1
|
Kayama K, Ooga A, Hasetsu K, Kokubo R, Sugimoto N, Fujita M. High GRWD1 expression may predict clinically aggressive lower grade glioma, skin cutaneous melanoma, and kidney renal clear cell carcinoma carrying wild-type p53: a systematic study based on TCGA data analysis. J Biochem 2025; 177:351-361. [PMID: 39812614 DOI: 10.1093/jb/mvaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/25/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Glutamate-rich WD40 repeat-containing 1 (GRWD1) is a novel oncogene/oncoprotein that downregulates the p53 tumour suppressor protein through several mechanisms. One important mechanism involves binding of GRWD1 to RPL11, which competitively inhibits the RPL11-MDM2 interaction and releases RPL11-mediated suppression of MDM2 ubiquitin ligase activity towards p53. Here, we mined the TCGA (The Cancer Genome Atlas) database to gain in-depth insight into the clinical relevance of GRWD1. We found that high expression of GRWD1 is associated with a poor prognosis for lower grade glioma (LGG) of the brain, skin cutaneous melanoma (SKCM), and kidney renal clear cell carcinoma (KIRC) carrying wild-type p53. Further investigations revealed that copy number alterations in the GRWD1 gene are one determinant of GRWD1 expression level. By contrast, even in patients with a diploid GRWD1 gene, high GRWD1 expression was associated with a poor prognosis for LGG, SKCM, and KIRC carrying wild-type p53. Additional studies suggest that some transcriptional factors may be involved in regulation of GRWD1 in cancers with a diploid GRWD1 gene. Taken together, the data presented herein suggest that high expression of GRWD1 may contribute to malignant behaviour, and predict a clinically unfavourable prognosis for LGG, SKCM, and KIRC carrying wild-type p53.
Collapse
Affiliation(s)
- Kota Kayama
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akihiro Ooga
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kouji Hasetsu
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryoma Kokubo
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Nozomi Sugimoto
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatoshi Fujita
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
2
|
Simborio H, Hayek H, Kosmider B, Elrod JW, Bolla S, Marchetti N, Criner GJ, Bahmed K. Mitochondrial dysfunction and impaired DNA damage repair through PICT1 dysregulation in alveolar type II cells in emphysema. Cell Commun Signal 2024; 22:562. [PMID: 39578839 PMCID: PMC11583753 DOI: 10.1186/s12964-024-01896-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Alveolar type II (ATII) cells have a stem cell potential in the adult lung and repair the epithelium after injury induced by harmful factors. Their damage contributes to emphysema development, characterized by alveolar wall destruction. Cigarette smoke is the main risk factor for this disease development. METHODS ATII cells were obtained from control non-smoker and smoker organ donors and emphysema patients. Isolated cells were used to study the role of PICT1 in this disease. Also, a cigarette smoke-induced murine model of emphysema was applied to define its function in disease progression further. RESULTS Decreased PICT1 expression was observed in human and murine ATII cells in emphysema. PICT1 was immunoprecipitated, followed by mass spectrometry analysis. We identified MRE11, which is involved in DNA damage repair, as its novel interactor. PICT1 and MRE11 protein levels were decreased in ATII cells in this disease. Moreover, cells with PICT1 deletion were exposed to cigarette smoke extract. This treatment induced cellular and mitochondrial ROS, cell cycle arrest, nuclear and mitochondrial DNA damage, decreased mitochondrial respiration, and impaired DNA damage repair. CONCLUSIONS This study indicates that PICT1 dysfunction can negatively affect genome stability and mitochondrial activity in ATII cells, contributing to emphysema development. Targeting PICT1 can lead to novel therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Hannah Simborio
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
| | - Hassan Hayek
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
- Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Beata Kosmider
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA
- Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - John W Elrod
- Aging & Cardiovascular Discovery Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Sudhir Bolla
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Nathaniel Marchetti
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Karim Bahmed
- Center for Inflammation and Lung Research, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
- Department of Microbiology, Immunology, and Inflammation, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
3
|
Gill JS, Bansal B, Poojary R, Singh H, Huang F, Weis J, Herman K, Schultz B, Coban E, Guo K, Mathur R. Immunological Signatures for Early Detection of Human Head and Neck Squamous Cell Carcinoma through RNA Transcriptome Analysis of Blood Platelets. Cancers (Basel) 2024; 16:2399. [PMID: 39001461 PMCID: PMC11240534 DOI: 10.3390/cancers16132399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Although there has been a reduction in head and neck squamous cell carcinoma occurrence, it continues to be a serious global health concern. The lack of precise early diagnostic biomarkers and postponed diagnosis in the later stages are notable constraints that contribute to poor survival rates and emphasize the need for innovative diagnostic methods. In this study, we employed machine learning alongside weighted gene co-expression network analysis (WGCNA) and network biology to investigate the gene expression patterns of blood platelets, identifying transcriptomic markers for HNSCC diagnosis. Our comprehensive examination of publicly available gene expression datasets revealed nine genes with significantly elevated expression in samples from individuals diagnosed with HNSCC. These potential diagnostic markers were further assessed using TCGA and GTEx datasets, demonstrating high accuracy in distinguishing between HNSCC and non-cancerous samples. The findings indicate that these gene signatures could revolutionize early HNSCC identification. Additionally, the study highlights the significance of tumor-educated platelets (TEPs), which carry RNA signatures indicative of tumor-derived material, offering a non-invasive source for early-detection biomarkers. Despite using platelet and tumor samples from different individuals, our results suggest that TEPs reflect the transcriptomic and epigenetic landscape of tumors. Future research should aim to directly correlate tumor and platelet samples from the same patients to further elucidate this relationship. This study underscores the potential of these biomarkers in transforming early diagnosis and personalized treatment strategies for HNSCC, advocating for further research to validate their predictive and therapeutic potential.
Collapse
Affiliation(s)
- Jappreet Singh Gill
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Benu Bansal
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Rayansh Poojary
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Harpreet Singh
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Fang Huang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Jett Weis
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Kristian Herman
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Brock Schultz
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Emre Coban
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Kai Guo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ramkumar Mathur
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| |
Collapse
|
4
|
Suo Y, Du D, Chen C, Zhu H, Wang X, Song N, Lu D, Yang Y, Li J, Wang J, Luo Z, Zhou B, Luo C, Zhou H. Uncovering PROTAC Sensitivity and Efficacy by Multidimensional Proteome Profiling: A Case for STAT3. J Med Chem 2024; 67:4804-4818. [PMID: 38466231 DOI: 10.1021/acs.jmedchem.3c02371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Proteolysis-targeting chimera (PROTAC) is a powerful technology that can effectively trigger the degradation of target proteins. The intricate interplay among various factors leads to a heterogeneous drug response, bringing about significant challenges in comprehending drug mechanisms. Our study applied data-independent acquisition-based mass spectrometry to multidimensional proteome profiling of PROTAC (DIA-MPP) to uncover the efficacy and sensitivity of the PROTAC compound. We profiled the signal transducer and activator of transcription 3 (STAT3) PROTAC degrader in six leukemia and lymphoma cell lines under multiple conditions, demonstrating the pharmacodynamic properties and downstream biological responses. Through comparison between sensitive and insensitive cell lines, we revealed that STAT1 can be regarded as a biomarker for STAT3 PROTAC degrader, which was validated in cells, patient-derived organoids, and mouse models. These results set an example for a comprehensive description of the multidimensional PROTAC pharmacodynamic response and PROTAC drug sensitivity biomarker exploration.
Collapse
Affiliation(s)
- Yuying Suo
- University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Daohai Du
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Chao Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongwen Zhu
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiongjun Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Nixue Song
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Dayun Lu
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Yaxi Yang
- University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiacheng Li
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jun Wang
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Zhongyuan Luo
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Bing Zhou
- University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Luo
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hu Zhou
- University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, P. R. China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
5
|
Cicardi M, Hallgren J, Mawrie D, Krishnamurthy K, Markandaiah S, Nelson A, Kankate V, Anderson E, Pasinelli P, Pandey U, Eischen C, Trotti D. C9orf72 poly(PR) mediated neurodegeneration is associated with nucleolar stress. iScience 2023; 26:107505. [PMID: 37664610 PMCID: PMC10470315 DOI: 10.1016/j.isci.2023.107505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/10/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
The ALS/FTD-linked intronic hexanucleotide repeat expansion in the C9orf72 gene is aberrantly translated in the sense and antisense directions into dipeptide repeat proteins, among which poly proline-arginine (PR) displays the most aggressive neurotoxicity in-vitro and in-vivo. PR partitions to the nucleus when heterologously expressed in neurons and other cell types. We show that by lessening the nuclear accumulation of PR, we can drastically reduce its neurotoxicity. PR strongly accumulates in the nucleolus, a nuclear structure critical in regulating the cell stress response. We determined that, in neurons, PR caused nucleolar stress and increased levels of the transcription factor p53. Downregulating p53 levels also prevented PR-mediated neurotoxicity both in in-vitro and in-vivo models. We investigated if PR could induce the senescence phenotype in neurons. However, we did not observe any indications of such an effect. Instead, we found evidence for the induction of programmed cell death via caspase-3 activation.
Collapse
Affiliation(s)
- M.E. Cicardi
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - J.H. Hallgren
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - D. Mawrie
- Center for Neuroscience, Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - K. Krishnamurthy
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - S.S. Markandaiah
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - A.T. Nelson
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - V. Kankate
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - E.N. Anderson
- Center for Neuroscience, Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - P. Pasinelli
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - U.B. Pandey
- Center for Neuroscience, Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - C.M. Eischen
- Sidney Kimmel Cancer Center, Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - D. Trotti
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
6
|
Elkholi IE, Boulais J, Thibault MP, Phan HD, Robert A, Lai LB, Faubert D, Smith MJ, Gopalan V, Côté JF. Mapping the MOB proteins' proximity network reveals a unique interaction between human MOB3C and the RNase P complex. J Biol Chem 2023; 299:105123. [PMID: 37536630 PMCID: PMC10480535 DOI: 10.1016/j.jbc.2023.105123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/20/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023] Open
Abstract
Distinct functions mediated by members of the monopolar spindle-one-binder (MOB) family of proteins remain elusive beyond the evolutionarily conserved and well-established roles of MOB1 (MOB1A/B) in regulating tissue homeostasis within the Hippo pathway. Since MOB proteins are adaptors, understanding how they engage in protein-protein interactions and help assemble complexes is essential to define the full scope of their biological functions. To address this, we undertook a proximity-dependent biotin identification approach to define the interactomes of all seven human MOB proteins in HeLa and human embryonic kidney 293 cell lines. We uncovered >200 interactions, of which at least 70% are unreported on BioGrid. The generated dataset reliably recalled the bona fide interactors of the well-studied MOBs. We further defined the common and differential interactome between different MOBs on a subfamily and an individual level. We discovered a unique association between MOB3C and 7 of 10 protein subunits of the RNase P complex, an endonuclease that catalyzes tRNA 5' maturation. As a proof of principle for the robustness of the generated dataset, we validated the specific interaction of MOB3C with catalytically active RNase P by using affinity purification-mass spectrometry and pre-tRNA cleavage assays of MOB3C pulldowns. In summary, our data provide novel insights into the biology of MOB proteins and reveal the first interactors of MOB3C, components of the RNase P complex, and hence an exciting nexus with RNA biology.
Collapse
Affiliation(s)
- Islam E Elkholi
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec, Canada; Molecular Biology Programs, Université de Montréal, Montreal, Quebec, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada.
| | - Jonathan Boulais
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec, Canada
| | | | - Hong-Duc Phan
- Department of Chemistry & Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Amélie Robert
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec, Canada
| | - Lien B Lai
- Department of Chemistry & Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Denis Faubert
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec, Canada
| | - Matthew J Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Quebec, Canada
| | - Venkat Gopalan
- Department of Chemistry & Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Jean-Franҫois Côté
- Montreal Clinical Research Institute (IRCM), Montreal, Quebec, Canada; Molecular Biology Programs, Université de Montréal, Montreal, Quebec, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
7
|
Aubry A, Pearson JD, Charish J, Yu T, Sivak JM, Xirodimas DP, Avet-Loiseau H, Corre J, Monnier PP, Bremner R. Deneddylation of ribosomal proteins promotes synergy between MLN4924 and chemotherapy to elicit complete therapeutic responses. Cell Rep 2023; 42:112925. [PMID: 37552601 DOI: 10.1016/j.celrep.2023.112925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/29/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
The neddylation inhibitor MLN4924/Pevonedistat is in clinical trials for multiple cancers. Efficacy is generally attributed to cullin RING ligase (CRL) inhibition, but the contribution of non-CRL targets is unknown. Here, CRISPR screens map MLN4924-monotherapy sensitivity in retinoblastoma to a classic DNA damage-induced p53/E2F3/BAX-dependent death effector network, which synergizes with Nutlin3a or Navitoclax. In monotherapy-resistant cells, MLN4924 plus standard-of-care topotecan overcomes resistance, but reduces DNA damage, instead harnessing ribosomal protein nucleolar-expulsion to engage an RPL11/p21/MYCN/E2F3/p53/BAX synergy network that exhibits extensive cross-regulation. Strikingly, unneddylatable RPL11 substitutes for MLN4924 to perturb nucleolar function and enhance topotecan efficacy. Orthotopic tumors exhibit complete responses while preserving visual function. Moreover, MLN4924 plus melphalan deploy this DNA damage-independent strategy to synergistically kill multiple myeloma cells. Thus, MLN4924 synergizes with standard-of-care drugs to unlock a nucleolar death effector network across cancer types implying broad therapeutic relevance.
Collapse
Affiliation(s)
- Arthur Aubry
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada; Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Centre Hospitalo-universitaire (CHU) de Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole (IUCT-O), Université de Toulouse, UPS, Unité de Génomique du Myélome, Toulouse, France
| | - Joel D Pearson
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Jason Charish
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada; Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Tao Yu
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Jeremy M Sivak
- Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada; Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | | | - Hervé Avet-Loiseau
- Centre Hospitalo-universitaire (CHU) de Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole (IUCT-O), Université de Toulouse, UPS, Unité de Génomique du Myélome, Toulouse, France; Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM, Toulouse, France
| | - Jill Corre
- Centre Hospitalo-universitaire (CHU) de Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole (IUCT-O), Université de Toulouse, UPS, Unité de Génomique du Myélome, Toulouse, France; Centre de Recherches en Cancérologie de Toulouse (CRCT), INSERM, Toulouse, France
| | - Philippe P Monnier
- Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada; Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada; Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Quddusi DM, Bajcinca N. Identification of genomic biomarkers and their pathway crosstalks for deciphering mechanistic links in glioblastoma. IET Syst Biol 2023; 17:143-161. [PMID: 37277696 PMCID: PMC10439498 DOI: 10.1049/syb2.12066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 04/22/2023] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
Glioblastoma is a grade IV pernicious neoplasm occurring in the supratentorial region of brain. As its causes are largely unknown, it is essential to understand its dynamics at the molecular level. This necessitates the identification of better diagnostic and prognostic molecular candidates. Blood-based liquid biopsies are emerging as a novel tool for cancer biomarker discovery, guiding the treatment and improving its early detection based on their tumour origin. There exist previous studies focusing on the identification of tumour-based biomarkers for glioblastoma. However, these biomarkers inadequately represent the underlying pathological state and incompletely illustrate the tumour because of non-recursive nature of this approach to monitor the disease. Also, contrary to the tumour biopsies, liquid biopsies are non-invasive and can be performed at any interval during the disease span to surveil the disease. Therefore, in this study, a unique dataset of blood-based liquid biopsies obtained primarily from tumour-educated blood platelets (TEP) is utilised. This RNA-seq data from ArrayExpress is acquired comprising human cohort with 39 glioblastoma subjects and 43 healthy subjects. Canonical and machine learning approaches are applied for identification of the genomic biomarkers for glioblastoma and their crosstalks. In our study, 97 genes appeared enriched in 7 oncogenic pathways (RAF-MAPK, P53, PRC2-EZH2, YAP conserved, MEK-MAPK, ErbB2 and STK33 signalling pathways) using GSEA, out of which 17 have been identified participating actively in crosstalks. Using PCA, 42 genes are found enriched in 7 pathways (cytoplasmic ribosomal proteins, translation factors, electron transport chain, ribosome, Huntington's disease, primary immunodeficiency pathways, and interferon type I signalling pathway) harbouring tumour when altered, out of which 25 actively participate in crosstalks. All the 14 pathways foster well-known cancer hallmarks and the identified DEGs can serve as genomic biomarkers, not only for the diagnosis and prognosis of Glioblastoma but also in providing a molecular foothold for oncogenic decision making in order to fathom the disease dynamics. Moreover, SNP analysis for the identified DEGs is performed to investigate their roles in disease dynamics in an elaborated manner. These results suggest that TEPs are capable of providing disease insights just like tumour cells with an advantage of being extracted anytime during the course of disease in order to monitor it.
Collapse
Affiliation(s)
- Darrak Moin Quddusi
- Chair of Mechatronics in the Faculty of Mechanical and Process EngineeringRheinland‐Pfälzische Technische Universität Kaiserslautern‐LandauKaiserslauternGermany
| | - Naim Bajcinca
- Chair of Mechatronics in the Faculty of Mechanical and Process EngineeringRheinland‐Pfälzische Technische Universität Kaiserslautern‐LandauKaiserslauternGermany
| |
Collapse
|
9
|
Xi Y, Zhang Y, Zheng K, Zou J, Gui L, Zou X, Chen L, Hao J, Zhang Y. A chemotherapy response prediction model derived from tumor-promoting B and Tregs and proinflammatory macrophages in HGSOC. Front Oncol 2023; 13:1171582. [PMID: 37519793 PMCID: PMC10382026 DOI: 10.3389/fonc.2023.1171582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Background Most patients with high-grade serous ovarian cancer (HGSOC) experienced disease recurrence with cumulative chemoresistance, leading to treatment failure. However, few biomarkers are currently available in clinical practice that can accurately predict chemotherapy response. The tumor immune microenvironment is critical for cancer development, and its transcriptomic profile may be associated with treatment response and differential outcomes. The aim of this study was to develop a new predictive signature for chemotherapy in patients with HGSOC. Methods Two HGSOC single-cell RNA sequencing datasets from patients receiving chemotherapy were reinvestigated. The subtypes of endoplasmic reticulum stress-related XBP1+ B cells, invasive metastasis-related ACTB+ Tregs, and proinflammatory-related macrophage subtypes with good predictive power and associated with chemotherapy response were identified. These results were verified in an independent HGSOC bulk RNA-seq dataset for chemotherapy. Further validation in clinical cohorts used quantitative real-time PCR (qRT-PCR). Results By combining cluster-specific genes for the aforementioned cell subtypes, we constructed a chemotherapy response prediction model containing 43 signature genes that achieved an area under the receiver operator curve (AUC) of 0.97 (p = 2.1e-07) for the GSE156699 cohort (88 samples). A huge improvement was achieved compared to existing prediction models with a maximum AUC of 0.74. In addition, its predictive capability was validated in multiple independent bulk RNA-seq datasets. The qRT-PCR results demonstrate that the expression of the six genes has the highest diagnostic value, consistent with the trend observed in the analysis of public data. Conclusions The developed chemotherapy response prediction model can be used as a valuable clinical decision tool to guide chemotherapy in HGSOC patients.
Collapse
Affiliation(s)
- Yue Xi
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yingchun Zhang
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Kun Zheng
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiawei Zou
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lv Gui
- Department of Pathology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xin Zou
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Liang Chen
- Department of Gynecological Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, China
| | - Jie Hao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiming Zhang
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
10
|
Stillger MN, Chen CY, Lai ZW, Li M, Schäfer A, Pagenstecher A, Nimsky C, Bartsch JW, Schilling O. Changes in calpain-2 expression during glioblastoma progression predisposes tumor cells to temozolomide resistance by minimizing DNA damage and p53-dependent apoptosis. Cancer Cell Int 2023; 23:49. [PMID: 36932402 PMCID: PMC10022304 DOI: 10.1186/s12935-023-02889-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/04/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is characterized by an unfavorable prognosis for patients affected. During standard-of-care chemotherapy using temozolomide (TMZ), tumors acquire resistance thereby causing tumor recurrence. Thus, deciphering essential molecular pathways causing TMZ resistance are of high therapeutic relevance. METHODS Mass spectrometry based proteomics were used to study the GBM proteome. Immunohistochemistry staining of human GBM tissue for either calpain-1 or -2 was performed to locate expression of proteases. In vitro cell based assays were used to measure cell viability and survival of primary patient-derived GBM cells and established GBM cell lines after TMZ ± calpain inhibitor administration. shRNA expression knockdowns of either calpain-1 or calpain-2 were generated to study TMZ sensitivity of the specific subunits. The Comet assay and ɣH2AX signal measurements were performed in order to assess the DNA damage amount and recognition. Finally, quantitative real-time PCR of target proteins was applied to differentiate between transcriptional and post-translational regulation. RESULTS Calcium-dependent calpain proteases, in particular calpain-2, are more abundant in glioblastoma compared to normal brain and increased in patient-matched initial and recurrent glioblastomas. On the cellular level, pharmacological calpain inhibition increased the sensitivities of primary glioblastoma cells towards TMZ. A genetic knockdown of calpain-2 in U251 cells led to increased caspase-3 cleavage and sensitivity to neocarzinostatin, which rapidly induces DNA strand breakage. We hypothesize that calpain-2 causes desensitization of tumor cells against TMZ by preventing strong DNA damage and subsequent apoptosis via post-translational TP53 inhibition. Indeed, proteomic comparison of U251 control vs. U251 calpain-2 knockdown cells highlights perturbed levels of numerous proteins involved in DNA damage response and downstream pathways affecting TP53 and NF-κB signaling. TP53 showed increased protein abundance, but no transcriptional regulation. CONCLUSION TMZ-induced cell death in the presence of calpain-2 expression appears to favor DNA repair and promote cell survival. We conclude from our experiments that calpain-2 expression represents a proteomic mode that is associated with higher resistance via "priming" GBM cells to TMZ chemotherapy. Thus, calpain-2 could serve as a prognostic factor for GBM outcome.
Collapse
Affiliation(s)
- Maren Nicole Stillger
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Chia-Yi Chen
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany
| | - Zon Weng Lai
- Internal Medicine Research Unit, Pfizer Inc, Cambridge, MA, USA
| | - Mujia Li
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,Department of Pharmaceutical Biology and Biotechnology, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Agnes Schäfer
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany
| | - Axel Pagenstecher
- Institute of Neuropathology, Philipps-University, Marburg, Germany.,Center for Mind, Brain and Behavior, CMBB, Marburg University, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior, CMBB, Marburg University, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany
| | - Jörg Walter Bartsch
- Department of Neurosurgery, Philipps-University Marburg, Marburg, Germany. .,Center for Mind, Brain and Behavior, CMBB, Marburg University, Hans-Meerwein-Strasse 6, 35032, Marburg, Germany. .,Philipps-University Marburg, Laboratory, Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033, Marburg, Germany.
| | - Oliver Schilling
- Institute for Surgical Pathology, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
11
|
Cicardi ME, Hallgren JH, Mawrie D, Krishnamurthy K, Markandaiah SS, Nelson AT, Kankate V, Anderson EN, Pasinelli P, Pandey UB, Eischen CM, Trotti D. C9orf72 poly(PR) mediated neurodegeneration is associated with nucleolar stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528809. [PMID: 36824930 PMCID: PMC9949130 DOI: 10.1101/2023.02.16.528809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The ALS/FTD-linked intronic hexanucleotide repeat expansion in the C9orf72 gene is translated into dipeptide repeat proteins, among which poly-proline-arginine (PR) displays the most aggressive neurotoxicity in-vitro and in-vivo . PR partitions to the nucleus when expressed in neurons and other cell types. Using drosophila and primary rat cortical neurons as model systems, we show that by lessening the nuclear accumulation of PR, we can drastically reduce its neurotoxicity. PR accumulates in the nucleolus, a site of ribosome biogenesis that regulates the cell stress response. We examined the effect of nucleolar PR accumulation and its impact on nucleolar function and determined that PR caused nucleolar stress and increased levels of the transcription factor p53. Downregulating p53 levels, either genetically or by increasing its degradation, also prevented PR-mediated neurotoxic phenotypes both in in-vitro and in-vivo models. We also investigated whether PR could cause the senescence phenotype in neurons but observed none. Instead, we found induction of apoptosis via caspase-3 activation. In summary, we uncovered the central role of nucleolar dysfunction upon PR expression in the context of C9-ALS/FTD.
Collapse
Affiliation(s)
- M E Cicardi
- Jefferson Weinberg ALS Center
- Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - J H Hallgren
- Jefferson Weinberg ALS Center
- Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - D Mawrie
- Center for Neuroscience, Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - K Krishnamurthy
- Jefferson Weinberg ALS Center
- Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - S S Markandaiah
- Jefferson Weinberg ALS Center
- Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - A T Nelson
- Jefferson Weinberg ALS Center
- Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - V Kankate
- Jefferson Weinberg ALS Center
- Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - E N Anderson
- Center for Neuroscience, Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - P Pasinelli
- Jefferson Weinberg ALS Center
- Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - U B Pandey
- Center for Neuroscience, Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - C M Eischen
- Sidney Kimmel Cancer Center, Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - D Trotti
- Jefferson Weinberg ALS Center
- Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
12
|
Yi Y, Zeng Y, Sam TW, Hamashima K, Tan RJR, Warrier T, Phua JX, Taneja R, Liou YC, Li H, Xu J, Loh YH. Ribosomal proteins regulate 2-cell-stage transcriptome in mouse embryonic stem cells. Stem Cell Reports 2023; 18:463-474. [PMID: 36638791 PMCID: PMC9968990 DOI: 10.1016/j.stemcr.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/14/2023] Open
Abstract
A rare sub-population of mouse embryonic stem cells (mESCs), the 2-cell-like cell, is defined by the expression of MERVL and 2-cell-stage-specific transcript (2C transcript). Here, we report that the ribosomal proteins (RPs) RPL14, RPL18, and RPL23 maintain the identity of mESCs and regulate the expression of 2C transcripts. Disregulation of the RPs induces DUX-dependent expression of 2C transcripts and alters the chromatin landscape. Mechanically, knockdown (KD) of RPs triggers the binding of RPL11 to MDM2, an interaction known to prevent P53 protein degradation. Increased P53 protein upon RP KD further activates its downstream pathways, including DUX. Our study delineates the critical roles of RPs in 2C transcript activation, ascribing a novel function to these essential proteins.
Collapse
Affiliation(s)
- Yao Yi
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Yingying Zeng
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Tsz Wing Sam
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Kiyofumi Hamashima
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Rachel Jun Rou Tan
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Tushar Warrier
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Jun Xiang Phua
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Yih-Cherng Liou
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Hu Li
- Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jian Xu
- Department of Plant Systems Physiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore 117543, Singapore; Joint Center for Single Cell Biology, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Yuin-Han Loh
- Cell Fate Engineering and Therapeutics Laboratory, Division of Cell Biology and Therapies, Institute of Molecular and Cell Biology, A(∗)STAR, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; NUS Graduate School for Integrative Sciences and Engineering Programme, National University of Singapore, Singapore 119077, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| |
Collapse
|
13
|
Maehama T, Nishio M, Otani J, Mak TW, Suzuki A. Nucleolar stress: Molecular mechanisms and related human diseases. Cancer Sci 2023; 114:2078-2086. [PMID: 36762786 PMCID: PMC10154868 DOI: 10.1111/cas.15755] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Ribosome biogenesis in the nucleolus is an important process that consumes 80% of a cell's intracellular energy supply. Disruption of this process results in nucleolar stress, triggering the activation of molecular systems that respond to this stress to maintain homeostasis. Although nucleolar stress was originally thought to be caused solely by abnormalities of ribosomal RNA (rRNA) and ribosomal proteins (RPs), an accumulating body of more current evidence suggests that many other factors, including the DNA damage response and oncogenic stress, are also involved in nucleolar stress response signaling. Cells reacting to nucleolar stress undergo cell cycle arrest or programmed death, mainly driven by activation of the tumor suppressor p53. This observation has nominated nucleolar stress as a promising target for cancer therapy. However, paradoxically, some RP mutations have also been implicated in cancer initiation and progression, necessitating caution. In this article, we summarize recent findings on the molecular mechanisms of nucleolar stress and the human ribosomal diseases and cancers that arise in its wake.
Collapse
Affiliation(s)
- Tomohiko Maehama
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Miki Nishio
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Junji Otani
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tak Wah Mak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Pathology, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Akira Suzuki
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
14
|
Ishihara Y, Nakamura K, Nakagawa S, Okamoto Y, Yamamoto M, Furukawa T, Kawahara K. Nucleolar Stress Response via Ribosomal Protein L11 Regulates Topoisomerase Inhibitor Sensitivity of P53-Intact Cancers. Int J Mol Sci 2022; 23:ijms232415986. [PMID: 36555627 PMCID: PMC9784028 DOI: 10.3390/ijms232415986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Nucleolar stress response is caused by perturbations in ribosome biogenesis, induced by the inhibition of ribosomal RNA processing and synthesis, as well as ribosome assembly. This response induces p53 stabilization and activation via ribosomal protein L11 (RPL11), suppressing tumor progression. However, anticancer agents that kill cells via this mechanism, and their relationship with the therapeutic efficiency of these agents, remain largely unknown. Here, we sought to investigate whether topoisomerase inhibitors can induce nucleolar stress response as they reportedly block ribosomal RNA transcription. Using rhabdomyosarcoma and rhabdoid tumor cell lines that are sensitive to the nucleolar stress response, we evaluated whether nucleolar stress response is associated with sensitivity to topoisomerase inhibitors ellipticine, doxorubicin, etoposide, topotecan, and anthracyclines. Cell proliferation assay indicated that small interfering RNA-mediated RPL11 depletion resulted in decreased sensitivity to topoisomerase inhibitors. Furthermore, the expression of p53 and its downstream target proteins via western blotting showed the suppression of p53 pathway activation upon RPL11 knockdown. These results suggest that the sensitivity of cancer cells to topoisomerase inhibitors is regulated by RPL11-mediated nucleolar stress responses. Thus, RPL11 expression may contribute to the prediction of the therapeutic efficacy of topoisomerase inhibitors and increase their therapeutic effect of topoisomerase inhibitors.
Collapse
Affiliation(s)
- Yuka Ishihara
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Kiyoshiro Nakamura
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Shunsuke Nakagawa
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Yasuhiro Okamoto
- Department of Pediatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Masatatsu Yamamoto
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Tatsuhiko Furukawa
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Kohichi Kawahara
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
- Correspondence: ; Tel.: +81-99-275-5490
| |
Collapse
|
15
|
Hannan KM, Soo P, Wong MS, Lee JK, Hein N, Poh P, Wysoke KD, Williams TD, Montellese C, Smith LK, Al-Obaidi SJ, Núñez-Villacís L, Pavy M, He JS, Parsons KM, Loring KE, Morrison T, Diesch J, Burgio G, Ferreira R, Feng ZP, Gould CM, Madhamshettiwar PB, Flygare J, Gonda TJ, Simpson KJ, Kutay U, Pearson RB, Engel C, Watkins NJ, Hannan RD, George AJ. Nuclear stabilization of p53 requires a functional nucleolar surveillance pathway. Cell Rep 2022; 41:111571. [DOI: 10.1016/j.celrep.2022.111571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/06/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
|
16
|
MTR4 adaptor PICT1 functions in two distinct steps during pre-rRNA processing. Biochem Biophys Res Commun 2022; 637:203-209. [DOI: 10.1016/j.bbrc.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
|
17
|
NOP53 undergoes liquid-liquid phase separation and promotes tumor radio-resistance. Cell Death Dis 2022; 8:436. [PMCID: PMC9622906 DOI: 10.1038/s41420-022-01226-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/08/2022]
Abstract
Aberrant DNA damage response (DDR) axis remains the major molecular mechanism for tumor radio-resistance. We recently characterized liquid-liquid phase separation (LLPS) as an essential mechanism of DDR, and identified several key DDR factors as potential LLPS proteins, including nucleolar protein NOP53. In this study, we found that NOP53 formed highly concentrated droplets in vivo and in vitro, which had liquid-like properties including the fusion of adjacent condensates, rapid fluorescence recovery after photobleaching and the sensitivity to 1,6-hexanediol. Moreover, the intrinsically disordered region 1 (IDR1) is required for NOP53 phase separation. In addition, multivalent-arginine-rich linear motifs (M-R motifs), which are enriched in NOP53, were essential for its nucleolar localization, but were dispensable for the LLPS of NOP53. Functionally, NOP53 silencing diminished tumor cell growth, and significantly sensitized colorectal cancer (CRC) cells to radiotherapy. Mechanically, NOP53 negatively regulated p53 pathway in CRC cells treated with or without radiation. Importantly, data from clinical samples confirmed a correlation between NOP53 expression and tumor radio-resistance. Together, these results indicate an important role of NOP53 in radio-resistance, and provide a potential target for tumor radio-sensitization.
Collapse
|
18
|
Bareli Y, Shimon I, Tobar A, Rubinfeld H. PICT-1 regulates p53 splicing and sensitivity of medullary thyroid carcinoma cells to everolimus. J Neuroendocrinol 2022; 34:e13187. [PMID: 36306198 DOI: 10.1111/jne.13187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/12/2022] [Accepted: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Protein interacting with carboxyl terminus 1 (PICT-1) is a nucleolar protein shown to act as a tumor suppressor that interacts with PTEN, or in a contrasting manner to facilitate the accessibility of p53 to ubiquitination and degradation, thus to function as an oncogene. The aim of the study was to examine the potential role of PICT-1 in neuroendocrine neoplasm (NEN) tumorigenesis and response to mTOR inhibitor treatment. PICT-1 was overexpressed in medullary thyroid (TT) and pancreatic (BON1) NEN cell lines using lentiviral vector. Whereas in BON1 cells PICT-1 overexpression exhibited no significant impact, in TT cells it induced the appearance of p53β lacking the C-terminus end. This was accompanied by a robust decrease in p21 expression and elevation of cell viability. Remarkably, PICT-1 overexpression completely reversed the reduction in cell viability of medullary thyroid neoplasm cells induced by everolimus, a therapeutic option for patients with progressive NENs. mTOR pathway investigations revealed that PICT-1 overexpression induced a reduction in PTEN expression and a robust increase in the expression level of phospho-Akt-Ser47 only partially inhibited by everolimus. These findings suggest a possible role of PICT-1 in the spliceosome machinery and provide functional involvement of PICT-1 in the complex network of mTOR.
Collapse
Affiliation(s)
- Yifat Bareli
- Institute of Endocrinology and Felsenstein Medical Research Center, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Ilan Shimon
- Institute of Endocrinology and Felsenstein Medical Research Center, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Ana Tobar
- Institute of Endocrinology and Felsenstein Medical Research Center, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
| | - Hadara Rubinfeld
- Institute of Endocrinology and Felsenstein Medical Research Center, Rabin Medical Center, Sackler School of Medicine, Tel Aviv University, Petach Tikva, Israel
| |
Collapse
|
19
|
Yamada S, Kitai Y, Tadokoro T, Takahashi R, Shoji H, Maemoto T, Ishiura M, Muromoto R, Kashiwakura JI, Ishii KJ, Maenaka K, Kawai T, Matsuda T. Identification of RPL15 60S Ribosomal Protein as a Novel Topotecan Target Protein That Correlates with DAMP Secretion and Antitumor Immune Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:171-179. [PMID: 35725272 DOI: 10.4049/jimmunol.2100963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/16/2022] [Indexed: 01/02/2023]
Abstract
Damage-associated molecular patterns (DAMPs) contribute to antitumor immunity during cancer chemotherapy. We previously demonstrated that topotecan (TPT), a topoisomerase I inhibitor, induces DAMP secretion from cancer cells, which activates STING-mediated antitumor immune responses. However, how TPT induces DAMP secretion in cancer cells is yet to be elucidated. Here, we identified RPL15, a 60S ribosomal protein, as a novel TPT target and showed that TPT inhibited preribosomal subunit formation via its binding to RPL15, resulting in the induction of DAMP-mediated antitumor immune activation independent of TOP1. TPT inhibits RPL15-RPL4 interactions and decreases RPL4 stability, which is recovered by CDK12 activity. RPL15 knockdown induced DAMP secretion and increased the CTL population but decreased the regulatory T cell population in a B16-F10 murine melanoma model, which sensitized B16-F10 tumors against PD-1 blockade. Our study identified a novel TPT target protein and showed that ribosomal stress is a trigger of DAMP secretion, which contributes to antitumor immunotherapy.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Yuichi Kitai
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan;
| | - Takashi Tadokoro
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Runa Takahashi
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Haruka Shoji
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Taiga Maemoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Marie Ishiura
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Ryuta Muromoto
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Jun-Ichi Kashiwakura
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.,Laboratory of Mockup Vaccine, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Saito, Ibaraki, Osaka, Japan.,Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Katsumi Maenaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan.,Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Kita-Ku, Sapporo, Japan; and
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Tadashi Matsuda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, Japan;
| |
Collapse
|
20
|
Rao Z, Shen J, Wang J, Zhang Z, Zhou J, Zhu J, Chen J, Chen W, Wang H. The role of PICT1 in RPL11/Mdm2/p53 pathway-regulated inhibition of cell growth induced by topoisomerase IIα inhibitor against cervical cancer cell line. Biochem Pharmacol 2022; 201:115098. [DOI: 10.1016/j.bcp.2022.115098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/02/2022]
|
21
|
Samejima I, Spanos C, Samejima K, Rappsilber J, Kustatscher G, Earnshaw WC. Mapping the invisible chromatin transactions of prophase chromosome remodeling. Mol Cell 2022; 82:696-708.e4. [PMID: 35090599 PMCID: PMC8823707 DOI: 10.1016/j.molcel.2021.12.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/03/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023]
Abstract
We have used a combination of chemical genetics, chromatin proteomics, and imaging to map the earliest chromatin transactions during vertebrate cell entry into mitosis. Chicken DT40 CDK1as cells undergo synchronous mitotic entry within 15 min following release from a 1NM-PP1-induced arrest in late G2. In addition to changes in chromatin association with nuclear pores and the nuclear envelope, earliest prophase is dominated by changes in the association of ribonucleoproteins with chromatin, particularly in the nucleolus, where pre-rRNA processing factors leave chromatin significantly before RNA polymerase I. Nuclear envelope barrier function is lost early in prophase, and cytoplasmic proteins begin to accumulate on the chromatin. As a result, outer kinetochore assembly appears complete by nuclear envelope breakdown (NEBD). Most interphase chromatin proteins remain associated with chromatin until NEBD, after which their levels drop sharply. An interactive proteomic map of chromatin transactions during mitotic entry is available as a resource at https://mitoChEP.bio.ed.ac.uk.
Collapse
Affiliation(s)
- Itaru Samejima
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Kumiko Samejima
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK; Technische Universität Berlin, Chair of Bioanalytics, 10623 Berlin, Germany
| | - Georg Kustatscher
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland, UK.
| |
Collapse
|
22
|
Kachaev ZM, Ivashchenko SD, Kozlov EN, Lebedeva LA, Shidlovskii YV. Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus. Cells 2021; 10:3239. [PMID: 34831461 PMCID: PMC8623629 DOI: 10.3390/cells10113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Components of the translation apparatus, including ribosomal proteins, have been found in cell nuclei in various organisms. Components of the translation apparatus are involved in various nuclear processes, particularly those associated with genome integrity control and the nuclear stages of gene expression, such as transcription, mRNA processing, and mRNA export. Components of the translation apparatus control intranuclear trafficking; the nuclear import and export of RNA and proteins; and regulate the activity, stability, and functional recruitment of nuclear proteins. The nuclear translocation of these components is often involved in the cell response to stimulation and stress, in addition to playing critical roles in oncogenesis and viral infection. Many components of the translation apparatus are moonlighting proteins, involved in integral cell stress response and coupling of gene expression subprocesses. Thus, this phenomenon represents a significant interest for both basic and applied molecular biology. Here, we provide an overview of the current data regarding the molecular functions of translation factors and ribosomal proteins in the cell nucleus.
Collapse
Affiliation(s)
- Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey D. Ivashchenko
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Eugene N. Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
23
|
Kang J, Brajanovski N, Chan KT, Xuan J, Pearson RB, Sanij E. Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. Signal Transduct Target Ther 2021; 6:323. [PMID: 34462428 PMCID: PMC8405630 DOI: 10.1038/s41392-021-00728-8] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Ribosome biogenesis and protein synthesis are fundamental rate-limiting steps for cell growth and proliferation. The ribosomal proteins (RPs), comprising the structural parts of the ribosome, are essential for ribosome assembly and function. In addition to their canonical ribosomal functions, multiple RPs have extra-ribosomal functions including activation of p53-dependent or p53-independent pathways in response to stress, resulting in cell cycle arrest and apoptosis. Defects in ribosome biogenesis, translation, and the functions of individual RPs, including mutations in RPs have been linked to a diverse range of human congenital disorders termed ribosomopathies. Ribosomopathies are characterized by tissue-specific phenotypic abnormalities and higher cancer risk later in life. Recent discoveries of somatic mutations in RPs in multiple tumor types reinforce the connections between ribosomal defects and cancer. In this article, we review the most recent advances in understanding the molecular consequences of RP mutations and ribosomal defects in ribosomopathies and cancer. We particularly discuss the molecular basis of the transition from hypo- to hyper-proliferation in ribosomopathies with elevated cancer risk, a paradox termed "Dameshek's riddle." Furthermore, we review the current treatments for ribosomopathies and prospective therapies targeting ribosomal defects. We also highlight recent advances in ribosome stress-based cancer therapeutics. Importantly, insights into the mechanisms of resistance to therapies targeting ribosome biogenesis bring new perspectives into the molecular basis of cancer susceptibility in ribosomopathies and new clinical implications for cancer therapy.
Collapse
Affiliation(s)
- Jian Kang
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Natalie Brajanovski
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Keefe T. Chan
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Jiachen Xuan
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Richard B. Pearson
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC Australia
| | - Elaine Sanij
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Clinical Pathology, University of Melbourne, Melbourne, VIC Australia ,grid.1073.50000 0004 0626 201XSt. Vincent’s Institute of Medical Research, Fitzroy, VIC Australia
| |
Collapse
|
24
|
NOP53 Suppresses Autophagy through ZKSCAN3-Dependent and -Independent Pathways. Int J Mol Sci 2021; 22:ijms22179318. [PMID: 34502226 PMCID: PMC8430719 DOI: 10.3390/ijms22179318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022] Open
Abstract
Autophagy is an evolutionally conserved process that recycles aged or damaged intracellular components through a lysosome-dependent pathway. Although this multistep process is propagated in the cytoplasm by the orchestrated activity of the mTOR complex, phosphatidylinositol 3-kinase, and a set of autophagy-related proteins (ATGs), recent investigations have suggested that autophagy is tightly regulated by nuclear events. Thus, it is conceivable that the nucleolus, as a stress-sensing and -responding intranuclear organelle, plays a role in autophagy regulation, but much is unknown concerning the nucleolar controls in autophagy. In this report, we show a novel nucleolar–cytoplasmic axis that regulates the cytoplasmic autophagy process: nucleolar protein NOP53 regulates the autophagic flux through two divergent pathways, the ZKSCAN3-dependent and -independent pathways. In the ZKSCAN3-dependent pathway, NOP53 transcriptionally activates a master autophagy suppressor ZKSCAN3, thereby inhibiting MAP1LC3B/LC3B induction and autophagy propagation. In the ZKSCAN3-independent pathway, NOP53 physically interacts with histone H3 to dephosphorylate S10 of H3, which, in turn, transcriptionally downregulates the ATG7 and ATG12 expressions. Our results identify nucleolar protein NOP53 as an upstream regulator of the autophagy process.
Collapse
|
25
|
Cao P, Yang A, Li P, Xia X, Han Y, Zhou G, Wang R, Yang F, Li Y, Zhang Y, Cui Y, Ji H, Lu L, He F, Zhou G. Genomic gain of RRS1 promotes hepatocellular carcinoma through reducing the RPL11-MDM2-p53 signaling. SCIENCE ADVANCES 2021; 7:7/35/eabf4304. [PMID: 34433556 PMCID: PMC8386927 DOI: 10.1126/sciadv.abf4304] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/02/2021] [Indexed: 05/20/2023]
Abstract
Hepatocellular carcinomas (HCCs) are characterized by frequent somatic genomic copy number alterations (CNAs), with most of them biologically unexplored. Here, we performed integrative analyses combining CNAs with the transcriptomic data to reveal the cis- and trans-effects of CNAs in HCC. We identified recurrent genomic gains of chromosome 8q, which exhibit strong trans-effects and are broadly associated with ribosome biogenesis activity. Furthermore, 8q gain-driven overexpression of ribosome biogenesis regulator (RRS1) promotes growth of HCC cells in vitro and in vivo. Mechanistically, RRS1 attenuates ribosomal stress through retaining RPL11 in the nucleolus, which, in turn, potentiates MDM2-mediated ubiquitination and degradation of p53. Clinically, higher RRS1 expression levels predict poor clinical outcomes for patients with HCC, especially in those with intact p53 Our findings established that the chromosome 8q oncogene RRS1 promotes HCC development through attenuating the RPL11-MDM2-p53 pathway and provided new potential targets for treatment of this malignancy.
Collapse
Affiliation(s)
- Pengbo Cao
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Aiqing Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Peiyao Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xia Xia
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuqing Han
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Guangming Zhou
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Rui Wang
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fei Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuanfeng Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ying Cui
- Affiliated Cancer Hospital of Guangxi Medical University, Nanning City, China
| | - Hongzan Ji
- Department of Gastroenterology and Hepatology, Jinling Hospital, Clinical School of Nanjing University, Nanjing City, China
| | - Lei Lu
- Department of Surgical Oncology, Jingdu Hospital, Nanjing City, China
| | - Fuchu He
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Lifeomics, Beijing, China.
| | - Gangqiao Zhou
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China.
- Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, China
- Anhui Medical University, Hefei City, China
- Hebei University, Shijiazhuang City, China
| |
Collapse
|
26
|
Wang H, Zhao J, Yang J, Wan S, Fu Y, Wang X, Zhou T, Zhang Z, Shen J. PICT1 is critical for regulating the Rps27a-Mdm2-p53 pathway by microtubule polymerization inhibitor against cervical cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119084. [PMID: 34166715 DOI: 10.1016/j.bbamcr.2021.119084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/28/2021] [Accepted: 06/17/2021] [Indexed: 01/05/2023]
Abstract
In our previous study, it showed that P-3F, a podophyllotoxin derivative, causes the increased level of p53 expression by enhancing p53 stability, resulting from blockage of the Mdm2-p53 feedback loop via nucleolus-to-nucleoplasm translocation of Rps27a in human cervical cancer HeLa cell line. However, the mechanism of regulating Rps27a localization remains to be studied. In the current study, it has been demonstrated that the level of protein interacting with carboxyl terminus 1 (PICT1), originally identified as a tumor suppressor, was decreased in a concentration-dependent manner in response to P-3F, leading to inhibition of human cervical cancer cell lines proliferation. Also remarkably, reduction of serine phosphorylation of STMN1 at position 16 induced by P-3F was required in the downregulation of PICT1, in which p53 activity was likely to be directly involved. Note as well that, PICT1 also played an important role in p53 stability enhancement by inhibiting Mdm2-mediated p53 ubiquitination due to Rps27a translocation from the nucleolus to the nucleoplasm to interact with Mdm2 following treatment with P-3F. Collectively, these findings indicated that P-3F, a microtubule polymerization inhibitor, promotes the decreased level of PICT1 expression, which is critical for regulating the Rps27a-Mdm2-p53 pathway against cervical cancer.
Collapse
Affiliation(s)
- Huai Wang
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Junjie Zhao
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Jian Yang
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Shukun Wan
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Yihong Fu
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Xinlu Wang
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Tong Zhou
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Zhongwei Zhang
- School of Public Health, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Jiaomei Shen
- Department of Gynecology, Wuhan Fifth Hospital, 122 Xian Zheng Street, Wuhan, Hubei 430050, PR China.
| |
Collapse
|
27
|
Zhou J, Liu J, Xing H, Shen Y, Xie M, Chai J, Yang M. Implications of protein ubiquitination modulated by lncRNAs in gastrointestinal cancers. Biochem Pharmacol 2021; 188:114558. [PMID: 33844983 DOI: 10.1016/j.bcp.2021.114558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 02/05/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNA transcripts longer than 200 nucleotides and mostly cannot be translated into proteins. Next-generation transcriptome sequencing of various cell types has enabled the annotation of tens of thousands of lncRNAs in human genome. Varying levels of evidence supports the implications of lncRNAs in the onset and progression of cancers. Ubiquitin is an evolutionarily conserved protein and could post-translationally mark a number of proteins. The most important proteolytic role of ubiquitination is degradation of substrate proteins by the 26S proteasome. Compiling evidences demonstrated that lncRNAs are involved in the accurate execution of protein stability programs via the ubiquitin-proteasome system. In the current review, we systematically summarize the detailed mechanisms how lncRNAs modulate ubiquitination of target proteins, regulate cancerous signaling pathways and control tumorigenesis of gastrointestinal cancers. Although there are still considerable studies on unraveling the complicated interactions between lncRNAs and proteins, we believe that lncRNAs are promising but challenging molecules which may strongly facilitate precision cancer therapeutics in the future.
Collapse
Affiliation(s)
- Jianyuan Zhou
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong Province, China
| | - Jie Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Huaixin Xing
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Yue Shen
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mengyu Xie
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie Chai
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, China.
| |
Collapse
|
28
|
Houston R, Sekine S, Sekine Y. The coupling of translational control and stress responses. J Biochem 2021; 168:93-102. [PMID: 32484875 DOI: 10.1093/jb/mvaa061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
The translation of messenger RNA (mRNA) into protein is a multistep process by which genetic information transcribed into an mRNA is decoded to produce a specific polypeptide chain of amino acids. Ribosomes play a central role in translation by coordinately working with various translation regulatory factors and aminoacyl-transfer RNAs. Various stresses attenuate the ribosomal synthesis in the nucleolus as well as the translation rate in the cytosol. To efficiently reallocate cellular energy and resources, mammalian cells are endowed with mechanisms that directly link the suppression of translation-related processes to the activation of stress adaptation programmes. This review focuses on the integrated stress response (ISR) and the nucleolar stress response (NSR) both of which are activated by various stressors and selectively upregulate stress-responsive transcription factors. Emerging findings have delineated the detailed molecular mechanisms of the ISR and NSR and expanded their physiological and pathological significances.
Collapse
Affiliation(s)
- Ryan Houston
- Aging Institute, Department of Medicine, University of Pittsburgh, 100 Technology Drive, Pittsburgh, PA, 15219 USA
| | - Shiori Sekine
- Aging Institute, Department of Medicine, University of Pittsburgh, 100 Technology Drive, Pittsburgh, PA, 15219 USA.,Division of Cardiology, Department of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Yusuke Sekine
- Aging Institute, Department of Medicine, University of Pittsburgh, 100 Technology Drive, Pittsburgh, PA, 15219 USA.,Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| |
Collapse
|
29
|
BOP1 Knockdown Attenuates Neointimal Hyperplasia by Activating p53 and Inhibiting Nascent Protein Synthesis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5986260. [PMID: 33510838 PMCID: PMC7826231 DOI: 10.1155/2021/5986260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/18/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022]
Abstract
The rate of ribosome biogenesis plays a vital role in cell cycle progression and proliferation and is strongly connected with coronary restenosis and atherosclerosis. Blocking of proliferation 1 (BOP1) has been found as an evolutionarily conserved gene and a pivotal regulator of ribosome biogenesis and cell proliferation. However, little is known about its role in neointimal formation and its relationship with vascular smooth muscle cell (VSMC) proliferation and migration. The present study mainly explores the effect of BOP1 on VSMCs, the progression of neointimal hyperplasia, and the pathogenic mechanism. The expression of BOP1 was found to be significantly elevated during neointimal formation in human coronary samples and the rat balloon injury model. BOP1 knockdown inspires the nucleolus stress, which subsequently activates the p53-dependent stress response pathway, and inhibits the nascent protein synthesis, which subsequently inhibits the proliferation and migration of VSMCs. Knockdown ribosomal protein L11 (RPL11) by transfecting with siRNA or inhibiting p53 by pifithrin-α (PFT-α) partly reserved the biological effects induced by BOP1 knockdown. The present study revealed that BOP1 deletion attenuates VSMC proliferation and migration by activating the p53-dependent nucleolus stress response pathway and inhibits the synthesis of nascent proteins. BOP1 may become a novel biological target for neointimal hyperplasia.
Collapse
|
30
|
Uchihara Y, Tago K, Tamura H, Funakoshi‐Tago M. EBP2, a novel NPM-ALK-interacting protein in the nucleolus, contributes to the proliferation of ALCL cells by regulating tumor suppressor p53. Mol Oncol 2021; 15:167-194. [PMID: 33040459 PMCID: PMC7782078 DOI: 10.1002/1878-0261.12822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/20/2020] [Accepted: 10/07/2020] [Indexed: 12/27/2022] Open
Abstract
The oncogenic fusion protein nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), found in anaplastic large-cell lymphoma (ALCL), localizes to the cytosol, nucleoplasm, and nucleolus. However, the relationship between its localization and transforming activity remains unclear. We herein demonstrated that NPM-ALK localized to the nucleolus by binding to nucleophosmin 1 (NPM1), a nucleolar protein that exhibits shuttling activity between the nucleolus and cytoplasm, in a manner that was dependent on its kinase activity. In the nucleolus, NPM-ALK interacted with Epstein-Barr virus nuclear antigen 1-binding protein 2 (EBP2), which is involved in rRNA biosynthesis. Moreover, enforced expression of NPM-ALK induced tyrosine phosphorylation of EBP2. Knockdown of EBP2 promoted the activation of the tumor suppressor p53, leading to G0 /G1 -phase cell cycle arrest in Ba/F3 cells transformed by NPM-ALK and ALCL patient-derived Ki-JK cells, but not ALCL patient-derived SUDH-L1 cells harboring p53 gene mutation. In Ba/F3 cells transformed by NPM-ALK and Ki-JK cells, p53 activation induced by knockdown of EBP2 was significantly inhibited by Akt inhibitor GDC-0068, mTORC1 inhibitor rapamycin, and knockdown of Raptor, an essential component of mTORC1. These results suggest that the knockdown of EBP2 triggered p53 activation through the Akt-mTORC1 pathway in NPM-ALK-positive cells. Collectively, the present results revealed the critical repressive mechanism of p53 activity by EBP2 and provide a novel therapeutic strategy for the treatment of ALCL.
Collapse
Affiliation(s)
- Yuki Uchihara
- Division of Hygienic ChemistryFaculty of PharmacyKeio UniversityTokyoJapan
| | - Kenji Tago
- Division of Structural BiochemistryDepartment of BiochemistryJichi Medical UniversityShimotsuke‐shiJapan
| | - Hiroomi Tamura
- Division of Hygienic ChemistryFaculty of PharmacyKeio UniversityTokyoJapan
| | | |
Collapse
|
31
|
Micol-Ponce R, Sarmiento-Mañús R, Fontcuberta-Cervera S, Cabezas-Fuster A, de Bures A, Sáez-Vásquez J, Ponce MR. SMALL ORGAN4 Is a Ribosome Biogenesis Factor Involved in 5.8S Ribosomal RNA Maturation. PLANT PHYSIOLOGY 2020; 184:2022-2039. [PMID: 32913045 PMCID: PMC7723108 DOI: 10.1104/pp.19.01540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/27/2020] [Indexed: 05/09/2023]
Abstract
Ribosome biogenesis is crucial for cellular metabolism and has important implications for disease and aging. Human (Homo sapiens) glioma tumor-suppressor candidate region gene2 (GLTSCR2) and yeast (Saccharomyces cerevisiae) Nucleolar protein53 (Nop53) are orthologous proteins with demonstrated roles as ribosome biogenesis factors; knockdown of GLTSCR2 impairs maturation of 18S and 5.8S ribosomal RNAs (rRNAs), and Nop53 is required for maturation of 5.8S and 25S rRNAs. Here, we characterized SMALL ORGAN4 (SMO4), the most likely ortholog of human GLTSCR2 and yeast Nop53 in Arabidopsis (Arabidopsis thaliana). Loss of function of SMO4 results in a mild morphological phenotype; however, we found that smo4 mutants exhibit strong cytological and molecular phenotypes: nucleolar hypertrophy and disorganization, overaccumulation of 5.8S and 18S rRNA precursors, and an imbalanced 40S:60S ribosome subunit ratio. Like yeast Nop53 and human GLTSCR2, Arabidopsis SMO4 participates in 5.8S rRNA maturation. In yeast, Nop53 cooperates with mRNA transport4 (Mtr4) for 5.8S rRNA maturation. In Arabidopsis, we found that SMO4 plays similar roles in the 5.8S rRNA maturation pathway than those described for MTR4. However, SMO4 seems not to participate in the degradation of by-products derived from the 5'-external transcribed spacer (ETS) of 45S pre-rRNA, as MTR4 does.
Collapse
Affiliation(s)
- Rosa Micol-Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Raquel Sarmiento-Mañús
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Sara Fontcuberta-Cervera
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Adrián Cabezas-Fuster
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Anne de Bures
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, 66860 Perpignan, France
- Universite Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, 66860 Perpignan, France
| | - Julio Sáez-Vásquez
- Centre National de la Recherche Scientifique, Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, 66860 Perpignan, France
- Universite Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, Unité Mixte de Recherche 5096, 66860 Perpignan, France
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| |
Collapse
|
32
|
Houston R, Sekine S, Calderon MJ, Seifuddin F, Wang G, Kawagishi H, Malide DA, Li Y, Gucek M, Pirooznia M, Nelson AJ, Stokes MP, Stewart-Ornstein J, Mullett SJ, Wendell SG, Watkins SC, Finkel T, Sekine Y. Acetylation-mediated remodeling of the nucleolus regulates cellular acetyl-CoA responses. PLoS Biol 2020; 18:e3000981. [PMID: 33253182 PMCID: PMC7728262 DOI: 10.1371/journal.pbio.3000981] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 12/10/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
The metabolite acetyl-coenzyme A (acetyl-CoA) serves as an essential element for a wide range of cellular functions including adenosine triphosphate (ATP) production, lipid synthesis, and protein acetylation. Intracellular acetyl-CoA concentrations are associated with nutrient availability, but the mechanisms by which a cell responds to fluctuations in acetyl-CoA levels remain elusive. Here, we generate a cell system to selectively manipulate the nucleo-cytoplasmic levels of acetyl-CoA using clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene editing and acetate supplementation of the culture media. Using this system and quantitative omics analyses, we demonstrate that acetyl-CoA depletion alters the integrity of the nucleolus, impairing ribosomal RNA synthesis and evoking the ribosomal protein-dependent activation of p53. This nucleolar remodeling appears to be mediated through the class IIa histone deacetylases (HDACs). Our findings highlight acetylation-mediated control of the nucleolus as an important hub linking acetyl-CoA fluctuations to cellular stress responses.
Collapse
Affiliation(s)
- Ryan Houston
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Shiori Sekine
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael J. Calderon
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Fayaz Seifuddin
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Guanghui Wang
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Hiroyuki Kawagishi
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Daniela A. Malide
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Yuesheng Li
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Marjan Gucek
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Mehdi Pirooznia
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Alissa J. Nelson
- Cell Signaling Technology, INC., Danvers, Massachusetts, United States of America
| | - Matthew P. Stokes
- Cell Signaling Technology, INC., Danvers, Massachusetts, United States of America
| | - Jacob Stewart-Ornstein
- Department of Computational and Systems Biology, University of Pittsburgh and Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Steven J. Mullett
- Department of Pharmacology and Chemical Biology, the Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Stacy G. Wendell
- Department of Pharmacology and Chemical Biology, the Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Simon C. Watkins
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Toren Finkel
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Yusuke Sekine
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
33
|
Xie J, Zhang W, Liang X, Shuai C, Zhou Y, Pan H, Yang Y, Han W. RPL32 Promotes Lung Cancer Progression by Facilitating p53 Degradation. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:75-85. [PMID: 32516735 PMCID: PMC7281510 DOI: 10.1016/j.omtn.2020.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/25/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide, and the overall survival rate of advanced lung cancer patients is unsatisfactory. Ribosomal proteins (RPs) play important roles in carcinogenesis. However, the role of RPL32 in lung cancer has not been demonstrated. Here, we report that RPL32 is aberrantly, highly expressed in lung cancer tissues and that the overexpression of RPL32 is correlated with the poor prognosis of these patients. RPL32 silencing significantly inhibited the proliferation of lung cancer cells, with an observed p53 accumulation and cell-cycle arrest. Mechanistically, knockdown of RPL32 resulted in ribosomal stress and affected rRNA maturation. RPL5 and RPL11 sensed stress and translocated from the nucleus to the nucleoplasm, where they bound to murine double minute 2 (MDM2), an important p53 E3 ubiquitin ligase, which resulted in p53 accumulation and inhibition of cancer cell proliferation. As lung cancer cells usually express high levels of Toll-like receptor 9 (TLR9), we conjugated RPL32 small interfering RNA (siRNA) to the TLR9 ligand CpG to generate CpG-RPL32 siRNA, which could stabilize and guide RPL32 siRNA to lung cancer cells. Excitingly, CpG-RPL32 siRNA displayed strong anticancer abilities in lung cancer xenografts. Therefore, RPL32 is expected to be a potential target for lung cancer treatment.
Collapse
Affiliation(s)
- Jiansheng Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaojing Liang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chong Shuai
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yunhai Yang
- Cancer Center of Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
34
|
The HMGB1-2 Ovarian Cancer Interactome. The Role of HMGB Proteins and Their Interacting Partners MIEN1 and NOP53 in Ovary Cancer and Drug-Response. Cancers (Basel) 2020; 12:cancers12092435. [PMID: 32867128 PMCID: PMC7564582 DOI: 10.3390/cancers12092435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
High mobility group box B (HMGB) proteins are overexpressed in different types of cancers such as epithelial ovarian cancers (EOC). We have determined the first interactome of HMGB1 and HMGB2 in epithelial ovarian cancer (the EOC-HMGB interactome). Libraries from the SKOV-3 cell line and a primary transitional cell carcinoma (TCC) ovarian tumor were tested by the Yeast Two Hybrid (Y2H) approach. The interactome reveals proteins that are related to cancer hallmarks and their expression is altered in EOC. Moreover, some of these proteins have been associated to survival and prognosis of patients. The interaction of MIEN1 and NOP53 with HMGB2 has been validated by co-immunoprecipitation in SKOV-3 and PEO1 cell lines. SKOV-3 cells were treated with different anti-tumoral drugs to evaluate changes in HMGB1, HMGB2, MIEN1 and NOP53 gene expression. Results show that combined treatment of paclitaxel and carboplatin induces a stronger down-regulation of these genes in comparison to individual treatments. Individual treatment with paclitaxel or olaparib up-regulates NOP53, which is expressed at lower levels in EOC than in non-cancerous cells. On the other hand, bevacizumab diminishes the expression of HMGB2 and NOP53. This study also shows that silencing of these genes affects cell-viability after drug exposure. HMGB1 silencing causes loss of response to paclitaxel, whereas silencing of HMGB2 slightly increases sensitivity to olaparib. Silencing of either HMGB1 or HMGB2 increases sensitivity to carboplatin. Lastly, a moderate loss of response to bevacizumab is observed when NOP53 is silenced.
Collapse
|
35
|
Anoshkin KI, Karandasheva KO, Goryacheva KM, Pyankov DV, Koshkin PA, Pavlova TV, Bobin AN, Shpot EV, Chernov YN, Vinarov AZ, Zaletaev DV, Kutsev SI, Strelnikov VV. Multiple Chromoanasynthesis in a Rare Case of Sporadic Renal Leiomyosarcoma: A Case Report. Front Oncol 2020; 10:1653. [PMID: 32974204 PMCID: PMC7466669 DOI: 10.3389/fonc.2020.01653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/28/2020] [Indexed: 01/25/2023] Open
Abstract
We present the genetic profile of kidney giant leiomyosarcoma characterized by sequencing of 409 cancer related genes and chromosomal microarray analysis. Renal leiomyosarcomas are extremely rare neoplasms with aggressive behavior and poor survival prognosis. Most frequent somatic events in leiomyosarcomas are mutations in the TP53, RB1, ATRX, and PTEN genes, chromosomal instability (CIN) and chromoanagenesis. 67-year-old woman presented with a right kidney completely replaced by tumor. Immunohistochemical reaction on surgical material was positive to desmin and smooth muscle actin. Molecular genetic analysis revealed that tumor harbored monosomy of chromosomes 3 and 11, gain of Xp (ATRX) arm and three chromoanasynthesis regions (6q21-q27, 7p22.3-p12.1, and 12q13.11-q21.2), with MDM2 and CDK4 oncogenes copy number gains, whereas no copy number variations (CNVs) or tumor specific single nucleotide variants (SNVs) in TP53, RB1, and PTEN genes were present. We hypothesize that chromoanasynthesis in 12q13.11-q21.2 could be a trigger of observed CIN in this tumor.
Collapse
|
36
|
Pollak AJ, Hickman JH, Liang XH, Crooke ST. Gapmer Antisense Oligonucleotides Targeting 5S Ribosomal RNA Can Reduce Mature 5S Ribosomal RNA by Two Mechanisms. Nucleic Acid Ther 2020; 30:312-324. [PMID: 32589504 DOI: 10.1089/nat.2020.0864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In this study, we demonstrate that 5S ribosomal RNA (rRNA), a highly structured and protein-bound RNA, is quite difficult to reduce with antisense oligonucleotides (ASOs). However, we found a single accessible site that was targetable with a high-affinity complementary ASO. The ASO appeared to bind to the site, recruit RNaseH1, and cause degradation of the 5S RNA. Intriguingly, we also observed that the same ASO induced an accumulation of pre-5S RNA, which may contribute to reduced levels of mature 5S rRNA. As expected, ASO mediated reduction of 5S RNA, and modest inhibition of processing of pre-5S RNA resulted in nucleolar toxicity. However, the toxicity induced was minimal compared with actinomycin D, consistent with its modest effects on pre-5S rRNA. Mechanistically, we show that the accumulation of pre-5S rRNA required ASO hybridization to the cognate rRNA sequence but was independent of RNaseH1 activity. We found that Ro60 and La, proteins known to bind misprocessed RNAs, likely sequester the ASO-pre-5S rRNA species and block RNaseH1 activity, thus identifying another example of competitive mechanisms mediated by proteins that compete with RNaseH1 for binding to ASO-RNA heteroduplexes.
Collapse
Affiliation(s)
- Adam J Pollak
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Justin H Hickman
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Xue-Hai Liang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Stanley T Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| |
Collapse
|
37
|
MeCP2 facilitates breast cancer growth via promoting ubiquitination-mediated P53 degradation by inhibiting RPL5/RPL11 transcription. Oncogenesis 2020; 9:56. [PMID: 32483207 PMCID: PMC7264296 DOI: 10.1038/s41389-020-0239-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Methyl-CpG-binding protein 2 (MeCP2) facilitates the carcinogenesis and progression of several types of cancer. However, its role in breast cancer and the relevant molecular mechanism remain largely unclear. In this study, analysis of the Cancer Genome Atlas (TCGA) data that MeCP2 expression was significantly upregulated in breast cancer tissues, and high MeCP2 expression was correlated with poor overall survival. Knockdown of MeCP2 inhibited breast cancer cell proliferation and G1–S cell cycle transition and migration as well as induced cell apoptosis in vitro. Moreover, MeCP2 knockdown suppressed cancer cell growth in vivo. Investigation of the molecular mechanism showed that MeCP2 repressed RPL11 and RPL5 transcription by binding to their promoter regions. TCGA data revealed significantly lower RPL11 and RPL5 expression in breast cancer tissues; additionally, overexpression of RPL11/RPL5 significantly suppressed breast cancer cell proliferation and G1–S cell cycle transition and induced apoptosis in vitro. Furthermore, RPL11 and RPL5 suppressed ubiquitination-mediated P53 degradation through direct binding to MDM2. This study demonstrates that MeCP2 promotes breast cancer cell proliferation and inhibits apoptosis through suppressing RPL11 and RPL5 transcription by binding to their promoter regions.
Collapse
|
38
|
Kafer GR, Cesare AJ. A Survey of Essential Genome Stability Genes Reveals That Replication Stress Mitigation Is Critical for Peri-Implantation Embryogenesis. Front Cell Dev Biol 2020; 8:416. [PMID: 32548123 PMCID: PMC7274024 DOI: 10.3389/fcell.2020.00416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
Murine development demands that pluripotent epiblast stem cells in the peri-implantation embryo increase from approximately 120 to 14,000 cells between embryonic days (E) 4.5 and E7.5. This is possible because epiblast stem cells can complete cell cycles in under 3 h in vivo. To ensure conceptus fitness, epiblast cells must undertake this proliferative feat while maintaining genome integrity. How epiblast cells maintain genome health under such an immense proliferation demand remains unclear. To illuminate the contribution of genome stability pathways to early mammalian development we systematically reviewed knockout mouse data from 347 DDR and repair associated genes. Cumulatively, the data indicate that while many DNA repair functions are dispensable in embryogenesis, genes encoding replication stress response and homology directed repair factors are essential specifically during the peri-implantation stage of early development. We discuss the significance of these findings in the context of the unique proliferative demands placed on pluripotent epiblast stem cells.
Collapse
Affiliation(s)
| | - Anthony J. Cesare
- Genome Integrity Unit, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
39
|
Cho J, Park J, Shin SC, Jang M, Kim JH, Kim EE, Song EJ. USP47 Promotes Tumorigenesis by Negative Regulation of p53 through Deubiquitinating Ribosomal Protein S2. Cancers (Basel) 2020; 12:E1137. [PMID: 32370049 PMCID: PMC7281321 DOI: 10.3390/cancers12051137] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/05/2023] Open
Abstract
p53 is activated in response to cellular stresses such as DNA damage, oxidative stress, and especially ribosomal stress. Although the regulations of p53 by E3 ligase and deubiquitinating enzymes (DUBs) have been described, the cellular roles of DUB associated with ribosomal stress have not been well studied. In this study, we report that Ubiquitin Specific Protease 47 (USP47) functions as an important regulator of p53. We show that ubiquitinated ribosomal protein S2 (RPS2) by Mouse double minute 2 homolog (MDM2) is deubiquitinated by USP47. USP47 inhibits the interaction between RPS2 and MDM2 thereby alleviating RPS2-mediated suppression of MDM2 under normal conditions. However, dissociation of USP47 leads to RPS2 binding to MDM2, which is required for the suppression of MDM2, consequently inducing up-regulation of the p53 level under ribosomal stress. Finally, we show that depletion of USP47 induces p53 and therefore inhibits cell proliferation, colony formation, and tumor progression in cancer cell lines and a mouse xenograft model. These findings suggest that USP47 could be a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Jinhong Cho
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea; (J.C.); (S.C.S.); (M.J.)
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul 02841, Korea;
| | - Jinyoung Park
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea;
| | - Sang Chul Shin
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea; (J.C.); (S.C.S.); (M.J.)
| | - Mihue Jang
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea; (J.C.); (S.C.S.); (M.J.)
| | - Jae-Hong Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, 5-1 Anam-dong, Sungbuk-gu, Seoul 02841, Korea;
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea; (J.C.); (S.C.S.); (M.J.)
| | - Eun Joo Song
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
40
|
Omori H, Nishio M, Masuda M, Miyachi Y, Ueda F, Nakano T, Sato K, Mimori K, Taguchi K, Hikasa H, Nishina H, Tashiro H, Kiyono T, Mak TW, Nakao K, Nakagawa T, Maehama T, Suzuki A. YAP1 is a potent driver of the onset and progression of oral squamous cell carcinoma. SCIENCE ADVANCES 2020; 6:eaay3324. [PMID: 32206709 PMCID: PMC7080500 DOI: 10.1126/sciadv.aay3324] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/18/2019] [Indexed: 05/23/2023]
Abstract
Head-and-neck squamous cell carcinoma (HNSCC) is the sixth most common group of cancers in the world, and patients have a poor prognosis. Here, we present data indicating that YAP1 may be a strong driver of the onset and progression of oral SCC (OSCC), a major subtype of HNSCC. Mice with tongue-specific deletion of Mob1a/b and thus endogenous YAP1 hyperactivation underwent surprisingly rapid and highly reproducible tumorigenesis, developing tongue carcinoma in situ within 2 weeks and invasive SCC within 4 weeks. In humans, precancerous tongue dysplasia displays YAP1 activation correlating with reduced patient survival. Combinations of molecules mutated in OSCC may increase and sustain YAP1 activation to the point of oncogenicity. Strikingly, siRNA or pharmacological inhibition of YAP1 blocks murine OSCC onset in vitro and in vivo. Our work justifies targeting YAP1 as therapy for OSCC and perhaps HNSCC, and our mouse model represents a powerful tool for evaluating these agents.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Biomarkers, Tumor
- Carcinoma, Squamous Cell/etiology
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Disease Models, Animal
- Disease Progression
- Disease Susceptibility
- Gene Expression
- Humans
- Immunohistochemistry
- Intracellular Signaling Peptides and Proteins/deficiency
- Mice
- Mice, Knockout
- Mouth Neoplasms/etiology
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/mortality
- Mouth Neoplasms/pathology
- Oncogene Proteins
- Prognosis
- Transcription Factors/genetics
- Transcription Factors/metabolism
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Hirofumi Omori
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Miki Nishio
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Muneyuki Masuda
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Yosuke Miyachi
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Fumihito Ueda
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Takafumi Nakano
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Kuniaki Sato
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Kenichi Taguchi
- Department of Pathology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Hiroki Hikasa
- Department of Biochemistry, School of Medicine, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hironori Tashiro
- Department of Women’s Health Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tohru Kiyono
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Tak Wah Mak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kazuwa Nakao
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Nakagawa
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Akira Suzuki
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Hyogo, Japan
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
41
|
Deng X, Li S, Kong F, Ruan H, Xu X, Zhang X, Wu Z, Zhang L, Xu Y, Yuan H, Peng H, Yang D, Guan M. Long noncoding RNA PiHL regulates p53 protein stability through GRWD1/RPL11/MDM2 axis in colorectal cancer. Am J Cancer Res 2020; 10:265-280. [PMID: 31903119 PMCID: PMC6929633 DOI: 10.7150/thno.36045] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/04/2019] [Indexed: 01/15/2023] Open
Abstract
We identified a novel long noncoding RNA (lncRNA) upregulated in colorectal cancer (CRC). We elucidated its role and clinical significance in CRC carcinogenesis. Methods: LncRNA candidates were identified using TCGA database. LncRNA expression profiles were studied by qRT-PCR and microarray in paired tumor and normal tissues. The independence of the signature in survival prediction was evaluated by multivariable Cox regression analysis. The mechanisms of lncRNA function and regulation in CRC were examined using molecular biological methods. Results: We identified a novel long noncoding gene (PiHL, P53 inHibiting LncRNA) from 8q24.21 as a p53 negative regulator. PiHL is drastically upregulated in CRC and is an independent predictor of CRC poor prognosis. Further in vitro and in vivo models demonstrated that PiHL was crucial in maintaining cell proliferation and inducing 5-FU chemoresistance through a p53-dependent manner. Mechanistically, PiHL acts to promote p53 ubiquitination by sequestering RPL11 from MDM2, through enhancing GRWD1 and RPL11 complex formation. We further show that p53 can directly bind to PiHL promoter and regulating its expression. Conclusion: Our study illustrates how cancer cells hijack the PiHL-p53 axis to promote CRC progression and chemoresistance. PiHL plays an oncogenic role in CRC carcinogenesis and is an independent prognostic factor as well as a potential therapeutic target for CRC patients.
Collapse
|
42
|
NOP53 as A Candidate Modifier Locus for Familial Non-Medullary Thyroid Cancer. Genes (Basel) 2019; 10:genes10110899. [PMID: 31703244 PMCID: PMC6896177 DOI: 10.3390/genes10110899] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022] Open
Abstract
Nonsyndromic familial non-medullary thyroid cancer (FNMTC) represents 3–9% of thyroid cancers, but the susceptibility gene(s) remain unknown. We designed this multicenter study to analyze families with nonsyndromic FNMTC and identify candidate susceptibility genes. We performed exome sequencing of DNA from four affected individuals from one kindred, with five cases of nonsyndromic FNMTC. Single Nucleotide Variants, and insertions and deletions that segregated with all the affected members, were analyzed by Sanger sequencing in 44 additional families with FNMTC (37 with two affected members, and seven with three or more affected members), as well as in an independent control group of 100 subjects. We identified the germline variant p. Asp31His in NOP53 gene (rs78530808, MAF 1.8%) present in all affected members in three families with nonsyndromic FNMTC, and not present in unaffected spouses. Our functional studies of NOP53 in thyroid cancer cell lines showed an oncogenic function. Immunohistochemistry exhibited increased NOP53 protein expression in tumor samples from affected family members, compared with normal adjacent thyroid tissue. Given the relatively high frequency of the variant in the general population, these findings suggest that instead of a causative gene, NOP53 is likely a low-penetrant gene implicated in FNMTC, possibly a modifier.
Collapse
|
43
|
Carotenuto P, Pecoraro A, Palma G, Russo G, Russo A. Therapeutic Approaches Targeting Nucleolus in Cancer. Cells 2019; 8:E1090. [PMID: 31527430 PMCID: PMC6770360 DOI: 10.3390/cells8091090] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/08/2019] [Accepted: 09/13/2019] [Indexed: 01/08/2023] Open
Abstract
The nucleolus is a distinct sub-cellular compartment structure in the nucleus. First observed more than 200 years ago, the nucleolus is detectable by microscopy in eukaryotic cells and visible during the interphase as a sub-nuclear structure immersed in the nucleoplasm, from which it is not separated from any membrane. A huge number of studies, spanning over a century, have identified ribosome biogenesis as the main function of the nucleolus. Recently, novel functions, independent from ribosome biogenesis, have been proposed by several proteomic, genomic, and functional studies. Several works have confirmed the non-canonical role for nucleoli in regulating important cellular processes including genome stability, cell-cycle control, the cellular senescence, stress responses, and biogenesis of ribonucleoprotein particles (RNPs). Many authors have shown that both canonical and non-canonical functions of the nucleolus are associated with several cancer-related processes. The association between the nucleolus and cancer, first proposed by cytological and histopathological studies showing that the number and shape of nucleoli are commonly altered in almost any type of cancer, has been confirmed at the molecular level by several authors who demonstrated that numerous mechanisms occurring in the nucleolus are altered in tumors. Recently, therapeutic approaches targeting the nucleolus in cancer have started to be considered as an emerging "hallmark" of cancer and several therapeutic interventions have been developed. This review proposes an up-to-date overview of available strategies targeting the nucleolus, focusing on novel targeted therapeutic approaches. Finally, a target-based classification of currently available treatment will be proposed.
Collapse
Affiliation(s)
- Pietro Carotenuto
- The Institute of Cancer Research, Cancer Therapeutic Unit, London SM2 5NG, UK.
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy.
| | - Annalisa Pecoraro
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Gaetano Palma
- Department of Advanced Biomedical Science, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| | - Giulia Russo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Annapina Russo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
44
|
Pfister AS. Emerging Role of the Nucleolar Stress Response in Autophagy. Front Cell Neurosci 2019; 13:156. [PMID: 31114481 PMCID: PMC6503120 DOI: 10.3389/fncel.2019.00156] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy represents a conserved self-digestion program, which allows regulated degradation of cellular material. Autophagy is activated by cellular stress, serum starvation and nutrient deprivation. Several autophagic pathways have been uncovered, which either non-selectively or selectively target the cellular cargo for lysosomal degradation. Autophagy engages the coordinated action of various key regulators involved in the steps of autophagosome formation, cargo targeting and lysosomal fusion. While non-selective (macro)autophagy is required for removal of bulk material or recycling of nutrients, selective autophagy mediates specific targeting of damaged organelles or protein aggregates. By proper action of the autophagic machinery, cellular homeostasis is maintained. In contrast, failure of this fundamental process is accompanied by severe pathophysiological conditions. Hallmarks of neuropathological disorders are for instance accumulated, mis-folded protein aggregates and damaged mitochondria. The nucleolus has been recognized as central hub in the cellular stress response. It represents a sub-nuclear organelle essential for ribosome biogenesis and also functions as stress sensor by mediating cell cycle arrest or apoptosis. Thus, proper nucleolar function is mandatory for cell growth and survival. Here, I highlight the emerging role of nucleolar factors in the regulation of autophagy. Moreover, I discuss the nucleolar stress response as a novel signaling pathway in the context of autophagy, health and disease.
Collapse
Affiliation(s)
- Astrid S Pfister
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
45
|
High filamin-C expression predicts enhanced invasiveness and poor outcome in glioblastoma multiforme. Br J Cancer 2019; 120:819-826. [PMID: 30867563 PMCID: PMC6474268 DOI: 10.1038/s41416-019-0413-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 02/01/2019] [Accepted: 02/12/2019] [Indexed: 01/11/2023] Open
Abstract
Background Glioblastoma multiforme (GBM), the most common brain malignancy in adults, is generally aggressive and incurable, even with multiple treatment modalities and agents. Filamins (FLNs) are a group of actin-binding proteins that regulate the actin cytoskeleton in cells. However, the role of FLNs in malignancies—particularly in GBM—is unclear. Methods The relation between FLNC expression and overall survival in GBM was evaluated by the Kaplan−Meier analysis using GBM patients from the Kagoshima University Hospital (n = 90) and data from the Cancer Genome Atlas (TCGA) (n = 153). To assess FLNC function in GBM, cell migration and invasion were examined with Transwell and Matrigel invasion assays using FLNC-overexpressing U251MG and LN299 GBM cells, and ShRNA-mediated FLNC knocked-down KNS81 and U87MG cells. The gelatin zymography assay was used to estimate matrix metalloproteinase (MMP) 2 activity. Results In silico analysis of GBM patient data from TCGA and immunohistochemical analyses of clinical GBM specimens revealed that increased FLNC expression was associated with poor patient prognosis. FLNC overexpression in GBM cell lines was positively correlated with enhanced invasiveness, but not migration, and was accompanied by upregulation of MMP2. Conclusions FLNC is a potential therapeutic target and biomarker for GBM progression.
Collapse
|
46
|
Fernández MN, Muñoz-Olivas R, Luque-Garcia JL. SILAC-based quantitative proteomics identifies size-dependent molecular mechanisms involved in silver nanoparticles-induced toxicity. Nanotoxicology 2019; 13:812-826. [DOI: 10.1080/17435390.2019.1579374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- M. N. Fernández
- Faculty of Chemical Sciences, Department of Analytical Chemistry, Complutense University of Madrid, Madrid, Spain
| | - R. Muñoz-Olivas
- Faculty of Chemical Sciences, Department of Analytical Chemistry, Complutense University of Madrid, Madrid, Spain
| | - J. L. Luque-Garcia
- Faculty of Chemical Sciences, Department of Analytical Chemistry, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
47
|
Lessard F, Brakier-Gingras L, Ferbeyre G. Ribosomal Proteins Control Tumor Suppressor Pathways in Response to Nucleolar Stress. Bioessays 2019; 41:e1800183. [PMID: 30706966 DOI: 10.1002/bies.201800183] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/18/2018] [Indexed: 01/05/2023]
Abstract
Ribosome biogenesis includes the making and processing of ribosomal RNAs, the biosynthesis of ribosomal proteins from their mRNAs in the cytosol and their transport to the nucleolus to assemble pre-ribosomal particles. Several stresses including cellular senescence reduce nucleolar rRNA synthesis and maturation increasing the availability of ribosome-free ribosomal proteins. Several ribosomal proteins can activate the p53 tumor suppressor pathway but cells without p53 can still arrest their proliferation in response to an imbalance between ribosomal proteins and mature rRNA production. Recent results on senescence-associated ribogenesis defects (SARD) show that the ribosomal protein S14 (RPS14 or uS11) can act as a CDK4/6 inhibitor linking ribosome biogenesis defects to the main engine of cell cycle progression. This work offers new insights into the regulation of the cell cycle and suggests novel avenues to design anticancer drugs.
Collapse
Affiliation(s)
- Frédéric Lessard
- Department of Biochemistry and Molecular Medicine, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Léa Brakier-Gingras
- Department of Biochemistry and Molecular Medicine, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - Gerardo Ferbeyre
- Department of Biochemistry and Molecular Medicine, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada.,CRCHUM, 900 Saint-Denis - bureau R10.432, Montréal, Québec H2X 0A9, Canada
| |
Collapse
|
48
|
Jarzebowski L, Le Bouteiller M, Coqueran S, Raveux A, Vandormael-Pournin S, David A, Cumano A, Cohen-Tannoudji M. Mouse adult hematopoietic stem cells actively synthesize ribosomal RNA. RNA (NEW YORK, N.Y.) 2018; 24:1803-1812. [PMID: 30242063 PMCID: PMC6239186 DOI: 10.1261/rna.067843.118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
The contribution of basal cellular processes to the regulation of tissue homeostasis has just started to be appreciated. However, our knowledge of the modulation of ribosome biogenesis activity in situ within specific lineages remains very limited. This is largely due to the lack of assays that enable quantitation of ribosome biogenesis in small numbers of cells in vivo. We used a technique, named Flow-FISH, combining cell surface antibody staining and flow cytometry with intracellular ribosomal RNA (rRNA) FISH, to measure the levels of pre-rRNAs of hematopoietic cells in vivo. Here, we show that Flow-FISH reports and quantifies ribosome biogenesis activity in hematopoietic cell populations, thereby providing original data on this fundamental process notably in rare populations such as hematopoietic stem and progenitor cells. We unravel variations in pre-rRNA levels between different hematopoietic progenitor compartments and during erythroid differentiation. In particular, our data indicate that, contrary to what may be anticipated from their quiescent state, hematopoietic stem cells have significant ribosome biogenesis activity. Moreover, variations in pre-rRNA levels do not correlate with proliferation rates, suggesting that cell type-specific mechanisms might regulate ribosome biogenesis in hematopoietic stem cells and progenitors. Our study contributes to a better understanding of the cellular physiology of the hematopoietic system in vivo in unperturbed situations.
Collapse
Affiliation(s)
- Léonard Jarzebowski
- Early Mammalian Development and Stem Cell Biology, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
- CNRS UMR 3738, Institut Pasteur, Paris 75015, France
| | - Marie Le Bouteiller
- Early Mammalian Development and Stem Cell Biology, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
- CNRS UMR 3738, Institut Pasteur, Paris 75015, France
| | - Sabrina Coqueran
- Early Mammalian Development and Stem Cell Biology, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
- CNRS UMR 3738, Institut Pasteur, Paris 75015, France
| | - Aurélien Raveux
- Early Mammalian Development and Stem Cell Biology, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
- CNRS UMR 3738, Institut Pasteur, Paris 75015, France
| | - Sandrine Vandormael-Pournin
- Early Mammalian Development and Stem Cell Biology, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
- CNRS UMR 3738, Institut Pasteur, Paris 75015, France
| | - Alexandre David
- Team "Signaling and Cancer," Institut de Génomique Fonctionnelle, Montpellier 34094, France
| | - Ana Cumano
- Lymphocyte Development Unit, Institut Pasteur, Paris 75015, France
| | - Michel Cohen-Tannoudji
- Early Mammalian Development and Stem Cell Biology, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris 75015, France
- CNRS UMR 3738, Institut Pasteur, Paris 75015, France
| |
Collapse
|
49
|
Li Y, Kobayashi K, Murayama K, Kawahara K, Shima Y, Suzuki A, Tani K, Takahashi A. FEAT enhances INSL3 expression in testicular Leydig cells. Genes Cells 2018; 23:952-962. [PMID: 30178547 DOI: 10.1111/gtc.12644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 12/31/2022]
Abstract
FEAT, the protein encoded by methyltransferase-like 13 (METTL13), is aberrantly upregulated in most human cancers and potently drives tumorigenesis in vivo; however, its role in normal tissues remains elusive. Immunoblotting has displayed weak FEAT expression in normal human tissues, including the testis. Here, we found that FEAT is expressed in fetal and adult Leydig cells in the testis. FEAT knockdown using siRNA increased primary cilia formation in MA-10 Leydig tumor cells, accompanied by enhanced 5' adenosine monophosphate-activated protein kinase (AMPK) activation. Immunofluorescence analyses of FEAT-silenced MA-10 cells showed diminished insulin-like factor 3 (INSL3) expression. A male Mettl13+/- mouse developed bilateral intraabdominal cryptorchidism, suggesting defective INSL3 production by fetal Leydig cells. Leydig cells from the mouse showed markedly decreased INSL3 protein by immunohistochemistry. Together, these results suggest that FEAT facilitates the INSL3 production in testicular Leydig cells that is essential for transabdominal testis migration.
Collapse
Affiliation(s)
- Yan Li
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Molecular and Clinical Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Research Institute of Health and Welfare, Kibi International University, Takahashi, Okayama, Japan
| | - Kyosuke Kobayashi
- Division of Molecular and Clinical Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kosho Murayama
- Division of Molecular and Clinical Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kohichi Kawahara
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yuichi Shima
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Japan
| | - Akira Suzuki
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Kenzaburo Tani
- Division of Molecular and Clinical Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Project Division of ALA Advanced Medical Research, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Atsushi Takahashi
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Molecular and Clinical Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Research Institute of Health and Welfare, Kibi International University, Takahashi, Okayama, Japan
- Division of Translational Cancer Research, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Physical Therapy, School of Health Science and Social Welfare, Kibi International University, Takahashi, Okayama, Japan
| |
Collapse
|
50
|
Abstract
The nucleolus is a prominent subnuclear compartment, where ribosome biosynthesis takes place. Recently, the nucleolus has gained attention for its novel role in the regulation of cellular stress. Nucleolar stress is emerging as a new concept, which is characterized by diverse cellular insult-induced abnormalities in nucleolar structure and function, ultimately leading to activation of p53 or other stress signaling pathways and alterations in cell behavior. Despite a number of comprehensive reviews on this concept, straightforward and clear-cut way criteria for a nucleolar stress state, regarding the factors that elicit this state, the morphological and functional alterations as well as the rationale for p53 activation are still missing. Based on literature of the past two decades, we herein summarize the evolution of the concept and provide hallmarks of nucleolar stress. Along with updated information and thorough discussion of existing confusions in the field, we pay particular attention to the current understanding of the sensing mechanisms, i.e., how stress is integrated by p53. In addition, we propose our own emphasis regarding the role of nucleolar protein NPM1 in the hallmarks of nucleolar stress and sensing mechanisms. Finally, the links of nucleolar stress to human diseases are briefly and selectively introduced.
Collapse
Affiliation(s)
- Kai Yang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.,Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Jie Yang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Jing Yi
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| |
Collapse
|