1
|
Zhou Y, Gu J, Li J, Zhang H, Wang M, Li Y, Wang T, Wang J, Shi R. Obacunone, a Promising Phytochemical Triterpenoid: Research Progress on Its Pharmacological Activity and Mechanism. Molecules 2024; 29:1791. [PMID: 38675611 PMCID: PMC11054759 DOI: 10.3390/molecules29081791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Obacunone, a natural triterpenoid, is an active component of the herbs Dictamnus dasycarpus Turcz. and Phellodendron amurense Rupr, and an indicator of the herbs' quality. Owing to its multiple health benefits, several studies have investigated the multi-targeting potential action mechanisms of obacunone. To summarize recent developments on the pharmacological actions of obacunone and focus on the underlying molecular mechanisms and signaling networks, we searched PubMed, Europe PMC, Wiley Online Library, Web of Science, Google Scholar, Wanfang Medical Network, and China National Knowledge Infrastructure for articles published prior to March 2024. Existing research indicates obacunone has great potential to become a promising therapeutic option against tumors, fibrotic diseases, bone and cholesterol metabolism diseases, and infections of pathogenic microorganisms, among others. The paper contributes to providing up-to-date references for further research and clinical applications of obacunone.
Collapse
Affiliation(s)
- Yuyang Zhou
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (J.L.); (H.Z.); (M.W.); (J.W.)
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, College of Medicine, Memphis, TN 38163, USA
| | - Jifeng Gu
- Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai 200032, China;
- Department of Pharmacy, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
| | - Jiahui Li
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (J.L.); (H.Z.); (M.W.); (J.W.)
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Huishan Zhang
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (J.L.); (H.Z.); (M.W.); (J.W.)
| | - Mei Wang
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (J.L.); (H.Z.); (M.W.); (J.W.)
| | - Yuanyuan Li
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (T.W.)
| | - Tianming Wang
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.L.); (T.W.)
| | - Jiajie Wang
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (J.L.); (H.Z.); (M.W.); (J.W.)
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200021, China
| | - Rong Shi
- Science and Technology Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.Z.); (J.L.); (H.Z.); (M.W.); (J.W.)
| |
Collapse
|
2
|
Tegeder I, Kögel D. When lipid homeostasis runs havoc: Lipotoxicity links lysosomal dysfunction to autophagy. Matrix Biol 2021; 100-101:99-117. [DOI: 10.1016/j.matbio.2020.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023]
|
3
|
Recent Molecular Mechanisms and Beneficial Effects of Phytochemicals and Plant-Based Whole Foods in Reducing LDL-C and Preventing Cardiovascular Disease. Antioxidants (Basel) 2021; 10:antiox10050784. [PMID: 34063371 PMCID: PMC8157003 DOI: 10.3390/antiox10050784] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Abnormal lipid metabolism leads to the development of hyperlipidemia, a common cause of multiple chronic disorders, including cardiovascular disease (CVD), obesity, diabetes, and cerebrovascular disease. Low-density lipoprotein cholesterol (LDL-C) currently remains the primary target for treatment of hyperlipidemia. Despite the advancement of treatment and prevention of hyperlipidemia, medications used to manage hyperlipidemia are limited to allopathic drugs, which present certain limitations and adverse effects. Increasing evidence indicates that utilization of phytochemicals and plant-based whole foods is an alternative and promising strategy to prevent hyperlipidemia and CVD. The current review focuses on phytochemicals and their pharmacological mode of actions for the regulation of LDL-C and prevention of CVD. The important molecular mechanisms illustrated in detail in this review include elevation of reverse cholesterol transport, inhibition of intestinal cholesterol absorption, acceleration of cholesterol excretion in the liver, and reduction of cholesterol synthesis. Moreover, the beneficial effects of plant-based whole foods, such as fresh fruits, vegetables, dried nuts, flax seeds, whole grains, peas, beans, vegan diets, and dietary fibers in LDL-C reduction and cardiovascular health are summarized. This review concludes that phytochemicals and plant-based whole foods can reduce LDL-C levels and lower the risk for CVD.
Collapse
|
4
|
Rimbert A, Dalila N, Wolters JC, Huijkman N, Smit M, Kloosterhuis N, Riemsma M, van der Veen Y, Singla A, van Dijk F, Frikke-Schmidt R, Burstein E, Tybjærg-Hansen A, van de Sluis B, Kuivenhoven JA. A common variant in CCDC93 protects against myocardial infarction and cardiovascular mortality by regulating endosomal trafficking of low-density lipoprotein receptor. Eur Heart J 2021; 41:1040-1053. [PMID: 31630160 DOI: 10.1093/eurheartj/ehz727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/18/2019] [Accepted: 10/02/2019] [Indexed: 12/24/2022] Open
Abstract
AIMS Genome-wide association studies have previously identified INSIG2 as a candidate gene for plasma low-density lipoprotein cholesterol (LDL-c). However, we suspect a role for CCDC93 in the same locus because of its involvement in the recycling of the LDL-receptor (LDLR). METHODS AND RESULTS Characterization of the INSIG2 locus was followed by studies in over 107 000 individuals from the general population, the Copenhagen General Population Study and the Copenhagen City Heart Study, for associations of genetic variants with plasma lipids levels, with risk of myocardial infarction (MI) and with cardiovascular mortality. CCDC93 was furthermore studied in cells and mice. The lead variant of the INSIG2 locus (rs10490626) is not associated with changes in the expression of nearby genes but is a part of a genetic block, which excludes INSIG2. This block includes a coding variant in CCDC93 p.Pro228Leu, which is in strong linkage disequilibrium with rs10490626 (r2 > 0.96). In the general population, separately and combined, CCDC93 p.Pro228Leu is dose-dependently associated with lower LDL-c (P-trend 2.5 × 10-6 to 8.0 × 10-9), with lower risk of MI (P-trend 0.04-0.002) and lower risk of cardiovascular mortality (P-trend 0.005-0.004). These results were validated for LDL-c, risk of both coronary artery disease and MI in meta-analyses including from 194 000 to >700 000 participants. The variant is shown to increase CCDC93 protein stability, while overexpression of human CCDC93 decreases plasma LDL-c in mice. Conversely, CCDC93 ablation reduces LDL uptake as a result of reduced LDLR levels at the cell membrane. CONCLUSION This study provides evidence that a common variant in CCDC93, encoding a protein involved in recycling of the LDLR, is associated with lower LDL-c levels, lower risk of MI and cardiovascular mortality.
Collapse
Affiliation(s)
- Antoine Rimbert
- Section Molecular Genetics, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Building 3226, Rm 04.14, Internal Zip Code EA12, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Nawar Dalila
- Section for Molecular Genetics, Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Justina C Wolters
- Section Molecular Genetics, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Building 3226, Rm 04.14, Internal Zip Code EA12, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Nicolette Huijkman
- Section Molecular Genetics, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Building 3226, Rm 04.14, Internal Zip Code EA12, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Marieke Smit
- Section Molecular Genetics, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Building 3226, Rm 04.14, Internal Zip Code EA12, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Niels Kloosterhuis
- Section Molecular Genetics, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Building 3226, Rm 04.14, Internal Zip Code EA12, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Marijn Riemsma
- Section Molecular Genetics, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Building 3226, Rm 04.14, Internal Zip Code EA12, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Ydwine van der Veen
- Section Molecular Genetics, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Building 3226, Rm 04.14, Internal Zip Code EA12, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Amika Singla
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Freerk van Dijk
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Ruth Frikke-Schmidt
- Section for Molecular Genetics, Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.,Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Ezra Burstein
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anne Tybjærg-Hansen
- Section for Molecular Genetics, Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.,Department of Clinical Biochemistry, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.,The Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark.,The Copenhagen City Heart Study, Bispebjerg and Frederiksberg Hospital, Nordre Fasanvej 57, DK-2000 Frederiksberg, Denmark
| | - Bart van de Sluis
- Section Molecular Genetics, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Building 3226, Rm 04.14, Internal Zip Code EA12, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Jan Albert Kuivenhoven
- Section Molecular Genetics, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Building 3226, Rm 04.14, Internal Zip Code EA12, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| |
Collapse
|
5
|
Krishnan N, Chen X, Donnelly-Roberts D, Mohler EG, Holtzman DM, Gopalakrishnan SM. Small Molecule Phenotypic Screen Identifies Novel Regulators of LDLR Expression. ACS Chem Biol 2020; 15:3262-3274. [PMID: 33270420 DOI: 10.1021/acschembio.0c00851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disease and the most common cause of dementia. The current treatment options for AD are limited to ameliorating cognitive decline temporarily and not reversing or preventing the progression of dementia. Hence, more effective therapeutic strategies are needed to combat this devastating disease. The low-density lipoprotein receptor has been shown to modulate the neuronal metabolism of cholesterol and apolipoprotein E, a major genetic risk factor for AD. LDLR overexpression in mice has been shown to increase amyloid-β clearance and reduce amyloid deposition. We conducted a phenotypic screen to identify novel signaling pathways and targets that regulate LDLR expression in glial cells using an annotated compound library of approximately 29 000 compounds. The screen identified novel targets such as polo like kinase 1 (PLK1), activin receptor like kinase 5 (ALK5), and serotonin transporter (SERT). We used genetic, chemical biology and pathway analysis to confirm the target hypothesis. This work highlights that phenotypic screening is a promising strategy to identify novel mechanisms and targets for therapeutic intervention of complex neurodegenerative disorders.
Collapse
Affiliation(s)
- Navasona Krishnan
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Xiaoying Chen
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri 63110, United States
| | | | - Eric G. Mohler
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - David M. Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Hope Center for Neurological Disorders, Washington University, St. Louis, Missouri 63110, United States
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University, St. Louis, Missouri 63110, United States
| | | |
Collapse
|
6
|
Sagimori I, Yoshioka H, Hashimoto Y, Ohgane K. Luciferase-based HMG-CoA reductase degradation assay for activity and selectivity profiling of oxy(lano)sterols. Bioorg Med Chem 2020; 28:115298. [PMID: 31902650 DOI: 10.1016/j.bmc.2019.115298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/21/2019] [Accepted: 12/25/2019] [Indexed: 11/18/2022]
Abstract
HMG-CoA reductase (HMGCR) is the rate-limiting enzyme in the cholesterol biosynthetic pathway, and is the target of cholesterol-lowering drugs, statins. Previous studies have demonstrated that the enzyme activity is regulated by sterol-induced degradation in addition to transcriptional regulation through sterol-regulatory-element-binding proteins (SREBPs). While 25-hydroxycholesterol induces both HMGCR degradation and SREBP inhibition in a nonselective manner, lanosterol selectively induces HMGCR degradation. Here, to clarify the structural determinants of selectivity for the two activities, we established a luciferase-based assay monitoring HMGCR degradation and used it to profile the structure-activity/selectivity relationships of oxysterols and (oxy)lanosterols. We identified several sterols that selectively induce HMGCR degradation and one sterol, 25-hydroxycholest-4-en-3-one, that selectively inhibits the SREBP pathway. These results should be helpful in designing more potent and selective HMGCR degraders.
Collapse
Affiliation(s)
- Ikuya Sagimori
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hiromasa Yoshioka
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Yuichi Hashimoto
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kenji Ohgane
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
7
|
Ji X, Shi S, Liu B, Shan M, Tang D, Zhang W, Zhang Y, Zhang L, Zhang H, Lu C, Wang Y. Bioactive compounds from herbal medicines to manage dyslipidemia. Biomed Pharmacother 2019; 118:109338. [DOI: 10.1016/j.biopha.2019.109338] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023] Open
|
8
|
Li J, Wang X, Yuan Y, Long X, Bao J, Li X. An in vitro test system for evaluation of SCAP–SREBP pathway inhibitory activities of Traditional Chinese Medicines. RSC Adv 2017. [DOI: 10.1039/c7ra09521j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In vitro assay system demonstrates that Rhizoma Alismatis and Semen Cassiae show beneficial effects on inhibition of SCAP–SREBP pathway activities.
Collapse
Affiliation(s)
- Jianzong Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education
- College of Life Sciences
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Xin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education
- College of Life Sciences
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Yuan Yuan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education
- College of Life Sciences
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Xin Long
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education
- College of Life Sciences
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Jinku Bao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education
- College of Life Sciences
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Xin Li
- State Key Laboratory of Oral Diseases
- National Clinical Research Center for Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu
| |
Collapse
|
9
|
Arya N, Kharjul MD, Shishoo CJ, Thakare VN, Jain KS. Some molecular targets for antihyperlipidemic drug research. Eur J Med Chem 2014; 85:535-68. [DOI: 10.1016/j.ejmech.2014.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 12/17/2022]
|
10
|
Heemers HV. Targeting androgen receptor action for prostate cancer treatment: does the post-receptor level provide novel opportunities? Int J Biol Sci 2014; 10:576-87. [PMID: 24948870 PMCID: PMC4062950 DOI: 10.7150/ijbs.8479] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 01/23/2014] [Indexed: 12/11/2022] Open
Abstract
The standard of care for patients who suffer from non-organ confined prostate cancer (CaP) is androgen deprivation therapy (ADT). ADT exploits the reliance of CaP cells on androgen receptor (AR) signaling throughout CaP progression from androgen-stimulated (AS) to castration-recurrent (CR) disease. AR is a member of the nuclear receptor family of ligand-activated transcription factors. Ligand-activated AR relocates from the cytoplasm to the nucleus, where it binds to Androgen Response Elements (AREs) to regulate transcription of target genes that control CaP cell behavior and progression. Current forms of ADT interfere at 2 levels along the AR signaling axis. At the pre-receptor level, ADT limits the availability of ligand for AR, while at the receptor level, ADT interrupts AR-ligand interactions. Both forms of ADT induce remission, but are not curative and, because of extraprostatic actions, are associated with severe side effects. Here, the potential of interference with the molecular regulation of AR-dependent transcription and the action of AR target genes, at the post receptor level, as the foundation for the development of novel, more CaP- specific selective forms of ADT is explored.
Collapse
Affiliation(s)
- Hannelore V. Heemers
- Departments of Urology and Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
11
|
Aicher TD, Boyd SA, McVean M, Celeste A. Novel therapeutics and targets for the treatment of diabetes. Expert Rev Clin Pharmacol 2012; 3:209-29. [PMID: 22111568 DOI: 10.1586/ecp.10.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microvascular complications of insufficiently controlled diabetes (neuropathy, retinopathy and nephropathy) and the marked increased risk of macrovascular events (e.g., stroke and myocardial infarction) have a dire impact on society in both human and economic terms. In Type 1 diabetes total β-cell loss occurs. In Type 2 diabetes, partial β-cell loss occurs before diagnosis, and the progressive β-cell loss during the life of the patient increases the severity of the disease. In patients with diabetes, increased insulin resistance in the muscle and liver are key pathophysiologic defects. In addition, defects in metabolic processes in the fat, GI tract, brain, pancreatic α-cells and kidney are detrimental to the overall health of the patient. This review addresses novel therapies for these deficiencies in clinical and preclinical evaluation, emphasizing their potential to address glucose homeostasis, β-cell mass and function, and the comorbidities of cardiovascular disease and obesity.
Collapse
Affiliation(s)
- Thomas D Aicher
- Principal Research Investigator, Array BioPharma Inc., 3200 Walnut Street, Boulder, CO 80301, USA.
| | | | | | | |
Collapse
|
12
|
Sterols regulate 3β-hydroxysterol Δ24-reductase (DHCR24) via dual sterol regulatory elements: cooperative induction of key enzymes in lipid synthesis by Sterol Regulatory Element Binding Proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1350-60. [PMID: 22809995 DOI: 10.1016/j.bbalip.2012.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/25/2012] [Accepted: 07/09/2012] [Indexed: 01/28/2023]
Abstract
3β-Hydroxysterol Δ24-reductase (DHCR24) catalyzes a final step in cholesterol synthesis, and has been ascribed diverse functions, such as being anti-apoptotic and anti-inflammatory. How this enzyme is regulated transcriptionally by sterols is currently unclear. Some studies have suggested that its expression is regulated by Sterol Regulatory Element Binding Proteins (SREBPs) while another suggests it is through the Liver X Receptor (LXR). However, these transcription factors have opposing effects on cellular sterol levels, so it is likely that one predominates. Here we establish that sterol regulation of DHCR24 occurs predominantly through SREBP-2, and identify the particular region of the DHCR24 promoter to which SREBP-2 binds. We demonstrate that sterol regulation is mediated by two sterol regulatory elements (SREs) in the promoter of the gene, assisted by two nearby NF-Y binding sites. Moreover, we present evidence that the dual SREs work cooperatively to regulate DHCR24 expression by comparison to two known SREBP target genes, the LDL receptor with one SRE, and farnesyl-diphosphate farnesyltransferase 1, with two SREs.
Collapse
|
13
|
Walker AK, Näär AM. SREBPs: regulators of cholesterol/lipids as therapeutic targets in metabolic disorders, cancers and viral diseases. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/clp.11.67] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Xu ZE, Chen Y, Huang A, Varghese Z, Moorhead JF, Yan F, Powis SH, Li Q, Ruan XZ. Inflammatory stress exacerbates lipid-mediated renal injury in ApoE/CD36/SRA triple knockout mice. Am J Physiol Renal Physiol 2011; 301:F713-22. [PMID: 21795641 DOI: 10.1152/ajprenal.00341.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Both lipids and inflammation play important roles in the progression of kidney disease. This study was designed to investigate whether inflammation exacerbates lipid accumulation via LDL receptors (LDLr), thereby causing renal injury in C57BL/6J mice, apolipoprotein E (ApoE) knockout (KO) mice, and ApoE/CD36/scavenger receptor A triple KO mice. The mice were given a subcutaneous casein injection to induce inflammatory stress. After 14 wk, terminal blood samples were taken for renal function, lipid profiles, amyloid A (SAA), and IL-6 assays. Lipid accumulation in kidneys was visualized by oil red O staining. Fibrogenic molecule expression in kidneys was examined. There was a significant increase in serum SAA and IL-6 in the all casein-injected mice compared with respective controls. Casein injection reduced serum total cholesterol, LDL cholesterol, and HDL cholesterol and caused lipid accumulation in kidneys from three types of mice. The expression of LDLr and its regulatory proteins sterol-responsive element-binding protein (SREBP) 2 and SREBP cleavage-activating protein (SCAP) were upregulated in inflamed mice compared with controls. Casein injection induced renal fibrosis accompanied by increased expression of fibrogenic molecules in the triple KO mice. These data imply that inflammation exacerbates lipid accumulation in the kidney by diverting lipid from the plasma to the kidney via the SCAP-SREBP2-LDLr pathway and causing renal injury. Low blood cholesterol levels, resulting from inflammation, may be associated with high risk for chronic renal fibrosis.
Collapse
Affiliation(s)
- Zhen E Xu
- Centre for Lipid Research, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yang Y, Wang L, Si S, Hong B. How can high-throughput screening deliver drugs to treat atherosclerosis? Expert Opin Drug Discov 2010; 5:1175-88. [DOI: 10.1517/17460441.2010.529896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Krycer JR, Kristiana I, Brown AJ. Cholesterol homeostasis in two commonly used human prostate cancer cell-lines, LNCaP and PC-3. PLoS One 2009; 4:e8496. [PMID: 20041144 PMCID: PMC2794383 DOI: 10.1371/journal.pone.0008496] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 12/03/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Recently, there has been renewed interest in the link between cholesterol and prostate cancer. It has been previously reported that in vitro, prostate cancer cells lack sterol-mediated feedback regulation of the major transcription factor in cholesterol homeostasis, sterol-regulatory element binding protein 2 (SREBP-2). This could explain the accumulation of cholesterol observed in clinical prostate cancers. Consequently, perturbed feedback regulation to increased sterol levels has become a pervasive concept in the prostate cancer setting. Here, we aimed to explore this in greater depth. METHODOLOGY/PRINCIPAL FINDINGS After altering the cellular cholesterol status in LNCaP and PC-3 prostate cancer cells, we examined SREBP-2 processing, downstream effects on promoter activity and expression of SREBP-2 target genes, and functional activity (low-density lipoprotein uptake, cholesterol synthesis). In doing so, we observed that LNCaP and PC-3 cells were sensitive to increased sterol levels. In contrast, lowering cholesterol levels via statin treatment generated a greater response in LNCaP cells than PC-3 cells. This highlighted an important difference between these cell-lines: basal SREBP-2 activity appeared to be higher in PC-3 cells, reducing sensitivity to decreased cholesterol levels. CONCLUSION/SIGNIFICANCE Thus, prostate cancer cells are sensitive to changing sterol levels in vitro, but the extent of this regulation differs between prostate cancer cell-lines. These results shed new light on the regulation of cholesterol metabolism in two commonly used prostate cancer cell-lines, and emphasize the importance of establishing whether or not cholesterol homeostasis is perturbed in prostate cancer in vivo.
Collapse
Affiliation(s)
- James Robert Krycer
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Ika Kristiana
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew John Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
17
|
Kamisuki S, Mao Q, Abu-Elheiga L, Gu Z, Kugimiya A, Kwon Y, Shinohara T, Kawazoe Y, Sato SI, Asakura K, Choo HYP, Sakai J, Wakil SJ, Uesugi M. A small molecule that blocks fat synthesis by inhibiting the activation of SREBP. ACTA ACUST UNITED AC 2009; 16:882-92. [PMID: 19716478 DOI: 10.1016/j.chembiol.2009.07.007] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 06/29/2009] [Accepted: 07/13/2009] [Indexed: 11/28/2022]
Abstract
Sterol regulatory element binding proteins (SREBPs) are transcription factors that activate transcription of the genes involved in cholesterol and fatty acid biosynthesis. In the present study, we show that a small synthetic molecule we previously discovered to block adipogenesis is an inhibitor of the SREBP activation. The diarylthiazole derivative, now called fatostatin, impairs the activation process of SREBPs, thereby decreasing the transcription of lipogenic genes in cells. Our analysis suggests that fatostatin inhibits the ER-Golgi translocation of SREBPs through binding to their escort protein, the SREBP cleavage-activating protein (SCAP), at a distinct site from the sterol-binding domain. Fatostatin blocked increases in body weight, blood glucose, and hepatic fat accumulation in obese ob/ob mice, even under uncontrolled food intake. Fatostatin may serve as a tool for gaining further insights into the regulation of SREBP.
Collapse
Affiliation(s)
- Shinji Kamisuki
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
In this issue, Kamisuki and colleagues characterize fatostatin. This compound inhibits the activity of SREBPs, the master transcription factors of lipid homeostasis. This useful laboratory tool also improved the lipid profile of obese mice; does this have clinical implications?
Collapse
|
19
|
Cignarella A. Animal and cellular models for hypolipidemic drugs. Expert Opin Drug Discov 2009; 4:61-9. [PMID: 23480337 DOI: 10.1517/17460440802624987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The development of effective and safe lipid-lowering agents should set out from and rely on robust preclinical investigation. OBJECTIVE To accomplish this aim, the selection of proper cellular and animal models is crucial. RESULTS Because lipid-lowering agents are ultimately supposed to reduce the atherosclerotic burden in the arterial wall, they need to tackle directly or indirectly the multifactorial nature of atherosclerotic disease. Hence, these drugs may essentially prevent triglyceride-rich lipoprotein assembly or enhance low-density lipoprotein (LDL) clearance through the LDL or related receptors in the liver. Established animal models such as the apolipoprotein E- and the LDL-receptor knockout mice are widely used to test drug actions on these pathways. A different approach is testing the ability of candidate drugs to increase plasma high-density lipoprotein (HDL) levels. More recently, the focus has shifted to drugs enhancing HDL function rather than just plasma HDL levels. This in turn requires in vitro and particularly in vivo models of reverse cholesterol transport, which have become available by now. CONCLUSION A positive outcome of preclinical studies is necessary but not sufficient for an investigational new drug to be eventually approved for clinical use.
Collapse
Affiliation(s)
- Andrea Cignarella
- University of Padova, Department of Pharmacology and Anaesthesiology, Largo Meneghetti 2, 35131 Padova, Italy +39 049 8275091 ; +39 049 8275093 ;
| |
Collapse
|
20
|
Rapamycin down-regulates LDL-receptor expression independently of SREBP-2. Biochem Biophys Res Commun 2008; 373:670-4. [DOI: 10.1016/j.bbrc.2008.06.108] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 06/26/2008] [Indexed: 11/21/2022]
|
21
|
Lipid homeostasis in macrophages – Implications for atherosclerosis. REVIEWS OF PHYSIOLOGY BIOCHEMISTRY AND PHARMACOLOGY 2008; 160:93-125. [DOI: 10.1007/112_2008_802] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Soundararajan R, Wishart AD, Rupasinghe HPV, Arcellana-Panlilio M, Nelson CM, Mayne M, Robertson GS. Quercetin 3-glucoside protects neuroblastoma (SH-SY5Y) cells in vitro against oxidative damage by inducing sterol regulatory element-binding protein-2-mediated cholesterol biosynthesis. J Biol Chem 2007; 283:2231-45. [PMID: 18032389 DOI: 10.1074/jbc.m703583200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The flavonoid quercetin 3-glucoside (Q3G) protected SH-SY5Y, HEK293, and MCF-7 cells against hydrogen peroxide-induced oxidative stress. cDNA microarray studies suggested that Q3G-pretreated cells subjected to oxidative stress up-regulate the expression of genes associated with lipid and cholesterol biosynthesis. Q3G pretreatment elevated both the expression and activation of sterol regulatory element-binding protein-2 (SREBP-2) only in SH-SY5Y cells subjected to oxidative stress. Inhibition of SREBP-2 expression by small interfering RNA or small molecule inhibitors of 2,3-oxidosqualene:lanosterol cyclase or HMG-CoA reductase blocked Q3G-mediated cytoprotection in SH-SY5Y cells. By contrast, Q3G did not protect either HEK293 or MCF-7 cells via this signaling pathway. Moreover, the addition of isopentenyl pyrophosphate rescued SH-SY5Y cells from the inhibitory effect of HMG-CoA reductase inhibition. Last, Q3G pretreatment enhanced the incorporation of [(14)C]acetate into [(14)C]cholesterol in SH-SY5Y cells under oxidative stress. Taken together, these studies suggest a novel mechanism for flavonoid-induced cytoprotection in SH-SY5Y cells involving SREBP-2-mediated sterol synthesis that decreases lipid peroxidation by maintaining membrane integrity in the presence of oxidative stress.
Collapse
Affiliation(s)
- Ramani Soundararajan
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
De Windt A, Rai M, Bernier L, Thelen K, Soini J, Lefebvre C, Chintawar S, Lavigne J, Saarinen L, Kytömäki L, Munzer JS, Lütjohann D, Pandolfo M, Davignon J, Seidah NG, Laaksonen R. Gene Set Enrichment Analysis Reveals Several Globally Affected Pathways due to SKI-1/S1P Inhibition in HepG2 Cells. DNA Cell Biol 2007; 26:765-72. [PMID: 17867930 DOI: 10.1089/dna.2007.0624] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sterol regulatory element-binding proteins (SREBPs) are transcription factors governing transcription of genes related to cholesterol and fatty acid metabolism. To become active, SREBPs must undergo a proteolytic cleavage to allow an active NH(2)-terminal segment to translocate into the nucleus. SKI-1/S1P is the first protease in the proteolytic activation cascade of SREBPs. SREBP inhibition may be useful, for example, in the treatment of liver steatosis caused by homocysteine-induced lipid synthesis. Accordingly, we overexpressed inhibitory prodomains (proSKI) of SKI-1/S1P in HepG2 cells to block SREBP activation to evaluate the potential of SKI-1/S1P in controlling cellular cholesterol synthesis. SKI-1/S1P inhibition resulted in reduced cholesterol synthesis and mRNA levels of the rate-limiting enzymes, HMG-CoA reductase and squalene epoxidase, in the cholesterol synthetic pathway. The inhibitory effect was maintained in the presence of homocysteine-induced endoplasmic reticulum stress. A gene set enrichment analysis was performed to elucidate other metabolic effects caused by SKI-1/S1P inhibition. SKI-1/S1P inhibition was observed to affect a number of other metabolic pathways, including glycolysis and citric acid cycle. These results demonstrate that inhibition of SREBPs decreases cholesterol synthesis in HepG2 cells both in the absence and presence of homocysteine. SKI-1/S1P inhibition may cause widespread changes in other key metabolic pathways.
Collapse
Affiliation(s)
- Aloys De Windt
- Department of Neurology, Free University of Brussels, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang Y, Zhang H, Hua S, Ma L, Chen C, Liu X, Jiang L, Yang H, Zhang P, Yu D, Guo Y, Tan X, Liu J. Identification of two herbal compounds with potential cholesterol-lowering activity. Biochem Pharmacol 2007; 74:940-7. [PMID: 17673184 DOI: 10.1016/j.bcp.2007.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 06/13/2007] [Accepted: 06/14/2007] [Indexed: 11/21/2022]
Abstract
Low-density lipoprotein receptor (LDLR) plays a pivotal role in the control of plasma LDL-cholesterol level. This occurs predominantly at the transcriptional level through two gene regulation elements, named SRE: sterol-responsive element and SIRE: sterol-independent responsive element. We have developed a high-throughput screening using LDLR promoter activation-based assay to search for cholesterol-lowering compounds from a Chinese herb-based natural compound library. With this approach, we identified two compounds, named Daphnetoxin and Gniditrin, from Chinese herb Daphne giraldii Nitsche, which could activate LDLR promoter. Characterization of these compounds showed that they increased the level of LDLR mRNA and consequently up-regulate LDLR expression. The structures of these compounds are different from well-known LDLR promoter activating compounds such as GW707. The results suggested that these herbal compounds could represent good candidates for development of new classes of cholesterol-lowering drugs.
Collapse
Affiliation(s)
- Yilin Zhang
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jain KS, Kathiravan MK, Somani RS, Shishoo CJ. The biology and chemistry of hyperlipidemia. Bioorg Med Chem 2007; 15:4674-99. [PMID: 17521912 DOI: 10.1016/j.bmc.2007.04.031] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/04/2007] [Accepted: 04/15/2007] [Indexed: 11/23/2022]
Abstract
Coronary arterial diseases are responsible for more deaths than all other associated causes combined. Elevated serum cholesterol levels leading to atherosclerosis can cause coronary heart disease (CHD). Reduction in serum cholesterol levels reduces the risk for CHD, substantially. Medicinal chemists all around the world have been designing, synthesizing, and evaluating a variety of new bioactive molecules for lowering lipid levels. This review summarizes the disorders associated with elevation of lipids in blood and the current strategies to control them. The emphasis has been laid in particular on the new potential biological targets and the possible treatments as well as the current ongoing research status in the field of lipid lowering agents.
Collapse
Affiliation(s)
- Kishor S Jain
- Sinhgad College of Pharmacy, S. No. 44/1, Vadgaon(Bk.), Sinhgad Road, Pune 411 041, India.
| | | | | | | |
Collapse
|
26
|
Abidi P, Chen W, Kraemer FB, Li H, Liu J. The medicinal plant goldenseal is a natural LDL-lowering agent with multiple bioactive components and new action mechanisms. J Lipid Res 2006; 47:2134-47. [PMID: 16885565 DOI: 10.1194/jlr.m600195-jlr200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous studies have identified berberine (BBR), an alkaloid isolated from the Chinese herb huanglian, as a unique cholesterol-lowering drug that upregulates hepatic low density lipoprotein receptor (LDLR) expression through a mechanism of mRNA stabilization. Here, we demonstrate that the root extract of goldenseal, a BBR-containing medicinal plant, is highly effective in upregulation of liver LDLR expression in HepG2 cells and in reducing plasma cholesterol and low density lipoprotein cholesterol (LDL-c) in hyperlipidemic hamsters, with greater activities than the pure compound BBR. By conducting bioassay-driven semipurifications, we demonstrate that the higher potency of goldenseal is achieved through concerted actions of multiple bioactive compounds in addition to BBR. We identify canadine (CND) and two other constituents of goldenseal as new upregulators of LDLR expression. We further show that the activity of BBR on LDLR expression is attenuated by multiple drug resistance-1 (MDR1)-mediated efflux from liver cells, whereas CND is resistant to MDR1. This finding defines a molecular mechanism for the higher activity of CND than BBR. We also provide substantial evidence to show that goldenseal contains natural MDR1 antagonist(s) that accentuate the upregulatory effect of BBR on LDLR mRNA expression. These new findings identify goldenseal as a natural LDL-c-lowering agent, and our studies provide a molecular basis for the mechanisms of action.
Collapse
Affiliation(s)
- Parveen Abidi
- Department of Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | | | | | | | | |
Collapse
|
27
|
Issandou M. Pharmacological regulation of low density lipoprotein receptor expression: Current status and future developments. Pharmacol Ther 2006; 111:424-33. [PMID: 16423404 DOI: 10.1016/j.pharmthera.2005.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 10/24/2005] [Indexed: 01/22/2023]
Abstract
Plasma levels of low-density lipoprotein (LDL) cholesterol are considered to be a major risk factor for the development of cardiovascular diseases. The LDL receptor is the key component in the maintenance of cholesterol homeostasis in the body, playing a pivotal role by regulating the hepatic catabolism of LDL cholesterol. Many clinical studies using statins, which up-regulate the LDL receptor expression via a feedback mechanism, have demonstrated that the reduction of LDL cholesterol levels lowers the incidence of cardiovascular events in both primary and secondary prevention. In this context, new strategies designed to increase hepatic LDL receptor activity can be considered as attractive opportunities for future therapy. Several potential new drugs have been described in the last decade to up-regulate LDL receptor expression in vitro and in vivo, thus allowing the identification of new transcriptional and post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Marc Issandou
- GlaxoSmithKline, 25 Avenue du Quebec, 91951 Les Ulis Cedex, France.
| |
Collapse
|
28
|
Tavridou A, Kaklamanis L, Megaritis G, Kourounakis AP, Papalois A, Roukounas D, Rekka EA, Kourounakis PN, Charalambous A, Manolopoulos VG. Pharmacological characterization in vitro of EP2306 and EP2302, potent inhibitors of squalene synthase and lipid biosynthesis. Eur J Pharmacol 2006; 535:34-42. [PMID: 16545796 DOI: 10.1016/j.ejphar.2006.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 01/26/2006] [Accepted: 02/07/2006] [Indexed: 11/21/2022]
Abstract
We investigated the effects of EP2306 and EP2302, two novel 2-biphenylmorpholine derivatives, on squalene synthase activity in rabbit and human liver microsomes, lipid biosynthesis, low-density lipoprotein (LDL) receptor expression and LDL protein uptake as well as apoB secretion in HepG2 cells. Both EP2306 and EP2302 inhibited squalene synthase activity dose-dependently. In rabbit liver microsomes, the IC50 values were 33 microM for EP2306 and 0.6 microM for EP2302 whereas in human liver microsomes, they were 63 microM for EP2306 and 1 microM for EP2302. Both EP2300 compounds inhibited cholesterol production by HepG2 cells dose dependently with IC50 values of 13.3 microM for EP2306 and 3 microM for EP2302. Furthermore, both EP2300 compounds and simvastatin significantly reduced triglyceride synthesis and apoB secretion and increased LDL receptor expression and LDL uptake in HepG2 cells. In summary, we have shown that EP2300 compounds are potent inhibitors of squalene synthase activity in rabbit and human liver microsomes and also they are effective inhibitors of cholesterol and triglyceride biosynthesis in HepG2 cells. These results suggest that EP2306 and EP2302 might prove to be useful for lipid-lowering and treatment of atherosclerosis in vivo.
Collapse
Affiliation(s)
- Anna Tavridou
- ELPEN Pharmaceutical Co Inc., 95 Marathonos Av.,19009 Pikermi, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Brusq JM, Ancellin N, Grondin P, Guillard R, Martin S, Saintillan Y, Issandou M. Inhibition of lipid synthesis through activation of AMP kinase: an additional mechanism for the hypolipidemic effects of berberine. J Lipid Res 2006; 47:1281-8. [PMID: 16508037 DOI: 10.1194/jlr.m600020-jlr200] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alkaloid drug berberine (BBR) was recently described to decrease plasma cholesterol and triglycerides (TGs) in hypercholesterolemic patients by increasing expression of the hepatic low density lipoprotein receptor (LDLR). Using HepG2 human hepatoma cells, we found that BBR inhibits cholesterol and TG synthesis in a similar manner to the AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide 1-beta-ribofuranoside (AICAR). Significant increases in AMPK phosphorylation and AMPK activity were observed when the cells were incubated with BBR. Activation of AMPK was also demonstrated by measuring the phosphorylation of acetyl-CoA carboxylase, a substrate of AMPK, correlated with a subsequent increase in fatty acid oxidation. All of these effects were abolished by the mitogen-activated protein kinase kinase inhibitor PD98059. Treatment of hyperlipidemic hamsters with BBR decreased plasma LDL cholesterol and strongly reduced fat storage in the liver. These findings indicate that BBR, in addition to upregulating the LDLR, inhibits lipid synthesis in human hepatocytes through the activation of AMPK. These effects could account for the strong reduction of plasma TGs observed with this drug in clinical trials.
Collapse
|
30
|
Abstract
Although low-density lipoprotein (LDL)-cholesterol lowering with the statins reduces the mortality and morbidity associated with coronary artery disease, considerable mortality and morbidity remains. Berberine upregulates the LDL receptor (LDLR) by a mechanism distinct from that of the statins, which involves stabilising the LDLR mRNA. In hamsters fed a high-fat and high-cholesterol diet for 2 weeks, the oral administration of berberine 100 mg/kg for 10 days reduced total serum cholesterol from approximately 4.8 to 2.7 mmol/l, and LDL-cholesterol from approximately 2.5 to 1.4 mmol/l. In subjects with hypercholesterolaemia, berberine hydrochloride (0.5 g b.i.d. for 3 months) reduced LDL-cholesterol (from 3.2 to 2.4 mmol/l) without any effect on high-density lipoprotein-cholesterol. Berberine also caused a reduction in triglyceride levels from 2.3 to 1.5 mmol/l. As berberine and statins both upregulate LDLR, their lipid-lowering profiles are similar. Thus, this mechanism is unlikely to make berberine an attractive alternative to statins for lipid lowering in most circumstances. However, the other effects of berberine (antihypertensive, inotropic and class III antiarrhythmic properties) may make it a useful agent in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Sheila A Doggrell
- School of Biomedical Sciences, The University of Queensland, QLD 4072, Australia.
| |
Collapse
|
31
|
Leblanc SE, Srinivasan R, Ferri C, Mager GM, Gillian-Daniel AL, Wrabetz L, Svaren J. Regulation of cholesterol/lipid biosynthetic genes by Egr2/Krox20 during peripheral nerve myelination. J Neurochem 2005; 93:737-48. [PMID: 15836632 DOI: 10.1111/j.1471-4159.2005.03056.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Myelination of peripheral nerves by Schwann cells requires a large amount of lipid and cholesterol biosynthesis. To understand the transcriptional coordination of the myelination process, we have investigated the developmental relationship between early growth response 2 (Egr2)/Krox20--a pivotal regulator of peripheral nerve myelination--and the sterol regulatory element binding protein (SREBP) pathway, which controls expression of cholesterol/lipid biosynthetic genes. During myelination of sciatic nerve, there is a very significant induction of SREBP1 and SREBP2, as well as their target genes, suggesting that the SREBP transactivators are important regulators in the myelination process. Egr2/Krox20 does not appear to directly regulate the levels of SREBP pathway components, but rather, we found that Egr2/Krox20 and SREBP transactivators can synergistically activate promoters of several SREBP target genes, indicating that direct induction of cholesterol/lipid biosynthetic genes by Egr2/Krox20 is a part of the myelination program regulated by this transactivator.
Collapse
Affiliation(s)
- Scott E Leblanc
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
McPherson R, Gauthier A. Molecular regulation of SREBP function: the Insig-SCAP connection and isoform-specific modulation of lipid synthesis. Biochem Cell Biol 2004; 82:201-11. [PMID: 15052338 DOI: 10.1139/o03-090] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sterol regulatory element binding proteins (SREBPs) are a family of membrane-bound transcription factors that play a unique and fundamental role in both cholesterol and fatty acid metabolism, relevant to human disease. There are three SREBPs that regulate the expression of over 30 genes. SREBPs are subject to regulation at three levels: proteolytic cleavage, rapid degradation by the ubiquitin-proteasome pathway, and sumoylation. Recently, there have been exciting advances in our understanding of the molecular mechanism of SREBP trafficking and processing with new information on the role of insulin-induced genes and the differential role and regulation of SREBP-1c and -2, which may ultimately lead to novel strategies for the treatment of dyslipidemia and insulin resistance.
Collapse
Affiliation(s)
- Ruth McPherson
- Lipoprotein and Atherosclerosis Group, University of Ottawa Heart Institute, ON, Canada.
| | | |
Collapse
|
33
|
Mullen E, Brown RM, Osborne TF, Shay NF. Soy isoflavones affect sterol regulatory element binding proteins (SREBPs) and SREBP-regulated genes in HepG2 cells. J Nutr 2004; 134:2942-7. [PMID: 15514256 DOI: 10.1093/jn/134.11.2942] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Soy intake reduces cholesterol levels. However, both the identity of the soy component or components that contribute to this reduction and the cellular mechanism producing this reduction are unknown. Soy consists of protein, lipids, fiber, and phytochemicals including isoflavones. We propose that the isoflavone component of soy mediates this effect, at least in part, by affecting cellular sterol homeostasis. We investigated the effects of an isoflavone-containing soy extract and the individual isoflavones on the maturation of the sterol regulatory element binding proteins (SREBP) and the expression of SRE-regulated genes controlling lipid metabolism. We found a corresponding increase in the mature form of SREBP-2 in both soy extract- and isoflavone-treated HepG2 cells, whereas there was no significant change in the levels of SREBP-1. 3-Hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase protein and HMG CoA synthase mRNA levels also increased. When HepG2 cells were transiently transfected with HMG CoA synthase and LDL receptor reporter plasmids there was an increase in expression in response to soy extract or isoflavone treatment from both of these promoters, but this induction was blunted in the presence of sterols (P < 0.05). The mechanism responsible for this effect may be via a statin-like inhibition of HMG CoA reductase enzyme activity or by enhanced SREBP processing via the SREBP cleavage activating protein. We hypothesize that maturation of SREBP and induction of SRE-regulated genes produce an increase in surface LDL receptor expression that increases the clearance of plasma cholesterol, thus decreasing plasma cholesterol levels.
Collapse
Affiliation(s)
- Eimear Mullen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | | | | |
Collapse
|
34
|
Issandou M, Guillard R, Boullay AB, Linhart V, Lopez-Perez E. Up-regulation of low-density lipoprotein receptor in human hepatocytes is induced by sequestration of free cholesterol in the endosomal/lysosomal compartment. Biochem Pharmacol 2004; 67:2281-9. [PMID: 15163559 DOI: 10.1016/j.bcp.2004.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Accepted: 03/04/2004] [Indexed: 11/25/2022]
Abstract
Up-regulation of low-density lipoprotein receptor (LDLr) is a key mechanism to control elevated plasma LDL-cholesterol levels. In the present paper, we compare the ability of four distinct pharmacological drugs to up-regulate LDLr expression in human hepatocytes. HepG2 cells were treated with the steroidal analog GW707, the oxidosqualene cyclase inhibitor U18666A, the 3beta-hydroxysterol Delta(7)-reductase inhibitor AY-9944 and the vacuolar-type ATPase inhibitor bafilomycin A1. We found that the four compounds induced sequestration of free cholesterol in the endosomal/lysosomal compartment leading to a positive filipin staining pattern and a complete inhibition of cholesteryl ester synthesis. As a consequence of the sequestration of cholesterol, the expression and the activity of LDLr were strongly induced resulting from a transcriptional effect which was measured by a reporter gene assay. These effects were fully abolished when an exogenous water soluble cholesterol analog was added to the cells. These findings have led to the identification of a common mechanism to up-regulate LDLr expression in human hepatocytes and may represent an interesting alternative approach to identify new hypolipidemic drugs.
Collapse
Affiliation(s)
- Marc Issandou
- GlaxoSmithKline, 25 Avenue du Quebec, 91951 Les Ulis Cedex, France.
| | | | | | | | | |
Collapse
|
35
|
Zhang J, Dudley-Rucker N, Crowley JR, Lopez-Perez E, Issandou M, Schaffer JE, Ory DS. The steroidal analog GW707 activates the SREBP pathway through disruption of intracellular cholesterol trafficking. J Lipid Res 2004; 45:223-31. [PMID: 14617742 DOI: 10.1194/jlr.m300409-jlr200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, a new class of lipid-lowering agents has been described that upregulate LDL receptor (LDLr) activity. These agents are proposed to activate sterol-regulated gene expression through binding to the sterol regulatory element binding protein (SREBP) cleavage-activating protein (SCAP). Here, we show that the steroidal LDLr upregulator, GW707, induces accumulation of lysosomal free cholesterol and inhibits LDL-stimulated cholesterol esterification, similar to that observed in U18666A-treated cells and in Niemann-Pick type C1 (NPC1) mutants. Moreover, we demonstrate that induction of the NPC-like phenotype by GW707 is independent of SCAP function. We find that treatment with GW707 does not increase SREBP-dependent gene expression above that observed in lipoprotein-starved cells. Rather, we show that the apparent increase in SREBP-dependent activity in GW707-treated cells is attributable to a failure to appropriately suppress sterol-regulated gene expression, as has been shown previously for U18666A-treated cells and NPC mutant fibroblasts. We further demonstrate that cells treated with either GW707 or U18666A fail to appropriately generate 27-hydroxycholesterol in response to LDL cholesterol. Taken together, these findings support a mechanism in which GW707 exerts its hypolipidemic effects through disruption of late endosomal/lysosomal sterol trafficking and subsequent stimulation of LDLr activity.
Collapse
Affiliation(s)
- Jessie Zhang
- Center for Cardiovascular Research, 91951 Les Ulis, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Bays H, Stein EA. Pharmacotherapy for dyslipidaemia--current therapies and future agents. Expert Opin Pharmacother 2004; 4:1901-38. [PMID: 14596646 DOI: 10.1517/14656566.4.11.1901] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Current lipid-altering agents that lower low density lipoprotein cholesterol (LDL-C) primarily through increased hepatic LDL receptor activity include statins, bile acid sequestrants/resins and cholesterol absorption inhibitors such as ezetimibe, plant stanols/sterols, polyphenols, as well as nutraceuticals such as oat bran, psyllium and soy proteins; those currently in development include newer statins, phytostanol analogues, squalene synthase inhibitors, bile acid transport inhibitors and SREBP cleavage-activating protein (SCAP) activating ligands. Other current agents that affect lipid metabolism include nicotinic acid (niacin), acipimox, high-dose fish oils, antioxidants and policosanol, whilst those in development include microsomal triglyceride transfer protein (MTP) inhibitors, acylcoenzyme A: cholesterol acyltransferase (ACAT) inhibitors, gemcabene, lifibrol, pantothenic acid analogues, nicotinic acid-receptor agonists, anti-inflammatory agents (such as Lp-PLA(2) antagonists and AGI1067) and functional oils. Current agents that affect nuclear receptors include PPAR-alpha and -gamma agonists, while in development are newer PPAR-alpha, -gamma and -delta agonists, as well as dual PPAR-alpha/gamma and 'pan' PPAR-alpha/gamma/delta agonists. Liver X receptor (LXR), farnesoid X receptor (FXR) and sterol-regulatory element binding protein (SREBP) are also nuclear receptor targets of investigational agents. Agents in development also may affect high density lipoprotein cholesterol (HDL-C) blood levels or flux and include cholesteryl ester transfer protein (CETP) inhibitors (such as torcetrapib), CETP vaccines, various HDL 'therapies' and upregulators of ATP-binding cassette transporter (ABC) A1, lecithin cholesterol acyltransferase (LCAT) and scavenger receptor class B Type 1 (SRB1), as well as synthetic apolipoprotein (Apo)E-related peptides. Fixed-dose combination lipid-altering drugs are currently available such as extended-release niacin/lovastatin, whilst atorvastatin/amlodipine, ezetimibe/simvastatin, atorvastatin/CETP inhibitor, statin/PPAR agonist, extended-release niacin/simvastatin and pravastatin/aspirin are under development. Finally, current and future lipid-altering drugs may include anti-obesity agents which could favourably affect lipid levels.
Collapse
Affiliation(s)
- Harold Bays
- L-MARC Research Center, 3288 Illinois Avenue, Louisville, KY 40213, USA.
| | | |
Collapse
|
37
|
Vincent S, Thomas A, Brasher B, Benson JD. Targeting of proteins to membranes through hedgehog auto-processing. Nat Biotechnol 2003; 21:936-40. [PMID: 12858181 DOI: 10.1038/nbt844] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2002] [Accepted: 04/16/2003] [Indexed: 11/08/2022]
Abstract
Hedgehog proteins use an auto-processing strategy to generate cholesterol-conjugated peptide products that act as extracellular ligands in a number of developmental signaling pathways. We describe an approach that takes advantage of the hedgehog auto-processing reaction to carry out intracellular modification of heterologous proteins, resulting in their localization to cell membranes. Such processing occurs spontaneously, without accessory proteins or modification by other enzymes. Using the green fluorescent protein (GFP) and the product of the Hras as model proteins, we demonstrate the use of hedgehog auto-processing to process heterologous N-terminal domains and direct the resulting biologically active products to cell membranes. This system represents a tool for targeting functional peptides and proteins to cell membranes, and may also offer a means of directing peptides or other small molecules to components of cholesterol metabolism or regulation.
Collapse
Affiliation(s)
- Sylvie Vincent
- GenPath Pharmaceuticals, 300 Technology Square, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
38
|
Frolov A, Zielinski SE, Crowley JR, Dudley-Rucker N, Schaffer JE, Ory DS. NPC1 and NPC2 regulate cellular cholesterol homeostasis through generation of low density lipoprotein cholesterol-derived oxysterols. J Biol Chem 2003; 278:25517-25. [PMID: 12719428 DOI: 10.1074/jbc.m302588200] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the Niemann-Pick disease genes cause lysosomal cholesterol accumulation and impaired low density lipoprotein (LDL) cholesterol esterification. These findings have been attributed to a block in cholesterol movement from lysosomes to the site of the sterol regulatory machinery. In this study we show that Niemann-Pick type C1 (NPC1) and Niemann-Pick type C2 (NPC2) mutants have increased cellular cholesterol, yet they are unable to suppress LDL receptor activity and cholesterol biosynthesis. Cholesterol overload in both NPC1 and NPC2 mutants results from the failure of LDL cholesterol tobothsuppresssterolregulatoryelement-bindingprotein-dependent gene expression and promote liver X receptor-mediated responses. However, the severity of the defect in regulation of sterol homeostasis does not correlate with endoplasmic reticulum cholesterol levels, but rather with the degree to which NPC mutant fibroblasts fail to appropriately generate 25-hydroxycholesterol and 27-hydroxycholesterol in response to LDL cholesterol. Moreover, we demonstrate that treatment with oxysterols reduces cholesterol in NPC mutants and is able to correct the NPC1I1061T phenotype, the most prevalent NPC1 disease genotype. Our findings support a role for NPC1 and NPC2 in the regulation of sterol homeostasis through generation of LDL cholesterol-derived oxysterols and have important implications for the treatment of NPC disease.
Collapse
Affiliation(s)
- Andrey Frolov
- Center for Cardiovascular Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110-1010, USA
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
The mammalian cell continuously adjusts its sterol content by regulating levels of key sterol synthetic enzymes and levels of LDL receptors that mediate uptake of cholesterol-laden particles. Control is brought about by sterol-regulated transcription of relevant genes and by regulated degradation of the committed step enzyme HMG-CoA reductase (HMGR). Current work has revealed that proteolysis is at the heart of each of these mechanistically distinct axes. Transcriptional control is effected by regulated cleavage of the membrane-bound transcription factor sterol regulatory element binding protein (SREBP), and HMGR degradation is brought about by ubiquitin-mediated degradation. In each case, ongoing cell biological processes are being harnessed to bring about regulation. The secretory pathway plays a central role in allowing sterol-mediated control of transcription. The constitutively active endoplasmic reticulum (ER) quality control apparatus is employed to bring about regulated destruction of HMGR. This review describes the methods and results of various studies to understand the mechanisms and molecules involved in these distinct but interrelated aspects of sterol regulation and the intriguing similarities that appear to exist at the levels of protein sequence and cell biology.
Collapse
Affiliation(s)
- Randolph Y Hampton
- Section of Cell and Developmental Biology, Division of Biology, University of California, San Diego, La Jolla 92093-0347, USA.
| |
Collapse
|
40
|
Abstract
Lipid abnormalities are central among the risk factors for the development of cardiovascular disease and their correction remains a major target for the medical community. Inhibitors of 3-hydroxy-3-methyl glutaryl coenzyme A reductase (statins) are the most widely prescribed and best tolerated of the currently available lipid-modifying therapies. Newer agents in this class (e.g., rosuvastatin) have proven to be more effective at lowering levels of low-density lipoprotein cholesterol. New formulations of drugs such as nicotinic acid, which improve treatment regimens and reduce unpleasant side effects, may result in improved patient compliance with this therapy. The development of novel drugs such as cholesterol absorption inhibitors (e.g., ezetimibe) and acyl-coenzyme A cholesterol acyltransferase inhibitors (e.g., avasimibe) will provide clinicians with therapeutic options that exploit different pathways to those currently being utilised. By combining these agents with statins, greater improvements in the lipid profile than those seen to date could be produced. In addition, advances in our understanding of the pathophysiology of dyslipidaemia have enabled other novel therapeutic targets to be identified and studies with experimental drugs underscore the potential of these approaches.
Collapse
Affiliation(s)
- Eric Bruckert
- Department of Endocrinology & Metabolism, Assitance-Publique Hôpitaux de Paris, University Hôp[ital Pitie-Salpêtrière, Paris, France.
| |
Collapse
|
41
|
Liu J, Zhang F, Li C, Lin M, Briggs MR. Synergistic activation of human LDL receptor expression by SCAP ligand and cytokine oncostatin M. Arterioscler Thromb Vasc Biol 2003; 23:90-6. [PMID: 12524230 DOI: 10.1161/01.atv.0000046229.77566.e5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE A recent study identified a new class of compounds designated as the sterol-regulatory element binding protein (SREBP) cleavage-activating protein (SCAP) ligands that putatively bind to SCAP, leading to increased LDL receptor (LDLR) expression. In this study, we examined the effects of SCAP ligand GW707 in comparison with lovastatin and cytokine oncostatin M (OM) on the regulation of LDLR expression in cultured HepG2 cells. METHODS AND RESULTS Our studies uncovered several new features that distinguish SCAP ligand from lovastatin, a classic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, and from OM, which utilize an SREBP-independent regulatory pathway. We show that the induction of LDLR mRNA expression by GW707 is not affected by intracellular cholesterol but is completely abolished by blocking de novo protein synthesis. Moreover, the effects of GW707 but not lovastatin on LDLR promoter activity, mRNA expression, and uptake of 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanin perchlorate-LDL are markedly enhanced by OM. We further demonstrate that the amounts of the mature form of SREBP-2 translocated to the nucleus under GW707 treatment are increased by costimulating cells with OM. CONCLUSIONS Our studies provide the first evidence that higher levels of LDLR expression and function can be achieved through simultaneous stimulation of the SREBP-dependent and SREBP-independent pathways, suggesting a strategy to develop an adjunct therapeutic intervention utilizing both pathways.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- CCAAT-Enhancer-Binding Proteins/physiology
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cytokines/metabolism
- Cytokines/pharmacology
- DNA-Binding Proteins/physiology
- Humans
- Intracellular Signaling Peptides and Proteins
- Kinetics
- Ligands
- Lovastatin/metabolism
- Lovastatin/pharmacology
- Membrane Proteins/metabolism
- Membrane Proteins/pharmacology
- Oncostatin M
- Peptide Biosynthesis/drug effects
- Peptides/metabolism
- Peptides/pharmacology
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, LDL/biosynthesis
- Receptors, LDL/genetics
- Steroids/metabolism
- Steroids/pharmacology
- Sterol Regulatory Element Binding Protein 1
- Sterol Regulatory Element Binding Protein 2
- Transcription Factors/physiology
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Jingwen Liu
- VA Palo Alto Health Care System, Palo Alto, Calif 94304, USA.
| | | | | | | | | |
Collapse
|
42
|
Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C, Wang Y, Wang Z, Si S, Pan H, Wang S, Wu J, Wang Y, Li Z, Liu J, Jiang JD. Effects of berberine on glucose metabolism in vitro. Nat Med 2002; 10:1344-51. [PMID: 15531889 DOI: 10.1038/nm1135] [Citation(s) in RCA: 1021] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Accepted: 10/08/2004] [Indexed: 11/08/2022]
Abstract
The action of berberine was compared with metformin and troglitazone (TZD) with regard to the glucose-lowering action in vitro. HepG2 cell line, phenotypically similar to human hepatocytes, was used for glucose consumption (GC) studies. Cell proliferation was measured by methylthiotetrazole (MTT) assay. In moderate high glucose concentration (11.1 mmol/L), GC of HepG2 cells was increased by 32% to 60% (P <.001 to P <.0001) with 5 x 10(-6) mol/L to 1 x 10(-4) mol/L berberine, which was comparable to that with 1 x 10(-3) mol/L metformin. The glucose-lowering effect of berberine decreased as the glucose concentration increased. The maximal potency was reached in the presence of 5.5 mmol/L glucose, and it was abolished when the glucose concentration increased to 22.2 mmol/L. The effect was not dependent on insulin concentration, which was similar to that of metformin and was different from that of TZD, whose glucose-lowering effect is insulin dependent. TZD had a better antihyperglycemic potency than metformin when insulin was added (P <.001). In the meantime, a significant toxicity of the drug to HepG2 cells was also observed. The betaTC3 cell line was used for insulin release testing, and no secretogogue effect of berberine was observed. These observations suggest that berberine is able to exert a glucose-lowering effect in hepatocytes, which is insulin independent and similar to that of metformin, but has no effect on insulin secretion.
Collapse
Affiliation(s)
- Weijia Kong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100050, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Salek L, Lutucuta S, Ballantyne CM, Gotto AM, Marian AJ. Effects of SREBF-1a and SCAP polymorphisms on plasma levels of lipids, severity, progression and regression of coronary atherosclerosis and response to therapy with fluvastatin. J Mol Med (Berl) 2002; 80:737-44. [PMID: 12436350 PMCID: PMC2896566 DOI: 10.1007/s00109-002-0381-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2002] [Accepted: 07/25/2002] [Indexed: 10/27/2022]
Abstract
Sterol regulatory elements binding factor-1a (SREBF-1a) and SREBF cleavage activating protein (SCAP) regulate lipids homeostasis. Polymorphisms in SREBF-1a and SCAP could affect plasma levels of lipids and risk of atherosclerosis. We determined association of SREBF-1a -36del/G and SCAP 2386A/G genotypes with plasma levels of lipids, severity and progression/regression of coronary atherosclerosis, and response to treatment with fluvastatin in a well-characterized Lipoprotein Coronary Atherosclerosis Study population. Plasma lipids and quantitative indices of coronary atherosclerosis were obtained at baseline and 2.5 years following randomization to fluvastatin or placebo in 372 subjects. Fluvastatin reduced plasma levels of total cholesterol by 16%, LDL-C by 25%, and ApoB by 16% and increased plasma levels of HDL-C by 9% and apoA-1 by 7%. Distributions of SREBF-1a SCAP genotypes were 60 GG, 172 del-G and 140 del-del and 88 GG, 188 GA and 96 AA, respectively. There were no significant differences in baseline plasma levels of lipids or indices of severity of atherosclerosis among the genotypes of each gene. There was a strong graded genotype-treatment interaction between SREBF-1a genotypes and change in apoA-I levels in response to fluvastatin (16.5% increase in GG, 10.5% in del/G, and 0.4% in del/del groups). Modest interactions between SREBF-1a genotypes and changes in HDL-C, and apoC-III levels in response to fluvastatin were also present. No genotype-treatment interaction for progression or regression of coronary atherosclerosis was detected. There were no significant interactions between SCAP genotypes and response to therapy. Thus we detected a strong graded interaction between SREBF-1a -36del/G genotypes and response of plasma apoA-I to treatment with fluvastatin.
Collapse
Affiliation(s)
- Lorraine Salek
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
44
|
Janowski BA. The hypocholesterolemic agent LY295427 up-regulates INSIG-1, identifying the INSIG-1 protein as a mediator of cholesterol homeostasis through SREBP. Proc Natl Acad Sci U S A 2002; 99:12675-80. [PMID: 12242342 PMCID: PMC130519 DOI: 10.1073/pnas.202471599] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2002] [Accepted: 08/06/2002] [Indexed: 02/07/2023] Open
Abstract
Oxysterols regulate cholesterol homeostasis through liver X receptor (LXR; cholesterol-lowering)- and sterol regulatory element-binding protein (SREBP; cholesterol-raising)-mediated signaling pathways. Previously we reported that the hypocholesterolemic agent LY295427 (4alpha-allylcholestan-3alpha-ol) reverses oxysterol-mediated suppression of SREBP processing. We now report that LY295427 increases expression of insulin-induced gene-1 (INSIG-1) and restores SREBP processing in cells treated with oxysterols. In cells overexpressing the INSIG-1 gene, by contrast, SREBP processing is suppressed and oxysterol regulation is disrupted. SREBP processing is not restored by addition of LY295427, but is restored by increasing the levels of SREBP cleavage-activating protein (SCAP). These findings suggest that the INSIG-1 protein alters sterol balance by modulating SREBP processing jointly with SCAP. To test whether the action of oxysterols on SREBP processing is mediated through endogenous INSIG-1 protein, we used RNAi to lower the expression of the INSIG-1 gene, and found that reduced INSIG-1 protein levels caused the loss of SREBP regulation by oxysterols. We conclude that: (i) INSIG-1 gene expression is suppressed by oxysterols; (ii) LY295427 treatment counters the suppressive effects of oxysterols on SREBP processing, resulting in the expression of the INSIG-1 gene; and (iii) INSIG-1 gene expression affects SREBP processing. Taken together, these data suggest that INSIG-1 plays a critical role in regulating cholesterol concentrations in the cell.
Collapse
Affiliation(s)
- Bethany A Janowski
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9046, USA.
| |
Collapse
|
45
|
Grand-Perret T, Bouillot A, Issandou M. Une nouvelle classe de molécules hypolipémiantes : les ligands de SCAP. Med Sci (Paris) 2002. [DOI: 10.1051/medsci/20021867659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
46
|
|
47
|
|