1
|
Bellocchi C, Favalli EG, Maioli G, Agape E, Rossato M, Paini M, Severino A, Vigone B, Biggioggero M, Trombetta E, Caporali R, Beretta L. Whole-Blood RNA Sequencing Profiling of Patients With Rheumatoid Arthritis Treated With Tofacitinib. ACR Open Rheumatol 2025. [PMID: 40388487 DOI: 10.1002/acr2.11761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 05/21/2025] Open
Abstract
OBJECTIVE Patients with rheumatoid arthritis (RA) often fail to respond to therapies, including JAK inhibitors (JAKi), and treatment allocation is made via a trial-and-error strategy. A comprehensive analysis of responses to JAKi, including tofacitinib, by RNA sequencing (RNAseq) would allow the discovery of transcriptomic markers with a two-fold meaning: (1) an improved knowledge about the mechanisms of response to treatment (inference modeling) and (2) the definition of features that may be useful in treatment optimization and assignment (predictive modeling). METHODS Thirty-three patients with active RA were treated with a tofacitinib dose of 5 mg twice a day for 24 weeks and evaluated for EULAR Disease Activity Score in 28 joints using the C-reactive protein level response. Whole-blood RNA was collected before and after treatment to perform RNAseq transcriptome analysis. Linear models were used to determine differentially expressed genes (DEGs) (1) at baseline according to clinical responses and (2) in the pre-post comparison after tofacitinib treatment and in relation to EULAR responses. The capability of DEGs to predict a successful treatment was tested via machine learning modeling after extensive internal validation. RESULTS Of 26 patients who completed the study (per-protocol analysis), 15 (57.7%) achieved good responses, and 7 (26.9%) and 4 (15.3%) had moderate and no responses, respectively. Overall, 273 baseline genes were significantly associated with the attainment of good responses, contributing to several pathways linked to the immune system or RA pathogenesis (eg, citrullination processes and the negative regulation of natural killer function). The expression of several molecules was reverted by tofacitinib when good responses were reached, including AKT3, GK5, KLF12, FCRL3, BIRC3, TSPOAP1, and P2RY10. Finally, we isolated 14 markers that singularly were capable of predicting the attainment of good responses, including, NKG2D, CD226, CLEC2D, and CD52. CONCLUSION Whole-blood transcriptome analysis of patients with RA treated with tofacitinib identified genes whose expression may be relevant in prognostication and understanding the mechanisms of responses to therapy.
Collapse
Affiliation(s)
- Chiara Bellocchi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico and University of Milan, Milan, Italy
| | | | - Gabriella Maioli
- University of Milan and ASST PiniCTO - Presidio Gaetano Pini, Milan, Italy
| | | | | | | | - Adriana Severino
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Vigone
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Elena Trombetta
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberto Caporali
- University of Milan and ASST PiniCTO - Presidio Gaetano Pini, Milan, Italy
| | - Lorenzo Beretta
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
2
|
Shorer O, Pinhasi A, Yizhak K. Single-cell meta-analysis of T cells reveals clonal dynamics of response to checkpoint immunotherapy. CELL GENOMICS 2025; 5:100842. [PMID: 40187353 DOI: 10.1016/j.xgen.2025.100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/03/2025] [Accepted: 03/11/2025] [Indexed: 04/07/2025]
Abstract
Despite the crucial role of T cell clones in anti-tumor activity, their characterization and association with clinical outcomes following immune checkpoint inhibitors are lacking. Here, we analyzed paired single-cell RNA sequencing/T cell receptor sequencing of 767,606 T cells across 460 samples spanning 6 cancer types. We found a robust signature of response based on expanded CD8+ clones that differentiates responders from non-responders. Analysis of persistent clones showed transcriptional changes that are differentially induced by therapy in the different response groups, suggesting an improved reinvigoration capacity in responding patients. Moreover, a gene trajectory analysis revealed changes in the pseudo-temporal state of de novo clones that are associated with clinical outcomes. Lastly, we found that clones shared between tumor and blood are more abundant in non-responders and execute distinct transcriptional programs. Overall, our results highlight differences in clonal transcriptional states that are linked to patient response, offering valuable insights into the mechanisms driving effective anti-tumor immunity.
Collapse
Affiliation(s)
- Ofir Shorer
- Department of Cell Biology and Cancer Science, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3525422, Israel
| | - Asaf Pinhasi
- Department of Cell Biology and Cancer Science, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3525422, Israel
| | - Keren Yizhak
- Department of Cell Biology and Cancer Science, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3525422, Israel; The Taub Faculty of Computer Science, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
3
|
Bai J, Xiao R, Jiang D, Luo X, Tang Y, Cui M, You L, Zhao Y. Sialic Acids: Sweet modulators fueling cancer cells and domesticating the tumor microenvironment. Cancer Lett 2025; 626:217773. [PMID: 40339953 DOI: 10.1016/j.canlet.2025.217773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/23/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Tumor microenvironment (TME) can shift towards either immune activation or immunosuppression, influenced by various factors. Recent studies have underscored the pivotal role of sialic acids, a group of monosaccharides with a 9-carbon backbone, in modulating the TME. Aberrant expression or abnormal addition of sialic acids to the surface of cancer cells and within the tumor stroma has been identified as a key contributor to tumor progression. Abnormal sialylation on cancer cell surfaces can inhibit apoptosis, enhance cell proliferation, and facilitate metastasis. Notably, recent findings suggest that dysregulated sialic acid expression in the TME actively contributes to shaping an immunosuppressive niche by reducing the population of anti-tumor immune cells and impairing immune cell function. The mechanisms by which sialic acids foster immune escape and shape the immunosuppressive TME have been partially unraveled, particularly through interactions with sialic acid receptors on immune cells. Importantly, several sialic acid-targeted therapies are currently advancing into clinical trials, offering promising prospects for clinical translation. This dysregulated sialylation represents a significant opportunity for molecular diagnostics and therapeutic interventions in oncology. Targeting aberrant sialylation or disrupting the interaction between sialic acids and their receptors offers potential strategies to reprogram the TME towards an anti-tumor phenotype, thereby facilitating the advancement of innovative cancer therapies.
Collapse
Affiliation(s)
- Jialu Bai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ruiling Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Decheng Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiyuan Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuemeng Tang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ming Cui
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
4
|
DeBono NJ, D'Andrea S, Bandala-Sanchez E, Goddard-Borger E, Zenaidee MA, Moh ESX, Fadda E, Harrison LC, Packer NH. The molecular basis of immunosuppression by soluble CD52 is defined by interactions of N-linked and O-linked glycans with HMGB1 box B. J Biol Chem 2025; 301:108350. [PMID: 40015632 PMCID: PMC11982460 DOI: 10.1016/j.jbc.2025.108350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/05/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025] Open
Abstract
Human soluble CD52 is a short glycopeptide comprising 12 amino acids (GQNDTSQTSSPS) which functions as an immune regulator by sequestering the pro-inflammatory high mobility group box protein 1 (HMGB1) and suppressing immune responses. Recombinant CD52 has been shown to act as a broad anti-inflammatory agent, dampening both adaptive and innate immune responses. This short glycopeptide is heavily glycosylated, with a complex sialylated N-linked glycan at N3 and reported O-linked glycosylation possible on several serine and threonine residues. Previously we demonstrated that specific glycosylation features of CD52 are essential for its immunosuppressive function, with terminal α-2,3-linked sialic acids required for binding to the inhibitory SIGLEC-10 receptor leading to T-cell suppression. Using high resolution mass spectrometry, we have further characterized the N- and O-linked glycosylation of Expi293 recombinantly produced CD52 at a glycopeptide and released glycan level, accurately determining glycan heterogeneity of both N- and O-linked glycosylation, and localizing the site of O-glycosylation to T8 with high confidence and direct spectral evidence. This detailed knowledge of CD52 glycosylation informed the construction of a model system, which we analyzed by molecular dynamics simulations to understand the mechanism of recognition and define interactions between bioactive CD52, HMGB1 and the SIGLEC-10 receptor. Our results confirm the essential role of glycosylation, more specifically hyper-sialylation, in the function of CD52, and identify at the atomistic level specific interactions between CD52 glycans and the Box B domain of HMGB1 that determine recognition, and the stability of the CD52/HMGB1 complex. These insights will inform the development of synthetic CD52 as an immunotherapeutic agent.
Collapse
Affiliation(s)
- Nicholas J DeBono
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Silvia D'Andrea
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | | | - Ethan Goddard-Borger
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Muhammad A Zenaidee
- Australian Proteome Analysis Facility, Macquarie University, Sydney, New South Wales, Australia
| | - Edward S X Moh
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Elisa Fadda
- Department of Chemistry, Maynooth University, Maynooth, Ireland; School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Leonard C Harrison
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Nicolle H Packer
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
5
|
Jones AP, Haley MJ, Meadows MH, Gregory GE, Hannan CJ, Simmons AK, Bere LD, Lewis DG, Oliveira P, Smith MJ, King AT, Evans DGR, Paszek P, Brough D, Pathmanaban ON, Couper KN. Spatial mapping of immune cell environments in NF2-related schwannomatosis vestibular schwannoma. Nat Commun 2025; 16:2944. [PMID: 40140675 PMCID: PMC11947219 DOI: 10.1038/s41467-025-57586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
NF2-related Schwannomatosis (NF2 SWN) is a rare disease characterised by the growth of multiple nervous system neoplasms, including bilateral vestibular schwannoma (VS). VS tumours are characterised by extensive leucocyte infiltration. However, the immunological landscape in VS and the spatial determinants within the tumour microenvironment that shape the trajectory of disease are presently unknown. In this study, to elucidate the complex immunological networks across VS, we performed imaging mass cytometry (IMC) on clinically annotated VS samples from NF2 SWN patients. We reveal the heterogeneity in neoplastic cell, myeloid cell and T cell populations that co-exist within VS, and that distinct myeloid cell and Schwann cell populations reside within varied spatial contextures across characteristic Antoni A and B histomorphic niches. Interestingly, T-cell populations co-localise with tumour-associated macrophages (TAMs) in Antoni A regions, seemingly limiting their ability to interact with tumorigenic Schwann cells. This spatial landscape is altered in Antoni B regions, where T-cell populations appear to interact with PD-L1+ Schwann cells. We also demonstrate that prior bevacizumab treatment (VEGF-A antagonist) preferentially reduces alternatively activated-like TAMs, whilst enhancing CD44 expression, in bevacizumab-treated tumours. Together, we describe niche-dependent modes of T-cell regulation in NF2 SWN VS, indicating the potential for microenvironment-altering therapies for VS.
Collapse
Affiliation(s)
- Adam P Jones
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Michael J Haley
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Miriam H Meadows
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Grace E Gregory
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Neuroscience, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
| | - Cathal J Hannan
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal Hospital NHS Foundation Trust, Salford, UK
| | - Ana K Simmons
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
| | - Leoma D Bere
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
| | - Daniel G Lewis
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal Hospital NHS Foundation Trust, Salford, UK
| | - Pedro Oliveira
- Department of Pathology, The Christie Hospital, Manchester, UK
| | - Miriam J Smith
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
| | - Andrew T King
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal Hospital NHS Foundation Trust, Salford, UK
| | - D Gareth R Evans
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
| | - Pawel Paszek
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - David Brough
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK.
- Division of Neuroscience, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK.
| | - Omar N Pathmanaban
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK.
- Division of Neuroscience, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK.
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Salford Royal Hospital NHS Foundation Trust, Salford, UK.
| | - Kevin N Couper
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine & Health, The University of Manchester, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, UK.
| |
Collapse
|
6
|
Lin SY, Schmidt EN, Takahashi-Yamashiro K, Macauley MS. Roles for Siglec-glycan interactions in regulating immune cells. Semin Immunol 2025; 77:101925. [PMID: 39706106 DOI: 10.1016/j.smim.2024.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Cell surface complex carbohydrates, known as glycans, are positioned to be the first point of contact between two cells. Indeed, interactions between glycans with glycan-binding can modulate cell-cell interactions. This concept is particularly relevant for immune cells, which use an array of glycan-binding proteins to help in the process of differentiating 'self' from 'non-self'. This is exemplified by the sialic acid-binding immunoglobulin-type lectins (Siglecs), which recognize sialic acid. Given that sialic acid is relatively unique to vertebrates, immune cells leverage Siglecs to recognize sialic acid as a marker of 'self'. Siglecs serve many biological roles, with most of these functions regulated through interactions with their sialoglycan ligands. In this review, we provide a comprehensive update on the ligands of Siglecs and how Siglec-sialoglycan interactions help regulate immune cells in the adaptive and innate immune system.
Collapse
Affiliation(s)
- Sung-Yao Lin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Edward N Schmidt
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Matthew S Macauley
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada; Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
7
|
Zou M, Qattan A, Al-Alwan M, Ghebeh H, Binjumah N, Al-Haj L, Khabar KSA, Altaweel A, Almohanna F, Assiri AM, Aboussekhra A, Alzahrani AS, Shi Y. Genome-wide transcriptome analysis and drug target discovery reveal key genes and pathways in thyroid cancer metastasis. Front Endocrinol (Lausanne) 2025; 16:1514264. [PMID: 39996058 PMCID: PMC11847698 DOI: 10.3389/fendo.2025.1514264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Introduction Metastasis is the major cause of thyroid cancer morbidity and mortality. However, the mechanisms are still poorly understood. Methods We performed genome-wide transcriptome analysis comparing gene expression profile of metastatic thyroid cancer cells (Met) with primary tumor cells established from transgenic mouse models of papillary thyroid cancer (PTC), follicular thyroid cancer (FTC), poorly differentiated thyroid cancer (PDTC), and anaplastic thyroid cancer (ATC). Results Genes involved in tumor microenvironment (TME), inflammation, and immune escape were significantly overexpressed in Met cells. Notably, IL-6-mediated inflammatory and PD-L1 pathways were highly active in Met cells with increased secretion of pro-inflammatory and pro-metastatic cytokines such as CCL2, CCL11, IL5, IL6, and CXCL5. Furthermore, Met cells showed robust overexpression of Tbxas1, a thromboxane A synthase 1 gene that catalyzes the conversion of prostaglandin H2 to thromboxane A2 (TXA2), a potent inducer of platelet aggregation. Application of aspirin, a TXA2 inhibitor, significantly reduced lung metastases. Mertk, a member of the TAM (Tyro, Axl, Mertk) family of RTKs, was also overexpressed in Met cells, which led to increased MAPK activation, epithelial-mesenchymal transition (EMT), and enrichment of cancer stem cells. Braf-mutant Met cells developed resistance to BRAFV600E inhibitor PLX4720, but remained sensitive to β-catenin inhibitor PKF118-310. Conclusion We have identified several overexpressed genes/pathways in thyroid cancer metastasis, making them attractive therapeutic targets. Given the complexity of metastasis involving multiple pathways (PD-L1, Mertk, IL6, COX-1/Tbxas1-TXA2), simultaneously targeting more than one of these pathways may be warranted to achieve better therapeutic effect for metastatic thyroid cancer.
Collapse
Affiliation(s)
- Minjing Zou
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Amal Qattan
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Monther Al-Alwan
- Department of Cell Therapy and Immunobiology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hazem Ghebeh
- Department of Cell Therapy and Immunobiology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Naif Binjumah
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Latifa Al-Haj
- Department of Molecular Biomedicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khalid S. A. Khabar
- Department of Molecular Biomedicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Abdulmohsen Altaweel
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Falah Almohanna
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Abdullah M. Assiri
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Abdelilah Aboussekhra
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ali S. Alzahrani
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Yufei Shi
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Li D, Li M, Zhuo Z, Guo H, Zhang W, Xu Y, Wang HY, Liu J, Xia H, Lin H, Tang J, He J, Miao L. EDF1 accelerates ganglioside GD3 accumulation to boost CD52-mediated CD8 + T cell dysfunction in neuroblastoma. J Exp Clin Cancer Res 2025; 44:36. [PMID: 39905449 PMCID: PMC11792593 DOI: 10.1186/s13046-025-03307-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Heterogeneous clinical features and prognosis in neuroblastoma (NB) children are frequently dominated by immune elements. Dysfunction and apoptosis in immune cells result from the exposure to continuous tumor-related antigen stimulation and coinhibitory signals. To date, key factors pointing to the restriction of NB-specific CD8+ T cells remain elusive. METHODS We performed bulk-RNA sequencing and lipidomic analyses of children with mediastinal NB. Bioinformatics analysis and biological validation were applied to uncover the underlying mechanism. RESULTS Three subtypes were identified using nonnegative matrix factorization (NMF), among which we highlighted an apoptotic status of infiltrated CD8+ T cells, along with the highest CD52 and EDF1 expression in Cluster3 (C3) subtypes. It was verified that high EDF1 expression in NB cells led to Lactosylceramide (LacCer) accumulation, as well as downstream ganglioside-GD3, which subsequently increased the expression of CD52 and immune checkpoint genes, chemotaxis, and apoptosis-related events in activated CD8+T cells. Mechanistically, EDF1 was recruited as a coactivator to form the NF-κB/RelA/EDF1 complex, which further prevented the promoter region methylation of ST8SIA1, to elevate its transcription. CONCLUSION These findings characterize abundant GD3 in NB cells, which regulated by the EDF1/RelA/ST8SIA1 axis, is responsible for CD8+ T cell dysfunction. Inhibition of EDF1 may reduce suppressive factors and prevent immune escape of NB cells. Modulating NB-associated GD3 levels through metabolic intervention is beneficial for tuning the depth and duration of responses to current NB therapies. The integration of transcriptomic and lipidomic data offers a more comprehensive understanding of the interaction between LacCer metabolites and the immune status in NB.
Collapse
Affiliation(s)
- Di Li
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Meng Li
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, Guangdong, China
| | - Huiqin Guo
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Weixin Zhang
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Yile Xu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Hai-Yun Wang
- Department of Pathology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children's Medical Center for South Central Region, No. 9 Jinsui Road, Guangzhou, 510623, Guangdong, China
| | - Jiabin Liu
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Huiran Lin
- Laboratory Animal Management Office, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Jue Tang
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
| | - Jing He
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
| | - Lei Miao
- Department of Pediatric Surgery, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China.
| |
Collapse
|
9
|
Liu Y, Tan H, Dai J, Lin J, Zhao K, Hu H, Zhong C. Targeting macrophages in cancer immunotherapy: Frontiers and challenges. J Adv Res 2025:S2090-1232(24)00622-2. [PMID: 39778768 DOI: 10.1016/j.jare.2024.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Cancer immunotherapy has emerged as a groundbreaking approach in cancer treatment, primarily realized through the manipulation of immune cells, notably T cell adoption and immune checkpoint blockade. Nevertheless, the manipulation of T cells encounters formidable hurdles. Macrophages, serving as the pivotal link between innate and adaptive immunity, play crucial roles in phagocytosis, cytokine secretion, and antigen presentation. Consequently, macrophage-targeted therapies have garnered significant attention. AIM OF REVIEW We aim to provide the most cutting-edge insights and future perspectives for macrophage-targeted therapies, fostering the development of novel and effective cancer treatments. KEY SCIENTIFIC CONCEPTS OF REVIEW To date, the forefront strategies for macrophage targeting encompass: altering their plasticity, harnessing CAR-macrophages, and targeting phagocytosis checkpoints. Macrophages are characterized by their remarkable diversity and plasticity, offering a unique therapeutic target. In this context, we critically analyze the innovative strategies aimed at transforming macrophages from their M2 (tumor-promoting) to M1 (tumor-suppressing) phenotype. Furthermore, we delve into the design principles, developmental progress, and advantages of CAR-macrophages. Additionally, we illuminate the challenges encountered in targeting phagocytosis checkpoints on macrophages and propose potential strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Yu'e Liu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Pediatric Hematology-Oncology, Boston Children's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Huabing Tan
- Department of Infectious Diseases, Hepatology Institute, Renmin Hospital, Hubei University of Medicine, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, Hubei Province 442000, China; General internal medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430048, China
| | - Jingyuan Dai
- School of Computer Science and Information Systems, Northwest Missouri State University, Maryville, MO 64468, USA
| | - Jianghua Lin
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Kaijun Zhao
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| | - Haibo Hu
- Department of Cardiothoracic Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China.
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| |
Collapse
|
10
|
Harrison LC, Stone NL, Bandala-Sanchez E, Huntington ND, McLachlan RI, Rautela J, O’Bryan MK. Soluble CD52 mediates immune suppression by human seminal fluid. Front Immunol 2024; 15:1497889. [PMID: 39737172 PMCID: PMC11682959 DOI: 10.3389/fimmu.2024.1497889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Seminal fluid provides for the carriage and nutrition of sperm, but also modulates immunity to prevent allo-rejection of sperm by the female. Immune suppression by seminal fluid has been associated with extracellular vesicles, originally termed prostasomes, which contain CD52, a glycosylated glycophosphoinositol-anchored peptide released from testicular epithelial cells. Previously, we reported that human T cell-derived CD52, bound to the danger-associated molecular pattern protein, high mobility group box 1 (HMGB1), suppresses T cell function via the inhibitory sialic acid-binding immunoglobulin-like lectin-10 (Siglec-10) receptor. Here we show that human seminal fluid contains high concentrations of CD52 complexed with HMGB1, which mediates T cell suppression indirectly via Siglec-7 on antigen-presenting cells. Proliferation of natural killer (NK) cells, which express Siglec-7 and play a key role in the immune defence of the uterus, was directly suppressed by seminal fluid CD52. These findings elucidate a critical function of seminal fluid to suppress cellular immunity and facilitate reproduction.
Collapse
Affiliation(s)
- Leonard C. Harrison
- Population Heath and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Natalie L. Stone
- Population Heath and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Esther Bandala-Sanchez
- Population Heath and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Nicholas D. Huntington
- Population Heath and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Robert I. McLachlan
- Hudson Institute of Medical Research, Monash University, Melbourne, VIC, Australia
| | - Jai Rautela
- Population Heath and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- The University of Melbourne, Department of Medical Biology, Parkville, VIC, Australia
| | - Moira K. O’Bryan
- School of Biosciences and Bio21 Molecular Science and Biotechnology Institute, Faculty of Science, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Lawton ML, Inge MM, Blum BC, Smith-Mahoney EL, Bolzan D, Lin W, McConney C, Porter J, Moore J, Youssef A, Tharani Y, Varelas X, Denis GV, Wong WW, Padhorny D, Kozakov D, Siggers T, Wuchty S, Snyder-Cappione J, Emili A. Multiomic profiling of chronically activated CD4+ T cells identifies drivers of exhaustion and metabolic reprogramming. PLoS Biol 2024; 22:e3002943. [PMID: 39689157 DOI: 10.1371/journal.pbio.3002943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/06/2025] [Accepted: 11/15/2024] [Indexed: 12/19/2024] Open
Abstract
Repeated antigen exposure leads to T-cell exhaustion, a transcriptionally and epigenetically distinct cellular state marked by loss of effector functions (e.g., cytotoxicity, cytokine production/release), up-regulation of inhibitory receptors (e.g., PD-1), and reduced proliferative capacity. Molecular pathways underlying T-cell exhaustion have been defined for CD8+ cytotoxic T cells, but which factors drive exhaustion in CD4+ T cells, that are also required for an effective immune response against a tumor or infection, remains unclear. Here, we utilize quantitative proteomic, phosphoproteomic, and metabolomic analyses to characterize the molecular basis of the dysfunctional cell state induced by chronic stimulation of CD4+ memory T cells. We identified a dynamic response encompassing both known and novel up-regulated cell surface receptors, as well as dozens of unexpected transcriptional regulators. Integrated causal network analysis of our combined data predicts the histone acetyltransferase p300 as a driver of aspects of this phenotype following chronic stimulation, which we confirmed via targeted small molecule inhibition. While our integrative analysis also revealed large-scale metabolic reprogramming, our independent investigation confirmed a global remodeling away from glycolysis to a dysfunctional fatty acid oxidation-based metabolism coincident with oxidative stress. Overall, these data provide both insights into the mechanistic basis of CD4+ T-cell exhaustion and serve as a valuable resource for future interventional studies aimed at modulating T-cell dysfunction.
Collapse
Affiliation(s)
- Matthew L Lawton
- Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Melissa M Inge
- Depart of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Benjamin C Blum
- Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Erika L Smith-Mahoney
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Dante Bolzan
- Department of Computer Science, University of Miami, Miami, Florida, United States of America
| | - Weiwei Lin
- Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Christina McConney
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jacob Porter
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Jarrod Moore
- Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Ahmed Youssef
- Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Yashasvi Tharani
- Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Depart of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Gerald V Denis
- Hematology and Medical Oncology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Wilson W Wong
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Dzmitry Padhorny
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, United States of America
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, United States of America
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Trevor Siggers
- Depart of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Stefan Wuchty
- Department of Computer Science, University of Miami, Miami, Florida, United States of America
- Miami Institute of Data Science and Computing, Miami, Florida, United States of America
| | - Jennifer Snyder-Cappione
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Andrew Emili
- Center for Network Systems Biology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Depart of Biology, Boston University, Boston, Massachusetts, United States of America
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|
12
|
Wu Y, Sun X, Kang K, Yang Y, Li H, Zhao A, Niu T. Hemophagocytic lymphohistiocytosis: current treatment advances, emerging targeted therapy and underlying mechanisms. J Hematol Oncol 2024; 17:106. [PMID: 39511607 PMCID: PMC11542428 DOI: 10.1186/s13045-024-01621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rapidly progressing, life-threatening syndrome characterized by excessive immune activation, often presenting as a complex cytokine storm. This hyperactive immune response can lead to multi-organ failure and systemic damage, resulting in an extremely short survival period if left untreated. Over the past decades, although HLH has garnered increasing attention from researchers, there have been few advancements in its treatment. The cytokine storm plays a crucial role in the treatment of HLH. Investigating the detailed mechanisms behind cytokine storms offers insights into targeted therapeutic approaches, potentially aiding in early intervention and improving the clinical outcome of HLH patients. To date, there is only one targeted therapy, emapalumab targeting interferon-γ, that has gained approval for primary HLH. This review aims to summarize the current treatment advances, emerging targeted therapeutics and underlying mechanisms of HLH, highlighting its newly discovered targets potentially involved in cytokine storms, which are expected to drive the development of novel treatments and offer fresh perspectives for future studies. Besides, multi-targeted combination therapy may be essential for disease control, but further trials are required to determine the optimal treatment mode for HLH.
Collapse
Affiliation(s)
- Yijun Wu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xu Sun
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kai Kang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuqi Yang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - He Li
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Facility for Translational Medicine (Sichuan), West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
13
|
Alsaed B, Smolander J, Laitinen H, Lin L, Bobik N, Lahtinen L, Räsänen M, Jansouz S, Peltonen K, Jokinen E, Klievink J, Ganesh K, Ainola M, Sutinen E, Rönty M, Narvi E, Thotakura A, Saharinen P, Mustjoki S, Ilonen I, Haikala HM. Ex vivo modeling of precision immuno-oncology responses in lung cancer. SCIENCE ADVANCES 2024; 10:eadq6830. [PMID: 39475596 PMCID: PMC11524168 DOI: 10.1126/sciadv.adq6830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/24/2024] [Indexed: 11/02/2024]
Abstract
Despite immunotherapy's promise in cancer treatment, patient responses vary substantially because of the individual nature of the immune system and the lack of reliable biomarkers. To address this issue, we developed a precision ex vivo platform that integrates patient-specific tumor and immune cells to study the mechanisms of antitumor immune response, predict immunotherapy outcomes, and identify effective treatments. This platform revealed unique single-cell immune response mechanisms and sensitivities to standard-of-care immunotherapies. Furthermore, we were able to identify a synergistic combination of anti-programmed cell death protein 1 (anti-PD-1) together with a Casitas B lineage lymphoma-b inhibitor that overcame anti-PD-1 resistance in selected patient samples. Activation of the interferon-γ-stimulated cytokines predicted combination efficacy, while immunosuppressive cytokines were associated with poor response. Our findings underscore the platform's potential in tailoring immunotherapies and advancing drug development, offering avenues for personalized cancer treatment.
Collapse
Affiliation(s)
- Bassel Alsaed
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Johannes Smolander
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Hanna Laitinen
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Linh Lin
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Nina Bobik
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Lilja Lahtinen
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Mikko Räsänen
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- Department of General Thoracic and Esophageal Surgery, Heart and Lung Centre, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Shadi Jansouz
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program (CAN-PRO), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Karita Peltonen
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Emmi Jokinen
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Jay Klievink
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Keerthana Ganesh
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program (CAN-PRO), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, Helsinki, Finland
| | - Mari Ainola
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, and Department of Pulmonary Medicine, Heart and Lung Centre, Helsinki University Hospital, Helsinki, Finland
| | - Eva Sutinen
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, and Department of Pulmonary Medicine, Heart and Lung Centre, Helsinki University Hospital, Helsinki, Finland
| | - Mikko Rönty
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Elli Narvi
- Immuno-Oncology, Oncology Research, Orion Corporation, Turku, Finland
| | - Anil Thotakura
- Immuno-Oncology, Oncology Research, Orion Corporation, Turku, Finland
| | - Pipsa Saharinen
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- Translational Cancer Medicine Program (CAN-PRO), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, Helsinki, Finland
| | - Satu Mustjoki
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Ilkka Ilonen
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- Department of General Thoracic and Esophageal Surgery, Heart and Lung Centre, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Heidi M. Haikala
- Translational Immunology Research Program (TRIMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Hazra R, Chattopadhyay S, Mallick A, Gayen S, Roy S. Unravelling CD24-Siglec-10 pathway: Cancer immunotherapy from basic science to clinical studies. Immunology 2024; 173:442-469. [PMID: 39129256 DOI: 10.1111/imm.13847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/27/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer immunotherapy has revolutionized the treatment landscape by harnessing the power of the immune system to combat malignancies. Two of the most promising players in this field are cluster of differentiation 24 (CD24) and sialic acid-binding Ig-like lectin 10 (Siglec-10), and both of them play pivotal roles in modulating immune responses. CD24, a cell surface glycoprotein, emerges as a convincing fundamental signal transducer for therapeutic intervention, given its significant implication in the processes related to tumour progression and immunogenic evasion. Additionally, the immunomodulatory functions of Siglec-10, a prominent member within the Siglec family of immune receptors, have recently become a crucial point of interest, particularly in the context of the tumour microenvironment. Hence, the intricate interplay of both CD24 and Siglec-10 assumes a critical role in fostering tumour growth, facilitating metastasis and also orchestrating immune evasion. Recent studies have found multiple evidences supporting the therapeutic potential of targeting CD24 in cancer treatment. Siglec-10, on the other hand, exhibits immunosuppressive properties that contribute to immune tolerance within the tumour microenvironment. Therefore, we delve into the complex mechanisms through which Siglec-10 modulates immune responses and facilitates immune escape in cancer. Siglec-10 also acts as a viable target for cancer immunotherapy and presents novel avenues for the development of therapeutic interventions. Furthermore, we examine the synergy between CD24 and Siglec-10 in shaping the immunosuppressive tumour microenvironment and discuss the implications for combination therapies. Therefore, understanding the roles of CD24 and Siglec-10 in cancer immunotherapy opens exciting possibilities for the development of novel therapeutics.
Collapse
Affiliation(s)
- Rudradeep Hazra
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Soumyadeep Chattopadhyay
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Arijit Mallick
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Sakuntala Gayen
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| |
Collapse
|
15
|
Liu T, Wu G, Gudd CLC, Trovato FM, Barbera T, Liu Y, Triantafyllou E, McPhail MJW, Thursz MR, Khamri W. Cis-interaction between CD52 and T cell receptor complex interferes with CD4 + T cell activation in acute decompensation of cirrhosis. EBioMedicine 2024; 108:105336. [PMID: 39276679 PMCID: PMC11418137 DOI: 10.1016/j.ebiom.2024.105336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Immune dysfunction contributes to a high rate of infection in patients with acute decompensation of cirrhosis. CD52 is a glycoprotein prominently expressed in lymphocytes. Immune regulation by CD52 may be involved in adaptive immune dysfunction in cirrhosis. This study aimed to investigate the function of CD52 on CD4+ T cells on the blood of patients with acute decompensation of cirrhosis. METHODS The expression of CD52 in the peripheral blood lymphocytes of 49 patients with cirrhosis was investigated using flow cytometry and transcriptomics. Potential cis-membrane ligands of CD52 were discovered via proximity labelling followed by proteomics. The function of CD52 on antigen-specific activation of CD4+ T cells was examined using flow cytometry in CD52 CRISPR-Cas9 knockout primary T cells. FINDINGS CD52 expression was elevated in CD4+ T cells in acute decompensation of cirrhosis, and this elevation was correlated with increased disease severity and mortality. Components of the T cell receptor complex including TCRβ, CD3γ and CD3ε were identified and validated as cis-membrane ligands of CD52. Knockout of CD52 promoted antigen-specific activation, proliferation, and pro-inflammatory cytokine secretion. INTERPRETATION Membrane bound CD52 demonstrated cis-interaction with the T cell receptor and served as a dynamic regulator of antigen-specific activation of CD4+ T cells. The upregulation of CD52 in the periphery of acute decompensation of cirrhosis hinders the recognition of the T cell receptor by MHC, contributing to impaired T cell function. The development of an alternative anti-CD52 antibody is required to restore T cell function and prevent infections in cirrhosis. FUNDING This study was supported by the NIHR Imperial Biomedical Research Centre, Institute for Translational Medicine and Therapeutics (P74713), Wellcome Trust (218304/Z/19/Z), and Medical Research Council (MR/X009904/1 and MR/R014019/1).
Collapse
Affiliation(s)
- Tong Liu
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, United Kingdom
| | - Gang Wu
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Cathrin L C Gudd
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, United Kingdom
| | - Francesca M Trovato
- Department of Inflammation Biology, Institute of Liver Studies, King's College London, London, United Kingdom
| | - Thomas Barbera
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, United Kingdom
| | - Yan Liu
- Glycosciences Laboratory, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, United Kingdom
| | - Evangelos Triantafyllou
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, United Kingdom
| | - Mark J W McPhail
- Department of Inflammation Biology, Institute of Liver Studies, King's College London, London, United Kingdom
| | - Mark R Thursz
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, United Kingdom
| | - Wafa Khamri
- Section of Hepatology & Gastroenterology, Division of Digestive Diseases, Department of Metabolism, Digestion & Reproduction, Imperial College London, London, United Kingdom.
| |
Collapse
|
16
|
van Bruggen JAC, Peters FS, Mes M, Rietveld JM, Cerretani E, Cretenet G, van Kampen R, Jongejan A, Moerland PD, Melenhorst JJ, van der Windt GJW, Eldering E, Kater AP. T-cell dysfunction in CLL is mediated through expression of Siglec-10 ligands CD24 and CD52 on CLL cells. Blood Adv 2024; 8:4633-4646. [PMID: 39042920 PMCID: PMC11401197 DOI: 10.1182/bloodadvances.2023011934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024] Open
Abstract
ABSTRACT Autologous T-cell-based therapies, such as chimeric antigen receptor (CAR) T-cell therapy, exhibit low success rates in chronic lymphocytic leukemia (CLL) and correlate with a dysfunctional T-cell phenotype observed in patients. Despite various proposed mechanisms of T-cell dysfunction in CLL, the specific CLL-derived factors responsible remain unidentified. This study aimed to investigate the mechanisms through which CLL cells suppress CAR T-cell activation and function. We found that CLL-derived T cells get activated, albeit in a delayed fashion, and specifically that restimulation of CAR T cells in the presence of CLL cells causes impaired cytokine production and reduced proliferation. Notably, coculture of T cells with CD40-activated CLL cells did not lead to T-cell dysfunction, and this required direct cell contact between the CD40-stimulated CLL cells and T cells. Inhibition of kinases involved in the CD40 signaling cascade revealed that the Spare Respiratory Capacity (SRC) kinase inhibitor dasatinib prevented rescue of T-cell function independent of CD40-mediated increased levels of costimulatory and adhesion ligands on CLL cells. Transcriptome profiling of CD40-stimulated CLL cells with or without dasatinib identified widespread differential gene expression. Selecting for surface receptor genes revealed CD40-mediated downregulation of the Sialic acid-binding Ig-like lectin 10 (Siglec-10) ligands CD24 and CD52, which was prevented by dasatinib, suggesting a role for these ligands in functional T-cell suppression in CLL. Indeed, blocking CD24 and/or CD52 markedly reduced CAR T-cell dysfunction upon coculture with resting CLL cells. These results demonstrated that T cells derived from CLL patients can be reinvigorated by manipulating CLL-T-cell interactions. Targeting CD24- and CD52-mediated CLL-T-cell interaction could be a promising therapeutic strategy to enhance T-cell function in CLL.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/therapy
- CD52 Antigen/metabolism
- T-Lymphocytes/metabolism
- T-Lymphocytes/immunology
- CD24 Antigen/metabolism
- Lymphocyte Activation/immunology
- Ligands
- Receptors, Chimeric Antigen/metabolism
Collapse
Affiliation(s)
- Jaco A. C. van Bruggen
- Department of Hematology, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Fleur S. Peters
- Department of Hematology, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Morris Mes
- Department of Hematology, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Joanne M. Rietveld
- Department of Hematology, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Elisa Cerretani
- Department of Hematology, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Gaspard Cretenet
- Department of Hematology, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Aldo Jongejan
- Department of Epidemiology and Data Science, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Perry D. Moerland
- Department of Epidemiology and Data Science, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - J. Joseph Melenhorst
- Cleveland Clinic, Lerner Research Institute, Center for Immunotherapy & Precision Immuno-Oncology, Cleveland, OH
| | - Gerritje J. W. van der Windt
- Department of Hematology, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eric Eldering
- Department of Hematology, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arnon P. Kater
- Department of Hematology, Cancer Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Borcherding N, Kim W, Quinn M, Han F, Zhou JQ, Sturtz AJ, Schmitz AJ, Lei T, Schattgen SA, Klebert MK, Suessen T, Middleton WD, Goss CW, Liu C, Crawford JC, Thomas PG, Teefey SA, Presti RM, O'Halloran JA, Turner JS, Ellebedy AH, Mudd PA. CD4 + T cells exhibit distinct transcriptional phenotypes in the lymph nodes and blood following mRNA vaccination in humans. Nat Immunol 2024; 25:1731-1741. [PMID: 39164479 PMCID: PMC11627549 DOI: 10.1038/s41590-024-01888-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 06/06/2024] [Indexed: 08/22/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and mRNA vaccination induce robust CD4+ T cell responses. Using single-cell transcriptomics, here, we evaluated CD4+ T cells specific for the SARS-CoV-2 spike protein in the blood and draining lymph nodes (dLNs) of individuals 3 months and 6 months after vaccination with the BNT162b2 mRNA vaccine. We analyzed 1,277 spike-specific CD4+ T cells, including 238 defined using Trex, a deep learning-based reverse epitope mapping method to predict antigen specificity. Human dLN spike-specific CD4+ follicular helper T (TFH) cells exhibited heterogeneous phenotypes, including germinal center CD4+ TFH cells and CD4+IL-10+ TFH cells. Analysis of an independent cohort of SARS-CoV-2-infected individuals 3 months and 6 months after infection found spike-specific CD4+ T cell profiles in blood that were distinct from those detected in blood 3 months and 6 months after BNT162b2 vaccination. Our findings provide an atlas of human spike-specific CD4+ T cell transcriptional phenotypes in the dLNs and blood following SARS-CoV-2 vaccination or infection.
Collapse
Affiliation(s)
- Nicholas Borcherding
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Wooseob Kim
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
- Department of Microbiology, Korea University College of Medicine, Seoul, Korea
| | - Michael Quinn
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Fangjie Han
- Department of Emergency Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Julian Q Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Alexandria J Sturtz
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Aaron J Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Tingting Lei
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Stefan A Schattgen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael K Klebert
- Clinical Trials Unit, Washington University School of Medicine, Saint Louis, MO, USA
| | - Teresa Suessen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - William D Middleton
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Charles W Goss
- Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO, USA
| | - Chang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | | | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sharlene A Teefey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Rachel M Presti
- Clinical Trials Unit, Washington University School of Medicine, Saint Louis, MO, USA
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jane A O'Halloran
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jackson S Turner
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Philip A Mudd
- Department of Emergency Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
18
|
Hong WF, Zhang F, Wang N, Bi JM, Zhang DW, Wei LS, Song ZT, Mills GB, Chen MM, Li XX, Du SS, Yu M. Dynamic immunoediting by macrophages in homologous recombination deficiency-stratified pancreatic ductal adenocarcinoma. Drug Resist Updat 2024; 76:101115. [PMID: 39002266 DOI: 10.1016/j.drup.2024.101115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease, notably resistant to existing therapies. Current research indicates that PDAC patients deficient in homologous recombination (HR) benefit from platinum-based treatments and poly-ADP-ribose polymerase inhibitors (PARPi). However, the effectiveness of PARPi in HR-deficient (HRD) PDAC is suboptimal, and significant challenges remain in fully understanding the distinct characteristics and implications of HRD-associated PDAC. We analyzed 16 PDAC patient-derived tissues, categorized by their homologous recombination deficiency (HRD) scores, and performed high-plex immunofluorescence analysis to define 20 cell phenotypes, thereby generating an in-situ PDAC tumor-immune landscape. Spatial phenotypic-transcriptomic profiling guided by regions-of-interest (ROIs) identified a crucial regulatory mechanism through localized tumor-adjacent macrophages, potentially in an HRD-dependent manner. Cellular neighborhood (CN) analysis further demonstrated the existence of macrophage-associated high-ordered cellular functional units in spatial contexts. Using our multi-omics spatial profiling strategy, we uncovered a dynamic macrophage-mediated regulatory axis linking HRD status with SIGLEC10 and CD52. These findings demonstrate the potential of targeting CD52 in combination with PARPi as a therapeutic intervention for PDAC.
Collapse
Affiliation(s)
- Wei-Feng Hong
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China; Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou 310005, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310005, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310005, China
| | - Feng Zhang
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Nan Wang
- Cosmos Wisdom Biotech, co. ltd, Building 10, No. 617 Jiner Road, Hangzhou, Zhejiang, China
| | - Jun-Ming Bi
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ding-Wen Zhang
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Lu-Sheng Wei
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhen-Tao Song
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd. Jinan, Shandong, China
| | - Gordon B Mills
- Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, Portland, USA
| | - Min-Min Chen
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Xue-Xin Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna 17165, Sweden.
| | - Shi-Suo Du
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Min Yu
- Department of Pancreas Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
Varco-Merth B, Chaunzwa M, Duell DM, Marenco A, Goodwin W, Dannay R, Nekorchuk M, Shao D, Busman-Sahay K, Fennessey CM, Silipino L, Hull M, Bosche WJ, Fast R, Oswald K, Shoemaker R, Bochart R, MacAllister R, Labriola CS, Smedley JV, Axthelm MK, Davenport MP, Edlefsen PT, Estes JD, Keele BF, Lifson JD, Lewin SR, Picker LJ, Okoye AA. Impact of alemtuzumab-mediated lymphocyte depletion on SIV reservoir establishment and persistence. PLoS Pathog 2024; 20:e1012496. [PMID: 39173097 PMCID: PMC11373844 DOI: 10.1371/journal.ppat.1012496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/04/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
Persistence of the rebound-competent viral reservoir (RCVR) within the CD4+ T cell compartment of people living with HIV remains a major barrier to HIV cure. Here, we determined the effects of the pan-lymphocyte-depleting monoclonal antibody (mAb) alemtuzumab on the RCVR in SIVmac239-infected rhesus macaques (RM) receiving antiretroviral therapy (ART). Alemtuzumab administered during chronic ART or at the time of ART initiation induced >95% depletion of circulating CD4+ T cells in peripheral blood and substantial CD4+ T cell depletion in lymph nodes. However, treatment was followed by proliferation and reconstitution of CD4+ T cells in blood, and despite ongoing ART, levels of cell-associated SIV DNA in blood and lymphoid tissues were not substantially different between alemtuzumab-treated and control RM after immune cell reconstitution, irrespective of the time of alemtuzumab treatment. Upon ART cessation, 19 of 22 alemtuzumab-treated RM and 13 of 13 controls rebounded with no difference in the time to rebound between treatment groups. Time to rebound and reactivation rate was associated with plasma viral loads (pVLs) at time of ART initiation, suggesting lymphocyte depletion had no durable impact on the RCVR. However, 3 alemtuzumab-treated RM that had lowest levels of pre-ART viremia, failed to rebound after ART withdrawal, in contrast to controls with similar levels of SIV replication. These observations suggest that alemtuzumab therapy has little to no ability to reduce well-established RCVRs but may facilitate RCVR destabilization when pre-ART virus levels are particularly low.
Collapse
Affiliation(s)
- Benjamin Varco-Merth
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Morgan Chaunzwa
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Derick M. Duell
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Alejandra Marenco
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - William Goodwin
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Rachel Dannay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Michael Nekorchuk
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Danica Shao
- Fred Hutchinson Cancer Research Center, Seattle, Washington State, United States of America
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Lorna Silipino
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Michael Hull
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - William J. Bosche
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Randy Fast
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Rebecca Shoemaker
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Rachele Bochart
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Rhonda MacAllister
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Caralyn S. Labriola
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Jeremy V. Smedley
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Miles P. Davenport
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Paul T. Edlefsen
- Fred Hutchinson Cancer Research Center, Seattle, Washington State, United States of America
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| | - Afam A. Okoye
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
20
|
Li P, Xie W, Wei H, Yang F, Chen Y, Li Y. Transcriptome Analyses of Liver Sinusoidal Endothelial Cells Reveal a Consistent List of Candidate Genes Associated with Endothelial Dysfunction and the Fibrosis Progression. Curr Issues Mol Biol 2024; 46:7997-8014. [PMID: 39194690 DOI: 10.3390/cimb46080473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Liver fibrosis is an important step in the transformation of chronic liver disease into cirrhosis and liver cancer, and structural changes and functional disorders of liver sinusoidal endothelial cells (LSECs) are early events in the occurrence of liver fibrosis. Therefore, it is necessary to identify the key regulatory genes of endothelial dysfunction in the process of liver fibrosis to provide a reference for the diagnosis and treatment of liver fibrosis. In this study, we identified 230 common differentially expressed genes (Co-DEGs) by analyzing transcriptomic data of primary LSECs from three different liver fibrosis mouse models (carbon tetrachloride; choline-deficient, l-amino acid-defined diet; and nonalcoholic steatohepatitis). Enrichment analysis revealed that the Co-DEGs were mainly involved in regulating the inflammatory response, immune response, angiogenesis, formation and degradation of the extracellular matrix, and mediating chemokine-related pathways. A Venn diagram analysis was used to identify 17 key genes related to the progression of liver cirrhosis. Regression analysis using the Lasso-Cox method identified genes related to prognosis among these key genes: SOX4, LGALS3, SERPINE2, CD52, and LPXN. In mouse models of liver fibrosis (bile duct ligation and carbon tetrachloride), all five key genes were upregulated in fibrotic livers. This study identified key regulatory genes for endothelial dysfunction in liver fibrosis, namely SOX4, LGALS3, SERPINE2, CD52, and LPXN, which will provide new targets for the development of therapeutic strategies targeting endothelial dysfunction in LSECs and liver fibrosis.
Collapse
Affiliation(s)
- Penghui Li
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Wenjie Xie
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Hongjin Wei
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Fan Yang
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yan Chen
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yinxiong Li
- Center for Health Research, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangzhou 510530, China
| |
Collapse
|
21
|
Strober BJ, Zhang MJ, Amariuta T, Rossen J, Price AL. Fine-mapping causal tissues and genes at disease-associated loci. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.11.01.23297909. [PMID: 37961337 PMCID: PMC10635248 DOI: 10.1101/2023.11.01.23297909] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Heritable diseases often manifest in a highly tissue-specific manner, with different disease loci mediated by genes in distinct tissues or cell types. We propose Tissue-Gene Fine-Mapping (TGFM), a fine-mapping method that infers the posterior probability (PIP) for each gene-tissue pair to mediate a disease locus by analyzing GWAS summary statistics (and in-sample LD) and leveraging eQTL data from diverse tissues to build cis-predicted expression models; TGFM also assigns PIPs to causal variants that are not mediated by gene expression in assayed genes and tissues. TGFM accounts for both co-regulation across genes and tissues and LD between SNPs (generalizing existing fine-mapping methods), and incorporates genome-wide estimates of each tissue's contribution to disease as tissue-level priors. TGFM was well-calibrated and moderately well-powered in simulations; unlike previous methods, TGFM was able to attain correct calibration by modeling uncertainty in cis-predicted expression models. We applied TGFM to 45 UK Biobank diseases/traits (average N = 316K) using eQTL data from 38 GTEx tissues. TGFM identified an average of 147 PIP > 0.5 causal genetic elements per disease/trait, of which 11% were gene-tissue pairs. Implicated gene-tissue pairs were concentrated in known disease-critical tissues, and causal genes were strongly enriched in disease-relevant gene sets. Causal gene-tissue pairs identified by TGFM recapitulated known biology (e.g., TPO-thyroid for Hypothyroidism), but also included biologically plausible novel findings (e.g., SLC20A2-artery aorta for Diastolic blood pressure). Further application of TGFM to single-cell eQTL data from 9 cell types in peripheral blood mononuclear cells (PBMC), analyzed jointly with GTEx tissues, identified 30 additional causal gene-PBMC cell type pairs at PIP > 0.5-primarily for autoimmune disease and blood cell traits, including the biologically plausible example of CD52 in classical monocyte cells for Monocyte count. In conclusion, TGFM is a robust and powerful method for fine-mapping causal tissues and genes at disease-associated loci.
Collapse
Affiliation(s)
- Benjamin J. Strober
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Martin Jinye Zhang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Tiffany Amariuta
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jordan Rossen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alkes L. Price
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
22
|
de Vos-Hillebrand L, Fietz S, Hillebrand P, Kulcsár Z, Diop MY, Hollick S, Maas AP, Strieth S, Landsberg J, Dietrich D. CD52 mRNA expression predicts prognosis and response to immune checkpoint blockade in melanoma. Pigment Cell Melanoma Res 2024; 37:309-315. [PMID: 37975535 DOI: 10.1111/pcmr.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/27/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
The immune-modulating protein CD52 attenuates lymphocyte function and is associated with autoimmune disorders, for example, multiple sclerosis (MS). CD52 represents a therapeutic target in MS and chronic lymphocytic leukemia (CLL). Its expression has prognostic and predictive value in CLL and is prognostic in breast cancer. Its significance in melanoma is unclear. We analyzed CD52 mRNA expression data from tumor bulk tissues of N = 445 untreated melanoma patients from The Cancer Genome Atlas (TCGA) Research Network and of N = 121 melanoma patients undergoing anti-PD-1 immune checkpoint blockade (ICB) with regard to outcome (overall survival [OS], disease control [DC], and progression-free survival [PFS]), single-cell RNA-Seq data of N = 4645 cells from N = 19 melanoma tissues, and N = 15,457 cells from normal skin provided by N = 5 donors. Higher CD52 mRNA expression was associated with favorable OS (hazard ratio (HR) = 0.820, [95% CI 0.734-0.916], p < .001) in non-ICB-treated melanoma and with PFS (HR = 0.875, [95% CI 0.775-0.989], p = .033) and DC (p = .005) in ICB-treated melanoma. CD52 expression correlated significantly with distinct immune cell subsets and correlated negatively with immune checkpoint expression in T cells. Moreover, our results suggest CD52 expression by a certain type of tissue-resident macrophages. CD52 mRNA was expressed in a small subgroup (8%) of immune checkpoint coexpressing melanoma cells. CD52 expression is associated with features of ICB response in melanoma. Concomitant ICB and anti-CD52 treatment requires critical review.
Collapse
Affiliation(s)
- Luka de Vos-Hillebrand
- Department of Dermatology and Allergology, University Medical Center Bonn (UKB), Bonn, Germany
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Simon Fietz
- Department of Dermatology and Allergology, University Medical Center Bonn (UKB), Bonn, Germany
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Philip Hillebrand
- Department of Dermatology and Allergology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Zsófi Kulcsár
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Marie Yatou Diop
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Sarah Hollick
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | | | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Jennifer Landsberg
- Department of Dermatology and Allergology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Dimo Dietrich
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| |
Collapse
|
23
|
Ji L, Fu G, Huang M, Kao X, Zhu J, Dai Z, Chen Y, Li H, Zhou J, Chu X, Lei Z. scRNA-seq of colorectal cancer shows regional immune atlas with the function of CD20 + B cells. Cancer Lett 2024; 584:216664. [PMID: 38253219 DOI: 10.1016/j.canlet.2024.216664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/25/2023] [Accepted: 01/18/2024] [Indexed: 01/24/2024]
Abstract
Colorectal cancer (CRC) from different regions exhibits different histological, genetic characteristics, and molecular subtypes, even in response to conventional chemotherapies and immunotherapies. To characterize the immune landscape in different regions of CRC and search for potential therapeutic targets, we analyzed 39,484 single-cell transcription data from 19 samples of CRC and paired normal tissues from four regions to identify the immune characteristics of CRC among anatomic locations, especially in B cells. We discovered that immune cell infiltration in tumors significantly varied among different regions of CRC. B cells from right- and left-sided CRC had different development trajectories, but both had extensive interactions with myeloid cells and T cells. Survival analysis suggested that CD20+ B cells correlated with good prognosis in CRC patients, especially on the right side. Furthermore, the depletion of CD20+ B cells demonstrated that anti-CD20 promoted tumor growth progression and reversed the tumor-killing activity of anti-PD-1 treatment in vivo and in vitro. Our results highlight the characterization of the immune landscape of CRC in different regions. CD20+ B-cell infiltration has been associated with CRC patient prognosis and may promote the tumor-killing role of PD-1 antibodies.
Collapse
Affiliation(s)
- Linlin Ji
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Gongbo Fu
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China; Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210000, China; Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, 210000, China; Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| | - Mengxi Huang
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Xiaoming Kao
- Department of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
| | - Jialong Zhu
- Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210000, China
| | - Zhe Dai
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Yitian Chen
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Huiyu Li
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China
| | - Jie Zhou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Xiaoyuan Chu
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China; Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210000, China; Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, 210000, China; Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| | - Zengjie Lei
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China; Department of Medical Oncology, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210000, China; Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, 210000, China; Department of Medical Oncology, Jinling Hospital, Nanjing University of Chinese Medicine, Nanjing, 210000, China.
| |
Collapse
|
24
|
Sun Z, Sun Z, Liu J, Gao X, Jiao L, Zhao Q, Chu Y, Wang X, Deng G, Cai L. Engineered Extracellular Vesicles Expressing Siglec-10 Camouflaged AIE Photosensitizer to Reprogram Macrophages to Active M1 Phenotype and Present Tumor-Associated Antigens for Photodynamic Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307147. [PMID: 37941517 DOI: 10.1002/smll.202307147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/15/2023] [Indexed: 11/10/2023]
Abstract
Cancer immunotherapy has attracted considerable attention due to its advantages of persistence, targeting, and ability to kill tumor cells. However, the efficacy of tumor immunotherapy in practical applications is limited by tumor heterogeneity and complex tumor immunosuppressive microenvironments in which abundant of M2 macrophages and immune checkpoints (ICs) are present. Herein, two type-I aggregation-induced emission (AIE)-active photosensitizers with various reactive oxygen species (ROS)-generating efficiencies are designed and synthesized. Engineered extracellular vesicles (EVs) that express ICs Siglec-10 are first obtained from 4T1 tumor cells. The engineered EVs are then fused with the AIE photosensitizer-loaded lipidic nanosystem to form SEx@Fc-NPs. The ROS generated by the inner type-I AIE photosensitizer of the SEx@Fc-NPs through photodynamic therapy (PDT) can convert M2 macrophages into M1 macrophages to improve tumor immunosuppressive microenvironment. The outer EV-antigens that carry 4T1 tumor-associated antigens directly stimulate dendritic cells maturation to activate different types of tumor-specific T cells in overcoming tumor heterogeneity. In addition, blocking Siglec-10 reversed macrophage exhaustion for enhanced antitumor ability. This study presents that a combination of PDT, immune checkpoints, and EV-antigens can greatly improve the efficiency of tumor immunotherapy and is expected to serve as an emerging strategy to improve tumor immunosuppressive microenvironment and overcome immune escape.
Collapse
Affiliation(s)
- Zhihong Sun
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
- Queen Mary School, Nanchang University, Nanchang, 330031, P. R. China
| | - Zhuokai Sun
- Queen Mary School, Nanchang University, Nanchang, 330031, P. R. China
| | - Jie Liu
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Xiaohan Gao
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Liping Jiao
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Qi Zhao
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Yongli Chu
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Xiaozhong Wang
- The Second Affiliated Hospital of Nanchang University, Nanchang, 330031, P. R. China
- School of Public Health, Nanchang University, Nanchang, 330031, P. R. China
| | - Guanjun Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab for Biomaterials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Sino-Euro Center of Biomedicine and Health, Shenzhen, 518024, P. R. China
| |
Collapse
|
25
|
Boelaars K, van Kooyk Y. Targeting myeloid cells for cancer immunotherapy: Siglec-7/9/10/15 and their ligands. Trends Cancer 2024; 10:230-241. [PMID: 38160071 DOI: 10.1016/j.trecan.2023.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Advances in immunotherapy have revolutionized cancer treatment, yet many patients do not show clinical responses. While most immunotherapies target T cells, myeloid cells are the most abundant cell type in solid tumors and are key orchestrators of the immunosuppressive tumor microenvironment (TME), hampering effective T cell responses. Therefore, unraveling the immune suppressive pathways within myeloid cells could unveil new avenues for cancer immunotherapy. Over the past decade, Siglec receptors and their ligand, sialic acids, have emerged as a novel immune checkpoint on myeloid cells. In this review, we highlight key findings on how sialic acids modify immunity in the TME through engagement of Siglec-7/9/10/15 expressed on myeloid cells, and how the sialic acid-Siglec axis can be targeted for future cancer immunotherapies.
Collapse
Affiliation(s)
- Kelly Boelaars
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, De Boelelaan, 1117, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Eggenhuizen PJ, Cheong RMY, Lo C, Chang J, Ng BH, Ting YT, Monk JA, Loh KL, Broury A, Tay ESV, Shen C, Zhong Y, Lim S, Chung JX, Kandane-Rathnayake R, Koelmeyer R, Hoi A, Chaudhry A, Manzanillo P, Snelgrove SL, Morand EF, Ooi JD. Smith-specific regulatory T cells halt the progression of lupus nephritis. Nat Commun 2024; 15:899. [PMID: 38321013 PMCID: PMC10847119 DOI: 10.1038/s41467-024-45056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Antigen-specific regulatory T cells (Tregs) suppress pathogenic autoreactivity and are potential therapeutic candidates for autoimmune diseases such as systemic lupus erythematosus (SLE). Lupus nephritis is associated with autoreactivity to the Smith (Sm) autoantigen and the human leucocyte antigen (HLA)-DR15 haplotype; hence, we investigated the potential of Sm-specific Tregs (Sm-Tregs) to suppress disease. Here we identify a HLA-DR15 restricted immunodominant Sm T cell epitope using biophysical affinity binding assays, then identify high-affinity Sm-specific T cell receptors (TCRs) using high-throughput single-cell sequencing. Using lentiviral vectors, we transduce our lead Sm-specific TCR into Tregs derived from patients with SLE who are anti-Sm and HLA-DR15 positive. Compared with polyclonal mock-transduced Tregs, Sm-Tregs potently suppress Sm-specific pro-inflammatory responses in vitro and suppress disease progression in a humanized mouse model of lupus nephritis. These results show that Sm-Tregs are a promising therapy for SLE.
Collapse
Affiliation(s)
- Peter J Eggenhuizen
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Rachel M Y Cheong
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Cecilia Lo
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Janet Chang
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Boaz H Ng
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Yi Tian Ting
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Julie A Monk
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Khai L Loh
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Ashraf Broury
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Elean S V Tay
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Chanjuan Shen
- Department of Hematology, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, China
| | - Yong Zhong
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Steven Lim
- Alfred Research Alliance Flow Cytometry Core Facility, Melbourne, VIC, Australia
| | - Jia Xi Chung
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Rangi Kandane-Rathnayake
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Rachel Koelmeyer
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Alberta Hoi
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
- Department of Rheumatology, Monash Health, Clayton, VIC, Australia
| | | | | | - Sarah L Snelgrove
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Eric F Morand
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
- Department of Rheumatology, Monash Health, Clayton, VIC, Australia
| | - Joshua D Ooi
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
27
|
Wang H, Shi P, Shi X, Lv Y, Xie H, Zhao H. Surprising magic of CD24 beyond cancer. Front Immunol 2024; 14:1334922. [PMID: 38313430 PMCID: PMC10834733 DOI: 10.3389/fimmu.2023.1334922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024] Open
Abstract
CD24 has emerged as a molecule of significant interest beyond the oncological arena. Recent studies have unveiled its surprising and diverse roles in various biological processes and diseases. This review encapsulates the expanding spectrum of CD24 functions, delving into its involvement in immune regulation, cancer immune microenvironment, and its potential as a therapeutic target in autoimmune diseases and beyond. The 'magic' of CD24, once solely attributed to cancer, now inspires a new paradigm in understanding its multifunctionality in human health and disease, offering exciting prospects for medical advancements.
Collapse
Affiliation(s)
- He Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Shi
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xinyu Shi
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaqing Lv
- Department of Outpatient, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongwei Xie
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
28
|
Feng H, Feng J, Han X, Ying Y, Lou W, Liu L, Zhang L. The Potential of Siglecs and Sialic Acids as Biomarkers and Therapeutic Targets in Tumor Immunotherapy. Cancers (Basel) 2024; 16:289. [PMID: 38254780 PMCID: PMC10813689 DOI: 10.3390/cancers16020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
The dysregulation of sialic acid is closely associated with oncogenesis and tumor progression. Most tumor cells exhibit sialic acid upregulation. Sialic acid-binding immunoglobulin-like lectins (Siglecs) are receptors that recognize sialic acid and are expressed in various immune cells. The activity of Siglecs in the tumor microenvironment promotes immune escape, mirroring the mechanisms of the well-characterized PD-1/PD-L1 pathway in cancer. Cancer cells utilize sialic acid-linked glycans to evade immune surveillance. As Siglecs exhibit similar mechanisms as the established immune checkpoint inhibitors (ICIs), they are potential therapeutic targets for different forms of cancer, especially ICI-resistant malignancies. Additionally, the upregulation of sialic acid serves as a potential tumor biomarker. This review examines the feasibility of using sialic acid and Siglecs for early malignant tumor detection and discusses the potential of targeting Siglec-sialic acid interaction as a novel cancer therapeutic strategy.
Collapse
Affiliation(s)
- Haokang Feng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiale Feng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xu Han
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Ying
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenhui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- The Shanghai Geriatrics Medical Center, Zhongshan Hospital MinHang MeiLong Branch, Fudan University, Shanghai 200032, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
29
|
Geng Z, Wu L, Wang Q, Ma J, Shi Z. Non B Cell-Derived Immunoglobulins in Intestinal Tract. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1445:137-149. [PMID: 38967756 DOI: 10.1007/978-981-97-0511-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Intestinal epithelium constitutes a barrier to the unrestricted movement of pathogens, and other detrimental substances from the external world (gut lumen) into the interstitial environment. Intestinal epithelial cells obstruct harmful substances passing through the epithelium as a physical and chemical barrier; Moreover, the epithelial cells can express Toll-like receptors (TLRs) and cytokines to exert innate immune function. In addition, high levels of immunoglobulin A (IgA) and other antibodies exist in the intestinal mucosa, maintaining intestinal immune homeostasis in conjunction with intestinal probiotics. Traditionally, these antibodies have been deemed to be secreted by submucosal plasma cells. Nonetheless, in recent years, it has been demonstrated that intestinal epithelial cells produce a substantial amount of Igs, especially IgA or free Ig light chains, which are involved in intestinal immune homeostasis and the survival of normal epithelial cells. Furthermore, mounting evidence affirms that many human carcinoma cells, including colorectal cancer (CRC), can overexpress Igs, particularly IgG. Cancer-derived Igs exhibit a unique V(D)J rearrangement pattern distinct from B cell-derived Ig; moreover, this cancer cell-derived IgG also has a unique sialic acid modification on the 162 site of CH1 domain (SIA-IgG). The SIA-IgG plays a crucial role in promoting cancer initiation, progression, metastasis, and tumour immune escape. Simultaneously, CRC cells can also express free Ig light chains, which promote colitis, colitis-associated colon carcinogenesis, and CRC progression. Therefore, Igs expressed by CRC cells could be a potential target for diagnosing and preventing the transformation of inflammation into cancer, as well as treating CRC.
Collapse
Affiliation(s)
- Zihan Geng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Lina Wu
- Central Laboratory, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Qianqian Wang
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, China
| | - Junfan Ma
- Department of Clinical Research, Sinocelltech Group Limited, Beijing, China
| | - Zhan Shi
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
30
|
Danaher P, Hasle N, Nguyen ED, Hayward K, Rosenwasser N, Alpers CE, Reed RC, Okamura DM, Baxter SK, Jackson SW. Single cell spatial transcriptomic profiling of childhood-onset lupus nephritis reveals complex interactions between kidney stroma and infiltrating immune cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566503. [PMID: 38014158 PMCID: PMC10680641 DOI: 10.1101/2023.11.09.566503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Children with systemic lupus erythematosus (SLE) are at increased risk of developing kidney disease, termed childhood-onset lupus nephritis (cLN). Single cell transcriptomics of dissociated kidney tissue has advanced our understanding of LN pathogenesis, but loss of spatial resolution prevents interrogation of in situ cellular interactions. Using a technical advance in spatial transcriptomics, we generated a spatially resolved, single cell resolution atlas of kidney tissue (>400,000 cells) from eight cLN patients and two controls. Annotated cells were assigned to 35 reference cell types, including major kidney subsets and infiltrating immune cells. Analysis of spatial distribution demonstrated that individual immune lineages localize to specific regions in cLN kidneys, including myeloid cells trafficking to inflamed glomeruli and B cells clustering within tubulointerstitial immune hotspots. Notably, gene expression varied as a function of tissue location, demonstrating how incorporation of spatial data can provide new insights into the immunopathogenesis of SLE. Alterations in immune phenotypes were accompanied by parallel changes in gene expression by resident kidney stromal cells. However, there was little correlation between histologic scoring of cLN disease activity and glomerular cell transcriptional signatures at the level of individual glomeruli. Finally, we identified modules of spatially-correlated gene expression with predicted roles in induction of inflammation and the development of tubulointerstitial fibrosis. In summary, single cell spatial transcriptomics allows unprecedented insights into the molecular heterogeneity of cLN, paving the way towards more targeted and personalized treatment approaches.
Collapse
Affiliation(s)
| | - Nicholas Hasle
- Department of Pediatrics, University of Washington School of Medicine; Seattle, WA, USA
| | - Elizabeth D. Nguyen
- Department of Pediatrics, University of Washington School of Medicine; Seattle, WA, USA
- Seattle Children’s Research Institute, Seattle, WA, USA
| | - Kristen Hayward
- Department of Pediatrics, University of Washington School of Medicine; Seattle, WA, USA
- Seattle Children’s Research Institute, Seattle, WA, USA
| | - Natalie Rosenwasser
- Department of Pediatrics, University of Washington School of Medicine; Seattle, WA, USA
- Seattle Children’s Research Institute, Seattle, WA, USA
| | - Charles E. Alpers
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine; Seattle, WA, USA
| | - Robyn C. Reed
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine; Seattle, WA, USA
| | - Daryl M. Okamura
- Department of Pediatrics, University of Washington School of Medicine; Seattle, WA, USA
- Seattle Children’s Research Institute, Seattle, WA, USA
| | - Sarah K. Baxter
- Department of Pediatrics, University of Washington School of Medicine; Seattle, WA, USA
- Sanofi US, Bridgewater, NJ, USA
| | - Shaun W. Jackson
- Department of Pediatrics, University of Washington School of Medicine; Seattle, WA, USA
- Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine; Seattle, WA, USA
| |
Collapse
|
31
|
Lv K, Sun M, Fang H, Wang J, Lin C, Liu H, Zhang H, Li H, He H, Gu Y, Li R, Shao F, Xu J. Targeting myeloid checkpoint Siglec-10 reactivates antitumor immunity and improves anti-programmed cell death 1 efficacy in gastric cancer. J Immunother Cancer 2023; 11:e007669. [PMID: 37935567 PMCID: PMC10649907 DOI: 10.1136/jitc-2023-007669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/09/2023] Open
Abstract
OBJECTIVE Immunotherapy has not yielded satisfactory therapeutic responses in gastric cancer (GC). However, targeting myeloid checkpoints holds promise for expanding the potential of immunotherapy. This study aims to evaluate the critical role of Siglec-10+ tumor-associated macrophages (TAMs) in regulating antitumor immunity and to explore the potential of the myeloid checkpoint Siglec-10 as an interventional target. DESIGN Siglec-10+ TAMs were assessed based on immunohistochemistry on tumor microarrays and RNA-sequencing data. Flow cytometry, RNA sequencing, and single-cell RNA-sequencing analysis were employed to characterize the phenotypic and transcriptional features of Siglec-10+ TAMs and their impact on CD8+ T cell-mediated antitumor immunity. The effectiveness of Siglec-10 blockade, either alone or in combination with anti-programmed cell death 1 (PD-1), was evaluated using an ex vivo GC tumor fragment platform based on fresh tumor tissues. RESULTS Siglec-10 was predominantly expressed on TAMs in GC, and associated with tumor progression. In Zhongshan Hospital cohort, Siglec-10+ TAMs predicted unfavorable prognosis (n=446, p<0.001) and resistance to adjuvant chemotherapy (n=331, p<0.001), which were further validated in exogenous cohorts. In the Samsung Medical Center cohort, Siglec-10+ TAMs demonstrated inferior response to pembrolizumab in GC (n=45, p=0.008). Furthermore, Siglec-10+ TAMs exhibited an immunosuppressive phenotype and hindered T cell-mediated antitumor immune response. Finally, blocking Siglec-10 reinvigorated the antitumor immune response and synergistically enhances anti-PD-1 immunotherapy in an ex vivo GC tumor fragment platform. CONCLUSIONS In GC, the myeloid checkpoint Siglec-10 contributes to the regulation of immunosuppressive property of TAMs and promotes the depletion of CD8+ T cells, ultimately facilitating immune evasion. Targeting Siglec-10 represents a potential strategy for immunotherapy in GC.
Collapse
Affiliation(s)
- Kunpeng Lv
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mengyao Sun
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hanji Fang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jieti Wang
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chao Lin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Heng Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - He Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongyong He
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Gu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of General Surgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruochen Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fei Shao
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiejie Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Yousuf S, Qiu M, Voith von Voithenberg L, Hulkkonen J, Macinkovic I, Schulz AR, Hartmann D, Mueller F, Mijatovic M, Ibberson D, AlHalabi KT, Hetzer J, Anders S, Brüne B, Mei HE, Imbusch CD, Brors B, Heikenwälder M, Gaida MM, Büchler MW, Weigert A, Hackert T, Roth S. Spatially Resolved Multi-Omics Single-Cell Analyses Inform Mechanisms of Immune Dysfunction in Pancreatic Cancer. Gastroenterology 2023; 165:891-908.e14. [PMID: 37263303 DOI: 10.1053/j.gastro.2023.05.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND & AIMS As pancreatic ductal adenocarcinoma (PDAC) continues to be recalcitrant to therapeutic interventions, including poor response to immunotherapy, albeit effective in other solid malignancies, a more nuanced understanding of the immune microenvironment in PDAC is urgently needed. We aimed to unveil a detailed view of the immune micromilieu in PDAC using a spatially resolved multimodal single-cell approach. METHODS We applied single-cell RNA sequencing, spatial transcriptomics, multiplex immunohistochemistry, and mass cytometry to profile the immune compartment in treatment-naïve PDAC tumors and matched adjacent normal pancreatic tissue, as well as in the systemic circulation. We determined prognostic associations of immune signatures and performed a meta-analysis of the immune microenvironment in PDAC and lung adenocarcinoma on single-cell level. RESULTS We provided a spatially resolved fine map of the immune landscape in PDAC. We substantiated the exhausted phenotype of CD8 T cells and immunosuppressive features of myeloid cells, and highlighted immune subsets with potentially underappreciated roles in PDAC that diverged from immune populations within adjacent normal areas, particularly CD4 T cell subsets and natural killer T cells that are terminally exhausted and acquire a regulatory phenotype. Differential analysis of immune phenotypes in PDAC and lung adenocarcinoma revealed the presence of extraordinarily immunosuppressive subtypes in PDAC, along with a distinctive immune checkpoint composition. CONCLUSIONS Our study sheds light on the multilayered immune dysfunction in PDAC and presents a holistic view of the immune landscape in PDAC and lung adenocarcinoma, providing a comprehensive resource for functional studies and the exploration of therapeutically actionable targets in PDAC.
Collapse
Affiliation(s)
- Suhail Yousuf
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Mengjie Qiu
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Johannes Hulkkonen
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Igor Macinkovic
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | | | - Domenic Hartmann
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Mueller
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Margarete Mijatovic
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - David Ibberson
- Deep Sequencing Core Facility, BioQuant, Heidelberg University, Heidelberg, Germany
| | - Karam T AlHalabi
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Jenny Hetzer
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Simon Anders
- BioQuant Center, Heidelberg University, Heidelberg, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany; Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany; German Cancer Consortium, Partner Site Frankfurt, Germany
| | - Henrik E Mei
- German Rheumatism Research Center, Berlin, Germany
| | - Charles D Imbusch
- Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Matthias M Gaida
- Institute of Pathology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany; Research Center for Immunotherapy, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany; Joint Unit Immunopathology, Institute of Pathology, University Medical Center, Johannes Gutenberg University and Translational Oncology, University Medical Center Mainz, Mainz, Germany
| | - Markus W Büchler
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany; Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany; German Cancer Consortium, Partner Site Frankfurt, Germany
| | - Thilo Hackert
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Susanne Roth
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
33
|
Mudd P, Borcherding N, Kim W, Quinn M, Han F, Zhou J, Sturtz A, Schmitz A, Lei T, Schattgen S, Klebert M, Suessen T, Middleton W, Goss C, Liu C, Crawford J, Thomas P, Teefey S, Presti R, O'Halloran J, Turner J, Ellebedy A. Antigen-specific CD4 + T cells exhibit distinct transcriptional phenotypes in the lymph node and blood following vaccination in humans. RESEARCH SQUARE 2023:rs.3.rs-3304466. [PMID: 37790414 PMCID: PMC10543502 DOI: 10.21203/rs.3.rs-3304466/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
SARS-CoV-2 infection and mRNA vaccination induce robust CD4+ T cell responses that are critical for the development of protective immunity. Here, we evaluated spike-specific CD4+ T cells in the blood and draining lymph node (dLN) of human subjects following BNT162b2 mRNA vaccination using single-cell transcriptomics. We analyze multiple spike-specific CD4+ T cell clonotypes, including novel clonotypes we define here using Trex, a new deep learning-based reverse epitope mapping method integrating single-cell T cell receptor (TCR) sequencing and transcriptomics to predict antigen-specificity. Human dLN spike-specific T follicular helper cells (TFH) exhibited distinct phenotypes, including germinal center (GC)-TFH and IL-10+ TFH, that varied over time during the GC response. Paired TCR clonotype analysis revealed tissue-specific segregation of circulating and dLN clonotypes, despite numerous spike-specific clonotypes in each compartment. Analysis of a separate SARS-CoV-2 infection cohort revealed circulating spike-specific CD4+ T cell profiles distinct from those found following BNT162b2 vaccination. Our findings provide an atlas of human antigen-specific CD4+ T cell transcriptional phenotypes in the dLN and blood following vaccination or infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Charles Goss
- Division of Biostatistics, Washington University in St.Louis
| | - Chang Liu
- Washington University School of Medicine
| | | | | | | | | | - Jane O'Halloran
- Department of Emergency Medicine, Washington University in St.Louis
| | | | | |
Collapse
|
34
|
Dai X, Park JJ, Du Y, Na Z, Lam SZ, Chow RD, Renauer PA, Gu J, Xin S, Chu Z, Liao C, Clark P, Zhao H, Slavoff S, Chen S. Massively parallel knock-in engineering of human T cells. Nat Biotechnol 2023; 41:1239-1255. [PMID: 36702900 PMCID: PMC11260498 DOI: 10.1038/s41587-022-01639-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/12/2022] [Indexed: 01/27/2023]
Abstract
The efficiency of targeted knock-in for cell therapeutic applications is generally low, and the scale is limited. In this study, we developed CLASH, a system that enables high-efficiency, high-throughput knock-in engineering. In CLASH, Cas12a/Cpf1 mRNA combined with pooled adeno-associated viruses mediate simultaneous gene editing and precise transgene knock-in using massively parallel homology-directed repair, thereby producing a pool of stably integrated mutant variants each with targeted gene editing. We applied this technology in primary human T cells and performed time-coursed CLASH experiments in blood cancer and solid tumor models using CD3, CD8 and CD4 T cells, enabling pooled generation and unbiased selection of favorable CAR-T variants. Emerging from CLASH experiments, a unique CRISPR RNA (crRNA) generates an exon3 skip mutant of PRDM1 in CAR-Ts, which leads to increased proliferation, stem-like properties, central memory and longevity in these cells, resulting in higher efficacy in vivo across multiple cancer models, including a solid tumor model. The versatility of CLASH makes it broadly applicable to diverse cellular and therapeutic engineering applications.
Collapse
Affiliation(s)
- Xiaoyun Dai
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Jonathan J Park
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- M.D.-Ph.D. Program, Yale University, West Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Yaying Du
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenkun Na
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Stanley Z Lam
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Ryan D Chow
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- M.D.-Ph.D. Program, Yale University, West Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Paul A Renauer
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Jianlei Gu
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA
| | - Shan Xin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Zhiyuan Chu
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Cun Liao
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Paul Clark
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Hongyu Zhao
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Biostatistics, Yale University School of Public Health, New Haven, CT, USA
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT, USA
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA
| | - Sarah Slavoff
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA.
- M.D.-Ph.D. Program, Yale University, West Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA.
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
35
|
Noh JY, Lee HI, Choi JH, Cho SH, Yi YH, Lim JH, Myung EB, Shin YJ, Shin HJ, Woo HG. CCIDB: a manually curated cell-cell interaction database with cell context information. Database (Oxford) 2023; 2023:baad057. [PMID: 37566630 PMCID: PMC10419333 DOI: 10.1093/database/baad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/23/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Cell-cell interaction (CCI) is a crucial event in the development and function of multicellular organisms. The development of CCI databases is beneficial for researchers who want to analyze single-cell sequencing data or study CCI through molecular experiments. CCIs are known to act differently according to cellular and biological contexts such as cell types, gene mutations or disease status; however, previous CCI databases do not completely provide this contextual information pertaining to CCIs. We constructed a cell-cell interaction database (CCIDB) containing the biological and clinical contexts involved in each interaction. To build a database of cellular and tissue contexts, we collected 38 types of context features, which were categorized into seven categories, including 'interaction', 'cell type', 'cofactor', 'effector', 'phenotype', 'pathology' and 'reference'. CCIs were manually retrieved from 272 studies published recently (less than 6 years ago). In the current version of CCIDB, 520 CCIs and their 38 context features have been manually collected and curated by biodata engineers. We suggest that CCIDB is a manually curated CCI resource that is highly useful, especially for analyzing context-dependent alterations in CCIs. Database URL https://ccidb.sysmed.kr/.
Collapse
Affiliation(s)
- Jin Young Noh
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Biomedical Science, Ajou University Graduate School, Suwon 16499, Republic of Korea
- Ajou University Data Center for Biomedicine & Pharmacotherapeutics (AUDC-BMPT), Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Hae In Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Biomedical Science, Ajou University Graduate School, Suwon 16499, Republic of Korea
- Ajou University Data Center for Biomedicine & Pharmacotherapeutics (AUDC-BMPT), Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Ji-Hye Choi
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Biomedical Science, Ajou University Graduate School, Suwon 16499, Republic of Korea
| | - Seong-Ho Cho
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Biomedical Science, Ajou University Graduate School, Suwon 16499, Republic of Korea
| | - Yoon Hui Yi
- Ajou University Data Center for Biomedicine & Pharmacotherapeutics (AUDC-BMPT), Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Ji Hyun Lim
- Ajou University Data Center for Biomedicine & Pharmacotherapeutics (AUDC-BMPT), Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Eun Been Myung
- Ajou University Data Center for Biomedicine & Pharmacotherapeutics (AUDC-BMPT), Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Ye Ju Shin
- Ajou University Data Center for Biomedicine & Pharmacotherapeutics (AUDC-BMPT), Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Hyo Jin Shin
- Ajou University Data Center for Biomedicine & Pharmacotherapeutics (AUDC-BMPT), Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Biomedical Science, Ajou University Graduate School, Suwon 16499, Republic of Korea
- Ajou University Data Center for Biomedicine & Pharmacotherapeutics (AUDC-BMPT), Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
36
|
Wang Y, Yu H, Yu M, Liu H, Zhang B, Wang Y, Zhao S, Xia Q. CD24 blockade as a novel strategy for cancer treatment. Int Immunopharmacol 2023; 121:110557. [PMID: 37379708 DOI: 10.1016/j.intimp.2023.110557] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 05/22/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
The CD24 protein is a heat-stable protein with a small core that undergoes extensive glycosylation. It is expressed on the surface of various normal cells, including lymphocytes, epithelial cells, and inflammatory cells. CD24 exerts its function by binding to different ligands. Numerous studies have demonstrated the close association of CD24 with tumor occurrence and progression. CD24 not only facilitates tumor cell proliferation, metastasis, and immune evasion but also plays a role in tumor initiation, thus, serving as a marker on the surface of cancer stem cells (CSCs). Additionally, CD24 induces drug resistance in various tumor cells following chemotherapy. To counteract the tumor-promoting effects of CD24, several treatment strategies targeting CD24 have been explored, such as the use of CD24 monoclonal antibodies (mAb) alone, the combination of CD24 and chemotoxic drugs, or the combination of these drugs with other targeted immunotherapeutic techniques. Regardless of the approach, targeting CD24 has demonstrated significant anti-tumor effects. Therefore, the present study focuses on anti-tumor therapy and provides a comprehensive review of the structure and fundamental physiological function of CD24 and its impact on tumor development, and suggests that targeting CD24 may represent an effective strategy for treating malignant tumors.
Collapse
Affiliation(s)
- Yawen Wang
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou 450008, China; Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou 450008, China; Henan Engineering Research Center of Pathological Diagnostic Antibody, Zhengzhou 450008, China
| | - Haoran Yu
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou 450008, China; Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou 450008, China; Henan Engineering Research Center of Pathological Diagnostic Antibody, Zhengzhou 450008, China
| | - Mengyuan Yu
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou 450008, China; Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou 450008, China; Henan Engineering Research Center of Pathological Diagnostic Antibody, Zhengzhou 450008, China
| | - Hui Liu
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Bing Zhang
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou 450008, China
| | - Yuanyuan Wang
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou 450008, China; Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou 450008, China
| | - Simin Zhao
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou 450008, China; Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou 450008, China.
| | - Qingxin Xia
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China; Henan Medical Key Laboratory of Tumor Pathology and Artificial Intelligence Diagnosis, Zhengzhou 450008, China; Zhengzhou Key Laboratory of Accurate Pathological Diagnosis of Intractable Tumors, Zhengzhou 450008, China; Henan Engineering Research Center of Pathological Diagnostic Antibody, Zhengzhou 450008, China.
| |
Collapse
|
37
|
Zheng Z, Yuan D, Shen C, Zhang Z, Ye J, Zhu L. Identification of potential diagnostic biomarkers of atherosclerosis based on bioinformatics strategy. BMC Med Genomics 2023; 16:100. [PMID: 37173673 PMCID: PMC10176947 DOI: 10.1186/s12920-023-01531-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Atherosclerosis is the main pathological change in atherosclerotic cardiovascular disease, and its underlying mechanisms are not well understood. The aim of this study was to explore the hub genes involved in atherosclerosis and their potential mechanisms through bioinformatics analysis. METHODS Three microarray datasets from Gene Expression Omnibus (GEO) identified robust differentially expressed genes (DEGs) by robust rank aggregation (RRA). We performed connectivity map (CMap) analysis and functional enrichment analysis on robust DEGs and constructed a protein‒protein interaction (PPI) network using the STRING database to identify the hub gene using 12 algorithms of cytoHubba in Cytoscape. Receiver operating characteristic (ROC) analysis was used to assess the diagnostic potency of the hub genes.The CIBERSORT algorithm was used to perform immunocyte infiltration analysis and explore the association between the identified biomarkers and infiltrating immunocytes using Spearman's rank correlation analysis in R software. Finally, we evaluated the expression of the hub gene in foam cells. RESULTS A total of 155 robust DEGs were screened by RRA and were revealed to be mainly associated with cytokines and chemokines by functional enrichment analysis. CD52 and IL1RN were identified as hub genes and were validated in the GSE40231 dataset. Immunocyte infiltration analysis showed that CD52 was positively correlated with gamma delta T cells, M1 macrophages and CD4 memory resting T cells, while IL1RN was positively correlated with monocytes and activated mast cells. RT-qPCR results indicate that CD52 and IL1RN were highly expressed in foam cells, in agreement with bioinformatics analysis. CONCLUSIONS This study has established that CD52 and IL1RN may play a key role in the occurrence and development of atherosclerosis, which opens new lines of thought for further research on the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
| | - Dong Yuan
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cheng Shen
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhiyuan Zhang
- Dalian Medical University, Dalian, 116000, China
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China
| | - Jun Ye
- Dalian Medical University, Dalian, 116000, China.
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| | - Li Zhu
- Dalian Medical University, Dalian, 116000, China.
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, 225300, China.
| |
Collapse
|
38
|
Liu J, Zhu J, Zhang Q. Comprehensive analysis of glycolysis mediated pattern clusters and immune infiltration characterization of tumor microenvironment in triple-negative breast cancer. Heliyon 2023; 9:e15175. [PMID: 37089355 PMCID: PMC10119610 DOI: 10.1016/j.heliyon.2023.e15175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Background The involvement of glycolysis in carcinogenesis and the tumor microenvironment is being increasingly supported by the available data. The aim of this work was to develop a triple-negative breast cancer predictive model based on glycolysis. Methods Glycolysis mediated pattern clusters were created using the R "ConsensusClusterPlus" package. The variations in the tumor microenvironment between the pattern clusters were examined using the R "GSVA", "ESTIMATE", and "CIBERSORT" package. The risk score and nomogram were established to assess clinical outcomes of patients. Results Substantial differences were observed in the immunological landscape between the glycolysis-mediated pattern clusters. When it came to predicting survival and immunotherapy response, the developed risk score showed promising predictive power. Nomogram was designed to be used in therapeutic settings due to its remarkable predictive accuracy. Conclusions The immune microenvironment varied among cases of triple-negative breast cancer. The nomogram and the risk score based on glycolysis could both be used to help create more effective treatments.
Collapse
|
39
|
Stanczak MA, Läubli H. Siglec receptors as new immune checkpoints in cancer. Mol Aspects Med 2023; 90:101112. [PMID: 35948467 DOI: 10.1016/j.mam.2022.101112] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023]
Abstract
Cancer immunotherapy in the form of immune checkpoint inhibitors and cellular therapies has improved the treatment and prognosis of many patients. Nevertheless, most cancers are still resistant to currently approved cancer immunotherapies. New approaches and rational combinations are needed to overcome these resistances. There is emerging evidence that Siglec receptors could be regarded as new immune checkpoints and targets for cancer immunotherapy. In this review, we summarize the experimental evidence supporting Siglec receptors as new immune checkpoints in cancer and discuss their mechanisms of action, as well as current efforts to target Siglec receptors and their interactions with sialoglycan Siglec-ligands.
Collapse
Affiliation(s)
- Michal A Stanczak
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD, 21287, USA
| | - Heinz Läubli
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University of Basel, Division of Oncology, University Hospital Basel, Switzerland.
| |
Collapse
|
40
|
Siddiqui SS. Non-canonical roles of Siglecs: Beyond sialic acid-binding and immune cell modulation. Mol Aspects Med 2023; 90:101145. [PMID: 36153172 DOI: 10.1016/j.mam.2022.101145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/11/2022] [Accepted: 09/13/2022] [Indexed: 02/08/2023]
Abstract
Siglecs (Sialic acid-binding immunoglobulin-type lectins) are I-type lectins that bind with sialic acid ligands (Sia). Most are expressed on the surface of leukocytes and are involved in immune regulation and possess immune tyrosine-based inhibitory motif (ITIM) in the intracellular domain, thus leading to inhibition of the immune response. This signaling is instrumental in maintaining quiescence under physiological conditions and acts as a brake for inflammatory cascades. By contrast, activating Siglecs carry positively charged residues in the transmembrane domain and interact with immune tyrosine-based activating motif (ITAM)-containing proteins, a DNAX-activating protein of 10-12 kDa (DAP10/12), to activate immune cells. There are various characteristics of Siglecs that do not fit within the classification of Siglec receptors as being either inhibitory or activating in nature. This review focuses on elucidating the non-canonical functions and interactions of Siglec receptors, which include Sia-independent interactions such as protein-protein interactions and interactions with lipids or other sugars. This review also summarizes Siglec expression and function on non-immune cells, and non-classical signaling of the receptor. Thus, this review will be beneficial to researchers interested in the field of Siglecs and sialic acid biology.
Collapse
Affiliation(s)
- Shoib Sarwar Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, AL10 9AB, United Kingdom.
| |
Collapse
|
41
|
Brzezicka KA, Paulson JC. Impact of Siglecs on autoimmune diseases. Mol Aspects Med 2023; 90:101140. [PMID: 36055802 PMCID: PMC9905255 DOI: 10.1016/j.mam.2022.101140] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 02/08/2023]
Abstract
Autoimmune diseases affect tens of millions of people just in the United States alone. Most of the available treatment options are aimed at reducing symptoms but do not lead to cures. Individuals affected with autoimmune diseases suffer from the imbalance between tolerogenic and immunogenic functions of their immune system. Often pathogenesis is mediated by autoreactive B and T cells that escape central tolerance and react against self-antigens attacking healthy tissues in the body. In recent years Siglecs, sialic-acid-binding immunoglobulin (Ig)-like lectins, have gained attention as immune checkpoints for therapeutic interventions to dampen excessive immune responses and to restore immune tolerance in autoimmune diseases. Many Siglecs function as inhibitory receptors suppressing activation signals in various immune cells through binding to sialic acid ligands as signatures of self. In this review, we highlight potential of Siglecs in suppressing immune responses causing autoimmune diseases. In particular, we cover the roles of CD22 and Siglec-G/Siglec-10 in regulating autoreactive B cell responses. We discuss several functions of Siglec-10 in the immune modulation of other immune cells, and the potential of therapeutic strategies for restoring immune tolerance by targeting Siglecs and expanding regulatory T cells. Finally, we briefly review efforts evaluating Siglec-based biomarkers to monitor autoimmune diseases.
Collapse
Affiliation(s)
- Katarzyna Alicja Brzezicka
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA; Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
42
|
Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct Target Ther 2023; 8:104. [PMID: 36882399 PMCID: PMC9990587 DOI: 10.1038/s41392-023-01365-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Cancer immunotherapy, mainly including immune checkpoints-targeted therapy and the adoptive transfer of engineered immune cells, has revolutionized the oncology landscape as it utilizes patients' own immune systems in combating the cancer cells. Cancer cells escape immune surveillance by hijacking the corresponding inhibitory pathways via overexpressing checkpoint genes. Phagocytosis checkpoints, such as CD47, CD24, MHC-I, PD-L1, STC-1 and GD2, have emerged as essential checkpoints for cancer immunotherapy by functioning as "don't eat me" signals or interacting with "eat me" signals to suppress immune responses. Phagocytosis checkpoints link innate immunity and adaptive immunity in cancer immunotherapy. Genetic ablation of these phagocytosis checkpoints, as well as blockade of their signaling pathways, robustly augments phagocytosis and reduces tumor size. Among all phagocytosis checkpoints, CD47 is the most thoroughly studied and has emerged as a rising star among targets for cancer treatment. CD47-targeting antibodies and inhibitors have been investigated in various preclinical and clinical trials. However, anemia and thrombocytopenia appear to be formidable challenges since CD47 is ubiquitously expressed on erythrocytes. Here, we review the reported phagocytosis checkpoints by discussing their mechanisms and functions in cancer immunotherapy, highlight clinical progress in targeting these checkpoints and discuss challenges and potential solutions to smooth the way for combination immunotherapeutic strategies that involve both innate and adaptive immune responses.
Collapse
|
43
|
Layhadi JA, Moya R, Tan TJ, Lenormand MM, Sharif H, Parkin RV, Vila-Nadal G, Fedina O, Zhu R, Laisuan W, Durham SR, Carnés J, Shamji MH. Single-cell RNA sequencing identifies precise tolerogenic cellular and molecular pathways induced by depigmented-polymerized grass pollen allergen extract. J Allergy Clin Immunol 2023; 151:1357-1370.e9. [PMID: 36649758 DOI: 10.1016/j.jaci.2022.11.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Immunologic mechanism of action of allergoids remains poorly understood. Previous models of allergenicity and immunogenicity have yielded suboptimal knowledge of these immunotherapeutic vaccine products. Novel single-cell RNA sequencing technology offers a bridge to this gap in knowledge. OBJECTIVE We sought to identify the underpinning tolerogenic molecular and cellular mechanisms of depigmented-polymerized Phleum pratense (Phl p) extract. METHODS The molecular mechanisms underlying native Phl p, depigmented Phl p (DPG-Phl p), and depigmented-polymerized (DPG-POL-Phl p) allergoid were investigated by single-cell RNA sequencing. Allergen-specific TH2A, T follicular helper (Tfh), and IL-10+ regulatory B cells were quantified by flow cytometry in peripheral blood mononuclear cells from 16 grass pollen-allergic and 8 nonatopic control subjects. The ability of Phl p, DPG-Phl p, and DPG-POL-Phl p to elicit FcεRI- and FcεRII-mediated IgE responses was measured by basophil activation test and IgE-facilitated allergen binding assay. RESULTS Analysis revealed that DPG-POL-Phl p downregulated genes associated with TH2 signaling, induced functional regulatory T cells exhibiting immunosuppressive roles through CD52 and Siglec-10, modulated genes encoding immunoproteasome that dysregulate the processing and presentation of antigens to T cells and promoted a shift from IgE toward an IgA1 and IgG responses. In grass pollen-allergic subjects, DPG-POL-Phl p exhibited reduced capacity to elicit proliferation of TH2A, IL-4+ Tfh and IL-21+ Tfh cells while being the most prominent at inducing IL-10+CD19+CD5hi and IL-10+CD19+CD5hiCD38intCD24int regulatory B-cell subsets compared to Phl p (all P < .05). Furthermore, DPG-POL-Phl p demonstrated a hypoallergenic profile through basophil activation and histamine release compared to Phl p (31.54-fold, P < .001). CONCLUSIONS Single-cell RNA sequencing provides an in-depth resolution of the mechanisms underlying the tolerogenic profile of DPG-POL-Phl p.
Collapse
Affiliation(s)
- Janice A Layhadi
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Raquel Moya
- R&D Allergy & Immunology Unit, LETI Pharma SL, Tres Cantos, Madrid, Spain
| | - Tiak Ju Tan
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Madison M Lenormand
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Hanisah Sharif
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
| | - Rebecca V Parkin
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Gemma Vila-Nadal
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Oleksandra Fedina
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Rongfei Zhu
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Wannada Laisuan
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stephen R Durham
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jerónimo Carnés
- R&D Allergy & Immunology Unit, LETI Pharma SL, Tres Cantos, Madrid, Spain
| | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
44
|
Caracciolo D, Mancuso A, Polerà N, Froio C, D'Aquino G, Riillo C, Tagliaferri P, Tassone P. The emerging scenario of immunotherapy for T-cell Acute Lymphoblastic Leukemia: advances, challenges and future perspectives. Exp Hematol Oncol 2023; 12:5. [PMID: 36624522 PMCID: PMC9828428 DOI: 10.1186/s40164-022-00368-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a challenging pediatric and adult haematologic disease still associated with an unsatisfactory cure rate. Unlike B-ALL, the availability of novel therapeutic options to definitively improve the life expectancy for relapsed/resistant patients is poor. Indeed, the shared expression of surface targets among normal and neoplastic T-cells still limits the efficacy and may induce fratricide effects, hampering the use of innovative immunotherapeutic strategies. However, novel monoclonal antibodies, bispecific T-cell engagers (BTCEs), and chimeric antigen receptors (CAR) T-cells recently showed encouraging results and some of them are in an advanced stage of pre-clinical development or are currently under investigation in clinical trials. Here, we review this exciting scenario focusing on most relevant advances, challenges, and perspectives of the emerging landscape of immunotherapy of T-cell malignancies.
Collapse
Affiliation(s)
- Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Antonia Mancuso
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Nicoletta Polerà
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Froio
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giuseppe D'Aquino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
45
|
Single-cell analysis reveals the chemotherapy-induced cellular reprogramming and novel therapeutic targets in relapsed/refractory acute myeloid leukemia. Leukemia 2023; 37:308-325. [PMID: 36543880 PMCID: PMC9898038 DOI: 10.1038/s41375-022-01789-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Chemoresistance and relapse are the leading cause of AML-related deaths. Utilizing single-cell RNA sequencing (scRNA-seq), we dissected the cellular states of bone marrow samples from primary refractory or short-term relapsed AML patients and defined the transcriptional intratumoral heterogeneity. We found that compared to proliferating stem/progenitor-like cells (PSPs), a subpopulation of quiescent stem-like cells (QSCs) were involved in the chemoresistance and poor outcomes of AML. By performing longitudinal scRNA-seq analyses, we demonstrated that PSPs were reprogrammed to obtain a QSC-like expression pattern during chemotherapy in refractory AML patients, characterized by the upregulation of CD52 and LGALS1 expression. Flow cytometric analysis further confirmed that the preexisting CD99+CD49d+CD52+Galectin-1+ (QSCs) cells at diagnosis were associated with chemoresistance, and these cells were further enriched in the residual AML cells of refractory patients. Interaction of CD52-SIGLEC10 between QSCs and monocytes may contribute to immune evading and poor outcomes. Furthermore, we identified that LGALS1 was a promising target for chemoresistant AML, and LGALS1 inhibitor could help eliminate QSCs and enhance the chemotherapy in patient-derived primary AML cells, cell lines, and AML xenograft models. Our results will facilitate a better understanding of the AML chemoresistance mechanism and the development of novel therapeutic strategies for relapsed/refractory AML patients.
Collapse
|
46
|
Zha AH, Luo C, Shen WY, Fu D, Dai RP. Systemic blockade of proBDNF inhibited the expansion and altered the transcriptomic expression in CD3 +B220 + cells in MRL/lpr lupus mice. Lupus Sci Med 2022; 9:9/1/e000836. [PMID: 36581381 PMCID: PMC9806060 DOI: 10.1136/lupus-2022-000836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The overexpansion of CD3+B220+ cells is the hallmark and main pathological mechanism of clinical manifestations of spontaneously developed MRL/lpr mice, which are primarily used as a mouse model of SLE. Our recent report demonstrated that blocking brain-derived neurotrophic factor precursor (proBDNF) suppressed the antibody-secreting cell differentiation and proliferation and inhibited the progression of SLE; however, the effect of proBDNF blockade on these CD3+B220+ cells in MRL/lpr mice is unclear. METHODS To explore the effect of proBDNF on CD3+B220+ cells, MRL/lpr mice at 12 weeks old were intraperitoneally injected with monoclonal anti-proBDNF antibody (McAb-proB) or control IgG continuously for 8 weeks. The manifestations in mice were observed, and peripheral blood and splenocytes were collected and analysed via flow cytometry at 20 weeks old. In addition, splenic CD3+B220+ cells were subjected to RNA sequencing (RNA-seq) analysis to identify transcriptomic alterations. RESULTS CD3+B220+ cells in peripheral blood (p=0.0101) and spleen (p<0.0001) were expanded in MRL/lpr mice. Meanwhile, inhibition of proBDNF signalling reduced the percentage of CD3+B220+ cells in peripheral blood (p=0.0036) and spleen (p=0.0280), alleviated lymphadenopathy, reduced urine protein level (p<0.0001) and increased the body weight (p=0.0493). RNA-seq revealed 501 upregulated and 206 downregulated genes in splenic CD3+B220+ cells in McAb-proB-treated MRL/lpr mice compared with IgG-treated mice. The differentially expressed genes were found to be involved in apoptosis, tumour necrosis factor signalling, and T cell differentiation and proliferation. CONCLUSION Systemic blockade of proBDNF inhibited the overexpansion of CD3+B220+ cells and altered their signals related to cell cycle, cell apoptosis and the immune response, which may contribute to the attenuation of disease symptoms in murine lupus.
Collapse
Affiliation(s)
- An-Hui Zha
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Cong Luo
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei-Yun Shen
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Di Fu
- Department of Anesthesiology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Ru-Ping Dai
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
47
|
Liu G, Hao M, Zeng B, Liu M, Wang J, Sun S, Liu C, Huilian C. Sialic acid and food allergies: The link between nutrition and immunology. Crit Rev Food Sci Nutr 2022; 64:3880-3906. [PMID: 36369942 DOI: 10.1080/10408398.2022.2136620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Food allergies (FA), a major public health problem recognized by the World Health Organization, affect an estimated 3%-10% of adults and 8% of children worldwide. However, effective treatments for FA are still lacking. Recent advances in glycoimmunology have demonstrated the great potential of sialic acids (SAs) in the treatment of FA. SAs are a group of nine-carbon α-ketoacids usually linked to glycoproteins and glycolipids as terminal glycans. They play an essential role in modulating immune responses and may be an effective target for FA intervention. As exogenous food components, sialylated polysaccharides have anti-FA effects. In contrast, as endogenous components, SAs on immunoglobulin E and immune cell surfaces contribute to the pathogenesis of FA. Given the lack of comprehensive information on the effects of SAs on FA, we reviewed the roles of endogenous and exogenous SAs in the pathogenesis and treatment of FA. In addition, we considered the structure-function relationship of SAs to provide a theoretical basis for the development of SA-based FA treatments.
Collapse
Affiliation(s)
- Guirong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mengzhen Hao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Binghui Zeng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Manman Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Junjuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shanfeng Sun
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, College of Health and Human Services, San Diego State University, California, United States of America
| | - Che Huilian
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
48
|
Gao S, Liu XZ, Wu LY, Peng Z, Chen XX, Wang H, Lu Y, Zhuang Z, Tan Q, Hang CH, Li W. Long-Term Elevated Siglec-10 in Cerebral Spinal Fluid Heralds Better Prognosis for Patients with Aneurysmal Subarachnoid Hemorrhage. DISEASE MARKERS 2022; 2022:5382100. [PMID: 36188429 PMCID: PMC9519311 DOI: 10.1155/2022/5382100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022]
Abstract
The presence of aneurysmal subarachnoid hemorrhage (aSAH) is usually accompanied by excessive inflammatory response leading to damage of the central nervous system, and the sialic acid-binding Ig-like lectin 10 (Siglec-10) is a recognized factor being able to modify the inflammatory reaction. To investigate the potential role of Siglec-10 in aSAH, we collected the cerebrospinal fluid (CSF) of control (n = 11) and aSAH (n = 14) patients at separate times and measured the Siglec-10 concentration utilizing the enzyme-linked immunosorbent assay (ELISA) and evaluated the alterations of GOS and GCS during the disease process. In accordance with the STROBE statement, results showed that Siglec-10 in CSF rose quickly in response aSAH attack and then fell back to a slightly higher range above baseline, while it remained at relative high concentration and last longer in several severely injured patients. In general, higher Siglec-10 expression over a longer period usually indicated a better clinical prognosis. This prospective cohort study suggested that Siglec-10 could possibly be used as a biomarker for predicting prognosis of aSAH due to its ability to balance aSAH-induced nonsterile inflammation. Additionally, these findings might provide novel therapeutic perspectives for aSAH and other inflammation-related diseases.
Collapse
Affiliation(s)
- Sen Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xun-Zhi Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ling-Yun Wu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zheng Peng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiang-Xin Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Han Wang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yue Lu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
49
|
Sex Differences in Coronary Artery Disease and Diabetes Revealed by scRNA-Seq and CITE-Seq of Human CD4+ T Cells. Int J Mol Sci 2022; 23:ijms23179875. [PMID: 36077273 PMCID: PMC9456056 DOI: 10.3390/ijms23179875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022] Open
Abstract
Despite the decades-old knowledge that males and people with diabetes mellitus (DM) are at increased risk for coronary artery disease (CAD), the reasons for this association are only partially understood. Among the immune cells involved, recent evidence supports a critical role of T cells as drivers and modifiers of CAD. CD4+ T cells are commonly found in atherosclerotic plaques. We aimed to understand the relationship of CAD with sex and DM by single-cell RNA (scRNA-Seq) and antibody sequencing (CITE-Seq) of CD4+ T cells. Peripheral blood mononuclear cells (PBMCs) of 61 men and women who underwent cardiac catheterization were interrogated by scRNA-Seq combined with 49 surface markers (CITE-Seq). CAD severity was quantified using Gensini scores, with scores above 30 considered CAD+ and below 6 considered CAD-. Four pairs of groups were matched for clinical and demographic parameters. To test how sex and DM changed cell proportions and gene expression, we compared matched groups of men and women, as well as diabetic and non-diabetic subjects. We analyzed 41,782 single CD4+ T cell transcriptomes for sex differences in 16 women and 45 men with and without coronary artery disease and with and without DM. We identified 16 clusters in CD4+ T cells. The proportion of cells in CD4+ effector memory cluster 8 (CD4T8, CCR2+ Em) was significantly decreased in CAD+, especially among DM+ participants. This same cluster, CD4T8, was significantly decreased in female participants, along with two other CD4+ T cell clusters. In CD4+ T cells, 31 genes showed significant and coordinated upregulation in both CAD and DM. The DM gene signature was partially additive to the CAD gene signature. We conclude that (1) CAD and DM are clearly reflected in PBMC transcriptomes, and (2) significant differences exist between women and men and (3) between subjects with DM and non-DM.
Collapse
|
50
|
Zhu H, Galdos FX, Lee D, Waliany S, Huang YV, Ryan J, Dang K, Neal JW, Wakelee HA, Reddy SA, Srinivas S, Lin LL, Witteles RM, Maecker HT, Davis MM, Nguyen PK, Wu SM. Identification of Pathogenic Immune Cell Subsets Associated With Checkpoint Inhibitor-Induced Myocarditis. Circulation 2022; 146:316-335. [PMID: 35762356 PMCID: PMC9397491 DOI: 10.1161/circulationaha.121.056730] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are monoclonal antibodies used to activate the immune system against tumor cells. Despite therapeutic benefits, ICIs have the potential to cause immune-related adverse events such as myocarditis, a rare but serious side effect with up to 50% mortality in affected patients. Histologically, patients with ICI myocarditis have lymphocytic infiltrates in the heart, implicating T cell-mediated mechanisms. However, the precise pathological immune subsets and molecular changes in ICI myocarditis are unknown. METHODS To identify immune subset(s) associated with ICI myocarditis, we performed time-of-flight mass cytometry on peripheral blood mononuclear cells from 52 individuals: 29 patients with autoimmune adverse events (immune-related adverse events) on ICI, including 8 patients with ICI myocarditis, and 23 healthy control subjects. We also used multiomics single-cell technology to immunophenotype 30 patients/control subjects using single-cell RNA sequencing, single-cell T-cell receptor sequencing, and cellular indexing of transcriptomes and epitopes by sequencing with feature barcoding for surface marker expression confirmation. To correlate between the blood and the heart, we performed single-cell RNA sequencing/T-cell receptor sequencing/cellular indexing of transcriptomes and epitopes by sequencing on MRL/Pdcd1-/- (Murphy Roths large/programmed death-1-deficient) mice with spontaneous myocarditis. RESULTS Using these complementary approaches, we found an expansion of cytotoxic CD8+ T effector cells re-expressing CD45RA (Temra CD8+ cells) in patients with ICI myocarditis compared with control subjects. T-cell receptor sequencing demonstrated that these CD8+ Temra cells were clonally expanded in patients with myocarditis compared with control subjects. Transcriptomic analysis of these Temra CD8+ clones confirmed a highly activated and cytotoxic phenotype. Longitudinal study demonstrated progression of these Temra CD8+ cells into an exhausted phenotype 2 months after treatment with glucocorticoids. Differential expression analysis demonstrated elevated expression levels of proinflammatory chemokines (CCL5/CCL4/CCL4L2) in the clonally expanded Temra CD8+ cells, and ligand receptor analysis demonstrated their interactions with innate immune cells, including monocytes/macrophages, dendritic cells, and neutrophils, as well as the absence of key anti-inflammatory signals. To complement the human study, we performed single-cell RNA sequencing/T-cell receptor sequencing/cellular indexing of transcriptomes and epitopes by sequencing in Pdcd1-/- mice with spontaneous myocarditis and found analogous expansions of cytotoxic clonal effector CD8+ cells in both blood and hearts of such mice compared with controls. CONCLUSIONS Clonal cytotoxic Temra CD8+ cells are significantly increased in the blood of patients with ICI myocarditis, corresponding to an analogous increase in effector cytotoxic CD8+ cells in the blood/hearts of Pdcd1-/- mice with myocarditis. These expanded effector CD8+ cells have unique transcriptional changes, including upregulation of chemokines CCL5/CCL4/CCL4L2, which may serve as attractive diagnostic/therapeutic targets for reducing life-threatening cardiac immune-related adverse events in ICI-treated patients with cancer.
Collapse
Affiliation(s)
- Han Zhu
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Stanford Cardiovascular Institute, Stanford University; Stanford, California 94305, USA,Division of Cardiovascular Medicine, Stanford University School of Medicine; Stanford, California 94305, USA
| | - Francisco X. Galdos
- Stanford Cardiovascular Institute, Stanford University; Stanford, California 94305, USA,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine; Stanford, California 94305
| | - Daniel Lee
- Stanford Cardiovascular Institute, Stanford University; Stanford, California 94305, USA
| | - Sarah Waliany
- Department of Medicine, Stanford University; Stanford, California 94305, USA
| | | | - Julia Ryan
- Stanford Cardiovascular Institute, Stanford University; Stanford, California 94305, USA
| | - Katherine Dang
- University of California, Santa Barbara, California, 93106
| | - Joel W. Neal
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Division of Oncology, Stanford University School of Medicine; Stanford, California 94305, USA.,Stanford Cancer Institute, Stanford University; Stanford, California 94305, USA
| | - Heather A. Wakelee
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Division of Oncology, Stanford University School of Medicine; Stanford, California 94305, USA.,Stanford Cancer Institute, Stanford University; Stanford, California 94305, USA
| | - Sunil A. Reddy
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Division of Oncology, Stanford University School of Medicine; Stanford, California 94305, USA.,Stanford Cancer Institute, Stanford University; Stanford, California 94305, USA
| | - Sandy Srinivas
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Division of Oncology, Stanford University School of Medicine; Stanford, California 94305, USA.,Stanford Cancer Institute, Stanford University; Stanford, California 94305, USA
| | - Lih-Ling Lin
- Checkpoint Immunology Cluster, Immunology and Inflammation, Sanofi US, Cambridge, MA, USA
| | - Ronald M. Witteles
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Division of Cardiovascular Medicine, Stanford University School of Medicine; Stanford, California 94305, USA
| | - Holden T. Maecker
- Department of Microbiology & Immunology, Stanford University School of Medicine; Stanford, California 94305, USA.,Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine; Stanford, California 94305, USA
| | - Mark M. Davis
- Department of Microbiology & Immunology, Stanford University School of Medicine; Stanford, California 94305, USA.,Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine; Stanford, California 94305, USA.,Howard Hughes Medical Institute, Stanford University; Stanford, California 94035
| | - Patricia K. Nguyen
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Stanford Cardiovascular Institute, Stanford University; Stanford, California 94305, USA,Division of Cardiovascular Medicine, Stanford University School of Medicine; Stanford, California 94305, USA
| | - Sean M. Wu
- Department of Medicine, Stanford University; Stanford, California 94305, USA;,Stanford Cardiovascular Institute, Stanford University; Stanford, California 94305, USA,Division of Cardiovascular Medicine, Stanford University School of Medicine; Stanford, California 94305, USA
| |
Collapse
|