1
|
Thio CLP, Shao JS, Luo CH, Chang YJ. Decoding innate lymphoid cells and innate-like lymphocytes in asthma: pathways to mechanisms and therapies. J Biomed Sci 2025; 32:48. [PMID: 40355861 PMCID: PMC12067961 DOI: 10.1186/s12929-025-01142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Asthma is a chronic inflammatory lung disease driven by a complex interplay between innate and adaptive immune components. Among these, innate lymphoid cells (ILCs) and innate-like lymphocytes have emerged as crucial players in shaping the disease phenotype. Within the ILC family, group 2 ILCs (ILC2s), in particular, contribute significantly to type 2 inflammation through their rapid production of cytokines such as IL-5 and IL-13, promoting airway eosinophilia and airway hyperreactivity. On the other hand, innate-like lymphocytes such as invariant natural killer T (iNKT) cells can play either pathogenic or protective roles in asthma, depending on the stimuli and lung microenvironment. Regulatory mechanisms, including cytokine signaling, metabolic and dietary cues, and interactions with other immune cells, play critical roles in modulating their functions. In this review, we highlight current findings on the role of ILCs and innate-like lymphocytes in asthma development and pathogenesis. We also examine the underlying mechanisms regulating their function and their interplay with other immune cells. Finally, we explore current therapies targeting these cells and their effector cytokines for asthma management.
Collapse
Affiliation(s)
- Christina Li-Ping Thio
- Institute of Biomedical Sciences, Academia Sinica, No. 128 Academia Road, Section 2, Nankang, Taipei City, 115, Taiwan
| | - Jheng-Syuan Shao
- Institute of Biomedical Sciences, Academia Sinica, No. 128 Academia Road, Section 2, Nankang, Taipei City, 115, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei City, 115, Taiwan
| | - Chia-Hui Luo
- Institute of Biomedical Sciences, Academia Sinica, No. 128 Academia Road, Section 2, Nankang, Taipei City, 115, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei City, 115, Taiwan
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, No. 128 Academia Road, Section 2, Nankang, Taipei City, 115, Taiwan.
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung City, 404, Taiwan.
| |
Collapse
|
2
|
Ver Heul AM, Mack M, Zamidar L, Tamari M, Yang TL, Trier AM, Kim DH, Janzen-Meza H, Van Dyken SJ, Hsieh CS, Karo JM, Sun JC, Kim BS. RAG suppresses group 2 innate lymphoid cells. eLife 2025; 13:RP98287. [PMID: 40326866 PMCID: PMC12055012 DOI: 10.7554/elife.98287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
Antigen specificity is the central trait distinguishing adaptive from innate immune function. Assembly of antigen-specific T cell and B cell receptors occurs through V(D)J recombination mediated by the Recombinase Activating Gene endonucleases RAG1 and RAG2 (collectively called RAG). In the absence of RAG, mature T and B cells do not develop and thus RAG is critically associated with adaptive immune function. In addition to adaptive T helper 2 (Th2) cells, group 2 innate lymphoid cells (ILC2s) contribute to type 2 immune responses by producing cytokines like Interleukin-5 (IL-5) and IL-13. Although it has been reported that RAG expression modulates the function of innate natural killer (NK) cells, whether other innate immune cells such as ILC2s are affected by RAG remains unclear. We find that in RAG-deficient mice, ILC2 populations expand and produce increased IL-5 and IL-13 at steady state and contribute to increased inflammation in atopic dermatitis (AD)-like disease. Furthermore, we show that RAG modulates ILC2 function in a cell-intrinsic manner independent of the absence or presence of adaptive T and B lymphocytes. Lastly, employing multiomic single cell analyses of RAG1 lineage-traced cells, we identify key transcriptional and epigenomic ILC2 functional programs that are suppressed by a history of RAG expression. Collectively, our data reveal a novel role for RAG in modulating innate type 2 immunity through suppression of ILC2s.
Collapse
Affiliation(s)
- Aaron M Ver Heul
- Division of Allergy and Immunology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Madison Mack
- Immunology and Inflammation Research Therapeutic Area, SanofiCambridgeUnited States
| | - Lydia Zamidar
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Masato Tamari
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ting-Lin Yang
- Division of Dermatology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Anna M Trier
- Division of Dermatology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Do-Hyun Kim
- Department of Pathology and Immunology, Washington University School of MedicineSt. LouisUnited States
- Department of Life Science, College of Natural Sciences, Hanyang UniversitySeoulRepublic of Korea
| | - Hannah Janzen-Meza
- Division of Allergy and Immunology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Steven J Van Dyken
- Department of Pathology and Immunology, Washington University School of MedicineSt. LouisUnited States
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Jenny M Karo
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical CollegeNew YorkUnited States
- Immunology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Joseph C Sun
- Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical CollegeNew YorkUnited States
- Immunology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Brian S Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Allen Discovery Center for Neuroimmune Interactions, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
3
|
Chakraborty R, Chronopoulos J, Sun R, Morozan A, Joy S, Divangahi M, Lauzon AM, Martin JG. Anti-ST2 antibody reduces airway hyperresponsiveness mediated by monocyte-derived macrophages during influenza A infection. Mucosal Immunol 2025:S1933-0219(25)00046-7. [PMID: 40319941 DOI: 10.1016/j.mucimm.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/23/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
Influenza A virus (IAV) infections trigger asthma attacks and cause airway hyperresponsiveness (AHR) in murine models. However, the mechanism by which AHR is induced remains to be fully elucidated. Here, we show that targeting the interleukin (IL)-33 suppression of tumorigenicity 2 (ST2) receptor complex with an anti-ST2 antibody during acute IAV infection of C57BL/6 mice reduced AHR, without affecting expansion of ILC2s and independently of IL-13. Among the lung inflammatory cells, the anti-ST2 antibody selectively reduced the monocyte-derived macrophages (MMs). Furthermore, AHR was reduced in C-C chemokine receptor 2 (CCR2)-knockout mice that have deficient MM recruitment. Depletion of MMs achieved by anti-Ly6C antibody administration also reduced AHR. The treatment of airway smooth muscle (ASM) with conditioned medium from IL-33-treated human THP-1-derived macrophages enhanced potassium chloride-induced ASM contraction. These findings suggest that MMs contribute to acute AHR following IAV infection in an IL-33-dependent manner, but independent of the ILC2/IL-13 axis. Additionally, IL-33 stimulates the release of macrophage-derived mediators that enhance airway smooth muscle contraction, offering a potential mechanistic basis for IAV-induced AHR.
Collapse
Affiliation(s)
- Rohin Chakraborty
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| | - Julia Chronopoulos
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| | - Rui Sun
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| | - Arina Morozan
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| | - Sydney Joy
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| | - Anne-Marie Lauzon
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| | - James G Martin
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
4
|
Hatipoglu I, Ainsua-Enrich E, Kadel S, Turner S, Singh S, Kovats S. IRF4-regulated transcriptional and functional heterogeneity of lung-resident CD11b+ cDC2 subsets during influenza virus infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf060. [PMID: 40209091 DOI: 10.1093/jimmun/vkaf060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 02/21/2025] [Indexed: 04/12/2025]
Abstract
Lung-resident conventional dendritic cells (cDCs) coordinate immune responses to respiratory viruses in the respiratory tract or after migration to mediastinal lymph nodes (mLN). Migratory DCs include cDC1s (CD103+XCR1+CD24hi) expressing IRF8 or cDC2s (CD11b+SIRPα+CD24+) expressing IRF4. IRF4+ cDC2s are divided into a CD24hi subset that requires IRF4 for differentiation and a CD24int subset that is present in the absence of IRF4. During influenza A virus (IAV) infection of mice, we characterized the kinetics of cDC2 subset accumulation in the lung and mLN and their differences in IRF4-dependent gene expression and function. We found that the 2 IRF4-expressing cDC2 subsets upregulated CD86 to high levels, produced IL-12p40 and the chemokines CCL17 and CCL22, and were capable of acquiring antigen in vivo and activating antigen-specific CD8+ T cells. Notably, the CD11b+CD24int cDC2 subset expressed canonical cDC markers and transcription factors and expanded to high numbers in the lung and mLN by d 6 postinfection. Transcriptome analyses on d 5 postinfection revealed that the CD11b+CD24int cDC2 subset expressed both IRF4 and IRF8 and harbored an elevated IFN response signature compared to the CD11b+CD24hi subset. Analyses of mice lacking Irf4 in CD11c+ cells showed that IRF4 promoted the function of CD11b+CD24int cDC2s, including the capacity to migrate to mLN and to produce CCL17 and CCL22, consistent with their altered gene expression profile in the absence of IRF4. In sum, our data show that the 2 lung-resident CD11b+ cDC2 subsets present in naïve mice elaborated distinct and common functional responses regulated by IRF4 during IAV infection.
Collapse
Affiliation(s)
- Ibrahim Hatipoglu
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Erola Ainsua-Enrich
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Sapana Kadel
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Sean Turner
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Simar Singh
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Susan Kovats
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
5
|
Anesi N, Calmels M, Guilleminault L, Abbas F, Cenac C, Villeneuve T, de Bonnecaze G, Laffont S, Guéry JC. In Asthmatic Patients, Sexual Dimorphism correlates With Androgen Receptor Expression in ILC2s at Single Cell-Resolution. Clin Exp Allergy 2025. [PMID: 40177983 DOI: 10.1111/cea.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 02/10/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025]
Affiliation(s)
- Nina Anesi
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France
| | - Mathilde Calmels
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France
- Pôle Des Voies Respiratoires, CHU de Toulouse, Toulouse, France
| | - Laurent Guilleminault
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France
- Pôle Des Voies Respiratoires, CHU de Toulouse, Toulouse, France
- CRISALIS/FCRIN, INSERM, Toulouse, France
| | - Flora Abbas
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France
| | - Claire Cenac
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France
| | - Thomas Villeneuve
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France
- Pôle Des Voies Respiratoires, CHU de Toulouse, Toulouse, France
| | | | - Sophie Laffont
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France
| | - Jean-Charles Guéry
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity) INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France
| |
Collapse
|
6
|
Roberts LB, Kelly AM, Hepworth MR. There's no place like home: How local tissue microenvironments shape the function of innate lymphoid cells. Mucosal Immunol 2025; 18:279-289. [PMID: 39900201 DOI: 10.1016/j.mucimm.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
Innate lymphoid cells (ILC) have emerged as critical immune effectors with key roles in orchestrating the wider immune response. While ILC are relatively rare cells they are found enriched within discrete microenvironments, predominantly within barrier tissues. An emerging body of evidence implicates complex and multi-layered interactions between cell types, tissue structure and the external environment as key determinants of ILC function within these niches. In this review we will discuss the specific components that constitute ILC-associated microenvironments and consider how they act to determine health and disease. The development of holistic, integrated models of ILC function within complex tissue environments will inform new understanding of the contextual cues and mechanisms that determine the protective versus disease-causing roles of this immune cell family.
Collapse
Affiliation(s)
- Luke B Roberts
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
| | - Alanna M Kelly
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom
| | - Matthew R Hepworth
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester M13 9PL United Kingdom; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, United Kingdom.
| |
Collapse
|
7
|
Luo YF, Deng Y, Yang F, Meiduosiji, Xiong X, Yuan YL, Ao SH. The role of ILC2s in asthma combined with atopic dermatitis: bridging the gap from research to clinical practice. Front Immunol 2025; 16:1567817. [PMID: 40236701 PMCID: PMC11996653 DOI: 10.3389/fimmu.2025.1567817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/11/2025] [Indexed: 04/17/2025] Open
Abstract
Asthma, a complex and heterogeneous respiratory disease, is often accompanied by various comorbidities, notably atopic dermatitis (AD). AD characterized by recurrent eczematous lesions and severe itching, can trigger or exacerbate asthma. Individuals with AD are 2.16 times more likely to develop asthma compared to the reference population. Furthermore, asthmatics with AD experience more severe and frequent emergency department visits and hospital admissions compared to patients with asthma alone. The close connection between asthma and AD indicates there are overlap pathophysiologic mechanisms. It is well-known that dysregulated type 2 (T2) immune inflammation is pivotal in the development of both AD and asthma, traditionally attributed to CD4+ type 2 helper T (Th2) cells. Over the past decade, group 2 innate lymphoid cells (ILC2s), as potent innate immune cells, have been demonstrated to be the key drivers of T2 inflammation, playing a crucial role in the pathogenesis of both asthma and AD. ILC2s not only trigger T2 immune-inflammation but also coordinate the recruitment and activation of innate and adaptive immune cells, thereby intensifying the inflammatory response. They are rapidly activated by epithelium alarmins producing copious amounts of T2 cytokines such as interleukin (IL) -5 and IL-13 that mediate the airway inflammation, hyperresponsiveness, and cutaneous inflammation in asthma and AD, respectively. The promising efficiency of targeted ILC2s in asthma and AD has further proven their essential roles in the pathogenesis of both conditions. However, to the best of our knowledge, there is currently no review article specifically exploring the role of ILC2s in asthma combined with AD and their potential as future therapeutic targets. Hence, we hypothesize that ILC2s may play a role in the pathogenesis of asthma combined with AD, and targeting ILC2s could be a promising therapeutic approach for this complex condition in the future. In this review, we discuss recent insights in ILC2s biology, focus on the current knowledge of ILC2s in asthma, AD, particularly in asthma combined with AD, and suggest how this knowledge might be used for improved treatments of asthma combined with AD.
Collapse
Affiliation(s)
- Yan-fang Luo
- Department of Respirology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Deng
- Department of Respirology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Feng Yang
- Department of Respirology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Meiduosiji
- Department of Respirology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xia Xiong
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Dermatology, The First Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yu-lai Yuan
- Department of Respirology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Su-hua Ao
- Department of Respirology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- College of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
8
|
Ver Heul AM, Mack M, Zamidar L, Tamari M, Yang TL, Trier AM, Kim DH, Janzen-Meza H, Van Dyken SJ, Hsieh CS, Karo JM, Sun JC, Kim BS. RAG suppresses group 2 innate lymphoid cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.23.590767. [PMID: 38712036 PMCID: PMC11071423 DOI: 10.1101/2024.04.23.590767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Antigen specificity is the central trait distinguishing adaptive from innate immune function. Assembly of antigen-specific T cell and B cell receptors occurs through V(D)J recombination mediated by the Recombinase Activating Gene endonucleases RAG1 and RAG2 (collectively called RAG). In the absence of RAG, mature T and B cells do not develop and thus RAG is critically associated with adaptive immune function. In addition to adaptive T helper 2 (Th2) cells, group 2 innate lymphoid cells (ILC2s) contribute to type 2 immune responses by producing cytokines like Interleukin-5 (IL-5) and IL-13. Although it has been reported that RAG expression modulates the function of innate natural killer (NK) cells, whether other innate immune cells such as ILC2s are affected by RAG remains unclear. We find that in RAG-deficient mice, ILC2 populations expand and produce increased IL-5 and IL-13 at steady state and contribute to increased inflammation in atopic dermatitis (AD)-like disease. Further, we show that RAG modulates ILC2 function in a cell-intrinsic manner independent of the absence or presence of adaptive T and B lymphocytes. Lastly, employing multiomic single cell analyses of RAG1 lineage-traced cells, we identify key transcriptional and epigenomic ILC2 functional programs that are suppressed by a history of RAG expression. Collectively, our data reveal a novel role for RAG in modulating innate type 2 immunity through suppression of ILC2s.
Collapse
Affiliation(s)
- Aaron M. Ver Heul
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Madison Mack
- Immunology & Inflammation Research Therapeutic Area, Sanofi, Cambridge, MA 02141, USA
| | - Lydia Zamidar
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Masato Tamari
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ting-Lin Yang
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Anna M. Trier
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Do-Hyun Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Hannah Janzen-Meza
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Steven J. Van Dyken
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Chyi-Song Hsieh
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jenny M. Karo
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA
| | - Joseph C. Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA
| | - Brian S. Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Allen Discovery Center for Neuroimmune Interactions, Icahn School of Medicine at Mount Sinai 10019
| |
Collapse
|
9
|
Alladina J, Medoff BD, Cho JL. Innate Immunity and Asthma Exacerbations: Insights From Human Models. Immunol Rev 2025; 330:e70016. [PMID: 40087882 PMCID: PMC11922041 DOI: 10.1111/imr.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/14/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
Asthma is a common chronic respiratory disease characterized by the presence of airway inflammation, airway hyperresponsiveness, and mucus hypersecretion. Repeated asthma exacerbations can lead to progressive airway remodeling and irreversible airflow obstruction. Thus, understanding and preventing asthma exacerbations are of paramount importance. Although multiple endotypes exist, asthma is most often driven by type 2 airway inflammation. New therapies that target specific type 2 mediators have been shown to reduce the frequency of asthma exacerbations but are incompletely effective in a significant number of asthmatics. Furthermore, it remains unknown whether current treatments lead to sustained changes in the airway or if targeting additional pathways may be necessary to achieve asthma remission. Activation of innate immunity is the initial event in the inflammatory sequence that occurs during an asthma exacerbation. However, there continue to be critical gaps in our understanding of the innate immune response to asthma exacerbating factors. In this review, we summarize the current understanding of the role of innate immunity in asthma exacerbations and the methods used to study them. We also identify potential novel therapeutic targets for asthma and future areas for investigation.
Collapse
Affiliation(s)
- Jehan Alladina
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin D. Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Josalyn L. Cho
- Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
10
|
Olsthoorn SEM, van Krimpen A, Hendriks RW, Stadhouders R. Chronic Inflammation in Asthma: Looking Beyond the Th2 Cell. Immunol Rev 2025; 330:e70010. [PMID: 40016948 PMCID: PMC11868696 DOI: 10.1111/imr.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 03/01/2025]
Abstract
Asthma is a common chronic inflammatory disease of the airways. A substantial number of patients present with severe and therapy-resistant asthma, for which the underlying biological mechanisms remain poorly understood. In most asthma patients, airway inflammation is characterized by chronic activation of type 2 immunity. CD4+ T helper 2 (Th2) cells are the canonical producers of the cytokines that fuel type 2 inflammation: interleukin (IL)-4, IL-5, IL-9, and IL-13. However, more recent findings have shown that other lymphocyte subsets, in particular group 2 innate lymphoid cells (ILC2s) and type 2 CD8+ cytotoxic T (Tc2) cells, can also produce large amounts of type 2 cytokines. Importantly, a substantial number of severe therapy-resistant asthma patients present with chronic type 2 inflammation, despite the high sensitivity of Th2 cells for suppression by corticosteroids-the mainstay drugs for asthma. Emerging evidence indicates that ILC2s and Tc2 cells are more abundant in severe asthma patients and can adopt corticosteroid-resistance states. Moreover, many severe asthma patients do not present with overt type 2 airway inflammation, implicating non-type 2 immunity as a driver of disease. In this review, we will discuss asthma pathophysiology and focus on the roles played by ILC2s, Tc2 cells, and non-type 2 lymphocytes, placing special emphasis on severe disease forms.
Collapse
Affiliation(s)
- Simone E. M. Olsthoorn
- Department of Pulmonary MedicineErasmus MC University Medical CenterRotterdamthe Netherlands
| | - Anneloes van Krimpen
- Department of Pulmonary MedicineErasmus MC University Medical CenterRotterdamthe Netherlands
| | - Rudi W. Hendriks
- Department of Pulmonary MedicineErasmus MC University Medical CenterRotterdamthe Netherlands
| | - Ralph Stadhouders
- Department of Pulmonary MedicineErasmus MC University Medical CenterRotterdamthe Netherlands
| |
Collapse
|
11
|
Mannion JM, Rahimi RA. Tissue-Resident Th2 Cells in Type 2 Immunity and Allergic Diseases. Immunol Rev 2025; 330:e70006. [PMID: 39981858 PMCID: PMC11897987 DOI: 10.1111/imr.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
Type 2 immunity represents a unique immune module that provides host protection against macro-parasites and noxious agents such as venoms and toxins. In contrast, maladaptive type 2 immune responses cause allergic diseases. While multiple cell types play important roles in type 2 immunity, recent studies in humans and murine models of chronic allergic diseases have shown that a distinct population of tissue-resident, CD4+ T helper type 2 (Th2) cells play a critical role in chronic allergic inflammation. The rules regulating Th2 cell differentiation have remained less well defined than other T cell subsets, but recent studies have shed new light into the specific mechanisms controlling Th2 cell biology in vivo. Here, we review our current understanding of the checkpoints regulating the development and function of tissue-resident Th2 cells with a focus on chronic allergic diseases. We discuss evidence for a barrier tissue checkpoint in initial Th2 cell priming, including the role of neuropeptides, damage-associated molecular patterns, and dendritic cell macro-clusters. Furthermore, we review the evidence for a second barrier tissue checkpoint that instructs the development of multi-cytokine producing, tissue-resident Th2 cells that orchestrate allergic inflammation. Lastly, we discuss potential approaches to therapeutically target tissue-resident Th2 cells in chronic allergic diseases.
Collapse
Affiliation(s)
- Jenny M Mannion
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rod A Rahimi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Harada Y, Sasaki T, Obata-Ninomiya K, Matsuyama T, Ueha S, Shichino S, Watanabe T, Bin W, Ogawa S, Ki S, Suzuki Y, Ueno H, Ziegler SF, Inoue H, Burrows PD, Murphy K, Kim BS, Kubo M. Atopic skin inflammation promotes systemic anaphylactic responses via IL-13 signaling in conventional dendritic cells. RESEARCH SQUARE 2025:rs.3.rs-5892170. [PMID: 39989951 PMCID: PMC11844645 DOI: 10.21203/rs.3.rs-5892170/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Cutaneous allergen sensitization (CAS) underlies atopic dermatitis (AD) and leads to various allergic symptoms, including food allergy and anaphylaxis. IL-13 expression by T follicular helper T (TFH) has been reported to be involved in generating high-affinity IgE antibodies and causing systemic anaphylaxis.1, 2 However, the mechanisms by which IL-13 triggers IgE-mediated allergic responses remain poorly defined. In the present study, we elucidate the role of IL-13 in the CAS-mediated mechanism by which high-affinity IgE antibodies are produced when the same allergen is introduced at a distal site in the secondary sensitization. The CAS model system using mice lacking the cell lineage-specific IL-13 receptor (IL-13R) demonstrated that dendritic cells (DCs), but not T or B cells, are critical in the high-affinity IgE-mediated anaphylactic response. The IL-13 signal in type 2 conventional DCs (cDC2s) enhanced the expression of MHC class II and CD301b, which was essential for the recall of type 2 responses, inducing the production of high-affinity IgE antibodies. Similar IL-13R-expressing DCs were identified in allergic rhinitis and food allergy patients with a history of AD. These findings strongly suggest the importance of DC-specific IL-13 signaling in CAS-induced allergic reactions associated with the atopic march, which is common in human AD patients.
Collapse
Affiliation(s)
- Yasuyo Harada
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba 278-0022, Japan
- YH and TS equally contribute to this manuscript as first author
| | - Takanori Sasaki
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba 278-0022, Japan
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi 35, Shinjuku-ku, Tokyo 160-8582, Japan
- YH and TS equally contribute to this manuscript as first author
| | - Kazushige Obata-Ninomiya
- Benaroya Research Institute, Center for Fundamental Immunology, 1201 Ninth Avenue, Seattle WA 98101-2795
| | - Takahiro Matsuyama
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 1-35-1 Sakuragaoka, Kagoshima 890-0075, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba 278-0022, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba 278-0022, Japan
| | - Takashi Watanabe
- Laboratory for Integrative Genomics, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Wu Bin
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba 278-0022, Japan
| | - Shuhei Ogawa
- Division of integrated research, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba 278-0022, Japan
| | - Sewon Ki
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshie Suzuki
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Hideki Ueno
- Department of Immunology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Steven F. Ziegler
- Benaroya Research Institute, Center for Fundamental Immunology, 1201 Ninth Avenue, Seattle WA 98101-2795
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 1-35-1 Sakuragaoka, Kagoshima 890-0075, Japan
| | - Peter D. Burrows
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kenneth Murphy
- Department of Pathology and Immunology, Washington University in St Louis, School of Medicine, St Louis, MO, USA
| | - Brian S. Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Mark Lebwohl Center for Neuroinflammation and Sensation, Marc and Jennifer Lipschultz Precision Immunology Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10019, USA
- Allen Discovery Center for Neuroimmune Interactions, New York, NY 10019, USA
| | - Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda-shi, Chiba 278-0022, Japan
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
13
|
Carnazza M, Werner R, Tiwari RK, Geliebter J, Li XM, Yang N. The Etiology of IgE-Mediated Food Allergy: Potential Therapeutics and Challenges. Int J Mol Sci 2025; 26:1563. [PMID: 40004029 PMCID: PMC11855496 DOI: 10.3390/ijms26041563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/03/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Immunoglobulin E (IgE)-mediated food allergy has been dramatically increasing in incidence over the last few decades. The combinations of both genetic and environmental factors that affect the microbiome and immune system have demonstrated significant roles in its pathogenesis. The morbidity, and at times mortality, that occurs as the result of this specific, reproducible, but impaired immune response is due to the nature of the shift from a regulatory T (Treg) cellular response to a T helper 2 (Th2) cellular response. This imbalance caused by food allergens results in an interleukin (IL)-4 and IL-13 dominant environment that drives B cell activation and differentiation into IgE-producing plasma cells. The resulting symptoms can range from mild to more severe anaphylaxis, and even death. Current therapeutic strategies involve avoidance and broad symptom management upon accidental exposure; however, no definitive cure exists. This narrative review highlights how the elucidation of the pathogenesis of IgE-mediated food allergy resulted in the development of therapeutics that are more specific to these individual receptors and molecules which have been relatively successful in mitigating this potentially life-threatening allergic response. However, potential adverse effects and re-sensitization following the conclusion of treatment has urged the need for improved therapeutic methods. Therefore, given the understanding of their mechanism of action and the overlap with the mechanism of IgE-mediated food allergies, probiotics and small molecule natural compounds may provide novel therapeutic and preventative strategies. This is compelling, as they have demonstrated success in clinical trials and may provide hope to improve quality of life in allergy patients.
Collapse
Affiliation(s)
- Michelle Carnazza
- General Nutraceutical Technology, LLC, Elmsford, NY 10523, USA (N.Y.)
| | - Robert Werner
- General Nutraceutical Technology, LLC, Elmsford, NY 10523, USA (N.Y.)
| | - Raj K. Tiwari
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| | - Jan Geliebter
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| | - Xiu-Min Li
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
- Department of Dermatology, New York Medical College, Valhalla, NY 10595, USA
| | - Nan Yang
- General Nutraceutical Technology, LLC, Elmsford, NY 10523, USA (N.Y.)
| |
Collapse
|
14
|
León B. Type 2 conventional dendritic cell functional heterogeneity: ontogenically committed or environmentally plastic? Trends Immunol 2025; 46:104-120. [PMID: 39843310 PMCID: PMC11835539 DOI: 10.1016/j.it.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/20/2024] [Accepted: 12/28/2024] [Indexed: 01/24/2025]
Abstract
Conventional dendritic cells (cDCs) are sentinels of the mammalian immune system that sense a wide range of danger and homeostatic signals to induce appropriately targeted T cell immune responses. Traditionally classified into two main subsets, cDC1 and cDC2, recent research shows that cDC2s exhibit significant heterogeneity and can be further subdivided. Studies in mice and humans show that, beyond their ontogeny, cDC2s acquire dynamic and tissue-specific characteristics that are influenced by local environmental signals, which impact on their functions during homeostasis, inflammation, and infection. The novel concept is proposed that tissue-derived signals and tissue plasticity can override preestablished developmental programming, thereby redefining developmental trajectories and cDC2 functionality. Ultimately, understanding cDC2 heterogeneity and plasticity has important implications for modulating T cell immunity in health and disease.
Collapse
Affiliation(s)
- Beatriz León
- Innate Cells and Th2 Immunity Section, National Institute of Allergy and Infectious Diseases/National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Aldossary H, Karkout R, Couto K, Labrie L, Fixman ED. IL-33-experienced group 2 innate lymphoid cells in the lung are poised to enhance type 2 inflammation selectively in adult female mice. Respir Res 2024; 25:427. [PMID: 39633345 PMCID: PMC11619098 DOI: 10.1186/s12931-024-03043-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
While Th2 adaptive immunity has long been considered to orchestrate type 2 inflammation in the allergic lung, group 2 innate lymphoid cells (ILC2s), with the ability to produce a similar profile of type 2 cytokines, likely participate in lung inflammation in allergic asthma. ILC2s are also implicated in sex disparities in asthma, supported by data from murine models showing they are inhibited by male sex hormones. Moreover, larger numbers of ILC2s are present in the lungs of female mice and are correlated with greater type 2 inflammation. Lung ILC2s exhibit intriguing memory-like responses, though whether these differ in males and females does not appear to have been addressed. We have examined type 2 lung inflammation in adult male and female Balb/c mice following delivery of IL-33 to the lung. While the number of ILC2s was elevated equally in males and females four weeks after exposure to IL-33, ILC2s from female mice expressed higher levels of ST2, the IL-33 cognate receptor subunit, and a larger proportion of ILC2s from females expressed the IL-25 receptor (IL-25R), which has previously been linked to memory-like ILC2 responses in mice. Our data show that the subset of ILC2s expressing IL-25R, upon activation, was more likely to produce IL-5 and IL-13. Moreover, STAT6 was absolutely required for enhanced responsiveness in this model system. Altogether, our data show that enhanced type 2 inflammation in females is linked to durable changes in ILC2 subsets with the ability to respond more robustly, in a STAT6-dependent manner, upon secondary activation by innate epithelial-derived cytokines.
Collapse
Affiliation(s)
- Haya Aldossary
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Rami Karkout
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Katalina Couto
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Lydia Labrie
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Elizabeth D Fixman
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
16
|
Schuijs MJ, Brenis Gomez CM, Bick F, Van Moorleghem J, Vanheerswynghels M, van Loo G, Beyaert R, Voehringer D, Locksley RM, Hammad H, Lambrecht BN. Interleukin-33-activated basophils promote asthma by regulating Th2 cell entry into lung tissue. J Exp Med 2024; 221:e20240103. [PMID: 39297875 PMCID: PMC11413418 DOI: 10.1084/jem.20240103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Asthma is characterized by lung eosinophilia, remodeling, and mucus plugging, controlled by adaptive Th2 effector cells secreting IL-4, IL-5, and IL-13. Inhaled house dust mite (HDM) causes the release of barrier epithelial cytokines that activate various innate immune cells like DCs and basophils that can promote Th2 adaptive immunity directly or indirectly. Here, we show that basophils play a crucial role in the development of type 2 immunity and eosinophilic inflammation, mucus production, and bronchial hyperreactivity in response to HDM inhalation in C57Bl/6 mice. Interestingly, conditional depletion of basophils during sensitization did not reduce Th2 priming or asthma inception, whereas depletion during allergen challenge did. During the challenge of sensitized mice, basophil-intrinsic IL-33/ST2 signaling, and not FcεRI engagement, promoted basophil IL-4 production and subsequent Th2 cell recruitment to the lungs via vascular integrin expression. Basophil-intrinsic loss of the ubiquitin modifying molecule Tnfaip3, involved in dampening IL-33 signaling, enhanced key asthma features. Thus, IL-33-activated basophils are gatekeepers that boost allergic airway inflammation by controlling Th2 tissue entry.
Collapse
Affiliation(s)
- Martijn J. Schuijs
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Claudia M. Brenis Gomez
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Fabian Bick
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Manon Vanheerswynghels
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Geert van Loo
- Laboratory of Molecular and Cellular Pathophysiology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen, Erlangen, Germany
| | - Richard M. Locksley
- UCSF Department of Medicine and Howard Hugues Medical Institute, University of California San Francisco, San Francisco, CA, USA
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N. Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, ErasmusMC, Rotterdam, Netherlands
| |
Collapse
|
17
|
Choudhary I, Lamichhane R, Singamsetty D, Vo T, Brombacher F, Patial S, Saini Y. Cell-Specific Contribution of IL-4 Receptor α Signaling Shapes the Overall Manifestation of Allergic Airway Disease. Am J Respir Cell Mol Biol 2024; 71:702-717. [PMID: 39254378 PMCID: PMC11622633 DOI: 10.1165/rcmb.2024-0208oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/10/2024] [Indexed: 09/11/2024] Open
Abstract
IL-4 and IL-13 play a critical role in allergic asthma pathogenesis via their common receptor IL-4Rα. However, the cell-specific role of IL-4Rα in mixed allergen (MA)-induced allergic asthma has remained unclear. Therefore, we aimed to identify the cell-specific contribution of IL-4Rα signaling in the manifestation of various pathological outcomes in mice with allergic airway disease. We compared MA-induced pathological outcomes between hematopoietic progenitor cell (HPC)- or non-HPC-specific IL-4Rα-deficient chimera, myeloid cell-specific IL-4Rα-deficient (LysMcre+/+IL-4Rαfl/fl), and airway epithelial cell-specific IL-4Rα-deficient (CCSP-Cre+/IL-4Rαfl/fl) mice. Chimeric mice with systemic IL-4Rα sufficiency displayed hallmark features of allergic asthma, including eosinophilic and lymphocytic infiltration, type 2 (T-helper type 2) cytokine/chemokine production, IgE production, and lung pathology. These features were markedly reduced in chimeric mice with systemic IL-4Rα deficiency. Non-HPC-specific IL-4Rα-deficient mice displayed typical inflammatory features of allergic asthma but with markedly reduced mucous cell metaplasia (MCM). Deletion of IL-4Rα signaling on airway epithelial cells, a subpopulation within the non-HPC lineage, resulted in almost complete absence of MCM. In contrast, all features of allergic asthma except for MCM and mucin production were mitigated in HPC-specific IL-4Rα-deficient chimeric mice. Deleting IL-4Rα signaling in myeloid cells, a subpopulation within the HPC lineage, significantly alleviated MA-induced allergic airway inflammatory responses, but, similar to the HPC-specific IL-4Rα-deficient chimeric mice, these mice showed significant MCM and mucin production. Our findings demonstrate that the differential allergen responsiveness seen in mice with HPC-specific and non-HPC-specific IL-4Rα deficiency is predominantly driven by the absence of IL-4Rα in myeloid cells and airway epithelial cells, respectively. Our findings also highlight distinct and mutually exclusive roles of IL-4Rα signaling in mediating pathological outcomes within the myeloid and airway epithelial cell compartments.
Collapse
Affiliation(s)
- Ishita Choudhary
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Richa Lamichhane
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Dhruthi Singamsetty
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Thao Vo
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology and Division of Immunology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, Cape Town, South Africa; and
| | - Sonika Patial
- National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina
| | - Yogesh Saini
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
18
|
Szeto AC, Ferreira AC, McKenzie AN. Molecular mechanisms regulating T helper 2 cell differentiation and function. Curr Opin Immunol 2024; 91:102483. [PMID: 39357077 PMCID: PMC7617428 DOI: 10.1016/j.coi.2024.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
T helper 2 (TH2) cells orchestrate type 2 immunity during protective antihelminth immunity and help restore tissue homoeostasis. Their misdirected activities against innocuous substances also underlie atopic diseases, such as asthma and allergy. Recent technological advances are uncovering novel insights into the molecular mechanisms governing TH2 cell differentiation and function.
Collapse
Affiliation(s)
- Aydan Ch Szeto
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Ana Cf Ferreira
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | | |
Collapse
|
19
|
Surace L, Wilhelm C, Bode C. Mef2d: a novel transcription factor in type 2 allergic lung inflammation. Signal Transduct Target Ther 2024; 9:309. [PMID: 39511156 PMCID: PMC11544237 DOI: 10.1038/s41392-024-02022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/14/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024] Open
Affiliation(s)
- Laura Surace
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, 53127, Germany
| | - Christoph Wilhelm
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, 53127, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, 53127, Germany.
| |
Collapse
|
20
|
Bick F, Brenis Gómez CM, Lammens I, Van Moorleghem J, De Wolf C, Dupont S, Dumoutier L, Smith NP, Villani AC, Browaeys R, Alladina J, Haring AM, Medoff BD, Cho JL, Bigirimana R, Vieira J, Hammad H, Blanchetot C, Schuijs MJ, Lambrecht BN. IL-2 family cytokines IL-9 and IL-21 differentially regulate innate and adaptive type 2 immunity in asthma. J Allergy Clin Immunol 2024; 154:1129-1145. [PMID: 39147327 DOI: 10.1016/j.jaci.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/07/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Asthma is often accompanied by type 2 immunity rich in IL-4, IL-5, and IL-13 cytokines produced by TH2 lymphocytes or type 2 innate lymphoid cells (ILC2s). IL-2 family cytokines play a key role in the differentiation, homeostasis, and effector function of innate and adaptive lymphocytes. OBJECTIVE IL-9 and IL-21 boost activation and proliferation of TH2 and ILC2s, but the relative importance and potential synergism between these γ common chain cytokines are currently unknown. METHODS Using newly generated antibodies, we inhibited IL-9 and IL-21 alone or in combination in various murine models of asthma. In a translational approach using segmental allergen challenge, we recently described elevated IL-9 levels in human subjects with allergic asthma compared with nonasthmatic controls. Here, we also measured IL-21 in both groups. RESULTS IL-9 played a central role in controlling innate IL-33-induced lung inflammation by promoting proliferation and activation of ILC2s in an IL-21-independent manner. Conversely, chronic house dust mite-induced airway inflammation, mainly driven by adaptive immunity, was solely dependent on IL-21, which controlled TH2 activation, eosinophilia, total serum IgE, and formation of tertiary lymphoid structures. In a model of innate on adaptive immunity driven by papain allergen, a clear synergy was found between both pathways, as combined anti-IL-9 or anti-IL-21 blockade was superior in reducing key asthma features. In human bronchoalveolar lavage samples we measured elevated IL-21 protein within the allergic asthmatic group compared with the allergic control group. We also found increased IL21R transcripts and predicted IL-21 ligand activity in various disease-associated cell subsets. CONCLUSIONS IL-9 and IL-21 play important and nonredundant roles in allergic asthma by boosting ILC2s and TH2 cells, revealing a dual IL-9 and IL-21 targeting strategy as a new and testable approach.
Collapse
Affiliation(s)
- Fabian Bick
- argenx BV, Zwijnaarde, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Claudia M Brenis Gómez
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Inés Lammens
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Caroline De Wolf
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sam Dupont
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Laure Dumoutier
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Neal P Smith
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Mass; Massachusetts General Hospital Cancer Center, Boston, Mass
| | - Alexandra-Chloé Villani
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Mass; Massachusetts General Hospital Cancer Center, Boston, Mass
| | - Robin Browaeys
- Bioinformatics Expertise Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Jehan Alladina
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Alexis M Haring
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Benjamin D Medoff
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Josalyn L Cho
- Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | | | | | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | | | - Martijn J Schuijs
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
21
|
Kubo M, Harada Y, Sasaki T. The role of dendritic cells in the instruction of helper T cells in the allergic march. Int Immunol 2024; 36:559-566. [PMID: 39162776 DOI: 10.1093/intimm/dxae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/18/2024] [Indexed: 08/21/2024] Open
Abstract
Allergy is a complex array of diseases influenced by innate and adaptive immunity, genetic polymorphisms, and environmental triggers. Atopic dermatitis is a chronic inflammatory skin disease characterized by barrier defects and immune dysregulation, sometimes leading to asthma and food allergies because of the atopic march. During atopic skin inflammation, Langerhans cells and dendritic cells (DCs) in the skin capture and deliver allergen information to local lymph nodes. DCs are essential immune sensors coordinating immune reactions by capturing and presenting antigens to T cells. In the context of allergic responses, DCs play a crucial role in instructing two types of helper T cells-type 2 helper T (Th2) cells and follicular helper T (TFH) cells-in allergic responses and IgE antibody responses. In skin sensitization, the differentiation and function of Th2 cells and TFH cells are influenced by skin-derived factors, including epithelial cytokines, chemokines, and signalling pathways to modify the function of migratory DCs and conventional DCs. In this review, we aim to understand the specific mechanisms involving DCs in allergic responses to provide insights into the pathogenesis of allergic diseases and potential therapeutic strategies.
Collapse
Affiliation(s)
- Masato Kubo
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda-shi, Chiba 278-0022, Japan
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa 230-0045, Japan
| | - Yasuyo Harada
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda-shi, Chiba 278-0022, Japan
| | - Takanori Sasaki
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda-shi, Chiba 278-0022, Japan
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
Xie C, Yang J, Gul A, Li Y, Zhang R, Yalikun M, Lv X, Lin Y, Luo Q, Gao H. Immunologic aspects of asthma: from molecular mechanisms to disease pathophysiology and clinical translation. Front Immunol 2024; 15:1478624. [PMID: 39439788 PMCID: PMC11494396 DOI: 10.3389/fimmu.2024.1478624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
In the present review, we focused on recent translational and clinical discoveries in asthma immunology, facilitating phenotyping and stratified or personalized interventions for patients with this condition. The immune processes behind chronic inflammation in asthma exhibit marked heterogeneity, with diverse phenotypes defining discernible features and endotypes illuminating the underlying molecular mechanisms. In particular, two primary endotypes of asthma have been identified: "type 2-high," characterized by increased eosinophil levels in the airways and sputum of patients, and "type 2-low," distinguished by increased neutrophils or a pauci-granulocytic profile. Our review encompasses significant advances in both innate and adaptive immunities, with emphasis on the key cellular and molecular mediators, and delves into innovative biological and targeted therapies for all the asthma endotypes. Recognizing that the immunopathology of asthma is dynamic and continuous, exhibiting spatial and temporal variabilities, is the central theme of this review. This complexity is underscored through the innumerable interactions involved, rather than being driven by a single predominant factor. Integrated efforts to improve our understanding of the pathophysiological characteristics of asthma indicate a trend toward an approach based on disease biology, encompassing the combined examination of the clinical, cellular, and molecular dimensions of the disease to more accurately correlate clinical traits with specific disease mechanisms.
Collapse
Affiliation(s)
- Cong Xie
- Department of Endocrinology and Clinical Immunology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Jingyan Yang
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Aman Gul
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
- Department of Respiratory Medicine, Uyghur Medicines Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yifan Li
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Rui Zhang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Maimaititusun Yalikun
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Xiaotong Lv
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhan Lin
- Department of Endocrinology and Clinical Immunology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qingli Luo
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Fudan Institutes of Integrative Medicine, Fudan University Shanghai Medical College, Shanghai, China
| | - Huijuan Gao
- Department of Endocrinology and Clinical Immunology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
23
|
Dora D, Szőcs E, Soós Á, Halasy V, Somodi C, Mihucz A, Rostás M, Mógor F, Lohinai Z, Nagy N. From bench to bedside: an interdisciplinary journey through the gut-lung axis with insights into lung cancer and immunotherapy. Front Immunol 2024; 15:1434804. [PMID: 39301033 PMCID: PMC11410641 DOI: 10.3389/fimmu.2024.1434804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
This comprehensive review undertakes a multidisciplinary exploration of the gut-lung axis, from the foundational aspects of anatomy, embryology, and histology, through the functional dynamics of pathophysiology, to implications for clinical science. The gut-lung axis, a bidirectional communication pathway, is central to understanding the interconnectedness of the gastrointestinal- and respiratory systems, both of which share embryological origins and engage in a continuous immunological crosstalk to maintain homeostasis and defend against external noxa. An essential component of this axis is the mucosa-associated lymphoid tissue system (MALT), which orchestrates immune responses across these distant sites. The review delves into the role of the gut microbiome in modulating these interactions, highlighting how microbial dysbiosis and increased gut permeability ("leaky gut") can precipitate systemic inflammation and exacerbate respiratory conditions. Moreover, we thoroughly present the implication of the axis in oncological practice, particularly in lung cancer development and response to cancer immunotherapies. Our work seeks not only to synthesize current knowledge across the spectrum of science related to the gut-lung axis but also to inspire future interdisciplinary research that bridges gaps between basic science and clinical application. Our ultimate goal was to underscore the importance of a holistic understanding of the gut-lung axis, advocating for an integrated approach to unravel its complexities in human health and disease.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Emőke Szőcs
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ádám Soós
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Viktória Halasy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Csenge Somodi
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Anna Mihucz
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Melinda Rostás
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Fruzsina Mógor
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Nándor Nagy
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
24
|
Mejía SP, López D, Cano LE, Muñoz JD, Orozco J, Naranjo TW. Antifungal efficacy and immunomodulatory effect of PLGA nanoparticle-encapsulated itraconazole in histoplasmosis in vivo model. J Mycol Med 2024; 34:101494. [PMID: 38908332 DOI: 10.1016/j.mycmed.2024.101494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/03/2024] [Accepted: 06/07/2024] [Indexed: 06/24/2024]
Abstract
INTRODUCTION Histoplasma capsulatum is the etiological agent of histoplasmosis, the most common endemic pulmonary mycosis. Itraconazole (ITZ) is the choice for mild disease and a step-down therapy in severe and disseminated clinical presentations. Drug encapsulation into nanoparticles (NPs) is an alternative to improve drug solubility and bioavailability, reducing undesirable interactions and drug degradation and reaching the specific therapeutic target with lower doses. OBJECTIVE evaluate the antifungal and immunomodulatory effect of ITZ encapsulated into poly(lactic-co-glycolic acid) (PLGA) NPs, administrated orally and intraperitoneally in an in vivo histoplasmosis model. RESULTS After intranasal infection and treatment of animals with encapsulated ITZ by intraperitoneal and oral route, fungal burden control, biodistribution, immune response, and histopathology were evaluated. The results showed that the intraperitoneal administered and encapsulated ITZ has an effective antifungal effect, significantly reducing the Colony-Forming-Units (CFU) after the first doses and controlling the infection dissemination, with a higher concentration in the liver, spleen, and lung compared to the oral treatment. In addition, it produced a substantial immunomodulatory effect on pro- and anti-inflammatory cytokines and immune cell infiltrates confirmed by histopathology. CONCLUSIONS Overall, results suggest a synergistic effect of the encapsulated drug and the immunomodulatory effect contributing to infection control, preventing their dissemination.
Collapse
Affiliation(s)
- Susana P Mejía
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 Nº 52-20, Medellin 050010, Colombia; Experimental and Medical Micology Group, Corporación para Investigaciones Biológicas (CIB), UdeA, UPB, UdeS, Cra 72A #78b-141, Altamira, Medellin 050036, Colombia
| | - Daniela López
- Experimental and Medical Micology Group, Corporación para Investigaciones Biológicas (CIB), UdeA, UPB, UdeS, Cra 72A #78b-141, Altamira, Medellin 050036, Colombia
| | - Luz Elena Cano
- Experimental and Medical Micology Group, Corporación para Investigaciones Biológicas (CIB), UdeA, UPB, UdeS, Cra 72A #78b-141, Altamira, Medellin 050036, Colombia
| | - Julián D Muñoz
- Quiron Pathobiology Research Group. Faculty of Agricultural Sciences University of Antioquia, Cl. 73 #73A-79, Medellín 050036, Colombia
| | - Jahir Orozco
- Max Planck Tandem Group in Nanobioengineering, Institute of Chemistry, Faculty of Natural and Exact Sciences, University of Antioquia, Complejo Ruta N, Calle 67 Nº 52-20, Medellin 050010, Colombia
| | - Tonny W Naranjo
- Experimental and Medical Micology Group, Corporación para Investigaciones Biológicas (CIB), UdeA, UPB, UdeS, Cra 72A #78b-141, Altamira, Medellin 050036, Colombia; School of Health Sciences, Universidad Pontificia Bolivariana, Cl. 78b #72A - 109, Medellín 050036, Colombia.
| |
Collapse
|
25
|
Gogoi M, Clark PA, Ferreira ACF, Rodriguez Rodriguez N, Heycock M, Ko M, Murphy JE, Chen V, Luan SL, Jolin HE, McKenzie ANJ. ILC2-derived LIF licences progress from tissue to systemic immunity. Nature 2024; 632:885-892. [PMID: 39112698 PMCID: PMC11338826 DOI: 10.1038/s41586-024-07746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/24/2024] [Indexed: 08/17/2024]
Abstract
Migration and homing of immune cells are critical for immune surveillance. Trafficking is mediated by combinations of adhesion and chemokine receptors that guide immune cells, in response to chemokine signals, to specific locations within tissues and the lymphatic system to support tissue-localized immune reactions and systemic immunity1,2. Here we show that disruption of leukaemia inhibitory factor (LIF) production from group 2 innate lymphoid cells (ILC2s) prevents immune cells leaving the lungs to migrate to the lymph nodes (LNs). In the absence of LIF, viral infection leads to plasmacytoid dendritic cells (pDCs) becoming retained in the lungs where they improve tissue-localized, antiviral immunity, whereas chronic pulmonary allergen challenge leads to marked immune cell accumulation and the formation of tertiary lymphoid structures in the lung. In both cases immune cells fail to migrate to the lymphatics, leading to highly compromised LN reactions. Mechanistically, ILC2-derived LIF induces the production of the chemokine CCL21 from lymphatic endothelial cells lining the pulmonary lymphatic vessels, thus licensing the homing of CCR7+ immune cells (including dendritic cells) to LNs. Consequently, ILC2-derived LIF dictates the egress of immune cells from the lungs to regulate tissue-localized versus systemic immunity and the balance between allergen and viral responsiveness in the lungs.
Collapse
Affiliation(s)
- Mayuri Gogoi
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| | | | | | | | | | - Michelle Ko
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Victor Chen
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Shi-Lu Luan
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | |
Collapse
|
26
|
Stockis J, Yip T, Moreno-Vicente J, Burton O, Samarakoon Y, Schuijs MJ, Raghunathan S, Garcia C, Luo W, Whiteside SK, Png S, Simpson C, Monk S, Sawle A, Yin K, Barbieri J, Papadopoulos P, Wong H, Rodewald HR, Vyse T, McKenzie ANJ, Cragg MS, Hoare M, Withers DR, Fehling HJ, Roychoudhuri R, Liston A, Halim TYF. Cross-talk between ILC2 and Gata3 high T regs locally constrains adaptive type 2 immunity. Sci Immunol 2024; 9:eadl1903. [PMID: 39028828 DOI: 10.1126/sciimmunol.adl1903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/26/2024] [Indexed: 07/21/2024]
Abstract
Regulatory T cells (Tregs) control adaptive immunity and restrain type 2 inflammation in allergic disease. Interleukin-33 promotes the expansion of tissue-resident Tregs and group 2 innate lymphoid cells (ILC2s); however, how Tregs locally coordinate their function within the inflammatory niche is not understood. Here, we show that ILC2s are critical orchestrators of Treg function. Using spatial, cellular, and molecular profiling of the type 2 inflamed niche, we found that ILC2s and Tregs engage in a direct (OX40L-OX40) and chemotaxis-dependent (CCL1-CCR8) cellular dialogue that enforces the local accumulation of Gata3high Tregs, which are transcriptionally and functionally adapted to the type 2 environment. Genetic interruption of ILC2-Treg communication resulted in uncontrolled type 2 lung inflammation after allergen exposure. Mechanistically, we found that Gata3high Tregs can modulate the local bioavailability of the costimulatory molecule OX40L, which subsequently controlled effector memory T helper 2 cell numbers. Hence, ILC2-Treg interactions represent a critical feedback mechanism to control adaptive type 2 immunity.
Collapse
Affiliation(s)
- Julie Stockis
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Thomas Yip
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | - Oliver Burton
- Immunology Programme, Babraham Institute, Cambridge CB22 3AT, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Youhani Samarakoon
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Martijn J Schuijs
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | - Celine Garcia
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Weike Luo
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Sarah K Whiteside
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Shaun Png
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Charlotte Simpson
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Stela Monk
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Ashley Sawle
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Kelvin Yin
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Johanna Barbieri
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | - Hannah Wong
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, Heidelberg 69120, Germany
| | - Timothy Vyse
- Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, UK
| | - Andrew N J McKenzie
- Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Mark S Cragg
- Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Matthew Hoare
- CRUK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Early Cancer Institute, Hutchison Research Centre, University of Cambridge, Cambridge CB2 0XZ, UK
| | - David R Withers
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | - Hans Jörg Fehling
- Institute of Immunology, University Hospital Ulm, Ulm 89081, Germany
| | | | - Adrian Liston
- Immunology Programme, Babraham Institute, Cambridge CB22 3AT, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | | |
Collapse
|
27
|
Qin M, Fang Y, Zheng Q, Peng M, Wang L, Sang X, Cao G. Tissue microenvironment induces tissue specificity of ILC2. Cell Death Discov 2024; 10:324. [PMID: 39013890 PMCID: PMC11252336 DOI: 10.1038/s41420-024-02096-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Type 2 innate lymphoid cells were found to be members of the innate immune cell family, which is involved in innate and adaptive immunity to resist the invasion of foreign antigens and induce allergic reactions caused by allergens. The advancement of ILC2 research has pointed out that ILC2s have a high degree of diversity, challenging the notion of their homogeneity as a cellular population. An increasing number of studies indicate that ILC2 is a cell population with tissue specificity which can be induced by the tissue microenvironment. In addition, crosstalk between tissues can change ILC2 functions of migration and activation. Here, we emphasize that ILC2 undergoes adaptive changes under the regulation of the tissue microenvironment and distant tissues, thereby coordinating the organization's operation. In addition, ILC2 alterations induced by the tissue microenvironment are not limited to the ILC2 cell population, and ILC2 can also transdifferentiate into another class of ILC cell population (ILC1 or ILC3). In this review, we summarized the tissue-specific effects of ILC2 by tissue microenvironment and focused on the function of ILC2 in inter-tissue crosstalk. Lastly, we discussed the transdifferentiations of ILC2 caused by the abnormal change in tissue environment.
Collapse
Affiliation(s)
- Minjing Qin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuanyuan Fang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qitong Zheng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xia'nan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
28
|
Szeto AC, Clark PA, Ferreira AC, Heycock M, Griffiths EL, Jou E, Mannion J, Luan SL, Storrar S, Knolle MD, Kozik P, Jolin HE, Fallon PG, McKenzie AN. Mef2d potentiates type-2 immune responses and allergic lung inflammation. Science 2024; 384:eadl0370. [PMID: 38935708 PMCID: PMC7616247 DOI: 10.1126/science.adl0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/02/2024] [Indexed: 06/29/2024]
Abstract
Innate lymphoid cells (ILCs) and adaptive T lymphocytes promote tissue homeostasis and protective immune responses. Their production depends on the transcription factor GATA3, which is further elevated specifically in ILC2s and T helper 2 cells to drive type-2 immunity during tissue repair, allergic disorders, and anti-helminth immunity. The control of this crucial up-regulation is poorly understood. Using CRISPR screens in ILCs we identified previously unappreciated myocyte-specific enhancer factor 2d (Mef2d)-mediated regulation of GATA3-dependent type-2 lymphocyte differentiation. Mef2d-deletion from ILC2s and/or T cells specifically protected against an allergen lung challenge. Mef2d repressed Regnase-1 endonuclease expression to enhance IL-33 receptor production and IL-33 signaling and acted downstream of calcium-mediated signaling to translocate NFAT1 to the nucleus to promote type-2 cytokine-mediated immunity.
Collapse
Affiliation(s)
- Aydan C.H. Szeto
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Paula A. Clark
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Ana C.F. Ferreira
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Morgan Heycock
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Emma L. Griffiths
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Eric Jou
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Jonathan Mannion
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
- Cambridge
University Hospitals,
Cambridge, CB2 0QQ, United Kingdom
| | - Shi-Lu Luan
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Sophie Storrar
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Martin D. Knolle
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
- Cambridge
University Hospitals,
Cambridge, CB2 0QQ, United Kingdom
| | - Patrycja Kozik
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | - Helen E. Jolin
- MRC Laboratory
of Molecular Biology,
Cambridge, CB2 0QH, United Kingdom
| | | | | |
Collapse
|
29
|
Wang Y, Quan Y, He J, Chen S, Dong Z. SLAM-family receptors promote resolution of ILC2-mediated inflammation. Nat Commun 2024; 15:5056. [PMID: 38871792 DOI: 10.1038/s41467-024-49466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
Type 2 innate lymphoid cells (ILC2) initiate early allergic inflammation in the lung, but the factors that promote subsequent resolution of type 2 inflammation and prevent prolonged ILC2 activation are not fully known. Here we show that SLAM-family receptors (SFR) play essential roles in this process. We demonstrate dynamic expression of several SFRs on ILC2s during papain-induced type 2 immunity in mice. SFR deficiency exacerbates ILC2-driven eosinophil infiltration in the lung, and results in a significant increase in IL-13 production by ILC2s exclusively in mediastinal lymph nodes (MLN), leading to increased dendritic cell (DC) and TH2 cell numbers. In MLNs, we observe more frequent interaction between ILC2s and bystander T cells, with T cell-expressed SFRs (especially SLAMF3 and SLAMF5) acting as self-ligands to suppress IL-13 production by ILC2s. Mechanistically, homotypic engagement of SFRs at the interface between ILC2s and T cells delivers inhibitory signaling primarily mediated by SHIP-1. This prevents activation of NF-κB, driven by IL-7 and IL-33, two major drivers of ILC2-mediated type 2 immunity. Thus, our study shows that an ILC2-DC-TH2 regulatory axis may promote the resolution of pulmonary type 2 immune responses, and highlights SLAMF3/SLAMF5 as potential therapeutic targets for ameliorating type 2 immunity.
Collapse
Affiliation(s)
- Yuande Wang
- Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, 230032, China
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Yuhe Quan
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Junming He
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Shasha Chen
- Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, 230032, China.
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, 230032, China.
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, 230032, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Zhongjun Dong
- Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, 230032, China.
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, 100084, China.
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, 230032, China.
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, 230032, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
30
|
Palomares F, Pérez-Sánchez N, Nieto N, Núñez R, Cañas JA, Martín-Astorga MDC, Cruz-Amaya A, Torres MJ, Eguíluz-Gracia I, Mayorga C, Gómez F. Group 2 innate lymphoid cells are key in lipid transfer protein allergy pathogenesis. Front Immunol 2024; 15:1385101. [PMID: 38725998 PMCID: PMC11079275 DOI: 10.3389/fimmu.2024.1385101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
Background Immunopathology in food allergy is characterized by an uncontrolled type 2 immune response and specific-IgE production. Recent studies have determined that group 2 innate lymphoid cells (ILC2) participate in the food allergy pathogenic mechanism and their severity. Our objective was to investigate the role of ILC2 in peach-allergic patients due to non-specific lipid transfer protein (Pru p 3) sensitization. Methods The immune response in peripheral blood mononuclear cells was characterized in lipid transfer protein-allergic patients and healthy controls. We have analyzed the Pru p 3 uptake on ILC2, the expression of costimulatory molecules, and their involvement on the T-cell proliferative response and cytokine production under different experimental conditions: cytokines involved in group 2 innate lymphoid cell activation (IL-33 and IL-25), Pru p 3 as main food allergen, and the combination of both components (IL-33/IL-25+Pru p 3) using cell sorting, EliSpot, flow cytometry, and confocal microscopy. Results Our results show that Pru p 3 allergen is taken up by group 2 innate lymphoid cells, regulating their costimulatory molecule expression (CD83 and HLA-DR) depending on the presence of Pru p 3 and its combination with IL-33/IL-25. The Pru p 3-stimulated ILC2 induced specific GATA3+Th2 proliferation and cytokine (IL-4, IL-5, and IL-13) production in lipid transfer protein-allergic patients in a cell contact-dependent manner with no changes in Tbet+Th1- and FOXP3+Treg cell differentiation. Conclusions The results indicate that in lipid transfer protein-allergic patients, the responsible allergen, Pru p 3, interacts with group 2 innate lymphoid cells, promoting a Th2 cell response. Our results might be of interest in vivo, as they show a role of group 2 innate lymphoid cells as antigen-presenting cells, contributing to the development of food allergy. Consequently, group 2 innate lymphoid cells may be considered as potential therapeutic targets.
Collapse
Affiliation(s)
- Francisca Palomares
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - Natalia Pérez-Sánchez
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
- Allergy Unit, Hospital Regional Universitario de Malaga, Málaga, Spain
| | - Nazaret Nieto
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - Rafael Núñez
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - José Antonio Cañas
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - María del Carmen Martín-Astorga
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
- Medicine Department, Universidad de Málaga-UMA, Málaga, Spain
| | - Anyith Cruz-Amaya
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - María José Torres
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
- Allergy Unit, Hospital Regional Universitario de Malaga, Málaga, Spain
- Medicine Department, Universidad de Málaga-UMA, Málaga, Spain
| | - Ibon Eguíluz-Gracia
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
- Allergy Unit, Hospital Regional Universitario de Malaga, Málaga, Spain
| | - Cristobalina Mayorga
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
- Allergy Unit, Hospital Regional Universitario de Malaga, Málaga, Spain
| | - Francisca Gómez
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA Plataforma Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
- Allergy Unit, Hospital Regional Universitario de Malaga, Málaga, Spain
| |
Collapse
|
31
|
Lyons-Cohen MR, Shamskhou EA, Gerner MY. Site-specific regulation of Th2 differentiation within lymph node microenvironments. J Exp Med 2024; 221:e20231282. [PMID: 38442268 PMCID: PMC10912907 DOI: 10.1084/jem.20231282] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024] Open
Abstract
T helper 2 (Th2) responses protect against pathogens while also driving allergic inflammation, yet how large-scale Th2 responses are generated in tissue context remains unclear. Here, we used quantitative imaging to investigate early Th2 differentiation within lymph nodes (LNs) following cutaneous allergen administration. Contrary to current models, we observed extensive activation and "macro-clustering" of early Th2 cells with migratory type-2 dendritic cells (cDC2s), generating specialized Th2-promoting microenvironments. Macro-clustering was integrin-mediated and promoted localized cytokine exchange among T cells to reinforce differentiation, which contrasted the behavior during Th1 responses. Unexpectedly, formation of Th2 macro-clusters was dependent on the site of skin sensitization. Differences between sites were driven by divergent activation states of migratory cDC2 from different dermal tissues, with enhanced costimulatory molecule expression by cDC2 in Th2-generating LNs promoting prolonged T cell activation, macro-clustering, and cytokine sensing. Thus, the generation of dedicated Th2 priming microenvironments through enhanced costimulatory molecule signaling initiates Th2 responses in vivo and occurs in a skin site-specific manner.
Collapse
Affiliation(s)
- Miranda R. Lyons-Cohen
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Elya A. Shamskhou
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Michael Y. Gerner
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
32
|
Hayashi R, Srisomboon Y, Iijima K, Maniak PJ, Tei R, Kobayashi T, Matsunaga M, Luo H, Masuda MY, O'Grady SM, Kita H. Cholinergic sensing of allergen exposure by airway epithelium promotes type 2 immunity in the lungs. J Allergy Clin Immunol 2024; 153:793-808.e2. [PMID: 38000698 PMCID: PMC10939907 DOI: 10.1016/j.jaci.2023.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Nonneuronal cells, including epithelial cells, can produce acetylcholine (ACh). Muscarinic ACh receptor antagonists are used clinically to treat asthma and other medical conditions; however, knowledge regarding the roles of ACh in type 2 immunity is limited. OBJECTIVE Our aim was to investigate the roles of epithelial ACh in allergic immune responses. METHODS Human bronchial epithelial (HBE) cells were cultured with allergen extracts, and their ACh production and IL-33 secretion were studied in vitro. To investigate immune responses in vivo, naive BALB/c mice were treated intranasally with different muscarinic ACh receptor antagonists and then exposed intranasally to allergens. RESULTS At steady state, HBE cells expressed cellular components necessary for ACh production, including choline acetyltransferase and organic cation transporters. Exposure to allergens caused HBE cells to rapidly release ACh into the extracellular medium. Pharmacologic or small-interfering RNA-based blocking of ACh production or autocrine action through the M3 muscarinic ACh receptors in HBE cells suppressed allergen-induced ATP release, calcium mobilization, and extracellular secretion of IL-33. When naive mice were exposed to allergens, ACh was quickly released into the airway lumen. A series of clinical M3 muscarinic ACh receptor antagonists inhibited allergen-induced IL-33 secretion and innate type 2 immune response in the mouse airways. In a preclinical murine model of asthma, an ACh receptor antagonist suppressed allergen-induced airway inflammation and airway hyperreactivity. CONCLUSIONS ACh is released quickly by airway epithelial cells on allergen exposure, and it plays an important role in type 2 immunity. The epithelial ACh system can be considered a therapeutic target in allergic airway diseases.
Collapse
Affiliation(s)
- Ryusuke Hayashi
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Ariz; Department of Medicine, Mayo Clinic, Scottsdale, Ariz
| | - Yotesawee Srisomboon
- Department of Animal Science, University of Minnesota, St Paul, Minn; Department of Integrative Biology and Physiology, University of Minnesota, St Paul, Minn
| | - Koji Iijima
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Ariz; Department of Medicine, Mayo Clinic, Scottsdale, Ariz
| | - Peter J Maniak
- Department of Animal Science, University of Minnesota, St Paul, Minn; Department of Integrative Biology and Physiology, University of Minnesota, St Paul, Minn
| | - Rinna Tei
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Ariz; Department of Medicine, Mayo Clinic, Scottsdale, Ariz
| | - Takao Kobayashi
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Ariz; Department of Medicine, Mayo Clinic, Scottsdale, Ariz
| | - Mayumi Matsunaga
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Ariz; Department of Medicine, Mayo Clinic, Scottsdale, Ariz
| | - Huijun Luo
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Ariz; Department of Medicine, Mayo Clinic, Scottsdale, Ariz
| | - Mia Y Masuda
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minn; Mayo Clinic Graduate School of Biomedical Sciences, Scottsdale, Ariz
| | - Scott M O'Grady
- Department of Animal Science, University of Minnesota, St Paul, Minn; Department of Integrative Biology and Physiology, University of Minnesota, St Paul, Minn
| | - Hirohito Kita
- Division of Allergy, Asthma and Clinical Immunology, Mayo Clinic, Scottsdale, Ariz; Department of Medicine, Mayo Clinic, Scottsdale, Ariz; Department of Immunology, Mayo Clinic Rochester, Rochester, Minn; Department of Immunology, Mayo Clinic Arizona, Scottsdale, Ariz.
| |
Collapse
|
33
|
Schülke S, Gilles S, Jirmo AC, Mayer JU. Tissue-specific antigen-presenting cells contribute to distinct phenotypes of allergy. Eur J Immunol 2023; 53:e2249980. [PMID: 36938688 DOI: 10.1002/eji.202249980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/19/2023] [Accepted: 03/13/2023] [Indexed: 03/21/2023]
Abstract
Antigen-presenting cells (APCs) are critical cells bridging innate and adaptive immune responses by taking up, processing, and presenting antigens to naïve T cells. At steady state, APCs thus control both tissue homeostasis and the induction of tolerance. In allergies however, APCs drive a Th2-biased immune response that is directed against otherwise harmless antigens from the environment. The main types of APCs involved in the induction of allergy are dendritic cells, monocytes, and macrophages. However, these cell types can be further divided into local, tissue-specific populations that differ in their phenotype, migratory capacity, T-cell activating potential, and production of effector molecules. Understanding if distinct populations of APCs contribute to either tissue-specific immune tolerance, allergen sensitization, or allergic inflammation will allow us to better understand disease pathology and develop targeted treatment options for different stages of allergic disease. Therefore, this review describes the main characteristics, phenotypes, and effector molecules of the APCs involved in the induction of allergen-specific Th2 responses in affected barrier sites, such as the skin, nose, lung, and gastrointestinal tract. Furthermore, we highlight open questions that remain to be addressed to fully understand the contribution of different APCs to allergic disease.
Collapse
Affiliation(s)
- Stefan Schülke
- Vice President´s Research Group: Molecular Allergology, Paul-Ehrlich-Institut, Langen (Hesse), Germany
| | - Stefanie Gilles
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Adan C Jirmo
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Johannes U Mayer
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
34
|
Mutsaers SE, Miles T, Prêle CM, Hoyne GF. Emerging role of immune cells as drivers of pulmonary fibrosis. Pharmacol Ther 2023; 252:108562. [PMID: 37952904 DOI: 10.1016/j.pharmthera.2023.108562] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
The pathogenesis of pulmonary fibrosis, including idiopathic pulmonary fibrosis (IPF) and other forms of interstitial lung disease, involves a complex interplay of various factors including host genetics, environmental pollutants, infection, aberrant repair and dysregulated immune responses. Highly variable clinical outcomes of some ILDs, in particular IPF, have made it difficult to identify the precise mechanisms involved in disease pathogenesis and thus the development of a specific cure or treatment to halt and reverse the decline in patient health. With the advent of in-depth molecular diagnostics, it is becoming evident that the pathogenesis of IPF is unlikely to be the same for all patients and therefore will likely require different treatment approaches. Chronic inflammation is a cardinal feature of IPF and is driven by both innate and adaptive immune responses. Inflammatory cells and activated fibroblasts secrete various pro-inflammatory cytokines and chemokines that perpetuate the inflammatory response and contribute to the recruitment and activation of more immune cells and fibroblasts. The balance between pro-inflammatory and regulatory immune cell subsets, as well as the interactions between immune cell types and resident cells within the lung microenvironment, ultimately determines the extent of fibrosis and the potential for resolution. This review examines the role of the innate and adaptive immune responses in pulmonary fibrosis, with an emphasis on IPF. The role of different immune cell types is discussed as well as novel anti-inflammatory and immunotherapy approaches currently in clinical trial or in preclinical development.
Collapse
Affiliation(s)
- Steven E Mutsaers
- Institute for Respiratory Health, The University of Western Australia, Nedlands, WA, Australia.
| | - Tylah Miles
- Institute for Respiratory Health, The University of Western Australia, Nedlands, WA, Australia
| | - Cecilia M Prêle
- Institute for Respiratory Health, The University of Western Australia, Nedlands, WA, Australia; School of Medical, Molecular and Forensic Sciences, Murdoch University, WA, Australia
| | - Gerard F Hoyne
- Institute for Respiratory Health, The University of Western Australia, Nedlands, WA, Australia; The School of Health Sciences and Physiotherapy, University of Notre Dame Australia, Fremantle, WA, Australia
| |
Collapse
|
35
|
Xu S, Zhang Y, Liu X, Liu H, Zou X, Zhang L, Wang J, Zhang Z, Xu X, Li M, Li K, Shi S, Zhang Y, Miao Z, Zha J, Yu Y. Nr4a1 marks a distinctive ILC2 activation subset in the mouse inflammatory lung. BMC Biol 2023; 21:218. [PMID: 37833706 PMCID: PMC10576290 DOI: 10.1186/s12915-023-01690-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 08/25/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Group 2 innate lymphoid cells (ILC2s) are critical sources of type 2 cytokines and represent one of the major tissue-resident lymphoid cells in the mouse lung. However, the molecular mechanisms underlying ILC2 activation under challenges are not fully understood. RESULTS Here, using single-cell transcriptomics, genetic reporters, and gene knockouts, we identify four ILC2 subsets, including two non-activation subsets and two activation subsets, in the mouse acute inflammatory lung. Of note, a distinct activation subset, marked by the transcription factor Nr4a1, paradoxically expresses both tissue-resident memory T cell (Trm), and effector/central memory T cell (Tem/Tcm) signature genes, as well as higher scores of proliferation, activation, and wound healing, all driven by its particular regulons. Furthermore, we demonstrate that the Nr4a1+ILC2s are restrained from activating by the programmed cell death protein-1 (PD-1), which negatively modulates their activation-related regulons. PD-1 deficiency places the non-activation ILC2s in a state that is prone to activation, resulting in Nr4a1+ILC2 differentiation through different activation trajectories. Loss of PD-1 also leads to the expansion of Nr4a1+ILC2s by the increase of their proliferation ability. CONCLUSIONS The findings show that activated ILC2s are a heterogenous population encompassing distinct subsets that have different propensities, and therefore provide an opportunity to explore PD-1's role in modulating the activity of ILC2s for disease prevention and therapy.
Collapse
Affiliation(s)
- Shasha Xu
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Yu Zhang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xingjie Liu
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Huisheng Liu
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xinya Zou
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Linlin Zhang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jing Wang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhiwei Zhang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiang Xu
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Mingxia Li
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Kairui Li
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shuyue Shi
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Ying Zhang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhichao Miao
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200081, China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, China.
| | - Yong Yu
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1HH, UK.
| |
Collapse
|
36
|
Laubhahn K, Schaub B. From preschool wheezing to asthma: Immunological determinants. Pediatr Allergy Immunol 2023; 34:e14038. [PMID: 37877843 DOI: 10.1111/pai.14038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
Asthma represents a chronic respiratory disease affecting millions of children worldwide. The transition from preschool wheezing to school-age asthma involves a multifaceted interplay of various factors, including immunological aspects in early childhood. These factors include complex cellular interactions among different immune cell subsets, induction of pro-inflammatory mediators and the molecular impact of environmental factors like allergens or viral infections on the developing immune system. Furthermore, the activation of specific genes and signalling pathways during this early phase plays a pivotal role in the manifestation of symptoms and subsequent development of asthma. Early identification of the propensity or risk for asthma development, for example by allergen sensitisation and viral infections during this critical period, is crucial for understanding the transition from wheeze to asthma. Favourable immune regulation during a critical 'window of opportunity' in early childhood can induce persistent changes in immune cell behaviour. In this context, trained immunity, including memory function of innate immune cells, has significant implications for understanding immune responses, potentially shaping long-term immunological outcomes based on early-life environmental exposures. Exploration of these underlying immune mechanisms that drive disease progression will provide valuable insights to understand childhood asthma development. This will be instrumental to develop preventive strategies at different stages of disease development for (i) inhibiting progression from wheeze to asthma or (ii) reducing disease severity and (iii) uncovering novel therapeutic strategies and contributing to more tailored and effective treatments for childhood asthma. In the long term, this shall empower healthcare professionals to develop evidence-based interventions that reduce the burden of asthma for children, families and society overall.
Collapse
Affiliation(s)
- Kristina Laubhahn
- Department of Pulmonary and Allergy, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
- Member of German Centre for Lung Research - DZL, LMU Munich, Munich, Germany
| | - Bianca Schaub
- Department of Pulmonary and Allergy, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, Munich, Germany
- Member of German Centre for Lung Research - DZL, LMU Munich, Munich, Germany
| |
Collapse
|
37
|
Meloun A, León B. Sensing of protease activity as a triggering mechanism of Th2 cell immunity and allergic disease. FRONTIERS IN ALLERGY 2023; 4:1265049. [PMID: 37810200 PMCID: PMC10552645 DOI: 10.3389/falgy.2023.1265049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
CD4 T-helper cell type 2 (Th2) cells mediate host defense against extracellular parasites, like helminths. However, Th2 cells also play a pivotal role in the onset and progression of allergic inflammatory diseases such as atopic dermatitis, allergic rhinitis, asthma, and food allergy. This happens when allergens, which are otherwise harmless foreign proteins, are mistakenly identified as "pathogenic." Consequently, the encounter with these allergens triggers the activation of specific Th2 cell responses, leading to the development of allergic reactions. Understanding the molecular basis of allergen sensing is vital for comprehending how Th2 cell responses are erroneously initiated in individuals with allergies. The presence of protease activity in allergens, such as house dust mites (HDM), pollen, fungi, or cockroaches, has been found to play a significant role in triggering robust Th2 cell responses. In this review, we aim to examine the significance of protease activity sensing in foreign proteins for the initiation of Th2 cell responses, highlighting how evolving a host protease sensor may contribute to detect invading helminth parasites, but conversely can also trigger unwanted reactions to protease allergens. In this context, we will explore the recognition receptors activated by proteolytic enzymes present in major allergens and their contribution to Th2-mediated allergic responses. Furthermore, we will discuss the coordinated efforts of sensory neurons and epithelial cells in detecting protease allergens, the subsequent activation of intermediary cells, including mast cells and type 2 innate lymphoid cells (ILC2s), and the ultimate integration of all signals by conventional dendritic cells (cDCs), leading to the induction of Th2 cell responses. On the other hand, the review highlights the role of monocytes in the context of protease allergen exposure and their interaction with cDCs to mitigate undesirable Th2 cell reactions. This review aims to provide insights into the innate functions and cell communications triggered by protease allergens, which can contribute to the initiation of detrimental Th2 cell responses, but also promote mechanisms to effectively suppress their development.
Collapse
Affiliation(s)
| | - Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
38
|
Frey A, Lunding LP, Wegmann M. The Dual Role of the Airway Epithelium in Asthma: Active Barrier and Regulator of Inflammation. Cells 2023; 12:2208. [PMID: 37759430 PMCID: PMC10526792 DOI: 10.3390/cells12182208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic airway inflammation is the cornerstone on which bronchial asthma arises, and in turn, chronic inflammation arises from a complex interplay between environmental factors such as allergens and pathogens and immune cells as well as structural cells constituting the airway mucosa. Airway epithelial cells (AECs) are at the center of these processes. On the one hand, they represent the borderline separating the body from its environment in order to keep inner homeostasis. The airway epithelium forms a multi-tiered, self-cleaning barrier that involves an unstirred, discontinuous mucous layer, the dense and rigid mesh of the glycocalyx, and the cellular layer itself, consisting of multiple, densely interconnected cell types. On the other hand, the airway epithelium represents an immunologically highly active tissue once its barrier has been penetrated: AECs play a pivotal role in releasing protective immunoglobulin A. They express a broad spectrum of pattern recognition receptors, enabling them to react to environmental stressors that overcome the mucosal barrier. By releasing alarmins-proinflammatory and regulatory cytokines-AECs play an active role in the formation, strategic orientation, and control of the subsequent defense reaction. Consequently, the airway epithelium is of vital importance to chronic inflammatory diseases, such as asthma.
Collapse
Affiliation(s)
- Andreas Frey
- Division of Mucosal Immunology and Diagnostics, Research Center Borstel, 23845 Borstel, Germany;
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927 Großhansdorf, Germany;
| | - Lars P. Lunding
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927 Großhansdorf, Germany;
- Division of Lung Immunology, Research Center Borstel, 23845 Borstel, Germany
| | - Michael Wegmann
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), 22927 Großhansdorf, Germany;
- Division of Lung Immunology, Research Center Borstel, 23845 Borstel, Germany
| |
Collapse
|
39
|
Thio CLP, Chang YJ. The modulation of pulmonary group 2 innate lymphoid cell function in asthma: from inflammatory mediators to environmental and metabolic factors. Exp Mol Med 2023; 55:1872-1884. [PMID: 37696890 PMCID: PMC10545775 DOI: 10.1038/s12276-023-01021-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 09/13/2023] Open
Abstract
A dysregulated type 2 immune response is one of the fundamental causes of allergic asthma. Although Th2 cells are undoubtedly central to the pathogenesis of allergic asthma, the discovery of group 2 innate lymphoid cells (ILC2s) has added another layer of complexity to the etiology of this chronic disease. Through their inherent innate type 2 responses, ILC2s not only contribute to the initiation of airway inflammation but also orchestrate the recruitment and activation of other members of innate and adaptive immunity, further amplifying the inflammatory response. Moreover, ILC2s exhibit substantial cytokine plasticity, as evidenced by their ability to produce type 1- or type 17-associated cytokines under appropriate conditions, underscoring their potential contribution to nonallergic, neutrophilic asthma. Thus, understanding the mechanisms of ILC2 functions is pertinent. In this review, we present an overview of the current knowledge on ILC2s in asthma and the regulatory factors that modulate lung ILC2 functions in various experimental mouse models of asthma and in humans.
Collapse
Affiliation(s)
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, 115, Taiwan.
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung City, 404, Taiwan.
| |
Collapse
|
40
|
LeSuer WE, Kienzl M, Ochkur SI, Schicho R, Doyle AD, Wright BL, Rank MA, Krupnick AS, Kita H, Jacobsen EA. Eosinophils promote effector functions of lung group 2 innate lymphoid cells in allergic airway inflammation in mice. J Allergy Clin Immunol 2023; 152:469-485.e10. [PMID: 37028525 PMCID: PMC10503660 DOI: 10.1016/j.jaci.2023.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND Group 2 innate lymphoid cells (ILC2s) are critical mediators of type 2 respiratory inflammation, releasing IL-5 and IL-13 and promoting the pulmonary eosinophilia associated with allergen provocation. Although ILC2s have been shown to promote eosinophil activities, the role of eosinophils in group 2 innate lymphoid cell (ILC2) responses is less well defined. OBJECTIVE We sought to investigate the role of eosinophils in activation of ILC2s in models of allergic asthma and in vitro. METHODS Inducible eosinophil-deficient mice were exposed to allergic respiratory inflammation models of asthma, such as ovalbumin or house dust mite challenge, or to innate models of type 2 airway inflammation, such as inhalation of IL-33. Eosinophil-specific IL-4/13-deficient mice were used to address the specific roles for eosinophil-derived cytokines. Direct cell interactions between ILC2s and eosinophils were assessed by in vitro culture experiments. RESULTS Targeted depletion of eosinophils resulted in significant reductions of total and IL-5+ and IL-13+ lung ILC2s in all models of respiratory inflammation. This correlated with reductions in IL-13 levels and mucus in the airway. Eosinophil-derived IL-4/13 was necessary for both eosinophil and ILC2 accumulation in lung in allergen models. In vitro, eosinophils released soluble mediators that induced ILC2 proliferation and G protein-coupled receptor-dependent chemotaxis of ILC2s. Coculture of ILC2s and IL-33-activated eosinophils resulted in transcriptome changes in both ILC2s and eosinophils, suggesting potential novel reciprocal interactions. CONCLUSION These studies demonstrate that eosinophils play a reciprocal role in ILC2 effector functions as part of both adaptive and innate type 2 pulmonary inflammatory events.
Collapse
Affiliation(s)
- William E LeSuer
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Melanie Kienzl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Sergei I Ochkur
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Rudolf Schicho
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Alfred D Doyle
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Benjamin L Wright
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Ariz; Division of Pulmonology, Phoenix Children's Hospital, Phoenix, Ariz
| | - Matthew A Rank
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Ariz; Division of Pulmonology, Phoenix Children's Hospital, Phoenix, Ariz
| | | | - Hirohito Kita
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Ariz; Department of Immunology, Mayo Clinic Arizona, Scottsdale, Ariz
| | - Elizabeth A Jacobsen
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic Arizona, Scottsdale, Ariz; Department of Immunology, Mayo Clinic Arizona, Scottsdale, Ariz.
| |
Collapse
|
41
|
Lyons-Cohen MR, Shamskhou EA, Gerner MY. Prolonged T cell - DC macro-clustering within lymph node microenvironments initiates Th2 cell differentiation in a site-specific manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.547554. [PMID: 37461439 PMCID: PMC10350056 DOI: 10.1101/2023.07.07.547554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Formation of T helper 2 (Th2) responses has been attributed to low-grade T cell stimulation, yet how large-scale polyclonal Th2 responses are generated in vivo remains unclear. Here, we used quantitative imaging to investigate early Th2 differentiation within lymph nodes (LNs) following cutaneous allergen administration. Contrary to current models, Th2 differentiation was associated with enhanced T cell activation and extensive integrin-dependent 'macro-clustering' at the T-B border, which also contrasted clustering behavior seen during Th1 differentiation. Unexpectedly, formation of Th2 macro-clusters within LNs was highly dependent on the site of skin sensitization. Differences between sites were driven by divergent activation states of migratory cDC2 from different dermal tissues, with enhanced costimulatory molecule expression by cDC2 in Th2-generating LNs promoting T cell macro-clustering and cytokine sensing. Thus, generation of dedicated priming micro-environments through enhanced costimulatory molecule signaling initiates the generation of Th2 responses in vivo and occurs in a skin site-specific manner.
Collapse
Affiliation(s)
| | - Elya A. Shamskhou
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael Y. Gerner
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
42
|
León B. A model of Th2 differentiation based on polarizing cytokine repression. Trends Immunol 2023; 44:399-407. [PMID: 37100645 PMCID: PMC10219849 DOI: 10.1016/j.it.2023.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023]
Abstract
Conventional dendritic cells (cDCs) can integrate multiple stimuli from the environment and provide three separate outputs in terms of antigen presentation, costimulation, and cytokine production; this guides the activation, expansion, and differentiation of distinct functional T helper subsets. Accordingly, the current dogma posits that T helper cell specification requires these three signals in sequence. Data show that T helper 2 (Th2) cell differentiation requires antigen presentation and costimulation from cDCs but does not require polarizing cytokines. In this opinion article, we propose that the 'third signal' driving Th2 cell responses is, in fact, the absence of polarizing cytokines; indeed, the secretion of the latter is actively suppressed in cDCs, concomitant with acquired pro-Th2 functions.
Collapse
Affiliation(s)
- Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
43
|
Naito M, Kumanogoh A. Group 2 innate lymphoid cells and their surrounding environment. Inflamm Regen 2023; 43:21. [PMID: 36941691 PMCID: PMC10026507 DOI: 10.1186/s41232-023-00272-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023] Open
Abstract
Since the discovery of group 2 innate lymphoid cells (ILC2s) in 2010, subsequent studies have revealed their developmental pathways, mechanisms of activation and regulation, and immunological roles in tissue homeostasis and tissue-specific diseases in various organs. Although ILC2s are known to express tissue-specific features depending on where they reside, how the surrounding environment affects the functions of ILC2s remains to be fully elucidated. Recent histologic analyses revealed that ILC2s resides in specific perivascular regions in peripheral tissues with their function being controlled by the surrounding cells via cytokines, lipid mediators, neurotransmitters, and cell-cell interactions through surface molecules. This review summarizes the interactions between ILC2s and surrounding cells, including epithelial cells, neurons, immune cells, and mesenchymal cells, with the objective of promoting the development of novel diagnostic and therapeutic methods for ILC2-related diseases.
Collapse
Affiliation(s)
- Maiko Naito
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative(WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Department of Immunopathology, World Premier International Research Center Initiative(WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan.
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan.
- Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Suita, Osaka, Japan.
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
44
|
Zhang Y, Liu T, Deng Z, Fang W, Zhang X, Zhang S, Wang M, Luo S, Meng Z, Liu J, Sukhova GK, Li D, McKenzie ANJ, Libby P, Shi G, Guo J. Group 2 Innate Lymphoid Cells Protect Mice from Abdominal Aortic Aneurysm Formation via IL5 and Eosinophils. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206958. [PMID: 36592421 PMCID: PMC9982556 DOI: 10.1002/advs.202206958] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Development of abdominal aortic aneurysms (AAA) enhances lesion group-2 innate lymphoid cell (ILC2) accumulation and blood IL5. ILC2 deficiency in Rorafl/fl Il7rCre/+ mice or induced ILC2 depletion in Icosfl-DTR-fl/+ Cd4Cre/+ mice expedites AAA growth, increases lesion inflammation, but leads to systemic IL5 and eosinophil (EOS) deficiency. Mechanistic studies show that ILC2 protect mice from AAA formation via IL5 and EOS. IL5 or ILC2 from wild-type (WT) mice, but not ILC2 from Il5-/- mice induces EOS differentiation in bone-marrow cells from Rorafl/fl Il7rCre/+ mice. IL5, IL13, and EOS or ILC2 from WT mice, but not ILC2 from Il5-/- and Il13-/- mice block SMC apoptosis and promote SMC proliferation. EOS but not ILC2 from WT or Il5-/- mice block endothelial cell (EC) adhesion molecule expression, angiogenesis, dendritic cell differentiation, and Ly6Chi monocyte polarization. Reconstitution of WT EOS and ILC2 but not Il5-/- ILC2 slows AAA growth in Rorafl/fl Il7rCre/+ mice by increasing systemic EOS. Besides regulating SMC pathobiology, ILC2 play an indirect role in AAA protection via the IL5 and EOS mechanism.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of EducationInstitute of Cardiovascular Research of the First Affiliated HospitalHainan Medical UniversityHaikou571199China
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Tianxiao Liu
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
- Guangdong Provincial Geriatrics InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Zhiyong Deng
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
- Department of GeriatricsNational Key Clinic SpecialtyGuangzhou First People's HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510180China
| | - Wenqian Fang
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
- Cardiac Regeneration and Ageing LabInstitute of Cardiovascular SciencesSchool of Life ScienceShanghai UniversityShanghai200444China
| | - Xian Zhang
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Shuya Zhang
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of EducationInstitute of Cardiovascular Research of the First Affiliated HospitalHainan Medical UniversityHaikou571199China
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Minjie Wang
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Songyuan Luo
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Zhaojie Meng
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Jing Liu
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Galina K. Sukhova
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Dazhu Li
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Andrew N. J. McKenzie
- Division of Protein & Nucleic Acid ChemistryMRC Laboratory of Molecular BiologyCambridgeCB2 0QHUK
| | - Peter Libby
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Guo‐Ping Shi
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Junli Guo
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of EducationInstitute of Cardiovascular Research of the First Affiliated HospitalHainan Medical UniversityHaikou571199China
| |
Collapse
|
45
|
Robb CT, Zhou Y, Felton JM, Zhang B, Goepp M, Jheeta P, Smyth DJ, Duffin R, Vermeren S, Breyer R, Narumiya S, McSorley HJ, Maizels RM, Schwarze JKJ, Rossi AG, Yao C. Metabolic regulation by prostaglandin E 2 impairs lung group 2 innate lymphoid cell responses. Allergy 2023; 78:714-730. [PMID: 36181709 PMCID: PMC10952163 DOI: 10.1111/all.15541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Group 2 innate lymphoid cells (ILC2s) play a critical role in asthma pathogenesis. Non-steroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease (NERD) is associated with reduced signaling via EP2, a receptor for prostaglandin E2 (PGE2 ). However, the respective roles for the PGE2 receptors EP2 and EP4 (both share same downstream signaling) in the regulation of lung ILC2 responses has yet been deciphered. METHODS The roles of PGE2 receptors EP2 and EP4 on ILC2-mediated lung inflammation were investigated using genetically modified mouse lines and pharmacological approaches in IL-33-induced lung allergy model. The effects of PGE2 receptors and downstream signals on ILC2 metabolic activation and effector function were examined using in vitro cell cultures. RESULTS Deficiency of EP2 rather than EP4 augments IL-33-induced mouse lung ILC2 responses and eosinophilic inflammation in vivo. In contrast, exogenous agonism of EP4 and EP2 or inhibition of phosphodiesterase markedly restricts IL-33-induced lung ILC2 responses. Mechanistically, PGE2 directly suppresses IL-33-dependent ILC2 activation through the EP2/EP4-cAMP pathway, which downregulates STAT5 and MYC pathway gene expression and ILC2 energy metabolism. Blocking glycolysis diminishes IL-33-dependent ILC2 responses in mice where endogenous PG synthesis or EP2 signaling is blocked but not in mice with intact PGE2 -EP2 signaling. CONCLUSION We have defined a mechanism for optimal suppression of mouse lung ILC2 responses by endogenous PGE2 -EP2 signaling which underpins the clinical findings of defective EP2 signaling in patients with NERD. Our findings also indicate that exogenously targeting the PGE2 -EP4-cAMP and energy metabolic pathways may provide novel opportunities for treating the ILC2-initiated lung inflammation in asthma and NERD.
Collapse
Affiliation(s)
- Calum T. Robb
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - You Zhou
- Systems Immunity University Research Institute and Division of Infection and ImmunityCardiff UniversityCardiffUK
| | - Jennifer M. Felton
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Birong Zhang
- Systems Immunity University Research Institute and Division of Infection and ImmunityCardiff UniversityCardiffUK
| | - Marie Goepp
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Privjyot Jheeta
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Danielle J. Smyth
- Division of Cell Signaling and Immunology, School of Life SciencesWellcome Trust Building, University of DundeeDundeeUK
| | - Rodger Duffin
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Sonja Vermeren
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Richard M. Breyer
- Department of Veterans AffairsTennessee Valley Health AuthorityNashvilleTennesseeUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Shuh Narumiya
- Alliance Laboratory for Advanced Medical Research and Department of Drug Discovery Medicine, Medical Innovation CenterKyoto University Graduate School of MedicineKyotoJapan
| | - Henry J. McSorley
- Division of Cell Signaling and Immunology, School of Life SciencesWellcome Trust Building, University of DundeeDundeeUK
| | - Rick M. Maizels
- Wellcome Centre for Molecular Parasitology, Institute for Infection, Immunity and InflammationUniversity of GlasgowGlasgowUK
| | - Jürgen K. J. Schwarze
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Adriano G. Rossi
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| | - Chengcan Yao
- Centre for Inflammation Research, Queen's Medical Research InstituteThe University of EdinburghEdinburghUK
| |
Collapse
|
46
|
Gurram RK, Wei D, Yu Q, Butcher MJ, Chen X, Cui K, Hu G, Zheng M, Zhu X, Oh J, Sun B, Urban JF, Zhao K, Leonard WJ, Zhu J. Crosstalk between ILC2s and Th2 cells varies among mouse models. Cell Rep 2023; 42:112073. [PMID: 36735533 PMCID: PMC10394112 DOI: 10.1016/j.celrep.2023.112073] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 01/03/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Type 2 T helper (Th2) cells and group 2 innate lymphoid cells (ILC2s) provide protection against helminth infection and are involved in allergic responses. However, their relative importance and crosstalk during type 2 immune responses are still controversial. By generating and utilizing mouse strains that are deficient in either ILC2s or Th2 cells, we report that interleukin (IL)-33-mediated ILC2 activation promotes the Th2 cell response to papain; however, the Th2 cell response to ovalbumin (OVA)/alum immunization is thymic stromal lymphopoietin (TSLP) dependent but independent of ILC2s. During helminth infection, ILC2s and Th2 cells collaborate at different phases of the immune responses. Th2 cells, mainly through IL-4 production, induce the expression of IL-25, IL-33, and TSLP, among which IL-25 and IL-33 redundantly promote ILC2 expansion. Thus, while Th2 cell differentiation can occur independently of ILC2s, activation of ILC2s may promote Th2 responses, and Th2 cells can expand ILC2s by inducing type 2 alarmins.
Collapse
Affiliation(s)
- Rama K Gurram
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA.
| | - Danping Wei
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qiao Yu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Gerontology and Respirology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Matthew J Butcher
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xi Chen
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kairong Cui
- Laboratory of Epigenome Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gangqing Hu
- Laboratory of Epigenome Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Mingzhu Zheng
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaoliang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jangsuk Oh
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Bing Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Joseph F Urban
- US Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
47
|
Abstract
The activation of group 2 innate lymphoid cells (ILC2s) is controlled by various tissue-derived factors, including cytokines, whereas T cells respond to foreign antigens. This review discusses the tissue-specific properties of ILC2s in skin and their involvement in human skin diseases. In a steady state, cutaneous ILC2s contribute to tissue homeostasis. In the keratinocytes of patients with atopic dermatitis (AD), the inflammatory cytokine interleukin-33 (IL-33) is overexpressed. ILC2s are stimulated by IL-33-stimulated basophils through IL-4 to produce type 2 cytokines, such as IL-5 and IL-13. According to several studies, ILC2 expression is upregulated in human AD skin lesions, and it is involved in AD pathogenesis. Dupilumab, an antibody against IL-4 receptor α, lowered the number and percentage of ILC2s in the peripheral blood of patients with AD. Cutaneous ILC2s are divided into two subgroups: circulating and skin-resident ILC2s. However, ILC2s are homogeneous cell populations that are highly diverse and plastic, and there is no consensus on the classification that should be used. The variations in the definition for cutaneous ILC2s in different studies make comparisons among studies difficult, and in particular, the weak expression of the IL-33 receptor ST2 in cutaneous ILC2s and its lack of markers have posed a great challenge to researchers. Therefore, further comprehensive analytical studies are warranted.
Collapse
Affiliation(s)
- Yasutomo Imai
- Imai Adult and Pediatric Dermatology Clinic, Osaka, Japan; Department of Dermatology, Mie University Graduate School of Medicine, Tsu, Japan; Department of Dermatology, Hyogo Medical University, Nishinomiya, Japan.
| |
Collapse
|
48
|
Loos P, Baiwir J, Maquet C, Javaux J, Sandor R, Lallemand F, Marichal T, Machiels B, Gillet L. Dampening type 2 properties of group 2 innate lymphoid cells by a gammaherpesvirus infection reprograms alveolar macrophages. Sci Immunol 2023; 8:eabl9041. [PMID: 36827420 DOI: 10.1126/sciimmunol.abl9041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Immunological dysregulation in asthma is associated with changes in exposure to microorganisms early in life. Gammaherpesviruses (γHVs), such as Epstein-Barr virus, are widespread human viruses that establish lifelong infection and profoundly shape host immunity. Using murid herpesvirus 4 (MuHV-4), a mouse γHV, we show that after infection, lung-resident and recruited group 2 innate lymphoid cells (ILC2s) exhibit a reduced ability to expand and produce type 2 cytokines in response to house dust mites, thereby contributing to protection against asthma. In contrast, MuHV-4 infection triggers GM-CSF production by those lung ILC2s, which orders the differentiation of monocytes (Mos) into alveolar macrophages (AMs) without promoting their type 2 functions. In the context of γHV infection, ILC2s are therefore essential cells within the pulmonary niche that imprint the tissue-specific identity of Mo-derived AMs and shape their function well beyond the initial acute infection.
Collapse
Affiliation(s)
- Pauline Loos
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Jérôme Baiwir
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Céline Maquet
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Justine Javaux
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Rémy Sandor
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - François Lallemand
- Centre Hospitalier Universitaire de Liège, Département de Physique Médicale, Service médical de radiothérapie, Liège 4000, Belgium
| | - Thomas Marichal
- Laboratory of Immunophysiology, GIGA-Research and Faculty of Veterinary Medicine, ULiège, Liège 4000, Belgium
| | - Bénédicte Machiels
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Laurent Gillet
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| |
Collapse
|
49
|
Di Cicco M, Ghezzi M, Kantar A, Song WJ, Bush A, Peroni D, D'Auria E. Pediatric obesity and severe asthma: Targeting pathways driving inflammation. Pharmacol Res 2023; 188:106658. [PMID: 36642111 DOI: 10.1016/j.phrs.2023.106658] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Asthma affects more than 300 million people of all ages worldwide, including about 10-15% of school-aged children, and its prevalence is increasing. Severe asthma (SA) is a particular and rare phenotype requiring treatment with high-dose inhaled corticosteroids plus a second controller and/or systemic glucocorticoid courses to achieve symptom control or remaining "uncontrolled" despite this therapy. In SA, other diagnoses have been excluded, and potential exacerbating factors have been addressed. Notably, obese asthmatics are at higher risk of developing SA. Obesity is both a major risk factor and a disease modifier of asthma in children and adults: two main "obese asthma" phenotypes have been described in childhood with high or low levels of Type 2 inflammation biomarkers, respectively, the former characterized by early onset and eosinophilic inflammation and the latter by neutrophilic inflammation and late-onset. Nevertheless, the interplay between obesity and asthma is far more complex and includes obese tissue-driven inflammatory pathways, mechanical factors, comorbidities, and poor response to corticosteroids. This review outlines the most recent findings on SA in obese children, particularly focusing on inflammatory pathways, which are becoming of pivotal importance in order to identify selective targets for specific treatments, such as biological agents.
Collapse
Affiliation(s)
- Maria Di Cicco
- Pediatric Clinic, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michele Ghezzi
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Ahmad Kantar
- Pediatric Asthma and Cough Centre, Gruppo Ospedaliero San Donato, Bergamo, Italy and Università Vita Salute San Raffaele, Milan, Italy
| | - Woo-Jung Song
- Department of Allergy and Clinical Immunology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Andrew Bush
- Dept of Paediatric Respiratory Medicine, Royal Brompton Hospital and National Heart and Lung Institute, School of Medicine, Imperial College London, London, UK
| | - Diego Peroni
- Pediatric Clinic, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Enza D'Auria
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.
| |
Collapse
|
50
|
Ghasemi M, Abbasi L, Ghanbari Naeini L, Kokabian P, Nameh Goshay Fard N, Givtaj N. Dendritic cells and natural killer cells: The road to a successful oncolytic virotherapy. Front Immunol 2023; 13:950079. [PMID: 36703982 PMCID: PMC9871831 DOI: 10.3389/fimmu.2022.950079] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/02/2022] [Indexed: 01/11/2023] Open
Abstract
Every type of cancer tissue is theoretically more vulnerable to viral infection. This natural proclivity has been harnessed as a new anti-cancer therapy by employing oncolytic viruses (OVs) to selectively infect and destroy cancer cells while providing little or no harm with no toxicity to the host. Whereas the primary oncolytic capabilities of OVs initially sparked the greatest concern, the predominant focus of research is on the association between OVs and the host immune system. Numerous OVs are potent causal agents of class I MHC pathway-related chemicals, enabling early tumor/viral immune recognition and cytokine-mediated response. The modified OVs have been studied for their ability to bind to dendritic cells (DCs) by expressing growth factors, chemokines, cytokines, and defensins inside the viral genome. OVs, like reovirus, can directly infect DCs, causing them to release chemokines and cytokines that attract and excite natural killer (NK) cells. In addition, OVs can directly alter cancer cells' sensitivity to NK by altering the expression levels of NK cell activators and inhibitors on cancerous cells. Therefore, NK cells and DCs in modulating the therapeutic response should be considered when developing and improving future OV-based therapeutics, whether modified to express transgenes or used in combination with other drugs/immunotherapies. Concerning the close relationship between NK cells and DCs in the potential of OVs to kill tumor cells, we explore how DCs and NK cells in tumor microenvironment affect oncolytic virotherapy and summarize additional information about the interaction mentioned above in detail in this work.
Collapse
Affiliation(s)
- Matin Ghasemi
- Faculty of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Laleh Abbasi
- Guilan University of Medical Sciences, Rasht, Iran
| | | | - Pajman Kokabian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Najmeh Nameh Goshay Fard
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nozar Givtaj
- Rajaei Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran,*Correspondence: Nozar Givtaj,
| |
Collapse
|