1
|
Duan X, Chen C, Du C, Guo L, Liu J, Hou N, Li P, Qi X, Gao F, Du X, Song J, Wu S. Homozygous editing of multiple genes for accelerated generation of xenotransplantation pigs. Genome Res 2025; 35:1167-1178. [PMID: 40044221 PMCID: PMC12047534 DOI: 10.1101/gr.279709.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/18/2025] [Indexed: 03/28/2025]
Abstract
Although CRISPR-Cas-based genome editing has made significant strides over the past decade, achieving simultaneous homozygous gene editing of multiple targets in primary cells remains a significant challenge. In this study, we optimized a coselection strategy to enhance homozygous gene editing rates in the genomes of primary porcine fetal fibroblasts (PFFs). The strategy utilizes the expression of a surrogate reporter (eGFP) to select for cells with the highest reporter expression, thereby improving editing efficiency. For simultaneous multigene editing, we targeted the most challenging site for selection, whereas other target sites did not require selection. Using this approach, we successfully obtained single-cell PFF clones (three of 10) with seven or more homozygously edited genes, including GGTA1, CMAH, B4GALNT2, CD46, CD47, THBD, and GHR Importantly, cells edited using this strategy can be efficiently used for somatic cell nuclear transfer (SCNT) to generate healthy xenotransplantation pigs in <5 months, a process that previously required years of breeding or multiple rounds of SCNT.
Collapse
Affiliation(s)
- Xiaoyue Duan
- Sanya Institute of China Agricultural University, Sanya, 572024, China
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chaolei Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chang Du
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Liang Guo
- Sanya Institute of China Agricultural University, Sanya, 572024, China
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jun Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Naipeng Hou
- Sanya Institute of China Agricultural University, Sanya, 572024, China
| | - Pan Li
- Sanya Institute of China Agricultural University, Sanya, 572024, China
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaolan Qi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Fei Gao
- Sanya Institute of China Agricultural University, Sanya, 572024, China
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xuguang Du
- Sanya Institute of China Agricultural University, Sanya, 572024, China;
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangping Song
- Sanya Institute of China Agricultural University, Sanya, 572024, China;
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Sen Wu
- Sanya Institute of China Agricultural University, Sanya, 572024, China;
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
2
|
Haider S, Mussolino C. Fine-Tuning Homology-Directed Repair (HDR) for Precision Genome Editing: Current Strategies and Future Directions. Int J Mol Sci 2025; 26:4067. [PMID: 40362308 PMCID: PMC12071731 DOI: 10.3390/ijms26094067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
CRISPR-Cas9 is a powerful genome-editing technology that can precisely target and cleave DNA to induce double-strand breaks (DSBs) at almost any genomic locus. While this versatility holds tremendous therapeutic potential, the predominant cellular pathway for DSB repair-non-homologous end-joining (NHEJ)-often introduces small insertions or deletions that disrupt the target site. In contrast, homology-directed repair (HDR) utilizes exogenous donor templates to enable precise gene modifications, including targeted insertions, deletions, and substitutions. However, HDR remains relatively inefficient compared to NHEJ, especially in postmitotic cells where cell cycle constraints further limit HDR. To address this challenge, numerous methodologies have been explored, ranging from inhibiting key NHEJ factors and optimizing donor templates to synchronizing cells in HDR-permissive phases and engineering HDR-enhancing fusion proteins. These strategies collectively aim to boost HDR efficiency and expand the clinical and research utility of CRISPR-Cas9. In this review, we discuss recent advances in manipulating the balance between NHEJ and HDR, examine the trade-offs and practical considerations of these approaches, and highlight promising directions for achieving high-fidelity genome editing in diverse cell types.
Collapse
Affiliation(s)
- Sibtain Haider
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany;
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, 79106 Freiburg, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany;
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
3
|
Eickhoff P, Sonmez C, Fisher CEL, Inian O, Roumeliotis TI, Dello Stritto A, Mansfeld J, Choudhary JS, Guettler S, Lottersberger F, Douglas ME. Chromosome end protection by RAP1-mediated inhibition of DNA-PK. Nature 2025:10.1038/s41586-025-08896-1. [PMID: 40240611 DOI: 10.1038/s41586-025-08896-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/13/2025] [Indexed: 04/18/2025]
Abstract
During classical non-homologous end joining (cNHEJ), DNA-dependent protein kinase (DNA-PK) encapsulates free DNA ends, forming a recruitment platform for downstream end-joining factors including ligase 4 (LIG4)1. DNA-PK can also bind telomeres and regulate their resection2-4, but does not initiate cNHEJ at this position. How the end-joining process is regulated in this context-specific manner is currently unclear. Here we show that the shelterin components TRF2 and RAP1 form a complex with DNA-PK that directly represses its end-joining function at telomeres. Biochemical experiments and cryo-electron microscopy reveal that when bound to TRF2, RAP1 establishes a network of interactions with KU and DNA that prevents DNA-PK from recruiting LIG4. In mouse and human cells, RAP1 is redundant with the Apollo nuclease in repressing cNHEJ at chromosome ends, demonstrating that the inhibition of DNA-PK prevents telomere fusions in parallel with overhang-dependent mechanisms. Our experiments show that the end-joining function of DNA-PK is directly and specifically repressed at telomeres, establishing a molecular mechanism for how individual linear chromosomes are maintained in mammalian cells.
Collapse
Affiliation(s)
- Patrik Eickhoff
- Telomere Biology Laboratory, The Institute of Cancer Research, London, UK
| | - Ceylan Sonmez
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | - Oviya Inian
- Structural Biology of Cell Signalling, The Institute of Cancer Research, London, UK
| | | | - Angela Dello Stritto
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jörg Mansfeld
- Post-translational Modifications and Cell Proliferation, The Institute of Cancer Research, London, UK
| | | | - Sebastian Guettler
- Structural Biology of Cell Signalling, The Institute of Cancer Research, London, UK
| | | | - Max E Douglas
- Telomere Biology Laboratory, The Institute of Cancer Research, London, UK.
| |
Collapse
|
4
|
Boccacci Y, Dumont N, Doyon Y, Laganière J. CRISPR-Cas9-driven antigen conversion of clinically relevant blood group systems. Hum Mol Genet 2025:ddaf040. [PMID: 40172074 DOI: 10.1093/hmg/ddaf040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/04/2025] Open
Abstract
The common practice of blood transfusion entirely relies on blood donations from the population. Ensuring blood group compatibility between a donor and a recipient is paramount to prevent critical adverse reactions. Finding compatible blood can be challenging given the high diversity of blood group antigens, especially for chronically transfused patients at higher risk of alloimmunization owing to repeated exposures to foreign RBCs. In addition, due to the immunogenicity of the ABO blood group and the highly polymorphic nature of the Rhesus (Rh) system, they both remain of prime importance in transfusion medicine. Cultured red blood cells (cRBCs) may eventually provide an alternative for blood donations-at least in some circumstances. Combining cRBCs with blood group gene editing could broaden transfusion accessibility by making antigen expression compatible with rare phenotypes, thus meeting the needs of more patients. Starting from mobilized, erythroid-primed hematopoietic stem and progenitor cells (HSPCs), we used virus- and selection-free, CRISPR-Cas9-mediated knockouts to produce erythroid cells devoid of AB and Rh antigen. The approach yielded almost complete conversion to O- and RhNull phenotypes, as determined by standard hemagglutination and flow cytometry analyses. Combined with robust cRBC protocols, these clinically relevant phenotypic changes could eventually expand the accessibility of blood transfusion for specific and unmet clinical needs.
Collapse
Affiliation(s)
- Yelena Boccacci
- Centre Hospitalier Universitaire de Québec Research Center - Université Laval, 2705 boulevard Laurier, Québec, QC G1V 4G2, Canada
- Faculty of Medicine, Laval University, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
- Université Laval Cancer Research Centre, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
- Medical Affairs and Innovation, Héma-Québec, 1070 avenue des Sciences-de-la-Vie, Québec, QC G1V 5C3, Canada
| | - Nellie Dumont
- Medical Affairs and Innovation, Héma-Québec, 1070 avenue des Sciences-de-la-Vie, Québec, QC G1V 5C3, Canada
| | - Yannick Doyon
- Centre Hospitalier Universitaire de Québec Research Center - Université Laval, 2705 boulevard Laurier, Québec, QC G1V 4G2, Canada
- Faculty of Medicine, Laval University, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
- Université Laval Cancer Research Centre, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Josée Laganière
- Faculty of Medicine, Laval University, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
- Medical Affairs and Innovation, Héma-Québec, 1070 avenue des Sciences-de-la-Vie, Québec, QC G1V 5C3, Canada
| |
Collapse
|
5
|
Qu C, Koskinen Holm C. Impact of a Heterozygous C1R R301P/WT Mutation on Collagen Metabolism and Inflammatory Response in Human Gingival Fibroblasts. Cells 2025; 14:479. [PMID: 40214433 PMCID: PMC11987961 DOI: 10.3390/cells14070479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Periodontal Ehlers-Danlos syndrome arising from heterozygous pathogenic mutation in C1R and/or C1S genes is an autosomal-dominant disorder characterized by early-onset periodontitis. Due to the difficulties in obtaining and culturing the patient-derived gingival fibroblasts, we established a model system by introducing a heterozygous C1RR301P/WT mutation into human TERT-immortalized gingival fibroblasts (hGFBs) to investigate its specific effects on collagen metabolism and inflammatory responses. A heterozygous C1RR301P/WT mutation was introduced into hGFBs using engineered prime editing. The functional consequences of this mutation were assessed at cellular, molecular, and enzymatic levels using a variety of techniques, including cell growth analysis, collagen deposition quantification, immunocytochemistry, enzyme-linked immunosorbent assay, and quantitative real-time reverse transcription polymerase chain reaction. The C1RR301P/WT-mutated hGFBs (mhGFBs) exhibited normal morphology and growth rate compared to wild-type hGFBs. However, mhGFBs displayed upregulated procollagen α1(V), MMP-1, and IL-6 mRNA expression while simultaneously downregulating collagen deposition and C1r protein levels. A modest accumulation of unfolded collagens was observed in mhGFBs. The mhGFBs exhibited a heightened inflammatory response, with a more pronounced increase in MMP-1 and IL-6 mRNA expression compared to TNF-α/IL-1β-stimulated hGFBs. Unlike cytokine-stimulated hGFBs, cytokine-stimulated mhGFB did not increase C1R, C1S, procollagen α1(III), and procollagen α1(V) mRNA expression. Our results suggest that the C1RR301P/WT mutation specifically disrupts collagen metabolism and inflammatory pathways in hGFBs, highlighting the mutation's role in these processes. While other cellular functions appear largely unaffected, these findings underscore the potential of targeting collagen metabolism and inflammation for therapeutic interventions in pEDS.
Collapse
Affiliation(s)
- Chengjuan Qu
- Department of Odontology, Umeå University, 90185 Umeå, Sweden;
| | | |
Collapse
|
6
|
Shi X, Li M, Liu Z, Tiessen J, Li Y, Zhou J, Zhu Y, Mahesula S, Ding Q, Tan L, Feng M, Kageyama Y, Hara Y, Tao JJ, Luo X, Patras KA, Lorenzi PL, Huang S, Stevens AM, Takahashi K, Issa GC, Samee MAH, Agathocleous M, Nakada D. Guanine nucleotide biosynthesis blockade impairs MLL complex formation and sensitizes leukemias to menin inhibition. Nat Commun 2025; 16:2641. [PMID: 40102405 PMCID: PMC11920272 DOI: 10.1038/s41467-025-57544-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 02/26/2025] [Indexed: 03/20/2025] Open
Abstract
Targeting the dependency of MLL-rearranged (MLLr) leukemias on menin with small molecule inhibitors has opened new therapeutic strategies for these poor-prognosis diseases. However, the rapid development of menin inhibitor resistance calls for combinatory strategies to improve responses and prevent resistance. Here we show that leukemia stem cells (LSCs) of MLLr acute myeloid leukemia (AML) exhibit enhanced guanine nucleotide biosynthesis, the inhibition of which leads to myeloid differentiation and sensitization to menin inhibitors. Mechanistically, targeting inosine monophosphate dehydrogenase 2 (IMPDH2) reduces guanine nucleotides and rRNA transcription, leading to reduced protein expression of LEDGF and menin. Consequently, the formation and chromatin binding of the MLL-fusion complex is impaired, reducing the expression of MLL target genes. Inhibition of guanine nucleotide biosynthesis or rRNA transcription further suppresses MLLr AML when combined with a menin inhibitor. Our findings underscore the requirement of guanine nucleotide biosynthesis in maintaining the function of the LEDGF/menin/MLL-fusion complex and provide a rationale to target guanine nucleotide biosynthesis to sensitize MLLr leukemias to menin inhibitors.
Collapse
MESH Headings
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Humans
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Myeloid-Lymphoid Leukemia Protein/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Histone-Lysine N-Methyltransferase/metabolism
- Histone-Lysine N-Methyltransferase/genetics
- Animals
- Mice
- Cell Line, Tumor
- IMP Dehydrogenase/metabolism
- IMP Dehydrogenase/antagonists & inhibitors
- IMP Dehydrogenase/genetics
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/drug effects
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Transcription Factors/metabolism
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Xiangguo Shi
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
- Department of Molecular and Precision Medicine, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Minhua Li
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zian Liu
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jonathan Tiessen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuan Li
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jing Zhou
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yudan Zhu
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Swetha Mahesula
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Qing Ding
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mengdie Feng
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuki Kageyama
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yusuke Hara
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jacob J Tao
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xuan Luo
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Kathryn A Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Suming Huang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Alexandra M Stevens
- Section of Hematology/Oncology, Department of Pediatrics, Texas Children's Cancer and Hematology Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Md Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michalis Agathocleous
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Daisuke Nakada
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA.
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Chang CR, Vykunta VS, Lee JHJ, Li K, Kochendoerfer C, Muldoon JJ, Wang CH, Mazumder T, Sun Y, Goodman DB, Nyberg WA, Liu C, Allain V, Rothrock A, Ye CJ, Marson A, Shy BR, Eyquem J. SEED-Selection enables high-efficiency enrichment of primary T cells edited at multiple loci. Nat Biotechnol 2025:10.1038/s41587-024-02531-6. [PMID: 39910194 DOI: 10.1038/s41587-024-02531-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/10/2024] [Indexed: 02/07/2025]
Abstract
Engineering T cell specificity and function at multiple loci can generate more effective cellular therapies, but current manufacturing methods produce heterogenous mixtures of partially engineered cells. Here we develop a one-step process to enrich unlabeled cells containing knock-ins at multiple target loci using a family of repair templates named synthetic exon expression disruptors (SEEDs). SEEDs associate transgene integration with the disruption of a paired target endogenous surface protein while preserving target expression in nonmodified and partially edited cells to enable their removal (SEED-Selection). We design SEEDs to modify three critical loci encoding T cell specificity, coreceptor expression and major histocompatibility complex expression. The results demonstrate up to 98% purity after selection for individual modifications and up to 90% purity for six simultaneous edits (three knock-ins and three knockouts). This method is compatible with existing clinical manufacturing workflows and can be readily adapted to other loci to facilitate production of complex gene-edited cell therapies.
Collapse
Affiliation(s)
- Christopher R Chang
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Vivasvan S Vykunta
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Jae Hyun J Lee
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Ke Li
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Clara Kochendoerfer
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Joseph J Muldoon
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Charlotte H Wang
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Thomas Mazumder
- Division of Rheumatology, University of California, San Francisco, San Francisco, CA, USA
| | - Yang Sun
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Division of Rheumatology, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel B Goodman
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - William A Nyberg
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chang Liu
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Vincent Allain
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Université Paris Cité, INSERM UMR976, Hôpital Saint-Louis, Paris, France
| | - Allison Rothrock
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chun J Ye
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Division of Rheumatology, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Brian R Shy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Justin Eyquem
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
8
|
James J, Fokin AI, Guschin DY, Wang H, Polesskaya A, Rubtsova SN, Clainche CL, Silberzan P, Gautreau AM, Romero S. Vinculin-Arp2/3 interaction inhibits branched actin assembly to control migration and proliferation. Life Sci Alliance 2025; 8:e202402583. [PMID: 39547716 PMCID: PMC11568829 DOI: 10.26508/lsa.202402583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Vinculin is a mechanotransducer that reinforces links between cell adhesions and linear arrays of actin filaments upon myosin-mediated contractility. Both adhesions to the substratum and neighboring cells, however, are initiated within membrane protrusions that originate from Arp2/3-nucleated branched actin networks. Vinculin has been reported to interact with the Arp2/3 complex, but the role of this interaction remains poorly understood. Here, we compared the phenotypes of vinculin knock-out (KO) cells with those of knock-in (KI-P878A) cells, where the point mutation P878A that impairs the Arp2/3 interaction is introduced in the two vinculin alleles of MCF10A mammary epithelial cells. The interaction of vinculin with Arp2/3 inhibits actin polymerization at membrane protrusions and decreases migration persistence of single cells. In cell monolayers, vinculin recruits Arp2/3 and the vinculin-Arp2/3 interaction participates in cell-cell junction plasticity. Through this interaction, vinculin controls the decision to enter a new cell cycle as a function of cell density.
Collapse
Affiliation(s)
- John James
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Artem I Fokin
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
- Laboratoire PhysicoChimie Curie UMR168, Institut Curie, Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, Paris, France
| | - Dmitry Y Guschin
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Hong Wang
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anna Polesskaya
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Svetlana N Rubtsova
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Christophe Le Clainche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Pascal Silberzan
- Laboratoire PhysicoChimie Curie UMR168, Institut Curie, Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, Paris, France
| | - Alexis M Gautreau
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Stéphane Romero
- Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
9
|
Rottner AK, Lundin A, Li S, Firth M, Maresca M, Sienski G. Optimized prime editing of the Alzheimer's disease-associated APOE4 mutation. Stem Cell Reports 2025; 20:102372. [PMID: 39642875 PMCID: PMC11784477 DOI: 10.1016/j.stemcr.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024] Open
Abstract
Gene editing strategies to safely and robustly modify the Alzheimer's disease-associated APOE4 isoform are still lacking. Prime editing (PE) enables the precise introduction of genetic variants with minimal unintended editing and without donor templates. However, it requires optimization for each target site and has not yet been applied to APOE4 gene editing. Here, we screened PE guide RNA (pegRNA) parameters and PE systems for introducing the APOE4 variant and applied the optimized PE strategy to generate disease-relevant human induced pluripotent stem cell models. We show that introducing a single-nucleotide difference required for APOE4 correction inhibits PE activity. To advance efficient and robust genome engineering of precise genetic variants, we further present a reliable PE enrichment strategy based on diphtheria toxin co-selection. Our work provides an optimized and reproducible genome engineering pipeline to generate APOE4 disease models and outlines novel strategies to accelerate genome editing in cellular disease model generation.
Collapse
Affiliation(s)
- Antje K Rottner
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Anders Lundin
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Songyuan Li
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Mike Firth
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Cambridge, UK
| | - Marcello Maresca
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Grzegorz Sienski
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
10
|
Janovič T, Perez GI, Schmidt JC. TRF1 and TRF2 form distinct shelterin subcomplexes at telomeres. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.23.630076. [PMID: 39763972 PMCID: PMC11703185 DOI: 10.1101/2024.12.23.630076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The shelterin complex protects chromosome ends from the DNA damage repair machinery and regulates telomerase access to telomeres. Shelterin is composed of six proteins (TRF1, TRF2, TIN2, TPP1, POT1 and RAP1) that can assemble into various subcomplexes in vitro. However, the stoichiometry of the shelterin complex and its dynamic association with telomeres in cells is poorly defined. To quantitatively analyze the shelterin function in living cells we generated a panel of cancer cell lines expressing HaloTagged shelterin proteins from their endogenous loci. We systematically determined the total cellular abundance and telomeric copy number of each shelterin subunit, demonstrating that the shelterin proteins are present at telomeres in equal numbers. In addition, we used single-molecule live-cell imaging to analyze the dynamics of shelterin protein association with telomeres. Our results demonstrate that TRF1-TIN2-TPP1-POT1 and TRF2-RAP1 form distinct subcomplexes that occupy non-overlapping binding sites on telomeric chromatin. TRF1-TIN2-TPP1-POT1 tightly associates with chromatin, while TRF2-RAP1 binding to telomeres is more dynamic, allowing it to recruit a variety of co-factors to chromatin to protect chromosome ends from DNA repair factors. In total, our work provides critical mechanistic insight into how the shelterin proteins carry out multiple essential functions in telomere maintenance and significantly advances our understanding of macromolecular structure of telomeric chromatin.
Collapse
Affiliation(s)
- Tomáš Janovič
- Institute for Quantitative Health Science and Engineering, Gynecology and Reproductive Biology, Michigan State University, East Lansing
| | - Gloria I. Perez
- Institute for Quantitative Health Science and Engineering, Gynecology and Reproductive Biology, Michigan State University, East Lansing
| | - Jens C. Schmidt
- Institute for Quantitative Health Science and Engineering, Gynecology and Reproductive Biology, Michigan State University, East Lansing
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing
| |
Collapse
|
11
|
Langlois JB, Brenneisen S, Rodde S, Vangrevelinghe E, Rose G, Lerch P, Sorge M, Ullrich T, Patora-Komisarska K, Quancard J, Larger P, Gianola L, Textor C, Chenal G, Rubic-Schneider T, Simkova K, Masmanidou O, Scheufler C, Lammens A, Bouzan A, Demirci S, Flotte L, Rivet H, Hartmann L, Guezel D, Flueckiger M, Schilb A, Schuepbach E, Kettle R, Jacobi C, Pearson D, Richards PJ, Minetti GC. Identification of TAK-756, A Potent TAK1 Inhibitor for the Treatment of Osteoarthritis through Intra-Articular Administration. J Med Chem 2024; 67:21163-21185. [PMID: 39576936 DOI: 10.1021/acs.jmedchem.4c01938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Osteoarthritis (OA) is a chronic and degenerative joint disease affecting more than 500 million patients worldwide with no disease-modifying treatment approved to date. Several publications report on the transforming growth factor β-activated kinase 1 (TAK1) as a potential molecular target for OA, with complementary anti-catabolic and anti-inflammatory effects. We report herein on the development of TAK1 inhibitors with physicochemical properties suitable for intra-articular injection, with the aim to achieve high drug concentration at the affected joint, while avoiding severe toxicity associated with systemic inhibition. More specifically, reducing solubility by increasing crystallinity, while maintaining moderate lipophilicity proved to be a good compromise to ensure high and sustained free drug exposures in the joint. Furthermore, structure-based design allowed for an improvement of selectivity versus interleukin-1 receptor-associated kinases 1 and 4 (IRAK1/4). Finally, TAK-756 was discovered as a potent TAK1 inhibitor with good selectivity versus IRAK1/4 as well as excellent intra-articular pharmacokinetic properties.
Collapse
Affiliation(s)
| | - Silke Brenneisen
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Stephane Rodde
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | | | - Geoffroy Rose
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Patrick Lerch
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Mickael Sorge
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Thomas Ullrich
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | | | - Jean Quancard
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Patrice Larger
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Lucas Gianola
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Claudia Textor
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Gaelle Chenal
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | | | - Katerina Simkova
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Olga Masmanidou
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | | | - Alfred Lammens
- Proteros Biostructures GmbH, Bunsenstrasse 7a, D-82152 Planegg-Martinsried, Germany
| | - Anais Bouzan
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Sabrina Demirci
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Ludivine Flotte
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Helene Rivet
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Lilian Hartmann
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Danyel Guezel
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | | | - Alain Schilb
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Edi Schuepbach
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Rachel Kettle
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Carsten Jacobi
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - David Pearson
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Peter J Richards
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| | - Giulia C Minetti
- Novartis Biomedical Research, Postfach, CH-4002 Basel, Switzerland
| |
Collapse
|
12
|
Can G, Shyian M, Krishnamoorthy A, Lim Y, Wu RA, Zaher MS, Raschle M, Walter JC, Pellman DS. TTF2 promotes replisome eviction from stalled forks in mitosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.30.626186. [PMID: 39651145 PMCID: PMC11623681 DOI: 10.1101/2024.11.30.626186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
When cells enter mitosis with under-replicated DNA, sister chromosome segregation is compromised, which can lead to massive genome instability. The replisome-associated E3 ubiquitin ligase TRAIP mitigates this threat by ubiquitylating the CMG helicase in mitosis, leading to disassembly of stalled replisomes, fork cleavage, and restoration of chromosome structure by alternative end-joining. Here, we show that replisome disassembly requires TRAIP phosphorylation by the mitotic Cyclin B-CDK1 kinase, as well as TTF2, a SWI/SNF ATPase previously implicated in the eviction of RNA polymerase from mitotic chromosomes. We find that TTF2 tethers TRAIP to replisomes using an N-terminal Zinc finger that binds to phosphorylated TRAIP and an adjacent TTF2 peptide that contacts the CMG-associated leading strand DNA polymerase ε. This TRAIP-TTF2-pol ε bridge, which forms independently of the TTF2 ATPase domain, is essential to promote CMG unloading and stalled fork breakage. Conversely, RNAPII eviction from mitotic chromosomes requires the ATPase activity of TTF2. We conclude that in mitosis, replisomes undergo a CDK- and TTF2-dependent structural reorganization that underlies the cellular response to incompletely replicated DNA.
Collapse
Affiliation(s)
- Geylani Can
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Maksym Shyian
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Archana Krishnamoorthy
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yang Lim
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - R. Alex Wu
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Present Address: Arrakis Pharmaceuticals, Waltham, MA, USA
| | - Manal S. Zaher
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Markus Raschle
- Technische Universitat Kaiserslautern, Kaiserslautern, Germany
| | - Johannes C. Walter
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute
| | - David S. Pellman
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Howard Hughes Medical Institute
| |
Collapse
|
13
|
Murray-Nerger LA, Gewurz BE. Efficient CRISPR/Cas9 Knock-in Approaches for Manipulation of Endogenous Genes in Human B Lymphoma Cells. Curr Protoc 2024; 4:e70041. [PMID: 39535522 PMCID: PMC11567056 DOI: 10.1002/cpz1.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Precise understanding of temporally controlled protein-protein interactions, localization, and expression is often difficult to achieve using traditional overexpression techniques. Recent advances have made CRISPR-based knock-in approaches efficient, which enables rapid derivation of cells with tagged endogenous proteins. However, the high degree of variability in knock-in efficiency across cell types and gene loci poses challenges, in particular with B lymphocytes, which are refractory to lipid transfection. Here, we present detailed protocols for efficient B lymphoma cell CRISPR/Cas9-mediated knock-in. We address knock-in efficiency in two ways. First, we provide a detailed approach for assessing cutting efficiency to select the most efficient single guide RNA for the gene region of interest. Second, we provide detailed approaches for tagging endogenous proteins with a fluorescent marker or instead for co-expressing them with an unlinked fluorescent marker. Either approach facilitates downstream selection of single-cell or bulk populations with the desired knock-in, particularly when knock-in efficiency is low. The utility of this approach is demonstrated via examples of engineering tags onto endogenous protein N- or C-termini, together with downstream analyses. We anticipate that this workflow can be applied more broadly to other cell types for efficient knock-in into endogenous loci. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Choosing an optimal knock-in target site and single guide RNA (sgRNA) design Basic Protocol 2: Assessment of Cas9 editing efficiency at the desired B cell genomic knock-in site Basic Protocol 3: Cloning the sgRNA dual guide construct Basic Protocol 4: Repair template design and cloning Basic Protocol 5: Electroporation and selection of engineered B cells Basic Protocol 6: Single-cell cloning of engineered B cells.
Collapse
Affiliation(s)
- Laura A. Murray-Nerger
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Harvard Program in Virology, Boston, MA 02115, USA
| | - Benjamin E. Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Harvard Program in Virology, Boston, MA 02115, USA
| |
Collapse
|
14
|
Yang Z, Mameri A, Cattoglio C, Lachance C, Ariza AJF, Luo J, Humbert J, Sudarshan D, Banerjea A, Galloy M, Fradet-Turcotte A, Lambert JP, Ranish JA, Côté J, Nogales E. Structural insights into the human NuA4/TIP60 acetyltransferase and chromatin remodeling complex. Science 2024; 385:eadl5816. [PMID: 39088653 PMCID: PMC11995519 DOI: 10.1126/science.adl5816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/25/2024] [Accepted: 06/25/2024] [Indexed: 08/03/2024]
Abstract
The human nucleosome acetyltransferase of histone H4 (NuA4)/Tat-interactive protein, 60 kilodalton (TIP60) coactivator complex, a fusion of the yeast switch/sucrose nonfermentable related 1 (SWR1) and NuA4 complexes, both incorporates the histone variant H2A.Z into nucleosomes and acetylates histones H4, H2A, and H2A.Z to regulate gene expression and maintain genome stability. Our cryo-electron microscopy studies show that, within the NuA4/TIP60 complex, the E1A binding protein P400 (EP400) subunit serves as a scaffold holding the different functional modules in specific positions, creating a distinct arrangement of the actin-related protein (ARP) module. EP400 interacts with the transformation/transcription domain-associated protein (TRRAP) subunit by using a footprint that overlaps with that of the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex, preventing the formation of a hybrid complex. Loss of the TRRAP subunit leads to mislocalization of NuA4/TIP60, resulting in the redistribution of H2A.Z and its acetylation across the genome, emphasizing the dual functionality of NuA4/TIP60 as a single macromolecular assembly.
Collapse
Affiliation(s)
- Zhenlin Yang
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Amel Mameri
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Claudia Cattoglio
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Catherine Lachance
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Alfredo Jose Florez Ariza
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
| | - Jie Luo
- Institute for Systems Biology, Seattle, WA, USA
| | - Jonathan Humbert
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Deepthi Sudarshan
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Arul Banerjea
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Maxime Galloy
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Amélie Fradet-Turcotte
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Jean-Philippe Lambert
- Endocrinology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | | | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
15
|
Rispal J, Rives C, Jouffret V, Leoni C, Dubois L, Chevillard-Briet M, Trouche D, Escaffit F. Control of Intestinal Stemness and Cell Lineage by Histone Variant H2A.Z Isoforms. Mol Cell Biol 2024; 44:455-472. [PMID: 39155414 PMCID: PMC11529411 DOI: 10.1080/10985549.2024.2387720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
The histone variant H2A.Z plays important functions in the regulation of gene expression. In mammals, it is encoded by two genes, giving rise to two highly related isoforms named H2A.Z.1 and H2A.Z.2, which can have similar or antagonistic functions depending on the promoter. Knowledge of the physiopathological consequences of such functions emerges, but how the balance between these isoforms regulates tissue homeostasis is not fully understood. Here, we investigated the relative role of H2A.Z isoforms in intestinal epithelial homeostasis. Through genome-wide analysis of H2A.Z genomic localization in differentiating Caco-2 cells, we uncovered an enrichment of H2A.Z isoforms on the bodies of genes which are induced during enterocyte differentiation, stressing the potential importance of H2A.Z isoforms dynamics in this process. Through a combination of in vitro and in vivo experiments, we further demonstrated the two isoforms cooperate for stem and progenitor cells proliferation, as well as for secretory lineage differentiation. However, we found that they antagonistically regulate enterocyte differentiation, with H2A.Z.1 preventing terminal differentiation and H2A.Z.2 favoring it. Altogether, these data indicate that H2A.Z isoforms are critical regulators of intestine homeostasis and may provide a paradigm of how the balance between two isoforms of the same chromatin structural protein can control physiopathological processes.
Collapse
Affiliation(s)
- Jérémie Rispal
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| | - Clémence Rives
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| | - Virginie Jouffret
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| | - Caroline Leoni
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| | - Louise Dubois
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| | - Martine Chevillard-Briet
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| | - Didier Trouche
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| | - Fabrice Escaffit
- Molecular, Cellular and Developmental Biology Unit, Centre de Biologie Integrative, University of Toulouse, Université Paul Sabatier, CNRS, Toulouse, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Toulouse, France
| |
Collapse
|
16
|
Li P, Li X, Wang F, Gao M, Bai Y, Zhang Z, Wei Z. Enrichment of prime-edited mammalian cells with surrogate Puro R reporters. Int J Biol Macromol 2024; 271:132474. [PMID: 38777019 DOI: 10.1016/j.ijbiomac.2024.132474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/01/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Prime editing is a programmable genetic method that can precisely generate any desired small-scale variations in cells without requiring double-strand breaks and DNA donors. However, higher editing efficiency is greatly desirable for wide practical applications. In this study, we developed a target-specific prime editing reporter (tsPER) and a universal prime editing reporter (UPER) to facilitate rapid selection of desired edited cells through puromycin screening. The modification efficiency of HEK3_i1CTT_d5G in HEK293T cells improved from 36.37 % to 64.84 % with the incorporation of tsPER. The target sequence of interested genes could be custom inserted into a selection cassette in tsPER to establish personalized reporters. The UPER demonstrated PE3 editing efficiency up to 74.49 % on HEK3_i1CTT_d5G and 73.52 % on HEK3_i1His6, achieved through co-selection with an additional pegRNA (puro) to repair the mutant PuroR cassette. Overall, tsPER and UPER robustly improved the efficiency of prime editing. Both of these approaches expand enrichment strategies for genomically modified cells and accelerate the generation of genetically modified models.
Collapse
Affiliation(s)
- Pengcheng Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; Yazhouwan National Laboratory, Sanya 572024, China
| | - Xinyi Li
- Division of Cardiovascular Medicine, Department of Medicin Solna(MedS), Karolinska institutet, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Fang Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Mengyu Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yichun Bai
- School of Public Health, Xinxiang Medical University, Xinxiang 453000, China
| | - Zhiying Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Zehui Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
17
|
Geraud M, Cristini A, Salimbeni S, Bery N, Jouffret V, Russo M, Ajello AC, Fernandez Martinez L, Marinello J, Cordelier P, Trouche D, Favre G, Nicolas E, Capranico G, Sordet O. TDP1 mutation causing SCAN1 neurodegenerative syndrome hampers the repair of transcriptional DNA double-strand breaks. Cell Rep 2024; 43:114214. [PMID: 38761375 DOI: 10.1016/j.celrep.2024.114214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/05/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024] Open
Abstract
TDP1 removes transcription-blocking topoisomerase I cleavage complexes (TOP1ccs), and its inactivating H493R mutation causes the neurodegenerative syndrome SCAN1. However, the molecular mechanism underlying the SCAN1 phenotype is unclear. Here, we generate human SCAN1 cell models using CRISPR-Cas9 and show that they accumulate TOP1ccs along with changes in gene expression and genomic distribution of R-loops. SCAN1 cells also accumulate transcriptional DNA double-strand breaks (DSBs) specifically in the G1 cell population due to increased DSB formation and lack of repair, both resulting from abortive removal of transcription-blocking TOP1ccs. Deficient TDP1 activity causes increased DSB production, and the presence of mutated TDP1 protein hampers DSB repair by a TDP2-dependent backup pathway. This study provides powerful models to study TDP1 functions under physiological and pathological conditions and unravels that a gain of function of the mutated TDP1 protein, which prevents DSB repair, rather than a loss of TDP1 activity itself, could contribute to SCAN1 pathogenesis.
Collapse
Affiliation(s)
- Mathéa Geraud
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Agnese Cristini
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Simona Salimbeni
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France; Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Nicolas Bery
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Virginie Jouffret
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France; BigA Core Facility, Centre de Biologie Intégrative (CBI), Université de Toulouse, 31062 Toulouse, France
| | - Marco Russo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Andrea Carla Ajello
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Lara Fernandez Martinez
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Jessica Marinello
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Pierre Cordelier
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Didier Trouche
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Gilles Favre
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France
| | - Estelle Nicolas
- MCD, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Olivier Sordet
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, Université Toulouse III Paul Sabatier, CNRS, 31037 Toulouse, France.
| |
Collapse
|
18
|
Kong LR, Gupta K, Wu AJ, Perera D, Ivanyi-Nagy R, Ahmed SM, Tan TZ, Tan SLW, Fuddin A, Sundaramoorthy E, Goh GS, Wong RTX, Costa ASH, Oddy C, Wong H, Patro CPK, Kho YS, Huang XZ, Choo J, Shehata M, Lee SC, Goh BC, Frezza C, Pitt JJ, Venkitaraman AR. A glycolytic metabolite bypasses "two-hit" tumor suppression by BRCA2. Cell 2024; 187:2269-2287.e16. [PMID: 38608703 DOI: 10.1016/j.cell.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/01/2024] [Accepted: 03/07/2024] [Indexed: 04/14/2024]
Abstract
Knudson's "two-hit" paradigm posits that carcinogenesis requires inactivation of both copies of an autosomal tumor suppressor gene. Here, we report that the glycolytic metabolite methylglyoxal (MGO) transiently bypasses Knudson's paradigm by inactivating the breast cancer suppressor protein BRCA2 to elicit a cancer-associated, mutational single-base substitution (SBS) signature in nonmalignant mammary cells or patient-derived organoids. Germline monoallelic BRCA2 mutations predispose to these changes. An analogous SBS signature, again without biallelic BRCA2 inactivation, accompanies MGO accumulation and DNA damage in Kras-driven, Brca2-mutant murine pancreatic cancers and human breast cancers. MGO triggers BRCA2 proteolysis, temporarily disabling BRCA2's tumor suppressive functions in DNA repair and replication, causing functional haploinsufficiency. Intermittent MGO exposure incites episodic SBS mutations without permanent BRCA2 inactivation. Thus, a metabolic mechanism wherein MGO-induced BRCA2 haploinsufficiency transiently bypasses Knudson's two-hit requirement could link glycolysis activation by oncogenes, metabolic disorders, or dietary challenges to mutational signatures implicated in cancer evolution.
Collapse
Affiliation(s)
- Li Ren Kong
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore; MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; Department of Pharmacology, National University of Singapore, Singapore 117600, Singapore
| | - Komal Gupta
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Andy Jialun Wu
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - David Perera
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | | | - Syed Moiz Ahmed
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Shawn Lu-Wen Tan
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; Institute of Molecular and Cell Biology (IMCB), A(∗)STAR, Singapore 138673, Singapore
| | | | | | | | | | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Callum Oddy
- Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Hannan Wong
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - C Pawan K Patro
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Yun Suen Kho
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore
| | - Joan Choo
- Department of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Mona Shehata
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Soo Chin Lee
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore; Department of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore; Department of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; University of Cologne, 50923 Köln, Germany
| | - Jason J Pitt
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore; Genome Institute of Singapore, A(∗)STAR, Singapore 138673, Singapore
| | - Ashok R Venkitaraman
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore; MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; Institute of Molecular and Cell Biology (IMCB), A(∗)STAR, Singapore 138673, Singapore; Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK; Department of Medicine, National University of Singapore, Singapore 119228, Singapore.
| |
Collapse
|
19
|
van Zwam MC, Dhar A, Bosman W, van Straaten W, Weijers S, Seta E, Joosten B, van Haren J, Palani S, van den Dries K. IntAct: A nondisruptive internal tagging strategy to study the organization and function of actin isoforms. PLoS Biol 2024; 22:e3002551. [PMID: 38466773 PMCID: PMC10957077 DOI: 10.1371/journal.pbio.3002551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/21/2024] [Accepted: 02/16/2024] [Indexed: 03/13/2024] Open
Abstract
Mammals have 6 highly conserved actin isoforms with nonredundant biological functions. The molecular basis of isoform specificity, however, remains elusive due to a lack of tools. Here, we describe the development of IntAct, an internal tagging strategy to study actin isoforms in fixed and living cells. We identified a residue pair in β-actin that permits tag integration and used knock-in cell lines to demonstrate that IntAct β-actin expression and filament incorporation is indistinguishable from wild type. Furthermore, IntAct β-actin remains associated with common actin-binding proteins (ABPs) and can be targeted in living cells. We demonstrate the usability of IntAct for actin isoform investigations by showing that actin isoform-specific distribution is maintained in human cells. Lastly, we observed a variant-dependent incorporation of tagged actin variants into yeast actin patches, cables, and cytokinetic rings demonstrating cross species applicability. Together, our data indicate that IntAct is a versatile tool to study actin isoform localization, dynamics, and molecular interactions.
Collapse
Affiliation(s)
- Maxime C. van Zwam
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anubhav Dhar
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Willem Bosman
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Wendy van Straaten
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Suzanne Weijers
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Emiel Seta
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ben Joosten
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Saravanan Palani
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Koen van den Dries
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
20
|
Li S, Wang Y, van der Stoel M, Zhou X, Madhusudan S, Kanerva K, Nguyen VD, Eskici N, Olkkonen VM, Zhou Y, Raivio T, Ikonen E. HiHo-AID2: boosting homozygous knock-in efficiency enables robust generation of human auxin-inducible degron cells. Genome Biol 2024; 25:58. [PMID: 38409044 PMCID: PMC10895734 DOI: 10.1186/s13059-024-03187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024] Open
Abstract
Recent developments in auxin-inducible degron (AID) technology have increased its popularity for chemogenetic control of proteolysis. However, generation of human AID cell lines is challenging, especially in human embryonic stem cells (hESCs). Here, we develop HiHo-AID2, a streamlined procedure for rapid, one-step generation of human cancer and hESC lines with high homozygous degron-tagging efficiency based on an optimized AID2 system and homology-directed repair enhancers. We demonstrate its application for rapid and inducible functional inactivation of twelve endogenous target proteins in five cell lines, including targets with diverse expression levels and functions in hESCs and cells differentiated from hESCs.
Collapse
Affiliation(s)
- Shiqian Li
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland.
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland.
| | - Yafei Wang
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Miesje van der Stoel
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Xin Zhou
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Shrinidhi Madhusudan
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Kristiina Kanerva
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Van Dien Nguyen
- Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Nazli Eskici
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Vesa M Olkkonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - You Zhou
- Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Taneli Raivio
- Stem Cells and Metabolism Research Program, Research Programs Unit, and Department of Physiology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- New Children's Hospital, Pediatric Research Center, Helsinki University Hospital, 00290, Helsinki, Finland
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland.
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland.
| |
Collapse
|
21
|
Chang CR, Vykunta VS, Goodman DB, Muldoon JJ, Nyberg WA, Liu C, Allain V, Rothrock A, Wang CH, Marson A, Shy BR, Eyquem J. Ultra-high efficiency T cell reprogramming at multiple loci with SEED-Selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.576175. [PMID: 38370809 PMCID: PMC10871224 DOI: 10.1101/2024.02.06.576175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Multiplexed reprogramming of T cell specificity and function can generate powerful next-generation cellular therapies. However, current manufacturing methods produce heterogenous mixtures of partially engineered cells. Here, we develop a one-step process to enrich for unlabeled cells with knock-ins at multiple target loci using a family of repair templates named Synthetic Exon/Expression Disruptors (SEEDs). SEED engineering associates transgene integration with the disruption of a paired endogenous surface protein, allowing non-modified and partially edited cells to be immunomagnetically depleted (SEED-Selection). We design SEEDs to fully reprogram three critical loci encoding T cell specificity, co-receptor expression, and MHC expression, with up to 98% purity after selection for individual modifications and up to 90% purity for six simultaneous edits (three knock-ins and three knockouts). These methods are simple, compatible with existing clinical manufacturing workflows, and can be readily adapted to other loci to facilitate production of complex gene-edited cell therapies.
Collapse
Affiliation(s)
- Christopher R Chang
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Vivasvan S Vykunta
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel B Goodman
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Joseph J Muldoon
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - William A Nyberg
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chang Liu
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Vincent Allain
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Université Paris Cité, INSERM UMR976, Hôpital Saint-Louis, Paris, France
| | - Allison Rothrock
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Charlotte H Wang
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Brian R Shy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Justin Eyquem
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
22
|
Weischedel J, Higgins L, Rogers S, Gramalla-Schmitz A, Wyrzykowska P, Borgoni S, MacCarthy T, Chahwan R. Modular cytosine base editing promotes epigenomic and genomic modifications. Nucleic Acids Res 2024; 52:e8. [PMID: 37994786 PMCID: PMC10810192 DOI: 10.1093/nar/gkad1118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 10/06/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Prokaryotic and eukaryotic adaptive immunity differ considerably. Yet, their fundamental mechanisms of gene editing via Cas9 and activation-induced deaminase (AID), respectively, can be conveniently complimentary. Cas9 is an RNA targeted dual nuclease expressed in several bacterial species. AID is a cytosine deaminase expressed in germinal centre B cells to mediate genomic antibody diversification. AID can also mediate epigenomic reprogramming via active DNA demethylation. It is known that sequence motifs, nucleic acid structures, and associated co-factors affect AID activity. But despite repeated attempts, deciphering AID's intrinsic catalytic activities and harnessing its targeted recruitment to DNA is still intractable. Even recent cytosine base editors are unable to fully recapitulate AID's genomic and epigenomic editing properties. Here, we describe the first instance of a modular AID-based editor that recapitulates the full spectrum of genomic and epigenomic editing activity. Our 'Swiss army knife' toolbox will help better understand AID biology per se as well as improve targeted genomic and epigenomic editing.
Collapse
Affiliation(s)
- Julian Weischedel
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Laurence Higgins
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Sally Rogers
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Anna Gramalla-Schmitz
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Paulina Wyrzykowska
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Simone Borgoni
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Thomas MacCarthy
- Department of Applied Mathematics & Statistics, Stony Brook University, NY 11794-3600, USA
| | - Richard Chahwan
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
23
|
Hovhannisyan Y, Li Z, Callon D, Suspène R, Batoumeni V, Canette A, Blanc J, Hocini H, Lefebvre C, El-Jahrani N, Kitsara M, L'honoré A, Kordeli E, Fornes P, Concordet JP, Tachdjian G, Rodriguez AM, Vartanian JP, Béhin A, Wahbi K, Joanne P, Agbulut O. Critical contribution of mitochondria in the development of cardiomyopathy linked to desmin mutation. Stem Cell Res Ther 2024; 15:10. [PMID: 38167524 PMCID: PMC10763022 DOI: 10.1186/s13287-023-03619-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Beyond the observed alterations in cellular structure and mitochondria, the mechanisms linking rare genetic mutations to the development of heart failure in patients affected by desmin mutations remain unclear due in part, to the lack of relevant human cardiomyocyte models. METHODS To shed light on the role of mitochondria in these mechanisms, we investigated cardiomyocytes derived from human induced pluripotent stem cells carrying the heterozygous DESE439K mutation that were either isolated from a patient or generated by gene editing. To increase physiological relevance, cardiomyocytes were either cultured on an anisotropic micropatterned surface to obtain elongated and aligned cardiomyocytes, or as a cardiac spheroid to create a micro-tissue. Moreover, when applicable, results from cardiomyocytes were confirmed with heart biopsies of suddenly died patient of the same family harboring DESE439K mutation, and post-mortem heart samples from five control healthy donors. RESULTS The heterozygous DESE439K mutation leads to dramatic changes in the overall cytoarchitecture of cardiomyocytes, including cell size and morphology. Most importantly, mutant cardiomyocytes display altered mitochondrial architecture, mitochondrial respiratory capacity and metabolic activity reminiscent of defects observed in patient's heart tissue. Finally, to challenge the pathological mechanism, we transferred normal mitochondria inside the mutant cardiomyocytes and demonstrated that this treatment was able to restore mitochondrial and contractile functions of cardiomyocytes. CONCLUSIONS This work highlights the deleterious effects of DESE439K mutation, demonstrates the crucial role of mitochondrial abnormalities in the pathophysiology of desmin-related cardiomyopathy, and opens up new potential therapeutic perspectives for this disease.
Collapse
Affiliation(s)
- Yeranuhi Hovhannisyan
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Zhenlin Li
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Domitille Callon
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
- Department of Pathology, Academic Hospital of Reims, Reims, France
| | - Rodolphe Suspène
- Virus and Cellular Stress Unit, Department of Virology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Vivien Batoumeni
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
- Ksilink, Strasbourg, France
| | - Alexis Canette
- Service de Microscopie Électronique (IBPS-SME), Institut de Biologie Paris-Seine (IBPS), CNRS, Sorbonne Université, Paris, France
| | - Jocelyne Blanc
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Hakim Hocini
- INSERM U955, Equipe 16, Université Paris-Est Créteil, Créteil, France
| | - Cécile Lefebvre
- INSERM U955, Equipe 16, Université Paris-Est Créteil, Créteil, France
| | - Nora El-Jahrani
- INSERM U955, Equipe 16, Université Paris-Est Créteil, Créteil, France
| | - Maria Kitsara
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Aurore L'honoré
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Ekaterini Kordeli
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Paul Fornes
- Department of Pathology, Academic Hospital of Reims, Reims, France
| | - Jean-Paul Concordet
- INSERM U1154, CNRS UMR7196, Museum National d'Histoire Naturelle, Paris, France
| | - Gérard Tachdjian
- Laboratoire de Cytogénétique, Service d'Histologie-Embryologie-Cytogénétique, AP-HP, Hôpital Antoine Béclère, Université Paris Saclay, Clamart, France
| | - Anne-Marie Rodriguez
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Jean-Pierre Vartanian
- Virus and Cellular Stress Unit, Department of Virology, Institut Pasteur, Université Paris Cité, Paris, France
| | - Anthony Béhin
- Reference Center for Muscle Diseases Paris-Est, Myology Institute, AP-HP, Pitié-Salpêtrière Hospital, Sorbonne Université, Paris, France
| | - Karim Wahbi
- Cardiology Department, AP-HP, Cochin Hospital, Université Paris Cité, Paris, France
| | - Pierre Joanne
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France.
| | - Onnik Agbulut
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France.
| |
Collapse
|
24
|
Budagyan K, Cannon AC, Chernoff J. A Facile Method to Append a Bio-ID Tag to Endogenous Mutant Kras Alleles. Methods Mol Biol 2024; 2797:351-362. [PMID: 38570472 DOI: 10.1007/978-1-0716-3822-4_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
KRAS mutations occur in approximately ~50% of colorectal cancers (CRCs) and are associated with poor prognosis and resistance to therapy. While these most common mutations found at amino acids G12, G13, Q61, and A146 have long been considered oncogenic drivers of CRC, emerging clinical data suggest that each mutation may possess different biological functions, resulting in varying consequences in oncogenesis. Currently, the mechanistic underpinnings associated with each allelic variation remain unclear. Elucidating the unique effectors of each KRAS mutant could both increase the understanding of KRAS biology and provide a basis for allele-specific therapeutic opportunities. Biotinylation identification (BioID) is a method to label and identify proteins located in proximity of a protein of interest. These proteins are captured through the strong interaction between the biotin label and streptavidin bead and subsequently identified by mass spectrometry. Here, we developed a protocol using CRISPR-mediated gene editing to generate endogenous BioID2-tagged KrasG12D and KrasG12V isogenic murine colon epithelial cell lines to identify unique protein proximity partners by BioID.
Collapse
Affiliation(s)
- Konstantin Budagyan
- Drexel University College of Medicine, Philadelphia, PA, USA
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Alexa C Cannon
- Drexel University College of Medicine, Philadelphia, PA, USA
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | | |
Collapse
|
25
|
Hunt MS, Yang SJ, Mortensen E, Boukhris A, Buckner J, Cook PJ, Rawlings DJ. Dual-locus, dual-HDR editing permits efficient generation of antigen-specific regulatory T cells with robust suppressive activity. Mol Ther 2023; 31:2872-2886. [PMID: 37481700 PMCID: PMC10556186 DOI: 10.1016/j.ymthe.2023.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/23/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023] Open
Abstract
Adoptive regulatory T (Treg) cell therapy is predicted to modulate immune tolerance in autoimmune diseases, including type 1 diabetes (T1D). However, the requirement for antigen (ag) specificity to optimally orchestrate tissue-specific, Treg cell-mediated tolerance limits effective clinical application. To address this challenge, we present a single-step, combinatorial gene editing strategy utilizing dual-locus, dual-homology-directed repair (HDR) to generate and specifically expand ag-specific engineered Treg (EngTreg) cells derived from donor CD4+ T cells. Concurrent delivery of CRISPR nucleases and recombinant (r)AAV homology donor templates targeting FOXP3 and TRAC was used to achieve three parallel goals: enforced, stable expression of FOXP3; replacement of the endogenous T cell receptor (TCR) with an islet-specific TCR; and selective enrichment of dual-edited cells. Each HDR donor template contained an alternative component of a heterodimeric chemically inducible signaling complex (CISC), designed to activate interleukin-2 (IL-2) signaling in response to rapamycin, promoting expansion of only dual-edited EngTreg cells. Using this approach, we generated purified, islet-specific EngTreg cells that mediated robust direct and bystander suppression of effector T (Teff) cells recognizing the same or a different islet antigen peptide, respectively. This platform is broadly adaptable for use with alternative TCRs or other targeting moieties for application in tissue-specific autoimmune or inflammatory diseases.
Collapse
MESH Headings
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Gene Editing/methods
- Humans
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Forkhead Transcription Factors/metabolism
- Forkhead Transcription Factors/genetics
- CRISPR-Cas Systems
- Diabetes Mellitus, Type 1/therapy
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/genetics
- Recombinational DNA Repair
- Genetic Vectors/genetics
- Interleukin-2/genetics
- Interleukin-2/metabolism
- Animals
- Immune Tolerance
Collapse
Affiliation(s)
- Martina S Hunt
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Soo Jung Yang
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle WA 98101, USA
| | - Emma Mortensen
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle WA 98101, USA
| | - Ahmad Boukhris
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Jane Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle WA 98101, USA
| | - Peter J Cook
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA.
| | - David J Rawlings
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
26
|
Gonthier K, Weidmann C, Berthiaume L, Jobin C, Lacouture A, Lafront C, Harvey M, Neveu B, Loehr J, Bergeron A, Fradet Y, Lacombe L, Riopel J, Latulippe É, Atallah C, Shum M, Lambert J, Pouliot F, Pelletier M, Audet‐Walsh É. Isocitrate dehydrogenase 1 sustains a hybrid cytoplasmic-mitochondrial tricarboxylic acid cycle that can be targeted for therapeutic purposes in prostate cancer. Mol Oncol 2023; 17:2109-2125. [PMID: 37086156 PMCID: PMC10552900 DOI: 10.1002/1878-0261.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/07/2023] [Accepted: 04/21/2023] [Indexed: 04/23/2023] Open
Abstract
The androgen receptor (AR) is an established orchestrator of cell metabolism in prostate cancer (PCa), notably by inducing an oxidative mitochondrial program. Intriguingly, AR regulates cytoplasmic isocitrate dehydrogenase 1 (IDH1), but not its mitochondrial counterparts IDH2 and IDH3. Here, we aimed to understand the functional role of IDH1 in PCa. Mouse models, in vitro human PCa cell lines, and human patient-derived organoids (PDOs) were used to study the expression and activity of IDH enzymes in the normal prostate and PCa. Genetic and pharmacological inhibition of IDH1 was then combined with extracellular flux analyses and gas chromatography-mass spectrometry for metabolomic analyses and cancer cell proliferation in vitro and in vivo. In PCa cells, more than 90% of the total IDH activity is mediated through IDH1 rather than its mitochondrial counterparts. This profile seems to originate from the specialized prostate metabolic program, as observed using mouse prostate and PDOs. Pharmacological and genetic inhibition of IDH1 impaired mitochondrial respiration, suggesting that this cytoplasmic enzyme contributes to the mitochondrial tricarboxylic acid cycle (TCA) in PCa. Mass spectrometry-based metabolomics confirmed this hypothesis, showing that inhibition of IDH1 impairs carbon flux into the TCA cycle. Consequently, inhibition of IDH1 decreased PCa cell proliferation in vitro and in vivo. These results demonstrate that PCa cells have a hybrid cytoplasmic-mitochondrial TCA cycle that depends on IDH1. This metabolic enzyme represents a metabolic vulnerability of PCa cells and a potential new therapeutic target.
Collapse
Affiliation(s)
- Kevin Gonthier
- Endocrinology – Nephrology Research AxisCHU de Québec‐Université Laval Research CenterCanada
- Department of Molecular Medicine, Faculty of MedicineUniversité LavalQuébecCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
| | - Cindy Weidmann
- Endocrinology – Nephrology Research AxisCHU de Québec‐Université Laval Research CenterCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
| | - Line Berthiaume
- Endocrinology – Nephrology Research AxisCHU de Québec‐Université Laval Research CenterCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
| | - Cynthia Jobin
- Endocrinology – Nephrology Research AxisCHU de Québec‐Université Laval Research CenterCanada
- Department of Molecular Medicine, Faculty of MedicineUniversité LavalQuébecCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
| | - Aurélie Lacouture
- Endocrinology – Nephrology Research AxisCHU de Québec‐Université Laval Research CenterCanada
- Department of Molecular Medicine, Faculty of MedicineUniversité LavalQuébecCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
| | - Camille Lafront
- Endocrinology – Nephrology Research AxisCHU de Québec‐Université Laval Research CenterCanada
- Department of Molecular Medicine, Faculty of MedicineUniversité LavalQuébecCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
| | - Mario Harvey
- Endocrinology – Nephrology Research AxisCHU de Québec‐Université Laval Research CenterCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
| | - Bertrand Neveu
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
- Oncology AxisCentre de recherche du CHU de Québec – Université LavalCanada
| | - Jérémy Loehr
- Endocrinology – Nephrology Research AxisCHU de Québec‐Université Laval Research CenterCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
| | - Alain Bergeron
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
- Oncology AxisCentre de recherche du CHU de Québec – Université LavalCanada
- Department of Surgery, Faculty of MedicineUniversité LavalQuébecCanada
| | - Yves Fradet
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
- Oncology AxisCentre de recherche du CHU de Québec – Université LavalCanada
- Department of Surgery, Faculty of MedicineUniversité LavalQuébecCanada
| | - Louis Lacombe
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
- Oncology AxisCentre de recherche du CHU de Québec – Université LavalCanada
- Department of Surgery, Faculty of MedicineUniversité LavalQuébecCanada
| | - Julie Riopel
- Anatomopathology Service, Department of Laboratory MedicineCHU de Québec – Université LavalCanada
| | - Éva Latulippe
- Department of PathologyCHU de Québec – Université LavalCanada
| | - Chantal Atallah
- Department of PathologyCHU de Québec – Université LavalCanada
| | - Michael Shum
- Endocrinology – Nephrology Research AxisCHU de Québec‐Université Laval Research CenterCanada
- Department of Molecular Medicine, Faculty of MedicineUniversité LavalQuébecCanada
| | - Jean‐Philippe Lambert
- Endocrinology – Nephrology Research AxisCHU de Québec‐Université Laval Research CenterCanada
- Department of Molecular Medicine, Faculty of MedicineUniversité LavalQuébecCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
- Big Data Research CenterUniversité LavalQuébecQCCanada
| | - Frédéric Pouliot
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
- Oncology AxisCentre de recherche du CHU de Québec – Université LavalCanada
- Department of Surgery, Faculty of MedicineUniversité LavalQuébecCanada
| | - Martin Pelletier
- Infectious and Immune Disease AxisCHU de Québec‐Université Laval Research CenterCanada
- ARThrite Research CenterUniversité LavalQuébecQCCanada
- Department of Microbiology‐Infectious Diseases and Immunology, Faculty of MedicineUniversité LavalQuébecQCCanada
| | - Étienne Audet‐Walsh
- Endocrinology – Nephrology Research AxisCHU de Québec‐Université Laval Research CenterCanada
- Department of Molecular Medicine, Faculty of MedicineUniversité LavalQuébecCanada
- Centre de recherche sur le cancer de l'Université LavalQuébecCanada
| |
Collapse
|
27
|
Balmas E, Sozza F, Bottini S, Ratto ML, Savorè G, Becca S, Snijders KE, Bertero A. Manipulating and studying gene function in human pluripotent stem cell models. FEBS Lett 2023; 597:2250-2287. [PMID: 37519013 DOI: 10.1002/1873-3468.14709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023]
Abstract
Human pluripotent stem cells (hPSCs) are uniquely suited to study human development and disease and promise to revolutionize regenerative medicine. These applications rely on robust methods to manipulate gene function in hPSC models. This comprehensive review aims to both empower scientists approaching the field and update experienced stem cell biologists. We begin by highlighting challenges with manipulating gene expression in hPSCs and their differentiated derivatives, and relevant solutions (transfection, transduction, transposition, and genomic safe harbor editing). We then outline how to perform robust constitutive or inducible loss-, gain-, and change-of-function experiments in hPSCs models, both using historical methods (RNA interference, transgenesis, and homologous recombination) and modern programmable nucleases (particularly CRISPR/Cas9 and its derivatives, i.e., CRISPR interference, activation, base editing, and prime editing). We further describe extension of these approaches for arrayed or pooled functional studies, including emerging single-cell genomic methods, and the related design and analytical bioinformatic tools. Finally, we suggest some directions for future advancements in all of these areas. Mastering the combination of these transformative technologies will empower unprecedented advances in human biology and medicine.
Collapse
Affiliation(s)
- Elisa Balmas
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Federica Sozza
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Sveva Bottini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Maria Luisa Ratto
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Giulia Savorè
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Silvia Becca
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Kirsten Esmee Snijders
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Alessandro Bertero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| |
Collapse
|
28
|
Mikkelsen NS, Bak RO. Enrichment strategies to enhance genome editing. J Biomed Sci 2023; 30:51. [PMID: 37393268 PMCID: PMC10315055 DOI: 10.1186/s12929-023-00943-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
Genome editing technologies hold great promise for numerous applications including the understanding of cellular and disease mechanisms and the development of gene and cellular therapies. Achieving high editing frequencies is critical to these research areas and to achieve the overall goal of being able to manipulate any target with any desired genetic outcome. However, gene editing technologies sometimes suffer from low editing efficiencies due to several challenges. This is often the case for emerging gene editing technologies, which require assistance for translation into broader applications. Enrichment strategies can support this goal by selecting gene edited cells from non-edited cells. In this review, we elucidate the different enrichment strategies, their many applications in non-clinical and clinical settings, and the remaining need for novel strategies to further improve genome research and gene and cellular therapy studies.
Collapse
Affiliation(s)
- Nanna S Mikkelsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, Bldg. 1115, 8000, Aarhus C., Denmark
| | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, Bldg. 1115, 8000, Aarhus C., Denmark.
| |
Collapse
|
29
|
Berko ER, Witek GM, Matkar S, Petrova ZO, Wu MA, Smith CM, Daniels A, Kalna J, Kennedy A, Gostuski I, Casey C, Krytska K, Gerelus M, Pavlick D, Ghazarian S, Park JR, Marachelian A, Maris JM, Goldsmith KC, Radhakrishnan R, Lemmon MA, Mossé YP. Circulating tumor DNA reveals mechanisms of lorlatinib resistance in patients with relapsed/refractory ALK-driven neuroblastoma. Nat Commun 2023; 14:2601. [PMID: 37147298 PMCID: PMC10163008 DOI: 10.1038/s41467-023-38195-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023] Open
Abstract
Activating point mutations in Anaplastic Lymphoma Kinase (ALK) have positioned ALK as the only mutated oncogene tractable for targeted therapy in neuroblastoma. Cells with these mutations respond to lorlatinib in pre-clinical studies, providing the rationale for a first-in-child Phase 1 trial (NCT03107988) in patients with ALK-driven neuroblastoma. To track evolutionary dynamics and heterogeneity of tumors, and to detect early emergence of lorlatinib resistance, we collected serial circulating tumor DNA samples from patients enrolled on this trial. Here we report the discovery of off-target resistance mutations in 11 patients (27%), predominantly in the RAS-MAPK pathway. We also identify newly acquired secondary compound ALK mutations in 6 (15%) patients, all acquired at disease progression. Functional cellular and biochemical assays and computational studies elucidate lorlatinib resistance mechanisms. Our results establish the clinical utility of serial circulating tumor DNA sampling to track response and progression and to discover acquired resistance mechanisms that can be leveraged to develop therapeutic strategies to overcome lorlatinib resistance.
Collapse
Affiliation(s)
- Esther R Berko
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Pediatric Hematology and Oncology, Schneider Children's Medical Center, Petach Tikva, Israel, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gabriela M Witek
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Smita Matkar
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zaritza O Petrova
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Megan A Wu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Courtney M Smith
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA
| | - Alex Daniels
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joshua Kalna
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Annie Kennedy
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ivan Gostuski
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Colleen Casey
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kateryna Krytska
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mark Gerelus
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Susan Ghazarian
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Julie R Park
- St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Araz Marachelian
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly C Goldsmith
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Seattle Children's Hospital, Seattle, WA, USA
| | - Ravi Radhakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark A Lemmon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
- Yale Cancer Biology Institute, Yale University, West Haven, CT, USA.
| | - Yaël P Mossé
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Kawamata M, Suzuki HI, Kimura R, Suzuki A. Optimization of Cas9 activity through the addition of cytosine extensions to single-guide RNAs. Nat Biomed Eng 2023; 7:672-691. [PMID: 37037965 DOI: 10.1038/s41551-023-01011-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/17/2023] [Indexed: 04/12/2023]
Abstract
The precise regulation of the activity of Cas9 is crucial for safe and efficient editing. Here we show that the genome-editing activity of Cas9 can be constrained by the addition of cytosine stretches to the 5'-end of conventional single-guide RNAs (sgRNAs). Such a 'safeguard sgRNA' strategy, which is compatible with Cas12a and with systems for gene activation and interference via CRISPR (clustered regularly interspaced short palindromic repeats), leads to the length-dependent inhibition of the formation of functional Cas9 complexes. Short cytosine extensions reduced p53 activation and cytotoxicity in human pluripotent stem cells, and enhanced homology-directed repair while maintaining bi-allelic editing. Longer extensions further decreased on-target activity yet improved the specificity and precision of mono-allelic editing. By monitoring indels through a fluorescence-based allele-specific system and computational simulations, we identified optimal windows of Cas9 activity for a number of genome-editing applications, including bi-allelic and mono-allelic editing, and the generation and correction of disease-associated single-nucleotide substitutions via homology-directed repair. The safeguard-sgRNA strategy may improve the safety and applicability of genome editing.
Collapse
Affiliation(s)
- Masaki Kawamata
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| | - Hiroshi I Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan.
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Ryota Kimura
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Atsushi Suzuki
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
31
|
Morrison KR, Wang T, Chan KY, Trotter EW, Gillespie A, Michael MZ, Oakhill JS, Hagan IM, Petersen J. Elevated basal AMP-activated protein kinase activity sensitizes colorectal cancer cells to growth inhibition by metformin. Open Biol 2023; 13:230021. [PMID: 37042113 PMCID: PMC10090877 DOI: 10.1098/rsob.230021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/09/2023] [Indexed: 04/13/2023] Open
Abstract
Expression and activity of the AMP-activated protein kinase (AMPK) α1 catalytic subunit of the heterotrimeric kinase significantly correlates with poor outcome for colorectal cancer patients. Hence there is considerable interest in uncovering signalling vulnerabilities arising from this oncogenic elevation of AMPKα1 signalling. We have therefore attenuated mammalian target of rapamycin (mTOR) control of AMPKα1 to generate a mutant colorectal cancer in which AMPKα1 signalling is elevated because AMPKα1 serine 347 cannot be phosphorylated by mTORC1. The elevated AMPKα1 signalling in this HCT116 α1.S347A cell line confers hypersensitivity to growth inhibition by metformin. Complementary chemical approaches confirmed this relationship in both HCT116 and the genetically distinct HT29 colorectal cells, as AMPK activators imposed vulnerability to growth inhibition by metformin in both lines. Growth inhibition by metformin was abolished when AMPKα1 kinase was deleted. We conclude that elevated AMPKα1 activity modifies the signalling architecture in such a way that metformin treatment compromises cell proliferation. Not only does this mutant HCT116 AMPKα1-S347A line offer an invaluable resource for future studies, but our findings suggest that a robust biomarker for chronic AMPKα1 activation for patient stratification could herald a place for the well-tolerated drug metformin in colorectal cancer therapy.
Collapse
Affiliation(s)
- Kaitlin R. Morrison
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042, Australia
| | - Tingting Wang
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042, Australia
| | - Kuan Yoow Chan
- Cancer Research UK Manchester Institute, Alderley Park, Macclesfield SK10 4TG, UK
| | - Eleanor W. Trotter
- Cancer Research UK Manchester Institute, Alderley Park, Macclesfield SK10 4TG, UK
| | - Ari Gillespie
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042, Australia
| | - Michael Z. Michael
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042, Australia
- Flinders Centre for Innovation in Cancer, Dept. Gastroenterology and Hepatology, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Jonathan S. Oakhill
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, School of Medicine, University of Melbourne, Victoria 3065, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Victoria 3000, Australia
| | - Iain M. Hagan
- Cancer Research UK Manchester Institute, Alderley Park, Macclesfield SK10 4TG, UK
| | - Janni Petersen
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042, Australia
- Nutrition and Metabolism, SouthAustralia Health and Medical Research Institute, Adelaide, SA 5000, Australia
| |
Collapse
|
32
|
Castiello MC, Ferrari S, Villa A. Correcting inborn errors of immunity: From viral mediated gene addition to gene editing. Semin Immunol 2023; 66:101731. [PMID: 36863140 PMCID: PMC10109147 DOI: 10.1016/j.smim.2023.101731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation is an effective treatment to cure inborn errors of immunity. Remarkable progress has been achieved thanks to the development and optimization of effective combination of advanced conditioning regimens and use of immunoablative/suppressive agents preventing rejection as well as graft versus host disease. Despite these tremendous advances, autologous hematopoietic stem/progenitor cell therapy based on ex vivo gene addition exploiting integrating γ-retro- or lenti-viral vectors, has demonstrated to be an innovative and safe therapeutic strategy providing proof of correction without the complications of the allogeneic approach. The recent advent of targeted gene editing able to precisely correct genomic variants in an intended locus of the genome, by introducing deletions, insertions, nucleotide substitutions or introducing a corrective cassette, is emerging in the clinical setting, further extending the therapeutic armamentarium and offering a cure to inherited immune defects not approachable by conventional gene addition. In this review, we will analyze the current state-of-the art of conventional gene therapy and innovative protocols of genome editing in various primary immunodeficiencies, describing preclinical models and clinical data obtained from different trials, highlighting potential advantages and limits of gene correction.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy.
| |
Collapse
|
33
|
Borot F, Humbert O, Newby GA, Fields E, Kohli S, Radtke S, Laszlo GS, Mayuranathan T, Ali AM, Weiss MJ, Yen JS, Walter RB, Liu DR, Mukherjee S, Kiem HP. Multiplex Base Editing to Protect from CD33-Directed Therapy: Implications for Immune and Gene Therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529353. [PMID: 36865281 PMCID: PMC9980058 DOI: 10.1101/2023.02.23.529353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
On-target toxicity to normal cells is a major safety concern with targeted immune and gene therapies. Here, we developed a base editing (BE) approach exploiting a naturally occurring CD33 single nucleotide polymorphism leading to removal of full-length CD33 surface expression on edited cells. CD33 editing in human and nonhuman primate (NHP) hematopoietic stem and progenitor cells (HSPCs) protects from CD33-targeted therapeutics without affecting normal hematopoiesis in vivo , thus demonstrating potential for novel immunotherapies with reduced off-leukemia toxicity. For broader applications to gene therapies, we demonstrated highly efficient (>70%) multiplexed adenine base editing of the CD33 and gamma globin genes, resulting in long-term persistence of dual gene-edited cells with HbF reactivation in NHPs. In vitro , dual gene-edited cells could be enriched via treatment with the CD33 antibody-drug conjugate, gemtuzumab ozogamicin (GO). Together, our results highlight the potential of adenine base editors for improved immune and gene therapies. Graphical abstract
Collapse
|
34
|
Buffa V, Alvarez Vargas JR, Galy A, Spinozzi S, Rocca CJ. Hematopoietic stem and progenitors cells gene editing: Beyond blood disorders. Front Genome Ed 2023; 4:997142. [PMID: 36698790 PMCID: PMC9868335 DOI: 10.3389/fgeed.2022.997142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
Lessons learned from decades-long practice in the transplantation of hematopoietic stem and progenitor cells (HSPCs) to treat severe inherited disorders or cancer, have set the stage for the current ex vivo gene therapies using autologous gene-modified hematopoietic stem and progenitor cells that have treated so far, hundreds of patients with monogenic disorders. With increased knowledge of hematopoietic stem and progenitor cell biology, improved modalities for patient conditioning and with the emergence of new gene editing technologies, a new era of hematopoietic stem and progenitor cell-based gene therapies is poised to emerge. Gene editing has the potential to restore physiological expression of a mutated gene, or to insert a functional gene in a precise locus with reduced off-target activity and toxicity. Advances in patient conditioning has reduced treatment toxicities and may improve the engraftment of gene-modified cells and specific progeny. Thanks to these improvements, new potential treatments of various blood- or immune disorders as well as other inherited diseases will continue to emerge. In the present review, the most recent advances in hematopoietic stem and progenitor cell gene editing will be reported, with a focus on how this approach could be a promising solution to treat non-blood-related inherited disorders and the mechanisms behind the therapeutic actions discussed.
Collapse
Affiliation(s)
- Valentina Buffa
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - José Roberto Alvarez Vargas
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - Anne Galy
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - Simone Spinozzi
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France
| | - Céline J. Rocca
- Genethon, Evry, France,Integrare Research Unit UMR_S951, Université Paris-Saclay, University Evry, Inserm, Genethon, Evry, France,*Correspondence: Céline J. Rocca,
| |
Collapse
|
35
|
Agbo L, Loehr J, Kougnassoukou Tchara PE, Lambert JP. Characterization of the Functional Interplay between the BRD7 and BRD9 Homologues in mSWI/SNF Complexes. J Proteome Res 2023; 22:78-90. [PMID: 36484504 DOI: 10.1021/acs.jproteome.2c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bromodomains (BRDs) are a family of evolutionarily conserved domains that are the main readers of acetylated lysine (Kac) residues on proteins. Recently, numerous BRD-containing proteins have been proven essential for transcriptional regulation in numerous contexts. This is exemplified by the multi-subunit mSWI/SNF chromatin remodeling complexes, which incorporate up to 10 BRDs within five distinct subunits, allowing for extensive integration of Kac signaling to inform transcriptional regulation. As dysregulated transcription promotes oncogenesis, we sought to characterize how BRD-containing subunits contribute molecularly to mSWI/SNF functions. By combining genome editing, functional proteomics, and cellular biology, we found that loss of any single BRD-containing mSWI/SNF subunit altered but did not fully disrupt the various mSWI/SNF complexes. In addition, we report that the downregulation of BRD7 is common in invasive lobular carcinoma and modulates the interactome of its homologue, BRD9. We show that these alterations exacerbate sensitivities to inhibitors targeting epigenetic regulators─notably, inhibitors targeting the BRDs of non-mSWI/SNF proteins. Our results highlight the interconnections between distinct mSWI/SNF complexes and their far-reaching impacts on transcriptional regulation in human health and disease. The mass spectrometry data generated have been deposited to MassIVE and ProteomeXchange and assigned the identifiers MSV000089357, MSV000089362, and PXD033572.
Collapse
Affiliation(s)
- Lynda Agbo
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Quebec, Canada; CHU de Québec - Université Laval Research Center, Quebec City, QC G1V 4G2, Canada.,Endocrinology - Nephrology Axis, CHU de Québec - Université Laval Research Center, Quebec City, QC G1V 4G2, Canada
| | - Jérémy Loehr
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Quebec, Canada; CHU de Québec - Université Laval Research Center, Quebec City, QC G1V 4G2, Canada.,Endocrinology - Nephrology Axis, CHU de Québec - Université Laval Research Center, Quebec City, QC G1V 4G2, Canada
| | - Pata-Eting Kougnassoukou Tchara
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Quebec, Canada; CHU de Québec - Université Laval Research Center, Quebec City, QC G1V 4G2, Canada.,Endocrinology - Nephrology Axis, CHU de Québec - Université Laval Research Center, Quebec City, QC G1V 4G2, Canada
| | - Jean-Philippe Lambert
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Quebec, Canada; CHU de Québec - Université Laval Research Center, Quebec City, QC G1V 4G2, Canada.,Endocrinology - Nephrology Axis, CHU de Québec - Université Laval Research Center, Quebec City, QC G1V 4G2, Canada
| |
Collapse
|
36
|
Shahbazi R, Lipson P, Gottimukkala KSV, Lane DD, Adair JE. CRISPR Gene Editing of Hematopoietic Stem and Progenitor Cells. Methods Mol Biol 2023; 2567:39-62. [PMID: 36255694 DOI: 10.1007/978-1-0716-2679-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Genetic editing of hematopoietic stem and progenitor cells can be employed to understand gene-function relationships underlying hematopoietic cell biology, leading to new therapeutic approaches to treat disease. The ability to collect, purify, and manipulate primary cells outside the body permits testing of many different gene editing approaches. RNA-guided nucleases, such as CRISPR, have revolutionized gene editing based simply on Watson-Crick base-pairing, employed to direct activity to specific genomic loci. Given the ease and affordability of synthetic, custom RNA guides, testing of precision edits or large random pools in high-throughput screening studies is now widely available. With the ever-growing number of CRISPR nucleases being discovered or engineered, researchers now have a plethora of options for directed genomic change, including single base edits, nicks or double-stranded DNA cuts with blunt or staggered ends, as well as the ability to target CRISPR to other cellular oligonucleotides such as RNA or mitochondrial DNA. Except for single base editing strategies, precise rewriting of larger segments of the genetic code requires delivery of an additional component, templated DNA oligonucleotide(s) encoding the desired changes flanked by homologous sequences that permit recombination at or near the site of CRISPR activity. Altogether, the ever-growing CRISPR gene editing toolkit is an invaluable resource. This chapter outlines available technologies and the strategies for applying CRISPR-based editing in hematopoietic stem and progenitor cells.
Collapse
Affiliation(s)
| | | | | | | | - Jennifer E Adair
- Fred Hutchinson Cancer Center, Seattle, WA, USA.
- University of Washington, Seattle, WA, USA.
| |
Collapse
|
37
|
Parkinson J, Hard R, Ainsworth R, Wang W. Engineering human JMJD2A tudor domains for an improved understanding of histone peptide recognition. Proteins 2023; 91:32-46. [PMID: 35927178 PMCID: PMC9771871 DOI: 10.1002/prot.26408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/01/2022] [Accepted: 08/01/2022] [Indexed: 12/24/2022]
Abstract
JMJD2A is a histone lysine demethylase which recognizes and demethylates H3K9me3 and H3K36me3 residues and is overexpressed in various cancers. It utilizes a tandem tudor domain to facilitate its own recruitment to histone sites, recognizing various di- and tri-methyl lysine residues with moderate affinity. In this study, we successfully engineered the tudor domain of JMJD2A to specifically bind to H4K20me3 with a 20-fold increase of affinity and improved selectivity. To reveal the molecular basis, we performed molecular dynamics and free energy decomposition analysis on the human JMJD2A tandem tudor domains bound to H4K20me2, H4K20me3, and H3K23me3 peptides to uncover the residues and conformational changes important for the enhanced binding affinity and selectivity toward H4K20me2/3. These analyses revealed new insights into understanding chromatin reader domains recognizing histone modifications and improving binding affinity and selectivity of these domains. Furthermore, we showed that the tight binding of JMJD2A to H4K20me2/3 is not sufficient to improve the efficiency of CRISPR-CAS9 mediated homology directed repair (HDR), suggesting a complicated relationship between JMJD2A and the DNA damage response beyond binding affinity toward the H4K20me2/3 mark.
Collapse
Affiliation(s)
- Jonathan Parkinson
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, USA
| | - Ryan Hard
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, USA
| | - Richard Ainsworth
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, USA
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California San Diego, San Diego, California, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, California, USA
| |
Collapse
|
38
|
Shakirova A, Karpov T, Komarova Y, Lepik K. In search of an ideal template for therapeutic genome editing: A review of current developments for structure optimization. Front Genome Ed 2023; 5:1068637. [PMID: 36911237 PMCID: PMC9992834 DOI: 10.3389/fgeed.2023.1068637] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Gene therapy is a fast developing field of medicine with hundreds of ongoing early-stage clinical trials and numerous preclinical studies. Genome editing (GE) now is an increasingly important technology for achieving stable therapeutic effect in gene correction, with hematopoietic cells representing a key target cell population for developing novel treatments for a number of hereditary diseases, infections and cancer. By introducing a double strand break (DSB) in the defined locus of genomic DNA, GE tools allow to knockout the desired gene or to knock-in the therapeutic gene if provided with an appropriate repair template. Currently, the efficiency of methods for GE-mediated knock-in is limited. Significant efforts were focused on improving the parameters and interaction of GE nuclease proteins. However, emerging data suggests that optimal characteristics of repair templates may play an important role in the knock-in mechanisms. While viral vectors with notable example of AAVs as a donor template carrier remain the mainstay in many preclinical trials, non-viral templates, including plasmid and linear dsDNA, long ssDNA templates, single and double-stranded ODNs, represent a promising alternative. Furthermore, tuning of editing conditions for the chosen template as well as its structure, length, sequence optimization, homology arm (HA) modifications may have paramount importance for achieving highly efficient knock-in with favorable safety profile. This review outlines the current developments in optimization of templates for the GE mediated therapeutic gene correction.
Collapse
Affiliation(s)
- Alena Shakirova
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Saint Petersburg, Russia
| | - Timofey Karpov
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Saint Petersburg, Russia.,Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Yaroslava Komarova
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Saint Petersburg, Russia
| | - Kirill Lepik
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Saint Petersburg, Russia
| |
Collapse
|
39
|
Marker-free co-selection for successive rounds of prime editing in human cells. Nat Commun 2022; 13:5909. [PMID: 36207338 PMCID: PMC9546848 DOI: 10.1038/s41467-022-33669-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Prime editing enables the introduction of precise point mutations, small insertions, or short deletions without requiring donor DNA templates. However, efficiency remains a key challenge in a broad range of human cell types. In this work, we design a robust co-selection strategy through coediting of the ubiquitous and essential sodium/potassium pump (Na+/K+ ATPase). We readily engineer highly modified pools of cells and clones with homozygous modifications for functional studies with minimal pegRNA optimization. This process reveals that nicking the non-edited strand stimulates multiallelic editing but often generates tandem duplications and large deletions at the target site, an outcome dictated by the relative orientation of the protospacer adjacent motifs. Our approach streamlines the production of cell lines with multiple genetic modifications to create cellular models for biological research and lays the foundation for the development of cell-type specific co-selection strategies. Prime editing enables the introduction of precise point mutations, small insertions, or short deletions without requiring donor DNA templates. Here the authors develop a co-selection strategy to facilitate prime editing in human cells and provide design principles to prevent the formation of undesired editing byproducts at the target site.
Collapse
|
40
|
Chen FW, Davies JP, Calvo R, Chaudhari J, Dolios G, Taylor MK, Patnaik S, Dehdashti J, Mull R, Dranchack P, Wang A, Xu X, Hughes E, Southall N, Ferrer M, Wang R, Marugan JJ, Ioannou YA. Activation of mitochondrial TRAP1 stimulates mitochondria-lysosome crosstalk and correction of lysosomal dysfunction. iScience 2022; 25:104941. [PMID: 36065186 PMCID: PMC9440283 DOI: 10.1016/j.isci.2022.104941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/27/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Fannie W. Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joanna P. Davies
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raul Calvo
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Jagruti Chaudhari
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, 1250 1st Avenue, New York, NY 10065, USA
| | - Georgia Dolios
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mercedes K. Taylor
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Samarjit Patnaik
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Jean Dehdashti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rebecca Mull
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Patricia Dranchack
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Amy Wang
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Xin Xu
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Emma Hughes
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Noel Southall
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Marc Ferrer
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Rong Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan J. Marugan
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
- Corresponding author
| | - Yiannis A. Ioannou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Corresponding author
| |
Collapse
|
41
|
Xu S, Li G, Ye X, Chen D, Chen Z, Xu Z, Daniele M, Tambone S, Ceccacci A, Tomei L, Ye L, Yu Y, Solbach A, Farmer SM, Stimming EF, McAllister G, Marchionini DM, Zhang S. HAP40 is a conserved central regulator of Huntingtin and a potential modulator of Huntington's disease pathogenesis. PLoS Genet 2022; 18:e1010302. [PMID: 35853002 PMCID: PMC9295956 DOI: 10.1371/journal.pgen.1010302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/18/2022] [Indexed: 11/19/2022] Open
Abstract
Perturbation of huntingtin (HTT)'s physiological function is one postulated pathogenic factor in Huntington's disease (HD). However, little is known how HTT is regulated in vivo. In a proteomic study, we isolated a novel ~40kDa protein as a strong binding partner of Drosophila HTT and demonstrated it was the functional ortholog of HAP40, an HTT associated protein shown recently to modulate HTT's conformation but with unclear physiological and pathologic roles. We showed that in both flies and human cells, HAP40 maintained conserved physical and functional interactions with HTT. Additionally, loss of HAP40 resulted in similar phenotypes as HTT knockout. More strikingly, HAP40 strongly affected HTT's stability, as depletion of HAP40 significantly reduced the levels of endogenous HTT protein while HAP40 overexpression markedly extended its half-life. Conversely, in the absence of HTT, the majority of HAP40 protein were degraded, likely through the proteasome. Further, the affinity between HTT and HAP40 was not significantly affected by polyglutamine expansion in HTT, and contrary to an early report, there were no abnormal accumulations of endogenous HAP40 protein in HD cells from mouse HD models or human patients. Lastly, when tested in Drosophila models of HD, HAP40 partially modulated the neurodegeneration induced by full-length mutant HTT while showed no apparent effect on the toxicity of mutant HTT exon 1 fragment. Together, our study uncovers a conserved mechanism governing the stability and in vivo functions of HTT and demonstrates that HAP40 is a central and positive regulator of endogenous HTT. Further, our results support that mutant HTT is toxic regardless of the presence of its partner HAP40, and implicate HAP40 as a potential modulator of HD pathogenesis through its multiplex effect on HTT's function, stability and the potency of mutant HTT's toxicity.
Collapse
Affiliation(s)
- Shiyu Xu
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Gang Li
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Xin Ye
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Dongsheng Chen
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Zhihua Chen
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Zhen Xu
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Moretti Daniele
- Department of Translational and Discovery Research, IRBM SpA, Pomezia (RM), Italy
| | - Sara Tambone
- Department of Translational and Discovery Research, IRBM SpA, Pomezia (RM), Italy
| | - Alessandra Ceccacci
- Department of Translational and Discovery Research, IRBM SpA, Pomezia (RM), Italy
| | - Licia Tomei
- Department of Translational and Discovery Research, IRBM SpA, Pomezia (RM), Italy
| | - Lili Ye
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - Yue Yu
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Programs in Genetics and Epigenetics and Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Amanda Solbach
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Programs in Genetics and Epigenetics and Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Stephen M. Farmer
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Program in Biochemistry and Cell Biology, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
| | - Erin Furr Stimming
- Department of Neurology, HDSA Center of Excellence, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| | - George McAllister
- CHDI Management/CHDI Foundation, 350 Seventh Ave, New York, New York, United States of America
| | - Deanna M. Marchionini
- CHDI Management/CHDI Foundation, 350 Seventh Ave, New York, New York, United States of America
| | - Sheng Zhang
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
- Programs in Genetics and Epigenetics and Neuroscience, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (MD Anderson UTHealth GSBS), Houston, Texas, United States of America
- Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, United States of America
| |
Collapse
|
42
|
Disease modeling by efficient genome editing using a near PAM-less base editor in vivo. Nat Commun 2022; 13:3435. [PMID: 35701478 PMCID: PMC9198099 DOI: 10.1038/s41467-022-31172-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/08/2022] [Indexed: 12/18/2022] Open
Abstract
Base Editors are emerging as an innovative technology to introduce point mutations in complex genomes. So far, the requirement of an NGG Protospacer Adjacent Motif (PAM) at a suitable position often limits the base editing possibility to model human pathological mutations in animals. Here we show that, using the CBE4max-SpRY variant recognizing nearly all PAM sequences, we could introduce point mutations for the first time in an animal model with high efficiency, thus drastically increasing the base editing possibilities. With this near PAM-less base editor we could simultaneously mutate several genes and we developed a co-selection method to identify the most edited embryos based on a simple visual screening. Finally, we apply our method to create a zebrafish model for melanoma predisposition based on the simultaneous base editing of multiple genes. Altogether, our results considerably expand the Base Editor application to introduce human disease-causing mutations in zebrafish. Base Editors are emerging as an innovative technology to introduce point mutations in complex genomes. Here the authors describe a near PAM-less base editor and its application in zebrafish to efficiently create disease models harbouring specific point mutations.
Collapse
|
43
|
Devoucoux M, Fort V, Khelifi G, Xu J, Alerasool N, Galloy M, Wong N, Bourriquen G, Fradet-Turcotte A, Taipale M, Hope K, Hussein SMI, Côté J. Oncogenic ZMYND11-MBTD1 fusion protein anchors the NuA4/TIP60 histone acetyltransferase complex to the coding region of active genes. Cell Rep 2022; 39:110947. [PMID: 35705031 DOI: 10.1016/j.celrep.2022.110947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 11/26/2022] Open
Abstract
A recurrent chromosomal translocation found in acute myeloid leukemia leads to an in-frame fusion of the transcription repressor ZMYND11 to MBTD1, a subunit of the NuA4/TIP60 histone acetyltransferase complex. To understand the abnormal molecular events that ZMYND11-MBTD1 expression can create, we perform a biochemical and functional characterization comparison to each individual fusion partner. ZMYND11-MBTD1 is stably incorporated into the endogenous NuA4/TIP60 complex, leading to its mislocalization on the body of genes normally bound by ZMYND11. This can be correlated to increased chromatin acetylation and altered gene transcription, most notably on the MYC oncogene, and alternative splicing. Importantly, ZMYND11-MBTD1 expression favors Myc-driven pluripotency during embryonic stem cell differentiation and self-renewal of hematopoietic stem/progenitor cells. Altogether, these results indicate that the ZMYND11-MBTD1 fusion functions primarily by mistargeting the NuA4/TIP60 complex to the body of genes, altering normal transcription of specific genes, likely driving oncogenesis in part through the Myc regulatory network.
Collapse
Affiliation(s)
- Maëva Devoucoux
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada
| | - Victoire Fort
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada
| | - Gabriel Khelifi
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada
| | - Joshua Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Nader Alerasool
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto ON, Canada
| | - Maxime Galloy
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada
| | - Nicholas Wong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Gaëlle Bourriquen
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada
| | - Amelie Fradet-Turcotte
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada
| | - Mikko Taipale
- Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto, Toronto ON, Canada
| | - Kristin Hope
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Samer M I Hussein
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada.
| | - Jacques Côté
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, QC G1R 3S3, Canada.
| |
Collapse
|
44
|
Devoucoux M, Roques C, Lachance C, Lashgari A, Joly-Beauparlant C, Jacquet K, Alerasool N, Prudente A, Taipale M, Droit A, Lambert JP, Hussein SMI, Côté J. MRG Proteins Are Shared by Multiple Protein Complexes With Distinct Functions. Mol Cell Proteomics 2022; 21:100253. [PMID: 35636729 PMCID: PMC9253478 DOI: 10.1016/j.mcpro.2022.100253] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
MRG15/MORF4L1 is a highly conserved protein in eukaryotes that contains a chromodomain (CHD) recognizing methylation of lysine 36 on histone H3 (H3K36me3) in chromatin. Intriguingly, it has been reported in the literature to interact with several different factors involved in chromatin modifications, gene regulation, alternative mRNA splicing, and DNA repair by homologous recombination. To get a complete and reliable picture of associations in physiological conditions, we used genome editing and tandem affinity purification to analyze the stable native interactome of human MRG15, its paralog MRGX/MORF4L2 that lacks the CHD, and MRGBP (MRG-binding protein) in isogenic K562 cells. We found stable interchangeable association of MRG15 and MRGX with the NuA4/TIP60 histone acetyltransferase/chromatin remodeler, Sin3B histone deacetylase/demethylase, ASH1L histone methyltransferase, and PALB2-BRCA2 DNA repair protein complexes. These associations were further confirmed and analyzed by CRISPR tagging of endogenous proteins and comparison of expressed isoforms. Importantly, based on structural information, point mutations could be introduced that specifically disrupt MRG15 association with some complexes but not others. Most interestingly, we also identified a new abundant native complex formed by MRG15/X-MRGBP-BRD8-EP400NL (EP400 N-terminal like) that is functionally similar to the yeast TINTIN (Trimer Independent of NuA4 for Transcription Interactions with Nucleosomes) complex. Our results show that EP400NL, being homologous to the N-terminal region of NuA4/TIP60 subunit EP400, creates TINTIN by competing for BRD8 association. Functional genomics indicate that human TINTIN plays a role in transcription of specific genes. This is most likely linked to the H4ac-binding bromodomain of BRD8 along the H3K36me3-binding CHD of MRG15 on the coding region of transcribed genes. Taken together, our data provide a complete detailed picture of human MRG proteins-associated protein complexes, which are essential to understand and correlate their diverse biological functions in chromatin-based nuclear processes.
Collapse
Affiliation(s)
- Maëva Devoucoux
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Céline Roques
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Catherine Lachance
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Anahita Lashgari
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada; Department of Molecular Medicine, Laval University Cancer Research Center, CHU de Québec-Université Laval Research Center, Big Data Research Center, Université Laval, Quebec City, Quebec, Canada
| | - Charles Joly-Beauparlant
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Quebec City, Quebec, Canada; Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Karine Jacquet
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Nader Alerasool
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Alexandre Prudente
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Mikko Taipale
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Arnaud Droit
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Quebec City, Quebec, Canada; Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Jean-Philippe Lambert
- Department of Molecular Medicine, Laval University Cancer Research Center, CHU de Québec-Université Laval Research Center, Big Data Research Center, Université Laval, Quebec City, Quebec, Canada
| | - Samer M I Hussein
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada
| | - Jacques Côté
- St. Patrick Research Group in Basic Oncology, Laval University Cancer Research Center, Oncology Division of CHU de Québec-Université Laval Research Center, Quebec City, Quebec, Canada.
| |
Collapse
|
45
|
Kelly JJ, Tranter D, Pardon E, Chi G, Kramer H, Happonen L, Knee KM, Janz JM, Steyaert J, Bulawa C, Paavilainen VO, Huiskonen JT, Yue WW. Snapshots of actin and tubulin folding inside the TRiC chaperonin. Nat Struct Mol Biol 2022; 29:420-429. [PMID: 35449234 PMCID: PMC9113939 DOI: 10.1038/s41594-022-00755-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/01/2022] [Indexed: 01/16/2023]
Abstract
The integrity of a cell's proteome depends on correct folding of polypeptides by chaperonins. The chaperonin TCP-1 ring complex (TRiC) acts as obligate folder for >10% of cytosolic proteins, including he cytoskeletal proteins actin and tubulin. Although its architecture and how it recognizes folding substrates are emerging from structural studies, the subsequent fate of substrates inside the TRiC chamber is not defined. We trapped endogenous human TRiC with substrates (actin, tubulin) and cochaperone (PhLP2A) at different folding stages, for structure determination by cryo-EM. The already-folded regions of client proteins are anchored at the chamber wall, positioning unstructured regions toward the central space to achieve their native fold. Substrates engage with different sections of the chamber during the folding cycle, coupled to TRiC open-and-close transitions. Further, the cochaperone PhLP2A modulates folding, acting as a molecular strut between substrate and TRiC chamber. Our structural snapshots piece together an emerging model of client protein folding within TRiC.
Collapse
Affiliation(s)
- John J Kelly
- Centre for Medicines Discovery, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Dale Tranter
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Gamma Chi
- Centre for Medicines Discovery, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Holger Kramer
- Biological Mass Spectrometry and Proteomics Facility, MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kelly M Knee
- Pfizer Rare Disease Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, MA, USA
| | - Jay M Janz
- Pfizer Rare Disease Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, MA, USA
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Christine Bulawa
- Pfizer Rare Disease Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, MA, USA
| | - Ville O Paavilainen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Juha T Huiskonen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, UK.
| | - Wyatt W Yue
- Centre for Medicines Discovery, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
- Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
46
|
Yang F, Zhang H, Cai S, Imtiaz K, Li M, Wang M, Liu Y, Xue F, Zhang L, Gu F. Green Fluorescent Protein Tagged Polycistronic Reporter System Reveals Functional Editing Characteristics of CRISPR-Cas. CRISPR J 2022; 5:254-263. [PMID: 35085009 DOI: 10.1089/crispr.2021.0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The green fluorescent protein (GFP)-based reporter system has been widely harnessed as a quick quantitative activity assessment method for characterizing CRISPR-Cas via flow cytometry. However, due to the small size (738 nt) of the GFP coding sequence, the targeting sites for certain CRISPR-Cas are greatly restricted. To address this, here we developed a GFP tagged polycistronic reporter system to determine the activity of CRISPR-Cas in human cells. Specifically, the system contains the herpes simplex virus thymidine kinase (TK) gene, bacterial neomycin phosphotransferase (Neo) gene, and green fluorescent protein (GFP), named TNG gene, with a coding sequence of 2,577 nt. To investigate its performance, we generated a human cell line harboring the TNG expression cassette at the AAVS1 locus, and then we tested it with different Cas orthologs (SaCas9, St1Cas9, and AsCas12a). Our results demonstrated that using the TNG reporter system greatly expands the targeting site selection (3- to 13-fold) with CRISPR-Cas genome editing. The study therefore reports an additional method for the characterization of CRISPR-Cas technology.
Collapse
Affiliation(s)
- Fayu Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P.R. China; and Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China
| | - Hao Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P.R. China; and Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China
| | - Shuo Cai
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P.R. China; and Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China
| | - Kiran Imtiaz
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P.R. China; and Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China
| | - Mingchun Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P.R. China; and Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China
| | - Mi Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P.R. China; and Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China
| | - Yingchun Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P.R. China; and Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China
| | - Feiqun Xue
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P.R. China; and Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China
| | - Lifang Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P.R. China; and Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China
| | - Feng Gu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P.R. China; and Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China.,Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, P.R. China
| |
Collapse
|
47
|
Engineered cells as glioblastoma therapeutics. Cancer Gene Ther 2022; 29:156-166. [PMID: 33753869 PMCID: PMC8850190 DOI: 10.1038/s41417-021-00320-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/17/2021] [Accepted: 03/02/2021] [Indexed: 02/01/2023]
Abstract
In spite of significant recent advances in our understanding of the genetics and cell biology of glioblastoma, to date, this has not led to improved treatments for this cancer. In addition to small molecule, antibody, and engineered virus approaches, engineered cells are also being explored as glioblastoma therapeutics. This includes CAR-T cells, CAR-NK cells, as well as engineered neural stem cells and mesenchymal stem cells. Here we review the state of this field, starting with clinical trial studies. These have established the feasibility and safety of engineered cell therapies for glioblastoma and show some evidence for activity. Next, we review the preclinical literature and compare the strengths and weaknesses of various starting cell types for engineered cell therapies. Finally, we discuss future directions for this nascent but promising modality for glioblastoma therapy.
Collapse
|
48
|
Després PC, Dubé AK, Yachie N, Landry CR. High-Throughput Gene Mutagenesis Screening Using Base Editing. Methods Mol Biol 2022; 2477:331-348. [PMID: 35524126 DOI: 10.1007/978-1-0716-2257-5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Base editing is a CRISPR-Cas9 genome engineering tool that allows programmable mutagenesis without the creation of double-stranded breaks. Here, we describe the design and execution of large-scale base editing screens using the Target-AID base editor in yeast. Using this approach, thousands of sites can be mutated simultaneously. The effects of these mutations on fitness can be measured using a pooled growth competition assay followed by DNA sequencing of gRNAs as barcodes.
Collapse
Affiliation(s)
- Philippe C Després
- Département de Biochimie, Microbiologie et Bio-informatique, Faculté de Sciences et Génie, Université Laval, Québec, QC, Canada.
- PROTEO, le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, QC, Canada.
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, QC, Canada.
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada.
| | - Alexandre K Dubé
- Département de Biochimie, Microbiologie et Bio-informatique, Faculté de Sciences et Génie, Université Laval, Québec, QC, Canada
- PROTEO, le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, QC, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Département de Biologie, Faculté de Sciences et Génie, Université Laval, Québec, QC, Canada
| | - Nozomu Yachie
- School of Biomedical Engineering, Faculty of Applied Science and Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Research Center for Advanced Science and Technology, Synthetic Biology Division, University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Christian R Landry
- Département de Biochimie, Microbiologie et Bio-informatique, Faculté de Sciences et Génie, Université Laval, Québec, QC, Canada
- PROTEO, le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, Québec, QC, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
- Département de Biologie, Faculté de Sciences et Génie, Université Laval, Québec, QC, Canada
| |
Collapse
|
49
|
de Oliveira VC, Santos Roballo KC, Mariano Junior CG, Santos SIP, Bressan FF, Chiaratti MR, Tucker EJ, Davis EE, Concordet JP, Ambrósio CE. HEK293T Cells with TFAM Disruption by CRISPR-Cas9 as a Model for Mitochondrial Regulation. Life (Basel) 2021; 12:22. [PMID: 35054416 PMCID: PMC8779421 DOI: 10.3390/life12010022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
The mitochondrial transcription factor A (TFAM) is considered a key factor in mitochondrial DNA (mtDNA) copy number. Given that the regulation of active copies of mtDNA is still not fully understood, we investigated the effects of CRISPR-Cas9 gene editing of TFAM in human embryonic kidney (HEK) 293T cells on mtDNA copy number. The aim of this study was to generate a new in vitro model by CRISPR-Cas9 system by editing the TFAM locus in HEK293T cells. Among the resulting single-cell clones, seven had high mutation rates (67-96%) and showed a decrease in mtDNA copy number compared to control. Cell staining with Mitotracker Red showed a reduction in fluorescence in the edited cells compared to the non-edited cells. Our findings suggest that the mtDNA copy number is directly related to TFAM control and its disruption results in interference with mitochondrial stability and maintenance.
Collapse
Affiliation(s)
- Vanessa Cristina de Oliveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo 13635-900, Brazil; (K.C.S.R.); (C.G.M.J.); (S.I.P.S.); (F.F.B.); (C.E.A.)
| | - Kelly Cristine Santos Roballo
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo 13635-900, Brazil; (K.C.S.R.); (C.G.M.J.); (S.I.P.S.); (F.F.B.); (C.E.A.)
- Edward Via College of Osteopathic Medicine, Blacksburg, VA 24060, USA
- Department of Biomedical Science and Pathology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Clésio Gomes Mariano Junior
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo 13635-900, Brazil; (K.C.S.R.); (C.G.M.J.); (S.I.P.S.); (F.F.B.); (C.E.A.)
| | - Sarah Ingrid Pinto Santos
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo 13635-900, Brazil; (K.C.S.R.); (C.G.M.J.); (S.I.P.S.); (F.F.B.); (C.E.A.)
| | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo 13635-900, Brazil; (K.C.S.R.); (C.G.M.J.); (S.I.P.S.); (F.F.B.); (C.E.A.)
| | - Marcos Roberto Chiaratti
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos 13565-905, Brazil;
| | - Elena J. Tucker
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne 3052, Australia;
- Department of Paediatrics, University of Melbourne, Melbourne 3010, Australia
| | - Erica E. Davis
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA;
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 1900, USA
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 1900, USA
| | - Jean-Paul Concordet
- Laboratoire Structure et Instabilité des Génomes, Museum National d’Histoire Naturelle, INSERM U1154, CNRS UMR7196, 75231 Paris, France;
| | - Carlos Eduardo Ambrósio
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo 13635-900, Brazil; (K.C.S.R.); (C.G.M.J.); (S.I.P.S.); (F.F.B.); (C.E.A.)
| |
Collapse
|
50
|
Ferrari S, Vavassori V, Canarutto D, Jacob A, Castiello MC, Javed AO, Genovese P. Gene Editing of Hematopoietic Stem Cells: Hopes and Hurdles Toward Clinical Translation. Front Genome Ed 2021; 3:618378. [PMID: 34713250 PMCID: PMC8525369 DOI: 10.3389/fgeed.2021.618378] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
In the field of hematology, gene therapies based on integrating vectors have reached outstanding results for a number of human diseases. With the advent of novel programmable nucleases, such as CRISPR/Cas9, it has been possible to expand the applications of gene therapy beyond semi-random gene addition to site-specific modification of the genome, holding the promise for safer genetic manipulation. Here we review the state of the art of ex vivo gene editing with programmable nucleases in human hematopoietic stem and progenitor cells (HSPCs). We highlight the potential advantages and the current challenges toward safe and effective clinical translation of gene editing for the treatment of hematological diseases.
Collapse
Affiliation(s)
- Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,PhD course in Molecular Medicine, Vita-Salute San Raffele University, Milan, Italy
| | - Valentina Vavassori
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,PhD course in Molecular Medicine, Vita-Salute San Raffele University, Milan, Italy
| | - Daniele Canarutto
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,PhD course in Molecular Medicine, Vita-Salute San Raffele University, Milan, Italy.,Pediatric Immunohematology and Bone Marrow Transplantation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Ospedale San Raffaele, Milan, Italy
| | - Aurelien Jacob
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,PhD Program in Translational and Molecular Medicine (DIMET), Milano-Bicocca University, Monza, Italy
| | - Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy.,Institute of Genetic and Biomedical Research Milan Unit, National Research Council, Milan, Italy
| | - Attya Omer Javed
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Pietro Genovese
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States.,Harvard Stem Cell Institute, Cambridge, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|