1
|
Zhao X, Huang F, Sun Y, Li L. Mechanisms of endurance and resistance exercise in type 2 diabetes mellitus: A Narrative review. Biochem Biophys Res Commun 2025; 761:151731. [PMID: 40179737 DOI: 10.1016/j.bbrc.2025.151731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/18/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025]
Abstract
In the treatment and management of type 2 diabetes mellitus (T2DM), exercise therapy has received increasing attention due to its accessibility and cost-effectiveness. Regular physical exercise improves glycemic control by ameliorating insulin resistance (IR) and reducing the risk of complications. However, the distinct mechanisms underlying the efficacy of endurance training (ET) and resistance training (RT) in T2DM remain incompletely understood. This review systematically compares the molecular pathways through which ET and RT improve IR, focusing on epigenetic regulation, metabolic reprogramming, and anti-inflammatory effects. We highlight that RT enhances protein synthesis via the IGF-1/PI3K/AKT/mTOR pathway, while ET predominantly improves mitochondrial biogenesis and lipid oxidation through AMPK/SIRT1/PGC-1α signaling. Additionally, ET exerts immunomodulatory effects by suppressing pro-inflammatory cytokines (e.g., TNF-α) and elevating anti-inflammatory myokines (e.g., IL-6). These findings provide a mechanistic basis for personalized exercise prescriptions in T2DM management.
Collapse
Affiliation(s)
- Xinwen Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin Province, China; Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Fengwei Huang
- Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Yidi Sun
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin Province, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
2
|
Fan W, Zhang Q, Wang C, Sun J, Zhang J, Yin Y. GLP-1 as a regulator of sepsis outcomes: Insights into cellular metabolism, inflammation, and therapeutic potential. Int Immunopharmacol 2025; 152:114390. [PMID: 40068523 DOI: 10.1016/j.intimp.2025.114390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 03/24/2025]
Abstract
Glucagon-like peptide-1 (GLP-1) has been widely studied in the context of treating obesity and various forms of metabolic disease. Sepsis is a life-threatening medical emergency characterized by the widespread dysregulation of energy metabolism within cells. The potential for GLP-1 to improve sepsis patient outcomes through improvements in energy metabolism and inflammation has been a focus of growing research interest, with many studies of GLP-1 itself and related compounds, including GLP-1 receptor agonists (GLP-1RAs), and dipeptidyl peptidase-4 (DPP-4) inhibitors, having explored the impact on sepsis in cells and organs. Such studies require that attention be paid to both the physiological and potential pathological effects of GLP-1 in sepsis. In many reports, researchers have demonstrated that endogenous GLP-1, GLP-1RAs, or DPP-4 inhibitors (a GLP-1 depressant) can modulate glucose homeostasis, inflammatory activity, immune function, and organ dysfunction in studies of sepsis model systems in vitro and in vivo. To date, GLP-1-based treatments have yet to be specifically used to manage sepsis, but its pleiotropic effects suggest its significant potential in sepsis treatment. This review provides an overview of the relationship between GLP-1 and its related compounds with sepsis, aiming to offer novel perspectives for the diagnosis and treatment of this condition. It highlights that GLP-1 may serve as a new biomarker for assessing the severity and prognosis of sepsis, and potentially contribute to improving clinical outcomes in septic patients. Meanwhile, GLP-1 may function as a messenger of metabolic reprogramming, shifting cellular energy production from oxidative phosphorylation to glycolysis, thereby modulating immune responses and influencing inflammatory reactions to enhance the clearance of pathogens. However, GLP-1 may act as a double-edged sword, the enhanced inflammatory response can potentially induce cytotoxic and organ-damaging effects while exerting beneficial actions.
Collapse
Affiliation(s)
- Weixuan Fan
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, NO.218 Ziqiang Street, Changchun, 130041, People's Republic of China.
| | - Qiulei Zhang
- Department of Anesthesiology, The Second Hospital of Jilin University, NO.218 Ziqiang Street, Changchun 130041, People's Republic of China.
| | - Cong Wang
- Department of Anesthesiology, The Second Hospital of Jilin University, NO.218 Ziqiang Street, Changchun 130041, People's Republic of China.
| | - Jian Sun
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, NO.218 Ziqiang Street, Changchun, 130041, People's Republic of China.
| | - Jingxiao Zhang
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, NO.218 Ziqiang Street, Changchun, 130041, People's Republic of China.
| | - Yongjie Yin
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, NO.218 Ziqiang Street, Changchun, 130041, People's Republic of China.
| |
Collapse
|
3
|
Hansell CE, Aneis HA, Kitsios GD, Bain WG, Zhao Y, Suber TL, Evankovich JW, Sharma L, Ramakrishnan SK, Prendergast NT, Hensley MK, Malik S, Petro N, Patel JJ, Nouraie SM, Dela Cruz CS, Zhang Y, McVerry BJ, Shah FA. Glucagon-Like Peptide-1 Is Prognostic of Mortality in Acute Respiratory Failure. Crit Care Explor 2025; 7:e1247. [PMID: 40126931 PMCID: PMC11936568 DOI: 10.1097/cce.0000000000001247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
OBJECTIVES The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) have therapeutic effects in diabetes mellitus. Prior clinical studies suggest incretins are prognostic of adverse outcomes in critical illness. We investigated whether incretin levels indicate disease severity and clinical outcomes in patients with acute respiratory failure, a common cause of critical illness. DESIGN Retrospective cohort study. SETTING ICUs in UPMC Health Systems hospitals within Western Pennsylvania. PATIENTS Two hundred ninety-seven critically ill adults with acute respiratory failure. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We measured GLP-1 and GIP levels in baseline samples collected at the time of study enrollment. We compared incretin levels across subgroups differing by severity of illness and investigated associations between incretins and markers of systemic host responses and intestinal permeability. In our primary analysis, we tested the association of each incretin level with 90-day mortality by logistic regression in unadjusted analyses and in analyses adjusted for age, Sequential Organ Failure Assessment score, and circulating interleukin-6 levels. GLP-1 levels were higher in nonsurvivors and patients with or at-risk for acute respiratory distress syndrome compared to those intubated for airway protection. GLP-1 levels also positively correlated with systemic immune response biomarkers but not with markers of intestinal permeability. GLP-1 levels positively correlated with mortality in unadjusted (odds ratio, 1.99 [1.55-2.56]; p < 0.01) and adjusted (2.02 [1.23-3.31]; p < 0.01) analyses. GIP levels were not associated with mortality or with host response biomarkers. CONCLUSIONS GLP-1 but not GIP levels were positively associated with systemic inflammation and mortality in critically ill patients with acute respiratory failure. Increased circulating GLP-1 levels may serve as prognostic biomarkers to identify patients who are likely to have worse outcomes.
Collapse
Affiliation(s)
- Cole E. Hansell
- Department of Medicine, UPMC Presbyterian-Shadyside Hospitals, Pittsburgh, PA
| | - Hamam A. Aneis
- Department of Medicine, UPMC McKeesport Hospital, Pittsburgh, PA
| | - Georgios D. Kitsios
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA
| | - William G. Bain
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
- Veterans Affairs Pittsburgh Healthcare System, Pulmonary Division, Pittsburgh, PA
| | - Yanwu Zhao
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Tomeka L. Suber
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - John W. Evankovich
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Aging Institute, University of Pittsburgh, Pittsburgh, PA
| | - Lokesh Sharma
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | | | - Niall T. Prendergast
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Matthew K. Hensley
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Shehryar Malik
- Department of Medicine, UPMC Mercy Hospital, Pittsburgh, PA
| | - Nancy Petro
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Jayshil J. Patel
- Division of Pulmonary and Critical Care Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Seyed Mehdi Nouraie
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Charles S. Dela Cruz
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
- Veterans Affairs Pittsburgh Healthcare System, Pulmonary Division, Pittsburgh, PA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
| | - Faraaz A. Shah
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, University of Pittsburgh, Pittsburgh, PA
- Acute Lung Injury and Infection Center of Excellence, University of Pittsburgh, Pittsburgh, PA
- Veterans Affairs Pittsburgh Healthcare System, Pulmonary Division, Pittsburgh, PA
| |
Collapse
|
4
|
Vear A, Heneka MT, Clemmensen C. Incretin-based therapeutics for the treatment of neurodegenerative diseases. Nat Metab 2025; 7:679-696. [PMID: 40211045 DOI: 10.1038/s42255-025-01263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/06/2025] [Indexed: 04/12/2025]
Abstract
Neurodegenerative diseases (NDDs) represent a heterogeneous group of disorders characterized by progressive neuronal loss, which results in significant deficits in memory, cognition, motor skills, and sensory functions. As the prevalence of NDDs rises, there is an urgent unmet need for effective therapies. Current drug development approaches primarily target single pathological features of the disease, which could explain the limited efficacy observed in late-stage clinical trials. Originally developed for the treatment of obesity and diabetes, incretin-based therapies, particularly long-acting GLP-1 receptor (GLP-1R) agonists and GLP-1R-gastric inhibitory polypeptide receptor (GIPR) dual agonists, are emerging as promising treatments for NDDs. Despite limited conclusive preclinical evidence, their pleiotropic ability to reduce neuroinflammation, enhance neuronal energy metabolism and promote synaptic plasticity positions them as potential disease-modifying NDD interventions. In anticipation of results from larger clinical trials, continued advances in next-generation incretin mimetics offer the potential for improved brain access and enhanced neuroprotection, paving the way for incretin-based therapies as a future cornerstone in the management of NDDs.
Collapse
Affiliation(s)
- Anika Vear
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Orioli L, Thissen JP. Myokines as potential mediators of changes in glucose homeostasis and muscle mass after bariatric surgery. Front Endocrinol (Lausanne) 2025; 16:1554617. [PMID: 40171198 PMCID: PMC11958187 DOI: 10.3389/fendo.2025.1554617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/28/2025] [Indexed: 04/03/2025] Open
Abstract
Myokines are bioactive peptides released by skeletal muscle. Myokines exert auto-, para-, or endocrine effects, enabling them to regulate many aspects of metabolism in various tissues. However, the contribution of myokines to the dramatic changes in glucose homeostasis and muscle mass induced by bariatric surgery has not been established. Our review highlights that myokines such as brain-derived neurotrophic factor (BDNF), meteorin-like protein (Metrnl), secreted protein acidic and rich in cysteine (SPARC), apelin (APLN) and myostatin (MSTN) may mediate changes in glucose homeostasis and muscle mass after bariatric surgery. Our review also identifies myonectin as an interesting candidate for future studies, as this myokine may regulate lipid metabolism and muscle mass after bariatric surgery. These myokines may provide novel therapeutic targets and biomarkers for obesity, type 2 diabetes and sarcopenia.
Collapse
Affiliation(s)
- Laura Orioli
- Research Laboratory of Endocrinology, Diabetes, and Nutrition, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jean-Paul Thissen
- Research Laboratory of Endocrinology, Diabetes, and Nutrition, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
6
|
Mir FA, Abdesselem HB, Cyprian F, Iskandarani A, Doudin A, Shraim MA, Alkhalaf BM, Alkasem M, Abdalhakam I, Bensmail I, Al Halabi HA, Taheri S, Abou-Samra AB. Metabolically Healthy Obesity Is Characterized by a Distinct Proteome Signature. Int J Mol Sci 2025; 26:2262. [PMID: 40076884 PMCID: PMC11901089 DOI: 10.3390/ijms26052262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 03/14/2025] Open
Abstract
Obesity is commonly associated with metabolic diseases including type 2 diabetes, hypertension, and dyslipidemia. Moreover, individuals with obesity are at increased risk of cardiovascular disease. However, a subgroup of individuals within the obese population presents without concurrent metabolic disorders. Even though this group has a stable metabolic status and does not exhibit overt metabolic disease, this status may be transient; these individuals may have subclinical metabolic derangements. To investigate the latter hypothesis, an analysis of the proteome signature was conducted. Plasma samples from 27 subjects with obesity but without an associated metabolic disorder (obesity only (OBO)) and 15 lean healthy control (LHC) subjects were examined. Fasting samples were subjected to Olink proteomics analysis targeting 184 proteins enriched in cardiometabolic and inflammation pathways. Our results distinctly delineated two groups with distinct plasma protein expression profiles. Specifically, a total of 24 proteins were differentially expressed in individuals with obesity compared to LHC. Among these, 13 proteins were downregulated, whereas 11 proteins were upregulated. The pathways that were upregulated in the OBO group were related to chemoattractant activity, growth factor activity, G protein-coupled receptor binding, chemokine activity, and cytokine activity, whereas the pathways that were downregulated include regulation of T cell differentiation, leukocyte differentiation, reproductive system development, inflammatory response, neutrophil, lymphocyte, monocyte and leukocyte chemotaxis, and neutrophil migration. The study identifies several pathways that are altered in individuals with obesity compared to healthy control subjects. These findings provide valuable insights into the underlying mechanisms, potentially paving the way for the identification of therapeutic targets aimed at improving metabolic health in individuals with obesity.
Collapse
Affiliation(s)
- Fayaz Ahmad Mir
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar; (A.I.); (B.M.A.); (I.A.); (H.A.A.H.); (A.-B.A.-S.)
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Houari B. Abdesselem
- Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Farhan Cyprian
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Ahmad Iskandarani
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar; (A.I.); (B.M.A.); (I.A.); (H.A.A.H.); (A.-B.A.-S.)
| | - Asmma Doudin
- Laboratory of Immunoregulation, Research Department, Sidra Medicine, Doha P.O. Box 26999, Qatar;
| | - Mutasem AbdelRahim Shraim
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar; (A.I.); (B.M.A.); (I.A.); (H.A.A.H.); (A.-B.A.-S.)
| | - Bader M. Alkhalaf
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar; (A.I.); (B.M.A.); (I.A.); (H.A.A.H.); (A.-B.A.-S.)
| | - Meis Alkasem
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar; (A.I.); (B.M.A.); (I.A.); (H.A.A.H.); (A.-B.A.-S.)
| | - Ibrahem Abdalhakam
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar; (A.I.); (B.M.A.); (I.A.); (H.A.A.H.); (A.-B.A.-S.)
| | - Ilham Bensmail
- Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Hamza A. Al Halabi
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar; (A.I.); (B.M.A.); (I.A.); (H.A.A.H.); (A.-B.A.-S.)
| | - Shahrad Taheri
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar; (A.I.); (B.M.A.); (I.A.); (H.A.A.H.); (A.-B.A.-S.)
- National Obesity Treatment Center, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar
- Weil Cornell Medicine—Qatar, Doha P.O. Box 24144, Qatar
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar; (A.I.); (B.M.A.); (I.A.); (H.A.A.H.); (A.-B.A.-S.)
- National Obesity Treatment Center, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar
- Weil Cornell Medicine—Qatar, Doha P.O. Box 24144, Qatar
| |
Collapse
|
7
|
Irisarri A, Corral A, Perez-Salvador N, Bellver-Sanchis A, Ribalta-Vilella M, Bentanachs R, Alegret M, Laguna JC, Barroso E, Palomer X, Ortuño-Sahagún D, Vázquez-Carrera M, Pallàs M, Herrero L, Griñán-Ferré C. FTO inhibition mitigates high-fat diet-induced metabolic disturbances and cognitive decline in SAMP8 mice. Mol Med 2025; 31:73. [PMID: 39984825 PMCID: PMC11843768 DOI: 10.1186/s10020-025-01126-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/12/2025] [Indexed: 02/23/2025] Open
Abstract
This study investigated the effects of fat mass and obesity-associated (FTO) inhibition on cognitive function and metabolic parameters of senescence-accelerated mouse prone 8 (SAMP8) mice fed a high-fat diet (HFD). SAMP8 mice fed an HFD exhibited increased body weight, impaired glucose tolerance, and elevated serum leptin levels. In epididymal white adipose tissue (eWAT), pharmacological treatment with FB23, a well-established FTO inhibitor, increased leptin production and modulated genes involved in lipid metabolism (Cpt1a, Atgl, Hsl, Fas), oxidative stress (OS) (Bip, Edem), and inflammation (Mcp1, Tnfα). Expression of hepatic genes related to lipid metabolism (Cpt1a, Atgl, Mgl, Dgat2, Srebp, Plin2) and OS (catalase, Edem) were modulated by FB23, although hepatic steatosis remained unchanged. Remarkably, FB23 treatment increased m6A RNA methylation in the brain, accompanied by changes in N6-methyladenosine (m6A)-regulatory enzymes and modulation of neuroinflammatory markers (Il6, Mcp1, iNOS). FTO inhibition reduced the activity of matrix metalloproteases (Mmp2, Mmp9) and altered IGF1 signaling (Igf1, Pten). Notably, enhanced leptin signaling was observed through increased expression of immediate early genes (Arc, Fos) and the transcription factor Stat3. Improved synaptic plasticity was evident, as shown by increased levels of neurotrophic factors (Bdnf, Ngf) and restored neurite length and spine density. Consistent with these findings, behavioral tests demonstrated that FB23 treatment effectively rescued cognitive impairments in SAMP8 HFD mice. The novel object recognition test (NORT) and object location test (OLT) revealed that treated mice exhibited enhanced short- and long-term memory and spatial memory compared to the HFD control group. Additionally, the open field test showed a reduction in anxiety-like behavior after treatment with FB23. In conclusion, pharmacological FTO inhibition ameliorated HFD-induced metabolic disturbances and cognitive decline in SAMP8 mice. These results suggest that targeting FTO may be a promising therapeutic approach to counteract obesity-induced cognitive impairment and age-related neurodegeneration.
Collapse
Grants
- PID2021-122116OB-100 Ministerio de Economía, Industria Economía, Industria y Competitividad (Agencia Estatal de Investigación, AEI) and European Union NextGenerationEU/PRTR
- PDC2022-133441-I00 Ministerio de Economía, Industria Economía, Industria y Competitividad (Agencia Estatal de Investigación, AEI) and European Union NextGenerationEU/PRTR
- PID2020-114953RB-C21 Ministerio de Economía, Industria Economía, Industria y Competitividad (Agencia Estatal de Investigación, AEI) and European Union NextGenerationEU/PRTR
- PID2022-139016OA-I00 Ministerio de Economía, Industria Economía, Industria y Competitividad (Agencia Estatal de Investigación, AEI) and European Union NextGenerationEU/PRTR
- CIBERDEM CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)
- 2021 SGR 00357 the Government of Catalonia
- CB06/03/0001 CIBEROBN
- 2021SGR00367 Carlos III Health Institute project and the Government of Catalonia
- Producte 0092 Departament d'Empresa i Coneixement de la Generalitat de Catalunya 2023
- Llavor 005 and 007 Departament d'Empresa i Coneixement de la Generalitat de Catalunya 2023
- Departament d’Empresa i Coneixement de la Generalitat de Catalunya 2023
Collapse
Affiliation(s)
- Alba Irisarri
- pHD Program in Biotechnology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035, Barcelona, Spain
| | - Ana Corral
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
| | - Núria Perez-Salvador
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
| | - Aina Bellver-Sanchis
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035, Barcelona, Spain
| | - Marta Ribalta-Vilella
- pHD Program in Biotechnology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035, Barcelona, Spain
| | - Roger Bentanachs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
| | - Marta Alegret
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Juan Carlos Laguna
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM) - National Institute of Health Carlos III, 28029, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Xavier Palomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM) - National Institute of Health Carlos III, 28029, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunología Molecular, Instituto de Investigación de Ciencias Biomédicas (IICB) CUCS, Universidad de Guadalajara, 44340, Guadalajara, Jalisco, Mexico
| | - Manuel Vázquez-Carrera
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM) - National Institute of Health Carlos III, 28029, Madrid, Spain
- Pediatric Research Institute-Hospital Sant Joan de Déu, 08950, Esplugues de Llobregat, Barcelona, Spain
| | - Mercè Pallàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035, Barcelona, Spain
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, University of Barcelona, Avda. Joan XXIII 27, 08028, Barcelona, Spain.
- Institute of Neurosciences of the University of Barcelona, University of Barcelona, 08035, Barcelona, Spain.
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
8
|
Khan S, Gaivin RJ, Liu Z, Li V, Samuels I, Son J, Osei-Owusu P, Garvin JL, Accili D, Schelling JR. Fatty Acid Transport Protein-2 (FATP2) Inhibition Enhances Glucose Tolerance through α-Cell-mediated GLP-1 Secretion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635976. [PMID: 39975070 PMCID: PMC11838418 DOI: 10.1101/2025.01.31.635976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Type 2 diabetes affects more than 30 million people in the US, and a major complication is kidney disease. During the analysis of lipotoxicity in diabetic kidney disease, global fatty acid transport protein-2 (FATP2) gene deletion was noted to markedly reduce plasma glucose in db/db mice due to sustained insulin secretion. To identify the mechanism, we observed that islet FATP2 expression was restricted to α-cells, and α-cell FATP2 was functional. Direct evidence of FATP2KO-induced α-cell-mediated GLP-1 secretion included increased GLP-1-positive α-cell mass in FATP2KO db/db mice, small molecule FATP2 inhibitor enhancement of GLP-1 secretion in αTC1-6 cells and human islets, and exendin[9-39]-inhibitable insulin secretion in FATP2 inhibitor-treated human islets. FATP2-dependent enteroendocrine GLP-1 secretion was excluded by demonstration of similar glucose tolerance and plasma GLP-1 concentrations in db/db FATP2KO mice following oral versus intraperitoneal glucose loading, non-overlapping FATP2 and preproglucagon mRNA expression, and lack of FATP2/GLP-1 co-immunolocalization in intestine. We conclude that FATP2 deletion or inhibition exerts glucose-lowering effects through α-cell-mediated GLP-1 secretion and paracrine β-cell insulin release. Graphical abstract
Collapse
|
9
|
Mezza T, Wewer Albrechtsen NJ, Di Giuseppe G, Ferraro PM, Soldovieri L, Ciccarelli G, Brunetti M, Quero G, Alfieri S, Nista EC, Gasbarrini A, Tondolo V, Mari A, Pontecorvi A, Giaccari A, Holst JJ. Human subjects with impaired beta-cell function and glucose tolerance have higher levels of intra-islet intact GLP-1. Metabolism 2025; 163:156087. [PMID: 39626843 DOI: 10.1016/j.metabol.2024.156087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/08/2024]
Abstract
AIMS A number of studies have suggested that pancreatic α cells produce intact GLP-1, thereby constituting a gut-independent paracrine incretin system. However, the debate on whether human α cells contain intact GLP-1 and whether this relates to the presence of diabetes is still ongoing. This study aimed to determine the presence of proglucagon-derived peptides, including GLP-1 isoforms, in pancreas biopsies obtained during partial pancreatectomy from metabolically profiled human donors, stratified according to pre-surgery glucose tolerance. METHODS We enrolled 61 individuals with no known history of type 2 diabetes (31F/30M, age 64.6 ± 10.6 yrs., BMI 24.2 ± 3.68 kg/m2) scheduled for partial pancreatectomy for periampullary neoplasm. Differences in glucose tolerance and insulin secretion/sensitivity were assessed using preoperative 2 h OGTT, 4 h-Mixed Meal Test and Hyperinsulinemic Euglycemic Clamp. Subjects were subsequently classified as normal glucose tolerant (NGT, n = 19), impaired glucose tolerant (IGT, n = 20) or newly diagnosed diabetes (DM) (n = 22). We measured total GLP-1, intact GLP-1, glucagon, insulin, and C-peptide in pancreas biopsies and plasma from these subjects and correlated the results with their secretory and metabolic parameters. RESULTS Extractable levels of total GLP-1 were 23.9 ± 2.66 pmol/g, while intact GLP-1 levels were 1.15 ± 0.18 pmol/g. When we examined proglucagon derived peptides (adjusted for glucagon levels), in subjects classified according to glucose tolerance, we observed similar levels of total GLP-1, however, intact GLP-1 was significantly increased in IGT and DM groups and inversely associated with beta cell glucose sensitivity and insulin secretion in vivo. CONCLUSIONS Our data show that development of glucose intolerance and beta cell dysfunction are significantly associated with increased levels of intra-islet intact GLP-1, a potentially beneficial adaptation of the paracrine regulation of insulin secretion in type 2 diabetes.
Collapse
Affiliation(s)
- Teresa Mezza
- Pancreas Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Roma, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
| | | | - Gianfranco Di Giuseppe
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Endocrinologia e Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Pietro Manuel Ferraro
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Sezione di Nefrologia, Dipartimento di Medicina, Università degli Studi di Verona, Italy
| | - Laura Soldovieri
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Endocrinologia e Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Gea Ciccarelli
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Endocrinologia e Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Michela Brunetti
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Endocrinologia e Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Giuseppe Quero
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Chirurgia Digestiva, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Sergio Alfieri
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Chirurgia Digestiva, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Enrico Celestino Nista
- Pancreas Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Roma, Italy
| | - Antonio Gasbarrini
- Pancreas Unit, CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Roma, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Vincenzo Tondolo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Digestive Surgery Unit, Ospedale Isola Tiberina - Gemelli Isola, Roma, Italy
| | - Andrea Mari
- Institute of Neuroscience, National Council of Research - Padua (IT), Italy
| | - Alfredo Pontecorvi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Endocrinologia e Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Andrea Giaccari
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Roma, Italy; Endocrinologia e Diabetologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Krieger JP, Daniels D, Lee S, Mastitskaya S, Langhans W. Glucagon-Like Peptide-1 Links Ingestion, Homeostasis, and the Heart. Compr Physiol 2025; 15:e7. [PMID: 39887844 PMCID: PMC11790259 DOI: 10.1002/cph4.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 02/01/2025]
Abstract
Glucagon-like peptide-1 (GLP-1), a hormone released from enteroendocrine cells in the distal small and large intestines in response to nutrients and other stimuli, not only controls eating and insulin release, but is also involved in drinking control as well as renal and cardiovascular functions. Moreover, GLP-1 functions as a central nervous system peptide transmitter, produced by preproglucagon (PPG) neurons in the hindbrain. Intestinal GLP-1 inhibits eating by activating vagal sensory neurons directly, via GLP-1 receptors (GLP-1Rs), but presumably also indirectly, by triggering the release of serotonin from enterochromaffin cells. GLP-1 enhances glucose-dependent insulin release via a vago-vagal reflex and by direct action on beta cells. Finally, intestinal GLP-1 acts on the kidneys to modulate electrolyte and water movements, and on the heart, where it provides numerous benefits, including anti-inflammatory, antiatherogenic, and vasodilatory effects, as well as protection against ischemia/reperfusion injury and arrhythmias. Hindbrain PPG neurons receive multiple inputs and project to many GLP-1R-expressing brain areas involved in reward, autonomic functions, and stress. PPG neuron-derived GLP-1 is involved in the termination of large meals and is implicated in the inhibition of water intake. This review details GLP-1's roles in these interconnected systems, highlighting recent findings and unresolved issues, and integrating them to discuss the physiological and pathological relevance of endogenous GLP-1 in coordinating these functions. As eating poses significant threats to metabolic, fluid, and immune homeostasis, the body needs mechanisms to mitigate these challenges while sustaining essential nutrient intake. Endogenous GLP-1 plays a crucial role in this "ingestive homeostasis."
Collapse
Affiliation(s)
- Jean-Philippe Krieger
- Jean-Philippe Krieger, Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057 Zurich
| | - Derek Daniels
- Department of Biological Sciences and the Center for Ingestive Behavior Research, University at Buffalo, the State University of New York, Buffalo NY 14260 USA
| | - Shin Lee
- Shin J. Lee, Neurimmune AG, Wagistrasse 18, 8952 Schlieren, Switzerland
| | - Svetlana Mastitskaya
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Dept. of Health Sciences and Technology, ETH Zurich, 8603 Schwerzenbach, Switzerland
| |
Collapse
|
11
|
Yang K, Wu YT, He Y, Dai JX, Luo YL, Xie JH, Ding WJ. GLP-1 and IL-6 regulates obesity in the gut and brain. Life Sci 2025; 362:123339. [PMID: 39730038 DOI: 10.1016/j.lfs.2024.123339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/06/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
Obesity is a chronic metabolic disease characterized by excessive nutrient intake leading to increased subcutaneous or visceral fat, resulting in pathological and physiological changes. The incidence rate of obesity, an important form of metabolic syndrome, is increasing worldwide. Excess appetite is a key pathogenesis of obesity, and the inflammatory response induced by obesity has received increasing attention. This review focuses on the role of appetite-regulating factor (Glucogan-like peptide 1) and inflammatory factor (Interleukin-6) in the gut and brain in individuals with obesity and draws insights from the current literature.
Collapse
Affiliation(s)
- Kun Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu-Ting Wu
- Chengdu University of Traditional Chinese Medicine, 1166 Luitai Avenue, Chengdu, Sichuan 611137, China
| | - Yan He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin-Xiu Dai
- Chengdu University of Traditional Chinese Medicine, 1166 Luitai Avenue, Chengdu, Sichuan 611137, China
| | - Yu-Lu Luo
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing-Hui Xie
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei-Jun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
12
|
Nishikawa H, Kim SK, Asai A. The Role of Myokines in Liver Diseases. Int J Mol Sci 2025; 26:1043. [PMID: 39940810 PMCID: PMC11817747 DOI: 10.3390/ijms26031043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Myokine is a general term for hormones, peptides, and other substances secreted by skeletal muscle. Myokine has attracted much attention in recent years as a key substance for understanding the mechanism of "exercise and health". Skeletal muscle accounts for about 40% of the total human weight and is now recognized as an endocrine organ that produces myokines, which have physiological activity. Representative myokines include IL-6, myostatin, irisin, brain-derived neurotropic factor, fibroblast growth factor-21, and decorin. On the other hand, sarcopenia, defined by quantitative and qualitative loss of skeletal muscle, is a condition that has received much attention in recent years because of its close correlation with prognosis. In patients with chronic liver disease (CLD), sarcopenia is a common complication. Mechanisms underlying sarcopenia in CLD patients have been reported to involve protein-energy malnutrition, which is characteristic of patients with cirrhosis, signaling involved in protein synthesis and degradation, myokines such as myostatin and decorin, the ubiquitin-proteasome pathway, sex hormones such as testosterone, dysbiosis, and insulin resistance, etc., in addition to aging. Each of these pathological conditions is thought to be intricately related to each other, leading to sarcopenia. This review will summarize the relationship between CLD and myokines.
Collapse
Affiliation(s)
- Hiroki Nishikawa
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, 2-7, Daigakumachi, Takatsuki 569-8686, Osaka, Japan;
| | - Soo Ki Kim
- Department of Gastroenterology, Kobe Asahi Hospital, Kobe 653-8501, Hyogo, Japan
| | - Akira Asai
- Second Department of Internal Medicine, Osaka Medical and Pharmaceutical University, 2-7, Daigakumachi, Takatsuki 569-8686, Osaka, Japan;
| |
Collapse
|
13
|
An J, Fu D, Chen X, Guan C, Li L, Bai J, Lv H. Revisiting the role of IL-27 in obesity-related metabolic diseases: safeguard or perturbation? Front Immunol 2025; 15:1498288. [PMID: 39906735 PMCID: PMC11792170 DOI: 10.3389/fimmu.2024.1498288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/31/2024] [Indexed: 02/06/2025] Open
Abstract
The prevalence of metabolic diseases, such as obesity, has been steadily increasing in recent years, posing a significant threat to public health. Therefore, early identification and intervention play a crucial role. With the deepening understanding of the etiology of metabolic diseases, novel therapeutic targets are emerging for the treatment of obesity, lipid metabolism disorders, cardiovascular and cerebrovascular diseases, glucose metabolism disorders, and other related metabolic conditions. IL-27, as a multi-potent cytokine, holds great promise as a potential candidate target in this regard. This article provides a comprehensive review of the latest findings on IL-27 expression and signal transduction in the regulation of immune inflammatory cells, as well as its implications in obesity and other related metabolic diseases. Furthermore, it explores the potential of IL-27 as a novel therapeutic target for the treatment of obesity and metabolic disorders. Finally, an overview is presented on both the opportunities and challenges associated with targeting IL-27 for therapeutic interventions.
Collapse
Affiliation(s)
- Jinyang An
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Donghua Fu
- Department of Endocrinology, The People’s Hospital of Yuzhong County, Lanzhou, Gansu, China
| | - Ximei Chen
- Department of General Medicine, Zhengzhou Yihe Hospital affiliated to Henan University, Zhengzhou, Henan, China
| | - Conghui Guan
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Lingling Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Jia Bai
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Haihong Lv
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
14
|
Chen L, Zhou H, Gong Y, Tang Y, Su H, Zhang Z, Tong P, Chen G. Clinical outcome changes in sarcopenic obesity: a meta-analysis of exercise training methods. BMC Geriatr 2025; 25:33. [PMID: 39815241 PMCID: PMC11734427 DOI: 10.1186/s12877-024-05655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/23/2024] [Indexed: 01/18/2025] Open
Abstract
AIM Assessing the effect of various forms of exercise training on patients with sarcopenic obesity. METHODS Two independent reviewers systematically searched English and Chinese databases (PubMed, Embase, Cochrane Library, Web of Science, CNKI) for randomized controlled trials on various exercise training effects in sarcopenic obesity patients until October 2023. Reference materials and grey literature were also included. Selected studies underwent screening, data extraction, and quality assessment. Meta-analysis was conducted using Review Manager 5.4 software. RESULTS A total of 8 studies were included in the final analysis. The Meta-analysis results indicated that resistance training (RT) significantly improved grip strength (MD = 3.85, 95%CI: 1.50 to 6.20, P < 0.01), percentage of body fat (MD = -2.96, 95%CI: -4.19 to -1.74, P < 0.01), walking speed (MD = 0.23, 95%CI: 0.01 to 0.46, P = 0.04), IGF-1(MD = 0.79, 95%CI: 0.05 to 1.52, P = 0.04) and knee extension strength (MD = 4.85, 95%CI: 1.97 to 7.72, P < 0.01). There was no statistically significant difference observed in weight (MD = -0.61, 95%CI: -4.06 to 2.84, P = 0.73). Aerobic training (AT) resulted in a significant reduction in weight among patients with SO (MD = -6.07, 95%CI: -9.89 to -2.25, P < 0.01), while no statistically significant differences were observed in other outcome measures. Mixed training (MT) significantly improved percentage of body fat (MD = -2.42, 95%CI: -3.58 to -1.26, P < 0.01), weight (MD = -4.40, 95%CI: -8.40 to -0.40, P = 0.03), IGF-1 (MD = 1.01, 95%CI: 0.45 to 1.56, P < 0.01), and walking speed (MD = 0.15, 95%CI: 0.04 to 0.26, P < 0.01). However, no statistically significant differences were observed in grip strength (MD = -0.70, 95%CI: -4.00 to 2.60, P = 0.68) and knee extension strength (MD = 1.73, 95%CI: -1.31 to 4.78, P = 0.26). RT, AT, and MT exercise could not significantly improve the level of serum IL-6 in patients with SO, and the difference was not statistically significant [MD = -0.01,95%CI:-0.27 to 0.24, P = 0.92]. CONCLUSION Various exercise training methods have differing effects on muscle-reducing obesity treatment. Compared to aerobic training, resistance training, and mixed training may offer more pronounced improvements, enhancing physical functioning in sarcopenic obesity patients. This underscores the clinical significance of exercise intervention in treating muscle-reducing obesity, suggesting future studies explore exercise intervention's role and mechanism, particularly related to IGF-1, IL-6, and other cytokines.
Collapse
Affiliation(s)
- Lei Chen
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310006, China
| | - Haojing Zhou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310006, China
| | - Yichen Gong
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310006, China
| | - Yi Tang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310006, China
| | - Hai Su
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310006, China
| | - Zhongyi Zhang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, 310006, China
| | - Peijian Tong
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, Zhejiang Province, 310053, China.
| | - Guoqian Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, Zhejiang Province, 310053, China.
| |
Collapse
|
15
|
Termite F, Archilei S, D’Ambrosio F, Petrucci L, Viceconti N, Iaccarino R, Liguori A, Gasbarrini A, Miele L. Gut Microbiota at the Crossroad of Hepatic Oxidative Stress and MASLD. Antioxidants (Basel) 2025; 14:56. [PMID: 39857390 PMCID: PMC11759774 DOI: 10.3390/antiox14010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver condition marked by excessive lipid accumulation in hepatic tissue. This disorder can lead to a range of pathological outcomes, including metabolic dysfunction-associated steatohepatitis (MASH) and cirrhosis. Despite extensive research, the molecular mechanisms driving MASLD initiation and progression remain incompletely understood. Oxidative stress and lipid peroxidation are pivotal in the "multiple parallel hit model", contributing to hepatic cell death and tissue damage. Gut microbiota plays a substantial role in modulating hepatic oxidative stress through multiple pathways: impairing the intestinal barrier, which results in bacterial translocation and chronic hepatic inflammation; modifying bile acid structure, which impacts signaling cascades involved in lipidic metabolism; influencing hepatocytes' ferroptosis, a form of programmed cell death; regulating trimethylamine N-oxide (TMAO) metabolism; and activating platelet function, both recently identified as pathogenetic factors in MASH progression. Moreover, various exogenous factors impact gut microbiota and its involvement in MASLD-related oxidative stress, such as air pollution, physical activity, cigarette smoke, alcohol, and dietary patterns. This manuscript aims to provide a state-of-the-art overview focused on the intricate interplay between gut microbiota, lipid peroxidation, and MASLD pathogenesis, offering insights into potential strategies to prevent disease progression and its associated complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Luca Miele
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy (S.A.)
| |
Collapse
|
16
|
Meier DT, de Paula Souza J, Donath MY. Targeting the NLRP3 inflammasome-IL-1β pathway in type 2 diabetes and obesity. Diabetologia 2025; 68:3-16. [PMID: 39496966 DOI: 10.1007/s00125-024-06306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/30/2024] [Indexed: 11/06/2024]
Abstract
Increased activity of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome-IL-1β pathway is observed in obesity and contributes to the development of type 2 diabetes and its complications. In this review, we describe the pathological activation of IL-1β by metabolic stress, ageing and the microbiome and present data on the role of IL-1β in metabolism. We explore the physiological role of the IL-1β pathway in insulin secretion and the relationship between circulating levels of IL-1β and the development of diabetes and associated diseases. We highlight the paradoxical nature of IL-1β as both a friend and a foe in glucose regulation and provide details on clinical translation, including the glucose-lowering effects of IL-1 antagonism and its impact on disease modification. We also discuss the potential role of IL-1β in obesity, Alzheimer's disease, fatigue, gonadal dysfunction and related disorders such as rheumatoid arthritis and gout. Finally, we address the safety of NLRP3 inhibition and IL-1 antagonists and the prospect of using this therapeutic approach for the treatment of type 2 diabetes and its comorbidities.
Collapse
Affiliation(s)
- Daniel T Meier
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Joyce de Paula Souza
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Marc Y Donath
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| |
Collapse
|
17
|
Fu Q, Dai H, Shen S, He Y, Zheng S, Jiang H, Gu P, Sun M, Zhu X, Xu K, Yang T. Interactions of genes with alcohol consumption affect insulin sensitivity and beta cell function. Diabetologia 2025; 68:116-127. [PMID: 39425782 DOI: 10.1007/s00125-024-06291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/12/2024] [Indexed: 10/21/2024]
Abstract
AIMS/HYPOTHESIS Alcohol consumption has complex effects on diabetes and metabolic disease, but there is widespread heterogeneity within populations and the specific reasons are unclear. Genetic factors may play a role and warrant exploration. The aim of this study was to elucidate genetic variants modulating the impact of alcohol consumption on insulin sensitivity and pancreatic beta cell function within populations presenting normal glucose tolerance (NGT). METHODS We recruited 4194 volunteers in Nanjing, 854 in Jurong and an additional 5833 in Nanjing for Discovery cohorts 1 and 2 and a Validation cohort, respectively. We performed an OGTT on all participants, establishing a stringent NGT group, and then assessed insulin sensitivity and beta cell function. Alcohol consumption was categorised as abstinent, light-to-moderate (<210 g per week) or heavy (≥210 g per week). After excluding ineligible individuals, an exploratory genome-wide association study identified potential variants interacting with alcohol consumption in 1862 NGT individuals. These findings were validated in an additional cohort of 2169 NGT individuals. Cox proportional hazard regression was further employed to evaluate the effect of the interaction between the potential variants and alcohol consumption on the risk of type 2 diabetes within the UK Biobank cohort. RESULTS A significant correlation was observed between drinking levels and insulin sensitivity, accompanied by a consequent inverse relationship with insulin resistance and beta cell insulin secretion after adjusting for confounding factors in NGT individuals. However, no significant associations were noted in the disposition indexes. The interaction of variant rs56221195 with alcohol intake exhibited a pronounced effect on the liver insulin resistance index (LIRI) in the discovery set, corroborated in the validation set (combined p=1.32 × 10-11). Alcohol consumption did not significantly affect LIRI in rs56221195 wild-type (TT) carriers, but a strong negative association emerged in heterozygous (TA) and homozygous (AA) individuals. The rs56221195 variant also significantly interacts with alcohol consumption, influencing the total insulin secretion index INSR120 (the ratio of the AUC of insulin to glucose from 0 to 120 min) (p=2.06 × 10-9) but not disposition index. In the UK Biobank, we found a significant interaction between rs56221195 and alcohol consumption, which was linked to the risk of type 2 diabetes (HR 0.897, p=0.008). CONCLUSIONS/INTERPRETATION Our findings reveal the effects of the interaction of alcohol and rs56221195 on hepatic insulin sensitivity in NGT individuals. It is imperative to weigh potential benefits and detriments thoughtfully when considering alcohol consumption across diverse genetic backgrounds.
Collapse
Affiliation(s)
- Qi Fu
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Dai
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sipeng Shen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yunqiang He
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuai Zheng
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hemin Jiang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pan Gu
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Min Sun
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaowei Zhu
- Department of Endocrinology and Metabolism, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.
- Department of Endocrinology and Metabolism, Wuxi People's Hospital, Wuxi, China.
- Department of Endocrinology and Metabolism, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| | - Kuanfeng Xu
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Tao Yang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- Department of Endocrinology and Metabolism, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.
- Department of Endocrinology and Metabolism, Wuxi People's Hospital, Wuxi, China.
- Department of Endocrinology and Metabolism, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
18
|
Ahmadi A, Gamboa J, Norman JE, Enkhmaa B, Tucker M, Bennett BJ, Zelnick LR, Fan S, Berglund LF, Ikizler TA, de Boer IH, Cummings BP, Roshanravan B. Impaired Incretin Homeostasis in Nondiabetic Moderate-to-Severe CKD. Clin J Am Soc Nephrol 2025; 20:12-22. [PMID: 39480994 PMCID: PMC11737449 DOI: 10.2215/cjn.0000000000000566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024]
Abstract
Key Points Total incretin levels and incretin response during oral glucose tolerance testing were significantly higher among patients with moderate-to-severe nondiabetic patients with CKD compared with healthy people. Unlike in healthy individuals, increased incretin response was not correlated with insulin response and coincided with persistently greater glucagon levels to oral glucose tolerance testing in CKD. Disruption in the incretin system and glucagon dynamics may contribute to metabolic complications in moderate-to-severe CKD. Background Incretins are regulators of insulin secretion and glucose homeostasis metabolized by dipeptidyl peptidase-4 (DPP-4). CKD may modify incretin release, metabolism, or response. Methods We performed 2-hour oral glucose tolerance testing in 59 people with nondiabetic CKD (eGFR <60 ml/min per 1.73 m2) and 39 matched controls. We measured total area under the curve and incremental area under the curve (iAUC) of plasma total glucagon-like peptide-1 (GLP-1) and total glucose-dependent insulinotropic polypeptide (GIP). Fasting DPP-4 levels and activity were measured. Linear regression was used to adjust for demographic, body composition, and lifestyle factors. Results Mean (SD) eGFR was 38±13 and 89±17 ml/min per 1.73 m2 in patients with CKD and controls, respectively. GLP-1 total area under the curve and GIP iAUC were higher in patients with CKD than controls with a mean of 1531±1452 versus 1364±1484 pM×min and 62,370±33,453 versus 42,365±25,061 pg×min/ml, respectively. After adjustment, CKD was associated with 15,271 pM×min/ml greater GIP iAUC (95% confidence intervals [CIs], 387 to 30,154) compared with controls. Adjustment for covariates attenuated associations of CKD with higher GLP-1 iAUC (adjusted difference, 122; 95% CI, −619 to 864). Plasma glucagon levels were higher at 30 minutes (mean difference, 1.6; 95% CI, 0.3 to 2.8 mg/dl) and 120 minutes (mean difference, 0.84; 95% CI, 0.2 to 1.5 mg/dl) in patients with CKD compared with controls. There were no differences in insulin levels or plasma DPP-4 activity or levels between groups. Conclusions Overall, incretin response to oral glucose is preserved or augmented in moderate-to-severe CKD, without apparent differences in circulating DPP-4 concentration or activity. However, neither insulin secretion nor glucagon suppression is enhanced.
Collapse
Affiliation(s)
- Armin Ahmadi
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, California
| | - Jorge Gamboa
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jennifer E Norman
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, California
| | - Bamba Enkhmaa
- Division of Endocrinology, Department of Internal Medicine, University of California, Davis, California
| | - Madelynn Tucker
- Department of Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California Davis, Sacramento, California
| | - Brian J Bennett
- Obesity and Metabolism Research Unit, Western Human Nutrition Research Center, USDA ARS, Davis, California
| | - Leila R Zelnick
- Division of Nephrology and Kidney Research Institute, University of Washington, Seattle, Washington
| | - Sili Fan
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, California
| | - Lars F Berglund
- Department of Internal Medicine, University of California, Davis, California
| | - Talat Alp Ikizler
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ian H de Boer
- Division of Nephrology and Kidney Research Institute, University of Washington, Seattle, Washington
| | - Bethany P Cummings
- Department of Surgery, Center for Alimentary and Metabolic Sciences, School of Medicine, University of California Davis, Sacramento, California
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California
| | - Baback Roshanravan
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, California
| |
Collapse
|
19
|
Wang D, Wei T, Cui X, Xia L, Jiang Y, Yin D, Liao X, Li F, Li J, Wu Q, Lin X, Lang S, Le Y, Yang J, Yang J, Wei R, Hong T. Fam3a-mediated prohormone convertase switch in α-cells regulates pancreatic GLP-1 production in an Nr4a2-Foxa2-dependent manner. Metabolism 2025; 162:156042. [PMID: 39362520 DOI: 10.1016/j.metabol.2024.156042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Fam3a has been demonstrated to regulate pancreatic β-cell function and glucose homeostasis. However, the role and mechanism of Fam3a in regulating α-cell function remain unexplored. METHODS Glucagon and glucagon-like peptide-1 (GLP-1) levels in pancreas and plasma were measured in global Fam3a knockout (Fam3a-/-) mice. Human islet single-cell RNA sequencing (scRNA-seq) datasets were utilized to analyze gene expression correlations between FAM3A and PCSK1 (encoding PC1/3, which processes proglucagon into GLP-1). Mouse pancreatic α-cell line αTC1.9 cells were transfected with Fam3a siRNA or plasmid for Fam3a knockdown or overexpression to explore the effects of Fam3a on PC1/3 expression and GLP-1 production. The downstream mediator (including Nr4a2) was identified by transcriptomic analysis, and its role was confirmed by Fam3a knockdown or overexpression in αTC1.9 cells. Based on the interacted protein of Nr4a2 and the direct binding to Pcsk1 promoter, the transcription factor Foxa2 was selected for further verification. Nuclear translocation assay and dual-luciferase reporter assay were used to clarify the involvement of Fam3a-Nr4a2-Foxa2 pathway in PC1/3 expression and GLP-1 production. Moreover, α-cell-specific Fam3a knockout (Fam3aα-/-) mice were constructed to evaluate the metabolic variables and hormone levels under normoglycemic, high-fat diet (HFD)-fed and streptozotocin (STZ)-induced diabetic conditions. Exendin 9-39 (Ex9), a GLP-1 receptor antagonist, was used to investigate GLP-1 paracrine effects in Fam3aα-/- mice and in their primary islets. RESULTS Compared with wild-type mice, pancreatic and plasma active GLP-1 levels were increased in Fam3a-/- mice. Analysis of human islet scRNA-seq datasets showed a significant negative correction between FAM3A and PCSK1 in α-cells. Fam3a knockdown upregulated PC1/3 expression and GLP-1 production in αTC1.9 cells, while Fam3a overexpression displayed inverse effects. Transcriptomic analysis identified Nr4a2 as a key downstream mediator of Fam3a, and Nr4a2 expression in αTC1.9 cells was downregulated and upregulated by Fam3a knockdown and overexpression, respectively. Nr4a2 silencing increased PC1/3 expression, albeit Nr4a2 did not directly bind to Pcsk1 promoter. Instead, Nr4a2 formed a complex with Foxa2 to facilitate Fam3a-mediated Foxa2 nuclear translocation. Foxa2 negatively regulated PC1/3 expression and GLP-1 production. Besides, Foxa2 inhibited the transcriptional activity of Pcsk1 promoter at specific binding sites 10 and 6, and this inhibition was intensified by Nr4a2 in αTC1.9 cells. Compared with Flox/cre littermates, improved glucose tolerance, increased active GLP-1 level in pancreas and plasma, upregulated plasma insulin level in response to glucose, and decreased plasma glucagon level were observed in Fam3aα-/- mice. Primary islets isolated from Fam3aα-/- mice also showed an increase in active GLP-1 and insulin release. In addition, the insulinotropic effect of intra-islet GLP-1 was blocked by Ex9 in Fam3aα-/- mice and in their primary islets. Similarly, HFD-fed Fam3aα-/- mice also exhibited an improved glucose tolerance. Both HFD-fed and STZ-induced diabetic Fam3aα-/- mice showed an increased pancreatic active GLP-1 level, an elevated plasma insulin level and a reduced plasma glucagon level. CONCLUSIONS Fam3a deficiency in α-cells enhances pancreatic GLP-1 production to improve β-cell function via paracrine signaling in an Nr4a2-Foxa2-PC1/3-dependent manner. Our study unveils a novel strategy for reprogramming α-cell proglucagon processing output from glucagon to GLP-1 and deepen the understanding of crosstalk between α-cells and β-cells.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Tianjiao Wei
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Xiaona Cui
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Li Xia
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Yafei Jiang
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Deshan Yin
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Xinyue Liao
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Fei Li
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Jian Li
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Qi Wu
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Xiafang Lin
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Shan Lang
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Yunyi Le
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China
| | - Rui Wei
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China.
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, State Key Laboratory of Female Fertility Promotion, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
20
|
Harada K, Wada E, Osuga Y, Shimizu K, Uenoyama R, Hirai MY, Maekawa F, Miyazaki M, Hayashi YK, Nakamura K, Tsuboi T. Intestinal butyric acid-mediated disruption of gut hormone secretion and lipid metabolism in vasopressin receptor-deficient mice. Mol Metab 2025; 91:102072. [PMID: 39668067 PMCID: PMC11728074 DOI: 10.1016/j.molmet.2024.102072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024] Open
Abstract
OBJECTIVES Arginine vasopressin (AVP), known as an antidiuretic hormone, is also crucial in metabolic homeostasis. Although AVP receptor-deficient mice exhibit various abnormalities in glucose and lipid metabolism, the mechanism underlying these symptoms remains unclear. This study aimed to explore the involvement of the gut hormones including glucagon-like peptide-1 (GLP-1) and microbiota as essential mediators. METHODS We used the mouse GLP-1-secreting cell line, GLUTag, and performed live cell imaging to examine the contribution of V1a and V1b vasopressin receptors (V1aR and V1bR, respectively) to GLP-1 secretion. We next investigated the hormone dynamics of V1aR-deficient mice (V1aR-/- mice), V1bR-deficient mice (V1bR-/- mice), and V1aR/V1bR-double deficient mice (V1aR-/-V1bR-/-mice). RESULTS AVP induced the increase in intracellular Ca2+ levels and GLP-1 secretion from GLUTag cells in a V1aR and V1bR-dependent manner. AVP receptor-deficient mice, particularly V1aR-/-V1bR-/- mice, demonstrated impaired secretion of GLP-1 and peptide YY secreted by enteroendocrine L cells. V1aR-/-V1bR-/-mice also exhibited abnormal lipid accumulation in the brown adipose tissue and skeletal muscle. We discovered that V1aR-/-V1bR-/- mice showed increased Paneth cell-related gene expression in the small intestine, which was attributed to increased fecal butyric acid levels. Exposure to butyric acid reduced GLP-1 secretion in L cell line. Additionally, human Paneth cell-related gene expressions negatively correlated with that of V1 receptor genes. CONCLUSIONS The deficiency in V1 receptor genes may increase gut butyric acid levels and impair the function of L cells, thus dysregulating lipid homeostasis in the brown adipose tissue and skeletal muscle. This study highlights the importance of appropriate control of the gut microbiota and its metabolites, including butyric acid, for the optimum functioning of enteroendocrine cells.
Collapse
Affiliation(s)
- Kazuki Harada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan; Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Eiji Wada
- Department of Pathophysiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku, Tokyo 160-8402, Japan
| | - Yuri Osuga
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Kie Shimizu
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan; Division of Life Sciences, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Reiko Uenoyama
- The United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama-city, Kanagawa 230-0045, Japan
| | - Fumihiko Maekawa
- Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Masao Miyazaki
- The United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | - Yukiko K Hayashi
- Department of Pathophysiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku, Tokyo 160-8402, Japan
| | - Kazuaki Nakamura
- Department of Pharmacology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan; Division of Life Sciences, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Takashi Tsuboi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan.
| |
Collapse
|
21
|
Shi X, Hu X, Fang X, Jia L, Wei F, Peng Y, Liu M, Gao A, Zhao K, Chen F, Hu X, Hong J, Ning G, Song Y, Wang J, Wang Y. A feeding-induced myokine modulates glucose homeostasis. Nat Metab 2025; 7:68-83. [PMID: 39747483 DOI: 10.1038/s42255-024-01175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
Maintaining blood glucose homeostasis during fasting and feeding is crucial for the prevention of dysregulation that can lead to either hypo- or hyperglycaemia. Here we identified feimin, encoded by a gene with a previously unknown function (B230219D22Rik in mice, C5orf24 in humans), as a key modulator of glucose homeostasis. Feimin is secreted from skeletal muscle during feeding and binds to its receptor, receptor protein tyrosine kinase Mer (MERTK), promoting glucose uptake and inhibiting glucose production by activation of AKT. Administration of feimin and insulin synergistically improves blood glucose homeostasis in both normal and diabetic mice. Notably, a specific single nucleotide polymorphism (rs7604639, G>A) within the MERTK gene, causing an amino acid substitution (R466K) within the feimin-MERTK binding region, leads to reduced association with feimin and elevated postprandial blood glucose and insulin levels in humans. Our findings underscore a role of the feimin-MERTK signalling axis in glucose homeostasis, providing valuable insights into potential therapeutic avenues for diabetes.
Collapse
Affiliation(s)
- Xiaoliu Shi
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiao Hu
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xinlei Fang
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Liangjie Jia
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Fangchao Wei
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Peng
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Menghao Liu
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Aibo Gao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Ke Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Shandong Institute of Endocrine & Metabolic Disease, Jinan, China
- Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fengyi Chen
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaoli Hu
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jie Hong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China.
- Shandong Institute of Endocrine & Metabolic Disease, Jinan, China.
- Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, China.
| | - Yiguo Wang
- State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
22
|
Zhang L, Xu F, Hou L. IL-6 and diabetic kidney disease. Front Immunol 2024; 15:1465625. [PMID: 39749325 PMCID: PMC11693507 DOI: 10.3389/fimmu.2024.1465625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Diabetic kidney disease (DKD) is a severe microvascular complication of diabetes associated with high mortality and disability rates. Inflammation has emerged as a key pathological mechanism in DKD, prompting interest in novel therapeutic approaches targeting inflammatory pathways. Interleukin-6 (IL-6), a well-established inflammatory cytokine known for mediating various inflammatory responses, has attracted great attention in the DKD field. Although multiple in vivo and in vitro studies highlight the potential of targeting IL-6 in DKD treatment, its exact roles in the disease remains unclear. This review presents the roles of IL-6 in the pathogenesis of DKD, including immunoinflammation, metabolism, hemodynamics, and ferroptosis. In addition, we summarize the current status of IL-6 inhibitors in DKD-related clinical trials and discuss the potential of targeting IL-6 for treating DKD in the clinic.
Collapse
Affiliation(s)
- Lei Zhang
- Pharmacy Department, Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
| | - Futian Xu
- Logistics Management Department, Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
| | - Liyan Hou
- Pharmacy Department, Weihai Central Hospital Affiliated to Qingdao University, Weihai, China
| |
Collapse
|
23
|
Bojarczuk A, Garbacz A, Żekanowski C, Borzemska B, Cięszczyk P, Maculewicz E. Systematic Review of IL-1, IL-4, IL-6, IL-10, IL-15, and IL-18 Gene Polymorphisms and Meta-Analysis of IL-6 Variant and Its Association with Overweight and Obesity Risk in Men. Int J Mol Sci 2024; 25:13501. [PMID: 39769263 PMCID: PMC11679641 DOI: 10.3390/ijms252413501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Obesity is a complex health risk influenced by genetic, environmental, and lifestyle factors. This review systematically assessed the association between interleukin gene polymorphisms (rs16944, rs17561, rs1143623, rs1143633, rs1143634, rs1800587, rs2234677, and rs4848306), IL-4 (rs180275, rs1805010, IL-6 rs13306435, rs1800795, rs1800796, rs1800797, rs2228145, rs2228145, rs2229238, and rs4845623), IL-10 (rs1518110, rs1518111, rs1800871, rs1800872, rs1800896, rs1878672, rs2834167, rs3024491, rs3024496, rs3024498, and rs3024505), IL-15 (rs3136617, rs3136618, and rs2296135), and IL-18 (rs187238, rs1946518, rs2272127, rs2293225, and rs7559479) and the risk of overweight and obesity in adults, focusing on IL-6 rs1800795 through a meta-analysis. The focus on IL-6 in this review arises from its pleiotropic nature and unclear effect on obesity risk. The review included studies published from 1998 to 2023, sourced from Science Direct, EBSCOhost, Web of Science, and Google Scholar. Bias was assessed with the Cochrane Collaboration tool, and funnel plots were used for publication bias. Results were synthesized into pooled odds ratios (ORs) and confidence intervals (CIs). Thirty studies comprising approximately 29,998 participants were included. The selection criteria required that the articles include participants who were overweight or obese, and this condition needed to be linked to IL polymorphisms. In a meta-analysis, in the dominant model, the pooled OR was 1.26 (95% CI 1.08 to 1.47), indicating those with the GC/CC genotype for IL-6 rs1800795 are 1.26 times more likely to be overweight/obese than GG genotype carriers. For the recessive model, the OR was 1.25 (95% CI 1.04 to 1.51). The overdominant model showed no significant association (OR 1.08, 95% CI 0.94 to 1.25). Interleukin gene variation, particularly the IL-6 rs1800795 variant, is modestly associated with obesity risk. This suggests that other factors, such as the environment, also play a role in obesity. Thus, individuals with this particular IL-6 variant may have a slightly higher likelihood of being overweight or obese compared to those without it, but this is just one of many factors influencing obesity risk.
Collapse
Affiliation(s)
- Aleksandra Bojarczuk
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland; (C.Ż.); (B.B.); (P.C.)
| | - Aleksandra Garbacz
- Faculty of Animal Genetics and Conservation, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Cezary Żekanowski
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland; (C.Ż.); (B.B.); (P.C.)
| | - Beata Borzemska
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland; (C.Ż.); (B.B.); (P.C.)
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Paweł Cięszczyk
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland; (C.Ż.); (B.B.); (P.C.)
| | - Ewelina Maculewicz
- Faculty of Physical Education, Jozef Pilsudski University of Physical Education in Warsaw, 00-968 Warsaw, Poland;
- Department of Laboratory Diagnostics, Military Institute of Aviation Medicine, 01-755 Warsaw, Poland
| |
Collapse
|
24
|
Gubernatorova EO, Samsonov MY, Drutskaya MS, Lebedeva S, Bukhanova D, Materenchuk M, Mutig K. Targeting inerleukin-6 for renoprotection. Front Immunol 2024; 15:1502299. [PMID: 39723211 PMCID: PMC11668664 DOI: 10.3389/fimmu.2024.1502299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/08/2024] [Indexed: 12/28/2024] Open
Abstract
Sterile inflammation has been increasingly recognized as a hallmark of non-infectious kidney diseases. Induction of pro-inflammatory cytokines in injured kidney tissue promotes infiltration of immune cells serving to clear cell debris and facilitate tissue repair. However, excessive or prolonged inflammatory response has been associated with immune-mediated tissue damage, nephron loss, and development of renal fibrosis. Interleukin 6 (IL-6) is a cytokine with pleiotropic effects including a major role in inflammation. IL-6 signals either via membrane-bound (classic signaling) or soluble receptor forms (trans-signaling) thus affecting distinct cell types and eliciting various metabolic, cytoprotective, or pro-inflammatory reactions. Antibodies neutralizing IL-6 or its receptor have been developed for therapy of autoimmune and chronic non-renal inflammatory diseases. Small molecule inhibitors of Janus kinases acting downstream of the IL-6 receptor, as well as recombinant soluble glycoprotein 130 variants suppressing the IL-6 trans-signaling add to the available therapeutic options. Animal data and accumulating clinical experience strongly suggest that suppression of IL-6 signaling pathways bears therapeutic potential in acute and chronic kidney diseases. The present work analyses the renoprotective potential of clinically relevant IL-6 signaling inhibitors in acute kidney injury, chronic kidney disease, and kidney transplantation with focus on current achievements and future prospects.
Collapse
Affiliation(s)
- Ekaterina O. Gubernatorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Marina S. Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Russia
| | - Svetlana Lebedeva
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Medical Elementology, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | | | - Maria Materenchuk
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Kerim Mutig
- Department of Pharmacology, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
25
|
Yu LE, Yang WC, Liang YC. Crosstalk Within the Intestinal Epithelium: Aspects of Intestinal Absorption, Homeostasis, and Immunity. Biomedicines 2024; 12:2771. [PMID: 39767678 PMCID: PMC11673925 DOI: 10.3390/biomedicines12122771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Gut health is crucial in many ways, such as in improving human health in general and enhancing production in agricultural animals. To maximize the effect of a healthy gastrointestinal tract (GIT), an understanding of the regulation of intestinal functions is needed. Proper intestinal functions depend on the activity, composition, and behavior of intestinal epithelial cells (IECs). There are various types of IECs, including enterocytes, Paneth cells, enteroendocrine cells (EECs), goblet cells, tuft cells, M cells, and intestinal epithelial stem cells (IESCs), each with unique 3D structures and IEC distributions. Although the communication between IECs and other cell types, such as immune cells and neurons, has been intensively reviewed, communication between different IECs has rarely been addressed. The present paper overviews the networks among IECs that influence intestinal functions. Intestinal absorption is regulated by incretins derived from EECs that induce nutrient transporter activity in enterocytes. EECs, Paneth cells, tuft cells, and enterocytes release signals to activate Notch signaling, which modulates IESC activity and intestinal homeostasis, including proliferation and differentiation. Intestinal immunity can be altered via EECs, goblet cells, tuft cells, and cytokines derived from IECs. Finally, tools for investigating IEC communication have been discussed, including the novel 3D intestinal cell model utilizing enteroids that can be considered a powerful tool for IEC communication research. Overall, the importance of IEC communication, especially EECs and Paneth cells, which cover most intestinal functional regulating pathways, are overviewed in this paper. Such a compilation will be helpful in developing strategies for maintaining gut health.
Collapse
Affiliation(s)
| | | | - Yu-Chaun Liang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115201, Taiwan; (L.-E.Y.); (W.-C.Y.)
| |
Collapse
|
26
|
Cai A, Li Y, Xi X, Wang Q, Yang J, Wang L, Li H, Luo X, Zeng X. Analysis of risk factors and development of predictive model for malnutrition in patients with traumatic brain injury. Nutr Neurosci 2024; 27:1439-1449. [PMID: 38662341 DOI: 10.1080/1028415x.2024.2342152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Malnutrition is a highly prevalent complication in patients with traumatic brain injury (TBI), and it is closely related to the prognosis of patients. Accurate identification of patients at high risk of malnutrition is essential. Therefore, we analyzed the risk factors of malnutrition in patients with TBI and developed a model to predict the risk of malnutrition. A retrospective collection of 345 patients with TBI, and they were divided into malnutrition and comparison groups according to the occurrence of malnutrition. Univariate correlation and multifactor logistic regression analyses were performed to determine patients' malnutrition risk factors. We used univariate and logistic regression (forward stepwise method) analyses to identify significant predictors associated with malnutrition in patients with TBI and developed a predictive model for malnutrition prediction. The model's discrimination, calibration, and clinical utility were evaluated using the receiver operating characteristic (ROC) curve, calibration plots, and decision curve analysis (DCA). A total of 216 patients (62.6%) developed malnutrition. Multifactorial logistic regression analysis showed that pulmonary infection, urinary tract infection, dysphagia, application of NGT, GCS score ≤ 8, and low ADL score were independent risk factors for malnutrition in patients with TBI (P < 0.05). The area under the curve of the model was 0.947. Calibration plots showed good discrimination of model calibration. DCA showed that the column line plot models were all clinically meaningful when nutritional interventions were performed over a considerable range of threshold probabilities (0-0.98). Malnutrition is widespread in patients with TBI, and the nomogram is a good predictor of whether patients develop malnutrition.
Collapse
Affiliation(s)
- Ang Cai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yi Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiao Xi
- Stroke Biological Recovery Laboratory, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, The Teaching Affiliate of Harvard Medical School, Charlestown, MA, USA
| | - Qingmei Wang
- Stroke Biological Recovery Laboratory, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, The Teaching Affiliate of Harvard Medical School, Charlestown, MA, USA
| | - Junfeng Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Liugen Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Heping Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xun Luo
- Kerry Rehabilitation Medicine Research Institute, Shenzhen, People's Republic of China
| | - Xi Zeng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, People's Republic of China
| |
Collapse
|
27
|
Madini N, Vincenti A, Beretta A, Santero S, Viroli G, Cena H. Addressing Inflammaging and Disease-Related Malnutrition: Adequacy of Oral Nutritional Supplements in Clinical Care. Nutrients 2024; 16:4141. [PMID: 39683535 DOI: 10.3390/nu16234141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Disease-related malnutrition, with or without inflammation, in older adults is currently emerging as a public health priority. The use of Foods for Special Medical Purposes, including Oral Nutritional Supplements, and supplements is crucial to support patients in achieving their nutritional needs. Therefore, this article aims to comprehensively provide an analysis of the adequacy of FSMPs in meeting the nutritional requirements of different age-related diseases and takes into account the emerging role of inflammation. Moreover, it provides an identikit of the ideal products, following the pathology-specific guidelines. METHODS Data on 132 products were gathered through face-to-face meetings with companies' consultants. Specifically, information on energy, macronutrient, and micronutrient contents were collected, as well as on texture and flavors, osmolarity, cost, and packaging. RESULTS Most FSMPs met the daily recommendations for energy and protein intake. Nonetheless, few products contained β-hydroxy-β-methylbutyrate, optimal Branched-Chain Amino Acids ratios, arginine, glutamine, and omega-3 fatty acids. Furthermore, a marked predominance of FSMPs with a high osmolarity (85.7%), sweet taste (72%), and only animal protein content (79.5%) was observed. Cost analysis of FSMPs revealed a mean cost of EUR 5.35/portion. Products were mostly adequate for cancer, neurodegenerative diseases, diabetes, inflammatory bowel disease, end-stage kidney disease, dysphagiam and chronic obstructive pulmonary disease. However, gaps have been found for sarcopenia and abdominal surgery. CONCLUSION In light of the current market landscape, there is a need for a comprehensive regulation that indicates the optimal composition of FSMPs and the production of such products to tackle disease-related malnutrition.
Collapse
Affiliation(s)
- Nagaia Madini
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Alessandra Vincenti
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Alice Beretta
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Sara Santero
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Giulia Viroli
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
- Clinical Nutrition Unit, ICS Maugeri IRCCS, 27100 Pavia, Italy
| |
Collapse
|
28
|
Saponaro F, Bertolini A, Baragatti R, Galfo L, Chiellini G, Saba A, D'Urso G. Myokines and Microbiota: New Perspectives in the Endocrine Muscle-Gut Axis. Nutrients 2024; 16:4032. [PMID: 39683426 DOI: 10.3390/nu16234032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
This review explores the dual role of skeletal muscle as both a mechanical and endocrine organ, highlighting its contributions to overall health and its adaptability to various inputs such as nutrition, hormones, exercise, and injuries. In addition to its role in metabolism and energy conversion, skeletal muscle secretes signalling molecules called myokines (at rest) and exerkines (during/after physical exercise), which communicate with other organs like the brain, the cardiovascular system, and the immune system. Key molecules such as interleukins, irisin, and myostatin are discussed for their roles in mediating muscle health and inter-organ communication. This work also focuses on the muscle-gut axis, emphasising the bidirectional interaction between skeletal muscle and the gut microbiota, a complex ecosystem influencing immune defence, digestion, and metabolism. Muscle activity, particularly exercise, alters the gut microbial composition, promoting beneficial species, while gut-derived metabolites like short-chain fatty acids (SCFAs) impact muscle metabolism, mitochondrial function, and insulin sensitivity. Dysbiosis, or an imbalanced microbiota, can lead to muscle atrophy, inflammation, and metabolic dysfunction. This evidence highlights emerging research into myokines and exerkines as potential therapeutic targets for managing conditions like muscle decline, ageing, and metabolic diseases through muscle-gut interactions.
Collapse
Affiliation(s)
- Federica Saponaro
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Roma 56, 56126 Pisa, Italy
| | - Andrea Bertolini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Roma 56, 56126 Pisa, Italy
| | - Riccardo Baragatti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Roma 56, 56126 Pisa, Italy
| | - Leonardo Galfo
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Roma 56, 56126 Pisa, Italy
| | - Grazia Chiellini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Roma 56, 56126 Pisa, Italy
| | - Alessandro Saba
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Roma 56, 56126 Pisa, Italy
| | - Giuseppina D'Urso
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Via Roma 56, 56126 Pisa, Italy
| |
Collapse
|
29
|
Wlodarczyk B, Durko L, Walczak K, Talar-Wojnarowska R, Malecka-Wojciesko E. Select Endocrine Disorders and Exosomes in Early PDAC Diagnosis. Int J Mol Sci 2024; 25:12159. [PMID: 39596226 PMCID: PMC11594802 DOI: 10.3390/ijms252212159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Disturbances in carbohydrate metabolism are suggested to be the early symptoms of pancreatic ductal adenocarcinoma (PDAC). The accumulated data suggests that endocrine function-related biomarkers may represent a breakthrough in the early detection of PDAC. Factors which may predispose one to the development of PDAC are insulin resistance and hyperinsulinemia. Elevated insulin levels induce the onset of carcinogenesis by altering the differentiation and function of islet cells through stimulating growth factors, including insulin-like growth factors (IGFs). Impaired β cell function, along with the impact of PDAC-released factors (e.g., adrenomedullin (ADM), IGF-1, and macrophage inhibitory factor (MIF) on pancreatic islets, may contribute to the induction of diabetes associated with PDAC. Recently, exosomes have attracted worldwide attention due to their role in varied features of cell function, particularly in cancer progression. Exosomes comprise of small extracellular vesicles produced by almost all cells. These vesicles contain a vast array of biomolecules, including proteins and microRNAs. Exosomes participate in cancer growth and promote angiogenesis. They promote tumorigenesis and metastasis, and are associated with the acquisition of cancer cells resistant to chemotherapy. Data have been accumulating recently on the role of exosomes in the rapid recognition, prognosis and potential therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Barbara Wlodarczyk
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland
| | - Lukasz Durko
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland
| | - Konrad Walczak
- Department of Internal Diseases and Nephrodiabetology, Medical University of Lodz, 90-549 Lodz, Poland
| | | | - Ewa Malecka-Wojciesko
- Department of Digestive Tract Diseases, Medical University of Lodz, 90-153 Lodz, Poland
| |
Collapse
|
30
|
Cho H, Lim J. The emerging role of gut hormones. Mol Cells 2024; 47:100126. [PMID: 39426686 PMCID: PMC11577206 DOI: 10.1016/j.mocell.2024.100126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/13/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024] Open
Abstract
The gut is traditionally recognized as the central organ for the digestion and absorption of nutrients, however, it also functions as a significant endocrine organ, secreting a variety of hormones such as glucagon-like peptide 1, serotonin, somatostatin, and glucocorticoids. These gut hormones, produced by specialized intestinal epithelial cells, are crucial not only for digestive processes but also for the regulation of a wide range of physiological functions, including appetite, metabolism, and immune responses. While gut hormones can exert systemic effects, they also play a pivotal role in maintaining local homeostasis within the gut. This review discusses the role of the gut as an endocrine organ, emphasizing the stimuli, the newly discovered functions, and the clinical significance of gut-secreted hormones. Deciphering the emerging role of gut hormones will lead to a better understanding of gut homeostasis, innovative treatments for disorders in the gut, as well as systemic diseases.
Collapse
Affiliation(s)
- Hyeryeong Cho
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaechul Lim
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
31
|
Lnu R, Khanduri S, Khan Z, Ansari D, Mulani M, Gupta A, Alam N, Aggarwal A, Lnu S, Agrawal A. A Study of Small and Large Bowel Wall Thickness Using Computed Tomography and Its Histopathological Correlation. Cureus 2024; 16:e72932. [PMID: 39628742 PMCID: PMC11614315 DOI: 10.7759/cureus.72932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Small bowel imaging presents significant challenges due to the bowel's length, narrow caliber, and complex looping. Accurate diagnosis of gastrointestinal disorders often requires detailed imaging to differentiate various pathologies, such as inflammatory bowel disease (IBD), infections, ischemic conditions, and neoplasms. INTRODUCTION The small bowel plays a crucial role in digestion and absorption and is susceptible to various pathologies. CT imaging is essential for diagnosing bowel wall thickening, which can indicate a range of conditions. Dual-energy CT (DECT) and CT enterography offer advanced imaging capabilities to address these diagnostic challenges. This study aims to evaluate the efficacy of CT in staging malignant lesions by correlating imaging findings with histopathology to enhance non-invasive diagnosis and treatment strategies. METHODOLOGY This cross-sectional study was conducted over two years at Era's Medical College and Hospital, Lucknow, India, with 60 subjects. Patients with abnormal bowel wall thickening (>5 mm) on ultrasound were included, while those with renal dysfunction or pregnancy were excluded. After informed consent, subjects consumed a mannitol solution before undergoing CT scans using a 384-slice Dual Energy CT scanner (Somatom Force, Siemens Healthcare, Erlangen, Germany). All images were post-processed on a workstation using Synovia software (Synovia Solution, Fort Worth, Texas), which allows for image analysis using three-material decomposition. Statistical analysis was performed using IBM SPSS Statistics for Windows, Version 26 (Released 2019; IBM Corp., Armonk, New York). RESULTS The majority of patients were young adults aged 20-39 years (63.33%), with a slight male predominance (53.33%). Abdominal pain was the most common complaint (35.00%). Mild wall thickening (<10 mm) was associated with IBD (48.28%), while marked thickening (>10 mm) was linked to neoplastic lesions (48.39%). Symmetrical thickening was common in infective and inflammatory conditions, whereas asymmetrical thickening was typical of neoplastic lesions. CT scans demonstrated high diagnostic accuracy, with 83.33% sensitivity, 95.24% specificity, 88.24% positive predictive value, and 93.02% negative predictive value, resulting in an overall accuracy of 91.67%. CONCLUSION The study highlights that neoplastic lesions are associated with marked bowel wall thickening, while inflammatory conditions present with mild thickening. CT scans proved highly effective in diagnosing gastrointestinal disorders, with significant accuracy in distinguishing between benign and malignant lesions. This underscores the importance of advanced imaging techniques in clinical practice for improved patient outcomes.
Collapse
Affiliation(s)
- Rohit Lnu
- Radiodiagnosis, Era's Lucknow Medical College and Hospital, Lucknow, IND
| | - Sachin Khanduri
- Radiology, Era's Lucknow Medical College and Hospital, Lucknow, IND
| | - Zaara Khan
- Radiodiagnosis, Era's Lucknow Medical College and Hospital, Lucknow, IND
| | - Danish Ansari
- Radiodiagnosis, Era's Lucknow Medical College and Hospital, Lucknow, IND
| | - Mohsin Mulani
- Radiology, Era's Lucknow Medical College and Hospital, Lucknow, IND
| | - Ashok Gupta
- Radiodiagnosis, Era's Lucknow Medical College and Hospital, Lucknow, IND
| | - Nadeem Alam
- Radiodiagnosis, Era's Lucknow Medical College and Hospital, Lucknow, IND
| | - Akshay Aggarwal
- Radiodiagnosis, Era's Lucknow Medical College and Hospital, Lucknow, IND
| | - Sana Lnu
- Radiodiagnosis, Era's Lucknow Medical College and Hospital, Lucknow, IND
| | - Aastha Agrawal
- Radiodiagnosis, Era's Lucknow Medical College and Hospital, Lucknow, IND
| |
Collapse
|
32
|
Gharib SA, Vemireddy R, Castillo JJ, Fountaine BS, Bammler TK, MacDonald JW, Hull-Meichle RL, Zraika S. Cystic fibrosis-related diabetes is associated with reduced islet protein expression of GLP-1 receptor and perturbation of cell-specific transcriptional programs. Sci Rep 2024; 14:25689. [PMID: 39463434 PMCID: PMC11514218 DOI: 10.1038/s41598-024-76722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024] Open
Abstract
Insulin secretion is impaired in individuals with cystic fibrosis (CF), contributing to high rates of CF-related diabetes (CFRD) and substantially increasing disease burden. To develop improved therapies for CFRD, better knowledge of pancreatic pathology in CF is needed. Glucagon like peptide-1 (GLP-1) from islet α cells potentiates insulin secretion by binding GLP-1 receptors (GLP-1Rs) on β cells. We determined whether expression of GLP-1 and/or its signaling components are reduced in CFRD, thereby contributing to impaired insulin secretion. Immunohistochemistry of pancreas from humans with CFRD versus no-CF/no-diabetes revealed no difference in GLP-1 immunoreactivity per islet area, whereas GLP-1R immunoreactivity per islet area or per insulin-positive islet area was reduced in CFRD. Using spatial transcriptomics, we observed several differentially expressed α- and/or β-cell genes between CFRD and control pancreas. In CFRD, we found upregulation of α-cell PCSK1 which encodes the enzyme (PC1/3) that generates GLP-1, and downregulation of α-cell PCSK1N which inhibits PC1/3. Gene set enrichment analysis also revealed α and β cell-specific pathway dysregulation in CFRD. Together, our data suggest intra-islet GLP-1 is not limiting in CFRD, but its action may be restricted due to reduced GLP-1R protein levels. Thus, restoring β-cell GLP-1R protein expression may improve β-cell function in CFRD.
Collapse
Affiliation(s)
- Sina A Gharib
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Computational Medicine Core at Center for Lung Biology, University of Washington, Seattle, Washington, USA
| | - Rachna Vemireddy
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Joseph J Castillo
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
- Research and Development Service, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
| | - Brendy S Fountaine
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Rebecca L Hull-Meichle
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA
- Research and Development Service, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
- Alberta Diabetes Institute, Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, Seattle, WA, USA.
- Research and Development Service, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA.
- Veterans Affairs Puget Sound Health Care System, 1660 South Columbian Way (151), Seattle, WA, 98108, USA.
| |
Collapse
|
33
|
Aleman J, K R, Wiegand C, Schurdak ME, Vernetti L, Gavlock D, Reese C, DeBiasio R, LaRocca G, Angarita YD, Gough A, Soto-Gutierrez A, Behari J, Yechoor VK, Miedel MT, Stern AM, Banerjee I, Taylor DL. A metabolic dysfunction-associated steatotic liver acinus biomimetic induces pancreatic islet dysfunction in a coupled microphysiology system. Commun Biol 2024; 7:1317. [PMID: 39397070 PMCID: PMC11471816 DOI: 10.1038/s42003-024-07006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
Preclinical and clinical studies suggest that lipid-induced hepatic insulin resistance is a primary defect that predisposes to dysfunction in islets, implicating a perturbed liver-pancreas axis underlying the comorbidity of T2DM and MASLD. To investigate this hypothesis, we developed a human biomimetic microphysiological system (MPS) coupling our vascularized liver acinus MPS (vLAMPS) with pancreatic islet MPS (PANIS) enabling MASLD progression and islet dysfunction to be assessed. The modular design of this system (vLAMPS-PANIS) allows intra-organ and inter-organ dysregulation to be deconvoluted. When compared to normal fasting (NF) conditions, under early metabolic syndrome (EMS) conditions, the standalone vLAMPS exhibited characteristics of early stage MASLD, while no significant differences were observed in the standalone PANIS. In contrast, with EMS, the coupled vLAMPS-PANIS exhibited a perturbed islet-specific secretome and a significantly dysregulated glucose stimulated insulin secretion response implicating direct signaling from the dysregulated liver acinus to the islets. Correlations between several pairs of a vLAMPS-derived and a PANIS-derived factors were significantly altered under EMS, as compared to NF conditions, mechanistically connecting MASLD and T2DM associated hepatic-factors with islet-derived GLP-1 synthesis and regulation. Since vLAMPS-PANIS is compatible with patient-specific iPSCs, this platform represents an important step towards addressing patient heterogeneity, identifying disease mechanisms, and advancing precision medicine.
Collapse
Affiliation(s)
- Julio Aleman
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Department of Bioengineering, Pittsburgh, USA
| | - Ravikumar K
- University of Pittsburgh Department of Chemical and Petroleum Engineering, Pittsburgh, USA
| | - Connor Wiegand
- University of Pittsburgh Department of Chemical and Petroleum Engineering, Pittsburgh, USA
| | - Mark E Schurdak
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA
- University of Pittsburgh Liver Research Center, Pittsburgh, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA
- University of Pittsburgh Liver Research Center, Pittsburgh, USA
| | - Dillon Gavlock
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
| | - Celeste Reese
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
| | - Richard DeBiasio
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
| | - Greg LaRocca
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
| | | | - Albert Gough
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA
| | - Alejandro Soto-Gutierrez
- University of Pittsburgh Liver Research Center, Pittsburgh, USA
- University of Pittsburgh Department of Pathology, Pittsburgh, USA
| | - Jaideep Behari
- Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Vijay K Yechoor
- Diabetes and Beta Cell Biology Center, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, USA
| | - Mark T Miedel
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA
- University of Pittsburgh Liver Research Center, Pittsburgh, USA
- University of Pittsburgh Department of Pathology, Pittsburgh, USA
| | - Andrew M Stern
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA.
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA.
| | - Ipsita Banerjee
- University of Pittsburgh Department of Bioengineering, Pittsburgh, USA.
- University of Pittsburgh Department of Chemical and Petroleum Engineering, Pittsburgh, USA.
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, USA.
- University of Pittsburgh Department of Bioengineering, Pittsburgh, USA.
- University of Pittsburgh Department of Computational and Systems Biology, Pittsburgh, USA.
- University of Pittsburgh Liver Research Center, Pittsburgh, USA.
| |
Collapse
|
34
|
Zhang J, Gu C, Deng M, Yang L, Yang W. Circulating chemerin and interleukin-6 in children with obesity: possible metabolic risk predictors. Transl Pediatr 2024; 13:1760-1766. [PMID: 39524379 PMCID: PMC11543120 DOI: 10.21037/tp-24-264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Background As the incidence of childhood obesity has risen significantly and it can result in many complications in adulthood, this study aimed to provide a new view for early prevention of childhood obesity by detecting the levels of interleukin-6 (IL-6) and chemerin in children and studying the clinical significance. Methods We used a case-control design. Serum chemerin and IL-6 levels were measured among 101 participants, including 50 children with obesity and 51 healthy children. Chemerin and IL-6 were correlated with metabolic parameters, and the independent determinants of chemerin and IL-6 were studied by using multivariate linear regression analysis. Results The levels of chemerin, IL-6, body mass index (BMI), blood pressure, triglyceride (TG), low-density lipoprotein (LDL), hemoglobin A1c (HbA1c), Fins, C-peptide, homeostasis model assessment of insulin resistance (HOMA-IR), aspartate aminotransferase (AST), alanine aminotransferase (ALT), uric acid and creatinine were significantly increased in children with obesity (P<0.05). While, the levels of high-density lipoprotein (HDL) in the obese group were remarkably lower (P<0.05). The correlative analysis showed that serum chemerin and IL-6 were positively correlated with BMI, Fins, C-peptide, HOMA-IR, and AST, and chemerin was also positively correlated with systolic blood pressure, ALT, and IL-6 (P<0.05). Multivariate linear regression analysis showed that IL-6 was the independent determinant of chemerin. Conclusions The elevated levels of serum chemerin and IL-6 in children with obesity were positively correlated with multiple metabolic indicators, suggesting that chemerin and IL-6 may be involved in the occurrence of childhood obesity and its complications, and were expected to become early warning metabolic risk predictors.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pediatrics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Pediatrics, Zhongda Hospital Southeast University, Nanjing, China
| | - Cai Gu
- Department of Pediatrics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Pediatrics, Suzhou Municipal Hospital, Soochow, China
| | - Meiling Deng
- Department of Pediatrics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Chengdu Airlines, Chengdu, China
| | - Lanshu Yang
- Department of Pediatrics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Pediatrics, Chongzhou Maternal and Child Health Care Hospital, Chengdu, China
| | - Weixia Yang
- Department of Pediatrics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
35
|
Li Z, Pei L, Xiao H, Chen N, Lai F, Yue S, Xu C, Li Y, Xiao H, Cao X. The role of PANDER and its interplay with IL-6 in the regulation of GLP-1 secretion. Endocr Connect 2024; 13:e230548. [PMID: 39235859 PMCID: PMC11466252 DOI: 10.1530/ec-23-0548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 09/05/2024] [Indexed: 09/06/2024]
Abstract
Glucose-like peptide-1 (GLP-1) is a vital hormone in the intestines that regulates glucose metabolism. Although pancreatic-derived factor (PANDER) overexpression is known to suppress GLP-1, the underlying mechanisms are unclear. Our study aims to uncover how PANDER influences GLP-1 synthesis and secretion. We established a PANDER overexpression model in STC-1 intestinal cells, confirming its inhibitory effect on GLP-1 secretion. This effect was reversed in PANDER-knockout cells. Additionally, a negative correlation between PANDER and GLP-1 was observed in patients with a history of gestational diabetes. Subsequently, through whole transcriptome gene sequencing in PANDER-overexpressed STC-1 cells, we discovered that the activation of IL-6 and its related STAT3 signaling pathway was significantly inhibited, and this finding was validated by Western blotting and quantitative reverse transcription PCR. Finally, rescue experiments confirmed that the IL-6-related STAT3/Akt/GSK3β/β-catenin signaling pathway mediates the negative regulatory effect of PANDER on GLP-1. Taken together, our data identify IL-6 as a bridge connecting PANDER and GLP-1 in the STC-1 cells, demonstrating potential therapeutic targets for diabetes treatment by targeting the PANDER-IL-6-GLP-1 axis.
Collapse
Affiliation(s)
- Zeting Li
- Department of Endocrinology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Ling Pei
- Department of Endocrinology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Huangmeng Xiao
- Department of Endocrinology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Nan Chen
- Department of Endocrinology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Fenghua Lai
- Department of Endocrinology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Shufang Yue
- Department of Endocrinology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Changliu Xu
- Department of Endocrinology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Haipeng Xiao
- Department of Endocrinology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Xiaopei Cao
- Department of Endocrinology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| |
Collapse
|
36
|
Huang P, Zhu Y, Qin J. Research advances in understanding crosstalk between organs and pancreatic β-cell dysfunction. Diabetes Obes Metab 2024; 26:4147-4164. [PMID: 39044309 DOI: 10.1111/dom.15787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
Obesity has increased dramatically worldwide. Being overweight or obese can lead to various conditions, including dyslipidaemia, hypertension, glucose intolerance and metabolic syndrome (MetS), which may further lead to type 2 diabetes mellitus (T2DM). Previous studies have identified a link between β-cell dysfunction and the severity of MetS, with multiple organs and tissues affected. Identifying the associations between pancreatic β-cell dysfunction and organs is critical. Research has focused on the interaction between the liver, gut and pancreatic β-cells. However, the mechanisms and related core targets are still not perfectly elucidated. The aims of this review were to summarize the mechanisms of β-cell dysfunction and to explore the potential pathogenic pathways and targets that connect the liver, gut, adipose tissue, muscle, and brain to pancreatic β-cell dysfunction.
Collapse
Affiliation(s)
- Peng Huang
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yunling Zhu
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jian Qin
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
37
|
Calcaterra V, Magenes VC, Bianchi A, Rossi V, Gatti A, Marin L, Vandoni M, Zuccotti G. How Can Promoting Skeletal Muscle Health and Exercise in Children and Adolescents Prevent Insulin Resistance and Type 2 Diabetes? Life (Basel) 2024; 14:1198. [PMID: 39337980 PMCID: PMC11433096 DOI: 10.3390/life14091198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Skeletal muscle secretome, through its paracrine and endocrine functions, contributes to the maintenance and regulation of overall physiological health. We conducted a narrative review on the role of skeletal muscle and exercise in maintaining glucose homeostasis, driving insulin resistance (IR), and preventing type 2 diabetes in pediatric populations, especially in the context of overweight and obesity. Myokines such as interleukin (IL)-6, IL-8, and IL-15, as well as irisin, myonectin, and myostatin, appear to play a crucial role in IR. Skeletal muscle can also become a target of obesity-induced and IR-induced inflammation. In the correlation between muscle, IR, and inflammation, the role of infiltration of the immune cells and the microvasculature may also be considered. It remains unclear which exercise approach is the best; however, combining aerobic exercise with resistance training seems to be the most effective strategy for managing IR, with high-intensity activities offering superior metabolic benefits and long-term adherence. Encouraging daily participation in enjoyable and engaging exercise is key for long-term commitment and effective glucose metabolism management. Promoting physical activity in children and adolescents must be a top priority for public health, not only in terms of individual quality of life and well-being but also for community health.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.C.M.); (A.B.); (V.R.); (G.Z.)
| | - Vittoria Carlotta Magenes
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.C.M.); (A.B.); (V.R.); (G.Z.)
| | - Alice Bianchi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.C.M.); (A.B.); (V.R.); (G.Z.)
| | - Virginia Rossi
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.C.M.); (A.B.); (V.R.); (G.Z.)
| | - Alessandro Gatti
- Laboratory of Adapted Motor Activity (LAMA), Department of Public Health, Experimental Medicine and Forensic Science, University of Pavia, 27100 Pavia, Italy; (A.G.); (L.M.); (M.V.)
| | - Luca Marin
- Laboratory of Adapted Motor Activity (LAMA), Department of Public Health, Experimental Medicine and Forensic Science, University of Pavia, 27100 Pavia, Italy; (A.G.); (L.M.); (M.V.)
| | - Matteo Vandoni
- Laboratory of Adapted Motor Activity (LAMA), Department of Public Health, Experimental Medicine and Forensic Science, University of Pavia, 27100 Pavia, Italy; (A.G.); (L.M.); (M.V.)
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children’s Hospital, 20154 Milano, Italy; (V.C.M.); (A.B.); (V.R.); (G.Z.)
- Department of Biomedical and Clinical Science, University of Milano, 20157 Milano, Italy
| |
Collapse
|
38
|
Patel BK, Patel KH, Lee CN, Moochhala S. Intestinal Microbiota Interventions to Enhance Athletic Performance-A Review. Int J Mol Sci 2024; 25:10076. [PMID: 39337561 PMCID: PMC11432184 DOI: 10.3390/ijms251810076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Recent years have witnessed an uptick in research highlighting the gut microbiota's role as a primary determinant of athletes' health, which has piqued interest in the hypothesis that it correlates with athletes' physical performance. Athletes' physical performances could be impacted by the metabolic activity of the assortment of microbes found in their gut. Intestinal microbiota impacts multiple facets of an athlete's physiology, including immune response, gut membrane integrity, macro- and micronutrient absorption, muscle endurance, and the gut-brain axis. Several physiological variables govern the gut microbiota; hence, an intricately tailored and complex framework must be implemented to comprehend the performance-microbiota interaction. Emerging evidence underscores the intricate relationship between the gut microbiome and physical fitness, revealing that athletes who engage in regular physical activity exhibit a richer diversity of gut microbes, particularly within the Firmicutes phylum, e.g., Ruminococcaceae genera, compared to their sedentary counterparts. In elite sport, it is challenging to implement an unconventional strategy whilst simultaneously aiding an athlete to accomplish feasible, balanced development. This review compiles the research on the effects of gut microbiota modulation on performance in sports and illustrates how different supplementation strategies for gut microbiota have the ability to improve athletic performance by enhancing physical capacities. In addition to promoting athletes' overall health, this study evaluates the existing literature in an effort to shed light on how interventions involving the gut microbiota can dramatically improve performance on the field. The findings should inform both theoretical and practical developments in the fields of sports nutrition and training.
Collapse
Affiliation(s)
- Bharati Kadamb Patel
- Department of Surgery, Yong Loo Lin School of Medicine, Level 8, NUHS Tower Block, Singapore 119278, Singapore; (B.K.P.); (C.N.L.)
| | - Kadamb Haribhai Patel
- Temasek Polytechnic, School of Applied Sciences, 21 Tampines Ave 1, Singapore 529757, Singapore;
| | - Chuen Neng Lee
- Department of Surgery, Yong Loo Lin School of Medicine, Level 8, NUHS Tower Block, Singapore 119278, Singapore; (B.K.P.); (C.N.L.)
| | - Shabbir Moochhala
- Department of Surgery, Yong Loo Lin School of Medicine, Level 8, NUHS Tower Block, Singapore 119278, Singapore; (B.K.P.); (C.N.L.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, Block MD3, 16 Medical Drive, Singapore 117600, Singapore
| |
Collapse
|
39
|
Rathor R, Suryakumar G. Myokines: A central point in managing redox homeostasis and quality of life. Biofactors 2024; 50:885-909. [PMID: 38572958 DOI: 10.1002/biof.2054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/15/2024] [Indexed: 04/05/2024]
Abstract
Redox homeostasis is a crucial phenomenon that is obligatory for maintaining the healthy status of cells. However, the loss of redox homeostasis may lead to numerous diseases that ultimately result in a compromised quality of life. Skeletal muscle is an endocrine organ that secretes hundreds of myokines. Myokines are peptides and cytokines produced and released by muscle fibers. Skeletal muscle secreted myokines act as a robust modulator for regulating cellular metabolism and redox homeostasis which play a prime role in managing and improving metabolic function in multiple organs. Further, the secretory myokines maintain redox homeostasis not only in muscles but also in other organs of the body via stabilizing oxidants and antioxidant levels. Myokines are also engaged in maintaining mitochondrial dynamics as mitochondria is a central point for the generation of reactive oxygen species (ROS). Ergo, myokines also act as a central player in communicating signals to other organs, including the pancreas, gut, liver, bone, adipose tissue, brain, and skin via their autocrine, paracrine, or endocrine effects. The present review provides a comprehensive overview of skeletal muscle-secreted myokines in managing redox homeostasis and quality of life. Additionally, probable strategies will be discussed that provide a solution for a better quality of life.
Collapse
Affiliation(s)
- Richa Rathor
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Ministry of Defence, Delhi, India
| | - Geetha Suryakumar
- Defence Institute of Physiology & Allied Sciences (DIPAS), Defence Research and Development Organization (DRDO), Ministry of Defence, Delhi, India
| |
Collapse
|
40
|
Zhang W, Wu L, Qu R, Liu T, Wang J, Tong Y, Bei W, Guo J, Hu X. Hesperidin activates the GLP-1R/cAMP-CREB/IRS2/PDX1 pathway to promote transdifferentiation of islet α cells into β cells Across the spectrum. Heliyon 2024; 10:e35424. [PMID: 39220963 PMCID: PMC11365324 DOI: 10.1016/j.heliyon.2024.e35424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Background and aims In all age, FoShou as a Chinese medicinal herb has been active in various kinds of Traditional Chinese medicine formula to treating diabetes. Hesperidin (HES), the main monomeric component of FoShou, has been extensively investigated for interventions with pathogenic mechanism of diabetes as well as subsequent treatment of associated complications. Islet β-cells have an essential effect on dynamically regulating blood sugar. Functional abnormalities in these cells and their death are strongly associated with the onset of diabetes. Therefore, induction of islet endocrine cell lineage re-editing for damaged βcell replenishment would be a promising therapeutic tool. Previously, it has been found that HES can protect islet β-cells in vivo, But, the regenerative function of HES in islet β cells and its role in promoting differential non-β cells transdifferentiation into β cells and cell fate rewriting associated mechanisms remain unclear.This work focused on investigating whether HES can induce islet α cells transdifferentiation into β cells for achieving damaged β cell regeneration and the causes and possible mechanisms involved in the process. Materials and methods In brief, 60 mg/kg/d streptozotocin (STZ) was administered intraperitoneally in each male C57bL/6J mouse raised by the high-sugar and high-fat diet (HFD) to create a diabetic mouse model with severe β-cell damage. After 28 consecutive days of HES treatment (160 mg/kg; 320 mg/kg; once daily, as appropriate). Tracing the dynamics of α as well as β cell transformation, together with β cells growth and apoptosis levels during treatment by cell lineage tracing. The self-enforcing transcriptional network on which the cell lineage is based is used as a clue to explore the underlying mechanisms. Guangdong Pharmaceutical University's Animal Experiment Ethics Committee (GDPulac2019180) approved all animal experiments. Results Localization by cell lineage we find that transdifferentiated newborn β-cells derived from α cells appeared in the islet endocrine cell mass of DM mice under HES'action. Compared to the model group, expressed by Tunel staining and CXCL10 levels the overall apoptosis rate of β-cells of the pancreas were reduced,the inflammatory infiltration feedback from HE staining were lower.Ki-67 positive cells showed enhanced β-cell proliferation. Decreased HbA1c and blood glucose contents, elevated C-Peptide and insulin contents which respond to ability of nascent beta cells. Also upregulated the mRNA levels of MafA, Ngn3, PDX-1, Pax4 and Arx. Moreover, increased the expression of TGR5/cAMP-CREB/GLP-1 in mouse intestinal tissues and GLP-1/GLP-1R and cAMP-CREB/IRS2/PDX-1 in pancreatic tissues. Conclusions HES directly affects β-cells, apart from being anti-apoptotic and reducing inflammatory infiltration. HES promotes GLP-1 release by intestinal L cells by activating the TGR5 receptor in DM mouse and regulating its response element CREB signaling. GLP-1 then uses the GLP-1/GLP-1R system to act on IRS2, IRS2 as a port to influence α precursor cells to express PDX-1, with the mobilization of Pax4 strong expression than Arx so that α cell lineage is finally reversed for achieving β cell endogenous proliferation.
Collapse
Affiliation(s)
- Wang Zhang
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lele Wu
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ru Qu
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tianfeng Liu
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiliang Wang
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ying Tong
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Weijian Bei
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiao Guo
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xuguang Hu
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
41
|
Simon-Szabó L, Lizák B, Sturm G, Somogyi A, Takács I, Németh Z. Molecular Aspects in the Development of Type 2 Diabetes and Possible Preventive and Complementary Therapies. Int J Mol Sci 2024; 25:9113. [PMID: 39201799 PMCID: PMC11354764 DOI: 10.3390/ijms25169113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
The incidence of diabetes, including type 2 diabetes (T2DM), is increasing sharply worldwide. To reverse this, more effective approaches in prevention and treatment are needed. In our review, we sought to summarize normal insulin action and the pathways that primarily influence the development of T2DM. Normal insulin action involves mitogenic and metabolic pathways, as both are important in normal metabolic processes, regeneration, etc. However, through excess energy, both can be hyperactive or attenuated/inactive leading to disturbances in the cellular and systemic regulation with the consequence of cellular stress and systemic inflammation. In this review, we detailed the beneficial molecular changes caused by some important components of nutrition and by exercise, which act in the same molecular targets as the developed drugs, and can revert the damaged pathways. Moreover, these induce entire networks of regulatory mechanisms and proteins to restore unbalanced homeostasis, proving their effectiveness as preventive and complementary therapies. These are the main steps for success in prevention and treatment of developed diseases to rid the body of excess energy, both from stored fats and from overnutrition, while facilitating fat burning with adequate, regular exercise in healthy people, and together with necessary drug treatment as required in patients with insulin resistance and T2DM.
Collapse
Affiliation(s)
- Laura Simon-Szabó
- Department of Molecular Biology, Semmelweis University, Tuzolto u. 37-47, 1094 Budapest, Hungary; (L.S.-S.); (B.L.)
| | - Beáta Lizák
- Department of Molecular Biology, Semmelweis University, Tuzolto u. 37-47, 1094 Budapest, Hungary; (L.S.-S.); (B.L.)
| | - Gábor Sturm
- Directorate of Information Technology Basic Infrastructure and Advanced Applications, Semmelweis University, Üllői út 78/b, 1082 Budapest, Hungary;
| | - Anikó Somogyi
- Department of Internal Medicine and Hematology, Semmelweis University, Baross u., 1085 Budapest, Hungary;
| | - István Takács
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary;
| | - Zsuzsanna Németh
- Department of Internal Medicine and Oncology, Semmelweis University, Koranyi S. u 2/a, 1083 Budapest, Hungary;
| |
Collapse
|
42
|
Reddy VKK, Shiddapur G, Jagdale N, Kondapalli MP, Adapa S. Investigating Interleukin-6 Levels in Type 2 Diabetes Mellitus Patients With and Without Diabetic Nephropathy. Cureus 2024; 16:e67014. [PMID: 39280507 PMCID: PMC11402502 DOI: 10.7759/cureus.67014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Diabetic nephropathy (DN), a severe complication affecting 40% of diabetic individuals, is a leading cause of chronic kidney disease (CKD). It involves a progressive increase in urinary albumin and a decline in the glomerular filtration rate. Early detection and intervention are crucial to preventing CKD progression. The current marker, albuminuria, measured as the urine albumin-to-creatinine ratio (UACR), has limitations, highlighting the need for alternative biomarkers. Researchers have linked the proinflammatory cytokine interleukin-6 (IL-6) to the progression of DN, observing elevated levels in DN patients compared to those without DN. IL-6 also regulates glucose metabolism, promoting insulin effectiveness and secretion. Inflammation and glucose control are two things that IL-6 does. This makes it a promising biomarker and therapeutic target for DN and type 2 diabetes mellitus (T2DM). This study focuses on IL-6 levels in T2DM patients with and without DN. METHODS AND MATERIALS From September 2022 to June 2024, the Department of General Medicine, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, conducted an observational cross-sectional comparative study on 80 T2DM patients, with 40 in group A (cases = T2DM patients with DN) and 40 in group B (controls = T2DM patients without DN). The study included patients with T2DM between the ages of 40 and 80. The study excludes conditions such as diabetic ketoacidosis, patients with end-stage renal disease, and conditions that increase IL-6, such as COVID-19. The study excluded autoimmune conditions with elevated IL-6, such as rheumatoid arthritis, systemic lupus erythematous, ankylosing spondylitis, psoriasis, and Crohn's disease. We obtained ethical approval and written consent from participants. RESULTS In the current study, 61 patients (76.2%) were 60 years old or younger, while 19 patients (23.8%) were older than 60 years. Among the participants, 38 were females (47.5%) and 42 were males (52.5%). The case group, which consisted of 40 T2DM patients with DN, had a mean glycated hemoglobin (HbA1c) of 7.1700 ± 0.71044. In contrast, the control group, comprising 40 T2DM patients without DN, had a mean HbA1c of 6.8650 ± 0.57179. This difference was statistically significant, with a p value of 0.038. Additionally, the mean UACR in the case group was 134.34 ± 95.56, significantly higher than the control group's mean UACR of 22.32 ± 9.90. This difference was highly significant, with a p value of 0.001. Furthermore, the case group exhibited elevated mean IL-6 levels of 15.48 ± 4.27 compared to the control group's 7.02 ± 2.46, which is also highly significant, reflected by a p value of 0.001. CONCLUSION As the concentration of IL-6 rises in diabetic patients with nephropathy, this study suggests that IL-6 may have an effect on the development of DN. This cytokine is necessary for both the initiation and progression of the condition. Using IL-6 as a supportive diagnostic test could help rule out other potential causes of DN in T2DM. Moreover, this marker does not require invasive procedures, and early measurement may help reduce mortality and morbidity.
Collapse
Affiliation(s)
- Vutukuru Kalyan Kumar Reddy
- Department of General Medicine, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Govind Shiddapur
- Department of General Medicine, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Nilesh Jagdale
- Department of General Medicine, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Mohith Prakash Kondapalli
- Department of General Medicine, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Saimounika Adapa
- Department of General Medicine, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| |
Collapse
|
43
|
McCarthy SF, Tucker JAL, Hazell TJ. Exercise-induced appetite suppression: An update on potential mechanisms. Physiol Rep 2024; 12:e70022. [PMID: 39187396 PMCID: PMC11347021 DOI: 10.14814/phy2.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
The first systematic reviews of the effects of exercise on appetite-regulation and energy intake demonstrated changes in appetite-regulating hormones consistent with appetite suppression and decreases in subsequent relative energy intake over a decade ago. More recently, an intensity-dependent effect and several potential mechanisms were proposed, and this review aims to highlight advances in this field. While exercise-induced appetite suppression clearly involves acylated ghrelin, glucagon-like peptide-1 may also be involved, though recent evidence suggests peptide tyrosine tyrosine may not be relevant. Changes in subjective appetite perceptions and energy intake continue to be equivocal, though these results are likely due to small sample sizes and methodological inconsistencies. Of the proposed mechanisms responsible for exercise-induced appetite suppression, lactate has garnered the most support through in vitro and in vivo rodent studies as well as a growing amount of work in humans. Other potential modulators of exercise-induced appetite suppression may include sex hormones, growth-differentiation factor 15, Lac-Phe, brain-derived neurotrophic factor, and asprosin. Research should focus on the mechanisms responsible for the changes and consider these other modulators (i.e., myokines/exerkines) of appetite to improve our understanding of the role of exercise on appetite regulation.
Collapse
Affiliation(s)
- Seth F. McCarthy
- Department of Kinesiology and Physical EducationWilfrid Laurier UniversityWaterlooOntarioCanada
| | - Jessica A. L. Tucker
- Department of Kinesiology and Physical EducationWilfrid Laurier UniversityWaterlooOntarioCanada
| | - Tom J. Hazell
- Department of Kinesiology and Physical EducationWilfrid Laurier UniversityWaterlooOntarioCanada
| |
Collapse
|
44
|
Szekeres Z, Nagy A, Jahner K, Szabados E. Impact of Selected Glucagon-like Peptide-1 Receptor Agonists on Serum Lipids, Adipose Tissue, and Muscle Metabolism-A Narrative Review. Int J Mol Sci 2024; 25:8214. [PMID: 39125786 PMCID: PMC11311305 DOI: 10.3390/ijms25158214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1 RA) are novel antihyperglycemic agents. By acting through the central nervous system, they increase satiety and reduce food intake, thus lowering body weight. Furthermore, they increase the secretion of insulin while decreasing the production of glucagon. However, recent studies suggest a more complex metabolic impact through the interaction with various other tissues. In our present review, we aim to provide a summary of the effects of GLP-1 RA on serum lipids, adipose tissue, and muscle metabolism. It has been found that GLP-1 RA therapy is associated with decreased serum cholesterol levels. Epicardial adipose tissue thickness, hepatic lipid droplets, and visceral fat volume were reduced in obese patients with cardiovascular disease. GLP-1 RA therapy decreased the level of proinflammatory adipokines and reduced the expression of inflammatory genes. They have been found to reduce endoplasmic reticulum stress in adipocytes, leading to better adipocyte function and metabolism. Furthermore, GLP-1 RA therapy increased microvascular blood flow in muscle tissue, resulting in increased myocyte metabolism. They inhibited muscle atrophy and increased muscle mass and function. It was also observed that the levels of muscle-derived inflammatory cytokines decreased, and insulin sensitivity increased, resulting in improved metabolism. However, some clinical trials have been conducted on a very small number of patients, which limits the strength of these observations.
Collapse
Affiliation(s)
- Zsolt Szekeres
- Department of Laboratory Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Andras Nagy
- Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary;
| | - Kamilla Jahner
- Department of Medical Imaging, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Eszter Szabados
- 1st Department of Medicine, Division of Preventive Cardiology and Rehabilitation, Medical School, University of Pecs, 7624 Pecs, Hungary
| |
Collapse
|
45
|
Dalle S, Abderrahmani A. Receptors and Signaling Pathways Controlling Beta-Cell Function and Survival as Targets for Anti-Diabetic Therapeutic Strategies. Cells 2024; 13:1244. [PMID: 39120275 PMCID: PMC11311556 DOI: 10.3390/cells13151244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/10/2024] Open
Abstract
Preserving the function and survival of pancreatic beta-cells, in order to achieve long-term glycemic control and prevent complications, is an essential feature for an innovative drug to have clinical value in the treatment of diabetes. Innovative research is developing therapeutic strategies to prevent pathogenic mechanisms and protect beta-cells from the deleterious effects of inflammation and/or chronic hyperglycemia over time. A better understanding of receptors and signaling pathways, and of how they interact with each other in beta-cells, remains crucial and is a prerequisite for any strategy to develop therapeutic tools aimed at modulating beta-cell function and/or mass. Here, we present a comprehensive review of our knowledge on membrane and intracellular receptors and signaling pathways as targets of interest to protect beta-cells from dysfunction and apoptotic death, which opens or could open the way to the development of innovative therapies for diabetes.
Collapse
Affiliation(s)
- Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 34094 Montpellier, France
| | - Amar Abderrahmani
- Université Lille, Centre National de la Recherche Scientifique (CNRS), Centrale Lille, Université Polytechnique Hauts-de-France, UMR 8520, IEMN, F59000 Lille, France
| |
Collapse
|
46
|
Xu Y, Yan Z, Li K, Liu L, Xu L. Association between nutrition-related indicators with the risk of chronic obstructive pulmonary disease and all-cause mortality in the elderly population: evidence from NHANES. Front Nutr 2024; 11:1380791. [PMID: 39081677 PMCID: PMC11286481 DOI: 10.3389/fnut.2024.1380791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Background This study aims to use six nutrition-related indicators to assess the relationship between nutritional status and the risk of COPD as well as the all-cause mortality rate, and to determine the most reliable predictive indicators. Methods Data from the National Health and Nutrition Examination Survey (NHANES) spanning the years 2013 to 2018 were extracted. Nutritional status was evaluated using Controlling nutritional status (CONUT) score, Geriatric Nutritional Risk Index (GNRI), Advanced Lung Cancer Inflammation Index (ALI), Prognostic Nutritional Index (PNI), Triglycerides (TG) × Total Cholesterol (TC) × Body Weight (BW) Index (TCBI), and Albumin-to-Globulin Ratio (AGR) nutritional-related indicators. Multivariate weighted logistic and Cox regression models were employed to assess the correlation between the six nutritional-related indicators and the risk of COPD and as all-cause mortality. The restricted cubic spline tests were applied to explore potential nonlinear relationships, and ROC curves and C-index analyses were conducted to compare the predictive capabilities of different indicators. Stratified analysis and propensity score matching (PSM) to assess the robustness of the results. Results In this study, Lower ALI, lower GNRI, and higher CONUT scores were positively correlated with an increased risk of COPD (OR: 1.77, 95% CI: 1.10-2.84) (OR: 8.66, 95% CI: 2.95-25.5), and (OR: 5.11, 95% CI: 1.72-15.2), respectively. It was found that ALI and GNRI had a non-linear relationship with the risk of COPD. After propensity score matching (PSM), the associations between ALI, GNRI, CONUT scores, and COPD remained consistent. Lower ALI, PNI, and GNRI scores were positively associated with all-cause mortality in COPD patients (HR: 2.41, 95% CI: 1.10-5.27), (HR: 3.76, 95% CI: 1.89-7.48), and (HR: 4.55, 95% CI: 1.30-15.9), respectively, with GNRI displaying a non-linear relationship with all-cause mortality. ROC curve and C-index analyses indicated that ALI had the best predictive ability for both COPD risk and all-cause mortality. Conclusion ALI, GNRI, and CONUT scores are correlated with the risk of COPD, while ALI, PNI, and GNRI scores are associated with all-cause mortality in COPD patients. Compared to other nutritional scores, ALI may provide more effective predictive value for both risk and all-cause mortality.
Collapse
Affiliation(s)
- Yifeng Xu
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhaoqi Yan
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Keke Li
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Liangji Liu
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Lei Xu
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
47
|
García-García RM, Jaramillo-Flores ME. Effect of Arthrospira maxima Phycobiliproteins, Rosiglitazone, and 17β-Estradiol on Lipogenic and Inflammatory Gene Expression during 3T3-L1 Preadipocyte Cell Differentiation. Int J Mol Sci 2024; 25:7566. [PMID: 39062809 PMCID: PMC11277109 DOI: 10.3390/ijms25147566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The study evaluated the effects of Arthrospira maxima phycobiliproteins (PBPs), rosiglitazone (RSG), and 17β-estradiol (E) on the differentiation process of 3T3-L1 cells and on their regulation of lipogenic and inflammatory gene expression at different stages of the process. The results showed that phycobiliproteins promoted cell proliferation after 24 h of treatment. Furthermore, for all three treatments, the regulation of the highest number of markers occurred on days 6 and 12 of differentiation, regardless of when the treatment was applied. Phycobiliproteins reduced lipid droplet accumulation on days 3, 6, 10, and 13 of the adipogenic process, while rosiglitazone showed no differences compared to the control. On day 6, both phycobiliproteins and rosiglitazone positively regulated Acc1 mRNA. Meanwhile, all three treatments negatively regulated Pparγ and C/ebpα. Phycobiliproteins and estradiol also negatively regulated Ucp1 and Glut4 mRNAs. Rosiglitazone and estradiol, on the other hand, negatively regulated Ppara and Il-6 mRNAs. By day 12, phycobiliproteins and rosiglitazone upregulated Pparγ mRNA and negatively regulated Tnfα and Il-1β. Additionally, phycobiliproteins and estradiol positively regulated Il-6 and negatively regulated Ppara, Ucp2, Acc1, and Glut4. Rosiglitazone and estradiol upregulate C/ebpα and Ucp1 mRNAs. The regulation exerted by phycobiliproteins on the mRNA expression of the studied markers was dependent on the phase of cell differentiation. The results of this study highlight that phycobiliproteins have an anti-adipogenic and anti-inflammatory effect by reducing the expression of adipogenic, lipogenic, and inflammatory genes in 3T3-L1 cells at different stages of the differentiation process.
Collapse
Affiliation(s)
| | - María Eugenia Jaramillo-Flores
- Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City CP 07738, Mexico;
| |
Collapse
|
48
|
Młynarska E, Wasiak J, Gajewska A, Steć G, Jasińska J, Rysz J, Franczyk B. Exploring the Significance of Gut Microbiota in Diabetes Pathogenesis and Management-A Narrative Review. Nutrients 2024; 16:1938. [PMID: 38931292 PMCID: PMC11206785 DOI: 10.3390/nu16121938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Type 2 diabetes is a disease with significant health consequences for the individual. Currently, new mechanisms and therapeutic approaches that may affect this disease are being sought. One of them is the association of type 2 diabetes with microbiota. Through the enteric nervous system and the gut-microbiota axis, the microbiota affects the functioning of the body. It has been proven to have a real impact on influencing glucose and lipid metabolism and insulin sensitivity. With dysbiosis, there is increased bacterial translocation through the disrupted intestinal barrier and increased inflammation in the body. In diabetes, the microbiota's composition is altered with, for example, a more abundant class of Betaproteobacteria. The consequences of these disorders are linked to mechanisms involving short-chain fatty acids, branched-chain amino acids, and bacterial lipopolysaccharide, among others. Interventions focusing on the gut microbiota are gaining traction as a promising approach to diabetes management. Studies are currently being conducted on the effects of the supply of probiotics and prebiotics, as well as fecal microbiota transplantation, on the course of diabetes. Further research will allow us to fully develop our knowledge on the subject and possibly best treat and prevent type 2 diabetes.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jakub Wasiak
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Agata Gajewska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Greta Steć
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Joanna Jasińska
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
49
|
Schonblum A, Ali Naser D, Ovadia S, Egbaria M, Puyesky S, Epshtein A, Wald T, Mercado-Medrez S, Ashery-Padan R, Landsman L. Beneficial islet inflammation in health depends on pericytic TLR/MyD88 signaling. J Clin Invest 2024; 134:e179335. [PMID: 38885342 PMCID: PMC11245159 DOI: 10.1172/jci179335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/24/2024] [Indexed: 06/20/2024] Open
Abstract
While inflammation is beneficial for insulin secretion during homeostasis, its transformation adversely affects β cells and contributes to diabetes. However, the regulation of islet inflammation for maintaining glucose homeostasis remains largely unknown. Here, we identified pericytes as pivotal regulators of islet immune and β cell function in health. Islets and pancreatic pericytes express various cytokines in healthy humans and mice. To interfere with the pericytic inflammatory response, we selectively inhibited the TLR/MyD88 pathway in these cells in transgenic mice. The loss of MyD88 impaired pericytic cytokine production. Furthermore, MyD88-deficient mice exhibited skewed islet inflammation with fewer cells, an impaired macrophage phenotype, and reduced IL-1β production. This aberrant pericyte-orchestrated islet inflammation was associated with β cell dedifferentiation and impaired glucose response. Additionally, we found that Cxcl1, a pericytic MyD88-dependent cytokine, promoted immune IL-1β production. Treatment with either Cxcl1 or IL-1β restored the mature β cell phenotype and glucose response in transgenic mice, suggesting a potential mechanism through which pericytes and immune cells regulate glucose homeostasis. Our study revealed pericyte-orchestrated islet inflammation as a crucial element in glucose regulation, implicating this process as a potential therapeutic target for diabetes.
Collapse
Affiliation(s)
- Anat Schonblum
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| | - Dunia Ali Naser
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| | - Shai Ovadia
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Mohammed Egbaria
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| | - Shani Puyesky
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| | - Alona Epshtein
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| | - Tomer Wald
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| | - Sophia Mercado-Medrez
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Limor Landsman
- Department of Cell and Development Biology, Faculty of Medical and Health Sciences and
| |
Collapse
|
50
|
Reed J, Bain SC, Kanamarlapudi V. The Regulation of Metabolic Homeostasis by Incretins and the Metabolic Hormones Produced by Pancreatic Islets. Diabetes Metab Syndr Obes 2024; 17:2419-2456. [PMID: 38894706 PMCID: PMC11184168 DOI: 10.2147/dmso.s415934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024] Open
Abstract
In healthy humans, the complex biochemical interplay between organs maintains metabolic homeostasis and pathological alterations in this process result in impaired metabolic homeostasis, causing metabolic diseases such as diabetes and obesity, which are major global healthcare burdens. The great advancements made during the last century in understanding both metabolic disease phenotypes and the regulation of metabolic homeostasis in healthy individuals have yielded new therapeutic options for diseases like type 2 diabetes (T2D). However, it is unlikely that highly desirable more efficacious treatments will be developed for metabolic disorders until the complex systemic regulation of metabolic homeostasis becomes more intricately understood. Hormones produced by pancreatic islet beta-cells (insulin) and alpha-cells (glucagon) are pivotal for maintaining metabolic homeostasis; the activity of insulin and glucagon are reciprocally correlated to achieve strict control of glucose levels (normoglycaemia). Metabolic hormones produced by other pancreatic islet cells and incretins produced by the gut are also crucial for maintaining metabolic homeostasis. Recent studies highlighted the incomplete understanding of metabolic hormonal synergism and, therefore, further elucidation of this will likely lead to more efficacious treatments for diseases such as T2D. The objective of this review is to summarise the systemic actions of the incretins and the metabolic hormones produced by the pancreatic islets and their interactions with their respective receptors.
Collapse
Affiliation(s)
- Joshua Reed
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Stephen C Bain
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | | |
Collapse
|