1
|
Koyanagi N, Hengphasatporn K, Kato A, Nobe M, Takeshima K, Maruzuru Y, Maenaka K, Shigeta Y, Kawaguchi Y. Regulatory mimicry of cyclin-dependent kinases by a conserved herpesvirus protein kinase. Proc Natl Acad Sci U S A 2025; 122:e2500264122. [PMID: 40238458 PMCID: PMC12037052 DOI: 10.1073/pnas.2500264122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Herpesviruses encode conserved protein kinases (CHPKs) that target cellular cyclin-dependent kinase (CDK) phosphorylation sites; thus, they are termed viral CDK-like kinases. Tyrosine 15 in the GxGxxG motifs of CDK1 and CDK2, whose phosphorylation down-regulates their catalytic activities, is conserved in the corresponding motifs of CHPKs. We found that CHPK UL13, the corresponding Tyr-162 in herpes simplex virus 2 (HSV-2), was phosphorylated in HSV-2-infected cells. Mutational analyses of HSV-2 UL13 Tyr-162 suggested that phosphorylation of UL13 Tyr-162 reduced the phosphorylation of all UL13 substrates tested in HSV-2-infected cells. These findings suggested that HSV-2 UL13 mimicked the regulatory mechanism of CDKs and that this CHPK has regulatory and functional mimicry with CDKs. Furthermore, phosphorylation of HSV-2 UL13 Tyr-162 was suggested to be required for the downregulation of viral replication and pathogenicity, specifically in the brains of mice, and for efficient viral recurrence in guinea pigs. These findings highlight the dual impact of the regulatory mimicry of CDKs by CHPK on the fine-tuned regulation of lytic and latent HSV-2 infections in vivo.
Collapse
Grants
- JP20wm0125002 Japan Agency for Medical Research and Development (AMED)
- JP22fk0108640 Japan Agency for Medical Research and Development (AMED)
- JP22gm1610008 Japan Agency for Medical Research and Development (AMED)
- JP223fa627001 Japan Agency for Medical Research and Development (AMED)
- JP23wm0225031 Japan Agency for Medical Research and Development (AMED)
- JP23wm0225035 Japan Agency for Medical Research and Development (AMED)
- 20H05692 MEXT | Japan Society for the Promotion of Science (JSPS)
- 21H00338 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H04803 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21H00417 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H05584 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JPMJPR22R5 MEXT | Japan Science and Technology Agency (JST)
Collapse
Affiliation(s)
- Naoto Koyanagi
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- Research Center for Asian Infectious Diseases, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
| | - Kowit Hengphasatporn
- Center for Computational Sciences, University of Tsukuba, Tsukuba305-8577, Ibaraki, Japan
| | - Akihisa Kato
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- Research Center for Asian Infectious Diseases, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
| | - Moeka Nobe
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
| | - Kosuke Takeshima
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
| | - Yuhei Maruzuru
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- Research Center for Asian Infectious Diseases, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
| | - Katsumi Maenaka
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku060-0812, Sapporo, Japan
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku060-0812, Sapporo, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba305-8577, Ibaraki, Japan
| | - Yasushi Kawaguchi
- Division of Molecular Virology, Department of Microbiology and Immunology, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- Research Center for Asian Infectious Diseases, the Institute of Medical Science, The University of Tokyo, Minato-ku108-8639, Tokyo, Japan
- The University of Tokyo, Pandemic Preparedness, Infection and Advanced Research Center, Minato-ku 108-8639, Tokyo, Japan
| |
Collapse
|
2
|
Quadiri A, Prakash S, Vahed H, Tadros JM, Sun M, Hormi-Carver KK, Patel SJ, BenMohamed L. Therapeutic mucosal vaccination of herpes simplex virus type 2 infected guinea pigs with an adenovirus-based vaccine expressing the ribonucleotide reductase 2 and glycoprotein D induces local tissue-resident CD4+ and CD8+ TRM cells associated with protection against recurrent genital herpes. Front Immunol 2025; 16:1568258. [PMID: 40207227 PMCID: PMC11979635 DOI: 10.3389/fimmu.2025.1568258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/06/2025] [Indexed: 04/11/2025] Open
Abstract
Introduction The reactivation of herpes simplex virus 2 (HSV-2) from latency causes viral shedding that develops into recurrent genital lesions. The role of tissue-resident T cells and the nature of viral antigens associated with protection against recurrent genital herpes remain to be fully elucidated. Methods In this preclinical study, we investigated the protective therapeutic efficacy, in the guinea pig model of recurrent genital herpes, of five recombinant adenovirus-based therapeutic vaccine candidates (rAd-Ags), each expressing different HSV-2 envelope and tegument proteins: RR1 (UL39), RR2 (UL40), gD (glycoprotein D), VP16 (UL48), or VP22 (UL49). We compared the frequency and function of dorsal root ganglia (DRG)- and vaginal mucosa (VM)-resident CD4+ and CD8+ T cells induced by each vaccine and their effect on the frequency and severity of recurrent genital herpes. Results HSV-2 latent-infected guinea pigs immunized with rAd-RR2 and rAd-gD vaccines showed high frequencies of DRG- and VM-tissue-resident IFN-g-producing CD4+ and CD8+ TRM cells associated with significant reductions in viral shedding and genital herpetic lesions. Discussion Taken together, these preclinical results provide new insights into the T cell mechanisms of protection against recurrent genital herpes and confirm the tegument RR2 protein and glycoprotein D as viable candidate antigens to be incorporated in future genital herpes therapeutic vaccines.
Collapse
Affiliation(s)
- Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Jimmy Medhat Tadros
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Miyo Sun
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Kathy K. Hormi-Carver
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Swena Jignesh Patel
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
- Department of Pathology and Laboratory Medicine, School of Medicine, Irvine, CA, United States
- Institute for Immunology, University of California Irvine, School of Medicine, Irvine, CA, United States
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| |
Collapse
|
3
|
Esmaeili S, Owens K, Standing JF, Lowe DM, Zhang S, Watson JA, Schilling WHK, Wagoner J, Polyak SJ, Schiffer JT. Molnupiravir clinical trial simulation suggests that polymerase chain reaction underestimates antiviral potency against SARS-CoV-2. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.11.21.24317726. [PMID: 39830263 PMCID: PMC11741452 DOI: 10.1101/2024.11.21.24317726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Molnupiravir is an antiviral medicine that induces lethal copying errors during SARS-CoV-2 RNA replication. Molnupiravir reduced hospitalization in one pivotal trial by 50% and had variable effects on reducing viral RNA levels in three separate trials. We used mathematical models to simulate these trials and closely recapitulated their virologic outcomes. Model simulations suggest lower antiviral potency against pre-omicron SARS-CoV-2 variants than against omicron. We estimate that in vitro assays underestimate in vivo potency 7-8 fold against omicron variants. Our model suggests that because polymerase chain reaction detects molnupiravir mutated variants, the true reduction in non-mutated viral RNA is underestimated by ~0.5 log10 in the two trials conducted while omicron variants dominated. Viral area under the curve estimates differ significantly between non-mutated and mutated viral RNA. Our results reinforce past work suggesting that in vitro assays are unreliable for estimating in vivo antiviral drug potency and suggest that virologic endpoints for respiratory virus clinical trials should be catered to the drug mechanism of action.
Collapse
Affiliation(s)
- Shadisadat Esmaeili
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center; Seattle, WA, USA
| | - Katherine Owens
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center; Seattle, WA, USA
| | - Joseph F. Standing
- Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
- Great Ormond Street Hospital for Children NHS Trust, London, UK
| | - David M. Lowe
- Department of Clinical Immunology, Royal Free London NHS Foundation Trust, London, UK
- Institute of Immunity and Transplantation, University College London, London, UK
| | - Shengyuan Zhang
- Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - James A. Watson
- Infectious Diseases Data Observatory, Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield, Department of Medicine, University of Oxford, Oxford, UK
| | - William H. K. Schilling
- Centre for Tropical Medicine and Global Health, Nuffield, Department of Medicine, University of Oxford, Oxford, UK
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Jessica Wagoner
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA, USA
| | - Stephen J. Polyak
- Department of Laboratory Medicine & Pathology, University of Washington; Seattle, WA, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center; Seattle, WA, USA
- Department of Medicine, University of Washington; Seattle, WA, USA
| |
Collapse
|
4
|
Pillay R, Naidoo P, Mkhize-Kwitshana ZL. Exploring microRNA-Mediated Immune Responses to Soil-Transmitted Helminth and Herpes Simplex Virus Type 2 Co-Infections. Diseases 2025; 13:6. [PMID: 39851470 PMCID: PMC11765296 DOI: 10.3390/diseases13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Over the last two decades, the field of microRNA (miRNA) research has grown significantly. MiRNAs are a class of short, single-stranded, non-coding RNAs that regulate gene expression post-transcriptionally. Thereby, miRNAs regulate various essential biological processes including immunity. Dysregulated miRNAs are associated with various infectious and non-infectious diseases. Recently co-infection with soil-transmitted helminths (STHs) and herpes simplex virus type 2 (HSV-2) has become a focus of study. Both pathogens can profoundly influence host immunity, particularly in under-resourced and co-endemic regions. It is well known that STHs induce immunomodulatory responses that have bystander effects on unrelated conditions. Typically, STHs induce T-helper 2 (Th2) and immunomodulatory responses, which may dampen the proinflammatory T-helper 1 (Th1) immune responses triggered by HSV-2. However, the extent to which STH co-infection influences the host immune response to HSV-2 is not well understood. Moreover, little is known about how miRNAs shape the immune response to STH/HSV-2 co-infection. In this article, we explore the potential influence that STH co-infection may have on host immunity to HSV-2. Because STH and HSV-2 infections are widespread and disproportionately affect vulnerable and impoverished countries, it is important to consider how STHs may impact HSV-2 immunity. Specifically, we explore how miRNAs contribute to both helminth and HSV-2 infections and discuss how miRNAs may mediate STH/HSV-2 co-infections. Insight into miRNA-mediated immune responses may further improve our understanding of the potential impact of STH/HSV-2 co-infections.
Collapse
Affiliation(s)
- Roxanne Pillay
- Department of Biomedical Sciences, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi, Durban 4031, South Africa
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Pragalathan Naidoo
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Zilungile L. Mkhize-Kwitshana
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
- Biomedical Sciences Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Johannesburg 1710, South Africa
| |
Collapse
|
5
|
Pillay R, Naidoo P, Duma Z, Bhengu KN, Mpaka-Mbatha MN, Nembe-Mafa N, Mkhize-Kwitshana ZL. Potential Interactions Between Soil-Transmitted Helminths and Herpes Simplex Virus Type II: Implications for Sexual and Reproductive Health in Sub-Saharan African. BIOLOGY 2024; 13:1050. [PMID: 39765717 PMCID: PMC11673149 DOI: 10.3390/biology13121050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/24/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Sub-Saharan Africa (SSA) bears a disproportionate and overlapping burden of soil-transmitted helminths (STHs) and sexually transmitted viral infections. An estimated 232 million pre-school and school-aged children in SSA are vulnerable to STH infections. Together with this, SSA has a high prevalence of herpes simplex virus type II (HSV-2), the primary cause of genital herpes. Studies have examined the immunological interactions between STHs and human immunodeficiency virus and human papillomavirus during co-infections. However, epidemiological and immunological studies on STH-HSV-2 co-infections are lacking, therefore their impact on sexual and reproductive health is not fully understood. STH-driven Th2 immune responses are known to downregulate Th1/Th17 immune responses. Therefore, during STH-HSV-2 co-infections, STH-driven immune responses may alter host immunity to HSV-2 and HSV-2 pathology. Herein, we provide an overview of the burden of STH and HSV-2 infections in SSA, and host immune responses to STH and HSV-2 infections. Further, we emphasize the relevance and urgent need for (i) focused research into the interactions between these important pathogens, and (ii) integrated approaches to improve the clinical detection and management of STH-HSV-2 co-infections in SSA.
Collapse
Affiliation(s)
- Roxanne Pillay
- Department of Biomedical Sciences, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi, Durban 4031, South Africa
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Pragalathan Naidoo
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Zamathombeni Duma
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Khethiwe N. Bhengu
- Department of Biomedical Sciences, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi, Durban 4031, South Africa
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Miranda N. Mpaka-Mbatha
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Nomzamo Nembe-Mafa
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Zilungile L. Mkhize-Kwitshana
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
- Department of Biomedical Sciences, University of Johannesburg, Doorfontein Campus, Johannesburg 2028, South Africa
- Biomedical Sciences Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Johannesburg 1710, South Africa
| |
Collapse
|
6
|
Pillay R, Naidoo P, Mkhize-Kwitshana ZL. Herpes simplex virus type 2 in sub-Saharan Africa and the potential impact of helminth immune modulation. Front Cell Infect Microbiol 2024; 14:1471411. [PMID: 39698320 PMCID: PMC11652539 DOI: 10.3389/fcimb.2024.1471411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/07/2024] [Indexed: 12/20/2024] Open
Abstract
Herpes simplex virus type 2 (HSV-2) and helminth infections are among the most widespread infectious diseases in sub-Saharan Africa (SSA). Helminths are known to modulate host immune responses and consequently impact the severity and outcomes of unrelated diseases, including allergies, autoimmune conditions, and infectious diseases. In this way, helminths may modulate essential immune responses against HSV-2 during co-infection and may alter susceptibility to and pathology of HSV-2. However, the epidemiology of STH/HSV-2 co-infections is understudied, and whether helminths influence the host immune response to HSV-2 is not well understood. In this perspective piece, we briefly examine the current knowledge on helminth immune modulation of important pathogens that are endemic to SSA, arguing that it is important to explore HSV-2 and helminth co-infections to elucidate potential interactions between HSV-2 and helminths. This is particularly relevant in SSA, where both pathogens are highly prevalent.
Collapse
Affiliation(s)
- Roxanne Pillay
- Department of Biomedical Sciences, Faculty of Natural Sciences, Mangosuthu University of Technology, Umlazi, South Africa
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town, South Africa
| | - Pragalathan Naidoo
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town, South Africa
| | - Zilungile L. Mkhize-Kwitshana
- Department of Medical Microbiology, College of Health Sciences, School of Laboratory Medicine & Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Division of Research Capacity Development, South African Medical Research Council (SAMRC), Tygerberg, Cape Town, South Africa
- Department of Biomedical Sciences, University of Johannesburg, Johannesburg, South Africa
- Biomedical Sciences Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Johannesburg, South Africa
| |
Collapse
|
7
|
Chen S, Zhu J, Hua C, Feng C, Wu X, Zhou C, Chen X, Zhang B, Xu Y, Ma Z, He J, Jin N, Song Y, van der Veen S, Cheng H. Single-cell RNA sequencing reveals the diversity of the immunological landscape response to genital herpes. Virol Sin 2024; 39:860-874. [PMID: 39426602 PMCID: PMC11738787 DOI: 10.1016/j.virs.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024] Open
Abstract
Genital herpes (GH) is a common sexually transmitted disease, which is primarily caused by herpes simplex virus type 2 (HSV-2), and continues to be a global health concern. Although our understanding of the alterations in immune cell populations and immunomodulation in GH patients is still limited, it is evident that systemic intrinsic immunity, innate immunity, and adaptive immunity play crucial roles during HSV-2 infection and GH reactivation. To investigate the mechanisms underlying HSV-2 infection and recurrence, single-cell RNA sequencing (scRNA-seq) was performed on immune cells isolated from the peripheral blood of both healthy individuals and patients with recurrent GH. Furthermore, the systemic immune response in patients with recurrent GH showed activation of classical monocytes, CD4+ T cells, natural killer cells (NK cells), and plasmacytoid dendritic cells (pDCs), especially of genes associated with the Toll-like receptor signaling pathway and T cell activation. Circulating immune cells in GH patients show higher expression of genes associated with inflammation and antiviral responses both in the scRNA-Seq data set and in independent quantitative real-time polymerase chain reaction (qRT-PCR) analysis and ELISA experiments. This study demonstrated that localized genital herpes, resulting from HSV reactivation, may influence the functionality of circulating immune cells, suggesting a potential avenue for future research into the role of systemic immunity during HSV infection and recurrence.
Collapse
Affiliation(s)
- Siji Chen
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jiang Zhu
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Chunting Hua
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Chenxi Feng
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xia Wu
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Can Zhou
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xianzhen Chen
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Boya Zhang
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yaohan Xu
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Zeyu Ma
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jianping He
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Na Jin
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yinjing Song
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Stijn van der Veen
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Department of Microbiology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
8
|
Sfyri E, Tertipi N, Kefala V, Rallis E. Prevalence of Plantar Warts, Genital Warts, and Herpetic Infections in Greek Competitive Swimmers. Viruses 2024; 16:1782. [PMID: 39599896 PMCID: PMC11599054 DOI: 10.3390/v16111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Viral outbreaks are common in the sport community. Data regarding the prevalence of plantar warts, genital warts, herpes simplex type 1 (herpes labialis), herpes zoster, and genital herpes in competitive swimmers are lacking in the literature. The purpose of this study was to determine the prevalence of those viral infections among young competitive swimmers participating in Greek swimming clubs. Swimmers' parents and adult swimmers were asked to complete an anonymous questionnaire. In total, 1047 swimmers enrolled in this study. The measured parameters included gender, age, times of infections, and seasons when athletes may be more susceptible to infections. Practicing information such as type of swimming facility, number of training years, average hours of daily training, behaviors in swimming practice, and sunlight exposure was also recorded. All infections showed a significant difference in relation to "age" and "years of training". The gender significance was observed in herpes labialis (p = 0.016) and plantar warts (p = 0.05). The prevalence of all infections in swimmers who use outdoor facilities was higher. Certain behaviors such as walking barefoot on a pool deck and sharing swimming equipment correlate with herpes simplex and plantar warts. Virus infections can affect swimmers of all ages. In our study, plantar warts and herpes labialis are more common in swimmers. Herpes zoster and sexually transmitted viruses are rarer and affect adult swimmers. The impact of cutaneous infections on swimmers can affect performance and well-being. Effective prevention and management are essential to avoid complications. Proper hygiene, medical guidance, and treatment reduce swimmers' exposure to skin viruses.
Collapse
Affiliation(s)
- Eleni Sfyri
- Department of Biomedical Sciences, University of West Attica, Campus I, 12243 Athens, Greece; (N.T.); (V.K.); (E.R.)
| | | | | | | |
Collapse
|
9
|
Philip DT, Goins NM, Lazear HM. A fur plucking model to study herpes simplex virus reactivation and recurrent disease. mSphere 2024; 9:e0078323. [PMID: 39382285 PMCID: PMC11520289 DOI: 10.1128/msphere.00783-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Herpes simplex viruses (HSV-1 and HSV-2) most commonly cause ulcerative epithelial lesions (cold sores and genital herpes). Importantly, HSV establishes life-long persistent (latent) infection in peripheral neurons. Reactivation from latency produces recurrent epithelial lesions, which constitute the greatest burden of HSV disease in people. The mechanisms that regulate latency and reactivation remain incompletely understood, in part due to limitations in the animal models available for studying HSV reactivation. We have developed a simple and tractable model to induce HSV-1 and HSV-2 reactivation from latency to cause recurrent skin disease. We infected C57BL/6 mice with HSV-1 (strains NS, F, SC16, 17syn+) or HSV-2 (strain 333) on flank skin depilated by manual plucking. After at least 35 days post-infection (dpi), we replucked the fur from the infected flank and observed recurrent lesions in the same dermatome as the primary infection. We detected HSV DNA in dermatome skin through 4 days post-replucking and observed viral antigen and reporter signal in skin lesions by histology, consistent with viral replication following reactivation. In addition to C57BL/6 mice, we were able to produce reactivation in Balb/c and SKH-1 mice. We found that shaving the ipsilateral flank or plucking the contralateral flank did not induce recurrent skin lesions, suggesting that fur plucking is a specific stimulus that induces HSV reactivation. Furthermore, we were able to induce multiple rounds of plucking-induced recurrent disease, providing a model to investigate the lifelong nature of HSV infection. This new model provides a tractable system for studying pathogenic mechanisms of and therapeutic interventions against HSV reactivation and recurrent disease. IMPORTANCE Herpes simplex viruses (HSV-1 and HSV-2) have infected over half of the US adult population to cause a lifelong, persistent infection; however, our understanding of the mechanisms that govern HSV reactivation and recurrent disease is incomplete. This is in part due to limitations in the animal models used to study recurrent disease, which are laborious and inefficient in mice. To address this technical gap, we developed a mouse model in which fur plucking after flank skin infection is sufficient to induce episodes of HSV reactivation and recurrent disease. Our work provides a model for the field to investigate the pathogenic mechanisms of HSV and immune responses during recurrent disease and provides an opportunity to investigate the neurobiology of HSV infection.
Collapse
Affiliation(s)
- Drake T. Philip
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel M. Goins
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Helen M. Lazear
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
Borase H, Shukla D. The Interplay of Genital Herpes with Cellular Processes: A Pathogenesis and Therapeutic Perspective. Viruses 2023; 15:2195. [PMID: 38005873 PMCID: PMC10675801 DOI: 10.3390/v15112195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Genital herpes, primarily caused by herpes simplex virus-2 (HSV-2), remains a pressing global health concern. Its remarkable ability to intertwine with cellular processes, from harnessing host machinery for replication to subverting antiviral defenses like autophagy and programmed cell death, exemplifies the intricate interplay at the heart of its pathogenesis. While the biomedical community has extensively researched antiviral interventions, the efficiency of these strategies in managing HSV-2 remains suboptimal. Recognizing this, attention has shifted toward leveraging host cellular components to regulate HSV-2 replication and influence the cell cycle. Furthermore, innovative interventional strategies-including drug repurposing, microbivacs, connecting the host microbiome, and exploiting natural secondary metabolites-are emerging as potential game changers. This review summarizes the key steps in HSV-2 pathogenesis and newly discovered cellular interactions, presenting the latest developments in the field, highlighting existing challenges, and offering a fresh perspective on HSV-2's pathogenesis and the potential avenues for its treatment by targeting cellular proteins and pathways.
Collapse
Affiliation(s)
- Hemant Borase
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
11
|
Danastas K, Guo G, Merjane J, Hong N, Larsen A, Miranda-Saksena M, Cunningham AL. Interferon inhibits the release of herpes simplex virus-1 from the axons of sensory neurons. mBio 2023; 14:e0181823. [PMID: 37655893 PMCID: PMC10653907 DOI: 10.1128/mbio.01818-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023] Open
Abstract
IMPORTANCE Herpes simplex virus-1 (HSV-1) is a human pathogen known to cause cold sores and genital herpes. HSV-1 establishes lifelong infections in our sensory neurons, with no cure or vaccine available. HSV-1 can reactivate sporadically and travel back along sensory nerves, where it can form lesions in the oral and genital mucosa, eye, and skin, or be shed asymptomatically. New treatment options are needed as resistance is emerging to current antiviral therapies. Here, we show that interferons (IFNs) are capable of blocking virus release from nerve endings, potentially stopping HSV-1 transmission into the skin. Furthermore, we show that IFNγ has the potential to have widespread antiviral effects in the neuron and may have additional effects on HSV-1 reactivation. Together, this study identifies new targets for the development of immunotherapies to stop the spread of HSV-1 from the nerves into the skin.
Collapse
Affiliation(s)
- Kevin Danastas
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Gerry Guo
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Jessica Merjane
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Nathan Hong
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Ava Larsen
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Monica Miranda-Saksena
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
12
|
Liu H, Wang J, Zhang Y, Gu J, Wang Y, Yan Y, Pan D, Sun Z. Cerebrospinal fluid proteomics in meningitis patients with reactivated varicella zoster virus. Immun Inflamm Dis 2023; 11:e1038. [PMID: 37904697 PMCID: PMC10549851 DOI: 10.1002/iid3.1038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 09/17/2023] [Indexed: 11/01/2023] Open
Abstract
OBJECTIVE This study investigated the proteomic characteristics of cerebrospinal fluid (CSF) in patients with varicella zoster virus (VZV) meningitis to understanding the pathogenesis of central nervous system (CNS) infection by reactivated VZV. METHOD We used data-independent acquisition model to analyze the CSF proteomic differences of 28 patients with VZV meningitis and 11 herpes zoster (HZ) patients. According to the clinical manifestations at discharge, 28 VZV meningitis patients were divided into favorable outcome group and unfavorable outcome (UO) group and their differences in CSF proteome were also analyzed. RESULTS Compared with the HZ group, the proteins (CXCL10, ELANE, IL-1RN, MPO, PRTN3, etc.) related to inflammation and immune cell activation were significantly upregulated in the VZV meningitis group (p < .01). The protein related to the nerve function and energy metabolism (CKMT1B, SLITRK3, Synaptotagmin-3, KIF5B, etc.) were significantly downregulated (p < .05). The levels of a pro-inflammatory factor, IL-18, in CSF were significantly higher in patients in the UO group as compared to patients with favorable prognosis (p < .05). CONCLUSION Inflammatory immune response is an important pathophysiological mechanism of CNS infection by VZV, and the CSF IL-18 levels might be a potential prognostic indicator of the outcomes of VZV meningitis.
Collapse
Affiliation(s)
- Huili Liu
- Department of NeurologyHangzhou Third People's HospitalHangzhouZhejiangChina
| | - Jun Wang
- Department of NeurologyHangzhou Third People's HospitalHangzhouZhejiangChina
| | - Yan Zhang
- Department of NeurologyHangzhou Third People's HospitalHangzhouZhejiangChina
| | - Jing Gu
- Department of NeurologyHangzhou Third People's HospitalHangzhouZhejiangChina
| | - Yu Wang
- Department of Medical Microbiology and ParasitologyZhejiang University School of MedicineHangzhouZhejiangChina
| | - Yongxing Yan
- Department of NeurologyHangzhou Third People's HospitalHangzhouZhejiangChina
| | - Dongli Pan
- Department of Medical Microbiology and ParasitologyZhejiang University School of MedicineHangzhouZhejiangChina
- State key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Zeyu Sun
- State key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| |
Collapse
|
13
|
Davé V, Richert-Spuhler LE, Arkatkar T, Warrier L, Pholsena T, Johnston C, Schiffer JT, Prlic M, Lund JM. Recurrent infection transiently expands human tissue T cells while maintaining long-term homeostasis. J Exp Med 2023; 220:e20210692. [PMID: 37314481 PMCID: PMC10267593 DOI: 10.1084/jem.20210692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 03/13/2023] [Accepted: 05/15/2023] [Indexed: 06/15/2023] Open
Abstract
Chronic viral infections are known to lead to T cell exhaustion or dysfunction. However, it remains unclear if antigen exposure episodes from periodic viral reactivation, such as herpes simplex virus type-2 (HSV-2) recrudescence, are sufficient to induce T cell dysfunction, particularly in the context of a tissue-specific localized, rather than a systemic, infection. We designed and implemented a stringent clinical surveillance protocol to longitudinally track both viral shedding and in situ tissue immune responses in a cohort of HSV+ volunteers that agreed to avoid using anti-viral therapy for the course of this study. Comparing lesion to control skin biopsies, we found that tissue T cells expanded immediately after reactivation, and then returned numerically and phenotypically to steady state. T cell responses appeared to be driven at least in part by migration of circulating T cells to the infected tissue. Our data indicate that tissue T cells are stably maintained in response to HSV reactivation, resembling a series of acute recall responses.
Collapse
Affiliation(s)
- Veronica Davé
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Global Health, Graduate Program in Pathobiology, University of Washington, Seattle, WA, USA
| | - Laura E. Richert-Spuhler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Tanvi Arkatkar
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Global Health, Graduate Program in Pathobiology, University of Washington, Seattle, WA, USA
| | - Lakshmi Warrier
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Global Health, Graduate Program in Pathobiology, University of Washington, Seattle, WA, USA
| | | | - Christine Johnston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Global Health, Graduate Program in Pathobiology, University of Washington, Seattle, WA, USA
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Jennifer M. Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Global Health, Graduate Program in Pathobiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
14
|
Civra A, Costantino M, Ronchi G, Pontini L, Poli G, Marinozzi M, Lembo D. Identification of oxysterol synthetic analogs as a novel class of late-stage inhibitors of herpes simplex virus 2 replication. Antiviral Res 2023; 215:105634. [PMID: 37164189 DOI: 10.1016/j.antiviral.2023.105634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Genital herpes, most frequently caused by herpes simplex virus 2 (HSV-2) infection, is one of the most prevalent sexually transmitted infections. The current rationale for the treatment of HSV-2 infection involves nucleoside analogs (e.g. acyclovir) to suppress reactivation. Enzymatic oxysterols are endogenous 27-carbon atoms molecules produced by enzymatic cholesterol oxidation, and recently emerged as a broad-spectrum host targeting antivirals. In this study, we screened selected members of an in-house synthesized library of oxysterol analogues for their activity against HSV-2, identifying three compounds, named PFM064, PFM067, and PFM069, endowed with 50% effective concentrations (EC50) in the micromolar range, without exerting any apparent cytotoxicity. Moreover, the results obtained showed the ability of the novel derivatives to inhibit both cell-to-cell fusion induced by HSV-2, and the production of an intracellular viral progeny. Further experiments performed with PFM067 (which was selected for more-in-depth studies as the most effective synthetic analog) showed that these molecules act in a late stage of HSV-2 replicative cycle, by sequestering viral glycoproteins in the Golgi compartment, and likely inhibiting the nuclear egress of neo-synthetized viral capsids. Taken together, these results point to PFM067 as a promising chemical scaffold for the development of novel herpetic antivirals.
Collapse
Affiliation(s)
- Andrea Civra
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy.
| | - Matteo Costantino
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy.
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Turin, Orbassano, Turin, Italy.
| | - Lorenzo Pontini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy.
| | - Maura Marinozzi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy.
| |
Collapse
|
15
|
Lim YS, Lee AG, Jiang X, Scott JM, Cofie A, Kumar S, Kennedy D, Granville DJ, Shin H. NK cell-derived extracellular granzyme B drives epithelial ulceration during HSV-2 genital infection. Cell Rep 2023; 42:112410. [PMID: 37071533 DOI: 10.1016/j.celrep.2023.112410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/25/2023] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
Genital herpes is characterized by recurrent episodes of epithelial blistering. The mechanisms causing this pathology are ill defined. Using a mouse model of vaginal herpes simplex virus 2 (HSV-2) infection, we show that interleukin-18 (IL-18) acts upon natural killer (NK) cells to promote accumulation of the serine protease granzyme B in the vagina, coinciding with vaginal epithelial ulceration. Genetic loss of granzyme B or therapeutic inhibition by a specific protease inhibitor reduces disease and restores epithelial integrity without altering viral control. Distinct effects of granzyme B and perforin deficiency on pathology indicates that granzyme B acts independent of its classic cytotoxic role. IL-18 and granzyme B are markedly elevated in human herpetic ulcers compared with non-herpetic ulcers, suggesting engagement of these pathways in HSV-infected patients. Our study reveals a role for granzyme B in destructing mucosal epithelium during HSV-2 infection, identifying a therapeutic target to augment treatment of genital herpes.
Collapse
Affiliation(s)
- Ying Shiang Lim
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aisha G Lee
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaoping Jiang
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason M Scott
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Adjoa Cofie
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sandeep Kumar
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dania Kennedy
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David J Granville
- International Collaboration on Repair Discoveries Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V5Z 1M9, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Vancouver, BC V5V 3P1, Canada
| | - Haina Shin
- Division of Infectious Disease, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
16
|
Folch H, Jahr C, Giacaman P, Zuñiga P, Del Pino M. Hypertrophic genital herpes simplex due to HSV 2 sensitive to maximum dose of oral aciclovir. Clin Exp Dermatol 2023; 48:43-44. [PMID: 36631433 DOI: 10.1093/ced/llac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/27/2022] [Accepted: 10/13/2022] [Indexed: 01/13/2023]
Abstract
In patients who are HIV-positive, genital herpes simplex virus (HSV) infections can present with atypical clinical presentations, representing a diagnostic challenge. Hypertrophic herpes simplex has been classified as a clinical presentation that generally tends to be resistant to treatment with aciclovir. We present a case of hypertrophic HSV due to HSV Type 2, which was sensitive to maximum doses of oral aciclovir.
Collapse
Affiliation(s)
- Hugo Folch
- Department of Dermatology, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Catalina Jahr
- Department of Dermatology, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Paula Giacaman
- Department of Dermatology, Hospital San José, Santiago, Chile
| | - Priscila Zuñiga
- Department of Dermatology, Hospital Clínico Universidad de Chile, Santiago, Chile
| | | |
Collapse
|
17
|
Smith JB, Herbert JJ, Truong NR, Cunningham AL. Cytokines and chemokines: The vital role they play in herpes simplex virus mucosal immunology. Front Immunol 2022; 13:936235. [PMID: 36211447 PMCID: PMC9538770 DOI: 10.3389/fimmu.2022.936235] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Herpes simplex viruses (HSV) types 1 and 2 are ubiquitous infections in humans. They cause orofacial and genital herpes with occasional severe complications. HSV2 also predisposes individuals to infection with HIV. There is currently no vaccine or immunotherapy for these diseases. Understanding the immunopathogenesis of HSV infections is essential to progress towards these goals. Both HSV viruses result in initial infections in two major sites - in the skin or mucosa, either after initial infection or recurrence, and in the dorsal root or trigeminal ganglia where the viruses establish latency. HSV1 can also cause recurrent infection in the eye. At all of these sites immune cells respond to control infection. T cells and resident dendritic cells (DCs) in the skin/mucosa and around reactivating neurones in the ganglia, as well as keratinocytes in the skin and mucosa, are major sources of cytokines and chemokines. Cytokines such as the Type I and II interferons synergise in their local antiviral effects. Chemokines such as CCL2, 3 and 4 are found in lesion vesicle fluid, but their exact role in determining the interactions between epidermal and dermal DCs and with resident memory and infiltrating CD4 and CD8 T cells in the skin/mucosa is unclear. Even less is known about these mechanisms in the ganglia. Here we review the data on known sources and actions of these cytokines and chemokines at cellular and tissue level and indicate their potential for preventative and therapeutic interventions.
Collapse
Affiliation(s)
- Jacinta B. Smith
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jason J. Herbert
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Naomi R. Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- *Correspondence: Anthony L. Cunningham,
| |
Collapse
|
18
|
Rathbun MM, Shipley MM, Bowen CD, Selke S, Wald A, Johnston C, Szpara ML. Comparison of herpes simplex virus 1 genomic diversity between adult sexual transmission partners with genital infection. PLoS Pathog 2022; 18:e1010437. [PMID: 35587470 PMCID: PMC9119503 DOI: 10.1371/journal.ppat.1010437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/11/2022] [Indexed: 01/15/2023] Open
Abstract
Herpes simplex virus (HSV) causes chronic infection in the human host, characterized by self-limited episodes of mucosal shedding and lesional disease, with latent infection of neuronal ganglia. The epidemiology of genital herpes has undergone a significant transformation over the past two decades, with the emergence of HSV-1 as a leading cause of first-episode genital herpes in many countries. Though dsDNA viruses are not expected to mutate quickly, it is not yet known to what degree the HSV-1 viral population in a natural host adapts over time, or how often viral population variants are transmitted between hosts. This study provides a comparative genomics analysis for 33 temporally-sampled oral and genital HSV-1 genomes derived from five adult sexual transmission pairs. We found that transmission pairs harbored consensus-level viral genomes with near-complete conservation of nucleotide identity. Examination of within-host minor variants in the viral population revealed both shared and unique patterns of genetic diversity between partners, and between anatomical niches. Additionally, genetic drift was detected from spatiotemporally separated samples in as little as three days. These data expand our prior understanding of the complex interaction between HSV-1 genomics and population dynamics after transmission to new infected persons.
Collapse
Affiliation(s)
- Molly M. Rathbun
- Department of Biochemistry and Molecular Biology, Department of Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Mackenzie M. Shipley
- Department of Biochemistry and Molecular Biology, Department of Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Christopher D. Bowen
- Department of Biochemistry and Molecular Biology, Department of Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Stacy Selke
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, United States of America
| | - Anna Wald
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Christine Johnston
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Moriah L. Szpara
- Department of Biochemistry and Molecular Biology, Department of Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
19
|
Chentoufi AA, Dhanushkodi NR, Srivastava R, Prakash S, Coulon PGA, Zayou L, Vahed H, Chentoufi HA, Hormi-Carver KK, BenMohamed L. Combinatorial Herpes Simplex Vaccine Strategies: From Bedside to Bench and Back. Front Immunol 2022; 13:849515. [PMID: 35547736 PMCID: PMC9082490 DOI: 10.3389/fimmu.2022.849515] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/18/2022] [Indexed: 12/19/2022] Open
Abstract
The development of vaccines against herpes simplex virus type 1 and type 2 (HSV1 and HSV-2) is an important goal for global health. In this review we reexamined (i) the status of ocular herpes vaccines in clinical trials; and (ii) discusses the recent scientific advances in the understanding of differential immune response between HSV infected asymptomatic and symptomatic individuals that form the basis for the new combinatorial vaccine strategies targeting HSV; and (iii) shed light on our novel "asymptomatic" herpes approach based on protective immune mechanisms in seropositive asymptomatic individuals who are "naturally" protected from recurrent herpetic diseases. We previously reported that phenotypically and functionally distinct HSV-specific memory CD8+ T cell subsets in asymptomatic and symptomatic HSV-infected individuals. Moreover, a better protection induced following a prime/pull vaccine approach that consists of first priming anti-viral effector memory T cells systemically and then pulling them to the sites of virus reactivation (e.g., sensory ganglia) and replication (e.g., eyes and vaginal mucosa), following mucosal administration of vectors expressing T cell-attracting chemokines. In addition, we reported that a combination of prime/pull vaccine approach with approaches to reverse T cell exhaustion led to even better protection against herpes infection and disease. Blocking PD-1, LAG-3, TIGIT and/or TIM-3 immune checkpoint pathways helped in restoring the function of antiviral HSV-specific CD8+ T cells in latently infected ganglia and increased efficacy and longevity of the prime/pull herpes vaccine. We discussed that a prime/pull vaccine strategy that use of asymptomatic epitopes, combined with immune checkpoint blockade would prove to be a successful herpes vaccine approach.
Collapse
Affiliation(s)
- Aziz A. Chentoufi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Nisha R. Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Pierre-Gregoire A. Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, Limited Liability Company (LLC), University Lab Partners, Irvine, CA, United States
| | | | - Kathy K. Hormi-Carver
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, School of Medicine, University of California Irvine, Irvine, CA, United States
- Biomedical Sciences, University of Ottawa, Ottawa, ON, Canada
- Department of Molecular Biology & Biochemistry, Institute for Immunology, School of Medicine, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
20
|
Jayewickreme R, Mao T, Philbrick W, Kong Y, Treger RS, Lu P, Rakib T, Dong H, Dang-Lawson M, Guild WA, Lau TJ, Iwasaki A, Tokuyama M. Endogenous Retroviruses Provide Protection Against Vaginal HSV-2 Disease. Front Immunol 2022; 12:758721. [PMID: 35058919 PMCID: PMC8764156 DOI: 10.3389/fimmu.2021.758721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Endogenous retroviruses (ERVs) are genomic sequences that originated from retroviruses and are present in most eukaryotic genomes. Both beneficial and detrimental functions are attributed to ERVs, but whether ERVs contribute to antiviral immunity is not well understood. Here, we used herpes simplex virus type 2 (HSV-2) infection as a model and found that Toll-like receptor 7 (Tlr7 -/-) deficient mice that have high systemic levels of infectious ERVs are protected from intravaginal HSV-2 infection and disease, compared to wildtype C57BL/6 mice. We deleted the endogenous ecotropic murine leukemia virus (Emv2) locus on the Tlr7 -/- background (Emv2 -/- Tlr7 -/-) and found that Emv2 -/- Tlr7 -/- mice lose protection against HSV-2 infection. Intravaginal application of purified ERVs from Tlr7-/- mice prior to HSV-2 infection delays disease in both wildtype and highly susceptible interferon-alpha receptor-deficient (Ifnar1- /-) mice. However, intravaginal ERV treatment did not protect Emv2-/-Tlr7-/- mice from HSV-2 disease, suggesting that the protective mechanism mediated by exogenous ERV treatment may differ from that of constitutively and systemically expressed ERVs in Tlr7-/- mice. We did not observe enhanced type I interferon (IFN-I) signaling in the vaginal tissues from Tlr7-/- mice, and instead found enrichment in genes associated with extracellular matrix organization. Together, our results revealed that constitutive and/or systemic expression of ERVs protect mice against vaginal HSV-2 infection and delay disease.
Collapse
Affiliation(s)
- Radeesha Jayewickreme
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - William Philbrick
- Department of Internal Medicine, Section of Endocrinology, Yale School of Medicine, New Haven, CT, United States
| | - Yong Kong
- Department of Molecular Biophysics and Biochemistry, W.M. Keck Foundation Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, CT, United States
| | - Rebecca S Treger
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Peiwen Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Tasfia Rakib
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - Huiping Dong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States
| | - May Dang-Lawson
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - W Austin Guild
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Tatiana J Lau
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States.,Howard Hughes Medical Institute, Chevy Chase, MD, United States
| | - Maria Tokuyama
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States.,Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
21
|
Gornalusse GG, Zhang M, Wang R, Rwigamba E, Kirby AC, Fialkow M, Nance E, Hladik F, Vojtech L. HSV-2 Infection Enhances Zika Virus Infection of Primary Genital Epithelial Cells Independently of the Known Zika Virus Receptor AXL. Front Microbiol 2022; 12:825049. [PMID: 35126336 PMCID: PMC8811125 DOI: 10.3389/fmicb.2021.825049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/31/2021] [Indexed: 01/05/2023] Open
Abstract
Zika virus (ZIKV) is transmitted to people by bite of an infected mosquito and by sexual contact. ZIKV infects primary genital epithelial cells, the same cells targeted by herpes simplex virus 2 (HSV-2). HSV-2 seroprevalence is high in areas where ZIKV is endemic, but it is unknown whether HSV-2 increases the risk for ZIKV infection. Here, we found that pre-infecting female genital tract epithelial cells with HSV-2 leads to enhanced binding of ZIKV virions. This effect did not require active replication by HSV-2, implying that the effect results from the immune response to HSV-2 exposure or to viral genes expressed early in the HSV-2 lifecycle. Treating cells with toll-like receptor-3 ligand poly-I:C also lead to enhanced binding by ZIKV, which was inhibited by the JAK-STAT pathway inhibitor ruxolitinib. Blocking or knocking down the well-studied ZIKV receptor AXL did not prevent binding of ZIKV to epithelial cells, nor prevent enhanced binding in the presence of HSV-2 infection. Blocking the α5 integrin receptor did not prevent ZIKV binding to cells either. Overall, our results indicate that ZIKV binding to genital epithelial cells is not mediated entirely by a canonical receptor, but likely occurs through redundant pathways that may involve lectin receptors and glycosaminoglycans. Our studies may pave the way to new interventions that interrupt the synergism between herpes and Zika viruses.
Collapse
Affiliation(s)
- Germán G. Gornalusse
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
| | - Mengying Zhang
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, United States
| | - Ruofan Wang
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
| | - Emery Rwigamba
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
| | - Anna C. Kirby
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
| | - Michael Fialkow
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
| | - Elizabeth Nance
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, United States
- Department of Chemical Engineering, University of Washington, Seattle, WA, United States
| | - Florian Hladik
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Lucia Vojtech
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
- *Correspondence: Lucia Vojtech,
| |
Collapse
|
22
|
Getz M, Wang Y, An G, Asthana M, Becker A, Cockrell C, Collier N, Craig M, Davis CL, Faeder JR, Ford Versypt AN, Mapder T, Gianlupi JF, Glazier JA, Hamis S, Heiland R, Hillen T, Hou D, Islam MA, Jenner AL, Kurtoglu F, Larkin CI, Liu B, Macfarlane F, Maygrundter P, Morel PA, Narayanan A, Ozik J, Pienaar E, Rangamani P, Saglam AS, Shoemaker JE, Smith AM, Weaver JJA, Macklin P. Iterative community-driven development of a SARS-CoV-2 tissue simulator. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.04.02.019075. [PMID: 32511322 PMCID: PMC7239052 DOI: 10.1101/2020.04.02.019075] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The 2019 novel coronavirus, SARS-CoV-2, is a pathogen of critical significance to international public health. Knowledge of the interplay between molecular-scale virus-receptor interactions, single-cell viral replication, intracellular-scale viral transport, and emergent tissue-scale viral propagation is limited. Moreover, little is known about immune system-virus-tissue interactions and how these can result in low-level (asymptomatic) infections in some cases and acute respiratory distress syndrome (ARDS) in others, particularly with respect to presentation in different age groups or pre-existing inflammatory risk factors. Given the nonlinear interactions within and among each of these processes, multiscale simulation models can shed light on the emergent dynamics that lead to divergent outcomes, identify actionable "choke points" for pharmacologic interventions, screen potential therapies, and identify potential biomarkers that differentiate patient outcomes. Given the complexity of the problem and the acute need for an actionable model to guide therapy discovery and optimization, we introduce and iteratively refine a prototype of a multiscale model of SARS-CoV-2 dynamics in lung tissue. The first prototype model was built and shared internationally as open source code and an online interactive model in under 12 hours, and community domain expertise is driving regular refinements. In a sustained community effort, this consortium is integrating data and expertise across virology, immunology, mathematical biology, quantitative systems physiology, cloud and high performance computing, and other domains to accelerate our response to this critical threat to international health. More broadly, this effort is creating a reusable, modular framework for studying viral replication and immune response in tissues, which can also potentially be adapted to related problems in immunology and immunotherapy.
Collapse
|
23
|
Abstract
Two of the most prevalent human viruses worldwide, herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2, respectively), cause a variety of diseases, including cold sores, genital herpes, herpes stromal keratitis, meningitis and encephalitis. The intrinsic, innate and adaptive immune responses are key to control HSV, and the virus has developed mechanisms to evade them. The immune response can also contribute to pathogenesis, as observed in stromal keratitis and encephalitis. The fact that certain individuals are more prone than others to suffer severe disease upon HSV infection can be partially explained by the existence of genetic polymorphisms in humans. Like all herpesviruses, HSV has two replication cycles: lytic and latent. During lytic replication HSV produces infectious viral particles to infect other cells and organisms, while during latency there is limited gene expression and lack of infectious virus particles. HSV establishes latency in neurons and can cause disease both during primary infection and upon reactivation. The mechanisms leading to latency and reactivation and which are the viral and host factors controlling these processes are not completely understood. Here we review the HSV life cycle, the interaction of HSV with the immune system and three of the best-studied pathologies: Herpes stromal keratitis, herpes simplex encephalitis and genital herpes. We also discuss the potential association between HSV-1 infection and Alzheimer's disease.
Collapse
Affiliation(s)
- Shuyong Zhu
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Cluster of Excellence RESIST (Exc 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
24
|
Feng E, Balint E, Vahedi F, Ashkar AA. Immunoregulatory Functions of Interferons During Genital HSV-2 Infection. Front Immunol 2021; 12:724618. [PMID: 34484233 PMCID: PMC8416247 DOI: 10.3389/fimmu.2021.724618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/02/2021] [Indexed: 12/04/2022] Open
Abstract
Herpes simplex virus type 2 (HSV-2) infection is one of the most prevalent sexually transmitted infections that disproportionately impacts women worldwide. Currently, there are no vaccines or curative treatments, resulting in life-long infection. The mucosal environment of the female reproductive tract (FRT) is home to a complex array of local immune defenses that must be carefully coordinated to protect against genital HSV-2 infection, while preventing excessive inflammation to prevent disease symptoms. Crucial to the defense against HSV-2 infection in the FRT are three classes of highly related and integrated cytokines, type I, II, and III interferons (IFN). These three classes of cytokines control HSV-2 infection and reduce tissue damage through a combination of directly inhibiting viral replication, as well as regulating the function of resident immune cells. In this review, we will examine how interferons are induced and their critical role in how they shape the local immune response to HSV-2 infection in the FRT.
Collapse
Affiliation(s)
| | | | | | - Ali A. Ashkar
- McMaster Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
25
|
Abstract
Herpes simplex viruses (HSV) cause chronic infection in humans that are characterized by periodic episodes of mucosal shedding and ulcerative disease. HSV causes millions of infections world-wide, with lifelong bouts of viral reactivation from latency in neuronal ganglia. Infected individuals experience different levels of disease severity and frequency of reactivation. There are two distantly related HSV species, with HSV-1 infections historically found most often in the oral niche and HSV-2 infections in the genital niche. Over the last two decades, HSV-1 has emerged as the leading cause of first-episode genital herpes in multiple countries. While HSV-1 has the highest level of genetic diversity among human alpha-herpesviruses, it is not yet known how quickly the HSV-1 viral population in a human host adapts over time, or if there are population bottlenecks associated with viral reactivation and/or transmission. It is also unknown how the ecological environments in which HSV infections occur influence their evolutionary trajectory, or that of co-occurring viruses and microbes. In this review, we explore how HSV accrues genetic diversity within each new infection, and yet maintains its ability to successfully infect most of the human population. A holistic examination of the ecological context of natural human infections can expand our awareness of how HSV adapts as it moves within and between human hosts, and reveal the complexity of these lifelong human-virus interactions. These insights may in turn suggest new areas of exploration for other chronic pathogens that successfully evolve and persist among their hosts.
Collapse
|
26
|
Bermek O, Williams RS. The three-component helicase/primase complex of herpes simplex virus-1. Open Biol 2021; 11:210011. [PMID: 34102080 PMCID: PMC8187027 DOI: 10.1098/rsob.210011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is one of the nine herpesviruses that infect humans. HSV-1 encodes seven proteins to replicate its genome in the hijacked human cell. Among these are the herpes virus DNA helicase and primase that are essential components of its replication machinery. In the HSV-1 replisome, the helicase-primase complex is composed of three components including UL5 (helicase), UL52 (primase) and UL8 (non-catalytic subunit). UL5 and UL52 subunits are functionally interdependent, and the UL8 component is required for the coordination of UL5 and UL52 activities proceeding in opposite directions with respect to the viral replication fork. Anti-viral compounds currently under development target the functions of UL5 and UL52. Here, we review the structural and functional properties of the UL5/UL8/UL52 complex and highlight the gaps in knowledge to be filled to facilitate molecular characterization of the structure and function of the helicase-primase complex for development of alternative anti-viral treatments.
Collapse
Affiliation(s)
- Oya Bermek
- Genome Integrity and Structural Biology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
27
|
Lebratti T, Lim YS, Cofie A, Andhey P, Jiang X, Scott J, Fabbrizi MR, Ozantürk AN, Pham C, Clemens R, Artyomov M, Dinauer M, Shin H. A sustained type I IFN-neutrophil-IL-18 axis drives pathology during mucosal viral infection. eLife 2021; 10:e65762. [PMID: 34047696 PMCID: PMC8163503 DOI: 10.7554/elife.65762] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/21/2021] [Indexed: 12/14/2022] Open
Abstract
Neutrophil responses against pathogens must be balanced between protection and immunopathology. Factors that determine these outcomes are not well-understood. In a mouse model of genital herpes simplex virus-2 (HSV-2) infection, which results in severe genital inflammation, antibody-mediated neutrophil depletion reduced disease. Comparative single-cell RNA-sequencing analysis of vaginal cells against a model of genital HSV-1 infection, which results in mild inflammation, demonstrated sustained expression of interferon-stimulated genes (ISGs) only after HSV-2 infection primarily within the neutrophil population. Both therapeutic blockade of IFNα/β receptor 1 (IFNAR1) and genetic deletion of IFNAR1 in neutrophils concomitantly decreased HSV-2 genital disease severity and vaginal IL-18 levels. Therapeutic neutralization of IL-18 also diminished genital inflammation, indicating an important role for this cytokine in promoting neutrophil-dependent immunopathology. Our study reveals that sustained type I interferon (IFN) signaling is a driver of pathogenic neutrophil responses and identifies IL-18 as a novel component of disease during genital HSV-2 infection.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Chlorocebus aethiops
- Disease Models, Animal
- Female
- Herpes Genitalis/immunology
- Herpes Genitalis/metabolism
- Herpes Genitalis/prevention & control
- Herpes Genitalis/virology
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/pathogenicity
- Herpesvirus 2, Human/immunology
- Herpesvirus 2, Human/pathogenicity
- Host-Pathogen Interactions
- Immunity, Mucosal/drug effects
- Interferon Type I/metabolism
- Interleukin-18/metabolism
- Mice, Inbred C57BL
- Mice, Transgenic
- Mucous Membrane/drug effects
- Mucous Membrane/innervation
- Mucous Membrane/metabolism
- Mucous Membrane/virology
- Neutrophil Activation/drug effects
- Neutrophils/drug effects
- Neutrophils/immunology
- Neutrophils/metabolism
- Neutrophils/virology
- Receptor, Interferon alpha-beta/antagonists & inhibitors
- Receptor, Interferon alpha-beta/metabolism
- Signal Transduction
- Vagina/drug effects
- Vagina/immunology
- Vagina/metabolism
- Vagina/virology
- Vero Cells
- Mice
Collapse
Affiliation(s)
- Tania Lebratti
- Department of Medicine/Division of Infectious Diseases, Washington University School of MedicineSt LouisUnited States
| | - Ying Shiang Lim
- Department of Medicine/Division of Infectious Diseases, Washington University School of MedicineSt LouisUnited States
| | - Adjoa Cofie
- Department of Medicine/Division of Infectious Diseases, Washington University School of MedicineSt LouisUnited States
| | - Prabhakar Andhey
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
| | - Xiaoping Jiang
- Department of Medicine/Division of Infectious Diseases, Washington University School of MedicineSt LouisUnited States
| | - Jason Scott
- Department of Medicine/Division of Infectious Diseases, Washington University School of MedicineSt LouisUnited States
| | - Maria Rita Fabbrizi
- Department of Medicine/Division of Infectious Diseases, Washington University School of MedicineSt LouisUnited States
| | - Ayşe Naz Ozantürk
- Department of Medicine/Division of Infectious Diseases, Washington University School of MedicineSt LouisUnited States
| | - Christine Pham
- Department of Medicine/Division of Rheumatology, Washington University School of MedicineSt LouisUnited States
| | - Regina Clemens
- Department of Pediatrics/Division of Critical Care Medicine, Washington University School of MedicineSt LouisUnited States
| | - Maxim Artyomov
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
| | - Mary Dinauer
- Department of Pediatrics/Hematology and Oncology, Washington University School of MedicineSt LouisUnited States
| | - Haina Shin
- Department of Medicine/Division of Infectious Diseases, Washington University School of MedicineSt LouisUnited States
| |
Collapse
|
28
|
Gehlhausen JR, Iwasaki A. B cells join T cell clusters in the host response to recurrent herpes simplex virus 2 infection. J Clin Invest 2021; 131:148300. [PMID: 33938452 DOI: 10.1172/jci148300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recurrent genital herpes lesions are infiltrated by various leukocytes, yet the role of B cell subsets in this process is unknown. In this issue of the JCI, Ford et al. describe the presence and antibody-secreting role of local B cell populations in herpes simplex virus 2 (HSV-2) recurrent lesions. The authors analyzed a comprehensive array of sequential skin biopsy specimens from HSV-2-infected patients over time and at various stages of infection. Using immunofluorescence and in situ hybridization, the authors show the presence of rare IgD+ naive B cells and IgG-expressing antibody-secreting cells (ASCs) in recurrent HSV-2 lesions embedded in CD4+ T cell-rich dermal immune infiltrates, levels of which transiently increase during lesion reactivation and healing. Notably, local increases in HSV-2-specific antibodies in recurrent lesions were detected, whereas serum HSV-2 antibody levels remained stable. Future research is needed to understand the precise role of these tissue-visiting B cells in disease resolution.
Collapse
Affiliation(s)
| | - Akiko Iwasaki
- Department of Dermatology and.,Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut, USA.,Howard Hughes Medical Institute
| |
Collapse
|
29
|
Sengal A, Velazquez J, Hahne M, Burke TM, Abhyankar H, Reyes R, Olea W, Scull B, Eckstein OS, Bigenwald C, Bollard CM, Yu W, Merad M, McClain KL, Allen CE, Chakraborty R. Overcoming T-cell exhaustion in LCH: PD-1 blockade and targeted MAPK inhibition are synergistic in a mouse model of LCH. Blood 2021; 137:1777-1791. [PMID: 33075814 PMCID: PMC8020265 DOI: 10.1182/blood.2020005867] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
Langerhans cell histiocytosis (LCH) is an inflammatory myeloid neoplasia characterized by granulomatous lesions containing pathological CD207+ dendritic cells (DCs) with persistent MAPK pathway activation. Standard-of-care chemotherapies are inadequate for most patients with multisystem disease, and optimal strategies for relapsed and refractory disease are not defined. The mechanisms underlying development of inflammation in LCH lesions, the role of inflammation in pathogenesis, and the potential for immunotherapy are unknown. Analysis of the immune infiltrate in LCH lesions identified the most prominent immune cells as T lymphocytes. Both CD8+ and CD4+ T cells exhibited "exhausted" phenotypes with high expression of the immune checkpoint receptors. LCH DCs showed robust expression of ligands to checkpoint receptors. Intralesional CD8+ T cells showed blunted expression of Tc1/Tc2 cytokines and impaired effector function. In contrast, intralesional regulatory T cells demonstrated intact suppressive activity. Treatment of BRAFV600ECD11c LCH mice with anti-PD-1 or MAPK inhibitor reduced lesion size, but with distinct responses. Whereas MAPK inhibitor treatment resulted in reduction of the myeloid compartment, anti-PD-1 treatment was associated with reduction in the lymphoid compartment. Notably, combined treatment with MAPK inhibitor and anti-PD-1 significantly decreased both CD8+ T cells and myeloid LCH cells in a synergistic fashion. These results are consistent with a model that MAPK hyperactivation in myeloid LCH cells drives recruitment of functionally exhausted T cells within the LCH microenvironment, and they highlight combined MAPK and checkpoint inhibition as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Amel Sengal
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and
| | - Jessica Velazquez
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and
| | - Meryl Hahne
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
| | - Thomas M Burke
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and
- Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX
| | - Harshal Abhyankar
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
| | - Robert Reyes
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
| | - Walter Olea
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
| | - Brooks Scull
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
| | - Olive S Eckstein
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
| | - Camille Bigenwald
- Department of Oncological Sciences, Tisch Cancer Institute, and
- Department of Dermatology, Icahn School of Medicine, New York, NY
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, DC
- Department of Pediatrics and
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC; and
| | - Wendong Yu
- Department of Pathology, Baylor College of Medicine, Houston, TX
| | - Miriam Merad
- Department of Oncological Sciences, Tisch Cancer Institute, and
- Department of Dermatology, Icahn School of Medicine, New York, NY
| | - Kenneth L McClain
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and
| | - Carl E Allen
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and
- Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX
| | - Rikhia Chakraborty
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX
- Division of Pediatric Hematology-Oncology, Department of Pediatrics and
| |
Collapse
|
30
|
Lind L, Svensson A, Thörn K, Krzyzowska M, Eriksson K. CD8 + T cells in the central nervous system of mice with herpes simplex infection are highly activated and express high levels of CCR5 and CXCR3. J Neurovirol 2021; 27:145-153. [PMID: 33492607 PMCID: PMC7831625 DOI: 10.1007/s13365-020-00940-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/09/2020] [Accepted: 12/27/2020] [Indexed: 12/25/2022]
Abstract
Herpes simplex virus type 2 (HSV-2) is a neurotropic virus that can cause meningitis, an inflammation of the meninges in the central nervous system. T cells are key players in viral clearance, and these cells migrate from peripheral blood into the central nervous system upon infection. Several factors contribute to T cell migration, including the expression of chemokines in the inflamed tissue that attract T cells through their expression of chemokine receptors. Here we investigated CD8+ T cell profile in the spinal cord in a mouse model of herpes simplex virus type 2 neuroinflammation. Mice were infected with HSV-2 and sacrificed when showing signs of neuroinflammation. Cells and/or tissue from spinal cord, spleen, and blood were analyzed for expression of activation markers, chemokine receptors, and chemokines. High numbers of CD8+ T cells were present in the spinal cord following genital HSV-2-infection. CD8+ T cells were highly activated and HSV-2 glycoprotein B -specific effector cells, some of which showed signs of recent degranulation. They also expressed high levels of many chemokine receptors, in particular CCR2, CCR4, CCR5, and CXCR3. Investigating corresponding receptor ligands in spinal cord tissue revealed markedly increased expression of the cognate ligands CCL2, CCL5, CCL8, CCL12, and CXCL10. This study shows that during herpesvirus neuroinflammation anti-viral CD8+ T cells accumulate in the CNS. CD8+ T cells in the CNS also express chemotactic receptors cognate to the chemotactic gradients in the spinal cord. This indicates that anti-viral CD8+ T cells may migrate to infected areas in the spinal cord during herpesvirus neuroinflammation in response to chemotactic gradients.
Collapse
Affiliation(s)
- Liza Lind
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alexandra Svensson
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Karolina Thörn
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Malgorzata Krzyzowska
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163, Warsaw, Poland
| | - Kristina Eriksson
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
31
|
Rodriguez-Izquierdo I, Gasco S, Muñoz-Fernández MA. High Preventive Effect of G2-S16 Anionic Carbosilane Dendrimer against Sexually Transmitted HSV-2 Infection. Molecules 2020; 25:E2965. [PMID: 32605185 PMCID: PMC7412300 DOI: 10.3390/molecules25132965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Anionic carbosilane dendrimers such as G2-S16 are very effective in preventing HSV-2 infection both in vitro and in vivo. We present the main achievements obtained for the G2-S16 dendrimer in vivo, especially related to its efficacy against HSV-2 infection. Moreover, we discuss the mechanisms by which the G2-S16 dendrimer applied vaginally as a topical microbicide has been demonstrated to be safe and harmless for the vaginal microbiome balance, as both conditions present an essential step that has to be overcome during microbicide development. This review points to the marked protective effect of the G2-S16 dendrimer against sexually transmitted HSV-2 infection, supporting its role as a possible microbicide against HSV-2 infection.
Collapse
Affiliation(s)
- Ignacio Rodriguez-Izquierdo
- Immunology Section, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain; (I.R.-I.); (S.G.)
- Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
| | - Samanta Gasco
- Immunology Section, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain; (I.R.-I.); (S.G.)
| | - Maria Angeles Muñoz-Fernández
- Immunology Section, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV HGM BioBank, C/Dr. Esquerdo 46, 28007 Madrid, Spain; (I.R.-I.); (S.G.)
- Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28007 Madrid, Spain
| |
Collapse
|
32
|
Le Tortorec A, Matusali G, Mahé D, Aubry F, Mazaud-Guittot S, Houzet L, Dejucq-Rainsford N. From Ancient to Emerging Infections: The Odyssey of Viruses in the Male Genital Tract. Physiol Rev 2020; 100:1349-1414. [PMID: 32031468 DOI: 10.1152/physrev.00021.2019] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The male genital tract (MGT) is the target of a number of viral infections that can have deleterious consequences at the individual, offspring, and population levels. These consequences include infertility, cancers of male organs, transmission to the embryo/fetal development abnormalities, and sexual dissemination of major viral pathogens such as human immunodeficiency virus (HIV) and hepatitis B virus. Lately, two emerging viruses, Zika and Ebola, have additionally revealed that the human MGT can constitute a reservoir for viruses cleared from peripheral circulation by the immune system, leading to their sexual transmission by cured men. This represents a concern for future epidemics and further underlines the need for a better understanding of the interplay between viruses and the MGT. We review here how viruses, from ancient viruses that integrated the germline during evolution through old viruses (e.g., papillomaviruses originating from Neanderthals) and more modern sexually transmitted infections (e.g., simian zoonotic HIV) to emerging viruses (e.g., Ebola and Zika) take advantage of genital tract colonization for horizontal dissemination, viral persistence, vertical transmission, and endogenization. The MGT immune responses to viruses and the impact of these infections are discussed. We summarize the latest data regarding the sources of viruses in semen and the complex role of this body fluid in sexual transmission. Finally, we introduce key animal findings that are relevant for our understanding of viral infection and persistence in the human MGT and suggest future research directions.
Collapse
Affiliation(s)
- Anna Le Tortorec
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Giulia Matusali
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Dominique Mahé
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Florence Aubry
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Séverine Mazaud-Guittot
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Laurent Houzet
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| | - Nathalie Dejucq-Rainsford
- University of Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S1085, Rennes, France
| |
Collapse
|
33
|
Bahena-Román M, Sánchez-Alemán MA, Contreras-Ochoa CO, Lagunas-Martínez A, Olamendi-Portugal M, López-Estrada G, Delgado-Romero K, Guzmán-Olea E, Madrid-Marina V, Torres-Poveda K. Prevalence of active infection by herpes simplex virus type 2 in patients with high-risk human papillomavirus infection: A cross-sectional study. J Med Virol 2020; 92:1246-1252. [PMID: 31925791 DOI: 10.1002/jmv.25668] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/08/2020] [Indexed: 11/11/2022]
Abstract
The aim is to determine the prevalence of active infection by herpes simplex virus type 2 (HSV-2) among Mexican women with high-risk human papillomavirus (HR-HPV) cervical infection, recruited from public gynecology and colposcopy services. In a cross-sectional study, HSV-2 antibodies, HSV-2 DNA, and HR-HPV DNA were quantified. Significant differences in HSV-2 seroprevalence and HSV-2 active infection rates were found between negative and positive HR-HPV cases. HSV-2 seroprevalence was 28.15% and 16.1% (P = .0001), while HSV-2 active infection rates were 6.83% and 0.62% (P = .001) for positive and negative HR-HPV groups, respectively. The risk of HSV-2 seropositivity was 1.7 times greater for HR-HPV-positive cases (P = .02). Similarly, HR-HPV-positive cases were nine times more likely to have an HSV-2 active infection than HR-HPV-negative cases (P = .03). High HSV-2/h-HPV coinfection rates were observed among women recruited from public gynecology and colposcopy services. The main factors related to an HSV-2 active infection are a history of risky sexual behavior and HR-HPV infection. The prevalence of HSV-2 active infection among positive HR-HPV subjects indicate that these infections constitute an important group of STIs in Mexico.
Collapse
Affiliation(s)
- M Bahena-Román
- Dirección de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, Mexico
| | - M A Sánchez-Alemán
- Dirección de Innovación y Vigilancia de Enfermedades Infecciosas. Centro de Investigación sobre Enfermedades Infecciosas, INSP, Cuernavaca, Morelos, Mexico
| | - C O Contreras-Ochoa
- Dirección de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, Mexico
| | - A Lagunas-Martínez
- Dirección de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, Mexico
| | - M Olamendi-Portugal
- Dirección de Innovación y Vigilancia de Enfermedades Infecciosas. Centro de Investigación sobre Enfermedades Infecciosas, INSP, Cuernavaca, Morelos, Mexico
| | - G López-Estrada
- Centro de Atención para la Salud de la Mujer (CAPASAM) (Center for Women's Health), Health Services of the State of Morelos, Cuernavaca, Mexico
| | - K Delgado-Romero
- Centro de Atención para la Salud de la Mujer (CAPASAM) (Center for Women's Health), Health Services of the State of Morelos, Cuernavaca, Mexico
| | - E Guzmán-Olea
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Área Académica de Gerontología, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo (UAEH), Pachuca, Mexico
| | - V Madrid-Marina
- Dirección de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, Mexico
| | - K Torres-Poveda
- Dirección de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, Mexico.,CONACYT-Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, Mexico
| |
Collapse
|
34
|
Crisci E, Svanberg C, Ellegård R, Khalid M, Hellblom J, Okuyama K, Bhattacharya P, Nyström S, Shankar EM, Eriksson K, Larsson M. HSV-2 Cellular Programming Enables Productive HIV Infection in Dendritic Cells. Front Immunol 2019; 10:2889. [PMID: 31867020 PMCID: PMC6909011 DOI: 10.3389/fimmu.2019.02889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
Genital herpes is a common sexually transmitted infection caused by herpes simplex virus type 2 (HSV-2). Genital herpes significantly enhances the acquisition and transmission of HIV-1 by creating a microenvironment that supports HIV infection in the host. Dendritic cells (DCs) represent one of the first innate cell types that encounter HIV-1 and HSV-2 in the genital mucosa. HSV-2 infection has been shown to modulate DCs, rendering them more receptive to HIV infection. Here, we investigated the potential mechanisms underlying HSV-2-mediated augmentation of HIV-1 infection. We demonstrated that the presence of HSV-2 enhanced productive HIV-1 infection of DCs and boosted inflammatory and antiviral responses. The HSV-2 augmented HIV-1 infection required intact HSV-2 DNA, but not active HSV-2 DNA replication. Furthermore, the augmented HIV infection of DCs involved the cGAS-STING pathway. Interestingly, we could not see any involvement of TLR2 or TLR3 nor suppression of infection by IFN-β production. The conditioning by HSV-2 in dual exposed DCs decreased protein expression of IFI16, cGAS, STING, and TBK1, which is associated with signaling through the STING pathway. Dual exposure to HSV-2 and HIV-1 gave decreased levels of several HIV-1 restriction factors, especially SAMHD1, TREX1, and APOBEC3G. Activation of the STING pathway in DCs by exposure to both HSV-2 and HIV-1 most likely led to the proteolytic degradation of the HIV-1 restriction factors SAMHD1, TREX1, and APOBEC3G, which should release their normal restriction of HIV infection in DCs. This released their normal restriction of HIV infection in DCs. We showed that HSV-2 reprogramming of cellular signaling pathways and protein expression levels in the DCs provided a setting where HIV-1 can establish a higher productive infection in the DCs. In conclusion, HSV-2 reprogramming opens up DCs for HIV-1 infection and creates a microenvironment favoring HIV-1 transmission.
Collapse
Affiliation(s)
- Elisa Crisci
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Cecilia Svanberg
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Rada Ellegård
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Mohammad Khalid
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Julia Hellblom
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Kazuki Okuyama
- Division of Experimental Haematology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Pradyot Bhattacharya
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Sofia Nyström
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Esaki M. Shankar
- Division of Infection Biology and Medical Microbiology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Kristina Eriksson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
35
|
Pre-exposure prophylaxis differentially alters circulating and mucosal immune cell activation in herpes simplex virus type 2 seropositive women. AIDS 2019; 33:2125-2136. [PMID: 31335802 DOI: 10.1097/qad.0000000000002323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Oral tenofovir-based pre-exposure prophylaxis (PrEP) is an important tool for prevention of new HIV infections, which also reduces subclinical herpes simplex virus type 2 (HSV-2) shedding and symptomatic lesions in HIV-negative, HSV-2-seropositive individuals. However, the impact of PrEP on mucosal immunity has not been examined in detail. DESIGN Here we evaluate paired genital tissue and systemic immune profiles to characterize the immunological effects of PrEP in HIV-negative, HSV-2-seropositive African women sexually exposed to HIV. METHODS We compared local and systemic innate and T-cell characteristics in samples collected during PrEP usage and 2 months after PrEP discontinuation. RESULTS We found that frequencies of cervical CCR5CD4 cells, regulatory T cells, and tissue macrophages were significantly reduced during PrEP use compared with after PrEP discontinuation. In contrast, peripheral blood CD4 and CD8 T cells expressing markers of activation and trafficking were increased during PrEP usage. CONCLUSION Together, our data are consistent with PrEP altering immunity differentially in the female genital tract compared with circulation in HSV-2+ women. Further study including comparison with HSV-2 negative women is needed to define the overall impact and mechanisms underlying these effects. These results point to the critical need to study the human mucosal compartment to characterize immune responses to mucosal infections.
Collapse
|
36
|
Schiffer JT, Swan DA, Prlic M, Lund JM. Herpes simplex virus-2 dynamics as a probe to measure the extremely rapid and spatially localized tissue-resident T-cell response. Immunol Rev 2019; 285:113-133. [PMID: 30129205 DOI: 10.1111/imr.12672] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herpes simplex virus-2 infection is characterized by frequent episodic shedding in the genital tract. Expansion in HSV-2 viral load early during episodes is extremely rapid. However, the virus invariably peaks within 18 hours and is eliminated nearly as quickly. A critical feature of HSV-2 shedding episodes is their heterogeneity. Some episodes peak at 108 HSV DNA copies, last for weeks due to frequent viral re-expansion, and lead to painful ulcers, while others only reach 103 HSV DNA copies and are eliminated within hours and without symptoms. Within single micro-environments of infection, tissue-resident CD8+ T cells (TRM ) appear to contain infection within a few days. Here, we review components of TRM biology relevant to immune surveillance between HSV-2 shedding episodes and containment of infection upon detection of HSV-2 cognate antigen. We then describe the use of mathematical models to correlate large spatial gradients in TRM density with the heterogeneity of observed shedding within a single person. We describe how models have been leveraged for clinical trial simulation, as well as future plans to model the interactions of multiple cellular subtypes within mucosa, predict the mechanism of action of therapeutic vaccines, and describe the dynamics of 3-dimensional infection environment during the natural evolution of an HSV-2 lesion.
Collapse
Affiliation(s)
- Joshua T Schiffer
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - David A Swan
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Martin Prlic
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jennifer M Lund
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Global Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
37
|
Herpes Simplex Virus 2 in Autonomic Ganglia: Evidence for Spontaneous Reactivation. J Virol 2019; 93:JVI.00227-19. [PMID: 30894469 DOI: 10.1128/jvi.00227-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 01/09/2023] Open
Abstract
Herpes simplex virus 2 (HSV-2) can be transmitted in the presence or absence of lesions, allowing efficient spread among the general population. Recurrent HSV genital lesions are thought to arise from reactivated latent virus in sensory cell bodies of the dorsal root ganglia (DRG). However, HSV-2 has also been found latent in autonomic ganglia. Spontaneous reactivation or a low level of chronic infection could theoretically also occur in these peripheral nervous tissues, contributing to the presence of infectious virus in the periphery and to viral transmission. Use of a recently described, optimized virus with a monomeric mNeonGreen protein fused to viral capsid protein 26 (VP26) permitted detection of reactivating virus in explanted ganglia and cryosections of DRG and the sacral sympathetic ganglia (SSG) from latently infected guinea pigs. Immediate early, early, and late gene expression were quantified by droplet digital reverse transcription-PCR (ddRT-PCR), providing further evidence of viral reactivation not only in the expected DRG but also in the sympathetic SSG. These findings indicate that viral reactivation from autonomic ganglia is a feature of latent viral infection and that these reactivations likely contribute to viral pathogenesis.IMPORTANCE HSV-2 is a ubiquitous important human pathogen that causes recurrent infections for the life of its host. We hypothesized that the autonomic ganglia have important roles in viral reactivation, and this study sought to determine whether this is correct in the clinically relevant guinea pig vaginal infection model. Our findings indicate that sympathetic ganglia are sources of reactivating virus, helping explain how the virus causes lifelong recurrent disease.
Collapse
|
38
|
Zhang LN, Xin T, Chen M, Gao P. Chemoresistance in mesenchymal lung cancer cells is correlated to high regulatory T cell presence in the tumor microenvironment. IUBMB Life 2019; 71:986-991. [PMID: 31066485 DOI: 10.1002/iub.2043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 03/15/2019] [Indexed: 01/15/2023]
Abstract
Most deaths due to lung cancer are a result of metastatic progression. One major problem in treating patients with lung cancer is either the inherent or acquired resistance to chemotherapy. Role of tumor microenvironment in disease progression and resistance to chemotherapy is being increasingly appreciated and reported for various cancers. Hence, the objective of the current study was to define the lung cancer tumor microenvironment. Biopsy tissue specimens and blood samples were collected from stage I-IV lung patients (n = 53). Epithelial and mesenchymal A549 cells were used to test chemosensitivity. CD3+ T cells are the major tumor-infiltrating T lymphocyte subsets in patients with lung cancer, which were independent of disease stage. Functional analysis indicated high expression of the CD4+ helper T cells and low expression of the CD8+ cytotoxic T cells in lung cancer tissue compared to tumor adjacent normal tissue. Within the CD4+ T cell subset, there seems to be significant increase in the regulator T cells (Tregs) which are known to help the tumor in evading the immune system. CDH1 (encoding the epithelial cell marker E-cadherin) and IL2RA (encoding the Treg marker CD25) expression in patients with stage IV lung cancer that were resistant to cisplatin treatment showed an inverse correlation between IL2RA (high) and CDH1 (low) expression. Our results indicate that lung tumor is enriched in Tregs which might potentially explain how lung tumors evade the immune system. © 2019 IUBMB Life, 2019.
Collapse
Affiliation(s)
- Li-Na Zhang
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China.,Department of Gastroenterology, Changchun Central Hospital, Changchun, Jilin, People's Republic of China
| | - Tong Xin
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Mo Chen
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Peng Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
39
|
Burn C, Ramsey N, Garforth SJ, Almo S, Jacobs WR, Herold BC. A Herpes Simplex Virus (HSV)-2 Single-Cycle Candidate Vaccine Deleted in Glycoprotein D Protects Male Mice From Lethal Skin Challenge With Clinical Isolates of HSV-1 and HSV-2. J Infect Dis 2019; 217:754-758. [PMID: 29216362 DOI: 10.1093/infdis/jix628] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/29/2017] [Indexed: 11/14/2022] Open
Abstract
Herpes simplex virus (HSV) infections manifest as recurrent oral or genital mucosal lesions, meningoencephalitis, corneal blindness, and perinatal disease. Subunit vaccines have advanced into the clinic without success. None were tested preclinically in male mice. We compared a single-cycle candidate vaccine deleted in HSV-2 glycoprotein D (ΔgD-2) and subunit gD-2 or gD-1 protein vaccines in a male murine skin model. The ΔgD-2 provided complete protection against 10 times the lethal dose of HSV-1 or HSV-2 clinical isolates, and no latent virus was detected, whereas gD-1- and gD-2-adjuvanted proteins provided little or no protection. Protection correlated with Fc receptor activating but not neutralizing antibody titers.
Collapse
Affiliation(s)
- Clare Burn
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Natalie Ramsey
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Scott J Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York
| | - Steven Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York
| | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York.,Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York
| | - Betsy C Herold
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
40
|
Agelidis A, Koujah L, Suryawanshi R, Yadavalli T, Mishra YK, Adelung R, Shukla D. An Intra-Vaginal Zinc Oxide Tetrapod Nanoparticles (ZOTEN) and Genital Herpesvirus Cocktail Can Provide a Novel Platform for Live Virus Vaccine. Front Immunol 2019; 10:500. [PMID: 30949169 PMCID: PMC6435576 DOI: 10.3389/fimmu.2019.00500] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
Herpes simplex virus type-2 (HSV-2) is a common cause of genital infections throughout the world. Currently no prophylactic vaccine or therapeutic cure exists against the virus that establishes a latent infection for the life of the host. Intravaginal microbivac is a developing out-of-the-box strategy that combines instant microbicidal effects with future vaccine-like benefits. We have recently shown that our uniquely designed zinc oxide tetrapod nanoparticles (ZOTEN) show strong microbivac efficacy against HSV-2 infection in a murine model of genital infection. In our attempts to further understand the antiviral and immune bolstering effects of ZOTEN microbivac and to develop ZOTEN as a platform for future live virus vaccines, we tested a ZOTEN/HSV-2 cocktail and found that prior incubation of HSV-2 with ZOTEN inhibits the ability of the virus to infect vaginal tissue in female Balb/c mice and blocks virus shedding as judged by plaque assays. Quite interestingly, the ZOTEN-neutralized virions elicit a local immune response that is highly comparable with the HSV-2 infection alone with reduced inflammation and clinical manifestations of disease. Information provided by our study will pave the way for the further development of ZOTEN as a microbivac and a future platform for live virus vaccines.
Collapse
Affiliation(s)
- Alex Agelidis
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, United States.,Department of Microbiology and Immunology, University of Illinois, Chicago, IL, United States
| | - Lulia Koujah
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, United States.,Department of Microbiology and Immunology, University of Illinois, Chicago, IL, United States
| | - Rahul Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, United States
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, United States
| | | | - Rainer Adelung
- Institute for Materials Science, Kiel University, Kiel, Germany
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, United States.,Department of Microbiology and Immunology, University of Illinois, Chicago, IL, United States
| |
Collapse
|
41
|
Truong NR, Smith JB, Sandgren KJ, Cunningham AL. Mechanisms of Immune Control of Mucosal HSV Infection: A Guide to Rational Vaccine Design. Front Immunol 2019; 10:373. [PMID: 30894859 PMCID: PMC6414784 DOI: 10.3389/fimmu.2019.00373] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/14/2019] [Indexed: 12/17/2022] Open
Abstract
Herpes Simplex Virus (HSV) is a highly prevalent sexually transmitted infection that aside from causing cold sores and genital lesions, causes complications in the immunocompromised and has facilitated a large proportion of HIV acquisition globally. Despite decades of research, there is no prophylactic HSV vaccine ready for use in humans, leaving many questioning whether a prophylactic vaccine is an achievable goal. A previous HSV vaccine trial did have partial success in decreasing acquisition of HSV2–promising evidence that vaccines can prevent acquisition. However, there is still an incomplete understanding of the immune response pathways elicited by HSV after initial mucosal infection and how best to replicate these responses with a vaccine, such that acquisition and colonization of the dorsal root ganglia could be prevented. Another factor to consider in the rational design of an HSV vaccine is adjuvant choice. Understanding the immune responses elicited by different adjuvants and whether lasting humoral and cell-mediated responses are induced is important, especially when studies of past trial vaccines found that a sufficiently protective cell-mediated response was lacking. In this review, we discuss what is known of the immune control involved in initial herpes lesions and reactivation, including the importance of CD4 and CD8 T cells, and the interplay between innate and adaptive immunity in response to primary infection, specifically focusing on the viral relay involved. Additionally, a summary of previous and current vaccine trials, including the components used, immune responses elicited and the feasibility of prophylactic vaccines looking forward, will also be discussed.
Collapse
Affiliation(s)
- Naomi R Truong
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Jacinta B Smith
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Kerrie J Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
42
|
Guan X, Zhang M, Fu M, Luo S, Hu Q. Herpes Simplex Virus Type 2 Immediate Early Protein ICP27 Inhibits IFN-β Production in Mucosal Epithelial Cells by Antagonizing IRF3 Activation. Front Immunol 2019; 10:290. [PMID: 30863402 PMCID: PMC6399465 DOI: 10.3389/fimmu.2019.00290] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/04/2019] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus type 2 (HSV-2) is the main cause of genital herpes and infections are common in the lower genital tract. Although neuronal and immune cells can be infected, epithelial cells, and keratinocytes are the primary HSV-2 target cells. HSV-2 establishes latency by evading the host immune system and its infection can also increase the risk of HIV-1 sexual transmission. Our pervious study found that HSV-2 immediate early protein ICP22, inhibited IFN-β production by interfering with the IRF3 pathway. However, ICP22-null HSV-2 did not completely lose the capability of suppressing IFN-β induction, suggesting the involvement of other viral components in the process. In this study, by using an ex vivo cervical explant model, we first demonstrated that HSV-2 can indeed inhibit IFN-β induction in human mucosal tissues. We further identified HSV-2 immediate early protein ICP27 as a potent IFN-β antagonist. ICP27 significantly suppresses the Sendai virus or polyinosinic-polycytidylic acid-induced IFN-β production in human mucosal epithelial cells, showing that ICP27 inhibits the IFN-β promoter activation, and IFN-β production at both mRNA and protein levels. Additional studies revealed that ICP27 directly associates with IRF3 and inhibits its phosphorylation and nuclear translocation, resulting in the inhibition of IFN-β induction. Our findings provide insights into the molecular mechanism underlying HSV-2 mucosal immune evasion, and information for the design of HSV-2 mucosal vaccines.
Collapse
Affiliation(s)
- Xinmeng Guan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mudan Zhang
- The Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, China
| | - Ming Fu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sukun Luo
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Institute for Infection and Immunity, St George's University of London, London, United Kingdom
| |
Collapse
|
43
|
WANG C, RUAN S, GU X, ZHU B. Antiviral activities of Radix Isatidis polysaccharide against type II herpes simplex virus in vitro. FOOD SCIENCE AND TECHNOLOGY 2018. [DOI: 10.1590/1678-457x.19317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | - Shiman RUAN
- Jinan Center for Disease Control and Prevention, China
| | - Xunmei GU
- Jinan Infectious Disease Hospital, China
| | - Bin ZHU
- The Second People's Hospital of Jinan, China
| |
Collapse
|
44
|
Topical application of aminoglycoside antibiotics enhances host resistance to viral infections in a microbiota-independent manner. Nat Microbiol 2018; 3:611-621. [PMID: 29632368 PMCID: PMC5918160 DOI: 10.1038/s41564-018-0138-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/27/2018] [Indexed: 12/27/2022]
Abstract
Antibiotics are widely used to treat infections in humans. However, the impact of antibiotic use on host cells is understudied. Here we identify an antiviral effect of commonly used aminoglycoside antibiotics. We show that topical mucosal application of aminoglycosides prophylactically increased host resistance to a broad range of viral infections including herpes simplex viruses, influenza A virus and Zika virus. Aminoglycoside treatment also reduced viral replication in primary human cells. This antiviral activity was independent of the microbiota as aminoglycoside treatment protected germ-free mice. Microarray analysis uncovered a marked upregulation of transcripts for interferon-stimulated genes (ISGs) following aminoglycoside application. ISG induction was mediated by TLR3, and required TIR-domain-containing adapter-inducing interferon-β (TRIF), signaling adaptor, and interferon regulatory factors 3 (IRF3) and IRF7, transcription factors that promote ISG expression. XCR1+ dendritic cells, which uniquely express TLR3, were recruited to the vaginal mucosa upon aminoglycoside treatment and were required for ISG induction. These results highlight an unexpected ability of aminoglycoside antibiotics to confer broad antiviral resistance in vivo.
Collapse
|
45
|
Kopfnagel V, Wagenknecht S, Harder J, Hofmann K, Kleine M, Buch A, Sodeik B, Werfel T. RNase 7 Strongly Promotes TLR9-Mediated DNA Sensing by Human Plasmacytoid Dendritic Cells. J Invest Dermatol 2018; 138:872-881. [DOI: 10.1016/j.jid.2017.09.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/15/2017] [Accepted: 09/22/2017] [Indexed: 10/18/2022]
|
46
|
Clinical Characteristics of Herpes Simplex Virus Urethritis Compared With Chlamydial Urethritis Among Men. Sex Transm Dis 2017; 44:121-125. [PMID: 28079748 DOI: 10.1097/olq.0000000000000547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND The aim of this study was to ascertain the clinical characteristics associated with herpes simplex virus (HSV) urethritis in men and to compare those with chlamydial urethritis. METHODS We compared clinical and laboratory data from men diagnosed with polymerase chain reaction confirmed HSV urethritis with those of men with chlamydial urethritis presenting to Melbourne Sexual Health Centre between 2000 and 2015. RESULTS Eighty HSV urethritis cases were identified: 55 (68%, 95% confidence interval, 58-78) were by HSV-1 and 25 (32%, 95% confidence interval, 22-42) by HSV-2. Compared with chlamydial urethritis, men with HSV urethritis were significantly more likely to report severe dysuria (20% vs 0%, P < 0.01) or constitutional symptoms (15% vs 0%, P < 0.01). Men with HSV urethritis were significantly more likely to have meatitis (62% vs 23%, P < 0.01), genital ulceration (37% vs 0%, P < 0.01), or inguinal lymphadenopathy (30% vs 0%, P < 0.01) but less likely to have urethral discharge (32% vs 69%, P < 0.01). There was no significant difference in the proportion of men who had raised (≥5) polymorphonuclear leukocytes per high-powered field between the two groups (P = 0.46). CONCLUSIONS The clinical presentation of HSV urethritis in men may differ from those of chlamydial urethritis and guide testing for HSV in men presenting with non-gonococcal urethritis.
Collapse
|
47
|
Ramirez-Fort MK, Zeng J, Feily A, Ramirez-Pacheco LA, Jenrette JM, Mayhew DL, Syed T, Cooper SL, Linden C, Graybill WS, French LE, Lange CS. Radiotherapy-induced reactivation of neurotrophic human herpes viruses: Overview and management. J Clin Virol 2017; 98:18-27. [PMID: 29197712 DOI: 10.1016/j.jcv.2017.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 10/20/2017] [Accepted: 11/11/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE Infection by Human Herpes Viruses (HHV) types 1-3, are prevalent throughout the world. It is known that radiotherapy can reactivate HHVs, but it is unclear how and to what extent reactivations can interact with or affect radiotherapeutic efficacy, patient outcomes and mortality risk. Herein, we aim to summarize what is known about Herpes Simplex Virus (HSV)-1,2 and Varicella Zoster Virus (VZV) pathophysiology as it relates to tumor biology, radiotherapy, chemo-radiotherapy, diagnosis and management so as to optimize cancer treatment in the setting of active HHV infection. Our secondary aim is to emphasize the need for further research to elucidate the potential adverse effects of active HHV infection in irradiated tumor tissue and to design optimal management strategies to incorporate into cancer management guidelines. MATERIALS AND METHODS The literature regarding herpetic infection, herpetic reactivation, and recurrence occurring during radiotherapy and that regarding treatment guidelines for herpetic infections are reviewed. We aim to provide the oncologist with a reference for the infectious dangers of herpetic reactivation in patients under their care and well established methods for prevention, diagnosis, and treatment of such infections. Pain management is also considered. CONCLUSIONS In the radiotherapeutic setting, serologic assays for HSV-1 and HSV-2 are feasible and can alert the clinician to patients at risk for viral reactivation. RT-PCR is specific in identifying the exact viral culprit and is the preferred diagnostic method to measure interventional efficacy. It can also differentiate between herpetic infection and radionecrosis. The MicroTrak® HSV1/HSV2/VZV staining kit has high sensitivity and specificity in acute lesions, is also the most rapid means to confirm diagnosis. Herpetic reactivation and recurrences during radiotherapy can cause interruptions, cessations, or prolongations of the radiotherapeutic course, thus decreasing the biologically effective dose, to sub-therapeutic levels. Active HHV infection within the treatment volume results in increased tumor radio-resistance and potentially sub-therapeutic care if left untreated. Visceral reactivations may result in fatality and therefore, a high index of suspicion is important to identify these active infections. The fact that such infections may be mistaken for acute and/or late radiation effects, leading to less than optimal treatment decisions, makes knowledge of this problem even more relevant. To minimize the risk of these sequelae, prompt anti-viral therapy is recommended, lasting the course of radiotherapy.
Collapse
Affiliation(s)
- Marigdalia K Ramirez-Fort
- Radiation Oncology, Medical University of South Carolina, Charleston, SC, United States; Urological Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Jianying Zeng
- Pathology, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| | - Amir Feily
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Joseph M Jenrette
- Radiation Oncology, Medical University of South Carolina, Charleston, SC, United States
| | - David L Mayhew
- Radiation Oncology, Tufts Medical Center, Boston, MA, United States; Medicine, Dana Farber Cancer Institute, Boston, MA, United States
| | - Talal Syed
- Radiation Oncology, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| | - S Lewis Cooper
- Radiation Oncology, Medical University of South Carolina, Charleston, SC, United States
| | - Craig Linden
- Radiology, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| | - Witney S Graybill
- Gynecology Oncology, Medical University of South Carolina, Charleston, SC, United States
| | - Lars E French
- Dermatology, Zurich University Hospital, Zurich, Switzerland
| | - Christopher S Lange
- Radiation Oncology, State University of New York Downstate Medical Center, Brooklyn, NY, United States.
| |
Collapse
|
48
|
Analysis of non-small cell lung cancer microenvironment indicates preponderance of T cell exhaustion marker expression. Exp Cell Res 2017; 360:205-209. [DOI: 10.1016/j.yexcr.2017.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 12/22/2022]
|
49
|
Looker KJ, Elmes JAR, Gottlieb SL, Schiffer JT, Vickerman P, Turner KME, Boily MC. Effect of HSV-2 infection on subsequent HIV acquisition: an updated systematic review and meta-analysis. THE LANCET. INFECTIOUS DISEASES 2017; 17:1303-1316. [PMID: 28843576 PMCID: PMC5700807 DOI: 10.1016/s1473-3099(17)30405-x] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/13/2017] [Accepted: 06/27/2017] [Indexed: 11/17/2022]
Abstract
Background HIV and herpes simplex virus type 2 (HSV-2) infections cause a substantial global disease burden and are epidemiologically correlated. Two previous systematic reviews of the association between HSV-2 and HIV found evidence that HSV-2 infection increases the risk of HIV acquisition, but these reviews are now more than a decade old. Methods For this systematic review and meta-analysis, we searched PubMed, MEDLINE, and Embase (from Jan 1, 2003, to May 25, 2017) to identify studies investigating the risk of HIV acquisition after exposure to HSV-2 infection, either at baseline (prevalent HSV-2 infection) or during follow-up (incident HSV-2 infection). Studies were included if they were a cohort study, controlled trial, or case-control study (including case-control studies nested within a cohort study or clinical trial); if they assessed the effect of pre-existing HSV-2 infection on HIV acquisition; and if they determined the HSV-2 infection status of study participants with a type-specific assay. We calculated pooled random-effect estimates of the association between prevalent or incident HSV-2 infection and HIV seroconversion. We also extended previous investigations through detailed meta-regression and subgroup analyses. In particular, we investigated the effect of sex and risk group (general population vs higher-risk populations) on the relative risk (RR) of HIV acquisition after prevalent or incident HSV-2 infection. Higher-risk populations included female sex workers and their clients, men who have sex with men, serodiscordant couples, and attendees of sexually transmitted infection clinics. Findings We identified 57 longitudinal studies exploring the association between HSV-2 and HIV. HIV acquisition was almost tripled in the presence of prevalent HSV-2 infection among general populations (adjusted RR 2·7, 95% CI 2·2–3·4; number of estimates [Ne]=22) and was roughly doubled among higher-risk populations (1·7, 1·4–2·1; Ne=25). Incident HSV-2 infection in general populations was associated with the highest risk of acquisition of HIV (4·7, 2·2–10·1; Ne=6). Adjustment for confounders at the study level was often incomplete but did not significantly affect the results. We found moderate heterogeneity across study estimates, which was explained by risk group, world region, and HSV-2 exposure type (prevalent vs incident). Interpretation We found evidence that HSV-2 infection increases the risk of HIV acquisition. This finding has important implications for management of individuals diagnosed with HSV-2 infection, particularly for those who are newly infected. Interventions targeting HSV-2, such as new HSV vaccines, have the potential for additional benefit against HIV, which could be particularly powerful in regions with a high incidence of co-infection. Funding World Health Organization.
Collapse
Affiliation(s)
- Katharine J Looker
- School of Social and Community Medicine, University of Bristol, Bristol, UK.
| | - Jocelyn A R Elmes
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Sami L Gottlieb
- Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Joshua T Schiffer
- Vaccine and Infectious Disease Division, and Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA
| | - Peter Vickerman
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | | | - Marie-Claude Boily
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| |
Collapse
|
50
|
The Us2 Gene Product of Herpes Simplex Virus 2 modulates NF-κB activation by targeting TAK1. Sci Rep 2017; 7:8396. [PMID: 28827540 PMCID: PMC5566419 DOI: 10.1038/s41598-017-08856-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/14/2017] [Indexed: 11/08/2022] Open
Abstract
HSV-2 is one of the most common sexually transmitted pathogens worldwide and HSV-2 infection triggers cytokine and chemokine production. However, little is known about which HSV-2 genes engage in the regulation of NF-κB signaling and what mechanisms are involved. In a screen of the unique short (Us) regions of HSV-2, we observed that HSV-2 Us2 activates NF-κB signaling. We additionally indicated that deficiencies of Us2 decrease HSV-2 WT mediated NF-κB activation and cytokine and chemokine production, and overexpression of Us2 showed opposite effects. Co-immunoprecipitations indicated that Us2 interacted with TGF-β activated kinase 1 (TAK1), a serine/threonine kinase essential for NF-κB activation, and Us2 has the ability to regulate the TAK1-mediated pathway and induces TAK1 downstream signaling. Further studies verified that Us2 induced the phosphorylation of TAK1, resulting in the activation of TAK1 mediated downstream signaling. The role of Us2 in HSV-2 induced NF-κB pathways was also confirmed in the Us2-deficient mutant and HSV-2 WT infected mice. Our results indicate that HSV-2 Us2 gene product binds to TAK1 to positively regulate NF-κB signaling and, for the first time, provide insights into the molecular mechanism.
Collapse
|