1
|
Seo J, Ko R, Kim M, Seo J, Lee H, Kim D, Jeong W, Kim HS, Lee SY. Pim1 promotes the maintenance of bone homeostasis by regulating osteoclast function. Exp Mol Med 2025; 57:733-744. [PMID: 40164682 PMCID: PMC12046003 DOI: 10.1038/s12276-025-01421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/24/2024] [Accepted: 01/05/2025] [Indexed: 04/02/2025] Open
Abstract
The Pim1 (proviral integration site for Moloney leukemia virus 1) protein is a serine/threonine kinase that is essential for cell proliferation, apoptosis and innate immune responses. Here we show that Pim1 promotes osteoclast resorptive function without affecting osteoclast numbers. Specifically, we found that mice lacking Pim1 (Pim1-/-) developed increased trabecular bone mass and indices such as trabecular bone-mass density. This was due to the direct phosphorylation of TRAF6 by Pim1 in mature osteoclasts, which activated the Akt-GSK3β signaling pathway. This, in turn, promoted the acetylation and consequent stabilization of microtubules, which permitted the formation of the osteoclast sealing zone. In vivo experiments then showed that, when mice with lipopolysaccharide-induced bone loss or tumor-induced osteolysis were treated with SGI-1776, a Pim1 inhibitor that is more selective for Pim1, the bone loss was significantly ameliorated. Thus, Pim1 plays an important role in osteoclast function and may be a therapeutic target for bone-related diseases.
Collapse
Affiliation(s)
- Jeongin Seo
- Department of Life Science, Ewha Womans University, Seoul, South Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea
- Brain Korea 21 FOUR Program, LIFE Talent Development for Future Response, Ewha Womans University, Seoul, South Korea
| | - Ryeojin Ko
- Department of Life Science, Ewha Womans University, Seoul, South Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea
| | - Minhee Kim
- Department of Life Science, Ewha Womans University, Seoul, South Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea
- Brain Korea 21 FOUR Program, LIFE Talent Development for Future Response, Ewha Womans University, Seoul, South Korea
| | - Jeongmin Seo
- Department of Life Science, Ewha Womans University, Seoul, South Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea
| | - Hana Lee
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Doyong Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Woojin Jeong
- Department of Life Science, Ewha Womans University, Seoul, South Korea
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea
- Brain Korea 21 FOUR Program, LIFE Talent Development for Future Response, Ewha Womans University, Seoul, South Korea
| | - Han Sung Kim
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Soo Young Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea.
- Multitasking Macrophage Research Center, Ewha Womans University, Seoul, South Korea.
- Brain Korea 21 FOUR Program, LIFE Talent Development for Future Response, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
2
|
Li Y, Ren S, Zhou S. Advances in sepsis research: Insights into signaling pathways, organ failure, and emerging intervention strategies. Exp Mol Pathol 2025; 142:104963. [PMID: 40139086 DOI: 10.1016/j.yexmp.2025.104963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Sepsis is a complex syndrome resulting from an aberrant host response to infection. A hallmark of sepsis is the failure of the immune system to restore balance, characterized by hyperinflammation or immunosuppression. However, the net effect of immune system imbalance and the clinical manifestations are highly heterogeneous among patients. In recent years, research interest has shifted from focusing on the pathogenicity of microorganisms to the molecular mechanisms of host responses which is also associated with biomarkers that can help early diagnose sepsis and guide treatment decisions. Despite significant advancements in medical science, sepsis remains a major challenge in healthcare, contributing to substantial morbidity and mortality worldwide. Further research is needed to improve our understanding of this condition and develop novel therapies to improve outcomes for patients with sepsis. This review explores the related signal pathways of sepsis and underscores recent advancements in understanding its mechanisms. Exploration of diverse biomarkers and the emerging concept of sepsis endotypes offer promising avenues for precision therapy in the future.
Collapse
Affiliation(s)
- Yehua Li
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, PR China.
| | - Siying Ren
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Shen'ao Zhou
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, CAS. Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
3
|
Kudo M, Yamamoto S, Hiraga SI, Masuda T. Understanding stress-induced transmission of peripherally derived factors into the brain and responses in non-neuronal cells. J Neurochem 2025; 169:e16262. [PMID: 39709597 DOI: 10.1111/jnc.16262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 12/24/2024]
Abstract
Stress is a significant cause of mental disorders, for which effective treatments remain limited due to an insufficient understanding of its pathogenic mechanisms. Recent research has increasingly focused on non-neuronal cells to elucidate the molecular mechanisms underlying psychopathology. In this review, we summarize the current knowledge on how non-neuronal cells in the central nervous system, including microglia, astrocytes, and oligodendrocytes, respond to peripherally derived stress-related factors and how these responses contribute to the development of mental disorders. A more comprehensive understanding of stress-induced alterations, with careful consideration of the type and timing of stress exposure, will provide fundamental insights into the pathogenesis of diverse stress-related mental disorders.
Collapse
Affiliation(s)
- Mikiko Kudo
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shota Yamamoto
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shin-Ichiro Hiraga
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takahiro Masuda
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Tao J, Li J, Fan X, Jiang C, Wang Y, Qin M, Nikfard Z, Nikfard F, Wang Y, Zhao T, Xing N, Zille M, Wang J, Zhang J, Chen X, Wang J. Unraveling the protein post-translational modification landscape: Neuroinflammation and neuronal death after stroke. Ageing Res Rev 2024; 101:102489. [PMID: 39277050 DOI: 10.1016/j.arr.2024.102489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
The impact of stroke on global health is profound, with both high mortality and morbidity rates. This condition can result from cerebral ischemia, intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH). The pathophysiology of stroke involves secondary damage and irreversible loss of neuronal function. Post-translational modifications (PTMs) have been recognized as crucial regulatory mechanisms in ischemic and hemorrhagic stroke-induced brain injury. These PTMs include phosphorylation, glycosylation, ubiquitination, SUMOylation, acetylation, and succinylation. This comprehensive review delves into recent research on the PTMs landscape associated with neuroinflammation and neuronal death specific to cerebral ischemia, ICH, and SAH. This review aims to explain the role of PTMs in regulating pathologic mechanisms and present critical techniques and proteomic strategies for identifying PTMs. This knowledge helps us comprehend the underlying mechanisms of stroke injury and repair processes, leading to the development of innovative treatment strategies. Importantly, this review underscores the significance of exploring PTMs to understand the pathophysiology of stroke.
Collapse
Affiliation(s)
- Jin Tao
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jiaxin Li
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China
| | - Chao Jiang
- Department of Neurology, People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P. R. China
| | - Yebin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Mengzhe Qin
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Zahra Nikfard
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China; School of International Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Fatemeh Nikfard
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China; School of International Education, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yunchao Wang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Ting Zhao
- Department of Neurology, People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P. R. China
| | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna 1090, Austria
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China.
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University & Henan Provincial People's Hospital, Zhengzhou, Henan 450003, P. R. China.
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China.
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P. R. China; Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China.
| |
Collapse
|
5
|
Cheng J, Wu L, Chen X, Li S, Xu Z, Sun R, Huang Y, Wang P, Ouyang J, Pei P, Yang H, Wang G, Zhen X, Zheng LT. Polo-like kinase 2 promotes microglial activation via regulation of the HSP90α/IKKβ pathway. Cell Rep 2024; 43:114827. [PMID: 39383034 DOI: 10.1016/j.celrep.2024.114827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/19/2024] [Accepted: 09/19/2024] [Indexed: 10/11/2024] Open
Abstract
Polo-like kinase 2 (PLK2) is a serine/threonine protein kinase associated with the regulation of synaptic plasticity and centriole duplication. We identify PLK2 as a crucial early-response gene in lipopolysaccharide (LPS)-stimulated microglial cells. Knockdown or inhibition of PLK2 remarkably attenuates LPS-induced expression of proinflammatory factors in microglial cells by suppressing the inhibitor of nuclear factor kappa B kinase subunit beta (IKKβ)-nuclear factor (NF)-κB signaling pathway. We identify heat shock protein 90 alpha (HSP90α), a regulator of IKKβ activity, as a novel PLK2 substrate. Knockdown or pharmacological inhibition of HSP90α abolishes PLK2-mediated activation of NF-κB transcriptional activity and microglial inflammatory activation. Furthermore, phosphoproteomic analysis pinpoints Ser252 and Ser263 on HSP90α as novel phosphorylation targets of PLK2. Lastly, conditional knockout of PLK2 in microglial cells dramatically ameliorates neuroinflammation and subsequent dopaminergic neuron loss in an intracranial LPS-induced mouse Parkinson's disease (PD) model. The present study reveals that PLK2 promotes microglial activation through the phosphorylation of HSP90α and subsequent activation of the IKKβ-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Junjie Cheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Lei Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaowan Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shuai Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhirou Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Renjuan Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yiwei Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Peng Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jiawei Ouyang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Panpan Pei
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Huicui Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Guanghui Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Long-Tai Zheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
6
|
Eden M, Leye M, Hahn J, Heilein E, Luzarowski M, Völschow B, Tannert C, Sossalla S, Lucena-Porcel C, Frank D, Frey N. Mst4, a novel cardiac STRIPAK complex-associated kinase, regulates cardiomyocyte growth and survival and is upregulated in human cardiomyopathy. J Biol Chem 2024; 300:107255. [PMID: 38579991 PMCID: PMC11087964 DOI: 10.1016/j.jbc.2024.107255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024] Open
Abstract
Myocardial failure is associated with adverse remodeling, including loss of cardiomyocytes, hypertrophy, and alterations in cell-cell contacts. Striatin-interacting phosphatase and kinase (STRIPAK) complexes and their mammalian STE20-like kinase 4 (Mst4) have been linked to development of different diseases. The role and targets of Mst4 in cardiomyocytes have not been investigated yet. Multitissue immunoblot experiments show highly enriched Mst4 expression in rodent hearts. Analyses of human biopsy samples from patients suffering from dilated cardiomyopathy revealed that Mst4 is upregulated (5- to 8-fold p < 0.001) compared with nonfailing controls. Increased abundance of Mst4 could also be detected in mouse models of cardiomyopathy. We confirmed that Mst4 interacts with STRIPAK components in neonatal rat ventricular cardiomyocytes, indicating that STRIPAK is present in the heart. Immunofluorescence stainings and molecular interaction studies revealed that Mst4 is localized to the intercalated disc and interacts with several intercalated disc proteins. Overexpression of Mst4 in cardiomyocytes results in hypertrophy compared with controls. In adult rat cardiomyocytes, Mst4 overexpression increases cellular and sarcomeric fractional shortening (p < 0.05), indicating enhanced contractility. Overexpression of Mst4 also inhibits apoptosis shown by reduction of cleaved caspase3 (-69%, p < 0.0001), caspase7 (-80%, p < 0.0001), and cleaved Parp1 (-27%, p < 0.001). To elucidate potential Mst4 targets, we performed phosphoproteomics analyses in neonatal rat cardiomyocytes after Mst4 overexpression and inhibition. The results revealed target candidates of Mst4 at the intercalated disc. We identified Mst4 as a novel cardiac kinase that is upregulated in cardiomyopathy-regulating cardiomyocyte growth and survival.
Collapse
Affiliation(s)
- Matthias Eden
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research, Mannheim/Heidelberg, Germany
| | - Marius Leye
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research, Mannheim/Heidelberg, Germany
| | - Justus Hahn
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research, Mannheim/Heidelberg, Germany
| | - Emanuel Heilein
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research, Mannheim/Heidelberg, Germany
| | - Marcin Luzarowski
- Core Facility for Mass Spectrometry and Proteomics, Center for Molecular Biology at Heidelberg University (ZMBH), Heidelberg, Germany
| | - Bill Völschow
- German Centre for Cardiovascular Research, Kiel, Lübeck, Hamburg, Germany; Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Christin Tannert
- German Centre for Cardiovascular Research, Kiel, Lübeck, Hamburg, Germany; Department of Internal Medicine III (Cardiology and Angiology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Samuel Sossalla
- Department of Cardiology, University of Giessen, Giessen and Kerckhoff Heart and Lung Centre, Giessen, Germany
| | - Carlota Lucena-Porcel
- Tissue Bank of the National Center of Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Derk Frank
- German Centre for Cardiovascular Research, Kiel, Lübeck, Hamburg, Germany; Department of Internal Medicine III (Cardiology and Angiology), University Hospital Schleswig-Holstein, Kiel, Germany
| | - Norbert Frey
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany; German Centre for Cardiovascular Research, Mannheim/Heidelberg, Germany.
| |
Collapse
|
7
|
Caputo M, Andersson E, Xia Y, Hou W, Cansby E, Erikson M, Lind DE, Hallberg B, Amrutkar M, Mahlapuu M. Genetic Ablation of STE20-Type Kinase MST4 Does Not Alleviate Diet-Induced MASLD Susceptibility in Mice. Int J Mol Sci 2024; 25:2446. [PMID: 38397122 PMCID: PMC10888586 DOI: 10.3390/ijms25042446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and its advanced subtype, metabolic dysfunction-associated steatohepatitis (MASH), have emerged as the most common chronic liver disease worldwide, yet there is no targeted pharmacotherapy presently available. This study aimed to investigate the possible in vivo function of STE20-type protein kinase MST4, which was earlier implicated in the regulation of hepatocellular lipotoxic milieu in vitro, in the control of the diet-induced impairment of systemic glucose and insulin homeostasis as well as MASLD susceptibility. Whole-body and liver-specific Mst4 knockout mice were generated by crossbreeding conditional Mst4fl/fl mice with mice expressing Cre recombinase under the Sox2 or Alb promoters, respectively. To replicate the environment in high-risk subjects, Mst4-/- mice and their wild-type littermates were fed a high-fat or a methionine-choline-deficient (MCD) diet. Different in vivo tests were conducted in obese mice to describe the whole-body metabolism. MASLD progression in the liver and lipotoxic damage to adipose tissue, kidney, and skeletal muscle were analyzed by histological and immunofluorescence analysis, biochemical assays, and protein and gene expression profiling. In parallel, intracellular fat storage and oxidative stress were assessed in primary mouse hepatocytes, where MST4 was silenced by small interfering RNA. We found that global MST4 depletion had no effect on body weight or composition, locomotor activity, whole-body glucose tolerance or insulin sensitivity in obese mice. Furthermore, we observed no alterations in lipotoxic injuries to the liver, adipose, kidney, or skeletal muscle tissue in high-fat diet-fed whole-body Mst4-/- vs. wild-type mice. Liver-specific Mst4-/- mice and wild-type littermates displayed a similar severity of MASLD when subjected to an MCD diet, as evidenced by equal levels of steatosis, inflammation, hepatic stellate cell activation, fibrosis, oxidative/ER stress, and apoptosis in the liver. In contrast, the in vitro silencing of MST4 effectively protected primary mouse hepatocytes against ectopic lipid accumulation and oxidative cell injury triggered by exposure to fatty acids. In summary, these results suggest that the genetic ablation of MST4 in mice does not mitigate the initiation or progression of MASLD and has no effect on systemic glucose or insulin homeostasis in the context of nutritional stress. The functional compensation for the genetic loss of MST4 by yet undefined mechanisms may contribute to the apparent discrepancy between in vivo and in vitro phenotypic consequences of MST4 silencing.
Collapse
Affiliation(s)
- Mara Caputo
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Emma Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Ying Xia
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Wei Hou
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Max Erikson
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Dan Emil Lind
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg and Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg and Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Manoj Amrutkar
- Department of Pathology, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| |
Collapse
|
8
|
Chen D, Lou Q, Song XJ, Kang F, Liu A, Zheng C, Li Y, Wang D, Qun S, Zhang Z, Cao P, Jin Y. Microglia govern the extinction of acute stress-induced anxiety-like behaviors in male mice. Nat Commun 2024; 15:449. [PMID: 38200023 PMCID: PMC10781988 DOI: 10.1038/s41467-024-44704-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Anxiety-associated symptoms following acute stress usually become extinct gradually within a period of time. However, the mechanisms underlying how individuals cope with stress to achieve the extinction of anxiety are not clear. Here we show that acute restraint stress causes an increase in the activity of GABAergic neurons in the CeA (GABACeA) in male mice, resulting in anxiety-like behaviors within 12 hours; meanwhile, elevated GABACeA neuronal CX3CL1 secretion via MST4 (mammalian sterile-20-like kinase 4)-NF-κB-CX3CL1 signaling consequently activates microglia in the CeA. Activated microglia in turn inhibit GABACeA neuronal activity via the engulfment of their dendritic spines, ultimately leading to the extinction of anxiety-like behaviors induced by restraint stress. These findings reveal a dynamic molecular and cellular mechanism in which microglia drive a negative feedback to inhibit GABACeA neuronal activity, thus facilitating maintenance of brain homeostasis in response to acute stress.
Collapse
Grants
- 32025017 National Natural Science Foundation of China (National Science Foundation of China)
- 32121002 National Natural Science Foundation of China (National Science Foundation of China)
- 82101300 National Natural Science Foundation of China (National Science Foundation of China)
- U22A20305 National Natural Science Foundation of China (National Science Foundation of China)
- the National Key Research and Development Program of China (STI2030-Major Projects 2021ZD0203100), Plans for Major Provincial Science & Technology Projects (202303a07020002), the CAS Project for Young Scientists in Basic Research (YSBR-013), the Innovative Research Team of High-level Local Universities in Shanghai (SHSMU-ZDCX20211902), the Institute of Health and Medicine (OYZD20220007)
- the China National Postdoctoral Program for Innovative Talents (BX20220283), the China Postdoctoral Science Foundation (2023M733395)
- Youth Innovation Promotion Association CAS, CAS Collaborative Innovation Program of Hefei Science Center (2021HSC-CIP013), the Fundamental Research Funds for the Central Universities (WK9100000030), USTC Research Funds of the Double First-Class Initiative (YD9100002018), the Natural Science Foundation of Anhui Province (2208085J30), and USTC Tang Scholar.
Collapse
Affiliation(s)
- Danyang Chen
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Qianqian Lou
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Xiang-Jie Song
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Fang Kang
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - An Liu
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230022, China
| | - Changjian Zheng
- Department of Anesthesiology, the First Affiliated Hospital of Wannan Medical College, Wuhu, 241002, China
| | - Yanhua Li
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Di Wang
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Sen Qun
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Zhi Zhang
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- The Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Peng Cao
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Yan Jin
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
9
|
Cao J, Ji L, Zhan Y, Shao X, Xu P, Wu B, Chen P, Cheng L, Zhuang X, Ou Y, Hua F, Sun L, Li F, Chen H, Zhou Z, Cheng Y. MST4 kinase regulates immune thrombocytopenia by phosphorylating STAT1-mediated M1 polarization of macrophages. Cell Mol Immunol 2023; 20:1413-1427. [PMID: 37833401 PMCID: PMC10687271 DOI: 10.1038/s41423-023-01089-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Primary immune thrombocytopenia (ITP) is an autoimmune hemorrhagic disorder in which macrophages play a critical role. Mammalian sterile-20-like kinase 4 (MST4), a member of the germinal-center kinase STE20 family, has been demonstrated to be a regulator of inflammation. Whether MST4 participates in the macrophage-dependent inflammation of ITP remains elusive. The expression and function of MST4 in macrophages of ITP patients and THP-1 cells, and of a macrophage-specific Mst4-/- (Mst4ΔM/ΔM) ITP mouse model were determined. Macrophage phagocytic assays, RNA sequencing (RNA-seq) analysis, immunofluorescence analysis, coimmunoprecipitation (co-IP), mass spectrometry (MS), bioinformatics analysis, and phosphoproteomics analysis were performed to reveal the underlying mechanisms. The expression levels of the MST4 gene were elevated in the expanded M1-like macrophages of ITP patients, and this elevated expression of MST4 was restored to basal levels in patients with remission after high-dose dexamethasone treatment. The expression of the MST4 gene was significantly elevated in THP-1-derived M1 macrophages. Silencing of MST4 decreased the expression of M1 macrophage markers and cytokines, and impaired phagocytosis, which could be increased by overexpression of MST4. In a passive ITP mouse model, macrophage-specific depletion of Mst4 reduced the numbers of M1 macrophages in the spleen and peritoneal lavage fluid, attenuated the expression of M1 cytokines, and promoted the predominance of FcγRIIb in splenic macrophages, which resulted in amelioration of thrombocytopenia. Downregulation of MST4 directly inhibited STAT1 phosphorylation, which is essential for M1 polarization of macrophages. Our study elucidates a critical role for MST4 kinase in the pathology of ITP and identifies MST4 kinase as a potential therapeutic target for refractory ITP.
Collapse
Affiliation(s)
- Jingjing Cao
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lili Ji
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yanxia Zhan
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xia Shao
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Pengcheng Xu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Boting Wu
- Department of Transfusion Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Pu Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Luya Cheng
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xibing Zhuang
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yang Ou
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Fanli Hua
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, 201700, China
| | - Lihua Sun
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, 201700, China
| | - Feng Li
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, 201700, China
| | - Hao Chen
- Department of Thoracic Surgery, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, China.
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai, 200438, China.
| | - Yunfeng Cheng
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, 201700, China.
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Jiao S, Li C, Guo F, Zhang J, Zhang H, Cao Z, Wang W, Bu W, Lin M, Lü J, Zhou Z. SUN1/2 controls macrophage polarization via modulating nuclear size and stiffness. Nat Commun 2023; 14:6416. [PMID: 37828059 PMCID: PMC10570371 DOI: 10.1038/s41467-023-42187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
Alteration of the size and stiffness of the nucleus triggered by environmental cues are thought to be important for eukaryotic cell fate and function. However, it remains unclear how context-dependent nuclear remodeling occurs and reprograms gene expression. Here we identify the nuclear envelope proteins SUN1/2 as mechano-regulators of the nucleus during M1 polarization of the macrophage. Specifically, we show that LPS treatment decreases the protein levels of SUN1/2 in a CK2-βTrCP-dependent manner to shrink and soften the nucleus, therefore altering the chromatin accessibility for M1-associated gene expression. Notably, the transmembrane helix of SUN1/2 is solely required and sufficient for the nuclear mechano-remodeling. Consistently, SUN1/2 depletion in macrophages facilitates their phagocytosis, tissue infiltration, and proinflammatory cytokine production, thereby boosting the antitumor immunity in mice. Thus, our study demonstrates that, in response to inflammatory cues, SUN1/2 proteins act as mechano-regulators to remodel the nucleus and chromatin for M1 polarization of the macrophage.
Collapse
Affiliation(s)
- Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| | - Chuanchuan Li
- CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 417 E 68th St, New York, NY, 10065, USA
| | - Fenghua Guo
- Department of General Surgery, Hua'shan Hospital, Fudan University Shanghai Medical College, Shanghai, 200040, China
| | - Jinjin Zhang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Zhifa Cao
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200072, China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Wenbo Bu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Mobin Lin
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China.
| | - Junhong Lü
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201203, China.
- College of Pharmacy, Binzhou Medical University, Yantai, 264003, China.
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, 200072, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
11
|
Caputo M, Xia Y, Anand SK, Cansby E, Andersson E, Marschall HU, Königsrainer A, Peter A, Mahlapuu M. STE20-type kinases MST3 and MST4 promote the progression of hepatocellular carcinoma: Evidence from human cell culture and expression profiling of liver biopsies. FASEB J 2023; 37:e23105. [PMID: 37490000 DOI: 10.1096/fj.202300397rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most fatal and fastest growing malignancies. Recently, nonalcoholic steatohepatitis (NASH), characterized by liver steatosis, inflammation, cell injury (hepatocyte ballooning), and different stages of fibrosis, has emerged as a major catalyst for HCC. Because the STE20-type kinases, MST3 and MST4, have been described as critical molecular regulators of NASH pathophysiology, we here focused on determining the relevance of these proteins in human HCC. By analyzing public datasets and in-house cohorts, we found that hepatic MST3 and MST4 expression was positively correlated with the incidence and severity of HCC. We also found that the silencing of both MST3 and MST4, but also either of them individually, markedly suppressed the tumorigenesis of human HCC cells including attenuated proliferation, migration, invasion, and epithelial-mesenchymal transition. Mechanistic investigations revealed lower activation of STAT3 signaling in MST3/MST4-deficient hepatocytes and identified GOLGA2 and STRIPAK complex as the binding partners of both MST3 and MST4. These findings reveal that MST3 and MST4 play a critical role in promoting the progression of HCC and suggest that targeting these kinases may provide a novel strategy for the treatment of liver cancer.
Collapse
Affiliation(s)
- Mara Caputo
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ying Xia
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sumit Kumar Anand
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emma Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
12
|
Getu AA, Zhou M, Cheng SY, Tan M. The mammalian Sterile 20-like kinase 4 (MST4) signaling in tumor progression: Implications for therapy. Cancer Lett 2023; 563:216183. [PMID: 37094736 PMCID: PMC10642761 DOI: 10.1016/j.canlet.2023.216183] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 04/26/2023]
Abstract
Cancer is a leading cause of death in humans, with a complex and dynamic nature that makes it challenging to fully comprehend and treat. The Mammalian Sterile 20-Like Kinase 4 (MST4 or STK26) is a serine/threonine-protein kinase that plays a crucial role in cell migration and polarity in both normal and tumor cells via activation of intracellular signaling molecules and pathways. MST4 is involved in tumor cell proliferation, migration and invasion, epithelial-mesenchymal transition (EMT), survival, and cancer metastasis through modulation of downstream signaling pathways including the extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) pathways. Additionally, MST4 interacts with programmed cell death 10 (PDCD10) to promote tumor proliferation and migration. MST4 phosphorylates autophagy related 4B cysteine peptidase (ATG4B) to mediate autophagy signaling, promote tumor cell survival and proliferation, and contribute to treatment resistance. Taken together, MST4 functions as an oncogene and is a promising therapeutic target which deserves further exploration.
Collapse
Affiliation(s)
- Ayechew A Getu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Department of Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Ming Zhou
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Shi-Yuan Cheng
- The Ken & Ruth Davee Department of Neurology, Lou & Jean Malnati Brain Tumor Institute at Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Ming Tan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan; Institute of Biochemistry & Molecular Biology, China Medical University, Taichung, 406040, Taiwan.
| |
Collapse
|
13
|
Mao Y, Li D, Chen R, Ma C, Xiong J, Zhang K. Comparative genomics studies on the stk gene family in vertebrates: From the bighead carp (Hypophthalmichthys nobilis) genome. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108642. [PMID: 36858329 DOI: 10.1016/j.fsi.2023.108642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The mammalian sterile 20-like (MST) family belongs to the serine/threonine protein kinase (STK) superfamily and participates in a variety of biological processes, such as cell apoptosis, polarity, migration, immune regulation, inflammatory responses, and cancer. In the economically important bighead carp (Hypophthalmichthys nobilis), the STK gene family and immune-related biological functions may be helpful in increasing its economic yield. However, the comprehensive role of STKs in the bighead carp remains unclear. In this study, the five stk sequences from the bighead carp were divided into two classes: stk3/4 and stk24/25/26. Gene structure and motif prediction analyses confirmed that stk is conserved in the bighead carp. Compared to 26 other vertebrate species, teleosts (including bighead carp) possess more stk members because of teleost-specific whole-genome duplication. Synteny analysis revealed that stk3, stk24, stk25, and stk26 have been relatively conserved in bighead carp during evolution. Meanwhile, stk4 was lost in most Cyprinid species, including bighead carp, during evolution. RNA-seq data revealed that STK expression was associated with various pathogens, and the expression of these STKs (Hnstk3, Hnstk24a, Hnstk24b, Hnstk25, and Hnstk26) was different in seven tissues of bighead carp. In addition, we showed that STK expression levels were dramatically altered in the head kidney and that stk24 was involved in defense against Aeromonas hydrophila. This study provides a molecular basis for the analysis of stk function in bighead carp, and can be used as a reference for further phylogenomics.
Collapse
Affiliation(s)
- Yang Mao
- Clinical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Defeng Li
- Clinical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Rongrong Chen
- Clinical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Caifeng Ma
- Clinical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Junzhi Xiong
- Clinical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Kebin Zhang
- Clinical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
14
|
Chen Y, Wang P, Li Q, Yan X, Xu T. The protease calpain2a limits innate immunity by targeting TRAF6 in teleost fish. Commun Biol 2023; 6:355. [PMID: 37002312 PMCID: PMC10066338 DOI: 10.1038/s42003-023-04711-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
TNF receptor-associated factor 6 (TRAF6) plays a key signal transduction role in both antibacterial and antiviral signaling pathways. However, the regulatory mechanisms of TRAF6 in lower vertebrates are less reported. In this study, we identify calpain2a, is a member of the calcium-dependent proteases family with unique hydrolytic enzyme activity, functions as a key regulator for antibacterial and antiviral immunity in teleost fish. Upon lipopolysaccharide (LPS) stimulation, knockdown of calpain2a promotes the upregulation of inflammatory cytokines. Mechanistically, calpain2a interacts with TRAF6 and reduces the protein level of TRAF6 by hydrolyzing. After loss of enzymatic activity, mutant calpain2a competitively inhibits dimer formation and auto-ubiquitination of TRAF6. Knockdown of calpain2a also promotes cellular antiviral response. Mutant calpain2a lacking hydrolase activity represses ubiquitination of IFN regulatory factor (IRF) 3/7 from TRAF6. Taken together, these findings classify calpain2a is a negative regulator of innate immune responses by targeting TRAF6 in teleost fish.
Collapse
Affiliation(s)
- Yang Chen
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Pengfei Wang
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Qi Li
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
15
|
Perrelli A, Ferraris C, Berni E, Glading AJ, Retta SF. KRIT1: A Traffic Warden at the Busy Crossroads Between Redox Signaling and the Pathogenesis of Cerebral Cavernous Malformation Disease. Antioxid Redox Signal 2023; 38:496-528. [PMID: 36047808 PMCID: PMC10039281 DOI: 10.1089/ars.2021.0263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 12/18/2022]
Abstract
Significance: KRIT1 (Krev interaction trapped 1) is a scaffolding protein that plays a critical role in vascular morphogenesis and homeostasis. Its loss-of-function has been unequivocally associated with the pathogenesis of Cerebral Cavernous Malformation (CCM), a major cerebrovascular disease of genetic origin characterized by defective endothelial cell-cell adhesion and ensuing structural alterations and hyperpermeability in brain capillaries. KRIT1 contributes to the maintenance of endothelial barrier function by stabilizing the integrity of adherens junctions and inhibiting the formation of actin stress fibers. Recent Advances: Among the multiple regulatory mechanisms proposed so far, significant evidence accumulated over the past decade has clearly shown that the role of KRIT1 in the stability of endothelial barriers, including the blood-brain barrier, is largely based on its involvement in the complex machinery governing cellular redox homeostasis and responses to oxidative stress and inflammation. KRIT1 loss-of-function has, indeed, been demonstrated to cause an impairment of major redox-sensitive mechanisms involved in spatiotemporal regulation of cell adhesion and signaling, which ultimately leads to decreased cell-cell junction stability and enhanced sensitivity to oxidative stress and inflammation. Critical Issues: This review explores the redox mechanisms that influence endothelial cell adhesion and barrier function, focusing on the role of KRIT1 in such mechanisms. We propose that this supports a novel model wherein redox signaling forms the common link between the various pathogenetic mechanisms and therapeutic approaches hitherto associated with CCM disease. Future Directions: A comprehensive characterization of the role of KRIT1 in redox control of endothelial barrier physiology and defense against oxy-inflammatory insults will provide valuable insights into the development of precision medicine strategies. Antioxid. Redox Signal. 38, 496-528.
Collapse
Affiliation(s)
- Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Chiara Ferraris
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Elisa Berni
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Angela J. Glading
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| |
Collapse
|
16
|
Tufano M, Marrone L, D'Ambrosio C, Di Giacomo V, Urzini S, Xiao Y, Matuozzo M, Scaloni A, Romano MF, Romano S. FKBP51 plays an essential role in Akt ubiquitination that requires Hsp90 and PHLPP. Cell Death Dis 2023; 14:116. [PMID: 36781840 PMCID: PMC9925821 DOI: 10.1038/s41419-023-05629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
FKBP51 plays a relevant role in sustaining cancer cells, particularly melanoma. This cochaperone participates in several signaling pathways. FKBP51 forms a complex with Akt and PHLPP, which is reported to dephosphorylate Akt. Given the recent discovery of a spliced FKBP51 isoform, in this paper, we interrogate the canonical and spliced isoforms in regulation of Akt activation. We show that the TPR domain of FKBP51 mediates Akt ubiquitination at K63, which is an essential step for Akt activation. The spliced FKBP51, lacking such domain, cannot link K63-Ub residues to Akt. Unexpectedly, PHLPP silencing does not foster phosphorylation of Akt, and its overexpression even induces phosphorylation of Akt. PHLPP stabilizes levels of E3-ubiquitin ligase TRAF6 and supports K63-ubiquitination of Akt. The interactome profile of FKBP51 from melanoma cells highlights a relevant role for PHLPP in improving oncogenic hallmarks, particularly, cell proliferation.
Collapse
Affiliation(s)
- Martina Tufano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
| | - Laura Marrone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
| | - Chiara D'Ambrosio
- Proteomics, Metabolomics and Mass Spectrometry Laboratory Institute for Animal Production Systems in Mediterranean Environments (ISPAAM), National Research Council (CNR), Piazzale Enrico Fermi 1, Portici, 80055, Naples, Italy
| | - Valeria Di Giacomo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
| | - Simona Urzini
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy
| | - Yichuan Xiao
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Monica Matuozzo
- Proteomics, Metabolomics and Mass Spectrometry Laboratory Institute for Animal Production Systems in Mediterranean Environments (ISPAAM), National Research Council (CNR), Piazzale Enrico Fermi 1, Portici, 80055, Naples, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics and Mass Spectrometry Laboratory Institute for Animal Production Systems in Mediterranean Environments (ISPAAM), National Research Council (CNR), Piazzale Enrico Fermi 1, Portici, 80055, Naples, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy.
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy.
| |
Collapse
|
17
|
Liu J, Han L, Li G, Zhang A, Liu X, Zhao M. Transcriptome and metabolome profiling of the medicinal plant Veratrum mengtzeanum reveal key components of the alkaloid biosynthesis. Front Genet 2023; 14:1023433. [PMID: 36741317 PMCID: PMC9895797 DOI: 10.3389/fgene.2023.1023433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Veratrum mengtzeanum is the main ingredient for Chinese folk medicine known as "Pimacao" due to its unique alkaloids. A diverse class of plant-specific metabolites having key pharmacological activities. There are limited studies on alkaloid synthesis and its metabolic pathways in plants. To elucidate the alkaloid pathway and identify novel biosynthetic enzymes and compounds in V. mengtzeanum, transcriptome and metabolome profiling has been conducted in leaves and roots. The transcriptome of V. mengtzeanum leaves and roots yielded 190,161 unigenes, of which 33,942 genes expressed differentially (DEGs) in both tissues. Three enriched regulatory pathways (isoquinoline alkaloid biosynthesis, indole alkaloid biosynthesis and tropane, piperidine and pyridine alkaloid biosynthesis) and a considerable number of genes such as AED3-like, A4U43, 21 kDa protein-like, 3-O-glycotransferase 2-like, AtDIR19, MST4, CASP-like protein 1D1 were discovered in association with the biosynthesis of alkaloids in leaves and roots. Some transcription factor families, i.e., AP2/ERF, GRAS, NAC, bHLH, MYB-related, C3H, FARI, WRKY, HB-HD-ZIP, C2H2, and bZIP were also found to have a prominent role in regulating the synthesis of alkaloids and steroidal alkaloids in the leaves and roots of V. mengtzeanum. The metabolome analysis revealed 74 significantly accumulated metabolites, with 55 differentially accumulated in leaves compared to root tissues. Out of 74 metabolites, 18 alkaloids were highly accumulated in the roots. A novel alkaloid compound viz; 3-Vanilloylygadenine was discovered in root samples. Conjoint analysis of transcriptome and metabolome studies has also highlighted potential genes involved in regulation and transport of alkaloid compounds. Here, we have presented a comprehensive metabolic and transcriptome profiling of V. mengtzeanum tissues. In earlier reports, only the roots were reported as a rich source of alkaloid biosynthesis, but the current findings revealed both leaves and roots as significant manufacturing factories for alkaloid biosynthesis.
Collapse
Affiliation(s)
- Jiajia Liu
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Lijun Han
- Yunnan Key Laboratory for Dai and Yi Medicines, University of Chinese Medicine Kunming, Kunming, China
| | - Guodong Li
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Aili Zhang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiaoli Liu
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China
| | - Mingzhi Zhao
- Kunming Medical University Haiyuan College, Kunming, China,*Correspondence: Mingzhi Zhao,
| |
Collapse
|
18
|
Mahlapuu M, Caputo M, Xia Y, Cansby E. GCKIII kinases in lipotoxicity: Roles in NAFLD and beyond. Hepatol Commun 2022; 6:2613-2622. [PMID: 35641240 PMCID: PMC9512487 DOI: 10.1002/hep4.2013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is defined by excessive accumulation of lipid droplets within hepatocytes. The STE20-type kinases comprising the germinal center kinase III (GCKIII) subfamily - MST3, MST4, and STK25 - decorate intrahepatocellular lipid droplets and have recently emerged as critical regulators of the initiation and progression of NAFLD. While significant advancement has been made toward deciphering the role of GCKIII kinases in hepatic fat accumulation (i.e., steatosis) as well as the aggravation of NAFLD into its severe form nonalcoholic steatohepatitis (NASH), much remains to be resolved. This review provides a brief overview of the recent studies in patient cohorts, cultured human cells, and mouse models, which have characterized the function of MST3, MST4, and STK25 in the regulation of hepatic lipid accretion, meta-inflammation, and associated cell damage in the context of NAFLD/NASH. We also highlight the conflicting data and emphasize future research directions that are needed to advance our understanding of GCKIII kinases as potential targets in the therapy of NAFLD and its comorbidities. Conclusions: Several lines of evidence suggest that GCKIII proteins govern the susceptibility to hepatic lipotoxicity and that pharmacological inhibition of these kinases could mitigate NAFLD development and aggravation. Comprehensive characterization of the molecular mode-of-action of MST3, MST4, and STK25 in hepatocytes as well as extrahepatic tissues is important, especially in relation to their impact on carcinogenesis, to fully understand the efficacy as well as safety of GCKIII antagonism.
Collapse
Affiliation(s)
- Margit Mahlapuu
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Mara Caputo
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Ying Xia
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| |
Collapse
|
19
|
Song D, Yeh CT, Wang J, Guo F. Perspectives on the mechanism of pyroptosis after intracerebral hemorrhage. Front Immunol 2022; 13:989503. [PMID: 36131917 PMCID: PMC9484305 DOI: 10.3389/fimmu.2022.989503] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/17/2022] [Indexed: 12/18/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a highly harmful neurological disorder with high rates of mortality, disability, and recurrence. However, effective therapies are not currently available. Secondary immune injury and cell death are the leading causes of brain injury and a poor prognosis. Pyroptosis is a recently discovered form of programmed cell death that differs from apoptosis and necrosis and is mediated by gasdermin proteins. Pyroptosis is caused by multiple pathways that eventually form pores in the cell membrane, facilitating the release of inflammatory substances and causing the cell to rupture and die. Pyroptosis occurs in neurons, glial cells, and endothelial cells after ICH. Furthermore, pyroptosis causes cell death and releases inflammatory factors such as interleukin (IL)-1β and IL-18, leading to a secondary immune-inflammatory response and further brain damage. The NOD-like receptor protein 3 (NLRP3)/caspase-1/gasdermin D (GSDMD) pathway plays the most critical role in pyroptosis after ICH. Pyroptosis can be inhibited by directly targeting NLRP3 or its upstream molecules, or directly interfering with caspase-1 expression and GSDMD formation, thus significantly improving the prognosis of ICH. The present review discusses key pathological pathways and regulatory mechanisms of pyroptosis after ICH and suggests possible intervention strategies to mitigate pyroptosis and brain dysfunction after ICH.
Collapse
Affiliation(s)
- Dengpan Song
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chi-Tai Yeh
- Department of Medical Research and Education, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- *Correspondence: Fuyou Guo, ; Jian Wang, ; Chi-Tai Yeh,
| | - Jian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Fuyou Guo, ; Jian Wang, ; Chi-Tai Yeh,
| | - Fuyou Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Fuyou Guo, ; Jian Wang, ; Chi-Tai Yeh,
| |
Collapse
|
20
|
Liu W, Ma Z, Wu Y, Yuan C, Zhang Y, Liang Z, Yang Y, Zhang W, Jiao P. MST4 negatively regulates type I interferons production via targeting MAVS-mediated pathway. Cell Commun Signal 2022; 20:103. [PMID: 35820905 PMCID: PMC9274187 DOI: 10.1186/s12964-022-00922-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cytosolic RNA sensing can elicit immune responses against viral pathogens. However, antiviral responses must be tightly regulated to avoid the uncontrolled production of type I interferons (IFN) that might have deleterious effects on the host. Upon bacterial infection, the germinal center kinase MST4 can directly phosphorylate the adaptor TRAF6 to limit the inflammatory responses, thereby avoiding the damage caused by excessive immune activation. However, the molecular mechanism of how MST4 regulates virus-mediated type I IFN production remains unknown. METHODS The expression levels of IFN-β, IFIT1, and IFIT2 mRNA were determined by RT-PCR. The expression levels of p-IRF3, IRF3, RIG-I, MAVS, and MST4 proteins were determined by Western blot. The effect of secreted level of IFN-β was measured by ELISA. The relationship between MST4 and MAVS was investigated by immunofluorescence staining and coimmunoprecipitation. RESULTS In this study, we reported that MST4 can act as a negative regulator of type I IFN production. Ectopic expression of MST4 suppressed the Poly (I:C) (polyino-sinic-polycytidylic acid)- and Sendai virus (SeV)-triggered production of type I IFN, while the knockdown of MST4 enhanced the production of type I IFN. Mechanistically, upon SeV infection, the MST4 competed with TRAF3 to bind to the 360-540 domain of MAVS, thereby inhibiting the TRAF3/MAVS association. Additionally, MST4 facilitated the interaction between the E3 ubiquitin ligase Smurf1 and MAVS. This promoted the K48-linked ubiquitination of MAVS, thereby accelerating the ubiquitin-mediated proteasome degradation of MAVS. CONCLUSIONS Our findings showed that MST4 acted as a crucial negative regulator of RLR-mediated type I IFN production. Video Abstract.
Collapse
Affiliation(s)
- Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Zhenling Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yaru Wu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Cui Yuan
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yanyan Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zeyang Liang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yu Yang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wenwen Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Pengtao Jiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
21
|
Sahajpal NS, Jill Lai CY, Hastie A, Mondal AK, Dehkordi SR, van der Made CI, Fedrigo O, Al-Ajli F, Jalnapurkar S, Byrska-Bishop M, Kanagal-Shamanna R, Levy B, Schieck M, Illig T, Bacanu SA, Chou JS, Randolph AG, Rojiani AM, Zody MC, Brownstein CA, Beggs AH, Bafna V, Jarvis ED, Hoischen A, Chaubey A, Kolhe R, The COVID19hostgenomesv Consortium. Optical genome mapping identifies rare structural variations as predisposition factors associated with severe COVID-19. iScience 2022; 25:103760. [PMID: 35036860 PMCID: PMC8744399 DOI: 10.1016/j.isci.2022.103760] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/04/2021] [Accepted: 01/07/2022] [Indexed: 12/16/2022] Open
Abstract
Impressive global efforts have identified both rare and common gene variants associated with severe COVID-19 using sequencing technologies. However, these studies lack the sensitivity to accurately detect several classes of variants, especially large structural variants (SVs), which account for a substantial proportion of genetic diversity including clinically relevant variation. We performed optical genome mapping on 52 severely ill COVID-19 patients to identify rare/unique SVs as decisive predisposition factors associated with COVID-19. We identified 7 SVs involving genes implicated in two key host-viral interaction pathways: innate immunity and inflammatory response, and viral replication and spread in nine patients, of which SVs in STK26 and DPP4 genes are the most intriguing candidates. This study is the first to systematically assess the potential role of SVs in the pathogenesis of COVID-19 severity and highlights the need to evaluate SVs along with sequencing variants to comprehensively associate genomic information with interindividual variability in COVID-19 phenotypes.
Collapse
Affiliation(s)
- Nikhil Shri Sahajpal
- Department of Pathology, Medical College of Georgia, Augusta University, 1120 15th Street, BF-207, Augusta, GA 30912, USA
| | | | - Alex Hastie
- Bionano Genomics, Inc., San Diego, CA 92121, USA
| | - Ashis K. Mondal
- Department of Pathology, Medical College of Georgia, Augusta University, 1120 15th Street, BF-207, Augusta, GA 30912, USA
| | - Siavash Raeisi Dehkordi
- Department of Computer Science and Engineering, University of California at San Diego, San Diego, CA 92093, USA
| | - Caspar I. van der Made
- Department of Human Genetics, Radboud University Medical Center for Infectious Diseases (RCI), Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, and Radboud Expertise Center for Immunodeficiency and Autoinflammation, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
| | - Farooq Al-Ajli
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
| | - Sawan Jalnapurkar
- Department of Medicine, Medical College of Georgia, Augusta University, GA 30912, USA
| | | | | | - Brynn Levy
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York 10032, USA
| | - Maximilian Schieck
- Department of Human Genetics, Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover 30625, Germany
| | - Thomas Illig
- Department of Human Genetics, Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover 30625, Germany
- Hannover Unified Biobank (HUB), Hannover 30625, Germany
| | - Silviu-Alin Bacanu
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Janet S. Chou
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Adrienne G. Randolph
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Departments of Anesthesia and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Amyn M. Rojiani
- Department of Pathology, Medical College of Georgia, Augusta University, 1120 15th Street, BF-207, Augusta, GA 30912, USA
| | | | - Catherine A. Brownstein
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alan H. Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California at San Diego, San Diego, CA 92093, USA
| | - Erich D. Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center for Infectious Diseases (RCI), Department of Internal Medicine, Radboud Institute for Molecular Life Sciences, and Radboud Expertise Center for Immunodeficiency and Autoinflammation, Radboud University Medical Center, 6525 Nijmegen, the Netherlands
| | - Alka Chaubey
- Department of Pathology, Medical College of Georgia, Augusta University, 1120 15th Street, BF-207, Augusta, GA 30912, USA
- Bionano Genomics, Inc., San Diego, CA 92121, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, 1120 15th Street, BF-207, Augusta, GA 30912, USA
| | | |
Collapse
|
22
|
Li Y, Qiu X, Lu Z, Zhan F, Yang M, Sarath Babu V, Li J, Qin Z, Lin L. Molecular and functional characterization of MST2 in grass carp during bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2021; 119:19-30. [PMID: 34560286 DOI: 10.1016/j.fsi.2021.09.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The regulation of host redox homeostasis is critically important in the immune response to pathogens. The "mammalian sterile 20-like" kinase 2 (MST2) has been shown to play a role in apoptosis, cell proliferation, and cancer; however, few studies have examined its ability to modulate redox homeostasis during innate immunity, especially in teleost fish. In this study, we cloned the MST2 gene of Ctenopharyngodon idella (CiMST2) and analyzed its tissue distribution. CiMST2 was present in most of the studied tissues, and it was most highly expressed in brain tissue. Expression patterns analysis revealed that MST2 mRNA and protein were significantly up-regulated under bacterial infection, suggesting that it is involved in the immune response. Bacterial stimulation significantly increased the level of antioxidases. To explore the interplay between CiMST2 and antioxidant regulation, we examined the effects of CiMST2 overexpression and conducted RNA interference assays in vitro. CiMST2 overexpression significantly increased the expression levels of nuclear factor E2-related factor 2 (Nrf2) and other antioxidases and vice versa, revealing that CiMST2 regulated host redox homeostasis via Nrf2-antioxidant responsive element (ARE) signaling. Overall, our findings provide a new perspective on the role of MST2 in innate immunity in teleosts as well as insights that will aid the prevention and control of disease in the grass carp farming industry.
Collapse
Affiliation(s)
- Yanan Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, USA
| | - Xiaolong Qiu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, USA
| | - Zhijie Lu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, USA
| | - Fanbin Zhan
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, USA
| | - Minxuan Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, USA
| | - V Sarath Babu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, USA
| | - Jun Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, USA; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, 49783, USA
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, USA.
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, USA.
| |
Collapse
|
23
|
Sun T, Wei C, Wang D, Wang X, Wang J, Hu Y, Mao X. The small RNA mascRNA differentially regulates TLR-induced proinflammatory and antiviral responses. JCI Insight 2021; 6:150833. [PMID: 34582376 PMCID: PMC8663567 DOI: 10.1172/jci.insight.150833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/22/2021] [Indexed: 01/05/2023] Open
Abstract
MALAT1-associated small cytoplasmic RNA (mascRNA) is a highly conserved transfer RNA-like (tRNA-like) noncoding RNA whose function remains largely unknown. We show here that this small RNA molecule played a role in the stringent control of TLR-mediated innate immune responses. mascRNA inhibited activation of NF-κB and mitogen-activated protein kinase (MAPK) signaling and the production of inflammatory cytokines in macrophages stimulated with LPS, a TLR4 ligand. Furthermore, exogenous mascRNA alleviated LPS-induced lung inflammation. However, mascRNA potentiated the phosphorylation of IRF3 and STAT1 and the transcription of IFN-related genes in response to the TLR3 ligand poly(I:C) both in vitro and in vivo. Mechanistically, mascRNA was found to enhance K48-linked ubiquitination and proteasomal degradation of TRAF6, thereby negatively regulating TLR-mediated MyD88-dependent proinflammatory signaling while positively regulating TRIF-dependent IFN signaling. Additionally, heterogeneous nuclear ribonucleoprotein H (hnRNP H) and hnRNP F were found to interact with mascRNA, promote its degradation, and contribute to the fine-tuning of TLR-triggered immune responses. Taken together, our data identify a dual role of mascRNA in both negative and positive regulation of innate immune responses.
Collapse
Affiliation(s)
- Tao Sun
- School of Life Science and Technology, Key Laboratory of Ministry of Education for Developmental Genes and Human Disease
| | - Chunxue Wei
- School of Life Science and Technology, Key Laboratory of Ministry of Education for Developmental Genes and Human Disease
| | - Daoyong Wang
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Xuxu Wang
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Jiao Wang
- School of Life Science and Technology, Key Laboratory of Ministry of Education for Developmental Genes and Human Disease
| | - Yuqing Hu
- Department of Biochemistry and Molecular Biology, School of Medicine
| | - Xiaohua Mao
- School of Life Science and Technology, Key Laboratory of Ministry of Education for Developmental Genes and Human Disease.,Department of Biochemistry and Molecular Biology, School of Medicine.,and Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
24
|
Wu X, Zhang Y, Zhang Y, Xia L, Yang Y, Wang P, Xu Y, Ren Z, Liu H. MST4 attenuates NLRP3 inflammasome-mediated neuroinflammation and affects the prognosis after intracerebral hemorrhage in mice. Brain Res Bull 2021; 177:31-38. [PMID: 34534636 DOI: 10.1016/j.brainresbull.2021.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The kinase MST4 limits inflammatory responses through direct phosphorylation of the adaptor TRAF6. TRAF6 interacts with NLRP3 to promote the activation of NLRP3 inflammasome. However, the role of MST4 in neuroinflammation after intracerebral hemorrhage (ICH) and how it interacts with NLRP3 inflammasome remain unclear. METHODS Mice were administered MST4 AAV four weeks before collagenase-induced ICH. ICH mice received either hesperadin (MST4 selective inhibitor), or MCC950 (NLRP3 inflammasome selective inhibitor). Neurological deficits and brain water content were assessed. Western blot and immunofluorescence were performed to evaluate the proteins content and localization in MST4/NLRP3 signaling pathway. RESULTS The expression of endogenous MST4 and NLRP3 was increased after ICH compared to sham group. MST4 and NLRP3 were respectively colocalized in microglia. Upregulation of MST4 gene inhibited the activation of NLRP3 inflammasome, the release of IL-1β and TNF-α, and significantly improved brain edema and neurological deficits. Hesperadin pretreatment inhibited the expression of MST4 and increased the expression of NLRP3 inflammasome-mediated proteins, which aggravated neurological deficits and cerebral edema. MCC950 markedly alleviated neurological deficits and brain edema but had no effect on the expression of MST4 protein. CONCLUSIONS MST4 alleviates inflammatory progression and brain injury in ICH mice possibly by inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui Province, China; Department of Psychiatry, Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China.
| | - Yan Zhang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui Province, China; Department of Psychiatry, Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China.
| | - Yulong Zhang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui Province, China; Department of Psychiatry, Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China.
| | - Lei Xia
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui Province, China; Department of Psychiatry, Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China.
| | - Yating Yang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui Province, China; Department of Psychiatry, Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China.
| | - Ping Wang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui Province, China; Department of Psychiatry, Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China.
| | - Yang Xu
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu, Anhui Province, China; Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China.
| | - Zhenhua Ren
- Department of Anatomy, Anhui Medical University, Hefei, Anhui Province, China.
| | - Huanzhong Liu
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui Province, China; Department of Psychiatry, Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China.
| |
Collapse
|
25
|
Zhang H, Lin M, Dong C, Tang Y, An L, Ju J, Wen F, Chen F, Wang M, Wang W, Chen M, Zhao Y, Li J, Hou SX, Lin X, Hu L, Bu W, Wu D, Li L, Jiao S, Zhou Z. An MST4-pβ-Catenin Thr40 Signaling Axis Controls Intestinal Stem Cell and Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004850. [PMID: 34240584 PMCID: PMC8425901 DOI: 10.1002/advs.202004850] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/01/2021] [Indexed: 06/04/2023]
Abstract
Elevated Wnt/β-catenin signaling has been commonly associated with tumorigenesis especially colorectal cancer (CRC). Here, an MST4-pβ-cateninThr40 signaling axis essential for intestinal stem cell (ISC) homeostasis and CRC development is uncovered. In response to Wnt3a stimulation, the kinase MST4 directly phosphorylates β-catenin at Thr40 to block its Ser33 phosphorylation by GSK3β. Thus, MST4 mediates an active process that prevents β-catenin from binding to and being degraded by β-TrCP, leading to accumulation and full activation of β-catenin. Depletion of MST4 causes loss of ISCs and inhibits CRC growth. Mice bearing either MST4T178E mutation with constitutive kinase activity or β-cateninT40D mutation mimicking MST4-mediated phosphorylation show overly increased ISCs/CSCs and exacerbates CRC. Furthermore, the MST4-pβ-cateninThr40 axis is upregulated and correlated with poor prognosis of human CRC. Collectively, this work establishes a previously undefined machinery for β-catenin activation, and further reveals its function in stem cell and tumor biology, opening new opportunities for targeted therapy of CRC.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Moubin Lin
- Department of General SurgeryYangpu HospitalTongji University School of MedicineShanghai200090China
| | - Chao Dong
- Department of the Second Medical OncologyThe 3rd Affiliated Hospital of Kunming Medical UniversityYunnan Tumor HospitalKunming650118China
| | - Yang Tang
- Department of Medical UltrasoundTongji University Cancer CenterShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Liwei An
- Department of Medical UltrasoundTongji University Cancer CenterShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Junyi Ju
- Department of Medical UltrasoundTongji University Cancer CenterShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Fuping Wen
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Fan Chen
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Meng Wang
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Wenjia Wang
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Min Chen
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Yun Zhao
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Jixi Li
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Steven X. Hou
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Xinhua Lin
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Lulu Hu
- Fudan University Shanghai Cancer CenterInstitutes of Biomedical SciencesState Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical EpigeneticsShanghai Medical College of Fudan UniversityShanghai200032China
| | - Wenbo Bu
- Department of Materials ScienceFudan UniversityShanghai200433China
| | - Dianqing Wu
- Department of PharmacologyYale School of MedicineNew HavenCT06520USA
| | - Lin Li
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Shi Jiao
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| |
Collapse
|
26
|
Caputo M, Cansby E, Kumari S, Kurhe Y, Nair S, Ståhlman M, Kulkarni NM, Borén J, Marschall HU, Blüher M, Mahlapuu M. STE20-Type Protein Kinase MST4 Controls NAFLD Progression by Regulating Lipid Droplet Dynamics and Metabolic Stress in Hepatocytes. Hepatol Commun 2021; 5:1183-1200. [PMID: 34278168 PMCID: PMC8279465 DOI: 10.1002/hep4.1702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 12/27/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as a leading cause of chronic liver disease worldwide, primarily because of the massive global increase in obesity. Despite intense research efforts in this field, the factors that govern the initiation and subsequent progression of NAFLD are poorly understood, which hampers the development of diagnostic tools and effective therapies in this area of high unmet medical need. Here we describe a regulator in molecular pathogenesis of NAFLD: STE20-type protein kinase MST4. We found that MST4 expression in human liver biopsies was positively correlated with the key features of NAFLD (i.e., hepatic steatosis, lobular inflammation, and hepatocellular ballooning). Furthermore, the silencing of MST4 attenuated lipid accumulation in human hepatocytes by stimulating β-oxidation and triacylglycerol secretion, while inhibiting fatty acid influx and lipid synthesis. Conversely, overexpression of MST4 in human hepatocytes exacerbated fat deposition by suppressing mitochondrial fatty acid oxidation and triacylglycerol efflux, while enhancing lipogenesis. In parallel to these reciprocal alterations in lipid storage, we detected substantially decreased or aggravated oxidative/endoplasmic reticulum stress in human hepatocytes with reduced or increased MST4 levels, respectively. Interestingly, MST4 protein was predominantly associated with intracellular lipid droplets in both human and rodent hepatocytes. Conclusion: Together, our results suggest that hepatic lipid droplet-decorating protein MST4 is a critical regulatory node governing susceptibility to NAFLD and warrant future investigations to address the therapeutic potential of MST4 antagonism as a strategy to prevent or mitigate the development and aggravation of this disease.
Collapse
Affiliation(s)
- Mara Caputo
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Sima Kumari
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Yeshwant Kurhe
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Syam Nair
- Institute of Neuroscience and Physiology, and Institute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg LaboratoryInstitute of MedicineUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Nagaraj M Kulkarni
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg LaboratoryInstitute of MedicineUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg LaboratoryInstitute of MedicineUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | | | - Margit Mahlapuu
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| |
Collapse
|
27
|
Trujillo M. Ubiquitin signalling: controlling the message of surface immune receptors. THE NEW PHYTOLOGIST 2021; 231:47-53. [PMID: 33792068 DOI: 10.1111/nph.17360] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/25/2021] [Indexed: 05/27/2023]
Abstract
Microbial attack is first detected by immune receptors located at the plasma membrane. Their activation triggers a plethora of signalling cascades that culminate in the immune response. Ubiquitin and ubiquitin-like protein modifiers play key roles in controlling signalling amplitude and intensity, as well as in buffering proteome imbalances caused by pathogen attack. Here I highlight some of the important advances in the field, which are starting to reveal an intertwined and complex signalling circuitry, which regulates cellular dynamics and protein degradation to maintain homeostasis.
Collapse
Affiliation(s)
- Marco Trujillo
- Faculty of Biology, Cell Biology, University of Freiburg, Freiburg, 79104, Germany
| |
Collapse
|
28
|
Seumen CHT, Grimm TM, Hauck CR. Protein phosphatases in TLR signaling. Cell Commun Signal 2021; 19:45. [PMID: 33882943 PMCID: PMC8058998 DOI: 10.1186/s12964-021-00722-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are critical sensors for the detection of potentially harmful microbes. They are instrumental in initiating innate and adaptive immune responses against pathogenic organisms. However, exaggerated activation of TLR receptor signaling can also be responsible for the onset of autoimmune and inflammatory diseases. While positive regulators of TLR signaling, such as protein serine/threonine kinases, have been studied intensively, only little is known about phosphatases, which counterbalance and limit TLR signaling. In this review, we summarize protein phosphorylation events and their roles in the TLR pathway and highlight the involvement of protein phosphatases as negative regulators at specific steps along the TLR-initiated signaling cascade. Then, we focus on individual phosphatase families, specify the function of individual enzymes in TLR signaling in more detail and give perspectives for future research. A better understanding of phosphatase-mediated regulation of TLR signaling could provide novel access points to mitigate excessive immune activation and to modulate innate immune signaling.![]() Video Abstract
Collapse
Affiliation(s)
- Clovis H T Seumen
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457, Konstanz, Germany
| | - Tanja M Grimm
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457, Konstanz, Germany.,Konstanz Research School Chemical Biology, Universität Konstanz, 78457, Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Zellbiologie, Universität Konstanz, Universitätsstraße 10, Postablage 621, 78457, Konstanz, Germany. .,Konstanz Research School Chemical Biology, Universität Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
29
|
Liu X, You J, Peng X, Wang Q, Li C, Jiang N, Che C, Zhou Y, Zheng H, Zhang Z, Zhao G, Lin J. Mammalian Ste20-like kinase 4 inhibits the inflammatory response in Aspergillus fumigatus keratitis. Int Immunopharmacol 2020; 88:107021. [PMID: 33182037 DOI: 10.1016/j.intimp.2020.107021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Mammalian Ste20-like kinase 4 (MST4), a new member of the germinal-center kinase STE20 family, was recently demonstrated to be a negative regulator of inflammation. However, whether MST4 participates in the inflammatory response to fungal infection remains unknown. Our study investigated the role and molecular mechanisms of MST4 in mice cornea and corneal epithelial cells exposed to Aspergillus fumigatus (A. fumigatus). Protein level of MST4 was detected in mice corneas and human corneal epithelial cells (HCECs) by Western blot analysis. The MST4 protein level was significantly elevated in mice corneas infected with A. fumigatus and HCECs exposed to A. fumigatus. MST4 expression was also detected in mice corneas by immunofluorescence staining. Furthermore, we found recombinant MST4 inhibited proinflammatory cytokines expressions induced by A. fumigatus at both the mRNA and protein levels in mice corneas and HCECs. To further investigate the mechanism of MST4's anti-inflammatory effect in A. fumigatus keratitis, we verified recombinant MST4 can inhibit curdlan-mediated proinflammatory cytokines production in HCECs. Surprisingly, recombinant MST4 protein downregulated A. fumigatus-induced Dectin-1 expression in both mRNA and protein levels in mice corneas. Recombinant MST4 can inhibit the mRNA expression level of Dectin-1 which was induced by curdlan in HCECs. MST4 can also inhibit the expression of Dectin-1 in mRNA levels increased by Dectin-1 overexpression plasmid in HCECs. Moreover, A. fumigatus or curdlan significantly induced the phosphorylation of Syk, which was consequently suppressed by recombinant MST4. Finally, recombinant MST4 promotes HCECs proliferation, which contribute to cornea wound healing. Taken together, our results provide evidences that MST4 inhibits inflammatory signaling response in A. fumigatus keratitis by downregulating Dectin-1/p-Syk pathway and simultaneously promotes HCECs proliferation.
Collapse
Affiliation(s)
- Xing Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jia You
- Department of Ophthalmology, Qingdao Central Hospital, The Second Clinical Hospital of Qingdao University, Qingdao, China
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nan Jiang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengye Che
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yifan Zhou
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hengrui Zheng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ziyue Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
30
|
Huang W, Wu X, Xue Y, Zhou Y, Xiang H, Yang W, Wei Y. MicroRNA-3614 regulates inflammatory response via targeting TRAF6-mediated MAPKs and NF-κB signaling in the epicardial adipose tissue with coronary artery disease. Int J Cardiol 2020; 324:152-164. [PMID: 32950591 DOI: 10.1016/j.ijcard.2020.09.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/26/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The inflammatory status of epicardial adipose tissue (EAT) is one of the factors leading to the development of related diseases such as coronary artery disease (CAD). The thickness of CAD EAT increases and is accompanied with increased macrophage infiltration and heightened inflammatory responses. However, microRNAs (miRNAs) regulating the inflammatory responses of macrophages in CAD EAT remain unclear. METHOD miRNA expression profiles of CAD EATs and non-CAD EATs were determined by miRNA microarrays. Quantitative real-time reverse transcription-polymerase chain reaction, Western blotting, immunohistochemical assay, and fluorescence in-situ hybridization were adopted to detect miR-3614 expression and function in EATs and macrophages. The interaction between miR-3614 and tumor necrosis factor receptor-associated factor 6 (TRAF6) was identified using an online website combined with a dual-luciferase reporter assay. Enzyme-linked immunosorbent assay was performed to detect the expression of inflammatory cytokines. RESULTS The decreased expression of miR-3614 was identified in CAD EAT. The level of miR-3614 was down-regulated by lipopolysaccharide (LPS) in macrophages, whereas LPS-induced inflammatory injury can be reduced by miR-3614 overexpression. TRAF6 was predicted and verified to be a target of miR-3614. The phosphorylated levels of kinases in the mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB pathways were inhibited by miR-3614 overexpression. Importantly, the knockdown of TRAF6 inhibited the LPS-induced inflammatory cytokine expressions in cells. CONCLUSION A novel negative feedback loop by miR-3614 possibly contribute to the regulation of inflammatory processes via targeting the TRAF6/MAPK/NF-κB pathway in EATs and prevents an overwhelming inflammatory response.
Collapse
Affiliation(s)
- Wenhua Huang
- Department of Thoracic and Cardiovascular Surgery, Ganzhou Municipal Hospital, Ganzhou, Jiangxi 341000, China
| | - Xinggang Wu
- Medicine Department, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yajun Xue
- Medicine Department, Shihezi University, Shihezi, Xinjiang 832000, China; Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, Xinjiang 832000, China
| | - Yijun Zhou
- Medicine Department, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Hui Xiang
- Medicine Department, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Wenkai Yang
- Department of Cardiovascular Surgery, Affiliated Central People's Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang 524045, China
| | - Yutao Wei
- Department of Thoracic Surgery, Jining First People's Hospital, Jining, Shandong 250000, China.
| |
Collapse
|
31
|
Suarez B, Prats-Mari L, Unfried JP, Fortes P. LncRNAs in the Type I Interferon Antiviral Response. Int J Mol Sci 2020; 21:E6447. [PMID: 32899429 PMCID: PMC7503479 DOI: 10.3390/ijms21176447] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
The proper functioning of the immune system requires a robust control over a delicate equilibrium between an ineffective response and immune overactivation. Poor responses to viral insults may lead to chronic or overwhelming infection, whereas unrestrained activation can cause autoimmune diseases and cancer. Control over the magnitude and duration of the antiviral immune response is exerted by a finely tuned positive or negative regulation at the DNA, RNA, and protein level of members of the type I interferon (IFN) signaling pathways and on the expression and activity of antiviral and proinflammatory factors. As summarized in this review, committed research during the last decade has shown that several of these processes are exquisitely regulated by long non-coding RNAs (lncRNAs), transcripts with poor coding capacity, but highly versatile functions. After infection, viruses, and the antiviral response they trigger, deregulate the expression of a subset of specific lncRNAs that function to promote or repress viral replication by inactivating or potentiating the antiviral response, respectively. These IFN-related lncRNAs are also highly tissue- and cell-type-specific, rendering them as promising biomarkers or therapeutic candidates to modulate specific stages of the antiviral immune response with fewer adverse effects.
Collapse
Affiliation(s)
- Beatriz Suarez
- Program of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain; (B.S.); (L.P.-M.)
| | - Laura Prats-Mari
- Program of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain; (B.S.); (L.P.-M.)
| | - Juan P. Unfried
- Program of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain; (B.S.); (L.P.-M.)
| | - Puri Fortes
- Program of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), 31008 Pamplona, Spain; (B.S.); (L.P.-M.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
| |
Collapse
|
32
|
Zhang Q, Zhou R, Xu P. The Hippo Pathway in Innate Anti-microbial Immunity and Anti-tumor Immunity. Front Immunol 2020; 11:1473. [PMID: 32849504 PMCID: PMC7417304 DOI: 10.3389/fimmu.2020.01473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
The Hippo pathway responds to diverse environmental cues and plays key roles in cell fate determination, tissue homeostasis, and organ regeneration. Aberrant Hippo signaling, on the other hand, has frequently been implicated in diversified pathologies such as cancer and immune dysfunction. Here, we summarize the recent but rapid progress in understanding the involvement of the Hippo pathway in innate immunity, with a special focus on the intrinsic mechanisms and mutual interactions between Hippo-YAP signaling and the innate immune response and its physiological impacts on anti-microbial immunity and anti-tumor immunity. Moving forward, we believe that systematic investigations under the physiological setting are needed to draw a clearer picture of the actions of Hippo in innate immunity.
Collapse
Affiliation(s)
- Qian Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruyuan Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
33
|
Liu M, Yan M, Lv H, Wang B, Lv X, Zhang H, Xiang S, Du J, Liu T, Tian Y, Zhang X, Zhou F, Cheng T, Zhu Y, Jiang H, Cao Y, Ai D. Macrophage K63-Linked Ubiquitination of YAP Promotes Its Nuclear Localization and Exacerbates Atherosclerosis. Cell Rep 2020; 32:107990. [PMID: 32755583 DOI: 10.1016/j.celrep.2020.107990] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/23/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
The Hippo/Yes-associated protein (YAP) pathway has pivotal roles in innate immune responses against pathogens in macrophages. However, the role of YAP in macrophages during atherosclerosis and its mechanism of YAP activation remain unknown. Here, we find that YAP overexpression in myeloid cells aggravates atherosclerotic lesion size and infiltration of macrophages, whereas YAP deficiency reduces atherosclerotic plaque. Tumor necrosis factor receptor-associated factor 6 (TRAF6), a downstream effector of interleukin-1β (IL-1β), triggers YAP ubiquitination at K252, which interrupts the interaction between YAP and angiomotin and results in enhanced YAP nuclear translocation. The recombinant IL-1 receptor antagonist anakinra reduces atherosclerotic lesion formation, which is abrogated by YAP overexpression. YAP level is increased in human and mouse atherosclerotic vessels, and plasma IL-1β level in patients with STEMI is correlated with YAP protein level in peripheral blood mononuclear cells. These findings elucidate a mechanism of YAP activation, which might be a therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Mingming Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Meng Yan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Huizhen Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China; Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Biqing Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Xue Lv
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Hang Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Song Xiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Jie Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Yikui Tian
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Xu Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Fangfang Zhou
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China; Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yi Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Hongfeng Jiang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Center for Cardiovascular Disorders, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 17177 Stockholm, Sweden.
| | - Ding Ai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China; Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|
34
|
Hao WC, Zhong QL, Pang WQ, Dian MJ, Li J, Han LX, Zhao WT, Zhang XL, Xiao SJ, Xiao D, Lin XL, Jia JS. MST4 inhibits human hepatocellular carcinoma cell proliferation and induces cell cycle arrest via suppression of PI3K/AKT pathway. J Cancer 2020; 11:5106-5117. [PMID: 32742458 PMCID: PMC7378920 DOI: 10.7150/jca.45822] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/29/2020] [Indexed: 01/13/2023] Open
Abstract
Objective: MST4 has exhibited functions in regulating cell polarity, Golgi apparatus, cell migration, and cancer. Mechanistically, it affects the activity of p-ERK, Hippo-YAP pathway and autophagy. The aim of this study is to further examine the functions of MST4 in hepatocellular carcinoma (HCC) and the underlying mechanism. Methods: The expression level of MST4 in HCC and noncancer adjacent liver tissues was determined by qRT-PCR and immunohistochemistry staining. Wild-type MST4 (MST4) and a dominant-negative mutant of MST4 (dnMST4) were overexpressed in HCC cell lines, respectively. CCK-8 assay, EdU incorporation assay, and soft agar assay were used to determine cell proliferation in vitro. The xenograft mouse model was employed to determine HCC cell growth in vivo. Cell cycle analysis was performed by PI staining and flow cytometry. The expression of key members in PI3K/AKT pathway was detected by Western blot analysis. Results: In our study, we reported new evidence that MST4 was frequently down-regulated in HCC tissues. Gain-of-function and loss-of-function experiments demonstrated that MST4 negatively regulated in vitro HCC cell proliferation. Additionally, MST4 overexpression suppressed Bel-7404 cell tumor growth in nude mice. Further experiments revealed that the growth-inhibitory effect of MST4 overexpression was partly due to a G1-phase cell cycle arrest. Importantly, mechanistic investigations suggested that dnMST4 significantly elevated the phosphorylation levels of key members of PI3K/AKT pathway, and the selective PI3K inhibitor LY294002 can reverse the proliferation-promoting effect of dnMST4. Conclusions: Overall, our results provide a new insight into the clinical significance, functions and molecular mechanism of MST4 in HCC, suggesting that MST4 might have a potential therapeutic value in the HCC clinical treatment.
Collapse
Affiliation(s)
- Wei-Chao Hao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Qiu-Ling Zhong
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wen-Qian Pang
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mei-Juan Dian
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Radiotherapy Center, the First People's Hospital of Chenzhou, Chenzhou 423000, China
| | - Liu-Xin Han
- The third people's hospital of Kunming, Kunming 650041, China
| | - Wen-Tao Zhao
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Tumour Hospital of Yunnan Province), Kunming 650118, China
| | - Xiao-Ling Zhang
- Department of Physiology, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin 541004, China
| | - Sheng-Jun Xiao
- Department of Pathology, the Second Affiliated Hospital, Guilin Medical University, Guilin 541199, China
| | - Dong Xiao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Lin Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jun-Shuang Jia
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy Research and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
35
|
An L, Nie P, Chen M, Tang Y, Zhang H, Guan J, Cao Z, Hou C, Wang W, Zhao Y, Xu H, Jiao S, Zhou Z. MST4 kinase suppresses gastric tumorigenesis by limiting YAP activation via a non-canonical pathway. J Exp Med 2020; 217:e20191817. [PMID: 32271880 PMCID: PMC7971137 DOI: 10.1084/jem.20191817] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/08/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Hyperactivation of YAP has been commonly associated with tumorigenesis, and emerging evidence hints at multilayered Hippo-independent regulations of YAP. In this study, we identified a new MST4-YAP axis, which acts as a noncanonical Hippo signaling pathway that limits stress-induced YAP activation. MST4 kinase directly phosphorylated YAP at Thr83 to block its binding with importin α, therefore leading to YAP cytoplasmic retention and inactivation. Due to a consequential interplay between MST4-mediated YAP phospho-Thr83 signaling and the classical YAP phospho-Ser127 signaling, the phosphorylation level of YAP at Thr83 was correlated to that at Ser127. Mutation of T83E mimicking MST4-mediated alternative signaling restrained the activity of both wild-type YAP and its S127A mutant mimicking loss of classical Hippo signal. Depletion of MST4 in mice promoted gastric tumorigenesis with diminished Thr83 phosphorylation and hyperactivation of YAP. Moreover, loss of MST4-YAP signaling was associated with poor prognosis of human gastric cancer. Collectively, our study uncovered a noncanonical MST4-YAP signaling axis essential for suppressing gastric tumorigenesis.
Collapse
Affiliation(s)
- Liwei An
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Pingping Nie
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Min Chen
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yang Tang
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Hui Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Jingmin Guan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Zhifa Cao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Chun Hou
- The School of Life Science and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Wenjia Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Huixiong Xu
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, Tongji University School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Shi Jiao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Zhaocai Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People’s Republic of China
- The School of Life Science and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| |
Collapse
|
36
|
Cerebral cavernous malformation 3 relieves subarachnoid hemorrhage-induced neuroinflammation in rats through inhibiting NF-kB signaling pathway. Brain Res Bull 2020; 160:74-84. [PMID: 32302649 DOI: 10.1016/j.brainresbull.2020.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/31/2020] [Accepted: 04/05/2020] [Indexed: 01/01/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a severe acute cerebrovascular disease with high rates of disability and death. In recent years, a large number of studies has shown that early brain injury (EBI) may be a crucial cause of the poor prognosis of SAH and that microglia-mediated neuroinflammation is an important pathological process in EBI. Previous studies have indicated that tumor necrosis factor receptor-associated factor 6 (TRAF6) is involved in microglia-mediated neuroinflammation after SAH. In addition, it has been reported that cerebral cavernous malformation 3/mammalian sterile20-like kinase 4 (CCM3/MST4) directly phosphorylates TRAF6 to inhibit its ubiquitination and to limit inflammatory responses. However, the association between CCM3/MST4 and SAH has not been reported. In our present study, we established a SAH model in adult male rats through injecting autologous arterial blood into the prechiasmatic cistern. Additionally, BV-2 cells, as well as primary microglial cultures from rats treated with oxygen hemoglobin (OxyHb) for 24 h, were used as in vitro models of SAH. Then, western blot, immunofluorescence, Fluoro-JadeC staining and Enzyme-linked immunosorbent assay (ELISA) and behavioral tests was applied in this study. We observed no significant change in the level of CCM3/MST4 in brain tissues, but a markedly decline of CCM3 in microglia of rats. We also found that the protein level of CCM3 was decreased in BV-2 cells after OxyHb treatment, reaching the lowest point at 6 h post-treatment. In contrast, there was no significant change in the protein level of MST4. Additionally, we recapitulated decreased expression of CCM3 and changes in subcellular localization of CCM3 in vitro model of SAH with primary microglial cultures treated with OxyHb. Overexpression of CCM3 decreased cellular degeneration, neurocognitive impairment, NF-κB p65 level in the nuclear, and inflammatory factors level (TNF-a and IL-1β). These results suggest that overexpression of CCM3 alleviated brain injury and neurological damage through the NF-κB signaling pathway.
Collapse
|
37
|
Park Y, Pang K, Park J, Hong E, Lee J, Ooshima A, Kim HS, Cho JH, Han Y, Lee C, Song YS, Park KS, Yang KM, Kim SJ. Destablilization of TRAF6 by DRAK1 Suppresses Tumor Growth and Metastasis in Cervical Cancer Cells. Cancer Res 2020; 80:2537-2549. [PMID: 32265222 DOI: 10.1158/0008-5472.can-19-3428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/06/2020] [Accepted: 04/03/2020] [Indexed: 11/16/2022]
Abstract
The adaptor protein TNF receptor-associated factor 6 (TRAF6) is a key mediator in inflammation. However, the molecular mechanisms controlling its activity and stability in cancer progression remain unclear. Here we show that death-associated protein kinase-related apoptosis-inducing kinase 1 (DRAK1) inhibits the proinflammatory signaling pathway by targeting TRAF6 for degradation, thereby suppressing inflammatory signaling-mediated tumor growth and metastasis in advanced cervical cancer cells. DRAK1 bound directly to the TRAF domain of TRAF6, preventing its autoubiquitination by interfering with homo-oligomerization, eventually leading to autophagy-mediated degradation of TRAF6. Depletion of DRAK1 in cervical cancer cells resulted in markedly increased levels of TRAF6 protein, promoting activation of the IL1β signaling-associated pathway and proinflammatory cytokine production. DRAK1 was specifically underexpressed in metastatic cervical cancers and inversely correlated with TRAF6 expression in mouse xenograft model tumor tissues and human cervical tumor tissues. Collectively, our findings highlight DRAK1 as a novel antagonist of inflammation targeting TRAF6 for degradation that limits inflammatory signaling-mediated progression of advanced cervical cancer. SIGNIFICANCE: Serine/threonine kinase DRAK1 serves a unique role as a novel negative regulator of the inflammatory signaling mediator TRAF6 in cervical cancer progression.
Collapse
Affiliation(s)
- Yuna Park
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea.,Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, Gyeonggi-do, Korea
| | - Kyoungwha Pang
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea.,Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, Gyeonggi-do, Korea
| | - Jinah Park
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea
| | - Eunji Hong
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea.,Department of Biological Science, Sungkyunkwan University, Suwon, Gyeonggi-do, Republic of Korea
| | - Jihee Lee
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea.,Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, Gyeonggi-do, Korea
| | - Akira Ooshima
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea
| | - Hae-Suk Kim
- TheragenEtex Bio Institute, TheragenEtex Co., Suwon, Gyeonggi-do, Republic of Korea
| | - Jae Hyun Cho
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Youngjin Han
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Cheol Lee
- Department of Pathology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam City, Gyeonggi-do, Korea
| | - Kyung-Min Yang
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea.
| | - Seong-Jin Kim
- Precision Medicine Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea. .,TheragenEtex Bio Institute, TheragenEtex Co., Suwon, Gyeonggi-do, Republic of Korea.,Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, Gyeonggi-do, Republic of Korea
| |
Collapse
|
38
|
Yang Y, Tan X, Xu J, Wang T, Liang T, Xu X, Ma C, Xu Z, Wang W, Li H, Shen H, Li X, Dong W, Chen G. Luteolin alleviates neuroinflammation via downregulating the TLR4/TRAF6/NF-κB pathway after intracerebral hemorrhage. Biomed Pharmacother 2020; 126:110044. [PMID: 32114357 DOI: 10.1016/j.biopha.2020.110044] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 12/14/2022] Open
Abstract
The activation of microglia and inflammatory responses is essential for the process of intracerebral hemorrhage (ICH)-induced secondary brain injury (SBI). In this study, we investigated the effects of luteolin on ICH-induced SBI and the potential mechanisms. Autologous blood was injected to establish the ICH model in vivo, and oxyhemoglobin (OxyHb) was used to mimic the ICH model in vitro. We found that the administration of luteolin significantly improved motor and sensory impairments and inhibited neuronal cell degeneration in vivo. In the in vitro study, the decrease of the neuronal cell viability induced by activated microglia was alleviated by luteolin treatment. Furthermore, by antagonizing the activation of the Toll-like receptor 4 (TLR4)/TNF receptor-associated factor 6 (TRAF6)/nuclear transcription factor-κB (NF-κB) signaling pathway, the ICH-induced elevation of cytokine release was decreased after treatment with luteolin, which was confirmed both in vivo and in vitro. Additionally, we found that luteolin engaged with TRAF6 and inhibited the ubiquitination of TRAF6. Taken together, our findings demonstrate the neuroprotective effects of luteolin after ICH and the potential mechanisms, which suggest that luteolin is a potential therapeutic candidate for ICH treatment.
Collapse
Affiliation(s)
- Yi Yang
- Department of Neurology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Xin Tan
- Department of Neurology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Jianguo Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Tianyi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Tianyu Liang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Xiang Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Cheng Ma
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Zhongmou Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Wenjie Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Wanli Dong
- Department of Neurology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| |
Collapse
|
39
|
Luan D, Zhang Y, Yuan L, Chu Z, Ma L, Xu Y, Zhao S. MST4 modulates the neuro-inflammatory response by regulating IκBα signaling pathway and affects the early outcome of experimental ischemic stroke in mice. Brain Res Bull 2020; 154:43-50. [DOI: 10.1016/j.brainresbull.2019.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/16/2019] [Accepted: 10/26/2019] [Indexed: 10/25/2022]
|
40
|
Zeng X, Li C, Li Y, Yu H, Fu P, Hong HG, Zhang W. A network-based variable selection approach for identification of modules and biomarker genes associated with end-stage kidney disease. Nephrology (Carlton) 2019; 25:775-784. [PMID: 31464346 DOI: 10.1111/nep.13655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2019] [Indexed: 02/05/2023]
Abstract
AIMS Intervention for end-stage kidney disease (ESKD), which is associated with adverse prognoses and major economic burdens, is challenging due to its complex pathogenesis. The study was performed to identify biomarker genes and molecular mechanisms for ESKD by bioinformatics approach. METHODS Using the Gene Expression Omnibus dataset GSE37171, this study identified pathways and genomic biomarkers associated with ESKD via a multi-stage knowledge discovery process, including identification of modules of genes by weighted gene co-expression network analysis, discovery of important involved pathways by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses, selection of differentially expressed genes by the empirical Bayes method, and screening biomarker genes by the least absolute shrinkage and selection operator (Lasso) logistic regression. The results were validated using GSE70528, an independent testing dataset. RESULTS Three clinically important gene modules associated with ESKD, were identified by weighted gene co-expression network analysis. Within these modules, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed important biological pathways involved in ESKD, including transforming growth factor-β and Wnt signalling, RNA-splicing, autophagy and chromatin and histone modification. Furthermore, Lasso logistic regression was conducted to identify five final genes, namely, CNOT8, MST4, PPP2CB, PCSK7 and RBBP4 that are differentially expressed and associated with ESKD. The accuracy of the final model in distinguishing the ESKD cases and controls was 96.8% and 91.7% in the training and validation datasets, respectively. CONCLUSION Network-based variable selection approaches can identify biological pathways and biomarker genes associated with ESKD. The findings may inform more in-depth follow-up research and effective therapy.
Collapse
Affiliation(s)
- Xiaoxi Zeng
- West China Biomedical Big Data Center, West China School of Medicine (West China Hospital), Sichuan University, Chengdu, China.,Division of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China.,Medical Big Data Center, Sichuan University, Chengdu, China
| | - Chunyang Li
- West China Biomedical Big Data Center, West China School of Medicine (West China Hospital), Sichuan University, Chengdu, China.,Medical Big Data Center, Sichuan University, Chengdu, China
| | - Yi Li
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Haopeng Yu
- West China Biomedical Big Data Center, West China School of Medicine (West China Hospital), Sichuan University, Chengdu, China.,Medical Big Data Center, Sichuan University, Chengdu, China
| | - Ping Fu
- Division of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China.,Medical Big Data Center, Sichuan University, Chengdu, China
| | - Hyokyoung G Hong
- Department of Statistics and Probability, Michigan State University, East Lansing, Michigan, USA
| | - Wei Zhang
- West China Biomedical Big Data Center, West China School of Medicine (West China Hospital), Sichuan University, Chengdu, China.,Medical Big Data Center, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Abstract
The Hippo signaling pathway has been shown to play a pivotal role in controlling organ size and maintaining tissue homeostasis in multiple organisms ranging from Drosophila to mammals. Recently, we and others have demonstrated that Hippo signaling is also essential for maintaining the immune system homeostasis. Unlike the canonical Mst-Lats-Yap signal pathway, which controls tissue growth during development and regeneration, most studies regarding Hippo signaling in immune regulation is focusing in Mst1/2, the core kinases of Hippo signaling, cross-talking with other signaling pathways in various immune cells. In particular, patients bearing a loss-of-function mutation of Mst1 develop a complex immunodeficiency syndrome. Regarding the Hippo signaling in innate immunity, we have reported that Mst1/2 kinases are required for phagocytosis and efficient clearance of bacteria in phagocytes by regulating reactive oxygen species (ROS) production; and at the same time, by sensing the excessive ROS, Mst1/2 kinases maintain cellular redox homeostasis and prevent phagocytes aging and death through modulating the stability of the key antioxidant transcription factor Nrf2. In addition, we have revealed that the Mst1/2 kinases are critical in regulating T cells activation and Mst1/2-TAZ axis regulates the reciprocal differentiation of Treg cells and Th17 cells to modulate autoimmune inflammation by altering interactions between the transcription factors Foxp3 and RORγt. These results indicate that Hippo signaling maintains the balance between tolerance and inflammation of adaptive immunity.
Collapse
Affiliation(s)
- Lanfen Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China..
| |
Collapse
|
42
|
Huang B, Zhang L, Xu F, Tang X, Li L, Wang W, Liu M, Zhang G. Oyster Versatile IKKα/βs Are Involved in Toll-Like Receptor and RIG-I-Like Receptor Signaling for Innate Immune Response. Front Immunol 2019; 10:1826. [PMID: 31417578 PMCID: PMC6685332 DOI: 10.3389/fimmu.2019.01826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/18/2019] [Indexed: 01/08/2023] Open
Abstract
IκB kinases (IKKs) play critical roles in innate immunity through signal-induced activation of the key transcription factors nuclear factor-κB (NF-κB) and interferon regulatory factors (IRFs). However, studies of invertebrate IKK functions remain scarce. In this study, we performed phylogenetic analysis of IKKs and IKK-related kinases encoded in the Pacific oyster genome. We then cloned and characterized the oyster IKKα/β-2 gene. We found that oyster IKKα/β-2, a homolog of human IKKα/IKKβ, responded to challenge with lipopolysaccharide (LPS), peptidoglycan (PGN), and polyinosinic-polycytidylic acid [poly(I:C)]. As a versatile immune molecule, IKKα/β-2 activated the promoters of NF-κB, TNFα, and IFNβ, as well as IFN-stimulated response element (ISRE)-containing promoters, initiating an antibacterial or antiviral immune state in mammalian cells. Importantly, together with the cloned oyster IKKα/β-1, we investigated the signal transduction pathways mediated by these two IKKα/β proteins. Our results showed that IKKα/β-1 and IKKα/β-2 could interact with the oyster TNF receptor-associated factor 6 (TRAF6) and that IKKα/β-2 could also bind to the oyster myeloid differentiation factor 88 (MyD88) protein directly, suggesting that oyster IKKα/βs participate in both RIG-I-like receptor (RLR) and Toll-like receptor (TLR) signaling for the reception of upstream immune signals. The fact that IKKα/β-1 and IKKα/β-2 formed homodimers by interacting with themselves and heterodimers by interacting with each other, along with the fact that both oyster IKKα/β proteins interacted with NEMO protein, indicates that oyster IKKα/βs and the scaffold protein NEMO form an IKK complex, which may be a key step in phosphorylating IκB proteins and activating NF-κB. Moreover, we found that oyster IKKα/βs could interact with IRF8, and this may be related to the IKK-mediated activation of ISRE promotors and their involvement in the oyster "interferon (IFN)-like" antiviral pathway. Moreover, the expression of oyster IKKα/β-1 and IKKα/β-2 may induce the phosphorylation of IκB proteins to activate NF-κB. These results reveal the immune function of oyster IKKα/β-2 and establish the existence of mollusk TLR and RLR signaling mediated by IKKα/β proteins for the first time. Our findings should be helpful in deciphering the immune mechanisms of invertebrates and understanding the development of the vertebrate innate immunity network.
Collapse
Affiliation(s)
- Baoyu Huang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Linlin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Fei Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xueying Tang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mingkun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
43
|
Li Y, Guan J, Wang W, Hou C, Zhou L, Ma J, Cheng Y, Jiao S, Zhou Z. TRAF3-interacting JNK-activating modulator promotes inflammation by stimulating translocation of Toll-like receptor 4 to lipid rafts. J Biol Chem 2019; 294:2744-2756. [PMID: 30573680 DOI: 10.1074/jbc.ra118.003137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 11/28/2018] [Indexed: 12/17/2022] Open
Abstract
Toll-like receptors (TLRs) are key players of the innate immune system and contribute to inflammation and pathogen clearance. Although TLRs have been extensively studied, it remains unclear how exactly bacterial lipopolysaccharide (LPS)-induced conformational changes of the extracellular domain of the TLRs trigger the dimerization of their intracellular domain across the plasma membrane and thereby stimulate downstream signaling. Here, using LPS-stimulated THP-1-derived macrophages and murine macrophages along with immunoblotting and immunofluorescence and quantitative analyses, we report that in response to inflammatory stimuli, the coiled-coil protein TRAF3-interacting JNK-activating modulator (T3JAM) associates with TLR4, promotes its translocation to lipid rafts, and thereby enhances macrophage-mediated inflammation. T3JAM overexpression increased and T3JAM depletion decreased TLR4 signaling through both the MyD88-dependent pathway and TLR4 endocytosis. Importantly, deletion or mutation of T3JAM to disrupt its coiled-coil-mediated homoassociation abrogated TLR4 recruitment to lipid rafts. Consistently, T3JAM depletion in mice dampened TLR4 signaling and alleviated LPS-induced inflammatory damage. Collectively, our findings reveal an additional molecular mechanism by which TLR4 activity is regulated and suggest that T3JAM may function as a molecular clamp to "tighten up" TLR4 and facilitate its translocation to lipid rafts.
Collapse
Affiliation(s)
- Yehua Li
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031
| | - Jingmin Guan
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031
| | - Wenjia Wang
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031
| | - Chun Hou
- the School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, and
| | - Li Zhou
- the School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, and
| | - Jian Ma
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031
| | - Yunfeng Cheng
- the Department of Hematology and Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shi Jiao
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031,
| | - Zhaocai Zhou
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, .,the School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, and
| |
Collapse
|
44
|
Macrophage achieves self-protection against oxidative stress-induced ageing through the Mst-Nrf2 axis. Nat Commun 2019; 10:755. [PMID: 30765703 PMCID: PMC6376064 DOI: 10.1038/s41467-019-08680-6] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/22/2019] [Indexed: 12/24/2022] Open
Abstract
Reactive oxygen species (ROS) production in phagocytes is a major defense mechanism against pathogens. However, the cellular self-protective mechanism against such potential damage from oxidative stress remains unclear. Here we show that the kinases Mst1 and Mst2 (Mst1/2) sense ROS and maintain cellular redox balance by modulating the stability of antioxidant transcription factor Nrf2. Site-specific ROS release recruits Mst1/2 from the cytosol to the phagosomal or mitochondrial membrane, with ROS subsequently activating Mst1/2 to phosphorylate kelch like ECH associated protein 1 (Keap1) and prevent Keap1 polymerization, thereby blocking Nrf2 ubiquitination and degradation to protect cells against oxidative damage. Treatment with the antioxidant N-acetylcysteine disrupts ROS-induced interaction of Mst1/2 with phagosomes or mitochondria, and thereby diminishes the Mst-Nrf2 signal. Consistently, loss of Mst1/2 results in increased oxidative injury, phagocyte ageing and death. Thus, our results identify the Mst-Nrf2 axis as an important ROS-sensing and antioxidant mechanism during an antimicrobial response. Immune cells produce reactive oxygen species (ROS) to eliminate pathogens, but cell-spontaneous death and ageing may also be induced. Here the authors show that, upon sensing ROS, Mst1/2 kinases modulate the activity of Nrf2 transcription factor and downstream genetic programs to protect mouse macrophages from death and ageing.
Collapse
|
45
|
Architecture, substructures, and dynamic assembly of STRIPAK complexes in Hippo signaling. Cell Discov 2019; 5:3. [PMID: 30622739 PMCID: PMC6323126 DOI: 10.1038/s41421-018-0077-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 01/24/2023] Open
Abstract
Striatin-interacting phosphatases and kinases (STRIPAKs) are evolutionarily conserved supramolecular complexes, which have been implicated in the Hippo signaling pathway. Yet the topological structure and dynamic assembly of STRIPAK complexes remain elusive. Here, we report the overall architecture and substructures of a Hippo kinase-containing STRIPAK complex. PP2Aa/c-bound STRN3 directly contacts the Hippo kinase MST2 and also controls the loading of MST2 via two “arms” in a phosphorylation-dependent manner, one arm being STRIP1 and the other SIKE1-SLMAP. A decreased cell density triggered the dissociation of the STRIP1 arm from STRIPAK, reflecting the dynamic assembly of the complex upon sensing upstream signals. Crystallographic studies defined at atomic resolution the interface between STRN3 and SIKE1, and that between SIKE1 and SLMAP. Disrupting the complex assembly abrogated the regulatory effect of STRIPAK towards Hippo signaling. Collectively, our study revealed a “two-arm” assembly of STRIPAK with context-dependent dynamics, offering a framework for further studies on Hippo signaling and biological processes involving MST kinases.
Collapse
|
46
|
Chu P, He L, Li Y, Huang R, Liao L, Li Y, Zhu Z, Wang Y. Molecular cloning and functional characterisation of NLRX1 in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 81:276-283. [PMID: 30010019 DOI: 10.1016/j.fsi.2018.07.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
The nucleotide-binding domain and leucine-rich-repeat-containing (NLR) proteins regulate innate immunity. Although the positive regulatory impact of NLRs is clear, their inhibitory roles are not well defined. In the present study, the NLR family gene NLRX1 from grass carp (Ctenopharyngodon idella) was cloned and characterised. NLRX1 was widely expressed in all tissues examined, albeit at varying levels. After exposure to the grass carp reovirus (GCRV), NLRX1 mRNA expression levels were altered in immune organs, and dramatically altered in liver. Subcellular localisation indicated that NLRX1 protein co-localised with the mitochondria in the transfected cells. Additionally, the bimolecular fluorescence complementation (BiFC) system was introduced to detect the interaction between tumour necrosis factor (TNF) receptor associated factor 6 (TRAF6) and NLRX1. Moreover, deficient of NLRX1 in CIK cells with small interference RNA (siRNA) promoted polyinosinic:polycytidylic acid (poly (I:C))-induced IFN-related genes production, including IRF3, IRF7, and IFN-I, which reveals that NLRX1 is a negative regulator of IFN. Taken together, our results demonstrate that NLRX1 gene plays an important role in innate immune regulation and provide new insights into understanding the functional characteristics of the NLRX1 in teleosts.
Collapse
Affiliation(s)
- Pengfei Chu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yangyang Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
47
|
Kim S, Zhang Y, Jin C, Lee Y, Kim Y, Han K. Emerging roles of Lys63-linked polyubiquitination in neuronal excitatory postsynapses. Arch Pharm Res 2018; 42:285-292. [DOI: 10.1007/s12272-018-1081-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/21/2018] [Indexed: 10/28/2022]
|
48
|
Zhang M, Chiang YH, Toruño TY, Lee D, Ma M, Liang X, Lal NK, Lemos M, Lu YJ, Ma S, Liu J, Day B, Dinesh-Kumar SP, Dehesh K, Dou D, Zhou JM, Coaker G. The MAP4 Kinase SIK1 Ensures Robust Extracellular ROS Burst and Antibacterial Immunity in Plants. Cell Host Microbe 2018; 24:379-391.e5. [PMID: 30212650 PMCID: PMC6279242 DOI: 10.1016/j.chom.2018.08.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 06/01/2018] [Accepted: 07/17/2018] [Indexed: 11/18/2022]
Abstract
Microbial patterns are recognized by cell-surface receptors to initiate pattern-triggered immunity (PTI) in plants. Receptor-like cytoplasmic kinases (RLCKs), such as BIK1, and calcium-dependent protein kinases (CPKs) are engaged during PTI to activate the NADPH oxidase RBOHD for reactive oxygen species (ROS) production. It is unknown whether protein kinases besides CPKs and RLCKs participate in RBOHD regulation. We screened mutants in all ten Arabidopsis MAP4 kinases (MAP4Ks) and identified the conserved MAP4K SIK1 as a positive regulator of PTI. sik1 mutants were compromised in their ability to elicit the ROS burst in response to microbial features and exhibited compromised PTI to bacterial infection. SIK1 directly interacts with, phosphorylates, and stabilizes BIK1 in a kinase activity-dependent manner. Furthermore, SIK1 directly interacts with and phosphorylates RBOHD upon flagellin perception. Thus, SIK1 positively regulates immunity by stabilizing BIK1 and activating RBOHD to promote the extracellular ROS burst.
Collapse
Affiliation(s)
- Meixiang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Yi-Hsuan Chiang
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Tania Y Toruño
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - DongHyuk Lee
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Miaomiao Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangxiu Liang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Neeraj K Lal
- Department of Plant Biology and the Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Mark Lemos
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA; Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Yi-Ju Lu
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Shisong Ma
- Department of Plant Biology and the Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Jun Liu
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Savithramma P Dinesh-Kumar
- Department of Plant Biology and the Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Katayoon Dehesh
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA; Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
49
|
Shi JH, Sun SC. Tumor Necrosis Factor Receptor-Associated Factor Regulation of Nuclear Factor κB and Mitogen-Activated Protein Kinase Pathways. Front Immunol 2018; 9:1849. [PMID: 30140268 PMCID: PMC6094638 DOI: 10.3389/fimmu.2018.01849] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/26/2018] [Indexed: 01/09/2023] Open
Abstract
Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) are a family of structurally related proteins that transduces signals from members of TNFR superfamily and various other immune receptors. Major downstream signaling events mediated by the TRAF molecules include activation of the transcription factor nuclear factor κB (NF-κB) and the mitogen-activated protein kinases (MAPKs). In addition, some TRAF family members, particularly TRAF2 and TRAF3, serve as negative regulators of specific signaling pathways, such as the noncanonical NF-κB and proinflammatory toll-like receptor pathways. Thus, TRAFs possess important and complex signaling functions in the immune system and play an important role in regulating immune and inflammatory responses. This review will focus on the role of TRAF proteins in the regulation of NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Jian-Hong Shi
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding, China
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
50
|
Chen M, Zhang H, Shi Z, Li Y, Zhang X, Gao Z, Zhou L, Ma J, Xu Q, Guan J, Cheng Y, Jiao S, Zhou Z. The MST4-MOB4 complex disrupts the MST1-MOB1 complex in the Hippo-YAP pathway and plays a pro-oncogenic role in pancreatic cancer. J Biol Chem 2018; 293:14455-14469. [PMID: 30072378 DOI: 10.1074/jbc.ra118.003279] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/19/2018] [Indexed: 01/07/2023] Open
Abstract
The mammalian STE20-like protein kinase 1 (MST1)-MOB kinase activator 1 (MOB1) complex has been shown to suppress the oncogenic activity of Yes-associated protein (YAP) in the mammalian Hippo pathway, which is involved in the development of multiple tumors, including pancreatic cancer (PC). However, it remains unclear whether other MST-MOB complexes are also involved in regulating Hippo-YAP signaling and have potential roles in PC. Here, we report that mammalian STE20-like kinase 4 (MST4), a distantly related ortholog of the MST1 kinase, forms a complex with MOB4 in a phosphorylation-dependent manner. We found that the overall structure of the MST4-MOB4 complex resembles that of the MST1-MOB1 complex, even though the two complexes exhibited opposite biological functions in PC. In contrast to the tumor-suppressor effect of the MST1-MOB1 complex, the MST4-MOB4 complex promoted growth and migration of PANC-1 cells. Moreover, expression levels of MST4 and MOB4 were elevated in PC and were positively correlated with each other, whereas MST1 expression was down-regulated. Because of divergent evolution of key interface residues, MST4 and MOB4 could disrupt assembly of the MST1-MOB1 complex through alternative pairing and thereby increased YAP activity. Collectively, these findings identify the MST4-MOB4 complex as a noncanonical regulator of the Hippo-YAP pathway with an oncogenic role in PC. Our findings highlight that although MST-MOB complexes display some structural conservation, they functionally diverged during their evolution.
Collapse
Affiliation(s)
- Min Chen
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031
| | - Hui Zhang
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031
| | - Zhubing Shi
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031
| | - Yehua Li
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031
| | - Xiaoman Zhang
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031
| | - Ziyang Gao
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031
| | - Li Zhou
- the School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, and
| | - Jian Ma
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031
| | - Qi Xu
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031
| | - Jingmin Guan
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031
| | - Yunfeng Cheng
- the Department of Hematology and Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shi Jiao
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031,
| | - Zhaocai Zhou
- From the State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, .,the School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, and
| |
Collapse
|