1
|
Min Y, He S, Wang X, Hu H, Wei S, Ge A, Jiang L, Yang S, Guo Y, Liu Z, Chen M. Transcription factors BnaC09.FUL and BnaC06.WIP2 antagonistically regulate flowering time under long-day conditions in Brassica napus. J Genet Genomics 2025; 52:650-665. [PMID: 39674274 DOI: 10.1016/j.jgg.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/16/2024]
Abstract
Appropriate flowering time in rapeseed (Brassica napus L.) is vital for preventing losses from weather, diseases, and pests. However, the molecular basis of its regulation remains largely unknown. Here, a genome-wide association study identifies BnaC09.FUL, a MADS-box transcription factor, as a promising candidate gene regulating flowering time in B. napus. BnaC09.FUL expression increases sharply in B. napus shoot apices near bolting. BnaC09.FUL overexpression results in early flowering, while BnaFUL mutation causes delayed flowering in B. napus. A zinc finger transcription factor, BnaC06.WIP2, is identified as an interaction partner of BnaC09.FUL, and BnaC06.WIP2 overexpression delays flowering in B. napus, with RNA sequencing revealing its influence on the expression of many flowering-associated genes. We further demonstrate that BnaC06.WIP2 directly represses the expression of BnaA05.SOC1, BnaC03.SOC1, BnaC04.SOC1, BnaC06.FT, BnaA06.LFY, BnaC07.FUL, BnaA08.CAL, and BnaC03.CAL and indirectly inhibits the expression of other flowering time-related genes. Genetic and molecular investigations highlight the antagonistic relationship between BnaC09.FUL and BnaC06.WIP2 in regulating the flowering time in B. napus through direct regulation of the expression of BnaC03.SOC1, BnaA08.CAL, and BnaC03.CAL. Overall, our findings provide a mechanism by which the BnaC09.FUL-BnaC06.WIP2 transcriptional regulatory module controls the flowering time in B. napus.
Collapse
Affiliation(s)
- Yuanchang Min
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuangcheng He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huan Hu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shihao Wei
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi 712100, China
| | - Ankang Ge
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lixi Jiang
- Provincial Key Laboratory of Crop Gene Resource, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Saiqi Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zijin Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingxun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
He YJ, Xu S, Zhang KM, Zhang Y, Liu XJ, Liu C. Multiple gatekeeping steps in pollination lock species specificity. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1510-1523. [PMID: 39673238 DOI: 10.1093/jxb/erae488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024]
Abstract
In flowering plants, pollen grains must undergo a series of critical processes, including adhesion, hydration, and germination, which are dependent on the stigma, to develop a pollen tube. This pollen tube then penetrates the stigma to reach the internal tissues of pistil, facilitating the transport of non-motile sperm cells to the embryo sac for fertilization. However, a dry stigma, characterized by the absence of an exudate that typically envelops a wet stigma, functions as a multi-layered filter in adhesion, hydration, germination, and penetration that permits the acceptance of compatible pollen or tubes while rejecting incompatible ones, thereby protecting the embryo sac from ineffective fertilization and maintaining species specificity. Given the significance of these selective events, related research has consistently been at the forefront of reproductive studies, with notable advancements being made in recent times. In this review, we systematically synthesize the selective events and provide comprehensive, up-to-date summaries of occurrences on dry stigmas with a particular focus on the Brassicaceae family, following the chronological sequence of these events. Our objective is to update and elucidate the critical points within pollination, identify unresolved questions, and propose potential avenues for future research in other plant families.
Collapse
Affiliation(s)
- Yong-Jun He
- The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Shuo Xu
- The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Kai-Mei Zhang
- The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yang Zhang
- The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xiang-Jian Liu
- The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Chen Liu
- The School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
3
|
Hu W, Wu C, Yang Y, Hu D. Rapid detection and imaging of methylglyoxal in plant tissues by the near-infrared fluorescent probe SWJT-2. Biochimie 2025; 231:15-22. [PMID: 39615742 DOI: 10.1016/j.biochi.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/15/2024]
Abstract
Methylglyoxal (MG) can be produced via various pathways in plants. MG is toxic for plant cells at high levels, however it acts as a signaling molecule at low levels, just as H2O2 in plants. Therefore, MG detection is very important for investigating its roles in plant cells, especially in plants under environmental stresses. The near-infrared fluorescent probe SWJT-2 is a novel probe with high sensitivity for the rapid detection of MG in human HeLa cells, but at present it is not clear whether the probe can be used to determine MG levels in plant tissues. In this present research, we tried to apply the probe in plant research. Our results showed that 40 min treatment of SWJT-2 (80 μM) can be applied to the detection and imaging of MG levels in tobacco (Nicotiana benthamiana) tissues.
Collapse
Affiliation(s)
- Wenxu Hu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, Hubei, China.
| | - Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, Hubei, China.
| | - Yujie Yang
- College of Horticulture & Gardening, Yangtze University, Jingzhou, Hubei, China.
| | - Die Hu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, Hubei, China.
| |
Collapse
|
4
|
Song X, Zhang F, Tao X, Li Y, Fan T, Wu J, Ma L, Liu L, Pu Y, Wang W, Yang G, Sun W. Cloning and Functional Analysis of Glyoxalase I Gene BrGLYI 13 in Brassica rapa L. Int J Mol Sci 2025; 26:2737. [PMID: 40141379 PMCID: PMC11942965 DOI: 10.3390/ijms26062737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Glyoxalase I (GLYI) is a key enzyme that detoxifies methylglyoxal, a toxic byproduct of glycolysis, and is essential for plant pollination. However, the genome-wide identification and functional analysis of GLYI in Brassica rapa L. (B. rapa) remain limited. This study identified 17 BrGLYI genes (BrGLYI1-BrGLYI17) from the B. rapa genome. The self-compatible line 039-1 and the self-incompatible line GAU-28-5 were used as experimental materials, and Real-Time Quantitative Reverse Transcription PCR (RT-qPCR) was performed to examine the effect of BrGLYI genes on self-compatibility in winter B. rapa. Preliminary results showed that BrGLYI13 exhibited significant tissue specificity, with higher expression in the flowers of 039-1 compared to GAU-28-5. The open reading frame of BrGLYI13 (852 bp) was cloned from both 039-1 and GAU-28-5 cDNA, with no base mutations observed between the two lines. RT-qPCR revealed higher BrGLYI13 expression in the stigma of 039-1 compared to GAU-28-5. Based on the functional conservation and sequence homology, BrGLYI13 is speculated to play a similar role to that of AtGLYI3 in methylglyoxal detoxification and stress response. Furthermore, the knockout of AtGLYI3 resulted in reduced silique lengths and seed numbers. These findings suggest that BrGLYI13 is involved in the self-compatibility response in B. rapa and promotes the silique length and seed number in the Arabidopsis mutant, providing a basis for further research on the mechanisms of self-compatibility in B. rapa.
Collapse
Affiliation(s)
- Xiaojia Song
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.S.); (F.Z.); (X.T.); (Y.L.); (T.F.); (J.W.); (Y.P.)
- State Key Laboratory of Arid Land Crop Science, Lanzhou 730070, China; (L.M.); (L.L.)
| | - Feng Zhang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.S.); (F.Z.); (X.T.); (Y.L.); (T.F.); (J.W.); (Y.P.)
- State Key Laboratory of Arid Land Crop Science, Lanzhou 730070, China; (L.M.); (L.L.)
| | - Xiaolei Tao
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.S.); (F.Z.); (X.T.); (Y.L.); (T.F.); (J.W.); (Y.P.)
- State Key Laboratory of Arid Land Crop Science, Lanzhou 730070, China; (L.M.); (L.L.)
| | - Yapeng Li
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.S.); (F.Z.); (X.T.); (Y.L.); (T.F.); (J.W.); (Y.P.)
- State Key Laboratory of Arid Land Crop Science, Lanzhou 730070, China; (L.M.); (L.L.)
| | - Tingting Fan
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.S.); (F.Z.); (X.T.); (Y.L.); (T.F.); (J.W.); (Y.P.)
- State Key Laboratory of Arid Land Crop Science, Lanzhou 730070, China; (L.M.); (L.L.)
| | - Junyan Wu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.S.); (F.Z.); (X.T.); (Y.L.); (T.F.); (J.W.); (Y.P.)
- State Key Laboratory of Arid Land Crop Science, Lanzhou 730070, China; (L.M.); (L.L.)
| | - Li Ma
- State Key Laboratory of Arid Land Crop Science, Lanzhou 730070, China; (L.M.); (L.L.)
| | - Lijun Liu
- State Key Laboratory of Arid Land Crop Science, Lanzhou 730070, China; (L.M.); (L.L.)
| | - Yuanyuan Pu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.S.); (F.Z.); (X.T.); (Y.L.); (T.F.); (J.W.); (Y.P.)
- State Key Laboratory of Arid Land Crop Science, Lanzhou 730070, China; (L.M.); (L.L.)
| | - Wangtian Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Gang Yang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.S.); (F.Z.); (X.T.); (Y.L.); (T.F.); (J.W.); (Y.P.)
- State Key Laboratory of Arid Land Crop Science, Lanzhou 730070, China; (L.M.); (L.L.)
| | - Wancang Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.S.); (F.Z.); (X.T.); (Y.L.); (T.F.); (J.W.); (Y.P.)
- State Key Laboratory of Arid Land Crop Science, Lanzhou 730070, China; (L.M.); (L.L.)
| |
Collapse
|
5
|
Gawande ND, Bhalla H, Watts A, Shelake RM, Sankaranarayanan S. Application of genome editing in plant reproductive biology: recent advances and challenges. PLANT REPRODUCTION 2024; 37:441-462. [PMID: 38954018 DOI: 10.1007/s00497-024-00506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
KEY MESSAGE This comprehensive review underscores the application of genome editing in plant reproductive biology, including recent advances and challenges associated with it. Genome editing (GE) is a powerful technology that has the potential to accelerate crop improvement by enabling efficient, precise, and rapid engineering of plant genomes. Over the last decade, this technology has rapidly evolved from the use of meganucleases (homing endonucleases), zinc-finger nucleases, transcription activator-like effector nucleases to the use of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas), which has emerged as a popular GE tool in recent times and has been extensively used in several organisms, including plants. GE has been successfully employed in several crops to improve plant reproductive traits. Improving crop reproductive traits is essential for crop yields and securing the world's food supplies. In this review, we discuss the application of GE in various aspects of plant reproductive biology, including its potential application in haploid induction, apomixis, parthenocarpy, development of male sterile lines, and the regulation of self-incompatibility. We also discuss current challenges and future prospects of this technology for crop improvement, focusing on plant reproduction.
Collapse
Affiliation(s)
- Nilesh D Gawande
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Hemal Bhalla
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Anshul Watts
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Korea
| | - Subramanian Sankaranarayanan
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India.
| |
Collapse
|
6
|
Bhalla H, Ankita K, Abhinandan K, Sharma T, Sankaranarayanan S. From lock and key to molecular diplomacy: understanding pollen recognition and discrimination in brassicaceae. PLANT REPRODUCTION 2024; 38:2. [PMID: 39601915 DOI: 10.1007/s00497-024-00511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/27/2024] [Indexed: 11/29/2024]
Abstract
KEY MESSAGE Hybridization barriers in Brassicaceae play a pivotal role in governing reproductive success and maintaining speciation. In this perspective, we highlight recent advances revealing the intricate molecular mechanisms and the interplay among key players governing these barriers. Recent studies have shed light on the molecular mechanisms that govern hybridization barriers in Brassicaceae. The interplay between pollen coat proteins, stigmatic receptors, and signaling peptides plays a crucial role in determining the success of pollination. At the core of this system, autocrine stigmatic RALF peptides (sRALF) maintain the stigmatic barrier by activating the FERONIA (FER) and ANJEA (ANJ) receptor complex, triggering the RAC/ROP-RBOHD pathway and subsequent reactive oxygen species (ROS) production. It is now established that incompatible pollen rejection is mediated by two parallel pathways: the FER-RAC/ROP-RBOHD pathway, which generates ROS, and the ARC1-mediated pathway, which degrades compatible factors required for pollen growth. Conversely, compatible pollen overcomes the stigmatic barrier through the action of pollen coat proteins (PCP-B) and paracrine pollen-derived RALF peptides (pRALF), which compete with autocrine sRALF for receptor binding, enabling successful pollen hydration and tube penetration. The "lock-and-key" mechanism involving sRALF and pRALF provides species-specific recognition of compatible pollen. These findings offer valuable insights into the molecular basis of hybridization barriers and open new possibilities for overcoming these barriers in interspecific and intergeneric crosses within Brassicaceae, with potential applications in plant breeding and crop improvement. Future research should focus on elucidating the evolutionary dynamics of these signaling pathways and exploring their manipulation for crop breeding purposes.
Collapse
Affiliation(s)
- Hemal Bhalla
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Kumari Ankita
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India
| | - Kumar Abhinandan
- 20/20 Seed Labs Inc., Nisku, AB, T9E 7N5, Canada
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Trivima Sharma
- Faculty of Agriculture and Allied Sciences, Kantaben Kashiram Institute of Agriculture Sciences and Research, Ganpat University, Ganpat Vidyanagar Mehsana-Gozaria, Highway, Kherva, Gujarat, 384012, India
| | - Subramanian Sankaranarayanan
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, 382355, India.
| |
Collapse
|
7
|
Bhowal B, Hasija Y, Singla-Pareek SL. Tracing the intraspecies expansion of glyoxalase genes and their expanding roles across the genus Oryza. Funct Integr Genomics 2024; 24:220. [PMID: 39586889 DOI: 10.1007/s10142-024-01492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/27/2024]
Abstract
The genus Oryza is of utmost importance to human civilization as two of its species became agronomically productive and widely cultivated, and also because wild rice is a treasure trove of beneficial alleles that can be used for crop improvement. Most of the wild rice genotypes are known for their stress tolerance several times more than the domesticated rice varieties. In this study, we aimed to carry out an exhaustive genomic survey to identify glyoxalase I (GLYI) and glyoxalase II (GLYII) genes across the 11 rice genomes sequenced so far. Notably, we found the putatively functional metal-dependent GLYI and GLYII enzymes to be conserved throughout domestication and a few homologous pairs to have undergone beneficial mutations to drive positive selection, and thus, acquire newer functions. Interestingly, we also report four newly identified GLYII members in O. sativa subsp. japonica in addition to the three previously reported GLYII genes. The presence of different types of cis-elements in the promoter region of the glyoxalase genes gives insights into their role and regulation under various developmental processes besides stress adaptation. Publicly available data suggests the role of glyoxalase genes particularly in salinity stress in both wild and cultivated rice as is also confirmed through qRT-PCR. Interestingly, we found less accumulation of MG and concurrently higher enzymatic activity of GLYI and GLYII proteins in stressed seedlings of selected wild rice genotypes indicating that glyoxalases indeed contribute to the intrinsic stress tolerance of wild rice.
Collapse
Affiliation(s)
- Bidisha Bhowal
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Shahbad, Daulatpur, Delhi, 110042, India
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Shahbad, Daulatpur, Delhi, 110042, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
8
|
Zhang L, Cui X, Yang L, Raziq A, Hao S, Zeng W, Huang J, Cao Y, Duan Q. Nontransformation methods for studying signaling pathways and genes involved in Brassica rapa pollen-stigma interactions. PLANT PHYSIOLOGY 2024; 196:1802-1812. [PMID: 39213415 PMCID: PMC11531837 DOI: 10.1093/plphys/kiae445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/28/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Self-incompatibility (SI) is a mechanism in plants that prevents self-fertilization and promotes outcrossing. SI is also widely utilized in the breeding of Brassicaceae crops. Understanding the regulatory mechanisms of SI is essential but has been greatly restrained in most Brassicaceae crops due to inefficient transformation. In this study, we developed methods for examining signaling pathways and genes of pollen-stigma interactions in Brassicaceae crops lacking an efficient genetic transformation system. We pretreated excised stigmas of Brassica rapa (B. rapa L. ssp. Pekinensis) in vitro with chemicals to modify signaling pathways or with phosphorothioate antisense oligodeoxyribonucleotides (AS-ODNs) to modify the expression of the corresponding genes involved in pollen-stigma interactions. Using this method, we first determined the involvement of reactive oxygen species (ROS) in SI with the understanding that the NADPH oxidase inhibitor diphenyleneiodonium chloride, which inhibits ROS production, eliminated the SI of B. rapa. We further identified the key gene for ROS production in SI and used AS-ODNs targeting BrRBOHF (B. rapa RESPIRATORY-BURST OXIDASE HOMOLOGF), which encodes one of the NADPH oxidases, to effectively suppress its expression, reduce stigmatic ROS, and promote the growth of self-pollen in B. rapa stigmas. Moreover, pistils treated in planta with the ROS scavenger sodium salicylate disrupted SI and resulted in enlarged ovules with inbred embryos 12 d after pollination. This method will enable the functional study of signaling pathways and genes regulating SI and other pollen-stigma interactions in different Brassicaceae plants.
Collapse
Affiliation(s)
- Lili Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xiaoshuang Cui
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Lin Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Abdul Raziq
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- Directorate of Vegetable Seed Production, Agriculture Research Institute, Village Aid Sariab, Quetta, 87300 Balochistan, Pakistan
| | - Shiya Hao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Weiqing Zeng
- Health and Biosciences, International Flavors and Fragrances, Wilmington, DE 19803, USA
| | - Jiabao Huang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
- Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Yunyun Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Qiaohong Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
9
|
Zhu K, Zhang Y, Shen W, Yu L, Li D, Zhang H, Miao C, Ding X, Jiang Y. Genome-Wide Analysis and Expression Profiling of Glyoxalase Gene Families Under Abiotic Stresses in Cucumber ( Cucumis sativus L.). Int J Mol Sci 2024; 25:11294. [PMID: 39457076 PMCID: PMC11508195 DOI: 10.3390/ijms252011294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
The glyoxalase pathway, consisting of glyoxalase I (GLYI) and glyoxalase II (GLYII), is an enzymatic system that converts cytotoxic methylglyoxal to non-toxic S-D-lactoylglutathione. Although the GLY gene family has been analyzed in Arabidopsis, rice, grape, cabbage, and soybean, cucumber studies are lacking. Here, we analyzed the cucumber GLY gene family, identifying 13 CsGLYI and 2 CsGLYII genes. Furthermore, we investigated the physicochemical properties, phylogenetic relationships, chromosomal localization and colinearity, gene structure, conserved motifs, cis-regulatory elements, and protein-protein interaction networks of the CsGLY family. They were primarily localized in the cytoplasm, chloroplasts, and mitochondria, with a minor presence in the nucleus. The classification of CsGLYI and CsGLYII genes into five classes closely resembled the homologous genes in Arabidopsis and soybean. Additionally, hormone-responsive elements dominated the promoter region of GLY genes, alongside light- and stress-responsive elements. The predicted interaction proteins of CsGLYIs and CsGLYIIs exerted a significant role in cellular respiration, amino acid synthesis, and metabolism, as well as methylglyoxal catabolism. In addition, the expression profiles of GLY genes were distinct in different tissues of cucumber as well as under diverse abiotic stresses. This study is conducive to the further exploration of the functional diversity among glyoxalase genes and the mechanisms of stress responses in cucumber.
Collapse
Affiliation(s)
- Kaili Zhu
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (K.Z.); (L.Y.); (D.L.); (H.Z.)
- Shanghai Key Laboratory of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.Z.); (W.S.); (C.M.)
| | - Yongxue Zhang
- Shanghai Key Laboratory of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.Z.); (W.S.); (C.M.)
| | - Weiyao Shen
- Shanghai Key Laboratory of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.Z.); (W.S.); (C.M.)
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Lishu Yu
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (K.Z.); (L.Y.); (D.L.); (H.Z.)
- Shanghai Key Laboratory of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.Z.); (W.S.); (C.M.)
| | - Dandan Li
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (K.Z.); (L.Y.); (D.L.); (H.Z.)
- Shanghai Key Laboratory of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.Z.); (W.S.); (C.M.)
| | - Haoyu Zhang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (K.Z.); (L.Y.); (D.L.); (H.Z.)
- Shanghai Key Laboratory of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.Z.); (W.S.); (C.M.)
| | - Chen Miao
- Shanghai Key Laboratory of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.Z.); (W.S.); (C.M.)
| | - Xiaotao Ding
- Shanghai Key Laboratory of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.Z.); (W.S.); (C.M.)
| | - Yuping Jiang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (K.Z.); (L.Y.); (D.L.); (H.Z.)
| |
Collapse
|
10
|
Macgregor SR, Beronilla PKS, Goring DR. The Arabidopsis SNARE complex genes regulate the early stages of pollen-stigma interactions. PLANT REPRODUCTION 2024; 37:309-320. [PMID: 38038738 DOI: 10.1007/s00497-023-00488-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/22/2023] [Indexed: 12/02/2023]
Abstract
KEY MESSAGE The VAMP721, VAMP722, SYP121, SYP122 and SNAP33 SNAREs are required in the Arabidopsis stigma for pollen hydration, further supporting a role for vesicle trafficking in the stigma's pollen responses. In the Brassicaceae, the process of accepting compatible pollen is a key step in successful reproduction and highly regulated following interactions between the pollen and the stigma. Central to this is the initiation of secretion in the stigma, which is proposed to provide resources to the pollen for hydration and germination and pollen tube growth. Previously, the eight exocyst subunit genes were shown to be required in the Arabidopsis stigma to support these pollen responses. One of the roles of the exocyst is to tether secretory vesicles at the plasma membrane for membrane fusion by the SNARE complex to enable vesicle cargo release. Here, we investigate the role of Arabidopsis SNARE genes in the stigma for pollen responses. Using a combination of different knockout and knockdown SNARE mutant lines, we show that VAMP721, VAMP722, SYP121, SYP122 and SNAP33 are involved in this process. Significant disruptions in pollen hydration were observed following pollination of wildtype pollen on the mutant SNARE stigmas. Overall, these results place the Arabidopsis SNARE complex as a contributor in the stigma for pollen responses and reaffirm the significance of secretion in the stigma to support the pollen-stigma interactions.
Collapse
Affiliation(s)
- Stuart R Macgregor
- Department of Cell & Systems Biology, University of Toronto, Toronto, M5S 3B2, Canada
- Faculty of Science, York University, Toronto, Canada
| | - Paula K S Beronilla
- Department of Cell & Systems Biology, University of Toronto, Toronto, M5S 3B2, Canada
| | - Daphne R Goring
- Department of Cell & Systems Biology, University of Toronto, Toronto, M5S 3B2, Canada.
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, M5S 3B2, Canada.
| |
Collapse
|
11
|
Li Y, Zhang W, Yang Y, Liang X, Lu S, Ma C, Dai C. BnaPLDα1-BnaMPK6 Involved in NaCl-Mediated Overcoming of Self-Incompatibility in Brassica napus L. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 345:112116. [PMID: 38750797 DOI: 10.1016/j.plantsci.2024.112116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024]
Abstract
Self-incompatibility (SI) is an important genetic mechanism exploited by numerous angiosperm species to prevent inbreeding. This mechanism has been widely used in the breeding of SI trilinear hybrids of Brassica napus. The SI responses in these hybrids can be overcome by using a salt (NaCl) solution, which is used for seed propagation in SI lines. However, the mechanism underlying the NaCl-induced breakdown of the SI response in B. napus remains unclear. Here, we investigated the role of two key proteins, BnaPLDα1 and BnaMPK6, in the breakdown of SI induced by NaCl. Pollen grain germination and seed set were reduced in BnaPLDα1 triple mutants following incompatible pollination with NaCl treatment. Conversely, SI responses were partially abolished by overexpression of BnaC05.PLDα1 without salt treatment. Furthermore, we observed that phosphatidic acid (PA) produced by BnaPLDα1 bound to B. napus BnaMPK6. The suppression and enhancement of the NaCl-induced breakdown of the SI response in B. napus were observed in BnaMPK6 quadruple mutants and BnaA05.MPK6 overexpression lines, respectively. Moreover, salt-induced stigmatic reactive oxygen species (ROS) accumulation had a minimal effect on the NaCl-induced breakdown of the SI response. In conclusion, our results demonstrate the essential role of the BnaPLDα1-PA-BnaMPK6 pathway in overcoming the SI response to salt treatment in SI B. napus. Additionally, our study provides new insights into the relationship between SI signaling and salt stress response. SIGNIFICANCE STATEMENT: A new molecular mechanism underlying the breakdown of the NaCl-induced self-incompatibility (SI) response in B. napus has been discovered. It involves the induction of BnaPLDα1 expression by NaCl, followed by the activation of BnaMPK6 through the production of phosphatidic acid (PA) by BnaPLDα1. Ultimately, this pathway leads to the breakdown of SI. The involvement of the BnaPLDα1-PA-BnaMPK6 pathway in overcoming the SI response following NaCl treatment provides new insights into the relationship between SI signalling and the response to salt stress.
Collapse
Affiliation(s)
- Yuanyuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - WenXuan Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaomei Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
12
|
Beronilla PKS, Goring DR. Investigating a role for PUB17 and PUB16 in the self-incompatibility signaling pathway in transgenic Arabidopsis thaliana. PLANT DIRECT 2024; 8:e622. [PMID: 39044900 PMCID: PMC11263811 DOI: 10.1002/pld3.622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024]
Abstract
In Brassicaceae self-incompatibility (SI), self-pollen rejection is initiated by the S-haplotype specific interactions between the pollen S cysteine-rich/S-locus protein 11 (SCR/SP11) ligands and the stigma S receptor kinases (SRK). In Brassica SI, a member of the Plant U-Box (PUB) E3 ubiquitin ligases, ARM-repeat containing 1 (ARC1), is then activated by SRK in this stigma and cellular events downstream of this cause SI pollen rejection by inhibiting pollen hydration and pollen tube growth. During the transition to selfing, Arabidopsis thaliana lost the SI components, SCR, SRK, and ARC1. However, this trait can be reintroduced into A. thaliana by adding back functional copies of these genes from closely related SI species. Both SCR and SRK are required for this, though the degree of SI pollen rejection varies between A. thaliana accessions, and ARC1 is not always needed to produce a strong SI response. For the A. thaliana C24 accession, only transforming with Arabidopsis lyrata SCR and SRK confers a strong SI trait (SI-C24), and so here, we investigated if ARC1-related PUBs were involved in the SI pathway in the transgenic A. thaliana SI-C24 line. Two close ARC1 homologs, PUB17 and PUB16, were selected, and (Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology was used to generate pub17 and pub16 mutations in the C24 accession. These mutants were then crossed into the transgenic A. thaliana SI-C24 line and their potential impact on SI pollen rejection was investigated. Overall, we did not observe any significant differences in SI responses to implicate PUB17 and PUB16 functioning in the transgenic A. thaliana SI-C24 stigma to reject SI pollen.
Collapse
Affiliation(s)
| | - Daphne R. Goring
- Department of Cell & Systems BiologyUniversity of TorontoTorontoCanada
- Centre for the Analysis of Genome Evolution & FunctionUniversity of TorontoTorontoCanada
| |
Collapse
|
13
|
Zhang T, Wang K, Dou S, Gao E, Hussey PJ, Lin Z, Wang P. Exo84c-regulated degradation is involved in the normal self-incompatible response in Brassicaceae. Cell Rep 2024; 43:113913. [PMID: 38442016 DOI: 10.1016/j.celrep.2024.113913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
The self-incompatibility system evolves in angiosperms to promote cross-pollination by rejecting self-pollination. Here, we show the involvement of Exo84c in the SI response of both Brassica napus and Arabidopsis. The expression of Exo84c is specifically elevated in stigma during the SI response. Knocking out Exo84c in B. napus and SI Arabidopsis partially breaks down the SI response. The SI response inhibits both the protein secretion in papillae and the recruitment of the exocyst complex to the pollen-pistil contact sites. Interestingly, these processes can be partially restored in exo84c SI Arabidopsis. After incompatible pollination, the turnover of the exocyst-labeled compartment is enhanced in papillae. However, this process is perturbed in exo84c SI Arabidopsis. Taken together, our results suggest that Exo84c regulates the exocyst complex vacuolar degradation during the SI response. This process is likely independent of the known SI pathway in Brassicaceae to secure the SI response.
Collapse
Affiliation(s)
- Tong Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Kun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Shengwei Dou
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China; Hubei Hongshan Laboratory, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Erlin Gao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Patrick J Hussey
- Department of Biosciences, Durham University, South Road, DH1 3LE Durham, UK
| | - Zongcheng Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Pengwei Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
14
|
Zheng Q, Xin J, Zhao C, Tian R. Role of methylglyoxal and glyoxalase in the regulation of plant response to heavy metal stress. PLANT CELL REPORTS 2024; 43:103. [PMID: 38502356 DOI: 10.1007/s00299-024-03186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
KEY MESSAGE Methylglyoxal and glyoxalase function a significant role in plant response to heavy metal stress. We update and discuss the most recent developments of methylglyoxal and glyoxalase in regulating plant response to heavy metal stress. Methylglyoxal (MG), a by-product of several metabolic processes, is created by both enzymatic and non-enzymatic mechanisms. It plays an important role in plant growth and development, signal transduction, and response to heavy metal stress (HMS). Changes in MG content and glyoxalase (GLY) activity under HMS imply that they may be potential biomarkers of plant stress resistance. In this review, we summarize recent advances in research on the mechanisms of MG and GLY in the regulation of plant responses to HMS. It has been discovered that appropriate concentrations of MG assist plants in maintaining a balance between growth and development and survival defense, therefore shielding them from heavy metal harm. MG and GLY regulate plant physiological processes by remodeling cellular redox homeostasis, regulating stomatal movement, and crosstalking with other signaling molecules (including abscisic acid, gibberellic acid, jasmonic acid, cytokinin, salicylic acid, melatonin, ethylene, hydrogen sulfide, and nitric oxide). We also discuss the involvement of MG and GLY in the regulation of plant responses to HMS at the transcriptional, translational, and metabolic levels. Lastly, considering the current state of research, we present a perspective on the future direction of MG research to elucidate the MG anti-stress mechanism and offer a theoretical foundation and useful advice for the remediation of heavy metal-contaminated environments in the future.
Collapse
Affiliation(s)
- Qianqian Zheng
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jianpan Xin
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Chu Zhao
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Runan Tian
- College of Architecture Landscape, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
15
|
Zhang D, Li YY, Zhao X, Zhang C, Liu DK, Lan S, Yin W, Liu ZJ. Molecular insights into self-incompatibility systems: From evolution to breeding. PLANT COMMUNICATIONS 2024; 5:100719. [PMID: 37718509 PMCID: PMC10873884 DOI: 10.1016/j.xplc.2023.100719] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Plants have evolved diverse self-incompatibility (SI) systems for outcrossing. Since Darwin's time, considerable progress has been made toward elucidating this unrivaled reproductive innovation. Recent advances in interdisciplinary studies and applications of biotechnology have given rise to major breakthroughs in understanding the molecular pathways that lead to SI, particularly the strikingly different SI mechanisms that operate in Solanaceae, Papaveraceae, Brassicaceae, and Primulaceae. These best-understood SI systems, together with discoveries in other "nonmodel" SI taxa such as Poaceae, suggest a complex evolutionary trajectory of SI, with multiple independent origins and frequent and irreversible losses. Extensive exploration of self-/nonself-discrimination signaling cascades has revealed a comprehensive catalog of male and female identity genes and modifier factors that control SI. These findings also enable the characterization, validation, and manipulation of SI-related factors for crop improvement, helping to address the challenges associated with development of inbred lines. Here, we review current knowledge about the evolution of SI systems, summarize key achievements in the molecular basis of pollen‒pistil interactions, discuss potential prospects for breeding of SI crops, and raise several unresolved questions that require further investigation.
Collapse
Affiliation(s)
- Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan-Yuan Li
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuewei Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuili Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ding-Kun Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weilun Yin
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
16
|
Garai S, Bhowal B, Gupta M, Sopory SK, Singla-Pareek SL, Pareek A, Kaur C. Role of methylglyoxal and redox homeostasis in microbe-mediated stress mitigation in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111922. [PMID: 37952767 DOI: 10.1016/j.plantsci.2023.111922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/04/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
One of the general consequences of stress in plants is the accumulation of reactive oxygen (ROS) and carbonyl species (like methylglyoxal) to levels that are detrimental for plant growth. These reactive species are inherently produced in all organisms and serve different physiological functions but their excessive accumulation results in cellular toxicity. It is, therefore, essential to restore equilibrium between their synthesis and breakdown to ensure normal cellular functioning. Detoxification mechanisms that scavenge these reactive species are considered important for stress mitigation as they maintain redox balance by restricting the levels of ROS, methylglyoxal and other reactive species in the cellular milieu. Stress tolerance imparted to plants by root-associated microbes involves a multitude of mechanisms, including maintenance of redox homeostasis. By improving the overall antioxidant response in plants, microbes can strengthen defense pathways and hence, the adaptive abilities of plants to sustain growth under stress. Hence, through this review we wish to highlight the contribution of root microbiota in modulating the levels of reactive species and thereby, maintaining redox homeostasis in plants as one of the important mechanisms of stress alleviation. Further, we also examine the microbial mechanisms of resistance to oxidative stress and their role in combating plant stress.
Collapse
Affiliation(s)
- Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Bidisha Bhowal
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Mayank Gupta
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sudhir K Sopory
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sneh L Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, SAS Nagar, Mohali, Punjab 140306, India
| | - Charanpreet Kaur
- National Agri-Food Biotechnology Institute, SAS Nagar, Mohali, Punjab 140306, India.
| |
Collapse
|
17
|
Miranda ER, Haus JM. Glyoxalase I is a novel target for the prevention of metabolic derangement. Pharmacol Ther 2023; 250:108524. [PMID: 37722607 DOI: 10.1016/j.pharmthera.2023.108524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023]
Abstract
Obesity prevalence in the US has nearly tripled since 1975 and a parallel increase in prevalence of type 2 diabetes (T2D). Obesity promotes a myriad of metabolic derangements with insulin resistance (IR) being perhaps the most responsible for the development of T2D and other related diseases such as cardiovascular disease. The precarious nature of IR development is such that it provides a valuable target for the prevention of further disease development. However, the mechanisms driving IR are numerous and complex making the development of viable interventions difficult. The development of metabolic derangement in the context of obesity promotes accumulation of reactive metabolites such as the reactive alpha-dicarbonyl methylglyoxal (MG). MG accumulation has long been appreciated as a marker of disease progression in patients with T2D as well as the development of diabetic complications. However, recent evidence suggests that the accumulation of MG occurs with obesity prior to T2D onset and may be a primary driving factor for the development of IR and T2D. Further, emerging evidence also suggests that this accumulation of MG with obesity may be a result in a loss of MG detoxifying capacity of glyoxalase I. In this review, we will discuss the evidence that posits MG accumulation because of GLO1 attenuation is a novel target mechanism of the development of metabolic derangement. In addition, we will also explore the regulation of GLO1 and the strategies that have been investigated so far to target GLO1 regulation for the prevention and treatment of metabolic derangement.
Collapse
Affiliation(s)
- Edwin R Miranda
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States of America
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
18
|
Gambhir P, Raghuvanshi U, Parida AP, Kujur S, Sharma S, Sopory SK, Kumar R, Sharma AK. Elevated methylglyoxal levels inhibit tomato fruit ripening by preventing ethylene biosynthesis. PLANT PHYSIOLOGY 2023; 192:2161-2184. [PMID: 36879389 PMCID: PMC10315284 DOI: 10.1093/plphys/kiad142] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Methylglyoxal (MG), a toxic compound produced as a by-product of several cellular processes, such as respiration and photosynthesis, is well known for its deleterious effects, mainly through glycation of proteins during plant stress responses. However, very little is known about its impact on fruit ripening. Here, we found that MG levels are maintained at high levels in green tomato (Solanum lycopersicum L.) fruits and decline during fruit ripening despite a respiratory burst during this transition. We demonstrate that this decline is mainly mediated through a glutathione-dependent MG detoxification pathway and primarily catalyzed by a Glyoxalase I enzyme encoded by the SlGLYI4 gene. SlGLYI4 is a direct target of the MADS-box transcription factor RIPENING INHIBITOR (RIN), and its expression is induced during fruit ripening. Silencing of SlGLYI4 leads to drastic MG overaccumulation at ripening stages of transgenic fruits and interferes with the ripening process. MG most likely glycates and inhibits key enzymes such as methionine synthase and S-adenosyl methionine synthase in the ethylene biosynthesis pathway, thereby indirectly affecting fruit pigmentation and cell wall metabolism. MG overaccumulation in fruits of several nonripening or ripening-inhibited tomato mutants suggests that the tightly regulated MG detoxification process is crucial for normal ripening progression. Our results underpin a SlGLYI4-mediated regulatory mechanism by which MG detoxification controls fruit ripening in tomato.
Collapse
Affiliation(s)
- Priya Gambhir
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Utkarsh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Adwaita Prasad Parida
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Stuti Kujur
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Shweta Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Sudhir K Sopory
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
19
|
Sun M, Sun S, Jia Z, Zhang H, Ou C, Ma W, Wang J, Li M, Mao P. Genome-wide analysis and expression profiling of glyoxalase gene families in oat ( Avena sativa) indicate their responses to abiotic stress during seed germination. FRONTIERS IN PLANT SCIENCE 2023; 14:1215084. [PMID: 37396634 PMCID: PMC10308377 DOI: 10.3389/fpls.2023.1215084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Abiotic stresses have deleterious effects on seed germination and seedling establishment, leading to significant crop yield losses. Adverse environmental conditions can cause the accumulation of methylglyoxal (MG) within plant cells, which can negatively impact plant growth and development. The glyoxalase system, which consists of the glutathione (GSH)-dependent enzymes glyoxalase I (GLX1) and glyoxalase II (GLX2), as well as the GSH-independent glyoxalase III (GLX3 or DJ-1), plays a crucial role in detoxifying MG. However, genome-wide analysis of glyoxalase genes has not been performed for one of the agricultural important species, oat (Avena sativa). This study identified a total of 26 AsGLX1 genes, including 8 genes encoding Ni2+-dependent GLX1s and 2 genes encoding Zn2+-dependent GLX1s. Additionally, 14 AsGLX2 genes were identified, of which 3 genes encoded proteins with both lactamase B and hydroxyacylglutathione hydrolase C-terminal domains and potential catalytic activity, and 15 AsGLX3 genes encoding proteins containing double DJ-1 domains. The domain architecture of the three gene families strongly correlates with the clades observed in the phylogenetic trees. The AsGLX1, AsGLX2, and AsGLX3 genes were evenly distributed in the A, C, and D subgenomes, and gene duplication of AsGLX1 and AsGLX3 genes resulted from tandem duplications. Besides the core cis-elements, hormone responsive elements dominated the promoter regions of the glyoxalase genes, and stress responsive elements were also frequently observed. The subcellular localization of glyoxalases was predicted to be primarily in the cytoplasm, chloroplasts, and mitochondria, with a few presents in the nucleus, which is consistent with their tissue-specific expression. The highest expression levels were observed in leaves and seeds, indicating that these genes may play important roles in maintaining leaf function and ensuring seed vigor. Moreover, based on in silico predication and expression pattern analysis, AsGLX1-7A, AsGLX2-5D, AsDJ-1-5D, AsGLX1-3D2, and AsGLX1-2A were suggested as promising candidate genes for improving stress resistance or seed vigor in oat. Overall, the identification and analysis of the glyoxalase gene families in this study can provide new strategies for improving oat stress resistance and seed vigor.
Collapse
|
20
|
Goring DR, Bosch M, Franklin-Tong VE. Contrasting self-recognition rejection systems for self-incompatibility in Brassica and Papaver. Curr Biol 2023; 33:R530-R542. [PMID: 37279687 DOI: 10.1016/j.cub.2023.03.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Self-incompatibility (SI) plays a pivotal role in whether self-pollen is accepted or rejected. Most SI systems employ two tightly linked loci encoding highly polymorphic pollen (male) and pistil (female) S-determinants that control whether self-pollination is successful or not. In recent years our knowledge of the signalling networks and cellular mechanisms involved has improved considerably, providing an important contribution to our understanding of the diverse mechanisms used by plant cells to recognise each other and elicit responses. Here, we compare and contrast two important SI systems employed in the Brassicaceae and Papaveraceae. Both use 'self-recognition' systems, but their genetic control and S-determinants are quite different. We describe the current knowledge about the receptors and ligands, and the downstream signals and responses utilized to prevent self-seed set. What emerges is a common theme involving the initiation of destructive pathways that block the key processes that are required for compatible pollen-pistil interactions.
Collapse
Affiliation(s)
- Daphne R Goring
- Department of Cell & Systems Biology, University of Toronto, Toronto M5S 3B2, Canada
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3EB, Wales, UK
| | | |
Collapse
|
21
|
Xiong T, Ye F, Chen J, Chen Y, Zhang Z. Peptide signaling in anther development and pollen-stigma interactions. Gene 2023; 865:147328. [PMID: 36870426 DOI: 10.1016/j.gene.2023.147328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Polypeptides play irreplaceable roles in cell-cell communication by binding to receptor-like kinases. Various types of peptide-receptor-like kinase-mediated signaling have been identified in anther development and male-female interactions in flowering plants. Here, we provide a comprehensive summary of the biological functions and signaling pathways of peptides and receptors involved in anther development, self-incompatibility, pollen tube growth and pollen tube guidance.
Collapse
Affiliation(s)
- Tao Xiong
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Fan Ye
- College of International Education, Xinyang Normal University, Xinyang, China
| | - Jiahui Chen
- College of International Education, Xinyang Normal University, Xinyang, China
| | - Yurui Chen
- College of International Education, Xinyang Normal University, Xinyang, China
| | - Zaibao Zhang
- College of Life Science, Xinyang Normal University, Xinyang, China.
| |
Collapse
|
22
|
Jamshed M, Hickerson NMN, Sankaranarayanan S, Samuel MA. Plant reproduction: Stigma receptors regulate reactive oxygen species to establish pollination barriers. Curr Biol 2023; 33:R363-R366. [PMID: 37160095 DOI: 10.1016/j.cub.2023.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Exciting new research highlights how stigmatic receptors purposed for recognizing self-incompatible pollen interact with the FERONIA pathway to regulate stigmatic reactive oxygen species production to enforce a barrier against self-, intra- and interspecific pollen.
Collapse
Affiliation(s)
- Muhammad Jamshed
- University of Calgary, BI 392, Department of Biological Sciences, 2500 University Dr. NW. Calgary, Alberta T2N 1N4, Canada
| | - Neil M N Hickerson
- University of Calgary, BI 392, Department of Biological Sciences, 2500 University Dr. NW. Calgary, Alberta T2N 1N4, Canada
| | | | - Marcus A Samuel
- University of Calgary, BI 392, Department of Biological Sciences, 2500 University Dr. NW. Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
23
|
Wang L, Liang X, Dou S, Yi B, Fu T, Ma C, Dai C. Two aspartic proteases, BnaAP36s and BnaAP39s, regulate pollen tube guidance in Brassica napus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:27. [PMID: 37313529 PMCID: PMC10248713 DOI: 10.1007/s11032-023-01377-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/31/2023] [Indexed: 06/15/2023]
Abstract
Pollen tube (PT) growth towards the micropyle is critical for successful double fertilization. However, the mechanism of micropyle-directed PT growth is still unclear in Brassica napus. In this study, two aspartate proteases, BnaAP36s and BnaAP39s, were identified in B. napus. BnaAP36s and BnaAP39s were localized to the plasma membrane. The homologues of BnaAP36 and BnaAP39 were highly expressed in flower organs, especially in the anther. Sextuple and double mutants of BnaAP36s and BnaAP39s were then generated using CRISPR/Cas9 technology. Compared to WT, the seed-set of cr-bnaap36 and cr-bnaap39 mutants was reduced by 50% and 60%, respectively. The reduction in seed-set was also found when cr-bnaap36 and cr-bnaap39 were used as the female parent in a reciprocal cross assay. Like WT, cr-bnaap36 and cr-bnaap39 pollen were able to germinate and the relative PTs were able to elongate in style. Approximately 36% and 33% of cr-bnaap36 and cr-bnaap39 PTs, respectively, failed to grow towards the micropyle, indicating that BnaAP36s and BnaAP39s are essential for micropyle-directed PT growth. Furthermore, Alexander's staining showed that 10% of cr-bnaap39 pollen grains were aborted, but not cr-bnaap36, suggesting that BnaAP39s may also affect microspore development. These results suggest that BnaAP36s and BnaAP39s play a critical role in the growth of micropyle-directed PTs in B. napus. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01377-1.
Collapse
Affiliation(s)
- Lulin Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Xiaomei Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Shengwei Dou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| |
Collapse
|
24
|
Gambhir P, Singh V, Raghuvanshi U, Parida AP, Pareek A, Roychowdhury A, Sopory SK, Kumar R, Sharma AK. A glutathione-independent DJ-1/PfpI domain-containing tomato glyoxalaseIII2, SlGLYIII2, confers enhanced tolerance under salt and osmotic stresses. PLANT, CELL & ENVIRONMENT 2023; 46:518-548. [PMID: 36377315 DOI: 10.1111/pce.14493] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/07/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
In plants, glyoxalase enzymes are activated under stress conditions to mitigate the toxic effects of hyperaccumulated methylglyoxal (MG), a highly reactive carbonyl compound. Until recently, a glutathione-dependent bi-enzymatic pathway involving glyoxalase I (GLYI) and glyoxalase II (GLYII) was considered the primary MG-detoxification system. Recently, a new glutathione-independent glyoxalase III (GLYIII) mediated direct route was also reported in plants. However, the physiological significance of this new pathway remains to be elucidated across plant species. This study identified the full complement of 22 glyoxalases in tomato. Based on their strong induction under multiple abiotic stresses, SlGLYI4, SlGLYII2 and SlGLYIII2 were selected candidates for further functional characterisation. Stress-inducible overexpression of both glutathione-dependent (SlGLYI4 + SlGLYII2) and independent (SlGLYIII2) pathways led to enhanced tolerance in both sets of transgenic plants under abiotic stresses. However, SlGLYIII2 overexpression (OE) plants outperformed the SlGLYI4 + SlGLYII2 OE counterparts for their stress tolerance under abiotic stresses. Further, knockdown of SlGLYIII2 resulted in plants with exacerbated stress responses than those silenced for both SlGLYI4 and SlGLYII2. The superior performance of SlGLYIII2 OE tomato plants for better growth and yield under salt and osmotic treatments could be attributed to better GSH/GSSG ratio, lower reactive oxygen species levels, and enhanced antioxidant potential, indicating a prominent role of GLYIII MG-detoxification pathway in abiotic stress mitigation in this species.
Collapse
Affiliation(s)
- Priya Gambhir
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Vijendra Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Utkarsh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Adwaita Prasad Parida
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Amit Pareek
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | | - Sudhir K Sopory
- Department of Plant Molecular Biology, Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Rahul Kumar
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
25
|
Yu TY, Xu CX, Li WJ, Wang B. Peptides/receptors signaling during plant fertilization. FRONTIERS IN PLANT SCIENCE 2022; 13:1090836. [PMID: 36589119 PMCID: PMC9797866 DOI: 10.3389/fpls.2022.1090836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Double fertilization is a unique and particularly complicated process for the generation alternation of angiosperms. Sperm cells of angiosperms lose the motility compared with that of gymnosperms. The sperm cells are passively carried and transported by the pollen tube for a long journey before targeting the ovule. Two sperm cells are released at the cleft between the egg and the central cell and fused with two female gametes to produce a zygote and endosperm, respectively, to accomplish the so-called double fertilization process. In this process, extensive communication and interaction occur between the male (pollen or pollen tube) and the female (ovule). It is suggested that small peptides and receptor kinases play critical roles in orchestrating this cell-cell communication. Here, we illuminate the understanding of phases in the process, such as pollen-stigma recognition, the hydration and germination of pollen grains, the growth, guidance, and rupture of tubes, the release of sperm cells, and the fusion of gametes, by reviewing increasing data recently. The roles of peptides and receptor kinases in signaling mechanisms underlying cell-cell communication were focused on, and directions of future studies were perspected in this review.
Collapse
|
26
|
Qin H, Li H, Abhinandan K, Xun B, Yao K, Shi J, Zhao R, Li M, Wu Y, Lan X. Fatty Acid Biosynthesis Pathways Are Downregulated during Stigma Development and Are Critical during Self-Incompatible Responses in Ornamental Kale. Int J Mol Sci 2022; 23:ijms232113102. [PMID: 36361887 PMCID: PMC9656282 DOI: 10.3390/ijms232113102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 11/30/2022] Open
Abstract
In Brassicaceae, the papillary cells of the stigma are the primary site of the self-incompatibility (SI) responses. SI preserves the genetic diversity by selectively rejecting irrelevant or incompatible pollen, thus promoting cross fertilization and species fitness. Mechanisms that regulate SI responses in Brassica have been studied mainly on the mature stigma that often undermines how stigma papillary cells attain the state of SI during development. To understand this, we integrated PacBio SMRT-seq with Illumina RNA-seq to construct a de novo full-length transcriptomic database for different stages of stigma development in ornamental kale. A total of 48,800 non-redundant transcripts, 31,269 novel transcripts, 24,015 genes, 13,390 alternative splicing, 22,389 simple sequence repeats, 21,816 complete ORF sequences, and 4591 lncRNAs were identified and analyzed using PacBio SMRT-seq. The Illumina RNA-seq revealed 15,712 differentially expressed genes (DEGs) and 8619 transcription factors. The KEGG enrichment analysis of 4038 DEGs in the “incompatibility” group revealed that the flavonoid and fatty acid biosynthesis pathways were significantly enriched. The cluster and qRT-PCR analysis indicated that 11 and 14 candidate genes for the flavonoid and fatty acid biosynthesis pathways have the lowest expression levels at stigma maturation, respectively. To understand the physiological relevance of the downregulation of fatty acid biosynthesis pathways, we performed inhibitor feeding assays on the mature stigma. The compatible pollination response was drastically reduced when mature stigmas were pre-treated with a fatty acid synthase inhibitor. This finding suggested that fatty acid accumulation in the stigmas may be essential for compatible pollination and its downregulation during maturity must have evolved as a support module to discourage the mounting of self-incompatible pollen.
Collapse
Affiliation(s)
- Hongtao Qin
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Hang Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Kumar Abhinandan
- 20/20 Seed Labs Inc., Nisku, AB T9E 7N5, Canada
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Baoru Xun
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Kun Yao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Jiayuan Shi
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Ruoxi Zhao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Mugeng Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Ying Wu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xingguo Lan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
- Correspondence:
| |
Collapse
|
27
|
Abhinandan K, Sankaranarayanan S, Macgregor S, Goring DR, Samuel MA. Cell-cell signaling during the Brassicaceae self-incompatibility response. TRENDS IN PLANT SCIENCE 2022; 27:472-487. [PMID: 34848142 DOI: 10.1016/j.tplants.2021.10.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Self-incompatibility (SI) is a mechanism that many plant families employ to prevent self-fertilization. In the Brassicaceae, the S-haplotype-specific interaction of the pollen-borne ligand, and a stigma-specific receptor protein kinase triggers a signaling cascade that culminates in the rejection of self-pollen. While the upstream molecular components at the receptor level of the signaling pathway have been extensively studied, the intracellular responses beyond receptor activation were not as well understood. Recent research has uncovered several key molecules and signaling events that operate in concert for the manifestation of the self-incompatible responses in Brassicaceae stigmas. Here, we review the recent discoveries in both the compatible and self-incompatible pathways and provide new perspectives on the early stages of Brassicaceae pollen-pistil interactions.
Collapse
Affiliation(s)
- Kumar Abhinandan
- University of Calgary, Department of Biological Sciences, Calgary, Alberta T2N 1N4, Canada; 20/20 Seed Labs Inc., Nisku, Alberta T9E 7N5, Canada
| | | | - Stuart Macgregor
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Daphne R Goring
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Marcus A Samuel
- University of Calgary, Department of Biological Sciences, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
28
|
Macgregor SR, Lee HK, Nelles H, Johnson DC, Zhang T, Ma C, Goring DR. Autophagy is required for self-incompatible pollen rejection in two transgenic Arabidopsis thaliana accessions. PLANT PHYSIOLOGY 2022; 188:2073-2084. [PMID: 35078230 PMCID: PMC8969033 DOI: 10.1093/plphys/kiac026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/22/2021] [Indexed: 05/16/2023]
Abstract
Successful reproduction in the Brassicaceae is mediated by a complex series of interactions between the pollen and the pistil, and some species have an additional layer of regulation with the self-incompatibility trait. While the initial activation of the self-incompatibility pathway by the pollen S-locus protein 11/S locus cysteine-rich protein and the stigma S Receptor Kinase is well characterized, the downstream mechanisms causing self-pollen rejection are still not fully understood. In previous studies, we detected the presence of autophagic bodies with self-incompatible (SI) pollinations in Arabidopsis lyrata and transgenic Arabidopsis thaliana lines, but whether autophagy was essential for self-pollen rejection was unknown. Here, we investigated the requirement of autophagy in this response by crossing mutations in the essential AUTOPHAGY7 (ATG7) and ATG5 genes into two different transgenic SI A. thaliana lines in the Col-0 and C24 accessions. By using these previously characterized transgenic lines that express A. lyrata and Arabidopsis halleri self-incompatibility genes, we demonstrated that disrupting autophagy weakened their SI responses in the stigma. When the atg7 or atg5 mutations were present, an increased number of SI pollen was found to hydrate and form pollen tubes that successfully fertilized the SI pistils. Additionally, we confirmed the presence of GFP-ATG8a-labeled autophagosomes in the stigmatic papillae following SI pollinations. Together, these findings support the requirement of autophagy in the self-incompatibility response and add to the growing understanding of the intracellular mechanisms employed in the transgenic A. thaliana stigmas to reject self-pollen.
Collapse
Affiliation(s)
- Stuart R Macgregor
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada M5S 3B2
| | | | - Hayley Nelles
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada M5S 3B2
| | - Daniel C Johnson
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada M5S 3B2
| | - Tong Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
29
|
Hickerson NM, Samuel MA. Stylar steroids: Brassinosteroids regulate pistil development and self-incompatibility in Primula. Curr Biol 2022; 32:R135-R137. [DOI: 10.1016/j.cub.2021.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Li B, Zhang X, Liu Z, Wang L, Song L, Liang X, Dou S, Tu J, Shen J, Yi B, Wen J, Fu T, Dai C, Gao C, Wang A, Ma C. Genetic and Molecular Characterization of a Self-Compatible Brassica rapa Line Possessing a New Class II S Haplotype. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122815. [PMID: 34961286 PMCID: PMC8709392 DOI: 10.3390/plants10122815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 05/20/2023]
Abstract
Most flowering plants have evolved a self-incompatibility (SI) system to maintain genetic diversity by preventing self-pollination. The Brassica species possesses sporophytic self-incompatibility (SSI), which is controlled by the pollen- and stigma-determinant factors SP11/SCR and SRK. However, the mysterious molecular mechanism of SI remains largely unknown. Here, a new class II S haplotype, named BrS-325, was identified in a pak choi line '325', which was responsible for the completely self-compatible phenotype. To obtain the entire S locus sequences, a complete pak choi genome was gained through Nanopore sequencing and de novo assembly, which provided a good reference genome for breeding and molecular research in B. rapa. S locus comparative analysis showed that the closest relatives to BrS-325 was BrS-60, and high sequence polymorphism existed in the S locus. Meanwhile, two duplicated SRKs (BrSRK-325a and BrSRK-325b) were distributed in the BrS-325 locus with opposite transcription directions. BrSRK-325b and BrSCR-325 were expressed normally at the transcriptional level. The multiple sequence alignment of SCRs and SRKs in class II S haplotypes showed that a number of amino acid variations were present in the contact regions (CR II and CR III) of BrSCR-325 and the hypervariable regions (HV I and HV II) of BrSRK-325s, which may influence the binding and interaction between the ligand and the receptor. Thus, these results suggested that amino acid variations in contact sites may lead to the SI destruction of a new class II S haplotype BrS-325 in B. rapa. The complete SC phenotype of '325' showed the potential for practical breeding application value in B. rapa.
Collapse
Affiliation(s)
- Bing Li
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Xueli Zhang
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430345, China; (X.Z.); (L.S.)
| | - Zhiquan Liu
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Science, Changsha 410125, China;
| | - Lulin Wang
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Liping Song
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430345, China; (X.Z.); (L.S.)
| | - Xiaomei Liang
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Shengwei Dou
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Jinxing Tu
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Jinxiong Shen
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Bin Yi
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Jing Wen
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Tingdong Fu
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Cheng Dai
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
| | - Changbin Gao
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430345, China; (X.Z.); (L.S.)
- Correspondence: (C.G.); (A.W.); (C.M.); Tel.: +86-27-8728-18-07 (C.M.)
| | - Aihua Wang
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430345, China; (X.Z.); (L.S.)
- Correspondence: (C.G.); (A.W.); (C.M.); Tel.: +86-27-8728-18-07 (C.M.)
| | - Chaozhi Ma
- National Sub-Center of Rapeseed Improvement in Wuhan, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (B.L.); (L.W.); (X.L.); (S.D.); (J.T.); (J.S.); (B.Y.); (J.W.); (T.F.); (C.D.)
- Correspondence: (C.G.); (A.W.); (C.M.); Tel.: +86-27-8728-18-07 (C.M.)
| |
Collapse
|
31
|
Kim MJ, Jeon BW, Oh E, Seo PJ, Kim J. Peptide Signaling during Plant Reproduction. TRENDS IN PLANT SCIENCE 2021; 26:822-835. [PMID: 33715959 DOI: 10.1016/j.tplants.2021.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 05/08/2023]
Abstract
Plant signaling peptides are involved in cell-cell communication networks and coordinate a wide range of plant growth and developmental processes. Signaling peptides generally bind to receptor-like kinases, inducing their dimerization with co-receptors for signaling activation to trigger cellular signaling and biological responses. Fertilization is an important life event in flowering plants, involving precise control of cell-cell communications between male and female tissues. Peptide-receptor-like kinase-mediated signaling plays an important role in male-female interactions for successful fertilization in flowering plants. Here, we describe the recent findings on the functions and signaling pathways of peptides and receptors involved in plant reproduction processes including pollen germination, pollen tube growth, pollen tube guidance to the embryo sac, and sperm cell reception in female tissues.
Collapse
Affiliation(s)
- Min-Jung Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea; Department of Integrative Food, Bioscience, and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Byeong Wook Jeon
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea; Department of Integrative Food, Bioscience, and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Eunkyoo Oh
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea; Department of Integrative Food, Bioscience, and Technology, Chonnam National University, Gwangju 61186, Korea; Kumho Life Science Laboratory, Chonnam National University, Buk-Gu, Gwangju 61186, Korea.
| |
Collapse
|
32
|
Zhang L, Huang J, Su S, Wei X, Yang L, Zhao H, Yu J, Wang J, Hui J, Hao S, Song S, Cao Y, Wang M, Zhang X, Zhao Y, Wang Z, Zeng W, Wu HM, Yuan Y, Zhang X, Cheung AY, Duan Q. FERONIA receptor kinase-regulated reactive oxygen species mediate self-incompatibility in Brassica rapa. Curr Biol 2021; 31:3004-3016.e4. [PMID: 34015250 DOI: 10.1016/j.cub.2021.04.060] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 01/18/2021] [Accepted: 04/26/2021] [Indexed: 01/02/2023]
Abstract
Most plants in the Brassicaceae evolve self-incompatibility (SI) to avoid inbreeding and generate hybrid vigor. Self-pollen is recognized by the S-haplotype-specific interaction of the pollen ligand S-locus protein 11 (SP11) (also known as S-locus cysteine-rich protein [SCR]) and its stigma-specific S-locus receptor kinase (SRK). However, mechanistically much remains unknown about the signaling events that culminate in self-pollen rejection. Here, we show that self-pollen triggers high levels of reactive oxygen species (ROS) in stigma papilla cells to mediate SI in heading Chinese cabbage (Brassica rapa L. ssp. pekinensis). We found that stigmatic ROS increased after self-pollination but decreased after compatible(CP)- pollination. Reducing stigmatic ROS by scavengers or suppressing the expression of respiratory burst oxidase homologs (Rbohs), which encode plant NADPH oxidases that produce ROS, both broke down SI. On the other hand, increasing the level of ROS inhibited the germination and penetration of compatible pollen on the stigma, mimicking an incompatible response. Furthermore, suppressing a B. rapa FERONIA (FER) receptor kinase homolog or Rac/Rop guanosine triphosphatase (GTPase) signaling effectively reduced stigmatic ROS and interfered with SI. Our results suggest that FER-Rac/Rop signaling-regulated, NADPH oxidase-produced ROS is an essential SI response leading to self-pollen rejection.
Collapse
Affiliation(s)
- Lili Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Jiabao Huang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China.
| | - Shiqi Su
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan, China
| | - Lin Yang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Huanhuan Zhao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Jianqiang Yu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Jie Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Jiyun Hui
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Shiya Hao
- School of Arts and Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Shanshan Song
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Yanyan Cao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Maoshuai Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan, China
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan, China
| | | | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, Molecular Cell Biology and Plant Biology Programs, University of Massachusetts, Amherst, MA 01003, USA
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 Henan, China.
| | - Xiansheng Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular Cell Biology and Plant Biology Programs, University of Massachusetts, Amherst, MA 01003, USA
| | - Qiaohong Duan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018 Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018 Shandong, China.
| |
Collapse
|
33
|
Kenney P, Sankaranarayanan S, Balogh M, Indriolo E. Expression of Brassica napus GLO1 is sufficient to breakdown artificial self-incompatibility in Arabidopsis thaliana. PLANT REPRODUCTION 2020; 33:159-171. [PMID: 32862319 DOI: 10.1007/s00497-020-00392-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Members of the Brassicaceae family have the ability to regulate pollination events occurring on the stigma surface. In Brassica species, self-pollination leads to an allele-specific interaction between the pollen small cysteine-rich peptide ligand (SCR/SP11) and the stigmatic S-receptor kinase (SRK) that activates the E3 ubiquitin ligase ARC1 (Armadillo repeat-containing 1), resulting in proteasomal degradation of various compatibility factors including glyoxalase I (GLO1) which is necessary for successful pollination. In Brassica napus, the suppression of GLO1 was sufficient to reduce compatibility, and overexpression of GLO1 in self-incompatible Brassica napus stigmas resulted in partial breakdown of the self-incompatibility response. Here, we verified if BnGLO1 could function as a compatibility factor in the artificial self-incompatibility system of Arabidopsis thaliana expressing AlSCRb, AlSRKb and AlARC1 proteins from A. lyrata. Overexpression of BnGLO1 is sufficient to breakdown self-incompatibility response in A. thaliana stigmas. Therefore, GLO1 has an indisputable role as a compatibility factor in the stigma in regulating pollen attachment and pollen tube growth. Lastly, this study demonstrates the usefulness of an artificial self-incompatibility system in A. thaliana for interspecific self-incompatibility studies.
Collapse
Affiliation(s)
- Patrick Kenney
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr, Las Cruces, NM, 88003, USA
- Division of Plant Sciences, University of Missouri, Waters Hall 1112 University Ave, Columbia, MO, 65201, USA
| | | | - Michael Balogh
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr, Las Cruces, NM, 88003, USA
| | - Emily Indriolo
- Department of Biology, New Mexico State University, 1200 S. Horseshoe Dr, Las Cruces, NM, 88003, USA.
| |
Collapse
|
34
|
Jamshed M, Sankaranarayanan S, Abhinandan K, Samuel MA. Stigma Receptivity Is Controlled by Functionally Redundant MAPK Pathway Components in Arabidopsis. MOLECULAR PLANT 2020; 13:1582-1593. [PMID: 32890733 DOI: 10.1101/2020.03.09.983767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/25/2020] [Accepted: 08/28/2020] [Indexed: 05/22/2023]
Abstract
In angiosperms, the process of pollination relies on species-specific interaction and signaling between the male (pollen) and female (pistil) counterparts where the interplay between several pollen and stigma proteins decides the fate of the pollen. In Brassicaceae, the dry stigmatic papillary cells control pollen germination by releasing resources only to compatible pollen thereby allowing pollen to hydrate and germinate. Despite the identification of a number of stigmatic proteins that facilitate pollination responses, the signaling mechanisms that regulate functions of these proteins have remained unknown. Here, we show that, in Arabidopsis, an extremely functionally redundant mitogen-activated protein kinase (MAPK) cascade is required for maintaining stigma receptivity to accept compatible pollen. Our genetic analyses demonstrate that in stigmas, five MAPK kinases (MKKs), MKK1/2/3/7/9 are required to transmit upstream signals to two MPKs, MPK3/4, to mediate compatible pollination. Compromised functions of these five MKKs in the quintuple mutant (mkk1/2/3RNAi/mkk7/9) phenocopied pollination defects observed in the mpk4RNAi/mpk3 double mutant. We further show that this MAPK nexus converges on Exo70A1, a previously identified stigma receptivity factor essential for pollination. Given that pollination is the crucial initial step during plant reproduction, understanding the mechanisms that govern successful pollination could lead to development of strategies to improve crop yield.
Collapse
Affiliation(s)
- Muhammad Jamshed
- University of Calgary, BI 392, Department of Biological Sciences, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada; Senior Scientist, Frontier Agri-Science Inc, 98 Ontario Street, Port Hope, ON L1A 2V2, Canada
| | - Subramanian Sankaranarayanan
- University of Calgary, BI 392, Department of Biological Sciences, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada; Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Kumar Abhinandan
- University of Calgary, BI 392, Department of Biological Sciences, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Marcus A Samuel
- University of Calgary, BI 392, Department of Biological Sciences, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
35
|
Jamshed M, Sankaranarayanan S, Abhinandan K, Samuel MA. Stigma Receptivity Is Controlled by Functionally Redundant MAPK Pathway Components in Arabidopsis. MOLECULAR PLANT 2020; 13:1582-1593. [PMID: 32890733 DOI: 10.1016/j.molp.2020.08.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/25/2020] [Accepted: 08/28/2020] [Indexed: 05/27/2023]
Abstract
In angiosperms, the process of pollination relies on species-specific interaction and signaling between the male (pollen) and female (pistil) counterparts where the interplay between several pollen and stigma proteins decides the fate of the pollen. In Brassicaceae, the dry stigmatic papillary cells control pollen germination by releasing resources only to compatible pollen thereby allowing pollen to hydrate and germinate. Despite the identification of a number of stigmatic proteins that facilitate pollination responses, the signaling mechanisms that regulate functions of these proteins have remained unknown. Here, we show that, in Arabidopsis, an extremely functionally redundant mitogen-activated protein kinase (MAPK) cascade is required for maintaining stigma receptivity to accept compatible pollen. Our genetic analyses demonstrate that in stigmas, five MAPK kinases (MKKs), MKK1/2/3/7/9 are required to transmit upstream signals to two MPKs, MPK3/4, to mediate compatible pollination. Compromised functions of these five MKKs in the quintuple mutant (mkk1/2/3RNAi/mkk7/9) phenocopied pollination defects observed in the mpk4RNAi/mpk3 double mutant. We further show that this MAPK nexus converges on Exo70A1, a previously identified stigma receptivity factor essential for pollination. Given that pollination is the crucial initial step during plant reproduction, understanding the mechanisms that govern successful pollination could lead to development of strategies to improve crop yield.
Collapse
Affiliation(s)
- Muhammad Jamshed
- University of Calgary, BI 392, Department of Biological Sciences, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada; Senior Scientist, Frontier Agri-Science Inc, 98 Ontario Street, Port Hope, ON L1A 2V2, Canada
| | - Subramanian Sankaranarayanan
- University of Calgary, BI 392, Department of Biological Sciences, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada; Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Kumar Abhinandan
- University of Calgary, BI 392, Department of Biological Sciences, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Marcus A Samuel
- University of Calgary, BI 392, Department of Biological Sciences, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
36
|
Singla-Pareek SL, Kaur C, Kumar B, Pareek A, Sopory SK. Reassessing plant glyoxalases: large family and expanding functions. THE NEW PHYTOLOGIST 2020; 227:714-721. [PMID: 32249440 DOI: 10.1111/nph.16576] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/07/2020] [Indexed: 05/07/2023]
Abstract
Methylglyoxal (MG), a reactive carbonyl compound, is generated during metabolism in living systems. However, under stress, its levels increase rapidly leading to cellular toxicity. Although the generation of MG is spontaneous in a cell, its detoxification is essentially catalyzed by the glyoxalase enzymes. In plants, modulation of MG content via glyoxalases influences diverse physiological functions ranging from regulating growth and development to conferring stress tolerance. Interestingly, there has been a preferred expansion in the number of isoforms of these enzymes in plants, giving them high plasticity in their actions for accomplishing diverse roles. Future studies need to focus on unraveling the interplay of these multiple isoforms of glyoxalases possibly contributing towards the unique adaptability of plants to diverse environments.
Collapse
Affiliation(s)
- Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Charanpreet Kaur
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Brijesh Kumar
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sudhir K Sopory
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| |
Collapse
|
37
|
Duan Z, Zhang Y, Tu J, Shen J, Yi B, Fu T, Dai C, Ma C. The Brassica napus GATA transcription factor BnA5.ZML1 is a stigma compatibility factor. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1112-1131. [PMID: 32022417 DOI: 10.1111/jipb.12916] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/02/2020] [Indexed: 05/16/2023]
Abstract
Self-incompatibility (SI) is a genetic mechanism that rejects self-pollen and thus prevents inbreeding in some hermaphroditic angiosperms. In the Brassicaceae, SI involves a pollen-stigma recognition system controlled by a single locus known as the S locus, which consists of two highly polymorphic genes that encode S-locus cysteine-rich protein (SCR) and S-receptor kinase (SRK). When self-pollen lands on the stigma, the S-haplotype-specific interaction between SCR and SRK triggers SI. Here, we show that the GATA transcription factor BnA5.ZML1 suppresses SI responses in Brassica napus and is induced after compatible pollination. The loss-of-function mutant bna5.zml1 displays reduced self-compatibility. In contrast, overexpression of BnA5.ZML1 in self-incompatible stigmas leads to a partial breakdown of SI responses, suggesting that BnA5.ZML1 is a stigmatic compatibility factor. Furthermore, the expression levels of SRK and ARC1 are up-regulated in bna5.zml1 mutants, and they are down-regulated in BnA5.ZML1 overexpressing lines. SRK affects the cellular localization of BnA5.ZML1 through direct protein-protein interaction. Overall, our findings highlight the fundamental role of BnA5.ZML1 in SI responses in B. napus, establishing a direct interaction between BnA5.ZML1 and SRK in this process.
Collapse
Affiliation(s)
- Zhiqiang Duan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yatao Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
38
|
Huang JQ, Lin JL, Guo XX, Tian X, Tian Y, Shangguan XX, Wang LJ, Fang X, Chen XY. RES transformation for biosynthesis and detoxification. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1297-1302. [PMID: 32519031 DOI: 10.1007/s11427-020-1729-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/09/2020] [Indexed: 12/25/2022]
Abstract
The reactive electrophilic species (RES), typically the molecules bearing α,β-unsaturated carbonyl group, are widespread in living organisms and notoriously known for their damaging effects. Many of the mycotoxins released from phytopathogenic fungi are RES and their contamination to cereals threatens food safety worldwide. However, due to their high reactivity, RES are also used by host organisms to synthesize specific metabolites. The evolutionary conserved glyoxalase (GLX) system scavenges the cytotoxic α-oxoaldehydes that bear RES groups, which cause host disorders and diseases. In cotton, a specialized enzyme derived from glyoxalase I (GLXI) through gene duplications and named as specialized GLXI (SPG), acts as a distinct type of aromatase in the gossypol pathway to transform the RES intermediates into the phenolic products. In this review, we briefly introduce the research progress in understanding the RES, especially the RES-type mycotoxins, the GLX system and SPG, and discuss their application potential in detoxification and synthetic biology.
Collapse
Affiliation(s)
- Jin-Quan Huang
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jia-Ling Lin
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Xiao-Xiang Guo
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiu Tian
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ye Tian
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiao-Xia Shangguan
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ling-Jian Wang
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xin Fang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Xiao-Ya Chen
- State Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China. .,Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, 201602, China.
| |
Collapse
|
39
|
Rabbani N, Al-Motawa M, Thornalley PJ. Protein Glycation in Plants-An Under-Researched Field with Much Still to Discover. Int J Mol Sci 2020; 21:ijms21113942. [PMID: 32486308 PMCID: PMC7312737 DOI: 10.3390/ijms21113942] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
Recent research has identified glycation as a non-enzymatic post-translational modification of proteins in plants with a potential contributory role to the functional impairment of the plant proteome. Reducing sugars with a free aldehyde or ketone group such as glucose, fructose and galactose react with the N-terminal and lysine side chain amino groups of proteins. A common early-stage glycation adduct formed from glucose is Nε-fructosyl-lysine (FL). Saccharide-derived reactive dicarbonyls are arginine residue-directed glycating agents, forming advanced glycation endproducts (AGEs). A dominant dicarbonyl is methylglyoxal—formed mainly by the trace-level degradation of triosephosphates, including through the Calvin cycle of photosynthesis. Methylglyoxal forms the major quantitative AGE, hydroimidazolone MG-H1. Glucose and methylglyoxal concentrations in plants change with the developmental stage, senescence, light and dark cycles and also likely biotic and abiotic stresses. Proteomics analysis indicates that there is an enrichment of the amino acid residue targets of glycation, arginine and lysine residues, in predicted functional sites of the plant proteome, suggesting the susceptibility of proteins to functional inactivation by glycation. In this review, we give a brief introduction to glycation, glycating agents and glycation adducts in plants. We consider dicarbonyl stress, the functional vulnerability of the plant proteome to arginine-directed glycation and the likely role of methylglyoxal-mediated glycation in the activation of the unfolded protein response in plants. The latter is linked to the recent suggestion of protein glycation in sugar signaling in plant metabolism. The overexpression of glyoxalase 1, which suppresses glycation by methylglyoxal and glyoxal, produced plants resistant to high salinity, drought, extreme temperature and other stresses. Further research to decrease protein glycation in plants may lead to improved plant growth and assist the breeding of plant varieties resistant to environmental stress and senescence—including plants of commercial ornamental and crop cultivation value.
Collapse
Affiliation(s)
- Naila Rabbani
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Correspondence: (N.R.); (P.J.T.); Tel.: +974-7479-5649 (N.R.); +974-7090-1635 (P.J.T.)
| | - Maryam Al-Motawa
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar;
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Paul J. Thornalley
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar;
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
- Correspondence: (N.R.); (P.J.T.); Tel.: +974-7479-5649 (N.R.); +974-7090-1635 (P.J.T.)
| |
Collapse
|
40
|
Batth R, Jain M, Kumar A, Nagar P, Kumari S, Mustafiz A. Zn2+ dependent glyoxalase I plays the major role in methylglyoxal detoxification and salinity stress tolerance in plants. PLoS One 2020; 15:e0233493. [PMID: 32453778 PMCID: PMC7250436 DOI: 10.1371/journal.pone.0233493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/06/2020] [Indexed: 01/01/2023] Open
Abstract
Glyoxalase pathway is the major pathway of methylglyoxal detoxification and is ubiquitously present in all organisms ranging from prokaryotes to eukaryotes. Glyoxalase I (GLYI) and Glyoxalase II (GLYII), the two core enzymes of this pathway work together to neutralize methylglyoxal (MG), a dicarbonyl molecule with detrimental cytotoxicity at higher concentrations. The first step towards the detoxification of MG is catalyzed by GLYI, a metalloenzyme that requires divalent metal ions (either Zn2+ as seen in eukaryotes or Ni2+ as in prokaryotes). However, both Zn2+ and Ni2+ dependent GLYIs have been shown to co-exist in a higher eukaryote i.e. Arabidopsis thaliana. In the present study, we determine the role of both Zn2+ dependent (AtGLYI2) and Ni2+ dependent (AtGLYI3, AtGLYI6) GLYIs from Arabidopsis in salinity stress tolerance. AtGLYI2 overexpressing Arabidopsis plants showed better growth rate while maintaining lower levels of MG under high saline conditions. They were taller with more number of silique formation with respect to their Ni2+ dependent counterparts. Further, lack in germination of Arabidopsis AtGLYI2 mutants in presence of exogenous MG indicates the direct involvement of Zn2+ dependent GLYI in MG detoxification, suggesting Zn2+ dependent GLYI as the main enzyme responsible for MG detoxification and salinity stress tolerance.
Collapse
Affiliation(s)
- Rituraj Batth
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| | - Muskan Jain
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| | - Ashish Kumar
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| | - Preeti Nagar
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
| | - Sumita Kumari
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, JK, India
| | - Ananda Mustafiz
- Plant Molecular Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, India
- * E-mail:
| |
Collapse
|
41
|
MacWilliams JR, Dingwall S, Chesnais Q, Sugio A, Kaloshian I. AcDCXR Is a Cowpea Aphid Effector With Putative Roles in Altering Host Immunity and Physiology. FRONTIERS IN PLANT SCIENCE 2020; 11:605. [PMID: 32499809 PMCID: PMC7243947 DOI: 10.3389/fpls.2020.00605] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/21/2020] [Indexed: 06/01/2023]
Abstract
Cowpea, Vigna unguiculata, is a crop that is essential to semiarid areas of the world like Sub-Sahara Africa. Cowpea is highly susceptible to cowpea aphid, Aphis craccivora, infestation that can lead to major yield losses. Aphids feed on their host plant by inserting their hypodermal needlelike flexible stylets into the plant to reach the phloem sap. During feeding, aphids secrete saliva, containing effector proteins, into the plant to disrupt plant immune responses and alter the physiology of the plant to their own advantage. Liquid chromatography tandem mass spectrometry (LC-MS/MS) was used to identify the salivary proteome of the cowpea aphid. About 150 candidate proteins were identified including diacetyl/L-xylulose reductase (DCXR), a novel enzyme previously unidentified in aphid saliva. DCXR is a member of short-chain dehydrogenases/reductases with dual enzymatic functions in carbohydrate and dicarbonyl metabolism. To assess whether cowpea aphid DCXR (AcDCXR) has similar functions, recombinant AcDCXR was purified and assayed enzymatically. For carbohydrate metabolism, the oxidation of xylitol to xylulose was tested. The dicarbonyl reaction involved the reduction of methylglyoxal, an α-β-dicarbonyl ketoaldehyde, known as an abiotic and biotic stress response molecule causing cytotoxicity at high concentrations. To assess whether cowpea aphids induce methylglyoxal in plants, we measured methylglyoxal levels in both cowpea and pea (Pisum sativum) plants and found them elevated transiently after aphid infestation. Agrobacterium-mediated transient overexpression of AcDCXR in pea resulted in an increase of cowpea aphid fecundity. Taken together, our results indicate that AcDCXR is an effector with a putative ability to generate additional sources of energy to the aphid and to alter plant defense responses. In addition, this work identified methylglyoxal as a potential novel aphid defense metabolite adding to the known repertoire of plant defenses against aphid pests.
Collapse
Affiliation(s)
- Jacob R. MacWilliams
- Graduate Program in Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| | - Stephanie Dingwall
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | | | - Akiko Sugio
- INRAE, UMR1349, Institute of Genetics, Environment and Plant Protection, Le Rheu, France
| | - Isgouhi Kaloshian
- Graduate Program in Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
- Department of Nematology, University of California Riverside, Riverside, CA, United States
- Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
42
|
Su S, Dai H, Wang X, Wang C, Zeng W, Huang J, Duan Q. Ethylene negatively mediates self-incompatibility response in Brassica rapa. Biochem Biophys Res Commun 2020; 525:600-606. [DOI: 10.1016/j.bbrc.2020.02.128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 01/21/2023]
|
43
|
Duan Z, Dou S, Liu Z, Li B, Yi B, Shen J, Tu J, Fu T, Dai C, Ma C. Comparative phosphoproteomic analysis of compatible and incompatible pollination in Brassica napus L. Acta Biochim Biophys Sin (Shanghai) 2020; 52:446-456. [PMID: 32268372 DOI: 10.1093/abbs/gmaa011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/27/2019] [Accepted: 02/14/2020] [Indexed: 12/31/2022] Open
Abstract
Self-incompatibility (SI) promotes outbreeding and prevents self-fertilization to promote genetic diversity in angiosperms. Several studies have been carried to investigate SI signaling in plants; however, protein phosphorylation and dephosphorylation in the fine-tuning of the SI response remain insufficiently understood. Here, we performed a phosphoproteomic analysis to identify the phosphoproteins in the stigma of self-compatible 'Westar' and self-incompatible 'W-3' Brassica napus lines. A total of 4109 phosphopeptides representing 1978 unique protein groups were identified. Moreover, 405 and 248 phosphoproteins were significantly changed in response to SI and self-compatibility, respectively. Casein kinase II (CK II) phosphorylation motifs were enriched in self-incompatible response and identified 127 times in 827 dominant SI phosphorylation residues. Functional annotation of the identified phosphoproteins revealed the major roles of these phosphoproteins in plant-pathogen interactions, cell wall modification, mRNA surveillance, RNA degradation, and plant hormone signal transduction. In particular, levels of homolog proteins ABF3, BKI1, BZR2/BSE1, and EIN2 were significantly increased in pistils pollinated with incompatible pollens. Abscisic acid and ethephon treatment partially inhibited seed set, while brassinolide promoted pollen germination and tube growth in SI response. Collectively, our results provided an overview of protein phosphorylation during compatible/incompatible pollination, which may be a potential component of B. napus SI responses.
Collapse
Affiliation(s)
- Zhiqiang Duan
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Shengwei Dou
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiquan Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Bing Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
44
|
Azibi T, Hadj-Arab H, Lodé M, Ferreira de Carvalho J, Trotoux G, Nègre S, Gilet MM, Boutte J, Lucas J, Vekemans X, Chèvre AM, Rousseau-Gueutin M. Impact of whole genome triplication on the evolutionary history and the functional dynamics of regulatory genes involved in Brassica self-incompatibility signalling pathway. PLANT REPRODUCTION 2020; 33:43-58. [PMID: 32080762 DOI: 10.1007/s00497-020-00385-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Polyploidy or whole genome duplication is a frequent and recurrent phenomenon in flowering plants that has played a major role in their diversification, adaptation and speciation. The adaptive success of polyploids relates to the different evolutionary fates of duplicated genes. In this study, we explored the impact of the whole genome triplication (WGT) event in the Brassiceae tribe on the genes involved in the self-incompatibility (SI) signalling pathway, a mechanism allowing recognition and rejection of self-pollen in hermaphrodite plants. By taking advantage of the knowledge acquired on this pathway as well as of several reference genomes in Brassicaceae species, we determined copy number of the different genes involved in this pathway and investigated their structural and functional evolutionary dynamics. We could infer that whereas most genes involved in the SI signalling returned to single copies after the WGT event (i.e. ARC1, JDP1, THL1, THL2, Exo70A01) in diploid Brassica species, a few were retained in duplicated (GLO1 and PLDα) or triplicated copies (MLPK). We also carefully studied the gene structure of these latter duplicated genes (including the conservation of functional domains and active sites) and tested their transcription in the stigma to identify which copies seem to be involved in the SI signalling pathway. By taking advantage of these analyses, we then explored the putative origin of a contrasted SI phenotype between two Brassica rapa varieties that have been fully sequenced and shared the same S-allele (S60).
Collapse
Affiliation(s)
- Thanina Azibi
- University of Sciences and Technology Houari Boumedienne USTHB, Faculty of Biological Sciences FSB, Laboratory of Biology and Physiology of Organisms LBPO, Bab-Ezzouar, El-Alia, BP 32, 16111, Algiers, Algeria
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Houria Hadj-Arab
- University of Sciences and Technology Houari Boumedienne USTHB, Faculty of Biological Sciences FSB, Laboratory of Biology and Physiology of Organisms LBPO, Bab-Ezzouar, El-Alia, BP 32, 16111, Algiers, Algeria.
| | - Maryse Lodé
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | | | - Gwenn Trotoux
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Sylvie Nègre
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | | | - Julien Boutte
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Jérémy Lucas
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Xavier Vekemans
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, 59000, Lille, France
| | - Anne-Marie Chèvre
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | | |
Collapse
|
45
|
Chen M, Fan W, Hao B, Zhang W, Yan M, Zhao Y, Liang Y, Liu G, Lu Y, Zhang G, Zhao Z, Hu Y, Yang S. EbARC1, an E3 Ubiquitin Ligase Gene in Erigeron breviscapus, Confers Self-Incompatibility in Transgenic Arabidopsis thaliana. Int J Mol Sci 2020; 21:E1458. [PMID: 32093420 PMCID: PMC7073078 DOI: 10.3390/ijms21041458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 11/19/2022] Open
Abstract
Erigeron breviscapus (Vant.) Hand.-Mazz. is a famous traditional Chinese medicine that has positive effects on the treatment of cardiovascular and cerebrovascular diseases. With the increase of market demand (RMB 500 million per year) and the sharp decrease of wild resources, it is an urgent task to cultivate high-quality and high-yield varieties of E. breviscapus. However, it is difficult to obtain homozygous lines in breeding due to the self-incompatibility (SI) of E. breviscapus. Here, we first proved that E. breviscapus has sporophyte SI (SSI) characteristics. Characterization of the ARC1 gene in E. breviscapus showed that EbARC1 is a constitutive expression gene located in the nucleus. Overexpression of EbARC1 in Arabidopsis thaliana L. (Col-0) could cause transformation of transgenic lines from self-compatibility (SC) into SI. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays indicated that EbARC1 and EbExo70A1 interact with each other in the nucleus, and the EbARC1-ubox domain and EbExo70A1-N are the key interaction regions, suggesting that EbARC1 may ubiquitinate EbExo70A to regulate SI response. This study of the SSI mechanism in E. breviscapus has laid the foundation for further understanding SSI in Asteraceae and breeding E. breviscapus varieties.
Collapse
Affiliation(s)
- Mo Chen
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Wei Fan
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
| | - Bing Hao
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
| | - Wei Zhang
- College of Life Science and Technology, Honghe University, Mengzi 661100, China;
| | - Mi Yan
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
| | - Yan Zhao
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
| | - Yanli Liang
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
| | - Guanze Liu
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
| | - Yingchun Lu
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
| | - Guanghui Zhang
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
| | - Zheng Zhao
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China;
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Shengchao Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China;
- National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; (W.F.); (B.H.); (M.Y.); (Y.Z.); (Y.L.); (G.L.); (Y.L.); (G.Z.)
| |
Collapse
|
46
|
Bhowal B, Singla-Pareek SL, Sopory SK, Kaur C. From methylglyoxal to pyruvate: a genome-wide study for the identification of glyoxalases and D-lactate dehydrogenases in Sorghum bicolor. BMC Genomics 2020; 21:145. [PMID: 32041545 PMCID: PMC7011430 DOI: 10.1186/s12864-020-6547-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 01/31/2020] [Indexed: 12/03/2022] Open
Abstract
Background The glyoxalase pathway is evolutionarily conserved and involved in the glutathione-dependent detoxification of methylglyoxal (MG), a cytotoxic by-product of glycolysis. It acts via two metallo-enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII), to convert MG into D-lactate, which is further metabolized to pyruvate by D-lactate dehydrogenases (D-LDH). Since D-lactate formation occurs solely by the action of glyoxalase enzymes, its metabolism may be considered as the ultimate step of MG detoxification. By maintaining steady state levels of MG and other reactive dicarbonyl compounds, the glyoxalase pathway serves as an important line of defence against glycation and oxidative stress in living organisms. Therefore, considering the general role of glyoxalases in stress adaptation and the ability of Sorghum bicolor to withstand prolonged drought, the sorghum glyoxalase pathway warrants an in-depth investigation with regard to the presence, regulation and distribution of glyoxalase and D-LDH genes. Result Through this study, we have identified 15 GLYI and 6 GLYII genes in sorghum. In addition, 4 D-LDH genes were also identified, forming the first ever report on genome-wide identification of any plant D-LDH family. Our in silico analysis indicates homology of putatively active SbGLYI, SbGLYII and SbDLDH proteins to several functionally characterised glyoxalases and D-LDHs from Arabidopsis and rice. Further, these three gene families exhibit development and tissue-specific variations in their expression patterns. Importantly, we could predict the distribution of putatively active SbGLYI, SbGLYII and SbDLDH proteins in at least four different sub-cellular compartments namely, cytoplasm, chloroplast, nucleus and mitochondria. Most of the members of the sorghum glyoxalase and D-LDH gene families are indeed found to be highly stress responsive. Conclusion This study emphasizes the role of glyoxalases as well as that of D-LDH in the complete detoxification of MG in sorghum. In particular, we propose that D-LDH which metabolizes the specific end product of glyoxalases pathway is essential for complete MG detoxification. By proposing a cellular model for detoxification of MG via glyoxalase pathway in sorghum, we suggest that different sub-cellular organelles are actively involved in MG metabolism in plants.
Collapse
Affiliation(s)
- Bidisha Bhowal
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sneh L Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sudhir K Sopory
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Charanpreet Kaur
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
47
|
Aromatization of natural products by a specialized detoxification enzyme. Nat Chem Biol 2020; 16:250-256. [PMID: 31932723 DOI: 10.1038/s41589-019-0446-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/26/2019] [Indexed: 11/09/2022]
Abstract
In plants, lineage-specific metabolites can be created by activities derived from the catalytic promiscuity of ancestral proteins, although examples of recruiting detoxification systems to biosynthetic pathways are scarce. The ubiquitous glyoxalase (GLX) system scavenges the cytotoxic methylglyoxal, in which GLXI isomerizes the α-hydroxy carbonyl in the methylglyoxal-glutathione adduct for subsequent hydrolysis. We show that GLXIs across kingdoms are more promiscuous than recognized previously and can act as aromatases without cofactors. In cotton, a specialized GLXI variant, SPG, has lost its GSH-binding sites and organelle-targeting signal, and evolved to aromatize cyclic sesquiterpenes bearing α-hydroxyketones to synthesize defense compounds in the cytosol. Notably, SPG is able to transform acetylated deoxynivalenol, the prevalent mycotoxin contaminating cereals and foods. We propose that detoxification enzymes are a valuable source of new catalytic functions and SPG, a standalone enzyme catalyzing complex reactions, has potential for toxin degradation, crop engineering and design of novel aromatics.
Collapse
|
48
|
Sankaranarayanan S, Ju Y, Kessler SA. Reactive Oxygen Species as Mediators of Gametophyte Development and Double Fertilization in Flowering Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:1199. [PMID: 32849744 PMCID: PMC7419745 DOI: 10.3389/fpls.2020.01199] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/23/2020] [Indexed: 05/05/2023]
Abstract
Reactive oxygen species (ROS) are toxic by-products of aerobic metabolism. In plants, they also function as important signaling molecules that regulate biotic and abiotic stress responses as well as plant growth and development. Recent studies have implicated ROS in various aspects of plant reproduction. In male gametophytes, ROS are associated with germline development as well as the developmentally associated programmed cell death of tapetal cells necessary for microspore development. ROS have a role in regulation of female gametophyte patterning and maintenance of embryo sac polarity. During pollination, ROS play roles in the generation of self-incompatibility response during pollen-pistil interaction, pollen tube growth, pollen tube burst for sperm release and fertilization. In this mini review, we provide an overview of ROS production and signaling in the context of plant reproductive development, from female and male gametophyte development to fertilization.
Collapse
Affiliation(s)
- Subramanian Sankaranarayanan
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- *Correspondence: Subramanian Sankaranarayanan, ; Sharon A. Kessler,
| | - Yan Ju
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Sharon A. Kessler
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- *Correspondence: Subramanian Sankaranarayanan, ; Sharon A. Kessler,
| |
Collapse
|
49
|
Muñoz-Sanz JV, Zuriaga E, Cruz-García F, McClure B, Romero C. Self-(In)compatibility Systems: Target Traits for Crop-Production, Plant Breeding, and Biotechnology. FRONTIERS IN PLANT SCIENCE 2020; 11:195. [PMID: 32265945 PMCID: PMC7098457 DOI: 10.3389/fpls.2020.00195] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/10/2020] [Indexed: 05/13/2023]
Abstract
Self-incompatibility (SI) mechanisms prevent self-fertilization in flowering plants based on specific discrimination between self- and non-self pollen. Since this trait promotes outcrossing and avoids inbreeding it is a widespread mechanism of controlling sexual plant reproduction. Growers and breeders have effectively exploited SI as a tool for manipulating domesticated crops for thousands of years. However, only within the past thirty years have studies begun to elucidate the underlying molecular features of SI. The specific S-determinants and some modifier factors controlling SI have been identified in the sporophytic system exhibited by Brassica species and in the two very distinct gametophytic systems present in Papaveraceae on one side and in Solanaceae, Rosaceae, and Plantaginaceae on the other. Molecular level studies have enabled SI to SC transitions (and vice versa) to be intentionally manipulated using marker assisted breeding and targeted approaches based on transgene integration, silencing, and more recently CRISPR knock-out of SI-related factors. These scientific advances have, in turn, provided a solid basis to implement new crop production and plant breeding practices. Applications of self-(in)compatibility include widely differing objectives such as crop yield and quality improvement, marker-assisted breeding through SI genotyping, and development of hybrids for overcoming intra- and interspecific reproductive barriers. Here, we review scientific progress as well as patented applications of SI, and also highlight future prospects including further elucidation of SI systems, deepening our understanding of SI-environment relationships, and new perspectives on plant self/non-self recognition.
Collapse
Affiliation(s)
| | - Elena Zuriaga
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Felipe Cruz-García
- Departmento de Bioquímica, Facultad de Química, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Bruce McClure
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Carlos Romero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)—Universitat Politécnica de València (UPV), Valencia, Spain
- *Correspondence: Carlos Romero,
| |
Collapse
|
50
|
Huang J, Su S, Dai H, Liu C, Wei X, Zhao Y, Wang Z, Zhang X, Yuan Y, Yu X, Zhang C, Li Y, Zeng W, Wu HM, Cheung AY, Wang S, Duan Q. Programmed Cell Death in Stigmatic Papilla Cells Is Associated With Senescence-Induced Self-Incompatibility Breakdown in Chinese Cabbage and Radish. FRONTIERS IN PLANT SCIENCE 2020; 11:586901. [PMID: 33365040 PMCID: PMC7750362 DOI: 10.3389/fpls.2020.586901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/02/2020] [Indexed: 05/02/2023]
Abstract
Self-incompatibility (SI) is a genetic mechanism flowering plants adopted to reject self-pollen and promote outcrossing. In the Brassicaceae family plants, the stigma tissue plays a key role in self-pollen recognition and rejection. We reported earlier in Chinese cabbage (Brassica rapa) that stigma tissue showed upregulated ethylene responses and programmed cell death (PCD) upon compatible pollination, but not in SI responses. Here, we show that SI is significantly compromised or completely lost in senescent flowers and young flowers of senescent plants. Senescence upregulates senescence-associated genes in B. rapa. Suppressing their expression in young stigmas by antisense oligodeoxyribonucleotide abolishes compatible pollination-triggered PCD and inhibits the growth of compatible pollen tubes. Furthermore, ethylene biosynthesis genes and response genes are upregulated in senescent stigmas, and increasing the level of ethylene or inhibiting its response increases or decreases the expression of senescence-associated genes, respectively. Our results show that senescence causes PCD in stigmatic papilla cells and is associated with the breakdown of SI in Chinese cabbage and in radish.
Collapse
Affiliation(s)
- Jiabao Huang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Shiqi Su
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Huamin Dai
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Chen Liu
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaolin Yu
- Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Changwei Zhang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ying Li
- Department of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Weiqing Zeng
- Trait Discovery, Corteva Agriscience, Johnston, IA, United States
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Alice Y. Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Shufen Wang
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, China
- *Correspondence: Shufen Wang,
| | - Qiaohong Duan
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- *Correspondence: Qiaohong Duan,
| |
Collapse
|