1
|
Yang L, Zheng SG. Role of regulatory T cells in inflammatory liver diseases. Autoimmun Rev 2025; 24:103806. [PMID: 40139456 DOI: 10.1016/j.autrev.2025.103806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
The liver is the human body's largest digestive gland, which can participate in digestion, metabolism, excretion, detoxification and immunity. Chronic liver diseases such as metabolic dysfunction-associated fatty liver disease (MAFLD) or viral hepatitis involve ongoing inflammation and resulting liver fibrosis may ultimately lead to the development of hepatobiliary cancers (HCC). Inflammation is the coordinated reaction of different liver cell types to cell signals and death of inflammation, which are linked to injury pathways within the liver or external agents from the gut-liver axis and the circulation. Regulatory T (Treg) cells play a crucial role in controlling inflammation and are essential for maintaining immune tolerance and balance. In this review, we highlight the recent discoveries related to the function of immune systems in liver inflammation and discuss the role of Treg cells in the different liver diseases (including MAFLD, autoimmune hepatitis and others).
Collapse
Affiliation(s)
- Linjie Yang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Song Guo Zheng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; State Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 201600, China.
| |
Collapse
|
2
|
Zeng M, Wang X, Zhou J, Zhang X, Zhang X, Chi J, Lu C, Wang L, Li S. Body mass index-specific metabolic profiles in schizophrenia: implications for cognitive dysfunction and psychopathology. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02951-x. [PMID: 40411589 DOI: 10.1007/s00702-025-02951-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 05/05/2025] [Indexed: 05/26/2025]
Abstract
While metabolic dysfunction is linked to schizophrenia, the relationship between metabolic parameters, cognitive function, and psychopathological symptoms across different body mass index (BMI) categories remains inadequately understood. This study aimed to explore the distinct metabolic predictors of cognitive and psychopathological outcomes in schizophrenia patients stratified by BMI. A total of 1034 patients with schizophrenia were recruited and categorized into underweight, normal weight, overweight and obesity groups. Cognitive function was assessed using the Repeatable Battery for the Assessment of Neuropsychological Status, and psychopathological symptoms were evaluated using the Positive and Negative Syndrome Scale. Metabolic profiles and anthropometric measures were obtained via standard tests. Significant metabolic differences were found across BMI groups, except for low-density lipoprotein. Underweight patients performed worse in language compared to obese patients, which had higher positive symptom but lower negative symptom scores. Multivariate linear regression analysis revealed that in obese patients, elevated triglyceride was independently associated with better cognitive performance (p < 0.05). In overweight patients, waist-hip ratio was significantly correlated with cognitive outcomes, which specifically predicting the severity of positive symptoms (all p < 0.05). In underweight patients, fasting blood glucose (β = 0.77, p < 0.05) and triglyceride (β = 1.28, p < 0.01) were associated with immediate memory deficits, while attention was negatively influenced by high-density lipoprotein levels (β = -0.10, p < 0.05). Schizophrenia patients exhibit distinct BMI-specific metabolic patterns that differentially predict cognitive and psychopathological outcomes, highlighting the importance of tailored metabolic interventions based on BMI stratification.
Collapse
Affiliation(s)
- Min Zeng
- Department of Psychiatry, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, No. 13, Liulin Road, Hexi District, Tianjin, 300222, China
| | - Xinxu Wang
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin University, No. 13, Liulin Road, Hexi District, Tianjin, 300222, China
- Brain Assessment & Intervention Laboratory, Tianjin Anding Hospital, Mental Health Center of Tianjin University, Tianjin, 300222, China
| | - Jianan Zhou
- Department of Psychiatry, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, No. 13, Liulin Road, Hexi District, Tianjin, 300222, China
| | - Xiao Zhang
- Department of Psychiatry, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, No. 13, Liulin Road, Hexi District, Tianjin, 300222, China
| | - Xiaofei Zhang
- Department of Psychiatry, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, No. 13, Liulin Road, Hexi District, Tianjin, 300222, China
| | - Jinghui Chi
- Department of Psychiatry, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, No. 13, Liulin Road, Hexi District, Tianjin, 300222, China
| | - Chenghao Lu
- Department of Psychiatry, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, No. 13, Liulin Road, Hexi District, Tianjin, 300222, China
| | - Lili Wang
- Department of Psychiatry, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, No. 13, Liulin Road, Hexi District, Tianjin, 300222, China.
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin University, No. 13, Liulin Road, Hexi District, Tianjin, 300222, China.
| | - Shen Li
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin University, No. 13, Liulin Road, Hexi District, Tianjin, 300222, China.
- Brain Assessment & Intervention Laboratory, Tianjin Anding Hospital, Mental Health Center of Tianjin University, Tianjin, 300222, China.
| |
Collapse
|
3
|
Singh A, Chaudhary R. Potentials of peroxisome proliferator-activated receptor (PPAR) α, β/δ, and γ: An in-depth and comprehensive review of their molecular mechanisms, cellular Signalling, immune responses and therapeutic implications in multiple diseases. Int Immunopharmacol 2025; 155:114616. [PMID: 40222274 DOI: 10.1016/j.intimp.2025.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Peroxisome proliferator-activated receptors (PPARs), ligand-activated transcription factors, have emerged as a key regulator of various biological processes, underscoring their relevance in the pathophysiology and treatment of numerous diseases. PPARs are primarily recognized for their critical role in lipid and glucose metabolism, which underpins their therapeutic applications in managing type 2 diabetes mellitus. Beyond metabolic disorders, they have gained attention for their involvement in immune modulation, making them potential targets for autoimmune-related inflammatory diseases. Furthermore, PPAR's ability to regulate proliferation, differentiation, and apoptosis has positioned them as promising candidates in oncology. Their anti-inflammatory and anti-fibrotic properties further highlight their potential in dermatological and cardiovascular conditions, where dysregulated inflammatory responses contribute to disease progression. Recent advancements have elucidated the molecular mechanisms of different PPAR isoforms, including their regulation of key signalling pathways such as NF-κB and MAPK, which are crucial in inflammation and cellular stress responses. Additionally, their interactions with co-factors and post-translational modifications further diversify their functional roles. The therapeutic potential of various PPAR agonists has been extensively explored, although challenges related to side effects and target specificity remain. This growing body of evidence underscores the significance of PPARs in understanding the molecular basis of diseases and advancing therapeutic interventions, paving way for targeted treatment approach across a wide spectrum of medical conditions. Here, we provide a comprehensive and detailed perspective of PPARs and their potential across different health conditions to advance our understanding, elucidate underlying mechanisms, and facilitate the development of potential treatment strategies.
Collapse
Affiliation(s)
- Alpana Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
4
|
Li W, Terada Y, Bai YZ, Yokoyama Y, Shepherd HM, Amrute JM, Bery AI, Liu Z, Gauthier JM, Terekhova M, Bharat A, Ritter JH, Puri V, Hachem RR, Turnquist HR, Sage PT, Alessandrini A, Artyomov MN, Lavine KJ, Nava RG, Krupnick AS, Gelman AE, Kreisel D. Maintenance of graft tissue-resident Foxp3+ cells is necessary for lung transplant tolerance in mice. J Clin Invest 2025; 135:e178975. [PMID: 40100295 PMCID: PMC12077894 DOI: 10.1172/jci178975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
Mechanisms that mediate allograft tolerance differ between organs. We have previously shown that Foxp3+ T cell-enriched bronchus-associated lymphoid tissue (BALT) is induced in tolerant murine lung allografts and that these Foxp3+ cells suppress alloimmune responses locally and systemically. Here, we demonstrated that Foxp3+ cells that reside in tolerant lung allografts differed phenotypically and transcriptionally from those in the periphery and were clonally expanded. Using a mouse lung retransplant model, we showed that recipient Foxp3+ cells were continuously recruited to the BALT within tolerant allografts. We identified distinguishing features of graft-resident and newly recruited Foxp3+ cells and showed that graft-infiltrating Foxp3+ cells acquired transcriptional profiles resembling those of graft-resident Foxp3+ cells over time. Allografts underwent combined antibody-mediated rejection and acute cellular rejection when recruitment of recipient Foxp3+ cells was prevented. Finally, we showed that local administration of IL-33 could expand and activate allograft-resident Foxp3+ cells, providing a platform for the design of tolerogenic therapies for lung transplant recipients. Our findings establish graft-resident Foxp3+ cells as critical orchestrators of lung transplant tolerance and highlight the need to develop lung-specific immunosuppression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Marina Terekhova
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ankit Bharat
- Department of Surgery, Northwestern University, Chicago, Illinois, USA
| | - Jon H. Ritter
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | - Hēth R. Turnquist
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peter T. Sage
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alessandro Alessandrini
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maxim N. Artyomov
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kory J. Lavine
- Department of Medicine, and
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | | | - Andrew E. Gelman
- Department of Surgery
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Daniel Kreisel
- Department of Surgery
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Sureka N, Zaheer S. Regulatory T Cells in Tumor Microenvironment: Therapeutic Approaches and Clinical Implications. Cell Biol Int 2025. [PMID: 40365758 DOI: 10.1002/cbin.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/19/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025]
Abstract
Regulatory T cells (Tregs), previously referred to as suppressor T cells, represent a distinct subset of CD4+ T cells that are uniquely specialized for immune suppression. They are characterized by the constitutive expression of the transcription factor FoxP3 in their nuclei, along with CD25 (the IL-2 receptor α-chain) and CTLA-4 on their cell surface. Tregs not only restrict natural killer cell-mediated cytotoxicity but also inhibit the proliferation of CD4+ and CD8+ T-cells and suppress interferon-γ secretion by immune cells, ultimately impairing an effective antitumor immune response. Treg cells are widely recognized as a significant barrier to the effectiveness of tumor immunotherapy in clinical settings. Extensive research has consistently shown that Treg cells play a pivotal role in facilitating tumor initiation and progression. Conversely, the depletion of Treg cells has been linked to a marked delay in tumor growth and development.
Collapse
Affiliation(s)
- Niti Sureka
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
6
|
Shao LJ, Elizondo F, Gao F, Habib R, Li X, Pham K, Ysaguirre J, Elizondo M, Shirazi S, Eckel-Mahan KL, Hartig S, Wu H, Sun K. Functional regulation of macrophages by Ces1d-mediated lipid signaling in immunometabolism. Mol Metab 2025; 97:102166. [PMID: 40349771 DOI: 10.1016/j.molmet.2025.102166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025] Open
Abstract
OBJECTIVE Macrophage accumulation in metabolically active tissues during obesity is common in both animals and humans, but the lipid signaling mechanisms that trigger macrophage inflammation remain unclear. This study investigates the role of Ces1d, an unconventional lipase, in regulating macrophage inflammation under nutritional stress. METHODS A myeloid-specific Ces1d knockout (LysM-Cre-Ces1d floxed/floxed, KO) mouse model was used for the studies. For in vitro tests, bone marrow-derived macrophages (BMDMs) from control (Ces1d floxed/floxed, WT) and KO mice were assessed for migration, polarization, and activation. For in vivo experiments, WT and KO mice were induced to obesity via a high-fat diet (HFD) and subjected to metabolic characterization. Adipose tissue, liver, and serum samples were analyzed histologically and biochemically. Endogenous macrophages and T cells from adipose tissue were isolated and analyzed for functional interactions by flow cytometry. RESULTS Ces1d expression changes during the differentiation of monocytes into macrophages in both mice and humans. Loss of Ces1d causes larger lipid droplets, with increased accumulation of triacylglycerol (TAG) and diacylglycerol (DAG), and impaired lipid signaling in KO macrophages. Lipid dysregulation in macrophages triggers pro-inflammatory activation, enhancing migration, activation, and polarization toward an M1-like phenotype. The pro-inflammatory macrophages further promote CD3+CD8+ T cell accumulation in obese adipose tissue, which contributes to worsened metabolic disorders, including more severe fatty liver, increased local inflammation in adipose tissue, and impaired systemic glucose tolerance in KO mice on a high-fat diet. CONCLUSIONS This study demonstrates Ces1d is a crucial factor in maintaining lipid homeostasis in macrophages. Loss of Ces1d leads to metabolic dysregulation in macrophages and other immune cells during obesity.
Collapse
Affiliation(s)
- Long J Shao
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fathima Elizondo
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Feng Gao
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Rabie Habib
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xin Li
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Katherine Pham
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jazmin Ysaguirre
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Maryam Elizondo
- Graduate School of Biomedical Sciences (GSBS), University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shirindokht Shirazi
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Graduate School of Biomedical Sciences (GSBS), University of Texas Health Science Center at Houston, Houston, TX, USA; Department of Epidemiology, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kristin L Eckel-Mahan
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Graduate School of Biomedical Sciences (GSBS), University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sean Hartig
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Huaizhu Wu
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Kai Sun
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Graduate School of Biomedical Sciences (GSBS), University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
7
|
Chen B, Guan L, Wu C, Gong Y, Wu L, Zhang M, Cao Z, Chen Y, Yang C, Wang B, Li Y, Li B, Bi Y, Ning G, Wang J, Wang W, Liu R. Gut Microbiota-Butyrate-PPARγ Axis Modulates Adipose Regulatory T Cell Population. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411086. [PMID: 39998325 PMCID: PMC12120792 DOI: 10.1002/advs.202411086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/18/2025] [Indexed: 02/26/2025]
Abstract
Gut microbiota is essential for the function of peripherally-induced regulatory T (pTreg) cells. However, how commensal bacteria affect thymically derived fat-resident Treg cells that harbor a unique expression of peroxisome proliferator-activated receptor (PPAR)-γ and suppress inflammation in visceral adipose tissue (VAT), is not well defined. Here it is revealed that microbiota depletion causes a drastic decline in Treg cell population in VAT, particularly those expressing ST2 (ST2+ Treg), which are largely restored after gut microbiome reconstruction. Mechanistically, gut microbiota-derived butyrate increases VAT ST2+ Treg cells through binding PPARγ. Butyrate supplementation and high fiber diet increase VAT ST2+ Treg population in obese mice, and ameliorated glucose tolerance and visceral inflammation. Furthermore, human omental adipose Treg cells show positive correlation with fecal butyrate and certain butyrate-producing microbes. This study identifies the critical role of gut microbiota-butyrate-PPARγ axis in maintaining VAT Treg population, pinpointing a potential approach to augment VAT Treg population and ameliorate inflammation.
Collapse
Affiliation(s)
- Banru Chen
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Lizhi Guan
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chao Wu
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yiwen Gong
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Lei Wu
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Minchun Zhang
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zhiwen Cao
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yufei Chen
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chengcan Yang
- Department of General SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine639 Zhizaoju RoadShanghai200011China
| | - Bing Wang
- Department of General SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of Medicine639 Zhizaoju RoadShanghai200011China
| | - Yunqi Li
- Shanghai Institute of HematologyState Key Laboratory of Medical GenomicsNational Research Center for Translational Medicine at ShanghaiRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025China
| | - Bin Li
- Department of Immunology and MicrobiologyShanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yufang Bi
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Guang Ning
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Weiqing Wang
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Ruixin Liu
- Department of Endocrine and Metabolic DiseasesShanghai Institute of Endocrine and Metabolic DiseasesRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Shanghai National Clinical Research Center for Metabolic DiseasesKey Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR ChinaShanghai Key Laboratory for Endocrine TumorState Key Laboratory of Medical GenomicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| |
Collapse
|
8
|
Wang X, Yu H, Dong Y, Xie W. Omentum transplantation for malignant tumors: a narrative review of emerging techniques and clinical applications. Eur J Med Res 2025; 30:322. [PMID: 40270068 PMCID: PMC12020016 DOI: 10.1186/s40001-025-02593-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/14/2025] [Indexed: 04/25/2025] Open
Abstract
Omentum transplantation has emerged as a versatile and effective technique across various surgical disciplines due to its unique properties of immunological surveillance, anti-inflammatory effects, and wound healing promotion. In breast cancer surgeries, it has been utilized to manage locoregional issues and immediate reconstruction, providing satisfactory cosmetic outcomes and minimal complications, particularly in patients who had previously undergone irradiation. For esophageal cancer, omental reinforcement has significantly reduced anastomotic leak rates and postoperative complications, supporting its use in esophagectomy and complex cardiothoracic surgeries. In gynecological surgeries, the use of omental flaps has shown excellent results in neovaginal reconstruction following pelvic exenteration, offering distinct advantages over myocutaneous flaps by reducing morbidity and preserving sexual function. Additionally, omental transposition has proven beneficial in reducing surgical morbidity following radical abdominal hysterectomy and in managing vaginal cuff dehiscence through vaginal approaches. Robotic-assisted omental flap harvesting has enhanced precision and reduced complications in reconstructive surgeries, making it a promising minimally invasive approach in regenerative surgery and complex reconstructions, such as for facial skeleton reconstruction. The omentum has also been beneficial in laparoscopic procedures for pudendal nerve decompression and in managing thoracic aortic graft infections, demonstrating its versatility and effectiveness in various clinical settings. These studies collectively highlight the omentum's significant role in improving surgical outcomes, reducing complications, and enhancing the quality of life for patients, solidifying its place as a valuable tool in modern surgical practice. This article provides a comprehensive narrative review of omentum transplantation in oncology, discussing its current applications and future potential as a standard treatment modality.
Collapse
Affiliation(s)
- Xiangyu Wang
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People's Republic of China
| | - Hao Yu
- Department of Gynecological Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People's Republic of China
| | - Yanlei Dong
- Department of Gynecology, The Second Hospital of Shandong University, Jinan, Shandong, 250033, People's Republic of China
| | - Wenli Xie
- Department of Gynecology, The Second Hospital of Shandong University, Jinan, Shandong, 250033, People's Republic of China.
| |
Collapse
|
9
|
Accili D, Deng Z, Liu Q. Insulin resistance in type 2 diabetes mellitus. Nat Rev Endocrinol 2025:10.1038/s41574-025-01114-y. [PMID: 40247011 DOI: 10.1038/s41574-025-01114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 04/19/2025]
Abstract
Insulin resistance is an integral pathophysiological feature of type 2 diabetes mellitus. Here, we review established and emerging cellular mechanisms of insulin resistance, their complex integrative features and their relevance to disease progression. While recognizing the heterogeneity of the elusive fundamental disruptions that cause insulin resistance, we endorse the view that effector mechanisms impinge on insulin receptor signalling and its relationship with plasma levels of insulin. We focus on hyperinsulinaemia and its consequences: acutely impaired but persistent insulin action, with reduced ability to lower glucose levels but preserved lipid synthesis and lipoprotein secretion. We emphasize the role of insulin sensitization as a therapeutic goal in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Domenico Accili
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA.
| | - Zhaobing Deng
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | - Qingli Liu
- Department of Medicine, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| |
Collapse
|
10
|
Osaki M, Sakaguchi S. Soluble CTLA-4 regulates immune homeostasis and promotes resolution of inflammation by suppressing type 1 but allowing type 2 immunity. Immunity 2025; 58:889-908.e13. [PMID: 40168991 DOI: 10.1016/j.immuni.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/29/2024] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
Cytotoxic T-lymphocyte-associated antigen -4 (CTLA-4) is a co-inhibitory receptor that restricts T cell activation. CTLA-4 exists as membrane (mCTLA-4) and soluble (sCTLA-4) forms, but the key producers, kinetics, and functions of sCTLA-4 are unclear. Here, we investigated the roles of sCTLA-4 in immune regulation under non-inflammatory and inflammatory conditions. Effector regulatory T (Treg) cells were the most active sCTLA-4 producers in basal and inflammatory states, with distinct kinetics upon T cell receptor (TCR) stimulation. We generated mice specifically deficient in sCTLA-4 production, which exhibited spontaneous activation of type 1 immune cells and heightened autoantibody/immunoglobulin E (IgE) production. Conversely, mCTLA-4-deficient mice developed severe type 2-skewed autoimmunity. sCTLA-4 blockade of CD80/86 on antigen-presenting cells inhibited T helper (Th)1, but not Th2, differentiation in vitro. In vivo, Treg-produced sCTLA-4, suppressed Th1-mediated experimental colitis, and enhanced wound healing but hampered tumor immunity. Thus, sCTLA-4 is essential for immune homeostasis and controlling type 1 immunity while allowing type 2 immunity to facilitate resolution in inflammatory conditions.
Collapse
Affiliation(s)
- Motonao Osaki
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Experimental Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory of Experimental Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
11
|
Chung Y, Chang JY, Soedono S, Julietta V, Joo EJ, Kwon SH, Choi SI, Kim YJ, Cho KW. Distinct T Cell Subset Profiles and T-Cell Receptor Signatures in Metabolically Unhealthy Obesity. Int J Mol Sci 2025; 26:3372. [PMID: 40244276 PMCID: PMC11989847 DOI: 10.3390/ijms26073372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Metabolically unhealthy obesity (MUO) is associated with increased inflammation and a higher risk of metabolic disorders compared to metabolically healthy obesity (MHO). T cell dysregulation in blood and adipose tissue may contribute to obesity-induced metabolic dysfunction, yet the characteristics of T cell subset profiles and T-cell receptor (TCR) repertoires in MHO and MUO remain unclear. We analyzed T cell subsets and TCR repertoires in peripheral blood and omental adipose tissue (oAT) from age- and BMI-matched MHO and MUO individuals using flow cytometry and high-throughput TCR sequencing. MUO individuals exhibited a higher proportion of memory CD4+ T cells in both compartments, with an increased frequency of central memory T cells. Circulating CD8+ T cells were increased in MUO, whereas CD8+ T cell subset composition remained unchanged in both blood and oAT. The TCR repertoire in oAT was significantly more restricted than in blood and showed greater skewing in MUO, with selective amplification of specific TRB V genes (TRBV12-4, TRBV18, TRBV7-9) and altered CDR3 length distributions. These findings suggest that distinct CD4+ T cell populations and specific TCR signatures may serve as potential biomarkers for metabolic dysfunction in obesity, providing insights into immune mechanisms underlying the transition from MHO to MUO.
Collapse
Affiliation(s)
- Yoona Chung
- Metabolic and Bariatric Surgery Center, Department of Surgery, H+ Yangji Hospital, Seoul 08779, Republic of Korea
| | - Ji Yeon Chang
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea (S.S.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Shindy Soedono
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea (S.S.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Vivi Julietta
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea (S.S.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Esther Jin Joo
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea (S.S.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Soon Hyo Kwon
- Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| | - Sung Il Choi
- Department of Surgery, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| | - Yong Jin Kim
- Metabolic and Bariatric Surgery Center, Department of Surgery, H+ Yangji Hospital, Seoul 08779, Republic of Korea
| | - Kae Won Cho
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea (S.S.)
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Republic of Korea
| |
Collapse
|
12
|
Zhou H, Gizlenci M, Xiao Y, Martin F, Nakamori K, Zicari EM, Sato Y, Tullius SG. Obesity-associated Inflammation and Alloimmunity. Transplantation 2025; 109:588-596. [PMID: 39192462 PMCID: PMC11868468 DOI: 10.1097/tp.0000000000005183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Obesity is a worldwide health problem with a rapidly rising incidence. In organ transplantation, increasing numbers of patients with obesity accumulate on waiting lists and undergo surgery. Obesity is in general conceptualized as a chronic inflammatory disease, potentially impacting alloimmune response and graft function. Here, we summarize our current understanding of cellular and molecular mechanisms that control obesity-associated adipose tissue inflammation and provide insights into mechanisms affecting transplant outcomes, emphasizing on the beneficial effects of weight loss on alloimmune responses.
Collapse
Affiliation(s)
- Hao Zhou
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
| | - Merih Gizlenci
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
- Department of General, Visceral, Cancer and Transplant Surgery, University Hospital of Cologne, Cologne, Germany
| | - Yao Xiao
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
| | - Friederike Martin
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
- Department of Surgery, CVK/CCM, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Keita Nakamori
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Elizabeth M. Zicari
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
- Faculté de Pharmacie, Université Paris Cité, Paris, France
| | - Yuko Sato
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
| | - Stefan G. Tullius
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States
| |
Collapse
|
13
|
Domagalski M, Olszańska J, Pietraszek‐Gremplewicz K, Nowak D. The role of adipogenic niche resident cells in colorectal cancer progression in relation to obesity. Obes Rev 2025; 26:e13873. [PMID: 39763022 PMCID: PMC11884973 DOI: 10.1111/obr.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/03/2024] [Accepted: 11/05/2024] [Indexed: 03/08/2025]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and has one of the highest mortality rates. Considering its nonlinear etiology, many risk factors are associated with CRC formation and development, with obesity at the forefront. Obesity is regarded as one of the key environmental risk determinants for the pathogenesis of CRC. Excessive food intake and a sedentary lifestyle, together with genetic predispositions, lead to the overgrowth of adipose tissue along with a disruption in the number and function of its building cells. Adipose tissue-resident cells may constitute part of the CRC microenvironment. Alterations in their physiology and secretory profiles observed in obesity may further contribute to CRC progression, and despite similar localization, their contributions are not equivalent. They can interact with CRC cells, either directly or indirectly, influencing various processes that contribute to tumorigenesis. The main aim of this review is to provide insights into the diversity of adipose tissue resident cells, namely, adipocytes, adipose stromal cells, and immunological cells, regarding the role of particular cell types in co-forming the CRC microenvironment. The scope of this study was also devoted to the abnormalities in adipose tissue physiology observed in obesity states and their impact on CRC development.
Collapse
Affiliation(s)
- Mikołaj Domagalski
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| | - Joanna Olszańska
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| | | | - Dorota Nowak
- Department of Cell Pathology, Faculty of BiotechnologyUniversity of WroclawWroclawPoland
| |
Collapse
|
14
|
Sinton MC, Kajimura S. From fat storage to immune hubs: the emerging role of adipocytes in coordinating the immune response to infection. FEBS J 2025; 292:1868-1883. [PMID: 39428707 PMCID: PMC12001177 DOI: 10.1111/febs.17302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/21/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
Adipose tissue is a rich source of diverse cell populations, including immune cells, adipocytes and stromal cells. Interactions between these different cell types are now appreciated to be critical for maintaining tissue structure and function, by governing processes such as adipogenesis, lipolysis and differentiation of white to beige adipocytes. Interactions between these cells also drive inflammation in obesity, leading to an expansion of adipose tissue immune cells, and the secretion of proinflammatory cytokines from immune cells and from adipocytes themselves. However, in evolutionary terms, obesity is a recent phenomenon, raising the question of why adipocytes evolved to express factors that influence the immune response. Studies of various pathogens indicate that adipocytes are highly responsive to infection, altering their metabolic profiles in a way that can be used to release nutrients and fuel the immune response. In the case of infection with the extracellular parasite Trypanosoma brucei, attenuating the ability of adipocytes to sense the cytokine IL-17 results in a loss of control of the local immune response and an increased pathogen load. Intriguingly, comparisons of the adipocyte response to infection suggest that the immune responses of these cells occur in a pathogen-dependent manner, further confirming their complexity. Here, with a focus on murine adipose tissue, we discuss the emerging concept that, in addition to their canonical function, adipocytes are immune signalling hubs that integrate and disseminate signals from the immune system to generate a local environment conducive to pathogen clearance.
Collapse
Affiliation(s)
- Matthew C. Sinton
- Division of Immunology, Immunity to Infection and Respiratory MedicineUniversity of ManchesterUK
- Lydia Becker Institute of Immunology and InflammationUniversity of ManchesterUK
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and MetabolismBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonMAUSA
- Howard Hughes Medical InstituteChevy ChaseMDUSA
| |
Collapse
|
15
|
Piao W, Lee ZL, Zapas G, Wu L, Jewell CM, Abdi R, Bromberg JS. Regulatory T cell and endothelial cell crosstalk. Nat Rev Immunol 2025:10.1038/s41577-025-01149-2. [PMID: 40169744 DOI: 10.1038/s41577-025-01149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2025] [Indexed: 04/03/2025]
Abstract
Regulatory T (Treg) cells have a central role in the maintenance of immune surveillance and tolerance. They can migrate from lymphoid organs to blood and then into tissues and egress from tissues into draining lymph nodes. Specialized endothelial cells of blood and lymphatic vessels are the key gatekeepers for these processes. Treg cells that transmigrate across single-cell layers of endothelial cells engage in bidirectional crosstalk with these cells and regulate vascular permeability by promoting structural modifications of blood and lymphatic endothelial cells. In turn, blood and lymphatic endothelial cells can modulate Treg cell recirculation and residency. Here, we discuss recent insights into the cellular and molecular mechanisms of the crosstalk between Treg cells and endothelial cells and explore potential therapeutic strategies to target these interactions in autoimmunity, transplantation and cancer.
Collapse
Affiliation(s)
- Wenji Piao
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zachariah L Lee
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gregory Zapas
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Long Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher M Jewell
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Singh VR, O'Donnell LA. Age-Stratified Treg Responses During Viral Infections of the Central Nervous System: A Literature Review. J Med Virol 2025; 97:e70315. [PMID: 40178106 PMCID: PMC11967158 DOI: 10.1002/jmv.70315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/24/2024] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
Regulatory T cells (Tregs) play a vital role in limiting inflammation and resolving the immune response after a viral infection. Within the central nervous system (CNS), Tregs are especially important for the protection of neurons, which have limited regenerative capacity, and the preservation of myelin sheaths, which support neuronal function and survival. Nevertheless, viral infections of the CNS often result in enduring neurological dysfunction, especially in more vulnerable age groups such as newborns and the elderly. Although it is appreciated that Treg activity changes with age, it is unclear how these age-dependent changes impact viral CNS infections. In this review, we explore Treg development over the life of the host and discuss evidence for age-dependent Treg responses to peripheral viral infections. We also discuss the CNS-specific roles of Tregs, where both immunomodulatory and neuroprotective functions can contribute to preservation of brain cells. Finally, we examine the current evidence for Treg activity in neurotropic infections in the context of age, and highlight gaps in our understanding of Treg function in younger and older hosts. Overall, a better understanding of age-dependent Treg activity in the CNS may reveal opportunities for therapeutic interventions tailored to the most vulnerable ages.
Collapse
Affiliation(s)
- Vivek R. Singh
- School of Pharmacy and the Graduate School of Pharmaceutical SciencesDuquesne UniversityPittsburghPennsylvaniaUSA
| | - Lauren A. O'Donnell
- School of Pharmacy and the Graduate School of Pharmaceutical SciencesDuquesne UniversityPittsburghPennsylvaniaUSA
| |
Collapse
|
17
|
Tani-Ichi S, Abe S, Miyachi H, Kitano S, Shimba A, Ejima A, Hara T, Cui G, Kado T, Hori S, Tobe K, Ikuta K. IL-7Rα signaling in regulatory T cells of adipose tissue is essential for systemic glucose homeostasis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:666-679. [PMID: 40107286 DOI: 10.1093/jimmun/vkae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/17/2024] [Indexed: 03/22/2025]
Abstract
Regulatory T cells (Tregs) mediate tissue homeostasis and repair. The function of the interleukin-7 receptor α (IL-7Rα) in nonlymphoid tissue Tregs is still unknown, although low expression of IL-7Rα is a widely accepted marker for Tregs. Here, we show that IL-33R (ST2)-expressing Tregs in the visceral adipose tissue (VAT) express the IL-7Rα at high levels. Treg-specific IL-7Rα-deficient mice exhibited reduced adipose ST2+ Tregs and impaired glucose tolerance, whereas IL-7Rα was dispensable for Tregs in lymphoid tissues. Mice deficient in thymic stromal lymphopoietin (TSLP), an additional ligand for IL-7Rα, displayed a modest decrease in adipose ST2+ Tregs and a reduced accumulation of adipose eosinophils, accompanied by slightly impaired glucose tolerance. In the VAT, mesothelial cells expressed IL-7, whereas adipose stem cells and folate receptor β-expressing tissue-resident macrophages expressed TSLP. Thus, this study indicates the significance of IL-7Rα signaling in the maintenance of VAT Tregs and glucose homeostasis, revealing a novel role for IL-7 and TSLP in immunometabolism.
Collapse
Affiliation(s)
- Shizue Tani-Ichi
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinya Abe
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Satsuki Kitano
- Reproductive Engineering Team, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aki Ejima
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takahiro Hara
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Guangwei Cui
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tomonobu Kado
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Shohei Hori
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Tobe
- Research Center for Pre-Disease Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
18
|
Becker M, Kälin S, Neubig AH, Lauber M, Opaleva D, Hipp H, Salb VK, Ott VB, Legutko B, Kälin RE, Hippich M, Scherm MG, Nascimento LFR, Serr I, Hosp F, Nikolaev A, Mohebiany A, Krueger M, Flachmeyer B, Pfaffl MW, Haase B, Yi CX, Dietzen S, Bopp T, Woods SC, Waisman A, Weigmann B, Mann M, Tschöp MH, Daniel C. Regulatory T cells in the mouse hypothalamus control immune activation and ameliorate metabolic impairments in high-calorie environments. Nat Commun 2025; 16:2744. [PMID: 40113758 PMCID: PMC11926360 DOI: 10.1038/s41467-025-57918-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/07/2025] [Indexed: 03/22/2025] Open
Abstract
The hypothalamus in the central nervous system (CNS) has important functions in controlling systemic metabolism. A calorie-rich diet triggers CNS immune activation, impairing metabolic control and promoting obesity and Type 2 Diabetes (T2D), but the mechanisms driving hypothalamic immune activation remain unclear. Here we identify regulatory T cells (Tregs) as key modulators of hypothalamic immune responses. In mice, calorie-rich environments activate hypothalamic CD4+ T cells, infiltrating macrophages and microglia while reducing hypothalamic Tregs. mRNA profiling of hypothalamic CD4+ T cells reveals a Th1-like activation state, with increased Tbx21, Cxcr3 and Cd226 but decreased Ccr7 and S1pr1. Importantly, results from Treg loss-of function and gain-of-function experiments show that Tregs limit hypothalamic immune activation and reverse metabolic impairments induced by hyper-caloric feeding. Our findings thus help refine the current model of Treg-centered immune-metabolic crosstalk in the brain and may contribute to the development of precision immune modulation for obesity and diabetes.
Collapse
Affiliation(s)
- Maike Becker
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Stefanie Kälin
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Munich and Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Anne H Neubig
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Michael Lauber
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Daria Opaleva
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Hannah Hipp
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Victoria K Salb
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Verena B Ott
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Munich and Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Beata Legutko
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Munich and Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Roland E Kälin
- Department of Neurosurgery, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
- Clinical Research Institute for Neurosciences, Johannes Kepler University Linz and Kepler University Hospital, Linz, Austria
- Neurosurgical Research, Department of Neurosurgery, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Markus Hippich
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute for Diabetes Research, Helmholtz Diabetes Center at Helmholtz Munich, 80939 Munich, and Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Martin G Scherm
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Lucas F R Nascimento
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Isabelle Serr
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Fabian Hosp
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Alexei Nikolaev
- Institute for Molecular Medicine, Universitätsmedizin der Johannes-Gutenberg-Universität, Mainz, Germany
| | - Alma Mohebiany
- Institute for Molecular Medicine, Universitätsmedizin der Johannes-Gutenberg-Universität, Mainz, Germany
| | - Martin Krueger
- Institute for Anatomy, Leipzig University, Leipzig, Germany
| | | | - Michael W Pfaffl
- Animal Physiology and Immunology, Technische Universität München, Freising-Weihenstephan, Germany
| | - Bettina Haase
- Genomics Core Facility, EMBL European Molecular Biology Laboratory, Heidelberg, Germany
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sarah Dietzen
- Institute of Immunology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tobias Bopp
- Institute of Immunology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stephen C Woods
- Metabolic Diseases Institute, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Ari Waisman
- Institute for Molecular Medicine, Universitätsmedizin der Johannes-Gutenberg-Universität, Mainz, Germany
| | - Benno Weigmann
- Department of Medicine 1, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Munich, Germany.
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Munich and Division of Metabolic Diseases, Technische Universität München, Munich, Germany.
| | - Carolin Daniel
- Research Unit Type 1 Diabetes Immunology, Helmholtz Diabetes Center at Helmholtz Munich, Munich, Germany.
- German Center for Diabetes Research (DZD), Munich, Germany.
- Division of Clinical Pharmacology, Department of Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
19
|
Luu QQ, Kim T, Cao TBT, Choi I, Yang SY, An BS, Hwang DY, Choi Y, Park HS. Therapeutic Potential of Arginine-Loaded Red Blood Cell Nanovesicles Targeting Obese Asthma. Mediators Inflamm 2025; 2025:8248722. [PMID: 40134943 PMCID: PMC11936518 DOI: 10.1155/mi/8248722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/12/2025] [Indexed: 03/27/2025] Open
Abstract
Purpose: The role of the gut microbiomes has been emphasized in the pathogenesis of obese asthma (OA). However, the molecular mechanism of airway dysfunction underlying OA has not yet been fully elucidated. The effects of microbiomes on arginine metabolism in relation to lung functions and a novel method for delivering arginine to lung tissue based on arginine-loaded red blood cell (RBC)-derived nanovesicles (NVs) (NVArg) will be investigated. Materials and Methods: Inflammatory status, amino acid profiles, and microbial diversity were evaluated in 20 adult patients with OA compared to 30 adult patients with non-OA (NOA) and 10 healthy control (HC) groups. Changes in gut or lung microbial composition that altered arginine metabolism in relation to airway inflammation were investigated in an OA mouse model in vivo. Additionally, this study evaluated the delivery of arginine to lung tissue utilizing NVArg in vivo and in vitro. Results: Significantly increased Bacteroides abundance but decreased serum arginine concentration with lower forced exhaled volume at 1 s (FEV1) (%) was noted in the OA group compared to the NOA and HC groups. In mouse experiments, when OA mice were given living bacteria from normal control (NC) mice, lung arginine concentration and airway resistance were restored. However, the administration of arginine or its metabolite (citrulline) did not increase the arginine levels in the lung tissues. We therefore created NVArg, which successfully delivered arginine into the cytoplasm of the airway epithelial cell line in vitro. Oral administration of NVArg for OA mice significantly induced the AMP-activated protein kinase (AMPK) and endothelial nitric oxide synthase (eNOS) pathways in airway epithelial cells, which reduced airway resistance and inflammation. Conclusion: These findings suggest that microbiomes contribute to airway dysfunction by regulating arginine metabolism, whereas NVArg treatment may be a potential option for managing OA.
Collapse
Affiliation(s)
- Quoc Quang Luu
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, California, USA
| | - Taejune Kim
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Injung Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Seung Yun Yang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Youngwoo Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
20
|
Wang K, Farrell A, Zhou E, Qin H, Zeng Z, Zhou K, Cunha E Rocha K, Zhang D, Wang G, Atakilit A, Sheppard D, Lu LF, Jin C, Ying W. ATF4 drives regulatory T cell functional specification in homeostasis and obesity. Sci Immunol 2025; 10:eadp7193. [PMID: 40085690 DOI: 10.1126/sciimmunol.adp7193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/19/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Regulatory T cells (Tregs) have diverse functional specification in homeostasis and disease. However, how liver Tregs function and are transcriptionally regulated in obesity is not well understood. Here, we identified that effector Tregs expressing activating transcription factor 4 (ATF4) were enriched in the livers of obese mice. ATF4 was critical for driving an effector Treg transcriptional program, and ATF4-expressing Tregs promoted the development of obesity-induced liver fibrosis by enhancing transforming growth factor-β activation via integrin αvβ8. Treg-specific deletion of Atf4 resulted in reduced liver Tregs and attenuation of obesity-induced liver abnormalities. Furthermore, ATF4 was required to promote the differentiation of nonlymphoid tissue Treg precursors under steady state. These findings demonstrate that ATF4 is important for regulating Treg functional specification in homeostasis and obesity.
Collapse
Affiliation(s)
- Ke Wang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Andrea Farrell
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Enchen Zhou
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Houji Qin
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Zixuan Zeng
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kailun Zhou
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Karina Cunha E Rocha
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Dinghong Zhang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gaowei Wang
- Institute of Modern Biology, Nanjing University, Nanjing, China
| | - Amha Atakilit
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Dean Sheppard
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Li-Fan Lu
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Chunyu Jin
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Wei Ying
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
21
|
Gomez‐Casado G, Jimenez‐Gonzalez A, Rodriguez‐Muñoz A, Tinahones FJ, González‐Mesa E, Murri M, Ortega‐Gomez A. Neutrophils as indicators of obesity-associated inflammation: A systematic review and meta-analysis. Obes Rev 2025; 26:e13868. [PMID: 39610288 PMCID: PMC11791391 DOI: 10.1111/obr.13868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/21/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024]
Abstract
INTRODUCTION The aim of this study is to evaluate and compare the suitability of routine blood neutrophil values as indicators of obesity-associated inflammation. METHODS In this systematic review and meta-analysis, we assess absolute neutrophil counts (ANCs) and neutrophil-to-lymphocyte ratio (NLR) values in subjects with and without obesity and analyze the weight of both parameters on the disease. Additionally, correlation studies between ANC and NLR with BMI, a parameter internationally accepted to define obesity are performed. RESULTS Quantitative data from 12 (ANC) and 11 (NLR) studies were included, with a total of 4475 participants. The meta-analysis shows that while both parameters are increased in the obesity group, ANC values present higher differences with the control and less heterogeneity among studies. Additionally, unlike NLR, ANC demonstrates a positive and significant correlation with BMI. CONCLUSION Overall, this meta-analysis demonstrates that ANC is a more reliable and stable parameter than NLR for the assessment of obesity-related inflammation, which offers clinicians a novel tool to assist in preventing complications related to obesity.
Collapse
Affiliation(s)
- Gema Gomez‐Casado
- Endocrinology and Nutrition UGCVirgen de la Victoria University HospitalMálagaSpain
- Biomedical Research Institute of Malaga ‐IBIMA Plataforma BIONANDMálagaSpain
- Department of Surgical Specialties, Biochemistry and Immunology Department, Faculty of MedicineUniversity of MalagaMálagaSpain
| | | | - Alba Rodriguez‐Muñoz
- Endocrinology and Nutrition UGCVirgen de la Victoria University HospitalMálagaSpain
- Biomedical Research Institute of Malaga ‐IBIMA Plataforma BIONANDMálagaSpain
| | - Francisco J. Tinahones
- Endocrinology and Nutrition UGCVirgen de la Victoria University HospitalMálagaSpain
- Biomedical Research Institute of Malaga ‐IBIMA Plataforma BIONANDMálagaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos IIIMálagaSpain
- Department of Dermatology and Medicine, Faculty of MedicineUniversity of MalagaMálagaSpain
| | - Ernesto González‐Mesa
- Biomedical Research Institute of Malaga ‐IBIMA Plataforma BIONANDMálagaSpain
- Department of Surgical Specialties, Biochemistry and Immunology Department, Faculty of MedicineUniversity of MalagaMálagaSpain
- Obstetrics and Gynecology ServiceRegional University Hospital of MalagaMálagaSpain
| | - Mora Murri
- Endocrinology and Nutrition UGCVirgen de la Victoria University HospitalMálagaSpain
- Biomedical Research Institute of Malaga ‐IBIMA Plataforma BIONANDMálagaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos IIIMálagaSpain
- Heart AreaVirgen de la Victoria University HospitalMálagaSpain
| | - Almudena Ortega‐Gomez
- Endocrinology and Nutrition UGCVirgen de la Victoria University HospitalMálagaSpain
- Biomedical Research Institute of Malaga ‐IBIMA Plataforma BIONANDMálagaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos IIIMálagaSpain
| |
Collapse
|
22
|
Marin-Rodero M, Cintado E, Walker AJ, Jayewickreme T, Pinho-Ribeiro FA, Richardson Q, Jackson R, Chiu IM, Benoist C, Stevens B, Trejo JL, Mathis D. The meninges host a distinct compartment of regulatory T cells that preserves brain homeostasis. Sci Immunol 2025; 10:eadu2910. [PMID: 39873623 PMCID: PMC11924117 DOI: 10.1126/sciimmunol.adu2910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
Our understanding of the meningeal immune system has recently burgeoned, particularly regarding how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains limited. This study highlights the heterogeneous, polyfunctional regulatory T cell (Treg) compartment in the meninges. A Treg subtype specialized in controlling interferon-γ (IFN-γ) responses and another dedicated to regulating follicular B cell responses were substantial components of this compartment. Accordingly, punctual Treg ablation rapidly unleashed IFN-γ production by meningeal lymphocytes, unlocked access to the brain parenchyma, and altered meningeal B cell profiles. Distally, the hippocampus assumed a reactive state, with morphological and transcriptional changes in multiple glial cell types. Within the dentate gyrus, neural stem cells underwent more death and were blocked from further differentiation, which coincided with impairments in short-term spatial-reference memory. Thus, meningeal Tregs are a multifaceted safeguard of brain homeostasis at steady state.
Collapse
Affiliation(s)
| | - Elisa Cintado
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas; Madrid, Spain
| | - Alec J. Walker
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School; Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, USA
| | | | | | | | - Ruaidhrí Jackson
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| | - Isaac M. Chiu
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| | | | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School; Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital; Boston, MA, USA
| | - José Luís Trejo
- Cajal Institute, Translational Neuroscience Department, Consejo Superior de Investigaciones Científicas; Madrid, Spain
| | - Diane Mathis
- Department of Immunology, Harvard Medical School; Boston, MA, USA
| |
Collapse
|
23
|
Scheidl TB, Wager JL, Thompson JA. Adipose Tissue Stromal Cells: Rheostats for Adipose Tissue Function and Metabolic Disease Risk. Can J Cardiol 2025:S0828-282X(25)00137-0. [PMID: 39986382 DOI: 10.1016/j.cjca.2025.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025] Open
Abstract
The transition from metabolically healthy obesity to the development of obesity-associated metabolic syndrome and cardiovascular disease is thought to be triggered by a loss in the functional integrity of adipose tissue. Although mature adipocytes are the primary functional units that carry out lipid partitioning in adipose tissue for the promotion of whole-body energy balance, they are supported by a heterogenous collection of nonadipocytes in the stroma. Research over the past couple of decades has expanded perspectives on the homeostatic and pathological roles of the nonadipocyte compartment. Adipose progenitors originate in the embryonic period and drive the developmental adipogenesis that establishes the set point of adiposity. A population of adipocyte progenitors reside in adult depots and serve an important homeostatic role as a reservoir to support adipocyte turnover. Adipocyte hypertrophy in obesity increases the rate of adipocyte death and the ability of progenitors to support this high rate of adipocyte turnover is important for the preservation of the lipid-buffering function of adipose tissue. Some evidence exists to suggest that impaired adipogenesis or a decline in progenitors capable of differentiation is a key event in the development of adipose dysfunction. The efficiency of macrophages to clear the debris and toxic lipids released from dead adipocytes lies at the fulcrum between preservation of adipose function and the progression toward chronic inflammation. Although macrophages in collaboration with other immune cells propagate the inflammation that underlies adipose dysfunction, there is now a greater appreciation for the diverse and unique roles of immune cells within adipose tissue.
Collapse
Affiliation(s)
- Taylor B Scheidl
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada. https://twitter.com/TaylorScheidl
| | - Jessica L Wager
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer A Thompson
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
24
|
Lu Y, Man XY. Diversity and function of regulatory T cells in health and autoimmune diseases. J Autoimmun 2025; 151:103357. [PMID: 39805189 DOI: 10.1016/j.jaut.2025.103357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/16/2025]
Abstract
Regulatory T cell (Treg) play a pivotal role in immune regulation and maintaining host immune homeostasis. Treg heterogeneity, characterized by diverse gene expression profiles and functional states, is complex in both health and disease. Research reveals that Tregs are not a uniform population but exhibit diversity based on their origin, location, and functional status. This heterogeneity is crucial for understanding Treg roles in various pathological conditions. Dysfunctional Tregs are closely linked to the pathogenesis of autoimmune diseases, although the precise mechanisms remain unclear. The phenotypic and functional heterogeneity of Tregs is particularly significant in diseases such as systemic lupus erythematosus, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, type 1 diabetes, psoriasis and autoimmune liver diseases. This review explores Treg origins, classifications, and heterogeneity in these conditions, aiming to provide new perspectives and strategies for diagnosis and treatment. Understanding Treg heterogeneity and plasticity promises to reveal novel therapeutic targets and advance precision immunotherapy development.
Collapse
Affiliation(s)
- Yi Lu
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Xiao-Yong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
25
|
Wardell CM, Boardman DA, Levings MK. Harnessing the biology of regulatory T cells to treat disease. Nat Rev Drug Discov 2025; 24:93-111. [PMID: 39681737 DOI: 10.1038/s41573-024-01089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 12/18/2024]
Abstract
Regulatory T (Treg) cells are a suppressive subset of CD4+ T cells that maintain immune homeostasis and restrain inflammation. Three decades after their discovery, the promise of strategies to harness Treg cells for therapy has never been stronger. Multiple clinical trials seeking to enhance endogenous Treg cells or deliver them as a cell-based therapy have been performed and hint at signs of success, as well as to important limitations and unanswered questions. Strategies to deplete Treg cells in cancer are also in active clinical testing. Furthermore, multi-dimensional methods to interrogate the biology of Treg cells are leading to a refined understanding of Treg cell biology and new approaches to harness tissue-specific functions for therapy. A new generation of Treg cell clinical trials is now being fuelled by advances in nanomedicine and synthetic biology, seeking more precise ways to tailor Treg cell function. This Review will discuss recent advances in our understanding of human Treg cell biology, with a focus on mechanisms of action and strategies to assess outcomes of Treg cell-targeted therapies. It highlights results from recent clinical trials aiming to enhance or inhibit Treg cell activity in a variety of diseases, including allergy, transplantation, autoimmunity and cancer, and discusses ongoing strategies to refine these approaches.
Collapse
Affiliation(s)
- Christine M Wardell
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dominic A Boardman
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
26
|
Xu Y, Wang Z, Li S, Su J, Gao L, Ou J, Lin Z, Luo OJ, Xiao C, Chen G. An in-depth understanding of the role and mechanisms of T cells in immune organ aging and age-related diseases. SCIENCE CHINA. LIFE SCIENCES 2025; 68:328-353. [PMID: 39231902 DOI: 10.1007/s11427-024-2695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/28/2024] [Indexed: 09/06/2024]
Abstract
T cells play a critical and irreplaceable role in maintaining overall health. However, their functions undergo alterations as individuals age. It is of utmost importance to comprehend the specific characteristics of T-cell aging, as this knowledge is crucial for gaining deeper insights into the pathogenesis of aging-related diseases and developing effective therapeutic strategies. In this review, we have thoroughly examined the existing studies on the characteristics of immune organ aging. Furthermore, we elucidated the changes and potential mechanisms that occur in T cells during the aging process. Additionally, we have discussed the latest research advancements pertaining to T-cell aging-related diseases. These findings provide a fresh perspective for the study of T cells in the context of aging.
Collapse
Affiliation(s)
- Yudai Xu
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zijian Wang
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Shumin Li
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jun Su
- First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Lijuan Gao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Junwen Ou
- Anti Aging Medical Center, Clifford Hospital, Guangzhou, 511495, China
| | - Zhanyi Lin
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Chanchan Xiao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, 510632, China.
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, 523000, China.
- Zhuhai Institute of Jinan University, Jinan University, Zhuhai, 519070, China.
| |
Collapse
|
27
|
Yildiz R, Ganbold K, Sparman NZR, Rajbhandari P. Immune Regulatory Crosstalk in Adipose Tissue Thermogenesis. Compr Physiol 2025; 15:e70001. [PMID: 39921241 DOI: 10.1002/cph4.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
Brown adipose tissue (BAT) and thermogenic beige fat within white adipose tissue (WAT), collectively known as adaptive thermogenic fat, dissipate energy as heat, offering promising therapeutic potential to combat obesity and metabolic disorders. The specific biological functions of these fat depots are determined by their unique interaction with the microenvironments, composed of immune cells, endothelial cells, pericytes, and nerve fibers. Immune cells residing in these depots play a key role in regulating energy expenditure and systemic energy homeostasis. The dynamic microenvironment of thermogenic fat depots is essential for maintaining tissue health and function. Immune cells infiltrate both BAT and beige WAT, contributing to their homeostasis and activation through intricate cellular communications. Emerging evidence underscores the importance of various immune cell populations in regulating thermogenic adipose tissue, though many remain undercharacterized. This review provides a comprehensive overview of the immune cells that regulate adaptive thermogenesis and their complex interactions within the adipose niche, highlighting their potential to influence metabolic health and contribute to therapeutic interventions for obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Ramazan Yildiz
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Khatanzul Ganbold
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Njeri Z R Sparman
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Prashant Rajbhandari
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Disease Mechanism and Therapeutics Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
28
|
Garcia JN, Cottam MA, Rodriguez AS, Agha AFH, Winn NC, Hasty AH. Interrupting T cell memory ameliorates exaggerated metabolic response to weight cycling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633599. [PMID: 39896598 PMCID: PMC11785015 DOI: 10.1101/2025.01.17.633599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
People frequently experience cycles of weight gain and loss. This weight cycling has been demonstrated, in humans and animal models, to increase cardiometabolic disease and disrupt glucose homeostasis. Obesity itself - and to an even greater extent weight regain - causes adipose tissue inflammation, resulting in metabolic dysfunction. Studies show that even after weight loss, increased numbers of lipid associated macrophages and memory T cells persist in adipose tissue and become more inflammatory upon weight regain. These findings suggest that the immune system retains a "memory" of obesity, which may contribute to the elevated inflammation and metabolic dysfunction associated with weight cycling. Here, we show that blocking the CD70-CD27 axis, critical for formation of immunological memory, decreases the number of memory T cells and reduces T cell clonality within adipose tissue after weight loss and weight cycling. Furthermore, while mice with impaired ability to create obesogenic immune memory have similar metabolic responses as wildtype mice to stable obesity, they are protected from the worsened glucose tolerance associated with weight cycling. Our data are the first to target metabolic consequences of weight cycling through an immunomodulatory mechanism. Thus, we propose a new avenue of therapeutic intervention by which targeting memory T cells can be leveraged to minimize the adverse consequences of weight cycling. These findings are particularly timely given the increasing use of efficacious weight loss drugs, which will likely lead to more instances of human weight cycling.
Collapse
Affiliation(s)
- Jamie N. Garcia
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Matthew A. Cottam
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alec S. Rodriguez
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Anwar F. Hussein Agha
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Nathan C. Winn
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- Division of Gastroenterology, Hepatology, & Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alyssa H. Hasty
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- University of Texas Southwestern, Dallas, Texas, USA
| |
Collapse
|
29
|
Wang J, Ding N, Chen C, Gu S, Liu J, Wang Y, Lin L, Zheng Y, Li Y. Adropin: a key player in immune cell homeostasis and regulation of inflammation in several diseases. Front Immunol 2025; 16:1482308. [PMID: 39906123 PMCID: PMC11790448 DOI: 10.3389/fimmu.2025.1482308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/02/2025] [Indexed: 02/06/2025] Open
Abstract
Adropin is a secreted peptide encoded by the energy homeostasis-associated gene (ENHO), located chromosome 9p13.3, with a conserved amino acid sequence across humans and mice. Its expression is regulated by various factors, including fat, LXRα, ERα, ROR, and STAT3. Adropin plays a critical role in glucose and lipid metabolism, as well as insulin resistance, by modulating multiple signaling pathways that contribute to the reduction of obesity and the improvement of blood lipid and glucose homeostasis. Additionally, it influences immune cells and inflammation, exerting anti-inflammatory effects across various diseases. While extensive research has summarized the regulation of cellular energy metabolism by adropin, limited studies have explored its role in immune regulation and inflammation. To enhance the understanding of adropin's immune-modulating and anti-inflammatory mechanisms, this review synthesizes recent findings on its effects in conditions such as atherosclerosis, diabetes, fatty liver, non-alcoholic hepatitis, and inflammation. Furthermore, the review discusses the current research limitations and outlines potential future directions for adropin-related investigations. It is hoped that ongoing research into adropin will contribute significantly to the advancement of medical treatments for various diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yiyuan Zheng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong Li
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
30
|
Elkins C, Ye C, Sivasami P, Mulpur R, Diaz-Saldana PP, Peng A, Xu M, Chiang YP, Moll S, Rivera-Rodriguez DE, Cervantes-Barragan L, Wu T, Au-Yeung BB, Scharer CD, Ford ML, Kissick H, Li C. Obesity reshapes regulatory T cells in the visceral adipose tissue by disrupting cellular cholesterol homeostasis. Sci Immunol 2025; 10:eadl4909. [PMID: 39792637 PMCID: PMC11786953 DOI: 10.1126/sciimmunol.adl4909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 09/08/2024] [Accepted: 11/22/2024] [Indexed: 01/12/2025]
Abstract
Regulatory T cells (Tregs) accumulate in the visceral adipose tissue (VAT) to maintain systemic metabolic homeostasis but decline during obesity. Here, we explored the metabolic pathways controlling the homeostasis, composition, and function of VAT Tregs under normal and high-fat diet feeding conditions. We found that cholesterol metabolism was specifically up-regulated in ST2hi VAT Treg subsets. Treg-specific deletion of Srebf2, the master regulator of cholesterol homeostasis, selectively reduced ST2hi VAT Tregs, increasing VAT inflammation and insulin resistance. Single-cell RNA/T cell receptor (TCR) sequencing revealed a specific loss and reduced clonal expansion of ST2hi VAT Treg subsets after Srebf2 deletion. Srebf2-mediated cholesterol homeostasis potentiated strong TCR signaling, which preferentially promoted ST2hi VAT Treg accumulation. However, long-term high-fat diet feeding disrupted VAT Treg cholesterol homeostasis and impaired clonal expansion of the ST2hi subset. Restoring Treg cholesterol homeostasis rescued VAT Treg accumulation in obese mice, suggesting that modulation of cholesterol homeostasis could be a promising strategy for Treg-targeted therapies in obesity-associated metabolic diseases.
Collapse
Affiliation(s)
- Cody Elkins
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Chengyu Ye
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Pulavendran Sivasami
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Roy Mulpur
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Pamela P. Diaz-Saldana
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Amy Peng
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Miaoer Xu
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yeun-po Chiang
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Samara Moll
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Dormarie E. Rivera-Rodriguez
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Luisa Cervantes-Barragan
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Tuoqi Wu
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Byron B. Au-Yeung
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher D. Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mandy L. Ford
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Haydn Kissick
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Chaoran Li
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
31
|
Wang T, Zhou D, Hong Z. Sarcopenia and cachexia: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2025; 6:e70030. [PMID: 39764565 PMCID: PMC11702502 DOI: 10.1002/mco2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 03/17/2025] Open
Abstract
Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ. Recognizing the interplay and distinctions between these disorders is essential for advancing both basic and translational research in this area, enhancing diagnostic accuracy and ultimately achieving effective therapeutic solutions for affected patients. This review discusses the muscle microenvironment's changes contributing to these conditions, recent therapeutic approaches like lifestyle modifications, small molecules, and nutritional interventions, and emerging strategies such as gene editing, stem cell therapy, and gut microbiome modulation. We also address the challenges and opportunities of multimodal interventions, aiming to provide insights into the pathogenesis and molecular mechanisms of sarcopenia and cachexia, ultimately aiding in innovative strategy development and improved treatments.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Zhen Hong
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| |
Collapse
|
32
|
Wang C, Peng M, Gao Z, Fu F, Li G, Su D, Huang L, Guo J, Shan Y. Citrus aurantium 'Changshan-huyou' physiological premature fruit drop: A promising prebiotic to tackle obesity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156347. [PMID: 39765038 DOI: 10.1016/j.phymed.2024.156347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/22/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Presently, the mitigation and governance of obesity have surfaced as significant public health dilemmas on a global scale. A wealth of studies indicated that the host gut microbiota is instrumental in regulating the interplay between high-fat diet (HFD) intake and the pathogenesis of obesity. Physiological premature fruit drop, a major byproduct of citrus, is rich in a variety of bioactive constituents, yet its potential has remained underutilized for an extended period. PURPOSE The objective of this investigation is to examine the chemical constituents of Citrus aurantium'Changshan-huyou' premature fruit drop (HYFD) and investigate its anti-obesity effects, elucidating its potential pathways. METHODS Volatile compounds and flavonoids in HYFD were analyzed using chromatographic and mass spectrometric techniques. Furthermore, this study utilized biochemical assays and histopathological examinations to evaluate the effects of HYFD on HFD-fed mice. The impact of HYFD on the gut microbiota of the mice was examined through 16S rRNA gene sequencing, and fecal microbiota transplantation was employed to validate the role of the gut microbial community in host obesity prevention. Concurrently, transcriptome was employed to identify differentially expressed genes, providing further insights into the molecular mechanisms through which HYFD manifests its anti-obesity effects. RESULTS Our findings demonstrated that HYFD supplementation significantly alleviated adiposity and ameliorated the dysbiosis of gut microbiota in HFD-induced mice. HYFD rectified the HFD-induced gut microbiota dysregulation, enhanced the presence of beneficial microbial taxa linked to lipid metabolism, including Parabacteroides and Alistipes, and elevated concentrations of the anti-obesity short-chain fatty acids, comprising caproic acid and isocaproic acid. Additionally, transcriptomic analyses confirmed that HYFD prevented obesity in mice by enhancing fatty acid catabolism via the activation of the AMPK/PPARα/CPT1a signaling pathway. CONCLUSION Our results provided novel insights into the mechanism of citrus physiological premature fruit drop and its potential role in preventing obesity, while sparking greater interest in leveraging more biomass waste.
Collapse
Affiliation(s)
- Chao Wang
- Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha, Hunan Province 410125, China
| | - Mingfang Peng
- Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha, Hunan Province 410125, China
| | - Zhipeng Gao
- Fisheries College, Hunan Agricultural University, Changsha, Hunan Province 410128, China
| | - Fuhua Fu
- Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha, Hunan Province 410125, China
| | - Gaoyang Li
- Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha, Hunan Province 410125, China
| | - Donglin Su
- Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha, Hunan Province 410125, China
| | - Lvhong Huang
- Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha, Hunan Province 410125, China
| | - Jiajing Guo
- Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha, Hunan Province 410125, China.
| | - Yang Shan
- Hunan Agriculture Product Processing Institute; Dongting Laboratory; Hunan Academy of Agricultural Sciences, Changsha, Hunan Province 410125, China.
| |
Collapse
|
33
|
Thorp EB, Filipp M. Contributions of Inflammation to Cardiometabolic Heart Failure with Preserved Ejection Fraction. ANNUAL REVIEW OF PATHOLOGY 2025; 20:143-167. [PMID: 39357068 DOI: 10.1146/annurev-pathmechdis-111523-023405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The most common form of heart failure is heart failure with preserved ejection fraction (HFpEF). While heterogeneous in origin, the most common form of HFpEF is the cardiometabolic manifestation. Obesity and aging promote systemic inflammation that appears integral to cardiometabolic HFpEF pathophysiology. Accumulation of immune cells within the heart, fueled by an altered metabolome, contribute to cardiac inflammation and fibrosis. In spite of this, broad anti-inflammatory therapy has not shown significant benefit in patient outcomes. Thus, understanding of the nuances to metabolic and age-related inflammation during HFpEF is paramount for more targeted interventions. Here, we review clinical evidence of inflammation in the context of HFpEF and summarize our mechanistic understanding of immunometabolic inflammation, highlighting pathways of therapeutic potential along the way.
Collapse
Affiliation(s)
- Edward B Thorp
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; ,
| | - Mallory Filipp
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; ,
| |
Collapse
|
34
|
Jiang Z, Tabuchi C, Gayer SG, Bapat SP. Immune Dysregulation in Obesity. ANNUAL REVIEW OF PATHOLOGY 2025; 20:483-509. [PMID: 39854190 DOI: 10.1146/annurev-pathmechdis-051222-015350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
The immune system plays fundamental roles in maintaining physiological homeostasis. With the increasing prevalence of obesity-a state characterized by chronic inflammation and systemic dyshomeostasis-there is growing scientific and clinical interest in understanding how obesity reshapes immune function. In this review, we propose that obesity is not merely an altered metabolic state but also a fundamentally altered immunological state. We summarize key seminal and recent findings that elucidate how obesity influences immune function, spanning its classical role in microbial defense, its contribution to maladaptive inflammatory diseases such as asthma, and its impact on antitumor immunity. We also explore how obesity modulates immune function within tissue parenchyma, with a particular focus on the role of T cells in adipose tissue. Finally, we consider areas for future research, including investigation of the durable aspects of obesity on immunological function even after weight loss, such as those observed with glucagon-like peptide-1 (GLP-1) receptor agonist treatment. Altogether, this review emphasizes the critical role of systemic metabolism in shaping immune cell functions, with profound implications for tissue homeostasis across various physiological contexts.
Collapse
Affiliation(s)
- Zewen Jiang
- Diabetes Center and Department of Laboratory Medicine, University of California, San Francisco, California, USA;
| | - Chihiro Tabuchi
- Diabetes Center and Department of Laboratory Medicine, University of California, San Francisco, California, USA;
| | - Sarah G Gayer
- Diabetes Center and Department of Laboratory Medicine, University of California, San Francisco, California, USA;
| | - Sagar P Bapat
- Diabetes Center and Department of Laboratory Medicine, University of California, San Francisco, California, USA;
| |
Collapse
|
35
|
Chen Q, Xiang D, Liang Y, Meng H, Zhang X, Lu J. Interleukin-33: Expression, regulation and function in adipose tissues. Int Immunopharmacol 2024; 143:113285. [PMID: 39362016 DOI: 10.1016/j.intimp.2024.113285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Interleukin-33 (IL-33) is a pleiotropic cytokine of the IL-1 family that plays a key role in innate and adaptive immune responses and contributes to tissue homeostasis. Its role in adipose tissue function has been extensively studied, as adipose tissue serves as an important mediator of metabolic dysfunction. In adipose tissue, IL-33 is primarily produced by stromal cells. Its production is regulated by factors, such as androgens, aging, sympathetic innervation, and various inflammatory stimuli that affect the proliferation and differentiation of IL-33-producing stromal cells. Many studies have elucidated the mechanisms by which IL-33 interacts with the immune system components, local nerve fibers, and adipocytes to influence energy balance, with important consequences in obesity, cold-induced thermogenesis, and aging-related metabolic dysfunction. Here, we detail our current understanding of the molecular events that regulate the production of IL-33 within adipose tissue and discuss its role in regulating adipose function.
Collapse
Affiliation(s)
- Qianjiang Chen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Daochun Xiang
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Liang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Haiyang Meng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xiaofen Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Jingli Lu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
36
|
Shime H, Odanaka M, Imai M, Sugiyama D, Takayama S, Morita A, Yamazaki S. UVB Irradiation Expands Skin-Resident CD81 +Foxp3 + Regulatory T Cells with a Highly Activated Phenotype. J Invest Dermatol 2024:S0022-202X(24)03025-2. [PMID: 39725158 DOI: 10.1016/j.jid.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024]
Abstract
Exposure to UVB induces the expansion of regulatory T cells (Tregs) expressing proenkephalin and amphiregulin with a healing function in the skin. It is unclear how this UVB exposure affects the functionally distinct subsets of skin Tregs. In this study, we have demonstrated that skin-resident CD81+Tregs expressing both proenkephalin gene Penk and amphiregulin gene Areg expanded after UVB irradiation. CD81+Tregs in UVB-irradiated skin as well as in normal skin exhibited a highly activated state. Foxp3, BLIMP-1, and IRF4, which transcriptionally enhance Treg function-related molecules, were also highly expressed in UVB-expanded CD81+Tregs. Notably, UVB-expanded skin CD81+Tregs constitutively expressed on their cell surface CTLA-4, a critical molecule for Treg-mediated immune suppression. CD81+Tregs exhibited suppressive activity against CD4+T-cell proliferation. Stimulation of CD81 enhanced the proliferation of Foxp3+Tregs under CD3 and CD28 stimulation in vitro, indicating that CD81 acts as a costimulatory molecule. Blocking CD81 partially resulted in reduced Treg expansion in the skin of UVB-irradiated mice. These results suggest that CD81 is a representative marker of highly activated Tregs in normal and UVB-irradiated skin and may represent a functional molecule that controls Treg expansion in the skin in response to UVB irradiation.
Collapse
Affiliation(s)
- Hiroaki Shime
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Mizuyu Odanaka
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masaki Imai
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; Department of Medical Technology and Sciences, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Daisuke Sugiyama
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shoryu Takayama
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akimichi Morita
- Department of Geriatric and Environmental Dermatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Sayuri Yamazaki
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| |
Collapse
|
37
|
Bailin SS, Gabriel CL, Gangula RD, Hannah L, Nair S, Carr JJ, Terry JG, Silver HJ, Simmons JD, Mashayekhi M, Kalams SA, Mallal S, Kropski JA, Wanjalla CN, Koethe JR. Single-Cell Analysis of Subcutaneous Fat Reveals Profibrotic Cells That Correlate With Visceral Adiposity in HIV. J Clin Endocrinol Metab 2024; 110:238-253. [PMID: 38820087 PMCID: PMC11651702 DOI: 10.1210/clinem/dgae369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/26/2024] [Accepted: 05/30/2024] [Indexed: 06/02/2024]
Abstract
CONTEXT Cardiometabolic diseases are common in persons with HIV (PWH) on antiretroviral therapy (ART), which has been attributed to preferential lipid storage in visceral adipose tissue (VAT) compared with subcutaneous adipose tissue (SAT). However, the relationship of SAT-specific cellular and molecular programs with VAT volume is poorly understood in PWH. OBJECTIVE We characterized SAT cell-type specific composition and transcriptional programs that are associated with greater VAT volume in PWH on contemporary ART. METHODS We enrolled PWH on long-term ART with a spectrum of metabolic health. Ninety-two participants underwent SAT biopsy for bulk RNA sequencing and 43 had single-cell RNA sequencing. Computed tomography quantified VAT volume and insulin resistance was calculated using the Homeostasis Model Assessment 2 Insulin Resistance (HOMA2-IR). RESULTS VAT volume was associated with HOMA2-IR (P < .001). Higher proportions of SAT intermediate macrophages (IMs), myofibroblasts, and MYOC+ fibroblasts were associated with greater VAT volume using partial Spearman's correlation adjusting for age, sex, and body mass index (r = 0.34-0.49, P < .05 for all). Whole SAT transcriptomics showed PWH with greater VAT volume have increased expression of extracellular matrix (ECM)- and inflammation-associated genes, and reduced expression of lipolysis- and fatty acid metabolism-associated genes. CONCLUSION In PWH, greater VAT volume is associated with a higher proportion of SAT IMs and fibroblasts, and a SAT ECM and inflammatory transcriptome, which is similar to findings in HIV-negative persons with obesity. These data identify SAT cell-type specific changes associated with VAT volume in PWH that could underlie the high rates of cardiometabolic diseases in PWH, though additional longitudinal studies are needed to define directionality and mechanisms.
Collapse
Affiliation(s)
- Samuel S Bailin
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Curtis L Gabriel
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Nashville, Vanderbilt University Medical Center, TN 37232, USA
| | - Rama D Gangula
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - LaToya Hannah
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sangeeta Nair
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John Jeffrey Carr
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James G Terry
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Heidi J Silver
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Nashville, Vanderbilt University Medical Center, TN 37232, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
| | - Joshua D Simmons
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mona Mashayekhi
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Spyros A Kalams
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Simon Mallal
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Tennessee Center for AIDS Research, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Insitute for Immunology and Infectious Diseases, Murdoch University, Perth, WA 6150, Australia
- Vanderbilt Technologies for Advanced Genomics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jonathan A Kropski
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
- Department of Medicine, Division of Allergy and Pulmonology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Celestine N Wanjalla
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John R Koethe
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
- Center for Translational Immunology and Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
38
|
Ziadlou R, Pandian GN, Hafner J, Akdis CA, Stingl G, Maverakis E, Brüggen M. Subcutaneous adipose tissue: Implications in dermatological diseases and beyond. Allergy 2024; 79:3310-3325. [PMID: 39206504 PMCID: PMC11657049 DOI: 10.1111/all.16295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Subcutaneous adipose tissue (SAT) is the deepest component of the three-layered cutaneous integument. While mesenteric adipose tissue-based immune processes have gained recognition in the context of the metabolic syndrome, SAT has been traditionally considered primarily for energy storage, with less attention to its immune functions. SAT harbors a reservoir of immune and stromal cells that significantly impact metabolic and immunologic processes not only in the skin, but even on a systemic level. These processes include wound healing, cutaneous and systemic infections, immunometabolic, and autoimmune diseases, inflammatory skin diseases, as well as neoplastic conditions. A better understanding of SAT immune functions in different processes, could open avenues for novel therapeutic interventions. Targeting SAT may not only address SAT-specific diseases but also offer potential treatments for cutaneous or even systemic conditions. This review aims to provide a comprehensive overview on SAT's structure and functions, highlight recent advancements in understanding its role in both homeostatic and pathological conditions within and beyond the skin, and discuss the main questions for future research in the field.
Collapse
Affiliation(s)
- Reihane Ziadlou
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
- Christine Kühne Center for Allergy Research and Education CK‐CAREDavosSwitzerland
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichZurichSwitzerland
| | - Ganesh N. Pandian
- Institute for Integrated Cell‐Material Science (WPI‐iCeMS)Kyoto UniversityKyotoJapan
| | - Jürg Hafner
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
| | - Cezmi A. Akdis
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Christine Kühne Center for Allergy Research and Education CK‐CAREDavosSwitzerland
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichZurichSwitzerland
| | - Georg Stingl
- Department of DermatologyMedical University of ViennaViennaAustria
| | | | - Marie‐Charlotte Brüggen
- Faculty of MedicineUniversity of ZurichZurichSwitzerland
- Department of DermatologyUniversity Hospital ZurichZurichSwitzerland
- Christine Kühne Center for Allergy Research and Education CK‐CAREDavosSwitzerland
| |
Collapse
|
39
|
Zhang J, Chen Y, Li L, Liu R, Li P. MNAM enhances Blautia abundance and modulates Th17/Treg balance to alleviate diabetes in T2DM mice. Biochem Pharmacol 2024; 230:116593. [PMID: 39454734 DOI: 10.1016/j.bcp.2024.116593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
This study investigated the therapeutic effects of N1-Methylnicotinamide (MNAM), a metabolic derivative, on T2DM mice induced by a high-fat diet and streptozotocin (STZ), focusing on its impact on the gut microbiome and immune modulation. MNAM significantly reduced hyperglycemia and enhanced insulin secretion, effects that were dependent on the presence of gut microbiota. It also mitigated STZ-induced weight loss and improved islet cell morphology, reducing islet cell mortality and increasing insulin (INS) levels. Flow cytometry analysis showed a decrease in T helper 17 cells (Th17) and an increase in Treg cells after MNAM treatment, corresponding to the upregulation of Treg markers [interleukin (IL)-10, forkhead box P3 (FOXP3)] and downregulation of Th17 markers [IL17A, RAR-related orphan receptor gamma (RORγt)]. Additionally, MNAM raised anti-inflammatory IL-10 levels while reducing pro-inflammatory cytokines [IL-17α, tumor necrosis factor (TNF-α), IL-6]. Microbiome analysis revealed decreased diversity and increased Blautia abundance post-MNAM administration. Treatment with Blautia not only reversed diabetes indicators but also modulated the Th17/Treg balance and reduced inflammation, with its metabolite sodium acetate mimicking these effects through the G protein-coupled receptor 43 (GPR43) pathway. These findings suggest that MNAM's mitigation of diabetes operates through modulation of the gut microbiota and immune regulation, highlighting Blautia and its metabolite as potential therapeutic agents and providing a theoretical foundation for novel treatment strategies in T2DM.
Collapse
MESH Headings
- Animals
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/drug effects
- Th17 Cells/metabolism
- Th17 Cells/immunology
- Mice
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/metabolism
- Mice, Inbred C57BL
- Male
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/immunology
- Gastrointestinal Microbiome/drug effects
- Gastrointestinal Microbiome/physiology
- Niacinamide/pharmacology
- Niacinamide/analogs & derivatives
- Clostridiales/drug effects
- Clostridiales/physiology
Collapse
Affiliation(s)
- Jingfan Zhang
- Department of Endocrinology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China.
| | - Yu Chen
- Department of Endocrinology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Ling Li
- Department of Endocrinology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Ruiqi Liu
- Department of Endocrinology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China
| | - Ping Li
- Department of Endocrinology, Shengjing Hospital Affiliated to China Medical University, Shenyang, China.
| |
Collapse
|
40
|
Lobato TB, Santos ESDS, Iser-Bem PN, Falcão HDS, Gimenes GM, Pauferro JRB, Rodrigues GT, Correa IS, Pereira ACG, Passos MEP, Borges JCDO, Alves ACDA, Santos CSD, Araújo MJLD, Diniz VLS, Levada-Pires AC, Pithon-Curi TC, Masi LN, Curi R, Hirabara SM, Gorjão R. Omega-3 Fatty Acids Weaken Lymphocyte Inflammatory Features and Improve Glycemic Control in Nonobese Diabetic Goto-Kakizaki Rats. Nutrients 2024; 16:4106. [PMID: 39683500 DOI: 10.3390/nu16234106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/30/2024] [Accepted: 11/03/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Goto-Kakizaki (GK) rats exhibit insulin resistance and type 2 diabetes mellitus (T2DM) without obesity. This study explored the effects of ω-3 fatty acid supplementation on T lymphocyte polarization in Wistar (WT) and GK rats. METHODS They were administered ω-3 fatty acid-rich fish oil (FO) containing eicosapentaenoic (540 mg/g) and docosahexaenoic acids (100 mg/g) by oral gavage at 2 g/kg, thrice a week for 8 weeks. The control groups (WT CT and GK CT) received the same volume of water. The following groups were investigated: GK CT, n = 14; GK ω-3, n = 15; Wistar CT, n = 15; and Wistar ω-3, n = 11. Glucose and insulin tolerance tests (GTT and ITT) were performed. Fasting plasma insulinemia and glycemia were measured. After euthanasia, the lymphocytes were extracted from the mesenteric lymph nodes. RESULTS The results showed that GK rats supplemented with FO had significantly improved glucose tolerance and insulin sensitivity (kITT). It also promoted greater polarization of lymphocytes toward T regulatory (Treg) features and a reduction in Th1 and Th17 profiles. Additionally, the GK ω-3 group exhibited lower cell proliferation, decreased pro-inflammatory cytokines, and increased IL-10 levels compared to the GK control. CONCLUSIONS In conclusion, FO supplementation benefited GK rats by improving glucose intolerance, suppressing insulin resistance, and modulating lymphocytes toward Treg polarization.
Collapse
Affiliation(s)
- Tiago Bertola Lobato
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
| | | | - Patrícia Nancy Iser-Bem
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
- National Commercial Learning Service (SENAC), São Paulo 01102-000, Brazil
| | - Henrique de Souza Falcão
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
| | - Gabriela Mandú Gimenes
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
| | | | - Glayce Tavares Rodrigues
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
| | - Ilana Souza Correa
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
| | - Ana Carolina Gomes Pereira
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
| | | | | | | | - Camila Soares Dos Santos
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
| | | | | | | | - Tânia Cristina Pithon-Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
| | - Laureane Nunes Masi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
- Department of Physiological Sciences, Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
- Educantion Center, Butantan Institute, São Paulo 05585-000, Brazil
| | - Sandro Massao Hirabara
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
| | - Renata Gorjão
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, Brazil
| |
Collapse
|
41
|
Chen Q, Yu W, Wang X, Zhao C, Wang P, Sun L, Xu L, Xu Y. Case report: A diabetic patient with cryptococcal meningoencephalitis complicated by post-infectious inflammatory response syndrome. Front Immunol 2024; 15:1444486. [PMID: 39664376 PMCID: PMC11631850 DOI: 10.3389/fimmu.2024.1444486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/24/2024] [Indexed: 12/13/2024] Open
Abstract
We report on a previously non-HIV-diagnosed, 47-year-old male diagnosed with diabetes mellitus (DM) and cryptococcal meningoencephalitis, who was referred to our institution for antifungal treatment. During the course of treatment, due to the development of refractory intracranial hypertension, Ommaya reservoirs were employed for cranial pressure reduction. The patient gradually recovered during subsequent antifungal therapy; however, symptoms worsened in the third month of treatment, leading to consideration of post-infectious inflammatory response syndrome (PIIRS) on examination. Once diagnosed, the symptoms improved significantly after approximately 130 days of treatment with additional corticosteroids.
Collapse
Affiliation(s)
- Qinghua Chen
- The Second Hospital of Shandong University, Cheeloo College of Medicine of Shandong University, Shandong University, Jinan, China
| | - Weitong Yu
- The Second Hospital of Shandong University, Cheeloo College of Medicine of Shandong University, Shandong University, Jinan, China
| | - Xuyi Wang
- The Second Hospital of Shandong University, Cheeloo College of Medicine of Shandong University, Shandong University, Jinan, China
| | - Chenxi Zhao
- The Second Hospital of Shandong University, Cheeloo College of Medicine of Shandong University, Shandong University, Jinan, China
| | - Pin Wang
- Department of Neurology Medicine, The Second Hospital of Shandong University, Cheeloo College of Medicine of Shandong University, Shandong University, Jinan, China
| | - Lin Sun
- Department of Neurology Medicine, The Second Hospital of Shandong University, Cheeloo College of Medicine of Shandong University, Shandong University, Jinan, China
| | - Linlin Xu
- Department of Neurology Medicine, The Second Hospital of Shandong University, Cheeloo College of Medicine of Shandong University, Shandong University, Jinan, China
| | - Yingying Xu
- Department of Neurology Medicine, The Second Hospital of Shandong University, Cheeloo College of Medicine of Shandong University, Shandong University, Jinan, China
| |
Collapse
|
42
|
Yamazaki S. Diverse roles of dendritic cell and regulatory T cell crosstalk in controlling health and disease. Int Immunol 2024; 37:5-14. [PMID: 38953561 DOI: 10.1093/intimm/dxae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024] Open
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells for lymphocytes, including regulatory T (Treg) cells, a subset of CD4+ T cells expressing CD25 and Foxp3, a transcription factor. Treg cells maintain immunological self-tolerance in mice and humans, and suppress autoimmunity and other various immune responses such as tumor immunity, transplant rejection, allergy, responses to microbes, and inflammation. Treg-cell proliferation is controlled by antigen-presenting DCs. On the other hand, Treg cells suppress the function of DCs by restraining DC maturation. Therefore, the interaction between DCs and Treg cells, DC-Treg crosstalk, could contribute to controlling health and disease. We recently found that unique DC-Treg crosstalk plays a role in several conditions. First, Treg cells are expanded in ultraviolet B (UVB)-exposed skin by interacting with DCs, and the UVB-expanded Treg cells have a healing function. Second, manipulating DC-Treg crosstalk can induce effective acquired immune responses against severe acute respiratory syndrome coronavirus 2 antigens without adjuvants. Third, Treg cells with a special feature interact with DCs in the tumor microenvironment of human head and neck cancer, which may contribute to the prognosis. Understanding the underlying mechanisms of DC-Treg crosstalk may provide a novel strategy to control health and disease.
Collapse
Affiliation(s)
- Sayuri Yamazaki
- Department of Immunology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| |
Collapse
|
43
|
Serrano A, Zalba S, Lasarte JJ, Troconiz IF, Riva N, Garrido MJ. Quantitative Approach to Explore Regulatory T Cell Activity in Immuno-Oncology. Pharmaceutics 2024; 16:1461. [PMID: 39598584 PMCID: PMC11597491 DOI: 10.3390/pharmaceutics16111461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
The failure of immunotherapies in cancer patients is being widely studied due to the complexities present in the tumor microenvironment (TME), where regulatory T cells (Treg) appear to actively participate in providing an immune escape mechanism for tumors. Therefore, therapies to specifically inhibit tumor-infiltrating Treg represent a challenge, because Treg are distributed throughout the body and provide physiological immune homeostasis to prevent autoimmune diseases. Characterization of immunological and functional profiles could help to identify the mechanisms that need to be inhibited or activated to ensure Treg modulation in the tumor. To address this, quantitative in silico approaches based on mechanistic mathematical models integrating multi-scale information from immune and tumor cells and the effect of different therapies have allowed the building of computational frameworks to simulate different hypotheses, some of which have subsequently been experimentally validated. Therefore, this review presents a list of diverse computational mathematical models that examine the role of Treg as a crucial immune resistance mechanism contributing to the failure of immunotherapy. In addition, this review highlights the relevance of certain molecules expressed in Treg that are associated with the TME immunosuppression, which could be incorporated into the mathematical model for a better understanding of the contribution of Treg modulation. Finally, different preclinical and clinical combinations of molecules are also included to show the trend of new therapies targeting Treg.
Collapse
Affiliation(s)
- Alejandro Serrano
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.S.); (S.Z.); (I.F.T.)
- Navarra Institute for Health Research (IdisNA), 31008 Pamplona, Spain
| | - Sara Zalba
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.S.); (S.Z.); (I.F.T.)
- Navarra Institute for Health Research (IdisNA), 31008 Pamplona, Spain
| | - Juan Jose Lasarte
- Navarra Institute for Health Research (IdisNA), 31008 Pamplona, Spain
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain;
| | - Iñaki F. Troconiz
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.S.); (S.Z.); (I.F.T.)
- Navarra Institute for Health Research (IdisNA), 31008 Pamplona, Spain
- Institute of Data Sciences and Artificial Intelligence (DATAI), University of Navarra, 31008 Pamplona, Spain
| | - Natalia Riva
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.S.); (S.Z.); (I.F.T.)
- Navarra Institute for Health Research (IdisNA), 31008 Pamplona, Spain
| | - Maria J. Garrido
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.S.); (S.Z.); (I.F.T.)
- Navarra Institute for Health Research (IdisNA), 31008 Pamplona, Spain
| |
Collapse
|
44
|
Miracle CE, McCallister CL, Egleton RD, Salisbury TB. Mechanisms by which obesity regulates inflammation and anti-tumor immunity in cancer. Biochem Biophys Res Commun 2024; 733:150437. [PMID: 39074412 PMCID: PMC11455618 DOI: 10.1016/j.bbrc.2024.150437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Obesity is associated with an increased risk for 13 different cancers. The increased risk for cancer in obesity is mediated by obesity-associated changes in the immune system. Obesity has distinct effects on different types of inflammation that are tied to tumorigenesis. For example, obesity promotes chronic inflammation in adipose tissue that is tumor-promoting in peripheral tissues. Conversely, obesity inhibits acute inflammation that rejects tumors. Obesity therefore promotes cancer by differentially regulating chronic versus acute inflammation. Given that obesity is chronic, the initial inflammation in adipose tissue will lead to systemic inflammation that could induce compensatory anti-inflammatory reactions in peripheral tissues to suppress chronic inflammation. The overall effect of obesity in peripheral tissues is therefore dependent on the duration and severity of obesity. Adipose tissue is a complex tissue that is composed of many cell types in addition to adipocytes. Further, adipose tissue cellularity is different at different anatomical sites throughout the body. Consequently, the sensitivity of adipose tissue to obesity is dependent on the anatomical location of the adipose depot. For example, obesity induces more inflammation in visceral than subcutaneous adipose tissue. Based on these studies, the mechanisms by which obesity promotes tumorigenesis are multifactorial and immune cell type-specific. The objective of our paper is to discuss the cellular mechanisms by which obesity promotes tumorigenesis by regulating distinct types of inflammation in adipose tissue and the tumor microenvironment.
Collapse
Affiliation(s)
- Cora E Miracle
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Chelsea L McCallister
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Richard D Egleton
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Travis B Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| |
Collapse
|
45
|
Jiang T, Zou A, Song W, Zheng J, Lai L, Wang Q, Cui B. Interleukin-27 signaling resists obesity by promoting the accumulation of Treg cells in visceral adipose tissue. Biochem Biophys Res Commun 2024; 733:150690. [PMID: 39276693 DOI: 10.1016/j.bbrc.2024.150690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
The prevalence of obesity and its associated metabolic disorders has emerged as one of the most significant health threats worldwide. The visceral adipose tissue regulatory T cells (VAT Treg) play an essential role in maintaining homeostasis and preventing obesity mainly by secreting Interleikin-10 (IL-10) and Transforming Growth Factor β (TGF-β). However, the mechanism that regulates VAT Treg quantity and function remains unclear. Here we elucidate the pivotal role of IL-27 signaling in sustaining the accumulation of VAT Treg cells, thereby conferring protection against obesity. We found that mice with the deficiency of IL-27 receptor Wsx1 gained more body weight and VAT weight than their wild-type littermates when fed both a normal-fat diet (NFD) and a high-fat diet (HFD). Notably, the population of VAT Treg cells was reduced in Wsx1 knockout (KO) mice, regardless of whether they were fed a normal-fat diet (NFD) or a high-fat diet (HFD). Correspondingly, the expression levels of the transcription factors FOXP3 and PPAR-γ, essential for VAT Treg function, were also diminished in Wsx1 KO mice. Taken together, our findings indicate that IL-27 signaling plays a protective role in obesity by supporting the maintenance and accumulation of VAT Treg cells.
Collapse
Affiliation(s)
- Tianqi Jiang
- Laboratory Medicine Center, Zhejiang Center for Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, PR China
| | - Aixuan Zou
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Wenjun Song
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Jialing Zheng
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Lihua Lai
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China.
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China.
| | - Bijun Cui
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, PR China; Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China.
| |
Collapse
|
46
|
De Luca S, Gunatilaka A, Coward-Smith M, Gomez HM, Kim RY, Stenekes A, Chan SMH, Wang W, Tan D, Vlahos R, Stewart AG, Donovan C. Understanding Comorbidities of Respiratory Models as Novel Platforms for Drug Discovery. ACS Pharmacol Transl Sci 2024; 7:3385-3393. [PMID: 39539266 PMCID: PMC11555503 DOI: 10.1021/acsptsci.4c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Chronic respiratory diseases affect over 450 million people worldwide and result in 4 million deaths per year. The majority of lung diseases are treated with drugs delivered directly to the lungs. However, there is bidirectional crosstalk between the lung and other organs/tissues in health and disease. This crosstalk supports targeting of extrapulmonary sites in addition to the lung to improve the comorbidities associated with lung disease. However, new preclinical in vivo and in vitro assays that model the human pathophysiology are required. In this review, we showcase the latest knowledge of the bidirectional relationship between the respiratory system and organs affected by comorbidities such as obesity and atherosclerosis. We also discuss the impact of new cell culture systems, including complex 3D culture models that may be used as platforms to generate disease insights and for drug discovery. This review highlights work presented by Respiratory and Inflammation Special Interest Group researchers as part of the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists (ASCEPT) annual scientific meeting in 2023.
Collapse
Affiliation(s)
- Simone
N. De Luca
- Respiratory
Research Group, Centre for Respiratory Science and Health, School
of Health and Biomedical Sciences, RMIT
University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Avanka Gunatilaka
- Department
of Biochemistry and Pharmacology, The University
of Melbourne, Parkville, Victoria 3010, Australia
- ARC
Centre for Personalised Therapeutics Technologies, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Madison Coward-Smith
- Respiratory
Research Group, Centre for Respiratory Science and Health, School
of Health and Biomedical Sciences, RMIT
University, Bundoora, Melbourne, Victoria 3083, Australia
- School
of Life Sciences, University of Technology
Sydney, Sydney, New South Wales 2007, Australia
| | - Henry M. Gomez
- School
of Biomedical Sciences and Pharmacy, University of Newcastle and Immune
Health Program, Hunter Medical Research
Institute, Newcastle, New South Wales 2308, Australia
| | - Richard Y. Kim
- School
of Life Sciences, University of Technology
Sydney, Sydney, New South Wales 2007, Australia
- School
of Biomedical Sciences and Pharmacy, University of Newcastle and Immune
Health Program, Hunter Medical Research
Institute, Newcastle, New South Wales 2308, Australia
- Woolcock
Institute of Medical Research, Macquarie Park, New South Wales 2113, Australia
| | - Aimee Stenekes
- School
of Life Sciences, University of Technology
Sydney, Sydney, New South Wales 2007, Australia
| | - Stanley M. H. Chan
- Respiratory
Research Group, Centre for Respiratory Science and Health, School
of Health and Biomedical Sciences, RMIT
University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Wei Wang
- Respiratory
Research Group, Centre for Respiratory Science and Health, School
of Health and Biomedical Sciences, RMIT
University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Daniel Tan
- Department
of Biochemistry and Pharmacology, The University
of Melbourne, Parkville, Victoria 3010, Australia
- ARC
Centre for Personalised Therapeutics Technologies, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ross Vlahos
- Respiratory
Research Group, Centre for Respiratory Science and Health, School
of Health and Biomedical Sciences, RMIT
University, Bundoora, Melbourne, Victoria 3083, Australia
| | - Alastair G. Stewart
- Department
of Biochemistry and Pharmacology, The University
of Melbourne, Parkville, Victoria 3010, Australia
- ARC
Centre for Personalised Therapeutics Technologies, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Chantal Donovan
- School
of Life Sciences, University of Technology
Sydney, Sydney, New South Wales 2007, Australia
- School
of Biomedical Sciences and Pharmacy, University of Newcastle and Immune
Health Program, Hunter Medical Research
Institute, Newcastle, New South Wales 2308, Australia
- Woolcock
Institute of Medical Research, Macquarie Park, New South Wales 2113, Australia
| |
Collapse
|
47
|
Mauney EE, Wibowo MC, Tseng YH, Kostic AD. Adipose tissue-gut microbiome crosstalk in inflammation and thermogenesis. Trends Endocrinol Metab 2024:S1043-2760(24)00272-8. [PMID: 39516113 DOI: 10.1016/j.tem.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Previously characterized as inert fat depots, adipocytes are now recognized as dynamic mediators of inflammatory tone, metabolic health, and nutrient homeostasis. As endocrine organs, specialized depots of adipose tissue engage in crosstalk between the gut, liver, pancreas, and brain to coordinate appetite, thermogenesis, and ultimately body weight. These functions are tightly linked to the inflammatory status of adipose tissue, which is in turn influenced by the health of the gut microbiome. Here, we review recent findings linking specific gut microbes and their secreted factors, including recently identified elements such as bacterial extracellular vesicles, to the functional status of adipocytes. We conclude that further study may generate novel approaches for treating obesity and metabolic disease.
Collapse
Affiliation(s)
- Erin E Mauney
- Joslin Diabetes Center, Boston, MA 02215, USA; Massachusetts General Hospital for Children, Pediatric Gastroenterology and Nutrition Program, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
48
|
Hua L, Yang Y, Zhang H, Jiang X, Jin C, Feng B, Che L, Xu S, Lin Y, Wu D, Zhuo Y. Adipocyte FGF21 Signaling Defect Aggravated Adipose Tissue Inflammation in Gestational Diabetes Mellitus. Nutrients 2024; 16:3826. [PMID: 39599611 PMCID: PMC11597770 DOI: 10.3390/nu16223826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is associated with increased inflammation in adipose tissues. Fibroblast growth factor 21 (FGF21) is an endocrine hormone which signals to multiple tissues to regulate metabolism. However, its role in GDM remains largely unknown. In this study, we found that impaired FGF21 signaling in GDM correlates with worsened inflammation and insulin resistance in white adipose tissues in mice. Mechanistically, the pregnancy-related upregulation of FGF21 signaling in adipocytes promotes the differentiation of regulatory T cells (Tregs), which are critical for reducing pregnancy-induced adipose tissue inflammation. The anti-inflammatory effects of FGF21 may involve linolenic acid-mediated PGE2 synthesis in adipocytes. These findings underscore FGF21's role in mediating crosstalk between mature adipocytes and immune cells in white adipose tissue and suggest that targeting FGF21 signaling and its downstream metabolites could offer a potential therapeutic approach for GDM in humans.
Collapse
Affiliation(s)
- Lun Hua
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (X.J.); (Y.L.)
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Yang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (X.J.); (Y.L.)
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoqi Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (X.J.); (Y.L.)
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (X.J.); (Y.L.)
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (X.J.); (Y.L.)
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (X.J.); (Y.L.)
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianqiang Che
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (X.J.); (Y.L.)
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (X.J.); (Y.L.)
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Lin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (X.J.); (Y.L.)
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (X.J.); (Y.L.)
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (X.J.); (Y.L.)
- Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
49
|
Chen D, Wang A, Lv J, Peng Y, Zheng Y, Zuo J, Kan J, Zong S, Zeng X, Liu J. Tea (Camellia sinensis L.) flower polysaccharide attenuates metabolic syndrome in high-fat diet induced mice in association with modulation of gut microbiota. Int J Biol Macromol 2024; 279:135340. [PMID: 39255891 DOI: 10.1016/j.ijbiomac.2024.135340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
There is a growing body of evidence suggesting that dietary polysaccharides play a crucial role in preventing metabolic syndrome (MetS) through their interaction with gut microbes. Tea (Camellia sinensis L.) flower polysacchride (TFPS) is a novel functional compound known for its diverse beneficial effects in both vivo and vitro. To further investigate the effects of TFPS on MetS and gut microbiota, and the possible association between gut microbiota and their activities, this study was carried out on mice that were fed a high-fat diet (HFD) and given oral TFPS at a dose of 400 and 800 mg/kg·body weight (BW)/d, respectively. TFPS treatment significantly mitigated HFD-induced MetS, evidenced by reductions in body weight, fat accumulation, plasma levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and pro-inflammatory cytokines tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and IL-1β, along with an increase in plasma IL-10 levels. Furthermore, TFPS induced alterations in the diversity and composition of HFD-induced gut microbiota. Specifically, TFPS influenced the relative abundance of 11 genera, including Lactobacillus and Lactococcus, which showed strong correlations with metabolic improvements and likely contributed to the amelioration of MetS. In conclusion, TFPS exhibits promising prebiotic properties in preventing MetS and regulating gut microbiota.
Collapse
Affiliation(s)
- Dan Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Ao Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jialiang Lv
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yiling Peng
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yunqing Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jiayu Zuo
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Shuai Zong
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| |
Collapse
|
50
|
Ghemiș L, Goriuc A, Minea B, Botnariu GE, Mârțu MA, Ențuc M, Cioloca D, Foia LG. Myeloid-Derived Suppressor Cells (MDSCs) and Obesity-Induced Inflammation in Type 2 Diabetes. Diagnostics (Basel) 2024; 14:2453. [PMID: 39518420 PMCID: PMC11544947 DOI: 10.3390/diagnostics14212453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Type 2 diabetes mellitus is a complex metabolic disorder characterized by insulin resistance and, subsequently, decreased insulin secretion. This condition is closely linked to obesity, a major risk factor that boosts the development of chronic systemic inflammation, which, in turn, is recognized for its crucial role in the onset of insulin resistance. Under conditions of obesity, adipose tissue, particularly visceral fat, becomes an active endocrine organ that releases a wide range of pro-inflammatory mediators, including cytokines, chemokines, and adipokines. These mediators, along with cluster of differentiation (CD) markers, contribute to the maintenance of systemic low-grade inflammation, promote cellular signaling and facilitate the infiltration of inflammatory cells into tissues. Emerging studies have indicated the accumulation of a new cell population in the adipose tissue in these conditions, known as myeloid-derived suppressor cells (MDSCs). These cells possess the ability to suppress the immune system, impacting obesity-related chronic inflammation. Given the limited literature addressing the role of MDSCs in the context of type 2 diabetes, this article aims to explore the complex interaction between inflammation, obesity, and MDSC activity. Identifying and understanding the role of these immature cells is essential not only for improving the management of type 2 diabetes but also for the potential development of targeted therapeutic strategies aimed at both glycemic control and the reduction in associated inflammation.
Collapse
Affiliation(s)
- Larisa Ghemiș
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (L.G.); (A.G.); (B.M.); (L.G.F.)
| | - Ancuța Goriuc
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (L.G.); (A.G.); (B.M.); (L.G.F.)
| | - Bogdan Minea
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (L.G.); (A.G.); (B.M.); (L.G.F.)
| | - Gina Eosefina Botnariu
- Department of Internal Medicine II, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Maria-Alexandra Mârțu
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania;
| | - Melissa Ențuc
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania;
| | - Daniel Cioloca
- Department of Oro-Dental Prevention, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania;
| | - Liliana Georgeta Foia
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (L.G.); (A.G.); (B.M.); (L.G.F.)
| |
Collapse
|