC progenitor (CILP) that can give rise to both ILCs and natural killer (NK) cells. Murine ILC intermediates have recently been characterized, but the human counterparts and their developmental trajectories have not yet been identified, largely due to the lack of homologous surface receptors in both organisms. Here, we show that human CILPs (CD34+CD117+α4β7+Lin-) acquire CD48 and CD52, which define NK progenitors (NKPs) and ILC precursors (ILCPs). Two distinct NK cell subsets were generated in vitro from CD34+CD117+α4β7+Lin-CD48-CD52+ and CD34+CD117+α4β7+Lin-CD48+CD52+ NKPs, respectively. Independent of NKPs, ILCPs exist in the CD34+CD117+α4β7+Lin-CD48+CD52+ subset and give rise to ILC1s, ILC2s, and NCR+ ILC3s, whereas CD34+CD117+α4β7+Lin-CD48+CD52- ILCPs give rise to a distinct subset of ILC3s that have lymphoid tissue inducer (LTi)-like properties. In addition, CD48-expressing CD34+CD117+α4β7+Lin- precursors give rise to tissue-associated ILCs in vivo. We also observed that the interaction of 2B4 with CD48 induced differentiation of ILC2s, and together, these findings show that expression of CD48 by human ILCPs modulates ILC differentiation.
Collapse
Affiliation(s)
- Dejene M Tufa
- Department of Pediatric, Division of Children's Cancer and Blood Disorders, University of Colorado and Children's Hospital of Colorado, Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO 80045, USA
| | - Ashley M Yingst
- Department of Pediatric, Division of Children's Cancer and Blood Disorders, University of Colorado and Children's Hospital of Colorado, Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO 80045, USA
| | - George Devon Trahan
- Department of Pediatric, Division of Children's Cancer and Blood Disorders, University of Colorado and Children's Hospital of Colorado, Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO 80045, USA
| | - Tyler Shank
- Department of Pediatric, Division of Children's Cancer and Blood Disorders, University of Colorado and Children's Hospital of Colorado, Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO 80045, USA
| | - Dallas Jones
- Department of Pediatric, Division of Children's Cancer and Blood Disorders, University of Colorado and Children's Hospital of Colorado, Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO 80045, USA
| | - Seonhui Shim
- Department of Pediatric, Division of Children's Cancer and Blood Disorders, University of Colorado and Children's Hospital of Colorado, Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO 80045, USA
| | - Jessica Lake
- Department of Pediatric, Division of Children's Cancer and Blood Disorders, University of Colorado and Children's Hospital of Colorado, Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO 80045, USA
| | - Kevin Winkler
- Department of Pediatric, Division of Children's Cancer and Blood Disorders, University of Colorado and Children's Hospital of Colorado, Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO 80045, USA
| | - Laura Cobb
- Department of Pediatric, Division of Children's Cancer and Blood Disorders, University of Colorado and Children's Hospital of Colorado, Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO 80045, USA
| | - Renee Woods
- Department of Pediatric, Division of Children's Cancer and Blood Disorders, University of Colorado and Children's Hospital of Colorado, Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO 80045, USA
| | - Kenneth Jones
- Department of Pediatric, Division of Children's Cancer and Blood Disorders, University of Colorado and Children's Hospital of Colorado, Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO 80045, USA
| | - Michael R Verneris
- Department of Pediatric, Division of Children's Cancer and Blood Disorders, University of Colorado and Children's Hospital of Colorado, Research Complex 1, North Tower, 12800 E. 19th Ave., Mail Stop 8302, Room P18-4108, Aurora, CO 80045, USA.
| |
Collapse
|
36
|
Song D, Lai L, Ran Z. Metabolic Regulation of Group 3 Innate Lymphoid Cells and Their Role in Inflammatory Bowel Disease. Front Immunol 2020; 11:580467. [PMID: 33193381 PMCID: PMC7649203 DOI: 10.3389/fimmu.2020.580467] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic and relapsing inflammatory disorder of the intestine. IBD is associated with complex pathogenesis, and considerable data suggest that innate lymphoid cells contribute to the development and progression of the condition. Group 3 innate lymphoid cells (ILC3s) not only play a protective role in maintaining intestinal homeostasis and gut barrier function, but also a pathogenic role in intestinal inflammation. ILC3s can sense environmental and host-derived signals and combine these cues to modulate cell expansion, migration and function, and transmit information to the broader immune system. Herein, we review current knowledge of how ILC3s can be regulated by dietary nutrients, microbiota and their metabolites, as well as other metabolites. In addition, we describe the phenotypic and functional alterations of ILC3s in IBD and discuss the therapeutic potential of ILC3s in the treatment of IBD.
Collapse
Affiliation(s)
| | | | - Zhihua Ran
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
37
|
Kasal DN, Bendelac A. Multi-transcription factor reporter mice delineate early precursors to the ILC and LTi lineages. J Exp Med 2020; 218:211499. [PMID: 33104170 PMCID: PMC7590509 DOI: 10.1084/jem.20200487] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/07/2020] [Accepted: 09/28/2020] [Indexed: 11/21/2022] Open
Abstract
Transcription factor (TF) reporter mice have proved integral to the characterization of murine innate lymphoid cell (ILC) development and function. Here, we implemented a CRISPR/Cas9-generated combinatorial reporter approach for the simultaneous resolution of several key TFs throughout ILC development in both the fetal liver and adult bone marrow. We demonstrate that the Tcf7-expressing early innate lymphoid precursor (EILP) and the common helper ILC precursor (CHILP) both contain a heterogeneous mixture of specified ILC and lymphoid tissue inducer (LTi) precursors with restricted lineage potential rather than a shared precursor. Moreover, the earliest specified precursor to the LTi lineage was identified upstream of these populations, before Tcf7 expression. These findings match dynamic changes in chromatin accessibility associated with the expression of key TFs (i.e., GATA3 and RORγ(t)), highlighting the distinct origins of ILC and LTi lineages at the epigenetic and functional levels, and provide a revised map for ILC development.
Collapse
Affiliation(s)
- Darshan N Kasal
- Committee on Immunology, University of Chicago, Chicago, IL.,Department of Pathology, University of Chicago, Chicago, IL
| | - Albert Bendelac
- Committee on Immunology, University of Chicago, Chicago, IL.,Department of Pathology, University of Chicago, Chicago, IL
| |
Collapse
|
38
|
Cherrier M, Ramachandran G, Golub R. The interplay between innate lymphoid cells and T cells. Mucosal Immunol 2020; 13:732-742. [PMID: 32651476 DOI: 10.1038/s41385-020-0320-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 06/25/2020] [Accepted: 06/25/2020] [Indexed: 02/04/2023]
Abstract
ILCs and T cells are closely related functionally but they significantly differ in their ability to circulate, expand, and renew. Cooperation and reciprocal functional regulation suggest that these cell types are more complementary than simply redundant during immune responses. How ILCs shape T-cell responses is strongly dependent on the tissue and inflammatory context. Likewise, indirect regulation of ILCs by adaptive immunity is induced by environmental cues such as the gut microbiota. Here, we review shared requirements for the development and function of both cell types and divergences in the orchestration of prototypic immune functions. We discuss the diversity of functional interactions between T cells and ILCs during homeostasis and immune responses. Identifying the location and the nature of the tissue microenvironment in which these interactions are taking place may uncover the remaining mysteries of their close encounters.
Collapse
Affiliation(s)
- Marie Cherrier
- Laboratoire d'Immunité Intestinale, Institut Imagine, INSERM U1163, Université Sorbonne Paris Cité, Paris, France.
| | - Gayetri Ramachandran
- Host-Microbiota Interaction, Institut Necker Enfants Malades, INSERM U1151, Université Sorbonne Paris Cité, Paris, France
| | - Rachel Golub
- Unité Lymphocytes et Immunité, Institut Pasteur, Paris, France. .,INSERM U1223, Paris, France. .,Université de Paris, F-75006, Paris, France.
| |
Collapse
|
39
|
Stokic-Trtica V, Diefenbach A, Klose CSN. NK Cell Development in Times of Innate Lymphoid Cell Diversity. Front Immunol 2020; 11:813. [PMID: 32733432 PMCID: PMC7360798 DOI: 10.3389/fimmu.2020.00813] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/08/2020] [Indexed: 12/31/2022] Open
Abstract
After being described in the 1970s as cytotoxic cells that do not require MHC-dependent pre-activation, natural killer (NK) cells remained the sole member of innate lymphocytes for decades until lymphoid tissue-inducer cells in the 1990s and helper-like innate lymphoid lineages from 2008 onward completed the picture of innate lymphoid cell (ILC) diversity. Since some of the ILC members, such as ILC1s and CCR6- ILC3s, share specific markers previously used to identify NK cells, these findings provoked the question of how to delineate the development of NK cell and helper-like ILCs and how to properly identify and genetically interfere with NK cells. The description of eomesodermin (EOMES) as a lineage-specifying transcription factor of NK cells provided a candidate that may serve as a selective marker for the genetic targeting and identification of NK cells. Unlike helper-like ILCs, NK cell activation is, to a large degree, regulated by the engagement of activating and inhibitory surface receptors. NK cell research has revealed some elegant mechanisms of immunosurveillance, coined "missing-self" and "induced-self" recognition, thus complementing "non-self recognition", which is predominantly utilized by adaptive lymphocytes and myeloid cells. Notably, the balance of activating and inhibitory signals perceived by surface receptors can be therapeutically harnessed for anti-tumor immunity mediated by NK cells. This review aims to summarize the similarities and the differences in development, function, localization, and phenotype of NK cells and helper-like ILCs, with the purpose to highlight the unique feature of NK cell development and regulation.
Collapse
Affiliation(s)
- Vladislava Stokic-Trtica
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Max-Planck Institute for Infection Biology, Berlin, Germany
| | - Andreas Diefenbach
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | - Christoph S N Klose
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
40
|
Cumano A, Berthault C, Ramond C, Petit M, Golub R, Bandeira A, Pereira P. New Molecular Insights into Immune Cell Development. Annu Rev Immunol 2020; 37:497-519. [PMID: 31026413 DOI: 10.1146/annurev-immunol-042718-041319] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During development innate lymphoid cells and specialized lymphocyte subsets colonize peripheral tissues, where they contribute to organogenesis and later constitute the first line of protection while maintaining tissue homeostasis. A few of these subsets are produced only during embryonic development and remain in the tissues throughout life. They are generated through a unique developmental program initiated in lympho-myeloid-primed progenitors, which lose myeloid and B cell potential. They either differentiate into innate lymphoid cells or migrate to the thymus to give rise to embryonic T cell receptor-invariant T cells. At later developmental stages, adaptive T lymphocytes are derived from lympho-myeloid progenitors that colonize the thymus, while lymphoid progenitors become specialized in the production of B cells. This sequence of events highlights the requirement for stratification in the establishment of immune functions that determine efficient seeding of peripheral tissues by a limited number of cells.
Collapse
Affiliation(s)
- Ana Cumano
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Claire Berthault
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Cyrille Ramond
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , ,
| | - Maxime Petit
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Rachel Golub
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Antonio Bandeira
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| | - Pablo Pereira
- Unité Lymphopoïèse, Département d'Immunologie, INSERM U1223, Institut Pasteur, 75724 Paris CEDEX 15, France; , , .,Cellule Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 75015 Paris, France
| |
Collapse
|
41
|
Wang W, Li Y, Hao J, He Y, Dong X, Fu YX, Guo X. The Interaction between Lymphoid Tissue Inducer-Like Cells and T Cells in the Mesenteric Lymph Node Restrains Intestinal Humoral Immunity. Cell Rep 2020; 32:107936. [DOI: 10.1016/j.celrep.2020.107936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/27/2020] [Accepted: 06/29/2020] [Indexed: 01/07/2023] Open
|
42
|
Wei HX, Wang B, Li B. IL-10 and IL-22 in Mucosal Immunity: Driving Protection and Pathology. Front Immunol 2020; 11:1315. [PMID: 32670290 PMCID: PMC7332769 DOI: 10.3389/fimmu.2020.01315] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
The barrier surfaces of the gastrointestinal tract are in constant contact with various microorganisms. Cytokines orchestrate the mucosal adaptive and innate immune cells in the defense against pathogens. IL-10 and IL-22 are the best studied members of the IL-10 family and play essential roles in maintaining mucosal homeostasis. IL-10 serves as an important regulator in preventing pro-inflammatory responses while IL-22 plays a protective role in tissue damage and contributes to pathology in certain settings. In this review, we focus on these two cytokines in the development of gastrointestinal diseases, including inflammatory bowel diseases (IBD) and colitis-associated cancer (CAC). We summarize the recent studies and try to gain a better understanding on how they regulate immune responses to maintain equilibrium under inflammatory conditions.
Collapse
Affiliation(s)
- Hua-Xing Wei
- Division of Life Sciences and Medicine, Department of Laboratory Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Baolong Wang
- Division of Life Sciences and Medicine, Department of Laboratory Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Bofeng Li
- Division of Life Sciences and Medicine, Department of Medical Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| |
Collapse
|
43
|
Vanderbeck A, Maillard I. Notch signaling at the crossroads of innate and adaptive immunity. J Leukoc Biol 2020; 109:535-548. [PMID: 32557824 DOI: 10.1002/jlb.1ri0520-138r] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Notch signaling is an evolutionarily conserved cell-to-cell signaling pathway that regulates cellular differentiation and function across multiple tissue types and developmental stages. In this review, we discuss our current understanding of Notch signaling in mammalian innate and adaptive immunity. The importance of Notch signaling is pervasive throughout the immune system, as it elicits lineage and context-dependent effects in a wide repertoire of cells. Although regulation of binary cell fate decisions encompasses many of the functions first ascribed to Notch in the immune system, recent advances in the field have refined and expanded our view of the Notch pathway beyond this initial concept. From establishing T cell identity in the thymus to regulating mature T cell function in the periphery, the Notch pathway is an essential, recurring signal for the T cell lineage. Among B cells, Notch signaling is required for the development and maintenance of marginal zone B cells in the spleen. Emerging roles for Notch signaling in innate and innate-like lineages such as classical dendritic cells and innate lymphoid cells are likewise coming into view. Lastly, we speculate on the molecular underpinnings that shape the activity and versatility of the Notch pathway.
Collapse
Affiliation(s)
- Ashley Vanderbeck
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Veterinary Medical Scientist Training Program, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Ivan Maillard
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
44
|
Valero-Pacheco N, Beaulieu AM. Transcriptional Regulation of Mouse Tissue-Resident Natural Killer Cell Development. Front Immunol 2020; 11:309. [PMID: 32161593 PMCID: PMC7052387 DOI: 10.3389/fimmu.2020.00309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells are cytotoxic innate lymphocytes that are well-known for their ability to kill infected or malignant cells. Beyond their roles in tumor surveillance and anti-pathogen defense, more recent studies have highlighted key roles for NK cells in a broad range of biological processes, including metabolic homeostasis, immunomodulation of T cells, contact hypersensitivity, and pregnancy. Consistent with the breadth and diversity of these functions, it is now appreciated that NK cells are a heterogeneous population, comprised of specialized and sometimes tissue-specific subsets with distinct phenotypes and effector functions. Indeed, in addition to the conventional NK cells (cNKs) that are abundant and have been well-studied in the blood and spleen, distinct subsets of tissue-resident NK cells (trNKs) and "helper" Group 1 innate lymphoid cells (ILC1s) have now been described in multiple organs and tissues, including the liver, uterus, thymus, adipose tissue, and skin, among others. The cNK, trNK, and/or helper ILC1 populations that co-exist in these various tissues exhibit both common and distinct developmental requirements, suggesting that a combination of lineage-, subset-, and tissue-specific differentiation processes may contribute to the unique functional properties of these various populations. Here, we provide an overview of the transcriptional regulatory pathways known to instruct the development and differentiation of cNK, trNK, and helper ILC1 populations in specific tissues in mice.
Collapse
Affiliation(s)
- Nuriban Valero-Pacheco
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers – The State University of New Jersey, Newark, NJ, United States
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers – The State University of New Jersey, Newark, NJ, United States
| | - Aimee M. Beaulieu
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers – The State University of New Jersey, Newark, NJ, United States
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers – The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
45
|
Sojka DK. Uterine Natural Killer Cell Heterogeneity: Lessons From Mouse Models. Front Immunol 2020; 11:290. [PMID: 32153593 PMCID: PMC7046796 DOI: 10.3389/fimmu.2020.00290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/05/2020] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells are the most abundant lymphocytes at the maternal-fetal interface. Epidemiological data implicate NK cells in human pregnancy outcomes. Discoveries using mouse NK cells have guided subsequent advances in human NK cell biology. However, it remains challenging to identify mouse and human uterine NK (uNK) cell function(s) because of the dynamic changes in the systemic-endocrinological and local uterine structural microenvironments during pregnancy. This review discusses functional similarities and differences between mouse and human NK cells at the maternal-fetal interface.
Collapse
Affiliation(s)
- Dorothy K Sojka
- Rheumatology Division, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
46
|
Ganal-Vonarburg SC, Duerr CU. The interaction of intestinal microbiota and innate lymphoid cells in health and disease throughout life. Immunology 2019; 159:39-51. [PMID: 31777064 PMCID: PMC6904614 DOI: 10.1111/imm.13138] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/25/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Immunity is shaped by commensal microbiota. From early life onwards, microbes colonize mucosal surfaces of the body and thereby trigger the establishment of immune homeostasis and defense mechanisms. Recent evidence reveals that the family of innate lymphoid cells (ILCs), which are mainly located in mucosal tissues, are essential in the maintenance of barrier functions as well as in the initiation of an appropriate immune response upon pathogenic infection. In this review, we summarize recent insights on the functional interaction of microbiota and ILCs at steady‐state and throughout life. Furthermore, we will discuss the interplay of ILCs and the microbiota in mucosal infections focusing on intestinal immunity.
Collapse
Affiliation(s)
- Stephanie C Ganal-Vonarburg
- Department for BioMedical Research (DBMR), Bern University Hospital, Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, University of Bern, Bern, Switzerland
| | - Claudia U Duerr
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin, Berlin, Germany
| |
Collapse
|
47
|
Burrows K, Chiaranunt P, Ngai L, Mortha A. Rapid isolation of mouse ILCs from murine intestinal tissues. Methods Enzymol 2019; 631:305-327. [PMID: 31948554 DOI: 10.1016/bs.mie.2019.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tissue-resident immune cells like innate lymphoid cells (ILCs) are regulators of local immunity and tissue homeostasis. Similar to Natural Killer (NK) cells, ILCs express germline-encoded natural cytotoxicity receptors (NCRs) that facilitate the rapid execution of effector functions. Recent advances using transgenic animal models have further uncovered the developmental, transcriptional, epigenetic, and functional differences between members of the ILC family. Isolation of ILCs, which are particularly enriched in non-lymphoid tissues, can often be challenging and time consuming. Here, we provide a simple and rapid protocol for the isolation of NK cells and ILCs from murine intestinal tissues. This protocol is suitable for Fluorescence Activated Cell Sorting (FACS) and intracellular analysis of cytokine and transcription factor expression using flow and mass cytometry.
Collapse
Affiliation(s)
- Kyle Burrows
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Pailin Chiaranunt
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Louis Ngai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
48
|
Maintenance of Type 2 Response by CXCR6-Deficient ILC2 in Papain-Induced Lung Inflammation. Int J Mol Sci 2019; 20:ijms20215493. [PMID: 31690060 PMCID: PMC6862482 DOI: 10.3390/ijms20215493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/29/2019] [Accepted: 11/02/2019] [Indexed: 01/08/2023] Open
Abstract
Innate lymphoid cells (ILC) are important players of early immune defenses in situations like lymphoid organogenesis or in case of immune response to inflammation, infection and cancer. Th1 and Th2 antagonism is crucial for the regulation of immune responses, however mechanisms are still unclear for ILC functions. ILC2 and NK cells were reported to be both involved in allergic airway diseases and were shown to be able to interplay in the regulation of the immune response. CXCR6 is a common chemokine receptor expressed by all ILC, and its deficiency affects ILC2 and ILC1/NK cell numbers and functions in lungs in both steady-state and inflammatory conditions. We determined that the absence of a specific ILC2 KLRG1+ST2− subset in CXCR6-deficient mice is probably dependent on CXCR6 for its recruitment to the lung under inflammation. We show that despite their decreased numbers, lung CXCR6-deficient ILC2 are even more activated cells producing large amount of type 2 cytokines that could drive eosinophilia. This is strongly associated to the decrease of the lung Th1 response in CXCR6-deficient mice.
Collapse
|
49
|
Bagadia P, Huang X, Liu TT, Murphy KM. Shared Transcriptional Control of Innate Lymphoid Cell and Dendritic Cell Development. Annu Rev Cell Dev Biol 2019; 35:381-406. [PMID: 31283378 PMCID: PMC6886469 DOI: 10.1146/annurev-cellbio-100818-125403] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Innate immunity and adaptive immunity consist of highly specialized immune lineages that depend on transcription factors for both function and development. In this review, we dissect the similarities between two innate lineages, innate lymphoid cells (ILCs) and dendritic cells (DCs), and an adaptive immune lineage, T cells. ILCs, DCs, and T cells make up four functional immune modules and interact in concert to produce a specified immune response. These three immune lineages also share transcriptional networks governing the development of each lineage, and we discuss the similarities between ILCs and DCs in this review.
Collapse
Affiliation(s)
- Prachi Bagadia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63108, USA;
| | - Xiao Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63108, USA;
| | - Tian-Tian Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63108, USA;
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63108, USA;
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| |
Collapse
|
50
|
Elsaid R, Yang J, Cumano A. The influence of space and time on the establishment of B cell identity. Biomed J 2019; 42:209-217. [PMID: 31627863 PMCID: PMC6818146 DOI: 10.1016/j.bj.2019.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/21/2019] [Accepted: 07/01/2019] [Indexed: 02/01/2023] Open
Abstract
During embryonic development multiple waves of hematopoietic progenitors with distinct lineage potential are differentially regulated in time and space. Consistent with this view, some specialized lymphocytes emerge during a limited time-window in embryogenesis and migrate to the tissues where they contribute to organogenesis and to tissue homeostasis. These cells are not constantly produced by bone marrow derived hematopoietic stem cells but are maintained in tissues and self-renew throughout life. These particular cell subsets are produced from lymphoid restricted progenitors only found in the first days of fetal liver hematopoietic activity. Growing evidence of the heterogeneity and layered organization of the hematopoietic system is leading to a common view that some lymphocyte subsets are functionally different because they follow distinct developmental programs and emerge from distinct waves of lymphoid progenitors. However, understanding the influence of developmental origin and the relative contribution of local microenvironment on the development of these specialized lymphocyte subsets needs further analysis. In this review, we discuss how different pathways followed by developing B cells during ontogeny may contribute to the diverse functions.
Collapse
Affiliation(s)
- Ramy Elsaid
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, U1223, INSERM, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Junjie Yang
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, U1223, INSERM, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France; CNBG Company, China
| | - Ana Cumano
- Unit of Lymphopoiesis, Immunology Department, Institut Pasteur, U1223, INSERM, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|