1
|
Yu J, Lalwani A, Gunton JE. β-Cell Deletion of Hypoxia-Inducible Factor 1α (HIF-1α) Increases Pancreatic β-Cell Susceptibility to Streptozotocin. Int J Mol Sci 2024; 25:13451. [PMID: 39769216 PMCID: PMC11676740 DOI: 10.3390/ijms252413451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Type 1 diabetes (T1D) is caused by the immune-mediated loss of pancreatic β-cells. Hypoxia-inducible factor 1α (HIF-1α) is a transcription factor which is crucial for cellular responses to low oxygen. Here, we investigate the role of β-cell HIF-1α in β-cell death and diabetes after exposure to multiple low-dose streptozotocin (MLDS). MDLS triggers auto-immunity in susceptible animal models, such as non-obese diabetic (NOD) mice. These experiments used a novel mouse model with β-cell-specific deletion of HIF-1α on a NOD background (BIN mice). Mice were given 20 mg/kg MLDS for 5 consecutive days. Following MLDS, 100% of BIN mice developed frank diabetes versus 33% of floxed-control (FC) littermates and 17% of NOD controls (p < 0.001). BIN mice had obvious loss of β-cell mass (p < 0.0001) and increased necrotic areas within islets (p < 0.001). To confirm that diabetes was T1D, adoptive transfers of splenocytes from diabetic BIN and FC mice were performed on NOD-SCID (Severe Combined ImmunoDeficiency) recipients. All mice receiving BIN-splenocytes developed frank diabetes, confirming that MLDS induced true T1D. Interestingly, diabetes developed significantly faster in BIN-adoptive transfer mice compared to mice which developed diabetes after receiving an FC-adoptive transfer. These studies demonstrate the importance of β-cell HIF-1α in the preservation of β-cell mass and avoidance of auto-immunity.
Collapse
Affiliation(s)
- Josephine Yu
- Centre for Diabetes, Obesity and Endocrinology (CDOE), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
| | - Amit Lalwani
- Centre for Diabetes, Obesity and Endocrinology (CDOE), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2145, Australia
- Diabetes and Transcription Factors Group, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Jenny E. Gunton
- Centre for Diabetes, Obesity and Endocrinology (CDOE), The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2145, Australia
- Department of Diabetes and Endocrinology, Westmead Hospital, Sydney, NSW 2145, Australia
| |
Collapse
|
2
|
Yosri M, Dokhan M, Aboagye E, Al Moussawy M, Abdelsamed HA. Mechanisms governing bystander activation of T cells. Front Immunol 2024; 15:1465889. [PMID: 39669576 PMCID: PMC11635090 DOI: 10.3389/fimmu.2024.1465889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024] Open
Abstract
The immune system is endowed with the capacity to distinguish between self and non-self, so-called immune tolerance or "consciousness of the immune system." This type of awareness is designed to achieve host protection by eliminating cells expressing a wide range of non-self antigens including microbial-derived peptides. Such a successful immune response is associated with the secretion of a whole spectrum of soluble mediators, e.g., cytokines and chemokines, which not only contribute to the clearance of infected host cells but also activate T cells that are not specific to the original cognate antigen. This kind of non-specific T-cell activation is called "bystander activation." Although it is well-established that this phenomenon is cytokine-dependent, there is evidence in the literature showing the involvement of peptide/MHC recognition depending on the type of T-cell subset (naive vs. memory). Here, we will summarize our current understanding of the mechanism(s) of bystander T-cell activation as well as its biological significance in a wide range of diseases including microbial infections, cancer, auto- and alloimmunity, and chronic inflammatory diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Mohammed Yosri
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Mohamed Dokhan
- Immunology Center of Georgia (IMMCG), Medical College of Georgia (MCG), Augusta University, Augusta, GA, United States
| | - Elizabeth Aboagye
- Immunology Center of Georgia (IMMCG), Medical College of Georgia (MCG), Augusta University, Augusta, GA, United States
| | - Mouhamad Al Moussawy
- Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hossam A. Abdelsamed
- Immunology Center of Georgia (IMMCG), Medical College of Georgia (MCG), Augusta University, Augusta, GA, United States
- Department of Physiology, Augusta University, Augusta, GA, United States
| |
Collapse
|
3
|
Taylor JP, Blum SI, Graffeo HC, Shang Q, Qiu S, Green TJ, Botta D, Lund FE, Tse HM. The Type 1 Diabetes-Associated Single Nucleotide Polymorphism rs1990760 in IFIH1 Is Associated with Increased Basal Type I IFNs and IFN-stimulated Gene Expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1415-1428. [PMID: 39373578 DOI: 10.4049/jimmunol.2400344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease that is caused by a combination of genetic and environmental risk factors. In this study, we sought to determine whether a known genetic risk factor, the rs1990760 single nucleotide polymorphism (SNP) (A946T) in IFIH1, resulted in a gain of function in the MDA5 protein and the effects of this mutation on the regulation of type I IFNs during infection with the diabetogenic virus coxsackievirus B3. We found that in cell lines overexpressing the risk variant IFIH1946T there was an elevated level of basal type I IFN signaling and increased basal IFN-stimulated gene expression. An investigation into the mechanism demonstrated that recombinant MDA5 with the A946T mutation had increased ATPase activity in vitro. We also assessed the effect of this SNP in primary human PBMCs from healthy donors to determine whether this SNP influenced their response to infection with coxsackievirus B3. However, we observed no significant changes in type I IFN expression or downstream induction of IFN-stimulated genes in PBMCs from donors carrying the risk allele IFIH1946T. These findings demonstrate the need for a deeper understanding of how mutations in T1D-associated genes contribute to disease onset in specific cellular contexts.
Collapse
Affiliation(s)
- Jared P Taylor
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Samuel I Blum
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Hollis C Graffeo
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Qiao Shang
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Shihong Qiu
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Todd J Green
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Davide Botta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
- Heersink School of Medicine, Immunology Institute, University of Alabama at Birmingham, Birmingham, AL
| | - Frances E Lund
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
- Heersink School of Medicine, Immunology Institute, University of Alabama at Birmingham, Birmingham, AL
| | - Hubert M Tse
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
4
|
Jeremiah SS, Moin ASM, Butler AE. Virus-induced diabetes mellitus: revisiting infection etiology in light of SARS-CoV-2. Metabolism 2024; 156:155917. [PMID: 38642828 DOI: 10.1016/j.metabol.2024.155917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 04/14/2024] [Indexed: 04/22/2024]
Abstract
Diabetes mellitus (DM) is comprised of two predominant subtypes: type 1 diabetes mellitus (T1DM), accounting for approximately 5 % of cases worldwide and resulting from autoimmune destruction of insulin-producing β-cells, and type 2 (T2DM), accounting for approximately 95 % of cases globally and characterized by the inability of pancreatic β-cells to meet the demand for insulin due to a relative β-cell deficit in the setting of peripheral insulin resistance. Both types of DM involve derangement of glucose metabolism and are metabolic diseases generally considered to be initiated by a combination of genetic and environmental factors. Viruses have been reported to play a role as infectious etiological factors in the initiation of both types of DM in predisposed individuals. Among the reported viral infections causing DM in humans, the most studied include coxsackie B virus, cytomegalovirus and hepatitis C virus. The recent COVID-19 pandemic has highlighted the diabetogenic potential of SARS-CoV-2, rekindling interest in the field of virus-induced diabetes (VID). This review discusses the reported mechanisms of viral-induced DM, addressing emerging concepts in VID, as well as highlighting areas where knowledge is lacking, and further investigation is warranted.
Collapse
Affiliation(s)
| | - Abu Saleh Md Moin
- Royal College of Surgeons in Ireland - Medical University of Bahrain, Busaiteen, Kingdom of Bahrain.
| | - Alexandra E Butler
- Royal College of Surgeons in Ireland - Medical University of Bahrain, Busaiteen, Kingdom of Bahrain.
| |
Collapse
|
5
|
Janapati YK, Junapudi S. Progress in experimental models to investigate the in vivo and in vitro antidiabetic activity of drugs. Animal Model Exp Med 2024; 7:297-309. [PMID: 38837635 PMCID: PMC11228097 DOI: 10.1002/ame2.12442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/01/2024] [Indexed: 06/07/2024] Open
Abstract
Diabetes mellitus is one of the world's most prevalent and complex metabolic disorders, and it is a rapidly growing global public health issue. It is characterized by hyperglycemia, a condition involving a high blood glucose level brought on by deficiencies in insulin secretion, decreased activity of insulin, or both. Prolonged effects of diabetes include cardiovascular problems, retinopathy, neuropathy, nephropathy, and vascular alterations in both macro- and micro-blood vessels. In vivo and in vitro models have always been important for investigating and characterizing disease pathogenesis, identifying targets, and reviewing novel treatment options and medications. Fully understanding these models is crucial for the researchers so this review summarizes the different experimental in vivo and in vitro model options used to study diabetes and its consequences. The most popular in vivo studies involves the small animal models, such as rodent models, chemically induced diabetogens like streptozotocin and alloxan, and the possibility of deleting or overexpressing a specific gene by knockout and transgenic technologies on these animals. Other models include virally induced models, diet/nutrition induced diabetic animals, surgically induced models or pancreatectomy models, and non-obese models. Large animals or non-rodent models like porcine (pig), canine (dog), nonhuman primate, and Zebrafish models are also outlined. The in vitro models discussed are murine and human beta-cell lines and pancreatic islets, human stem cells, and organoid cultures. The other enzymatic in vitro tests to assess diabetes include assay of amylase inhibition and inhibition of α-glucosidase activity.
Collapse
Affiliation(s)
- Yasodha Krishna Janapati
- School of Pharmacy & Health SciencesUnited States International University‐AFRICA (USIU‐A)NairobiKenya
| | - Sunil Junapudi
- Department of Pharmaceutical ChemistryGeethanjali College of PharmacyKeesaraIndia
| |
Collapse
|
6
|
Yin R, Melton S, Huseby ES, Kardar M, Chakraborty AK. How persistent infection overcomes peripheral tolerance mechanisms to cause T cell-mediated autoimmune disease. Proc Natl Acad Sci U S A 2024; 121:e2318599121. [PMID: 38446856 PMCID: PMC10945823 DOI: 10.1073/pnas.2318599121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
T cells help orchestrate immune responses to pathogens, and their aberrant regulation can trigger autoimmunity. Recent studies highlight that a threshold number of T cells (a quorum) must be activated in a tissue to mount a functional immune response. These collective effects allow the T cell repertoire to respond to pathogens while suppressing autoimmunity due to circulating autoreactive T cells. Our computational studies show that increasing numbers of pathogenic peptides targeted by T cells during persistent or severe viral infections increase the probability of activating T cells that are weakly reactive to self-antigens (molecular mimicry). These T cells are easily re-activated by the self-antigens and contribute to exceeding the quorum threshold required to mount autoimmune responses. Rare peptides that activate many T cells are sampled more readily during severe/persistent infections than in acute infections, which amplifies these effects. Experiments in mice to test predictions from these mechanistic insights are suggested.
Collapse
Affiliation(s)
- Rose Yin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Samuel Melton
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Eric S. Huseby
- Basic Pathology, Department of Pathology, University of Massachusetts Medical School, Worcester, MA01655
| | - Mehran Kardar
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Arup K. Chakraborty
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
7
|
Singh R, Gholipourmalekabadi M, Shafikhani SH. Animal models for type 1 and type 2 diabetes: advantages and limitations. Front Endocrinol (Lausanne) 2024; 15:1359685. [PMID: 38444587 PMCID: PMC10912558 DOI: 10.3389/fendo.2024.1359685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Diabetes mellitus, commonly referred to as diabetes, is a group of metabolic disorders characterized by chronic elevation in blood glucose levels, resulting from inadequate insulin production, defective cellular response to extracellular insulin, and/or impaired glucose metabolism. The two main types that account for most diabetics are type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), each with their own pathophysiological features. T1D is an autoimmune condition where the body's immune system attacks and destroys the insulin-producing beta cells in the pancreas. This leads to lack of insulin, a vital hormone for regulating blood sugar levels and cellular glucose uptake. As a result, those with T1D depend on lifelong insulin therapy to control their blood glucose level. In contrast, T2DM is characterized by insulin resistance, where the body's cells do not respond effectively to insulin, coupled with a relative insulin deficiency. This form of diabetes is often associated with obesity, sedentary lifestyle, and/or genetic factors, and it is managed with lifestyle changes and oral medications. Animal models play a crucial role in diabetes research. However, given the distinct differences between T1DM and T2DM, it is imperative for researchers to employ specific animal models tailored to each condition for a better understanding of the impaired mechanisms underlying each condition, and for assessing the efficacy of new therapeutics. In this review, we discuss the distinct animal models used in type 1 and type 2 diabetes mellitus research and discuss their strengths and limitations.
Collapse
Affiliation(s)
- Raj Singh
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL, United States
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sasha H Shafikhani
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL, United States
- Cancer Center, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
8
|
Kanuri SH, Sirrkay PJ. Adjuvants in COVID-19 vaccines: innocent bystanders or culpable abettors for stirring up COVID-heart syndrome. Ther Adv Vaccines Immunother 2024; 12:25151355241228439. [PMID: 38322819 PMCID: PMC10846003 DOI: 10.1177/25151355241228439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/05/2024] [Indexed: 02/08/2024] Open
Abstract
COVID-19 infection is a multi-system clinical disorder that was associated with increased morbidity and mortality. Even though antiviral therapies such as Remdesvir offered modest efficacy in reducing the mortality and morbidity, they were not efficacious in reducing the risk of future infections. So, FDA approved COVID-19 vaccines which are widely administered in the general population worldwide. These COVID-19 vaccines offered a safety net against future infections and re-infections. Most of these vaccines contain inactivated virus or spike protein mRNA that are primarily responsible for inducing innate and adaptive immunity. These vaccines were also formulated to contain supplementary adjuvants that are beneficial in boosting the immune response. During the pandemic, clinicians all over the world witnessed an uprise in the incidence and prevalence of cardiovascular diseases (COVID-Heart Syndrome) in patients with and without cardiovascular risk factors. Clinical researchers were not certain about the underlying reason for the upsurge of cardiovascular disorders with some blaming them on COVID-19 infections while others blaming them on COVID-19 vaccines. Based on the literature review, we hypothesize that adjuvants included in the COVID-19 vaccines are the real culprits for causation of cardiovascular disorders. Operation of various pathological signaling events under the influence of these adjuvants including autoimmunity, bystander effect, direct toxicity, anti-phospholipid syndrome (APS), anaphylaxis, hypersensitivity, genetic susceptibility, epitope spreading, and anti-idiotypic antibodies were partially responsible for stirring up the onset of cardiovascular disorders. With these mechanisms in place, a minor contribution from COVID-19 virus itself cannot be ruled out. With that being said, we strongly advocate for careful selection of vaccine adjuvants included in COVID-19 vaccines so that future adverse cardiac disorders can be averted.
Collapse
Affiliation(s)
- Sri Harsha Kanuri
- Research Fellow, Stark Neurosciences Institute, Indiana University School of Medicine, 320 W 15 ST, Indianapolis, IN 46202, USA
| | | |
Collapse
|
9
|
Root-Bernstein R. T-Cell Receptor Sequences Identify Combined Coxsackievirus- Streptococci Infections as Triggers for Autoimmune Myocarditis and Coxsackievirus- Clostridia Infections for Type 1 Diabetes. Int J Mol Sci 2024; 25:1797. [PMID: 38339075 PMCID: PMC10855694 DOI: 10.3390/ijms25031797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Recent research suggests that T-cell receptor (TCR) sequences expanded during human immunodeficiency virus and SARS-CoV-2 infections unexpectedly mimic these viruses. The hypothesis tested here is that TCR sequences expanded in patients with type 1 diabetes mellitus (T1DM) and autoimmune myocarditis (AM) mimic the infectious triggers of these diseases. Indeed, TCR sequences mimicking coxsackieviruses, which are implicated as triggers of both diseases, are statistically significantly increased in both T1DM and AM patients. However, TCRs mimicking Clostridia antigens are significantly expanded in T1DM, whereas TCRs mimicking Streptococcal antigens are expanded in AM. Notably, Clostridia antigens mimic T1DM autoantigens, such as insulin and glutamic acid decarboxylase, whereas Streptococcal antigens mimic cardiac autoantigens, such as myosin and laminins. Thus, T1DM may be triggered by combined infections of coxsackieviruses with Clostridia bacteria, while AM may be triggered by coxsackieviruses with Streptococci. These TCR results are consistent with both epidemiological and clinical data and recent experimental studies of cross-reactivities of coxsackievirus, Clostridial, and Streptococcal antibodies with T1DM and AM antigens. These data provide the basis for developing novel animal models of AM and T1DM and may provide a generalizable method for revealing the etiologies of other autoimmune diseases. Theories to explain these results are explored.
Collapse
|
10
|
Knebel UE, Peleg S, Dai C, Cohen-Fultheim R, Jonsson S, Poznyak K, Israeli M, Zamashanski L, Glaser B, Levanon EY, Powers AC, Klochendler A, Dor Y. Disrupted RNA editing in beta cells mimics early-stage type 1 diabetes. Cell Metab 2024; 36:48-61.e6. [PMID: 38128529 PMCID: PMC10843671 DOI: 10.1016/j.cmet.2023.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/18/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
A major hypothesis for the etiology of type 1 diabetes (T1D) postulates initiation by viral infection, leading to double-stranded RNA (dsRNA)-mediated interferon response and inflammation; however, a causal virus has not been identified. Here, we use a mouse model, corroborated with human islet data, to demonstrate that endogenous dsRNA in beta cells can lead to a diabetogenic immune response, thus identifying a virus-independent mechanism for T1D initiation. We found that disruption of the RNA editing enzyme adenosine deaminases acting on RNA (ADAR) in beta cells triggers a massive interferon response, islet inflammation, and beta cell failure and destruction, with features bearing striking similarity to early-stage human T1D. Glycolysis via calcium enhances the interferon response, suggesting an actionable vicious cycle of inflammation and increased beta cell workload.
Collapse
Affiliation(s)
- Udi Ehud Knebel
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Military Medicine and "Tzameret", Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel, and Medical Corps, Israel Defense Forces, Israel
| | - Shani Peleg
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Chunhua Dai
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Roni Cohen-Fultheim
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Sara Jonsson
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Karin Poznyak
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maya Israeli
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Liza Zamashanski
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Benjamin Glaser
- Department of Endocrinology and Metabolism, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Alvin C Powers
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; VA Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Agnes Klochendler
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
11
|
Trier NH, Houen G. Antibody Cross-Reactivity in Auto-Immune Diseases. Int J Mol Sci 2023; 24:13609. [PMID: 37686415 PMCID: PMC10487534 DOI: 10.3390/ijms241713609] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Autoimmunity is defined by the presence of antibodies and/or T cells directed against self-components. Although of unknown etiology, autoimmunity commonly is associated with environmental factors such as infections, which have been reported to increase the risk of developing autoimmune diseases. Occasionally, similarities between infectious non-self and self-tissue antigens may contribute to immunological cross-reactivity in autoimmune diseases. These reactions may be interpreted as molecular mimicry, which describes cross-reactivity between foreign pathogens and self-antigens that have been reported to cause tissue damage and to contribute to the development of autoimmunity. By focusing on the nature of antibodies, cross-reactivity in general, and antibody-antigen interactions, this review aims to characterize the nature of potential cross-reactive immune reactions between infectious non-self and self-tissue antigens which may be associated with autoimmunity but may not actually be the cause of disease onset.
Collapse
Affiliation(s)
- Nicole Hartwig Trier
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
| | - Gunnar Houen
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
12
|
Jeong SH, Fuentes FJ. Coxsackie B Virus-Induced Cardiac Tamponade and Adrenal Insufficiency. Cureus 2023; 15:e45272. [PMID: 37846284 PMCID: PMC10576846 DOI: 10.7759/cureus.45272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/18/2023] Open
Abstract
We report a case involving a young male patient without a significant medical history who exhibited symptoms of fatigue, shortness of breath, chest and back pain, and syncope with vomiting. He was found to have adrenal insufficiency and cardiac tamponade requiring pericardiocentesis. Further inpatient workup revealed the patient had positive IgM and IgG antibody titers for the coxsackie B virus, which we believe caused his presentation. The coxsackie B virus strain can cause mild gastrointestinal to more severe cardiac and neurological complications, including meningitis and myocarditis. On rare occasions, the virus can appear in an unexpected fashion, such as in cardiac tamponade or hormonal disruption. This case raises attention to the broad manifestations of the virus and recognizing its more uncommon presentations.
Collapse
Affiliation(s)
- Su Hyun Jeong
- Internal Medicine, University of Nevada, Reno School of Medicine, Reno, USA
| | - Fernando J Fuentes
- Family Medicine, Renown Regional Medical Center, Reno, USA
- Internal Medicine/Pulmonary and Critical Care, University of Nevada, Reno School of Medicine, Reno, USA
- Pulmonology, Renown Health, Reno, USA
| |
Collapse
|
13
|
Root-Bernstein R, Chiles K, Huber J, Ziehl A, Turke M, Pietrowicz M. Clostridia and Enteroviruses as Synergistic Triggers of Type 1 Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24098336. [PMID: 37176044 PMCID: PMC10179352 DOI: 10.3390/ijms24098336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
What triggers type 1 diabetes mellitus (T1DM)? One common assumption is that triggers are individual microbes that mimic autoantibody targets such as insulin (INS). However, most microbes highly associated with T1DM pathogenesis, such as coxsackieviruses (COX), lack INS mimicry and have failed to induce T1DM in animal models. Using proteomic similarity search techniques, we found that COX actually mimicked the INS receptor (INSR). Clostridia were the best mimics of INS. Clostridia antibodies cross-reacted with INS in ELISA experiments, confirming mimicry. COX antibodies cross-reacted with INSR. Clostridia antibodies further bound to COX antibodies as idiotype-anti-idiotype pairs conserving INS-INSR complementarity. Ultraviolet spectrometry studies demonstrated that INS-like Clostridia peptides bound to INSR-like COX peptides. These complementary peptides were also recognized as antigens by T cell receptor sequences derived from T1DM patients. Finally, most sera from T1DM patients bound strongly to inactivated Clostridium sporogenes, while most sera from healthy individuals did not; T1DM sera also exhibited evidence of anti-idiotype antibodies against idiotypic INS, glutamic acid decarboxylase, and protein tyrosine phosphatase non-receptor (islet antigen-2) antibodies. These results suggest that T1DM is triggered by combined enterovirus-Clostridium (and possibly combined Epstein-Barr-virus-Streptococcal) infections, and the probable rate of such co-infections approximates the rate of new T1DM diagnoses.
Collapse
Affiliation(s)
| | - Kaylie Chiles
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Jack Huber
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Alison Ziehl
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Miah Turke
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Maja Pietrowicz
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
14
|
Cho MJ, Lee HG, Yoon JW, Kim GR, Koo JH, Taneja R, Edelson BT, Lee YJ, Choi JM. Steady-state memory-phenotype conventional CD4 + T cells exacerbate autoimmune neuroinflammation in a bystander manner via the Bhlhe40/GM-CSF axis. Exp Mol Med 2023:10.1038/s12276-023-00995-1. [PMID: 37121980 DOI: 10.1038/s12276-023-00995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/31/2023] [Accepted: 02/23/2023] [Indexed: 05/02/2023] Open
Abstract
Memory-phenotype (MP) CD4+ T cells are a substantial population of conventional T cells that exist in steady-state mice, yet their immunological roles in autoimmune disease remain unclear. In this work, we unveil a unique phenotype of MP CD4+ T cells determined by analyzing single-cell transcriptomic data and T cell receptor (TCR) repertoires. We found that steady-state MP CD4+ T cells in the spleen were composed of heterogeneous effector subpopulations and existed regardless of germ and food antigen exposure. Distinct subpopulations of MP CD4+ T cells were specifically activated by IL-1 family cytokines and STAT activators, revealing that the cells exerted TCR-independent bystander effector functions similar to innate lymphoid cells. In particular, CCR6high subpopulation of MP CD4+ T cells were major responders to IL-23 and IL-1β without MOG35-55 antigen reactivity, which gave them pathogenic Th17 characteristics and allowed them to contribute to autoimmune encephalomyelitis. We identified that Bhlhe40 in CCR6high MP CD4+ T cells as a key regulator of GM-CSF expression through IL-23 and IL-1β signaling, contributing to central nervous system (CNS) pathology in experimental autoimmune encephalomyelitis. Collectively, our findings reveal the clearly distinct effector-like heterogeneity of MP CD4+ T cells in the steady state and indicate that CCR6high MP CD4+ T cells exacerbate autoimmune neuroinflammation via the Bhlhe40/GM-CSF axis in a bystander manner.
Collapse
Affiliation(s)
- Min-Ji Cho
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hong-Gyun Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jae-Won Yoon
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Gil-Ran Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Ja-Hyun Koo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Reshma Taneja
- Department of Physiology and Healthy Longevity Translation Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore, Singapore
| | - Brian T Edelson
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, 63119, USA
| | - You Jeong Lee
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Korea.
| |
Collapse
|
15
|
Mastrodomenico V, LoMascolo NJ, Firpo MR, Villanueva Guzman MDM, Zaporowski A, Mounce BC. Persistent Coxsackievirus B3 Infection in Pancreatic Ductal Cells In Vitro Downregulates Cellular Polyamine Metabolism. mSphere 2023:e0003623. [PMID: 37097178 DOI: 10.1128/msphere.00036-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Picornaviruses infect a wide variety of cell types in vitro, with rapid replication kinetics and pronounced cytopathic effect. Coxsackievirus B3 (CVB3) can also establish a persistent infection in vivo that can lead to pathology, including dilated cardiomyopathy and myocarditis. One model system to study persistent infection is the pancreatic ductal cell line PANC-1, which CVB3 infects and is maintained indefinitely. We have characterized this model for CVB3 infection to study persistent infection for over 6 months. We find that CVB3 rapidly replicates within PANC-1 cells without robust cytopathic effect, and after 1 month in culture, titers stabilize. We find that infection does not significantly affect cellular viability. Persistent virus reverts to lytic infection when transferred to Huh7 or Vero cells. We find that persistent CVB3 adapts to PANC-1 cells via mutation of its capsid proteins and, curiously, the viral polymerase (3Dpol) to generate a high-fidelity polymerase. Persistent infection is associated with reduced cleavage of eIF4G, reduced plaque size, and decreasing particle infectivity. We further find that polyamine metabolism is altered in persistently infected cells, with the rate-limiting enzyme ornithine decarboxylase (ODC1) reduced in translation. We further find that targeting polyamine synthesis reduces persistent infection without affecting the viability of the PANC-1 cells. Finally, we find that viral fidelity is essential to maintaining CVB3 infection, and targeting viral fidelity reduces persistent virus infection. Together, these data highlight a novel role for polyamines and fidelity in persistent CVB3 infection and suggest avenues for therapeutic development to target persistent infection. IMPORTANCE Enteroviruses are significant human pathogens that can cause severe disease, including cardiomyopathies. Viruses like coxsackievirus B3 (CVB3) can cause tissue damage by lytically infecting cells; however, CVB3 can also persistently infect, which has been associated with several pathologies. Studying persistent infection in vitro is challenging, as CVB3 lytically infects most cellular model systems. Here, we show that CVB3 establishes persistent infection in pancreatic ductal cells in vitro, similar to prior studies on other coxsackieviruses. We also show that this infection results in adaptation of the virus to these cells, as well as changes to cellular metabolism of polyamines.
Collapse
Affiliation(s)
- Vincent Mastrodomenico
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
| | - Natalie J LoMascolo
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
| | - Mason R Firpo
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
| | - Maria Del Mar Villanueva Guzman
- Infectious Disease and Immunology Research Institute, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
| | - Adam Zaporowski
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
| | - Bryan C Mounce
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
- Infectious Disease and Immunology Research Institute, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
| |
Collapse
|
16
|
Strachan E, Clemente-Casares X, Tsai S. Maternal provisions in type 1 diabetes: Evidence for both protective & pathogenic potential. Front Immunol 2023; 14:1146082. [PMID: 37033940 PMCID: PMC10073710 DOI: 10.3389/fimmu.2023.1146082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Maternal influences on the immune health and development of an infant begin in utero and continue well into the postnatal period, shaping and educating the child's maturing immune system. Two maternal provisions include early microbial colonizers to initiate microbiota establishment and the transfer of antibodies from mother to baby. Maternal antibodies are a result of a lifetime of antigenic experience, reflecting the infection history, health and environmental exposure of the mother. These same factors are strong influencers of the microbiota, inexorably linking the two. Together, these provisions help to educate the developing neonatal immune system and shape lymphocyte repertoires, establishing a role for external environmental influences even before birth. In the context of autoimmunity, the transfer of maternal autoantibodies has the potential to be harmful for the child, sometimes targeting tissues and cells with devastating consequences. Curiously, this does not seem to apply to maternal autoantibody transfer in type 1 diabetes (T1D). Moreover, despite the rising prevalence of the disease, little research has been conducted on the effects of maternal dysbiosis or antibody transfer from an affected mother to her offspring and thus their relevance to disease development in the offspring remains unclear. This review seeks to provide a thorough evaluation of the role of maternal microorganisms and antibodies within the context of T1D, exploring both their pathogenic and protective potential. Although a definitive understanding of their significance in infant T1D development remains elusive at present, we endeavor to present what has been learned with the goal of spurring further interest in this important and intriguing question.
Collapse
Affiliation(s)
| | | | - Sue Tsai
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
17
|
Sundaresan B, Shirafkan F, Ripperger K, Rattay K. The Role of Viral Infections in the Onset of Autoimmune Diseases. Viruses 2023; 15:v15030782. [PMID: 36992490 PMCID: PMC10051805 DOI: 10.3390/v15030782] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Autoimmune diseases (AIDs) are the consequence of a breach in immune tolerance, leading to the inability to sufficiently differentiate between self and non-self. Immune reactions that are targeted towards self-antigens can ultimately lead to the destruction of the host's cells and the development of autoimmune diseases. Although autoimmune disorders are comparatively rare, the worldwide incidence and prevalence is increasing, and they have major adverse implications for mortality and morbidity. Genetic and environmental factors are thought to be the major factors contributing to the development of autoimmunity. Viral infections are one of the environmental triggers that can lead to autoimmunity. Current research suggests that several mechanisms, such as molecular mimicry, epitope spreading, and bystander activation, can cause viral-induced autoimmunity. Here we describe the latest insights into the pathomechanisms of viral-induced autoimmune diseases and discuss recent findings on COVID-19 infections and the development of AIDs.
Collapse
Affiliation(s)
- Bhargavi Sundaresan
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Fatemeh Shirafkan
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Kevin Ripperger
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| | - Kristin Rattay
- Institute of Pharmacology, Biochemical Pharmacological Center, University of Marburg, 35043 Marburg, Germany
| |
Collapse
|
18
|
Morse ZJ, Simister RL, Crowe SA, Horwitz MS, Osborne LC. Virus induced dysbiosis promotes type 1 diabetes onset. Front Immunol 2023; 14:1096323. [PMID: 36742327 PMCID: PMC9892191 DOI: 10.3389/fimmu.2023.1096323] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Autoimmune disorders are complex diseases of unclear etiology, although evidence suggests that the convergence of genetic susceptibility and environmental factors are critical. In type 1 diabetes (T1D), enterovirus infection and disruption of the intestinal microbiota are two environmental factors that have been independently associated with T1D onset in both humans and animal models. However, the possible interaction between viral infection and the intestinal microbiota remains unknown. Here, we demonstrate that Coxsackievirus B4 (CVB4), an enterovirus that accelerates T1D onset in non-obese diabetic (NOD) mice, induced restructuring of the intestinal microbiome prior to T1D onset. Microbiome restructuring was associated with an eroded mucosal barrier, bacterial translocation to the pancreatic lymph node, and increased circulating and intestinal commensal-reactive antibodies. The CVB4-induced change in community composition was strikingly similar to that of uninfected NOD mice that spontaneously developed diabetes, implying a mutual "diabetogenic" microbiome. Notably, members of the Bifidobacteria and Akkermansia genera emerged as conspicuous members of this diabetogenic microbiome, implicating these taxa, among others, in diabetes onset. Further, fecal microbiome transfer (FMT) of the diabetogenic microbiota from CVB4-infected mice enhanced T1D susceptibility and led to diminished expression of the short chain fatty acid receptor GPR43 and fewer IL-10-expressing regulatory CD4+ T cells in the intestine of naïve NOD recipients. These findings support an overlap in known environmental risk factors of T1D, and suggest that microbiome disruption and impaired intestinal homeostasis contribute to CVB-enhanced autoreactivity and T1D.
Collapse
Affiliation(s)
- Zachary J Morse
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Rachel L Simister
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sean A Crowe
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Marc S Horwitz
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Lisa C Osborne
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Matzinger P. Autoimmunity: Are we asking the right question? Front Immunol 2022; 13:864633. [PMID: 36405714 PMCID: PMC9671104 DOI: 10.3389/fimmu.2022.864633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/20/2022] [Indexed: 09/07/2023] Open
Abstract
For decades, the main question immunologists have asked about autoimmunity is "what causes a break in self-tolerance?" We have not found good answers to that question, and I believe we are still so ignorant because it's the wrong question. Rather than a break in self-tolerance, I suggest that many autoimmune diseases might be due to defects in normal tissue physiology.
Collapse
Affiliation(s)
- Polly Matzinger
- Ghost Lab, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| |
Collapse
|
20
|
Mousa WK, Chehadeh F, Husband S. Microbial dysbiosis in the gut drives systemic autoimmune diseases. Front Immunol 2022; 13:906258. [PMID: 36341463 PMCID: PMC9632986 DOI: 10.3389/fimmu.2022.906258] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/20/2022] [Indexed: 09/29/2023] Open
Abstract
Trillions of microbes survive and thrive inside the human body. These tiny creatures are crucial to the development and maturation of our immune system and to maintain gut immune homeostasis. Microbial dysbiosis is the main driver of local inflammatory and autoimmune diseases such as colitis and inflammatory bowel diseases. Dysbiosis in the gut can also drive systemic autoimmune diseases such as type 1 diabetes, rheumatic arthritis, and multiple sclerosis. Gut microbes directly interact with the immune system by multiple mechanisms including modulation of the host microRNAs affecting gene expression at the post-transcriptional level or production of microbial metabolites that interact with cellular receptors such as TLRs and GPCRs. This interaction modulates crucial immune functions such as differentiation of lymphocytes, production of interleukins, or controlling the leakage of inflammatory molecules from the gut to the systemic circulation. In this review, we compile and analyze data to gain insights into the underpinning mechanisms mediating systemic autoimmune diseases. Understanding how gut microbes can trigger or protect from systemic autoimmune diseases is crucial to (1) tackle these diseases through diet or lifestyle modification, (2) develop new microbiome-based therapeutics such as prebiotics or probiotics, (3) identify diagnostic biomarkers to predict disease risk, and (4) observe and intervene with microbial population change with the flare-up of autoimmune responses. Considering the microbiome signature as a crucial player in systemic autoimmune diseases might hold a promise to turn these untreatable diseases into manageable or preventable ones.
Collapse
Affiliation(s)
- Walaa K. Mousa
- Biology Department, Whitman College, Walla Walla, WA, United States
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- College of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Fadia Chehadeh
- Biology Department, Whitman College, Walla Walla, WA, United States
| | - Shannon Husband
- Biology Department, Whitman College, Walla Walla, WA, United States
| |
Collapse
|
21
|
Gan G, Liu H, Liang Z, Zhang G, Liu X, Ma L. Vaccine-associated thrombocytopenia. Thromb Res 2022; 220:12-20. [DOI: 10.1016/j.thromres.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/05/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022]
|
22
|
Abstract
Autoimmune disease is known to be caused by unregulated self-antigen-specific T cells, causing tissue damage. Although antigen specificity is an important mechanism of the adaptive immune system, antigen non-related T cells have been found in the inflamed tissues in various conditions. Bystander T cell activation refers to the activation of T cells without antigen recognition. During an immune response to a pathogen, bystander activation of self-reactive T cells via inflammatory mediators such as cytokines can trigger autoimmune diseases. Other antigen-specific T cells can also be bystander-activated to induce innate immune response resulting in autoimmune disease pathogenesis along with self-antigen-specific T cells. In this review, we summarize previous studies investigating bystander activation of various T cell types (NKT, γδ T cells, MAIT cells, conventional CD4+, and CD8+ T cells) and discuss the role of innate-like T cell response in autoimmune diseases. In addition, we also review previous findings of bystander T cell function in infection and cancer. A better understanding of bystander-activated T cells versus antigen-stimulated T cells provides a novel insight to control autoimmune disease pathogenesis.
Collapse
Affiliation(s)
- Chae-Hyeon Shim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Sookyung Cho
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Young-Mi Shin
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, Institute for Rheumatology Research, Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
23
|
Shim CH, Cho S, Shin YM, Choi JM. Emerging role of bystander T cell activation in autoimmune diseases. BMB Rep 2022; 55:57-64. [PMID: 35000675 PMCID: PMC8891623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 02/21/2025] Open
Abstract
Autoimmune disease is known to be caused by unregulated selfantigen-specific T cells, causing tissue damage. Although antigen specificity is an important mechanism of the adaptive immune system, antigen non-related T cells have been found in the inflamed tissues in various conditions. Bystander T cell activation refers to the activation of T cells without antigen recognition. During an immune response to a pathogen, bystander activation of self-reactive T cells via inflammatory mediators such as cytokines can trigger autoimmune diseases. Other antigen-specific T cells can also be bystander-activated to induce innate immune response resulting in autoimmune disease pathogenesis along with self-antigen-specific T cells. In this review, we summarize previous studies investigating bystander activation of various T cell types (NKT, γδ T cells, MAIT cells, conventional CD4+, and CD8+ T cells) and discuss the role of innate-like T cell response in autoimmune diseases. In addition, we also review previous findings of bystander T cell function in infection and cancer. A better understanding of bystander-activated T cells versus antigenstimulated T cells provides a novel insight to control autoimmune disease pathogenesis. [BMB Reports 2022; 55(2): 57-64].
Collapse
Affiliation(s)
- Chae-Hyeon Shim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Sookyung Cho
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Young-Mi Shin
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, Institute for Rheumatology Research, Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
24
|
Benner SE, Walter DL, Thuma JR, Courreges M, James CBL, Schwartz FL, McCall KD. Toll-Like Receptor 3 Is Critical to the Pancreatic Islet Milieu That Is Required for Coxsackievirus B4-Induced Type 1 Diabetes in Female Nonobese Diabetic Mice. Pancreas 2022; 51:48-55. [PMID: 35195595 PMCID: PMC8865205 DOI: 10.1097/mpa.0000000000001960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/08/2021] [Indexed: 12/10/2022]
Abstract
OBJECTIVE Genetic and environmental influences play a role as triggers of type 1 diabetes mellitus (T1DM). Female nonobese diabetic (NOD) mice are useful for studying T1DM as they spontaneously develop T1DM, which can be accelerated by some viruses. Toll-like receptor 3 (TLR3) is believed to play a critical role in viral-induced T1DM and β-cell destruction, because female Tlr3 knockout (Tlr3-/-) NOD mice are protected from Coxsackievirus B4 (CVB4)-induced acceleration of T1DM. However, the exact role(s) TLR3 plays in the pathogenesis of CVB4-induced T1DM remain unknown. METHODS This longitudinal study used immunostaining, laser capture microdissection, and reverse transcription real-time polymerase chain reaction of islets from female uninfected and CVB4-infected Tlr3+/+ and Tlr3-/- NOD mice. RESULTS Islets isolated from female Tlr3+/+ NOD mice 4 to 8 weeks of age had higher amounts of insulitis, Cxcl10, Il1b, Tnfa, and Tgfb1 expression compared with Tlr3-/- NOD mice. After CVB4 infection, Tlr3+/+ NOD mice had higher amounts of insulitis and T-cell infiltration at 3 days after infection compared with Tlr3-/- CVB4-infected NOD mice. CONCLUSIONS Toll-like receptor 3 is necessary for establishment of a pancreatic islet inflammatory microenvironment by increasing insulitis and cytokine expression that facilitates CVB4-induced T1DM in female NOD mice.
Collapse
Affiliation(s)
- Sarah E. Benner
- From the Molecular and Cellular Biology Program
- Department of Biological Sciences, Ohio University College of Arts & Sciences
| | - Debra L. Walter
- From the Molecular and Cellular Biology Program
- Department of Biological Sciences, Ohio University College of Arts & Sciences
| | | | | | - Calvin B. L. James
- From the Molecular and Cellular Biology Program
- Biomedical Sciences
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH
| | - Frank L. Schwartz
- Departments of Specialty Medicine
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH
| | - Kelly D. McCall
- From the Molecular and Cellular Biology Program
- Department of Biological Sciences, Ohio University College of Arts & Sciences
- Departments of Specialty Medicine
- Biomedical Sciences
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine, Athens, OH
| |
Collapse
|
25
|
Diaz Lozano IM, Sork H, Stone VM, Eldh M, Cao X, Pernemalm M, Gabrielsson S, Flodström-Tullberg M. Proteome profiling of whole plasma and plasma-derived extracellular vesicles facilitates the detection of tissue biomarkers in the non-obese diabetic mouse. Front Endocrinol (Lausanne) 2022; 13:971313. [PMID: 36246930 PMCID: PMC9563222 DOI: 10.3389/fendo.2022.971313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
The mechanism by which pancreatic beta cells are destroyed in type 1 diabetes (T1D) remains to be fully understood. Recent observations indicate that the disease may arise because of different pathobiological mechanisms (endotypes). The discovery of one or several protein biomarkers measurable in readily available liquid biopsies (e.g. blood plasma) during the pre-diabetic period may enable personalized disease interventions. Recent studies have shown that extracellular vesicles (EVs) are a source of tissue proteins in liquid biopsies. Using plasma samples collected from pre-diabetic non-obese diabetic (NOD) mice (an experimental model of T1D) we addressed if combined analysis of whole plasma samples and plasma-derived EV fractions increases the number of unique proteins identified by mass spectrometry (MS) compared to the analysis of whole plasma samples alone. LC-MS/MS analysis of plasma samples depleted of abundant proteins and subjected to peptide fractionation identified more than 2300 proteins, while the analysis of EV-enriched plasma samples identified more than 600 proteins. Of the proteins detected in EV-enriched samples, more than a third were not identified in whole plasma samples and many were classified as either tissue-enriched or of tissue-specific origin. In conclusion, parallel profiling of EV-enriched plasma fractions and whole plasma samples increases the overall proteome depth and facilitates the discovery of tissue-enriched proteins in plasma. If applied to plasma samples collected longitudinally from the NOD mouse or from models with other pathobiological mechanisms, the integrated proteome profiling scheme described herein may be useful for the discovery of new and potentially endotype specific biomarkers in T1D.
Collapse
Affiliation(s)
- Isabel M. Diaz Lozano
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Helena Sork
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Virginia M. Stone
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Maria Eldh
- Department of Clinical Immunology and Transfusion Medicine and Division of Immunology and Allergy, Department of Medicine Solna, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Xiaofang Cao
- Department of Oncology and Pathology/Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Maria Pernemalm
- Department of Oncology and Pathology/Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Gabrielsson
- Department of Clinical Immunology and Transfusion Medicine and Division of Immunology and Allergy, Department of Medicine Solna, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Malin Flodström-Tullberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- *Correspondence: Malin Flodström-Tullberg,
| |
Collapse
|
26
|
Stone VM, Butrym M, Hankaniemi MM, Sioofy-Khojine AB, Hytönen VP, Hyöty H, Flodström-Tullberg M. Coxsackievirus B Vaccines Prevent Infection-Accelerated Diabetes in NOD Mice and Have No Disease-Inducing Effect. Diabetes 2021; 70:2871-2878. [PMID: 34497136 PMCID: PMC8660981 DOI: 10.2337/db21-0193] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/30/2021] [Indexed: 01/11/2023]
Abstract
Enteroviruses, including the Coxsackievirus Bs (CVB), have been implicated as causal agents in human type 1 diabetes. Immunization of at-risk individuals with a CVB vaccine provides an attractive strategy for elucidating the role of CVBs in the disease etiology. Previously, we have shown that an inactivated whole-virus vaccine covering all CVB serotypes (CVB1-6) is safe to administer and highly immunogenic in preclinical models, including nonhuman primates. Before initiating clinical trials with this type of vaccine, it was also important to address 1) whether the vaccine itself induces adverse immune reactions, including accelerating diabetes onset in a diabetes-prone host, and 2) whether the vaccine can prevent CVB-induced diabetes in a well-established disease model. Here, we present results from studies in which female NOD mice were left untreated, mock-vaccinated, or vaccinated with CVB1-6 vaccine and monitored for insulitis occurrence or diabetes development. We demonstrate that vaccination induces virus-neutralizing antibodies without altering insulitis scores or the onset of diabetes. We also show that NOD mice vaccinated with a CVB1 vaccine are protected from CVB-induced accelerated disease onset. Taken together, these studies show that CVB vaccines do not alter islet inflammation or accelerate disease progression in an animal model that spontaneously develops autoimmune type 1 diabetes. However, they can prevent CVB-mediated disease progression in the same model.
Collapse
Affiliation(s)
- Virginia M Stone
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marta Butrym
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Minna M Hankaniemi
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Malin Flodström-Tullberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
27
|
Lincez PJ, Shanina I, Horwitz MS. Changes in MDA5 and TLR3 Sensing of the Same Diabetogenic Virus Result in Different Autoimmune Disease Outcomes. Front Immunol 2021; 12:751341. [PMID: 34804036 PMCID: PMC8602094 DOI: 10.3389/fimmu.2021.751341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022] Open
Abstract
Seemingly redundant in function, melanoma differentiation-associated protein 5 (MDA5) and toll-like receptor- 3 (TLR3) both sense RNA viruses and induce type I interferon (IFN-I). Herein, we demonstrate that changes in sensing of the same virus by MDA5 and TLR3 can lead to distinct signatures of IFN-α and IFN-ß resulting in different disease outcomes. Specifically, infection with a diabetogenic islet β cell-tropic strain of coxsackievirus (CB4) results in diabetes protection under reduced MDA5 signaling conditions while reduced TLR3 function retains diabetes susceptibility. Regulating the induction of IFN-I at the site of virus infection creates a local site of interferonopathy leading to loss of T cell regulation and induction of autoimmune diabetes. We have not demonstrated another way to prevent T1D in the NOD mouse, rather we believe this work has provided compounding evidence for a specific control of IFN-I to drive a myriad of responses ranging from virus clearance to onset of autoimmune diabetes.
Collapse
Affiliation(s)
- Pamela J. Lincez
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, Canada
| | - Iryna Shanina
- Department of Microbiology & Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| | - Marc S. Horwitz
- Department of Microbiology & Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
28
|
Panwar S, Sharma S, Tripathi P. Role of Barrier Integrity and Dysfunctions in Maintaining the Healthy Gut and Their Health Outcomes. Front Physiol 2021; 12:715611. [PMID: 34630140 PMCID: PMC8497706 DOI: 10.3389/fphys.2021.715611] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/27/2021] [Indexed: 01/08/2023] Open
Abstract
Mucosal surface layers are the critical borders throughout epithelial membranes. These epithelial cells segregate luminal material from external environments. However, mucosal linings are also accountable for absorbing nutrients and requiring specific barrier permeability. These functional acts positioned the mucosal epithelium at the epicenter of communications concerning the mucosal immune coordination and foreign materials, such as dietary antigens and microbial metabolites. Current innovations have revealed that external stimuli can trigger several mechanisms regulated by intestinal mucosal barrier system. Crucial constituents of this epithelial boundary are physical intercellular structures known as tight junctions (TJs). TJs are composed of different types transmembrane proteins linked with cytoplasmic adaptors which helps in attachment to the adjacent cells. Disruption of this barrier has direct influence on healthy or diseased condition, as barrier dysfunctions have been interrelated with the initiation of inflammation, and pathogenic effects following metabolic complications. In this review we focus and overview the TJs structure, function and the diseases which are able to influence TJs during onset of disease. We also highlighted and discuss the role of phytochemicals evidenced to enhance the membrane permeability and integrity through restoring TJs levels.
Collapse
Affiliation(s)
- Shruti Panwar
- Infection and Immunology, Translational Health Science and Technology Institute, National Capital Region (NCR) Biotech Science Cluster, Faridabad, India
| | - Sapna Sharma
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Prabhanshu Tripathi
- Food Drug and Chemical Toxicology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, Lucknow, India
| |
Collapse
|
29
|
Bakhtadze S, Lim M, Craiu D, Cazacu C. Vaccination in acute immune-mediated/inflammatory disorders of the central nervous system. Eur J Paediatr Neurol 2021; 34:118-122. [PMID: 34487956 DOI: 10.1016/j.ejpn.2021.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 01/06/2023]
Abstract
This review article covers the vaccination related issues in autoimmune disorders of central nervous system (CNS) including narcolepsy, anti-NMDAR encephalitis, Rasmussen encephalitis and febrile infection related epilepsy syndrome (FIRES). Beyond these conditions the immune mediated epilepsies related with autoimmune CNS disorders are discussed and indications and contraindications of vaccinations in these cases are also considered.
Collapse
Affiliation(s)
- Sophia Bakhtadze
- Department of Paediatric Neurology, Tbilisi State Medical University, 33 Vazha Pshavela ave, 0160, Tbilisi, Georgia.
| | - Ming Lim
- Children's Neurosciences, Evelina London Children's Hospital at Guy's and St Thomas' NHS Foundation Trust, Westminister Bridge Road, SE1 7EH, London, UK; Department Women and Children's Health, School of Life Course Sciences (SoLCS), King's College, Strand, WC2R 2LS, London, UK.
| | - Dana Craiu
- Department of Neurosciences, Pediatric Neurology Discipline II, Carol Davila University of Medicine and Pharmacy, Faculty of Medicine, Strada Dionisie Lupu No. 37, 020021, Bucharest/S2, Romania; Pediatric Neurology Clinic, Center of Expertise for Rare Disorders in Pediatric Neurology, EpiCARE Member, Sos. Berceni 10, Bucharest/S4, Romania.
| | - Cristina Cazacu
- Pediatric Neurology Clinic, Center of Expertise for Rare Disorders in Pediatric Neurology, EpiCARE Member, Sos. Berceni 10, Bucharest/S4, Romania.
| |
Collapse
|
30
|
Experimental animal models for diabetes and its related complications-a review. Lab Anim Res 2021; 37:23. [PMID: 34429169 PMCID: PMC8385906 DOI: 10.1186/s42826-021-00101-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus, a very common and multifaceted metabolic disorder is considered as one of the fastest growing public health problems in the world. It is characterized by hyperglycemia, a condition with high glucose level in the blood plasma resulting from defects in insulin secretion or its action and in some cases both the impairment in secretion and also action of insulin coexist. Historically, animal models have played a critical role in exploring and describing malady pathophysiology and recognizable proof of targets and surveying new remedial specialists and in vivo medicines. In the present study, we reviewed the experimental models employed for diabetes and for its related complications. This paper reviews briefly the broad chemical induction of alloxan and streptozotocin and its mechanisms associated with type 1 and type 2 diabetes. Also we highlighted the different models in other species and other animals.
Collapse
|
31
|
Gardner G, Fraker CA. Natural Killer Cells as Key Mediators in Type I Diabetes Immunopathology. Front Immunol 2021; 12:722979. [PMID: 34489972 PMCID: PMC8417893 DOI: 10.3389/fimmu.2021.722979] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/05/2021] [Indexed: 01/03/2023] Open
Abstract
The immunopathology of type I diabetes (T1D) presents a complicated case in part because of the multifactorial origin of this disease. Typically, T1D is thought to occur as a result of autoimmunity toward islets of Langerhans, resulting in the destruction of insulin-producing cells (β cells) and thus lifelong reliance on exogenous insulin. However, that explanation obscures much of the underlying mechanism, and the actual precipitating events along with the associated actors (latent viral infection, diverse immune cell types and their roles) are not completely understood. Notably, there is a malfunctioning in the regulation of cytotoxic CD8+ T cells that target endocrine cells through antigen-mediated attack. Further examination has revealed the likelihood of an imbalance in distinct subpopulations of tolerogenic and cytotoxic natural killer (NK) cells that may be the catalyst of adaptive immune system malfunction. The contributions of components outside the immune system, including environmental factors such as chronic viral infection also need more consideration, and much of the recent literature investigating the origins of this disease have focused on these factors. In this review, the details of the immunopathology of T1D regarding NK cell disfunction is discussed, along with how those mechanisms stand within the context of general autoimmune disorders. Finally, the rarer cases of latent autoimmune, COVID-19 (viral), and immune checkpoint inhibitor (ICI) induced diabetes are discussed as their exceptional pathology offers insight into the evolution of the disease as a whole.
Collapse
Affiliation(s)
| | - Christopher A. Fraker
- Tissue and Biomedical Engineering Laboratory, Leonard M. Miller School of Medicine, Diabetes Research Institute, University of Miami, Miami, FL, United States
| |
Collapse
|
32
|
Isaacs SR, Foskett DB, Maxwell AJ, Ward EJ, Faulkner CL, Luo JYX, Rawlinson WD, Craig ME, Kim KW. Viruses and Type 1 Diabetes: From Enteroviruses to the Virome. Microorganisms 2021; 9:microorganisms9071519. [PMID: 34361954 PMCID: PMC8306446 DOI: 10.3390/microorganisms9071519] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
For over a century, viruses have left a long trail of evidence implicating them as frequent suspects in the development of type 1 diabetes. Through vigorous interrogation of viral infections in individuals with islet autoimmunity and type 1 diabetes using serological and molecular virus detection methods, as well as mechanistic studies of virus-infected human pancreatic β-cells, the prime suspects have been narrowed down to predominantly human enteroviruses. Here, we provide a comprehensive overview of evidence supporting the hypothesised role of enteroviruses in the development of islet autoimmunity and type 1 diabetes. We also discuss concerns over the historical focus and investigation bias toward enteroviruses and summarise current unbiased efforts aimed at characterising the complete population of viruses (the “virome”) contributing early in life to the development of islet autoimmunity and type 1 diabetes. Finally, we review the range of vaccine and antiviral drug candidates currently being evaluated in clinical trials for the prevention and potential treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Sonia R. Isaacs
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Dylan B. Foskett
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Anna J. Maxwell
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Emily J. Ward
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Clare L. Faulkner
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Jessica Y. X. Luo
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - William D. Rawlinson
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Faculty of Science, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maria E. Craig
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Institute of Endocrinology and Diabetes, Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
- Faculty of Medicine and Health, Discipline of Child and Adolescent Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Ki Wook Kim
- Faculty of Medicine and Health, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia; (S.R.I.); (D.B.F.); (A.J.M.); (E.J.W.); (C.L.F.); (J.Y.X.L.); (W.D.R.); (M.E.C.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Correspondence: ; Tel.: +61-2-9382-9096
| |
Collapse
|
33
|
Tsuji H, Ohmura K, Jin H, Naito R, Arase N, Kohyama M, Suenaga T, Sakakibara S, Kochi Y, Okada Y, Yamamoto K, Kikutani H, Morinobu A, Mimori T, Arase H. Anti-dsDNA antibodies recognize DNA presented on HLA class II molecules of systemic lupus erythematosus risk alleles. Arthritis Rheumatol 2021; 74:105-111. [PMID: 34164946 DOI: 10.1002/art.41897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/08/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Specific HLA class II alleles are associated with susceptibility to systemic lupus erythematosus (SLE). The role of HLA class II molecules in SLE pathogenesis remains unclear, although anti-DNA antibodies are specific to SLE and correlate to disease activity. We previously demonstrated that misfolded proteins bound to HLA class II molecules are specific targets for the autoantibodies produced in autoimmune diseases. We hypothesized that DNA binds to HLA class II molecules in a manner similar to that of misfolded proteins and that DNA bound to HLA class II molecules is involved in SLE pathogenicity. METHODS We analyzed the binding of DNA to HLA class II molecules, as well as the response of cells expressing anti-DNA B cell receptors (BCR) to cells expressing the DNA/HLA class II complex. RESULTS Efficient binding of DNA to HLA class II molecules was observed in risk alleles of SLE, such as HLA-DRB1*15:01. The efficiency of DNA binding to each HLA-DR allele was positively associated with the risk of SLE conferred by the HLA-DR allele. In addition, reporter cells carrying anti-DNA BCRs were activated by cells expressing DNA/HLA class II complexes. CONCLUSION DNA bound to HLA class II molecules is involved in SLE pathogenesis.
Collapse
Affiliation(s)
- Hideaki Tsuji
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, 606-8507, Japan.,Laboratory of Immunochemistry, World Premier International (WPI) Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koichiro Ohmura
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, 606-8507, Japan
| | - Hui Jin
- Laboratory of Immunochemistry, World Premier International (WPI) Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryota Naito
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, 606-8507, Japan.,Laboratory of Immunochemistry, World Premier International (WPI) Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Noriko Arase
- Laboratory of Immunochemistry, World Premier International (WPI) Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Dermatology, Osaka University Graduate School of Medicine, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masako Kohyama
- Laboratory of Immunochemistry, World Premier International (WPI) Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tadahiro Suenaga
- Laboratory of Immunochemistry, World Premier International (WPI) Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Microbiology, Fukushima Medical University, 1 Hikariga-oka, Fukushima City, 960-1295, Japan
| | - Shuhei Sakakibara
- Laboratory of Immune Regulation, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuta Kochi
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.,Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yukinori Okada
- Laboratory of Statistical Immunology, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Statistical Genetics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Hitoshi Kikutani
- Laboratory of Immune Regulation, WPI Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, 606-8507, Japan
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, 606-8507, Japan
| | - Hisashi Arase
- Laboratory of Immunochemistry, World Premier International (WPI) Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
34
|
Alhazmi A, Nekoua MP, Michaux H, Sane F, Halouani A, Engelmann I, Alidjinou EK, Martens H, Jaidane H, Geenen V, Hober D. Effect of Coxsackievirus B4 Infection on the Thymus: Elucidating Its Role in the Pathogenesis of Type 1 Diabetes. Microorganisms 2021; 9:microorganisms9061177. [PMID: 34072590 PMCID: PMC8229779 DOI: 10.3390/microorganisms9061177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 12/19/2022] Open
Abstract
The thymus gland is a primary lymphoid organ for T-cell development. Various viral infections can result in disturbance of thymic functions. Medullary thymic epithelial cells (mTECs) are important for the negative selection of self-reactive T-cells to ensure central tolerance. Insulin-like growth factor 2 (IGF2) is the dominant self-peptide of the insulin family expressed in mTECs and plays a crucial role in the intra-thymic programing of central tolerance to insulin-secreting islet β-cells. Coxsackievirus B4 (CVB4) can infect and persist in the thymus of humans and mice, thus hampering the T-cell maturation and differentiation process. The modulation of IGF2 expression and protein synthesis during a CVB4 infection has been observed in vitro and in vivo in mouse models. The effect of CVB4 infections on human and mouse fetal thymus has been studied in vitro. Moreover, following the inoculation of CVB4 in pregnant mice, the thymic function in the fetus and offspring was disturbed. A defect in the intra-thymic expression of self-peptides by mTECs may be triggered by CVB4. The effects of viral infections, especially CVB4 infection, on thymic cells and functions and their possible role in the pathogenesis of type 1 diabetes (T1D) are presented.
Collapse
Affiliation(s)
- Abdulaziz Alhazmi
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (A.A.); (M.P.N.); (F.S.); (I.E.); (E.K.A.)
- Microbiology and Parasitology Department, College of Medicine, Jazan University, Jazan 82911, Saudi Arabia
| | - Magloire Pandoua Nekoua
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (A.A.); (M.P.N.); (F.S.); (I.E.); (E.K.A.)
| | - Hélène Michaux
- GIGA-I3 Center of Immunoendocrinology, GIGA Research Institute, University of Liège, 4000 Liège, Belgium; (H.M.); (H.M.); (V.G.)
| | - Famara Sane
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (A.A.); (M.P.N.); (F.S.); (I.E.); (E.K.A.)
| | - Aymen Halouani
- Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Université de Monastir, 5000 Monastir, Tunisia; (A.H.); (H.J.)
| | - Ilka Engelmann
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (A.A.); (M.P.N.); (F.S.); (I.E.); (E.K.A.)
| | - Enagnon Kazali Alidjinou
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (A.A.); (M.P.N.); (F.S.); (I.E.); (E.K.A.)
| | - Henri Martens
- GIGA-I3 Center of Immunoendocrinology, GIGA Research Institute, University of Liège, 4000 Liège, Belgium; (H.M.); (H.M.); (V.G.)
| | - Hela Jaidane
- Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Université de Monastir, 5000 Monastir, Tunisia; (A.H.); (H.J.)
| | - Vincent Geenen
- GIGA-I3 Center of Immunoendocrinology, GIGA Research Institute, University of Liège, 4000 Liège, Belgium; (H.M.); (H.M.); (V.G.)
| | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (A.A.); (M.P.N.); (F.S.); (I.E.); (E.K.A.)
- Correspondence: ; Tel.: +33-(0)3-20-44-66-88
| |
Collapse
|
35
|
Fuhri Snethlage CM, Nieuwdorp M, van Raalte DH, Rampanelli E, Verchere BC, Hanssen NMJ. Auto-immunity and the gut microbiome in type 1 diabetes: Lessons from rodent and human studies. Best Pract Res Clin Endocrinol Metab 2021; 35:101544. [PMID: 33985913 DOI: 10.1016/j.beem.2021.101544] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes (T1D) is an auto-immune disease that destructs insulin-producing pancreatic beta-cells within the islets of Langerhans. The incidence of T1D has tripled over the last decades, while the pathophysiology of the disease is still largely unknown. Currently, there is no cure for T1D. The only treatment option consists of blood-glucose regulation with insulin injections and intensive monitoring of blood glucose levels. In recent years, perturbations in the ecosystem of the gut microbiome also referred to as dysbiosis, have gained interest as a possible contributing factor in the development of T1D. Changes in the microbiome seem to occur before the onset of T1D associated auto-antibodies. Furthermore, rodent studies demonstrate that administering antibiotics at a young age may accelerate the onset of T1D. This review provides an overview of the research performed on the epidemiology, pathophysiology, interventions, and possible treatment options in the field of the gut microbiome and T1D.
Collapse
Affiliation(s)
- Coco M Fuhri Snethlage
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands
| | - Max Nieuwdorp
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands
| | - Daniël H van Raalte
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands; Amsterdam Diabetes Center, Department of Internal Medicine, Amsterdam UMC, Location VUMC, the Netherlands
| | - Elena Rampanelli
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands
| | - Bruce C Verchere
- BC Children's Hospital Research Institute, Pathology & Laboratory Medicine and Surgery, Vancouver, Canada
| | - Nordin M J Hanssen
- Amsterdam Diabetes Center, Internal and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands.
| |
Collapse
|
36
|
Fulci V, Stronati L, Cucchiara S, Laudadio I, Carissimi C. Emerging Roles of Gut Virome in Pediatric Diseases. Int J Mol Sci 2021; 22:4127. [PMID: 33923593 PMCID: PMC8073368 DOI: 10.3390/ijms22084127] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
In the last decade, the widespread application of shotgun metagenomics provided extensive characterization of the bacterial "dark matter" of the gut microbiome, propelling the development of dedicated, standardized bioinformatic pipelines and the systematic collection of metagenomic data into comprehensive databases. The advent of next-generation sequencing also unravels a previously underestimated viral population (virome) present in the human gut. Despite extensive efforts to characterize the human gut virome, to date, little is known about the childhood gut virome. However, alterations of the gut virome in children have been linked to pathological conditions such as inflammatory bowel disease, type 1 diabetes, malnutrition, diarrhea and celiac disease.
Collapse
Affiliation(s)
- Valerio Fulci
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.F.); (L.S.)
| | - Laura Stronati
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.F.); (L.S.)
| | - Salvatore Cucchiara
- Department of Women’s and Children’s Health, Sapienza University of Rome, 00161 Rome, Italy;
| | - Ilaria Laudadio
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.F.); (L.S.)
| | - Claudia Carissimi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (V.F.); (L.S.)
| |
Collapse
|
37
|
Boddu SK, Aurangabadkar G, Kuchay MS. New onset diabetes, type 1 diabetes and COVID-19. Diabetes Metab Syndr 2020; 14:2211-2217. [PMID: 33395782 PMCID: PMC7669477 DOI: 10.1016/j.dsx.2020.11.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS New data has emerged regarding higher risk of coronavirus disease 2019 (COVID-19), and its severity and complications in patients with type 2 diabetes mellitus (T2DM). However, there is a dearth of evidence regarding type 1 diabetes mellitus (T1DM). This article explores the possibility of COVID 19 induced diabetes and highlights a potential bidirectional link between COVID 19 and T1DM. METHODS A literature search was performed with Medline (PubMed), Scopus, and Google Scholar electronic databases till October 2020, using relevant keywords (COVID-19 induced diabetes; COVID-19 and type 1 diabetes; COVID-19 induced DKA; new-onset diabetes after SARS-CoV-2 infection) to extract relevant studies describing relationship between COVID-19 and T1DM. RESULTS Past lessons and new data teach us that severe acute respiratory syndrome coronaviruses (SARS-CoV and SARS-CoV-2) can enter islet cells via angiotensin converting enzyme-2 (ACE-2) receptors and cause reversible β-cell damage and transient hyperglycemia. There have been postulations regarding the potential new-onset T1DM triggered by COVID-19. This article reviews the available evidence regarding the impact and interlink between COVID-19 and Τ1DM. We also explore the mechanisms behind the viral etiology of Τ1DM. CONCLUSIONS SARS-CoV-2 can trigger severe diabetic ketoacidosis at presentation in individuals with new-onset diabetes. However, at present, there is no hard evidence that SARS-CoV-2 induces T1DM on it's own accord. Long term follow-up of children and adults presenting with new-onset diabetes during this pandemic is required to fully understand the type of diabetes induced by COVID-19.
Collapse
Affiliation(s)
- Sirisha Kusuma Boddu
- Department of Pediatric Endocrinology, Rainbow Children's Hospital, Hyderabad, India
| | - Geeta Aurangabadkar
- Department of Endocrinology, CARE Multispecialty Hospital, Hyderabad, India.
| | - Mohammad Shafi Kuchay
- Division of Endocrinology and Diabetes, Medanta the Medicity Hospital, Haryana, India
| |
Collapse
|
38
|
Shah S, Danda D, Kavadichanda C, Das S, Adarsh MB, Negi VS. Autoimmune and rheumatic musculoskeletal diseases as a consequence of SARS-CoV-2 infection and its treatment. Rheumatol Int 2020; 40:1539-1554. [PMID: 32666137 PMCID: PMC7360125 DOI: 10.1007/s00296-020-04639-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/28/2020] [Indexed: 12/15/2022]
Abstract
The coronavirus disease-2019 (COVID-19) pandemic is likely to pose new challenges to the rheumatology community in the near and distant future. Some of the challenges, like the severity of COVID-19 among patients on immunosuppressive agents, are predictable and are being evaluated with great care and effort across the globe. A few others, such as atypical manifestations of COVID-19 mimicking rheumatic musculoskeletal diseases (RMDs) are being reported. Like in many other viral infections, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection can potentially lead to an array of rheumatological and autoimmune manifestations by molecular mimicry (cross-reacting epitope between the virus and the host), bystander killing (virus-specific CD8 + T cells migrating to the target tissues and exerting cytotoxicity), epitope spreading, viral persistence (polyclonal activation due to the constant presence of viral antigens driving immune-mediated injury) and formation of neutrophil extracellular traps. In addition, the myriad of antiviral drugs presently being tried in the treatment of COVID-19 can result in several rheumatic musculoskeletal adverse effects. In this review, we have addressed the possible spectrum and mechanisms of various autoimmune and rheumatic musculoskeletal manifestations that can be precipitated by COVID-19 infection, its therapy, and the preventive strategies to contain the infection.
Collapse
Affiliation(s)
- Sanket Shah
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Debashish Danda
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, India
| | - Chengappa Kavadichanda
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Saibal Das
- Department of Clinical Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - M. B. Adarsh
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Vir Singh Negi
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| |
Collapse
|
39
|
Chang CC, Yen YC, Lee CY, Lin CF, Huang CC, Tsai CW, Chuang TW, Bai CH. Lower risk of primary Sjogren's syndrome in patients with dengue virus infection: a nationwide cohort study in Taiwan. Clin Rheumatol 2020; 40:537-546. [PMID: 32671658 PMCID: PMC7817565 DOI: 10.1007/s10067-020-05282-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/29/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
The data concerning the association between dengue viruses (DV) infection and autoimmune diseases (ADs) remain unclear and are scarce. This nationwide population-based cohort study assessed the risk of ADs among patients with DV infection. We analyzed Taiwanese medical data from the Registry of the National Notifiable Disease Reporting System of Taiwan’s Centers for Disease Control between 1998 and 2015 and identified patients with DV infection. From the entire general population data in the National Health Insurance Research Database, we randomly selected a comparison cohort that was individual matching by age, sex, residence, and index date. We analyzed the risk of ADs using a Cox proportional hazards regression model stratified by sex, age, and residence. We enrolled 29,365 patients with DV infection (50.68% men; mean age, 44.13 years) and 117,460 age-, sex-, and residence-matched controls in the present study. The incidence rates of organ-specific ADs were nonsignificantly higher in the DV cohort than in the non-DV control cohort. An approximately 70% lower risk of primary Sjogren syndrome (pSS) was evident in the DV cohort than in the non-DV control cohort with an adjusted hazard ratio of 0.30 (95% confidence interval 0.13–0.67) after adjusting for comorbidities in matched design. By contrast, the other systemic ADs were nonsignificantly lower in the DV cohort than in the non-DV control cohort. This nationwide long-term cohort study demonstrated that patients with DV infection had a lower risk of primary Sjogren syndrome than those without DV infection.Key Points • This retrospective, longitudinal cohort observational study shows that patients with DV infection had a lower risk of pSS than those without DV infection. • The DV cohort had an approximately 70% lower risk of pSS than the control group, with a multivariate-adjusted HR of 0.30. • On the basis of this result, we contended that DV infection has a protective effect that reduces the risk of pSS. |
Collapse
Affiliation(s)
- Chi-Ching Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Chun Yen
- Research Center of Biostatistics, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Yi Lee
- Epidemic Intelligence Center, Taiwan Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan.,Institute of Health Policy and Management, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Chiou-Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chao-Ching Huang
- Department of Pediatrics, School of medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching Wen Tsai
- Research Center of Biostatistics, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Ting-Wu Chuang
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chyi-Huey Bai
- Department of Public Health, School of Public Health, College of Public Health, Taipei Medical University, 252, Wu-Hsing Street, Taipei, Taiwan.
| |
Collapse
|
40
|
Enteroviruses and T1D: Is It the Virus, the Genes or Both which Cause T1D. Microorganisms 2020; 8:microorganisms8071017. [PMID: 32650582 PMCID: PMC7409303 DOI: 10.3390/microorganisms8071017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disorder that results from the selective destruction of insulin-producing β-cells in the pancreas. Up to now, the mechanisms triggering the initiation and progression of the disease are, in their complexity, not fully understood and imply the disruption of several tolerance networks. Viral infection is one of the environmental factors triggering diabetes, which is initially based on the observation that the disease’s incidence follows a periodic pattern within the population. Moreover, the strong correlation of genetic susceptibility is a prerequisite for enteroviral infection associated islet autoimmunity. Epidemiological data and clinical findings indicate enteroviral infections, mainly of the coxsackie B virus family, as potential pathogenic mechanisms to trigger the autoimmune reaction towards β-cells, resulting in the boost of inflammation following β-cell destruction and the onset of T1D. This review discusses previously identified virus-associated genetics and pathways of β-cell destruction. Is it the virus itself which leads to β-cell destruction and T1D progression? Or is it genetic, so that the virus may activate auto-immunity and β-cell destruction only in genetically predisposed individuals?
Collapse
|
41
|
The link “Cancer and autoimmune diseases” in the light of microbiota: Evidence of a potential culprit. Immunol Lett 2020; 222:12-28. [PMID: 32145242 DOI: 10.1016/j.imlet.2020.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022]
|
42
|
Walter DL, Benner SE, Oaks RJ, Thuma JR, Malgor R, Schwartz FL, Coschigano KT, McCall KD. Coxsackievirus B4 Exposure Results in Variable Pattern Recognition Response in the Kidneys of Female Non-Obese Diabetic Mice Before Establishment of Diabetes. Viral Immunol 2020; 33:494-506. [PMID: 32352894 DOI: 10.1089/vim.2019.0188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
End-stage renal disease (ESRD) is described by four primary diagnoses, diabetes, hypertension, glomerulonephritis, and cystic kidney disease, all of which have viruses implicated as causative agents. Enteroviruses, such as coxsackievirus (CV), are a common genus of viruses that have been implicated in both diabetes and cystic kidney disease; however, little is known about how CVs cause kidney injury and ESRD or predispose individuals with a genetic susceptibility to type 1 diabetes (T1D) to kidney injury. This study evaluated kidney injury resulting from coxsackievirus B4 (CVB4) inoculation of non-obese diabetic (NOD) mice to glean a better understanding of how viral exposure may predispose individuals with a genetic susceptibility to T1D to kidney injury. The objectives were to assess acute and chronic kidney damage in CVB4-inoculated NOD mice without diabetes. Results indicated the presence of CVB4 RNA in the kidney for at least 14 days post-CVB4 inoculation and a coordinated pattern recognition receptor response, but the absence of an immune response or cytotoxicity. CVB4-inoculated NOD mice also had a higher propensity to develop an increase in mesangial area 17 weeks post-CVB4 inoculation. These studies identified initial gene expression changes in the kidney resulting from CVB4 exposure that may predispose to ESRD. Thus, this study provides an initial characterization of kidney injury resulting from CVB4 inoculation of mice that are genetically susceptible to developing T1D that may one day provide better therapeutic options and predictive measures for patients who are at risk for developing kidney disease from T1D.
Collapse
Affiliation(s)
- Debra L Walter
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio, USA.,Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, Ohio, USA
| | - Sarah E Benner
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio, USA.,Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, Ohio, USA
| | - Rosemary J Oaks
- Program in Biological Sciences, Honors Tutorial College, Ohio University, Athens, Ohio, USA.,Department of Biomedical Sciences and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA
| | - Jean R Thuma
- Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.,The Diabetes Institute, Ohio University, Athens, Ohio, USA
| | - Ramiro Malgor
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio, USA.,Department of Biomedical Sciences and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.,The Diabetes Institute, Ohio University, Athens, Ohio, USA
| | - Frank L Schwartz
- Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.,The Diabetes Institute, Ohio University, Athens, Ohio, USA
| | - Karen T Coschigano
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio, USA.,Department of Biomedical Sciences and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.,The Diabetes Institute, Ohio University, Athens, Ohio, USA
| | - Kelly D McCall
- Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, Athens, Ohio, USA.,Department of Biological Sciences, College of Arts and Sciences, Ohio University, Athens, Ohio, USA.,Department of Biomedical Sciences and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.,Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.,The Diabetes Institute, Ohio University, Athens, Ohio, USA
| |
Collapse
|
43
|
Fatehi F, Kyrychko YN, Blyuss KB. Stochastic dynamics in a time-delayed model for autoimmunity. Math Biosci 2020; 322:108323. [PMID: 32092469 DOI: 10.1016/j.mbs.2020.108323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/21/2020] [Accepted: 02/10/2020] [Indexed: 12/18/2022]
Abstract
In this paper we study interactions between stochasticity and time delays in the dynamics of immune response to viral infections, with particular interest in the onset and development of autoimmune response. Starting with a deterministic time-delayed model of immune response to infection, which includes cytokines and T cells with different activation thresholds, we derive an exact delayed chemical master equation for the probability density. We use system size expansion and linear noise approximation to explore how variance and coherence of stochastic oscillations depend on parameters, and to show that stochastic oscillations become more regular when regulatory T cells become more effective at clearing autoreactive T cells. Reformulating the model as an Itô stochastic delay differential equation, we perform numerical simulations to illustrate the dynamics of the model and associated probability distributions in different parameter regimes. The results suggest that even in cases where the deterministic model has stable steady states, in individual stochastic realisations, the model can exhibit sustained stochastic oscillations, whose variance increases as one gets closer to the deterministic stability boundary. Furthermore, in the regime of bi-stability, whereas deterministically the system would approach one of the steady states (or periodic solutions) depending on the initial conditions, due to the presence of stochasticity, it is now possible for the system to reach both of those dynamical states with certain probability. Biological significance of this result lies in highlighting the fact that since normally in a laboratory or clinical setting one would observe a single individual realisation of the course of the disease, even for all parameters characterising the immune system and the strength of infection being the same, there is a proportion of cases where a spontaneous recovery can be observed, and similarly, where a disease can develop in a situation that otherwise would result in a normal disease clearance.
Collapse
Affiliation(s)
- Farzad Fatehi
- Department of Mathematics, University of York, York YO10 5DD, UK.
| | - Yuliya N Kyrychko
- Department of Mathematics, University of Sussex, Falmer, Brighton BN1 9QH, UK.
| | - Konstantin B Blyuss
- Department of Mathematics, University of Sussex, Falmer, Brighton BN1 9QH, UK.
| |
Collapse
|
44
|
Abstract
Virus infections have been linked to the induction of autoimmunity and disease development in human type 1 diabetes. Experimental models have been instrumental in deciphering processes leading to break of immunological tolerance and type 1 diabetes development. Animal models have also been useful for proof-of-concept studies and for preclinical testing of new therapeutic interventions. This chapter describes two robust and clinically relevant mouse models for virus-induced type 1 diabetes; acceleration of disease onset in prediabetic nonobese diabetic (NOD) mice following Coxsackievirus infection and diabetes induction by lymphocytic choriomeningitis virus (LCMV) infection of transgenic mice expressing viral neo-antigens under control of the rat insulin promoter (RIP).
Collapse
Affiliation(s)
| | - Malin Flodström-Tullberg
- The Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet and Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
45
|
Czaja AJ. Examining pathogenic concepts of autoimmune hepatitis for cues to future investigations and interventions. World J Gastroenterol 2019; 25:6579-6606. [PMID: 31832000 PMCID: PMC6906207 DOI: 10.3748/wjg.v25.i45.6579] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Multiple pathogenic mechanisms have been implicated in autoimmune hepatitis, but they have not fully explained susceptibility, triggering events, and maintenance or escalation of the disease. Furthermore, they have not identified a critical defect that can be targeted. The goals of this review are to examine the diverse pathogenic mechanisms that have been considered in autoimmune hepatitis, indicate investigational opportunities to validate their contribution, and suggest interventions that might evolve to modify their impact. English abstracts were identified in PubMed by multiple search terms. Full length articles were selected for review, and secondary and tertiary bibliographies were developed. Genetic and epigenetic factors can affect susceptibility by influencing the expression of immune regulatory genes. Thymic dysfunction, possibly related to deficient production of programmed cell death protein-1, can allow autoreactive T cells to escape deletion, and alterations in the intestinal microbiome may help overcome immune tolerance and affect gender bias. Environmental factors may trigger the disease or induce epigenetic changes in gene function. Molecular mimicry, epitope spread, bystander activation, neo-antigen production, lymphocytic polyspecificity, and disturbances in immune inhibitory mechanisms may maintain or escalate the disease. Interventions that modify epigenetic effects on gene expression, alter intestinal dysbiosis, eliminate deleterious environmental factors, and target critical pathogenic mechanisms are therapeutic possibilities that might reduce risk, individualize management, and improve outcome. In conclusion, diverse pathogenic mechanisms have been implicated in autoimmune hepatitis, and they may identify a critical factor or sequence that can be validated and used to direct future management and preventive strategies.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, United States
| |
Collapse
|
46
|
Viral Infections and Autoimmune Disease: Roles of LCMV in Delineating Mechanisms of Immune Tolerance. Viruses 2019; 11:v11100885. [PMID: 31546586 PMCID: PMC6832701 DOI: 10.3390/v11100885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
Viral infections are a natural part of our existence. They can affect us in many ways that are the result of the interaction between the viral pathogen and our immune system. Most times, the resulting immune response is beneficial for the host. The pathogen is cleared, thus protecting our vital organs with no other consequences. Conversely, the reaction of our immune system against the pathogen can cause organ damage (immunopathology) or lead to autoimmune disease. To date, there are several mechanisms for virus-induced autoimmune disease, including molecular mimicry and bystander activation, in support of the “fertile field” hypothesis (terms defined in our review). In contrast, viral infections have been associated with protection from autoimmunity through mechanisms that include Treg invigoration and immune deviation, in support of the “hygiene hypothesis”, also defined here. Infection with lymphocytic choriomeningitis virus (LCMV) is one of the prototypes showing that the interaction of our immune system with viruses can either accelerate or prevent autoimmunity. Studies using mouse models of LCMV have helped conceive and establish several concepts that we now know and use to explain how viruses can lead to autoimmune activation or induce tolerance. Some of the most important mechanisms established during the course of LCMV infection are described in this short review.
Collapse
|
47
|
Pacheco Y, Acosta-Ampudia Y, Monsalve DM, Chang C, Gershwin ME, Anaya JM. Bystander activation and autoimmunity. J Autoimmun 2019; 103:102301. [PMID: 31326230 DOI: 10.1016/j.jaut.2019.06.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/18/2022]
Abstract
The interaction over time of genetic, epigenetic and environmental factors (i.e., autoimmune ecology) increases or decreases the liability an individual would have to develop an autoimmune disease (AD) depending on the misbalance between risk and protective effects. Pathogens have been the most common antecedent events studied, but multiple other environmental factors including xenobiotic chemicals, drugs, vaccines, and nutritional factors have been implicated into the development of ADs. Three main mechanisms have been offered to explain the development of autoimmunity: molecular mimicry, epitope spreading, and bystander activation. The latter is characterized by auto-reactive B and T cells that undergo activation in an antigen-independent manner, influencing the development and course of autoimmunity. Activation occurs due to a combination of an inflammatory milieu, co-signaling ligands, and interactions with neighboring cells. In this review, we will discuss the studies performed seeking to define the role of bystander activation in systemic and organ-specific ADs. In all cases, we are cognizant of individual differences between hosts and the variable latency time for clinical expression of disease, all of which have made our understanding of the etiology of loss of immune tolerance difficult and enigmatic.
Collapse
Affiliation(s)
- Yovana Pacheco
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Yeny Acosta-Ampudia
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Diana M Monsalve
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, School of Medicine, Davis, CA, USA; Pediatric Immunology and Allergy, Joe DiMaggio Children's Hospital, Hollywood, FL, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, School of Medicine, Davis, CA, USA.
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia; Clínica del Occidente, Bogotá, Colombia.
| |
Collapse
|
48
|
|
49
|
Siljander H, Honkanen J, Knip M. Microbiome and type 1 diabetes. EBioMedicine 2019; 46:512-521. [PMID: 31257149 PMCID: PMC6710855 DOI: 10.1016/j.ebiom.2019.06.031] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
The steep increase in the incidence of type 1 diabetes (T1D), in the Western world after World War II, cannot be explained solely by genetic factors but implies that this rise must be due to crucial interactions between predisposing genes and environmental changes. Three parallel phenomena in early childhood – the dynamic development of the immune system, maturation of the gut microbiome, and the appearance of the first T1D-associated autoantibodies – raise the question whether these phenomena might reflect causative relationships. Plenty of novel data on the role of the microbiome in the development of T1D has been published over recent years and this review summarizes recent findings regarding the associations between islet autoimmunity, T1D, and the intestinal microbiota.
Collapse
Affiliation(s)
- Heli Siljander
- Children's Hospital, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Jarno Honkanen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland; Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; Tampere Center for Child Health Research, Tampere University Hospital, 33520 Tampere, Finland; Folkhälsan Research Center, 00290 Helsinki, Finland.
| |
Collapse
|
50
|
Loss of gut barrier integrity triggers activation of islet-reactive T cells and autoimmune diabetes. Proc Natl Acad Sci U S A 2019; 116:15140-15149. [PMID: 31182588 PMCID: PMC6660755 DOI: 10.1073/pnas.1814558116] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Functional loss of gut barrier integrity with subsequent increased antigen trafficking and occurrence of low-grade intestinal inflammation precede the onset of type 1 diabetes (T1D) in patients and preclinical models, thus suggesting that these events are mechanistically linked to the autoimmune pathogenesis of the disease. However, a causal relationship between increased intestinal permeability and autoimmune diabetes was never demonstrated. Our data show that breakage of gut barrier continuity leads to activation of islet-reactive T cells in the intestine, thus triggering autoimmune diabetes. An important implication of our findings is that restoration of a healthy gut barrier through microbiota and diet modulation in diabetes-prone individuals could reduce intestinal activation of islet-reactive T cells and prevent T1D occurrence. Low-grade intestinal inflammation and alterations of gut barrier integrity are found in patients affected by extraintestinal autoimmune diseases such as type 1 diabetes (T1D), but a direct causal link between enteropathy and triggering of autoimmunity is yet to be established. Here, we found that onset of autoimmunity in preclinical models of T1D is associated with alterations of the mucus layer structure and loss of gut barrier integrity. Importantly, we showed that breakage of the gut barrier integrity in BDC2.5XNOD mice carrying a transgenic T cell receptor (TCR) specific for a beta cell autoantigen leads to activation of islet-reactive T cells within the gut mucosa and onset of T1D. The intestinal activation of islet-reactive T cells requires the presence of gut microbiota and is abolished when mice are depleted of endogenous commensal microbiota by antibiotic treatment. Our results indicate that loss of gut barrier continuity can lead to activation of islet-specific T cells within the intestinal mucosa and to autoimmune diabetes and provide a strong rationale to design innovative therapeutic interventions in “at-risk” individuals aimed at restoring gut barrier integrity to prevent T1D occurrence.
Collapse
|