1
|
Payne JM, Haebich KM, Mitchell R, Bozaoglu K, Giliberto E, Lockhart PJ, Maier A, Velasco S, Ball G, North KN, Hocking DR. Brain volumes in genetic syndromes associated with mTOR dysregulation: a systematic review and meta-analysis. Mol Psychiatry 2025; 30:1676-1688. [PMID: 39633008 DOI: 10.1038/s41380-024-02863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND/OBJECTIVES Dysregulation of molecular pathways associated with mechanistic target of rapamycin (mTOR) and elevated rates of neurodevelopmental disorders are implicated in the genetic syndromes neurofibromatosis type 1 (NF1), tuberous sclerosis complex (TSC), fragile X syndrome (FXS), and Noonan syndrome (NS). Given shared molecular and clinical features, understanding convergent and divergent implications of these syndromes on brain development may offer unique insights into disease mechanisms. While an increasing number of studies have examined brain volumes in these syndromes, the effects of each syndrome on global and subcortical brain volumes are unclear. Therefore, the aim of the current study was to conduct a systematic review and meta-analysis to synthesize existing literature on volumetric brain changes across TSC, FXS, NF1, and NS. Study outcomes were the effect sizes of the genetic syndromes on whole brain, gray and white matter, and subcortical volumes compared to typically developing controls. SUBJECTS/METHODS We performed a series of meta-analyses synthesizing data from 23 studies in NF1, TSC, FXS, and NS (pooled N = 1556) reporting whole brain volume, gray and white matter volumes, and volumes of subcortical structures compared to controls. RESULTS Meta-analyses revealed significantly larger whole brain volume, gray and white matter volumes, and subcortical volumes in NF1 compared to controls. FXS was associated with increased whole brain, and gray and white matter volumes relative to controls, but effect sizes were smaller than those seen in NF1. In contrast, studies in NS indicated smaller whole brain and gray matter volumes, and reduced subcortical volumes compared to controls. For individuals with TSC, there were no significant differences in whole brain, gray matter, and white volumes compared to controls. Volumetric effect sizes were not moderated by age, sex, or full-scale IQ. CONCLUSIONS This meta-analysis revealed that dysregulation of mTOR signaling across pre- and post-natal periods of development can result in convergent and divergent consequences for brain volume among genetic syndromes. Further research employing advanced disease modeling techniques with human pluripotent stem cell-derived in vitro models is needed to further refine our understanding of between and within syndrome variability on early brain development and identify shared molecular mechanisms for the development of pharmaceutical interventions.
Collapse
Affiliation(s)
- Jonathan M Payne
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia.
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Kristina M Haebich
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Rebecca Mitchell
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Kiymet Bozaoglu
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Emma Giliberto
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Paul J Lockhart
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Alice Maier
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Silvia Velasco
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW Melbourne, Melbourne, VIC, Australia
| | - Gareth Ball
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Kathryn N North
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Darren R Hocking
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
- Institute for Health & Sport, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Brown CR, Foster JD. Modulation of autism-associated serotonin transporters by palmitoylation: Insights into the molecular pathogenesis and targeted therapies for autism spectrum disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642908. [PMID: 40161745 PMCID: PMC11952500 DOI: 10.1101/2025.03.12.642908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Background Autism spectrum disorder (ASD) is a developmental disorder of the nervous system characterized by a deficiency in interpersonal communication skills, a pathologic tendency for repetitive behaviors, and highly restrictive interests. The spectrum is a gradient-based construct used to categorize the widely varying degrees of ASD phenotypes, and has been linked to a genetic etiology in 25% of cases. Prior studies have revealed that 30% of ASD patients exhibit hyperserotonemia, or elevated whole blood serotonin, implicating the serotonergic system in the pathogenesis of ASD. Likewise, escitalopram, a selective-serotonin reuptake inhibitor (SSRI), has been demonstrated to improve aberrant behavior and irritability in ASD patients, potentially by modulating abnormal brain activation. Prior studies have uncovered proband patients with rare mutations in the human serotonin transporter (hSERT) that manifest enhanced surface expression and transport capacity, suggesting that abnormal enhancement of hSERT function may be involved in the pathogenesis of ASD. Methods HEK-293 cells stably expressing WT, C109A, I425L, F465L, L550V, or K605N hSERT were subject to analysis for palmitoylation via Acyl-Biotin Exchange followed with hSERT immunoblotting. F465L functional enhancement was confirmed by surface analysis via biotinylation and saturation analysis via 5HT transport. F465L palmitoylation, surface expression and transport capacity were then assessed following treatment with 2-bromopalmitate or escitalopram. Results Here, we reveal that palmitoylation is enhanced in the ASD hSERT F465L and L550V coding variants, and confirm prior reports of enhanced kinetic activity and surface expression of F465L. Subsequently, treatment of F465L with the irreversible palmitoyl acyl-transferase inhibitor, 2-bromopalmitate (2BP), or escitalopram, rectified enhanced F465L palmitoylation, surface expression, and transport capacity to basal WT levels. Limitations Tests assessing L550V for surface expression, transport capacity, and reactivity to inhibition of palmitoylation was not assessed. In addition, further characterization is necessary for internalization rates, degradative mechanisms, the impact of cysteine-mediated substitutions, and other SSRIs on these processes. Conclusions Overall, our results implicate disordered hSERT palmitoylation in the pathogenesis of serotonergic ASD subtypes, with basal recovery of these processes following escitalopram providing insight into its molecular utility as an ASD therapeutic.
Collapse
Affiliation(s)
- Christopher R. Brown
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037
| | - James D. Foster
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202-9037
| |
Collapse
|
3
|
Ham A, Chang AY, Li H, Bain JM, Goldman JE, Sulzer D, Veenstra-VanderWeele J, Tang G. Impaired macroautophagy confers substantial risk for intellectual disability in children with autism spectrum disorders. Mol Psychiatry 2025; 30:810-824. [PMID: 39237724 DOI: 10.1038/s41380-024-02741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Autism spectrum disorder (ASD) represents a complex of neurological and developmental disabilities characterized by clinical and genetic heterogeneity. While the causes of ASD are still unknown, many ASD risk factors are found to converge on intracellular quality control mechanisms that are essential for cellular homeostasis, including the autophagy-lysosomal degradation pathway. Studies have reported impaired autophagy in ASD human brain and ASD-like synapse pathology and behaviors in mouse models of brain autophagy deficiency, highlighting an essential role for defective autophagy in ASD pathogenesis. To determine whether altered autophagy in the brain may also occur in peripheral cells that might provide useful biomarkers, we assessed activities of autophagy in lympoblasts from ASD and control subjects. We find that lymphoblast autophagy is compromised in a subset of ASD participants due to impaired autophagy induction. Similar changes in autophagy are detected in postmortem human brains from ASD individuals and in brain and peripheral blood mononuclear cells from syndromic ASD mouse models. Remarkably, we find a strong correlation between impaired autophagy and intellectual disability in ASD participants. By depleting the key autophagy gene Atg7 from different brain cells, we provide further evidence that autophagy deficiency causes cognitive impairment in mice. Together, our findings suggest autophagy dysfunction as a convergent mechanism that can be detected in peripheral blood cells from a subset of autistic individuals, and that lymphoblast autophagy may serve as a biomarker to stratify ASD patients for the development of targeted interventions.
Collapse
Affiliation(s)
- Ahrom Ham
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Audrey Yuen Chang
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Hongyu Li
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jennifer M Bain
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - David Sulzer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pharmacology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Guomei Tang
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
4
|
Hewitson L, Mathews JA, Devlin M, Schutte C, Lee J, German DC. Blood biomarker discovery for autism spectrum disorder: A proteomic analysis. PLoS One 2024; 19:e0302951. [PMID: 39700097 DOI: 10.1371/journal.pone.0302951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/25/2024] [Indexed: 12/21/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and social interaction and restricted, repetitive patterns of behavior, interests, or activities. Given the lack of specific pharmacological therapy for ASD and the clinical heterogeneity of the disorder, current biomarker research efforts are geared mainly toward identifying markers for determining ASD risk or for assisting with a diagnosis. A wide range of putative biological markers for ASD are currently being investigated. Proteomic analyses indicate that the levels of many proteins in plasma/serum are altered in ASD, suggesting that a panel of proteins may provide a blood biomarker for ASD. Serum samples from 76 boys with ASD and 78 typically developing (TD) boys, 2-10 years of age, were analyzed to identify possible early biological markers for ASD. Proteomic analysis of serum was performed using SomaLogic's SOMAScanTM assay 1.3K platform. A total of 1,125 proteins were analyzed. There were 86 downregulated proteins and 52 upregulated proteins in ASD (FDR < 0.05). Combining three different algorithms, we found a panel of 12 proteins that identified ASD with an area under the curve (AUC) = 0.8790±0.0572, with specificity and sensitivity of 0.8530±0.1076 and 0.8324±0.1137, respectively. All 12 proteins were significantly different in ASD compared with TD boys, and 4 were significantly correlated with ASD severity as measured by ADOS total scores. Using machine learning methods, a panel of serum proteins was identified that may be useful as a blood biomarker for ASD in boys. Further verification of the protein biomarker panel with independent test sets is warranted.
Collapse
Affiliation(s)
- Laura Hewitson
- The Johnson Center for Child Health and Development, Austin, TX, United States of America
| | - Jeremy A Mathews
- Bioinformatics & Computational Biology Program, Departments of Mathematical Sciences and Biological Sciences, University of Texas at Dallas, Dallas, TX, United States of America
| | - Morgan Devlin
- The Johnson Center for Child Health and Development, Austin, TX, United States of America
| | - Claire Schutte
- The Johnson Center for Child Health and Development, Austin, TX, United States of America
| | - Jeon Lee
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Dwight C German
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States of America
| |
Collapse
|
5
|
Li M, Wang Y, Gao H, Xia Z, Zeng C, Huang K, Zhu Z, Lu J, Chen Q, Ke X, Zhang W. Exploring autism via the retina: Comparative insights in children with autism spectrum disorder and typical development. Autism Res 2024; 17:1520-1533. [PMID: 39075780 DOI: 10.1002/aur.3204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024]
Abstract
Autism spectrum disorder (ASD) is a widely recognized neurodevelopmental disorder, yet the identification of reliable imaging biomarkers for its early diagnosis remains a challenge. Considering the specific manifestations of ASD in the eyes and the interconnectivity between the brain and the eyes, this study investigates ASD through the lens of retinal analysis. We specifically examined differences in the macular region of the retina using optical coherence tomography (OCT)/optical coherence tomography angiography (OCTA) images between children diagnosed with ASD and those with typical development (TD). Our findings present potential novel characteristics of ASD: the thickness of the ellipsoid zone (EZ) with cone photoreceptors was significantly increased in ASD; the large-caliber arteriovenous of the inner retina was significantly reduced in ASD; these changes in the EZ and arteriovenous were more significant in the left eye than in the right eye. These observations of photoreceptor alterations, vascular function changes, and lateralization phenomena in ASD warrant further investigation, and we hope that this work can advance interdisciplinary understanding of ASD.
Collapse
Affiliation(s)
- Mingchao Li
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
- Future Lab, Tsinghua University, Beijing, China
| | - Yuexuan Wang
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Huiyun Gao
- Child Mental Health Research Center, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhengwang Xia
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Chaofan Zeng
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Kun Huang
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Zhaoqi Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianfeng Lu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Qiang Chen
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Xiaoyan Ke
- Child Mental Health Research Center, Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Weiwei Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Wegiel J, Chadman K, London E, Wisniewski T, Wegiel J. Contribution of the serotonergic system to developmental brain abnormalities in autism spectrum disorder. Autism Res 2024; 17:1300-1321. [PMID: 38500252 PMCID: PMC11272444 DOI: 10.1002/aur.3123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
This review highlights a key role of the serotonergic system in brain development and in distortions of normal brain development in early stages of fetal life resulting in cascades of abnormalities, including defects of neurogenesis, neuronal migration, neuronal growth, differentiation, and arborization, as well as defective neuronal circuit formation in the cortex, subcortical structures, brainstem, and cerebellum of autistic subjects. In autism, defects in regulation of neuronal growth are the most frequent and ubiquitous developmental changes associated with impaired neuron differentiation, smaller size, distorted shape, loss of spatial orientation, and distortion of cortex organization. Common developmental defects of the brain in autism include multiregional focal dysplastic changes contributing to local neuronal circuit distortion, epileptogenic activity, and epilepsy. There is a discrepancy between more than 500 reports demonstrating the contribution of the serotonergic system to autism's behavioral anomalies, highlighted by lack of studies of autistic subjects' brainstem raphe nuclei, the center of brain serotonergic innervation, and of the contribution of the serotonergic system to the diagnostic features of autism spectrum disorder (ASD). Discovery of severe fetal brainstem auditory system neuronal deficits and other anomalies leading to a spectrum of hearing deficits contributing to a cascade of behavioral alterations, including deficits of social and verbal communication in individuals with autism, is another argument to intensify postmortem studies of the type and topography of, and the severity of developmental defects in raphe nuclei and their contribution to abnormal brain development and to the broad spectrum of functional deficits and comorbid conditions in ASD.
Collapse
Affiliation(s)
- Jarek Wegiel
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Kathryn Chadman
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Eric London
- Department of Psychology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Thomas Wisniewski
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
- Center for Cognitive Neurology, Department of Neurology, Pathology and Psychiatry, NYU Grossman School of Medicine, New York, New York, USA
| | - Jerzy Wegiel
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| |
Collapse
|
7
|
Fonteneau M, Brugoux A, Jaccaz D, Donello JE, Banerjee P, Le Merrer J, Becker JA. The NMDA receptor modulator zelquistinel durably relieves behavioral deficits in three mouse models of autism spectrum disorder. Neuropharmacology 2024; 248:109889. [PMID: 38401792 DOI: 10.1016/j.neuropharm.2024.109889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Autism spectrum disorders (ASD) are complex neurodevelopmental disorders characterized by deficient social communication and interaction together with restricted, stereotyped behaviors. Currently approved treatments relieve comorbidities rather than core symptoms. Since excitation/inhibition balance and synaptic plasticity are disrupted in ASD, molecules targeting excitatory synaptic transmission appear as highly promising candidates to treat this pathology. Among glutamatergic receptors, the NMDA receptor has received particular attention through the last decade to develop novel allosteric modulators. Here, we show that positive NMDA receptor modulation by zelquistinel, a spirocyclic β-lactam platform chemical, relieves core symptoms in two genetic and one environmental mouse models of ASD. A single oral dose of zelquistinel rescued, in a dose-response manner, social deficits and stereotypic behavior in Shank3Δex13-16-/- mice while chronic intraperitoneal administration promoted a long-lasting relief of such autistic-like features in these mice. Subchronic oral mid-dose zelquistinel treatment demonstrated durable effects in Shank3Δex13-16-/-, Fmr1-/- and in utero valproate-exposed mice. Carry-over effects were best maintained in the Fmr1 null mouse model, with social parameters being still fully recovered two weeks after treatment withdrawal. Among recently developed NMDA receptor subunit modulators, zelquistinel displays a promising therapeutic potential to relieve core symptoms in ASD patients, with oral bioavailability and long-lasting effects boding well for clinical applications. Efficacy in three mouse models with different etiologies supports high translational value. Further, this compound represents an innovative pharmacological tool to investigate plasticity mechanisms underlying behavioral deficits in animal models of ASD.
Collapse
Affiliation(s)
| | - Agathe Brugoux
- UMR 1253, IBrain, Université de Tours, Inserm, CNRS, Tours, France; Physiologie de la Reproduction et des Comportements, INRAE UMR 0085, CNRS UMR 7247, IFCE, Université de Tours, Inserm, Nouzilly, France
| | - Déborah Jaccaz
- Physiologie de la Reproduction et des Comportements, INRAE UMR 0085, CNRS UMR 7247, IFCE, Université de Tours, Inserm, Nouzilly, France; Unité Expérimentale de Physiologie Animale de l'Orfrasière, INRAE UE 0028, Nouzilly, France
| | | | | | - Julie Le Merrer
- UMR 1253, IBrain, Université de Tours, Inserm, CNRS, Tours, France; Physiologie de la Reproduction et des Comportements, INRAE UMR 0085, CNRS UMR 7247, IFCE, Université de Tours, Inserm, Nouzilly, France
| | - Jérôme Aj Becker
- UMR 1253, IBrain, Université de Tours, Inserm, CNRS, Tours, France; Physiologie de la Reproduction et des Comportements, INRAE UMR 0085, CNRS UMR 7247, IFCE, Université de Tours, Inserm, Nouzilly, France
| |
Collapse
|
8
|
Shirayama Y, Matsumoto K, Osone F, Hara A, Guan S, Hamatani S, Muneoka K, Sato K, Okada A, Yokokawa T. The Lack of Alterations in Metabolites in the Medial Prefrontal Cortex and Amygdala, but Their Associations with Autistic Traits, Empathy, and Personality Traits in Adults with Autism Spectrum Disorder: A Preliminary Study. J Autism Dev Disord 2024; 54:193-210. [PMID: 36251207 DOI: 10.1007/s10803-022-05778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/28/2022]
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) has shown inconsistent alterations in brain metabolites of adults with autism spectrum disorder (ASD). We investigated brain metabolites in the medial prefrontal cortex and amygdala of 24 drug-naive adults with ASD and no intellectual disability and 24 non-ASD control subjects, using 3 T 1H-MRS. Adults with ASD showed no significant differences from control in glutamate, glutamate plus glutamine, N-acetylaspartate, glycerophosphorylcholine plus phosphorylcholine, creatine plus phosphocreatine, or myo-inositol in either region. However, ASD subjects did show significant correlations of localized brain metabolites with autistic traits, empathy deficits, and personality traits using the Autism-Spectrum Quotient, Questionnaire of Cognitive and Affective Empathy, Interpersonal Reactivity Index, and NEO Personality Inventory-Revised. These findings should be taken as preliminary or exploratory.
Collapse
Affiliation(s)
- Yukihiko Shirayama
- Department of Psychiatry, Teikyo University Chiba Medical Center, 3426-3 Anesaki, Ichihara, 299-0111, Japan.
| | - Kazuki Matsumoto
- Department of Psychiatry, Teikyo University Chiba Medical Center, 3426-3 Anesaki, Ichihara, 299-0111, Japan
| | - Fumio Osone
- Department of Radiology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Akira Hara
- Department of Radiology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Siqing Guan
- Department of Psychiatry, Teikyo University Chiba Medical Center, 3426-3 Anesaki, Ichihara, 299-0111, Japan
| | - Sayo Hamatani
- Department of Psychiatry, Teikyo University Chiba Medical Center, 3426-3 Anesaki, Ichihara, 299-0111, Japan
| | - Katsumasa Muneoka
- Department of Psychiatry, Teikyo University Chiba Medical Center, 3426-3 Anesaki, Ichihara, 299-0111, Japan
| | - Koichi Sato
- Department of Psychiatry, Teikyo University Chiba Medical Center, 3426-3 Anesaki, Ichihara, 299-0111, Japan
| | - Akihiro Okada
- Department of Psychology, Sapporo International University, Sapporo, Japan
| | - Tokuzou Yokokawa
- Department of Radiology, Teikyo University Chiba Medical Center, Ichihara, Japan
| |
Collapse
|
9
|
Iffland M, Livingstone N, Jorgensen M, Hazell P, Gillies D. Pharmacological intervention for irritability, aggression, and self-injury in autism spectrum disorder (ASD). Cochrane Database Syst Rev 2023; 10:CD011769. [PMID: 37811711 PMCID: PMC10561353 DOI: 10.1002/14651858.cd011769.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND Pharmacological interventions are frequently used for people with autism spectrum disorder (ASD) to manage behaviours of concern, including irritability, aggression, and self-injury. Some pharmacological interventions might help treat some behaviours of concern, but can also have adverse effects (AEs). OBJECTIVES To assess the effectiveness and AEs of pharmacological interventions for managing the behaviours of irritability, aggression, and self-injury in ASD. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, 11 other databases and two trials registers up to June 2022. We also searched reference lists of relevant studies, and contacted study authors, experts and pharmaceutical companies. SELECTION CRITERIA We included randomised controlled trials of participants of any age with a clinical diagnosis of ASD, that compared any pharmacological intervention to an alternative drug, standard care, placebo, or wait-list control. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Primary outcomes were behaviours of concern in ASD, (irritability, aggression and self-injury); and AEs. Secondary outcomes were quality of life, and tolerability and acceptability. Two review authors independently assessed each study for risk of bias, and used GRADE to judge the certainty of the evidence for each outcome. MAIN RESULTS We included 131 studies involving 7014 participants in this review. We identified 26 studies as awaiting classification and 25 as ongoing. Most studies involved children (53 studies involved only children under 13 years), children and adolescents (37 studies), adolescents only (2 studies) children and adults (16 studies), or adults only (23 studies). All included studies compared a pharmacological intervention to a placebo or to another pharmacological intervention. Atypical antipsychotics versus placebo At short-term follow-up (up to 6 months), atypical antipsychotics probably reduce irritability compared to placebo (standardised mean difference (SMD) -0.90, 95% confidence interval (CI) -1.25 to -0.55, 12 studies, 973 participants; moderate-certainty evidence), which may indicate a large effect. However, there was no clear evidence of a difference in aggression between groups (SMD -0.44, 95% CI -0.89 to 0.01; 1 study, 77 participants; very low-certainty evidence). Atypical antipsychotics may also reduce self-injury (SMD -1.43, 95% CI -2.24 to -0.61; 1 study, 30 participants; low-certainty evidence), possibly indicating a large effect. There may be higher rates of neurological AEs (dizziness, fatigue, sedation, somnolence, and tremor) in the intervention group (low-certainty evidence), but there was no clear evidence of an effect on other neurological AEs. Increased appetite may be higher in the intervention group (low-certainty evidence), but we found no clear evidence of an effect on other metabolic AEs. There was no clear evidence of differences between groups in musculoskeletal or psychological AEs. Neurohormones versus placebo At short-term follow-up, neurohormones may have minimal to no clear effect on irritability when compared to placebo (SMD -0.18, 95% CI -0.37 to -0.00; 8 studies; 466 participants; very low-certainty evidence), although the evidence is very uncertain. No data were reported for aggression or self -injury. Neurohormones may reduce the risk of headaches slightly in the intervention group, although the evidence is very uncertain. There was no clear evidence of an effect of neurohormones on any other neurological AEs, nor on any psychological, metabolic, or musculoskeletal AEs (low- and very low-certainty evidence). Attention-deficit hyperactivity disorder (ADHD)-related medications versus placebo At short-term follow-up, ADHD-related medications may reduce irritability slightly (SMD -0.20, 95% CI -0.40 to -0.01; 10 studies, 400 participants; low-certainty evidence), which may indicate a small effect. However, there was no clear evidence that ADHD-related medications have an effect on self-injury (SMD -0.62, 95% CI -1.63 to 0.39; 1 study, 16 participants; very low-certainty evidence). No data were reported for aggression. Rates of neurological AEs (drowsiness, emotional AEs, fatigue, headache, insomnia, and irritability), metabolic AEs (decreased appetite) and psychological AEs (depression) may be higher in the intervention group, although the evidence is very uncertain (very low-certainty evidence). There was no evidence of a difference between groups for any other metabolic, neurological, or psychological AEs (very low-certainty evidence). No data were reported for musculoskeletal AEs. Antidepressants versus placebo At short-term follow-up, there was no clear evidence that antidepressants have an effect on irritability (SMD -0.06, 95% CI -0.30 to 0.18; 3 studies, 267 participants; low-certainty evidence). No data for aggression or self-injury were reported or could be included in the analysis. Rates of metabolic AEs (decreased energy) may be higher in participants receiving antidepressants (very low-certainty evidence), although no other metabolic AEs showed clear evidence of a difference. Rates of neurological AEs (decreased attention) and psychological AEs (impulsive behaviour and stereotypy) may also be higher in the intervention group (very low-certainty evidence) although the evidence is very uncertain. There was no clear evidence of any difference in the other metabolic, neurological, or psychological AEs (very low-certainty evidence), nor between groups in musculoskeletal AEs (very low-certainty evidence). Risk of bias We rated most of the studies across the four comparisons at unclear overall risk of bias due to having multiple domains rated as unclear, very few rated as low across all domains, and most having at least one domain rated as high risk of bias. AUTHORS' CONCLUSIONS Evidence suggests that atypical antipsychotics probably reduce irritability, ADHD-related medications may reduce irritability slightly, and neurohormones may have little to no effect on irritability in the short term in people with ASD. There was some evidence that atypical antipsychotics may reduce self-injury in the short term, although the evidence is uncertain. There was no clear evidence that antidepressants had an effect on irritability. There was also little to no difference in aggression between atypical antipsychotics and placebo, or self-injury between ADHD-related medications and placebo. However, there was some evidence that atypical antipsychotics may result in a large reduction in self-injury, although the evidence is uncertain. No data were reported (or could be used) for self-injury or aggression for neurohormones versus placebo. Studies reported a wide range of potential AEs. Atypical antipsychotics and ADHD-related medications in particular were associated with an increased risk of metabolic and neurological AEs, although the evidence is uncertain for atypical antipsychotics and very uncertain for ADHD-related medications. The other drug classes had minimal or no associated AEs.
Collapse
Affiliation(s)
- Michelle Iffland
- Senior Practitioner Branch, NDIS Quality and Safeguards Commission, Penrith, Australia
| | - Nuala Livingstone
- Cochrane Evidence Production and Methods Directorate , Cochrane, London, UK
| | - Mikaela Jorgensen
- Senior Practitioner Branch, NDIS Quality and Safeguards Commission, Penrith, Australia
| | - Philip Hazell
- Speciality of Psychiatry, University of Sydney School of Medicine, Sydney, Australia
| | - Donna Gillies
- Senior Practitioner Branch, NDIS Quality and Safeguards Commission, Penrith, Australia
- Sydney, Australia
| |
Collapse
|
10
|
Hirst K, Zamzow RM, Stichter JP, Beversdorf DQ. A Pilot Feasibility Study Assessing the Combined Effects of Early Behavioral Intervention and Propranolol on Autism Spectrum Disorder (ASD). CHILDREN (BASEL, SWITZERLAND) 2023; 10:1639. [PMID: 37892301 PMCID: PMC10605265 DOI: 10.3390/children10101639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Autism spectrum disorder (ASD), a neurodevelopmental disorder typified by differences in social communication as well as restricted and repetitive behaviors, is often responsive to early behavioral intervention. However, there is limited information on whether such intervention can be augmented with pharmacological approaches. We conducted a double-blinded, placebo-controlled feasibility trial to examine the effects of the β-adrenergic antagonist propranolol combined with early intensive behavioral intervention (EIBI) for children with ASD. Nine participants with ASD, ages three to ten, undergoing EIBI were enrolled and randomized to a 12-week course of propranolol or placebo. Blinded assessments were conducted at baseline, 6 weeks, and 12 weeks. The primary outcome measures focusing on social interaction were the General Social Outcome Measure-2 (GSOM-2) and Social Responsiveness Scale-Second Edition (SRS-2). Five participants completed the 12-week visit. The sample size was insufficient to evaluate the treatment efficacy. However, side effects were infrequent, and participants were largely able to fully participate in the procedures. Conducting a larger clinical trial to investigate propranolol's effects on core ASD features within the context of behavioral therapy will be beneficial, as this will advance and individualize combined therapeutic approaches to ASD intervention. This initial study helps to understand feasibility constraints on performing such a study.
Collapse
Affiliation(s)
- Kathy Hirst
- Thompson Center for Autism and Neurodevelopment, University of Missouri, Columbia, MO 65211, USA; (K.H.); (J.P.S.)
| | - Rachel M. Zamzow
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211, USA;
| | - Janine P. Stichter
- Thompson Center for Autism and Neurodevelopment, University of Missouri, Columbia, MO 65211, USA; (K.H.); (J.P.S.)
| | - David Q. Beversdorf
- Thompson Center for Autism and Neurodevelopment, University of Missouri, Columbia, MO 65211, USA; (K.H.); (J.P.S.)
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO 65211, USA;
- Departments of Radiology, Neurology, and Psychological Sciences, William and Nancy Thompson Endowed Chair in Radiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
11
|
Cntnap2-dependent molecular networks in autism spectrum disorder revealed through an integrative multi-omics analysis. Mol Psychiatry 2023; 28:810-821. [PMID: 36253443 PMCID: PMC9908544 DOI: 10.1038/s41380-022-01822-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 12/28/2022]
Abstract
Autism spectrum disorder (ASD) is a major neurodevelopmental disorder in which patients present with core symptoms of social communication impairment, restricted interest, and repetitive behaviors. Although various studies have been performed to identify ASD-related mechanisms, ASD pathology is still poorly understood. CNTNAP2 genetic variants have been found that represent ASD genetic risk factors, and disruption of Cntnap2 expression has been associated with ASD phenotypes in mice. In this study, we performed an integrative multi-omics analysis by combining quantitative proteometabolomic data obtained with Cntnap2 knockout (KO) mice with multi-omics data obtained from ASD patients and forebrain organoids to elucidate Cntnap2-dependent molecular networks in ASD. To this end, a mass spectrometry-based proteometabolomic analysis of the medial prefrontal cortex in Cntnap2 KO mice led to the identification of Cntnap2-associated molecular features, and these features were assessed in combination with multi-omics data obtained on the prefrontal cortex in ASD patients to identify bona fide ASD cellular processes. Furthermore, a reanalysis of single-cell RNA sequencing data obtained from forebrain organoids derived from patients with CNTNAP2-associated ASD revealed that the aforementioned identified ASD processes were mainly linked to excitatory neurons. On the basis of these data, we constructed Cntnap2-associated ASD network models showing mitochondrial dysfunction, axonal impairment, and synaptic activity. Our results may shed light on the Cntnap2-dependent molecular networks in ASD.
Collapse
|
12
|
Chaudhary R, Steinson E. Genes and their Involvement in the Pathogenesis of Autism Spectrum Disorder: Insights from Earlier Genetic Studies. NEUROBIOLOGY OF AUTISM SPECTRUM DISORDERS 2023:375-415. [DOI: 10.1007/978-3-031-42383-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
McCracken JT, Anagnostou E, Arango C, Dawson G, Farchione T, Mantua V, McPartland J, Murphy D, Pandina G, Veenstra-VanderWeele J. Drug development for Autism Spectrum Disorder (ASD): Progress, challenges, and future directions. Eur Neuropsychopharmacol 2021; 48:3-31. [PMID: 34158222 PMCID: PMC10062405 DOI: 10.1016/j.euroneuro.2021.05.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
In 2017, facing lack of progress and failures encountered in targeted drug development for Autism Spectrum Disorder (ASD) and related neurodevelopmental disorders, the ISCTM with the ECNP created the ASD Working Group charged to identify barriers to progress and recommending research strategies for the field to gain traction. Working Group international academic, regulatory and industry representatives held multiple in-person meetings, teleconferences, and subgroup communications to gather a wide range of perspectives on lessons learned from extant studies, current challenges, and paths for fundamental advances in ASD therapeutics. This overview delineates the barriers identified, and outlines major goals for next generation biomedical intervention development in ASD. Current challenges for ASD research are many: heterogeneity, lack of validated biomarkers, need for improved endpoints, prioritizing molecular targets, comorbidities, and more. The Working Group emphasized cautious but unwavering optimism for therapeutic progress for ASD core features given advances in the basic neuroscience of ASD and related disorders. Leveraging genetic data, intermediate phenotypes, digital phenotyping, big database discovery, refined endpoints, and earlier intervention, the prospects for breakthrough treatments are substantial. Recommendations include new priorities for expanded research funding to overcome challenges in translational clinical ASD therapeutic research.
Collapse
Affiliation(s)
- James T McCracken
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, United States.
| | | | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Univesitario Gregorio Maranon, and School of Medicine, Universidad Complutense de Madrid, CIBERSAM, Madrid, Spain
| | - Geraldine Dawson
- Duke University Medical Center, Durham, North Carolina, United States
| | - Tiffany Farchione
- Food and Drug Administration, Silver Spring, Maryland, United States
| | - Valentina Mantua
- Food and Drug Administration, Silver Spring, Maryland, United States
| | | | - Declan Murphy
- Institute of Psychiatry, Psychology and Neuroscience, King's College De Crespigny Park, Denmark Hill, London SE5 8AF, United Kingdom
| | - Gahan Pandina
- Neuroscience Therapeutic Area, Janssen Research & Development, Pennington, New Jersey, United States
| | | |
Collapse
|
14
|
Liaci C, Camera M, Caslini G, Rando S, Contino S, Romano V, Merlo GR. Neuronal Cytoskeleton in Intellectual Disability: From Systems Biology and Modeling to Therapeutic Opportunities. Int J Mol Sci 2021; 22:ijms22116167. [PMID: 34200511 PMCID: PMC8201358 DOI: 10.3390/ijms22116167] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Intellectual disability (ID) is a pathological condition characterized by limited intellectual functioning and adaptive behaviors. It affects 1–3% of the worldwide population, and no pharmacological therapies are currently available. More than 1000 genes have been found mutated in ID patients pointing out that, despite the common phenotype, the genetic bases are highly heterogeneous and apparently unrelated. Bibliomic analysis reveals that ID genes converge onto a few biological modules, including cytoskeleton dynamics, whose regulation depends on Rho GTPases transduction. Genetic variants exert their effects at different levels in a hierarchical arrangement, starting from the molecular level and moving toward higher levels of organization, i.e., cell compartment and functions, circuits, cognition, and behavior. Thus, cytoskeleton alterations that have an impact on cell processes such as neuronal migration, neuritogenesis, and synaptic plasticity rebound on the overall establishment of an effective network and consequently on the cognitive phenotype. Systems biology (SB) approaches are more focused on the overall interconnected network rather than on individual genes, thus encouraging the design of therapies that aim to correct common dysregulated biological processes. This review summarizes current knowledge about cytoskeleton control in neurons and its relevance for the ID pathogenesis, exploiting in silico modeling and translating the implications of those findings into biomedical research.
Collapse
Affiliation(s)
- Carla Liaci
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Mattia Camera
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Giovanni Caslini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Simona Rando
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Salvatore Contino
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 8, 90128 Palermo, Italy;
| | - Valentino Romano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy;
| | - Giorgio R. Merlo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
- Correspondence: ; Tel.: +39-0116706449; Fax: +39-0116706432
| |
Collapse
|
15
|
Jangjoo M, Goodman SJ, Choufani S, Trost B, Scherer SW, Kelley E, Ayub M, Nicolson R, Georgiades S, Crosbie J, Schachar R, Anagnostou E, Grunebaum E, Weksberg R. An Epigenetically Distinct Subset of Children With Autism Spectrum Disorder Resulting From Differences in Blood Cell Composition. Front Neurol 2021; 12:612817. [PMID: 33935932 PMCID: PMC8085304 DOI: 10.3389/fneur.2021.612817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/15/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that often involves impaired cognition, communication difficulties and restrictive, repetitive behaviors. ASD is extremely heterogeneous both clinically and etiologically, which represents one of the greatest challenges in studying the molecular underpinnings of ASD. While hundreds of ASD-associated genes have been identified that confer varying degrees of risk, no single gene variant accounts for >1% of ASD cases. Notably, a large number of ASD-risk genes function as epigenetic regulators, indicating potential epigenetic dysregulation in ASD. As such, we compared genome-wide DNA methylation (DNAm) in the blood of children with ASD (n = 265) to samples from age- and sex-matched, neurotypical controls (n = 122) using the Illumina Infinium HumanMethylation450 arrays. Results: While DNAm patterns did not distinctly separate ASD cases from controls, our analysis identified an epigenetically unique subset of ASD cases (n = 32); these individuals exhibited significant differential methylation from both controls than the remaining ASD cases. The CpG sites at which this subset was differentially methylated mapped to known ASD risk genes that encode proteins of the nervous and immune systems. Moreover, the observed DNAm differences were attributable to altered blood cell composition, i.e., lower granulocyte proportion and granulocyte-to-lymphocyte ratio in the ASD subset, as compared to the remaining ASD cases and controls. This ASD subset did not differ from the rest of the ASD cases in the frequency or type of high-risk genomic variants. Conclusion: Within our ASD cohort, we identified a subset of individuals that exhibit differential methylation from both controls and the remaining ASD group tightly associated with shifts in immune cell type proportions. This is an important feature that should be assessed in all epigenetic studies of blood cells in ASD. This finding also builds on past reports of changes in the immune systems of children with ASD, supporting the potential role of altered immunological mechanisms in the complex pathophysiology of ASD. The discovery of significant molecular and immunological features in subgroups of individuals with ASD may allow clinicians to better stratify patients, facilitating personalized interventions and improved outcomes.
Collapse
Affiliation(s)
- Maryam Jangjoo
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sarah J. Goodman
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sanaa Choufani
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Brett Trost
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephen W. Scherer
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- McLaughlin Centre, University of Toronto, Toronto, ON, Canada
| | - Elizabeth Kelley
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Muhammad Ayub
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Rob Nicolson
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
| | - Stelios Georgiades
- Department of Psychiatry and Behavioural Neurosciences, Offord Centre for Child Studies, McMaster University, Hamilton, ON, Canada
| | - Jennifer Crosbie
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Russell Schachar
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, School of Graduate Studies, University of Toronto, Toronto, ON, Canada
| | - Evdokia Anagnostou
- Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Eyal Grunebaum
- Institute of Medical Science, School of Graduate Studies, University of Toronto, Toronto, ON, Canada
- Division of Immunology and Allergy, The Hospital for Sick Children, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rosanna Weksberg
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, School of Graduate Studies, University of Toronto, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
16
|
Franco R, Rivas-Santisteban R, Lillo J, Camps J, Navarro G, Reyes-Resina I. 5-Hydroxytryptamine, Glutamate, and ATP: Much More Than Neurotransmitters. Front Cell Dev Biol 2021; 9:667815. [PMID: 33937270 PMCID: PMC8083958 DOI: 10.3389/fcell.2021.667815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
5-hydroxytryptamine (5-HT) is derived from the essential amino acid L-tryptophan. Although the compound has been studied extensively for its neuronal handling and synaptic actions, serotonin 5-HT receptors can be found extra-synaptically and not only in neurons but in many types of mammalian cells, inside and outside the central nervous system (CNS). In sharp contrast, glutamate (Glu) and ATP are better known as metabolism-related molecules, but they also are neurotransmitters, and their receptors are expressed on almost any type of cell inside and outside the nervous system. Whereas 5-hydroxytryptamine and Glu are key regulators of the immune system, ATP actions are more general. 5-hydroxytryptamine, ATP and Glu act through both G protein-coupled receptors (GPCRs), and ionotropic receptors, i.e., ligand gated ion channels. These are the three examples of neurotransmitters whose actions as holistic regulatory molecules are briefly put into perspective here.
Collapse
Affiliation(s)
- Rafael Franco
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain,*Correspondence: Rafael Franco, ;
| | - Rafael Rivas-Santisteban
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain
| | - Jaume Lillo
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Camps
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIberNed), Instituto de Salud Carlos III, Madrid, Spain,Department of Biochemistry and Physiology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Irene Reyes-Resina
- Department Biochemistry and Molecular Biomedicine, School of Biology, University of Barcelona, Barcelona, Spain,Irene Reyes-Resina,
| |
Collapse
|
17
|
Geurts HM, Agelink van Rentergem JA, Radhoe T, Torenvliet C, Van der Putten WJ, Groenman AP. Ageing and heterogeneity regarding autism spectrum conditions: a protocol paper of an accelerated longitudinal study. BMJ Open 2021; 11:e040943. [PMID: 33789848 PMCID: PMC8016100 DOI: 10.1136/bmjopen-2020-040943] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION Autism spectrum conditions (ASC) develop early in life and are thought to last a lifetime. However, ASC research has two major knowledge gaps that hinder progression in understanding the concept of ASC and in providing proper support for autistic adults: (1) the majority of knowledge about ASC mainly stems from childhood studies so little is known about older autistic adults and (2) while it is broadly recognised that ASC is a heterogeneous condition, we do not yet understand the differences in trajectories leading to their future outcome. We aim to fill both knowledge gaps. METHODS AND ANALYSIS A multistage overlapping cohort design assessing (cognitive) ageing in ASC is designed to obtain an accelerated longitudinal data set. Data, including a multitude of questionnaires, diagnostics and cognitive tests, are collected over four waves within a 10-year time frame. This will provide information regarding actual changes in quality of life, co-occurring health conditions and cognition as well as the possibility to test external validity and temporal stability in newly formed behavioural subtypes. Participants consist of three groups of adults aged 20-90 years: (1) with a clinical diagnosis of ASC, (2) with a clinical diagnosis of attention deficit hyperactivity disorder (ADHD) but no ASC, (3) no ASC/ADHD (ie, comparison group). The sample size differs between waves and instruments. Detailed analysis plans will be preregistered in AsPredicted or at the Open Science Framework. ETHICS AND DISSEMINATION Ethical approval for this study was obtained from the ethical review board of the Department of Psychology of the University of Amsterdam (wave 1 2011-PN-1952 and 2013-PN-2668, wave 2 2015-BC-4270, waves 3 and 4 2018-BC-9285). In line with the funding policies of the grant organisation funding this study, future papers will be published open access.
Collapse
Affiliation(s)
- Hilde M Geurts
- Psychology, University of Amsterdam, Amsterdam, The Netherlands
- Leo Kannerhuis (Youz), Amsterdam, The Netherlands
| | | | - Tulsi Radhoe
- Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Wikke J Van der Putten
- Psychology, University of Amsterdam, Amsterdam, The Netherlands
- Leo Kannerhuis (Youz), Amsterdam, The Netherlands
| | | |
Collapse
|
18
|
Kong Q, Wang B, Tian P, Li X, Zhao J, Zhang H, Chen W, Wang G. Daily intake of Lactobacillus alleviates autistic-like behaviors by ameliorating the 5-hydroxytryptamine metabolic disorder in VPA-treated rats during weaning and sexual maturation. Food Funct 2021; 12:2591-2604. [PMID: 33629689 DOI: 10.1039/d0fo02375b] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Probiotic therapy targeting gut-brain axis has been proven to be effective in treating autistic patients. The present study aimed to assess the ability of three Lactobacillus strains (L. helveticus CCFM1076, L. acidophilus La28, and L. acidophilus JCM 1132) to alleviate autistic-like behavioral symptoms in VPA-treated rats from weaning to sexual maturation. For the first time, we assessed the synthesis of 5-hydroxytryptamine (5HT) and the metabolic capacity of the 5HT system in the peripheral and central nervous systems (PNS and CNS, respectively) based on tryptophan metabolism based on VPA-induced autism model. We also assessed gut microbiota, and short-chain fatty acids (SCFAs) at the end of week 8. While improving autistic-like behavioral symptoms, we found L. helveticus CCFM1076 was more beneficial in regulating 5HT anabolism and catabolism, balancing excitatory and inhibitory neurotransmitter release in the PNS and CNS, and increasing oxytocin (OT) synthesis in the hypothalamus. A significant correlation was noted between 5HT levels and the release of GABA, glutamate (Glu), and OT, suggesting that 5HT plays a vital role in the neuroendocrine network. Analyses of the gut microbiota and SCFA levels revealed greater Turicibacter abundance and lower butyric acid levels in VPA-treated rats, which have been reported to be associated with 5HT levels. L. helveticus CCFM1076 helped reduce Turicibacter abundance and up-regulate butyric acid levels, while L. acidophilus La28 and L. acidophilus JCM 1132 did not. L. helveticus CCFM1076 restored neurotransmitter homeostasis by improving the balance of the 5HT system in the PNS and CNS, thereby ameliorating autistic-like behaviors. This finding will help in the development of bioproducts for treating autism and in the establishment of a treatment model mimicking the intestinal environment of autistic patients.
Collapse
Affiliation(s)
- Qingmin Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hewitson L, Mathews JA, Devlin M, Schutte C, Lee J, German DC. Blood biomarker discovery for autism spectrum disorder: A proteomic analysis. PLoS One 2021; 16:e0246581. [PMID: 33626076 PMCID: PMC7904196 DOI: 10.1371/journal.pone.0246581] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and social interaction and restricted, repetitive patterns of behavior, interests, or activities. Given the lack of specific pharmacological therapy for ASD and the clinical heterogeneity of the disorder, current biomarker research efforts are geared mainly toward identifying markers for determining ASD risk or for assisting with a diagnosis. A wide range of putative biological markers for ASD is currently being investigated. Proteomic analyses indicate that the levels of many proteins in plasma/serum are altered in ASD, suggesting that a panel of proteins may provide a blood biomarker for ASD. Serum samples from 76 boys with ASD and 78 typically developing (TD) boys, 18 months-8 years of age, were analyzed to identify possible early biological markers for ASD. Proteomic analysis of serum was performed using SomaLogic’s SOMAScanTM assay 1.3K platform. A total of 1,125 proteins were analyzed. There were 86 downregulated proteins and 52 upregulated proteins in ASD (FDR < 0.05). Combining three different algorithms, we found a panel of 9 proteins that identified ASD with an area under the curve (AUC) = 0.8599±0.0640, with specificity and sensitivity of 0.8217±0.1178 and 0.835±0.1176, respectively. All 9 proteins were significantly different in ASD compared with TD boys, and were significantly correlated with ASD severity as measured by ADOS total scores. Using machine learning methods, a panel of serum proteins was identified that may be useful as a blood biomarker for ASD in boys. Further verification of the protein biomarker panel with independent test sets is warranted.
Collapse
Affiliation(s)
- Laura Hewitson
- The Johnson Center for Child Health and Development, Austin, TX, United States of America
| | - Jeremy A Mathews
- Departments of Mathematical Sciences and Biological Sciences, Bioinformatics & Computational Biology Program, University of Texas at Dallas, Dallas, TX, United States of America
| | - Morgan Devlin
- The Johnson Center for Child Health and Development, Austin, TX, United States of America
| | - Claire Schutte
- The Johnson Center for Child Health and Development, Austin, TX, United States of America
| | - Jeon Lee
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Dwight C German
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States of America
| |
Collapse
|
20
|
Bourdon JL, Davies RA, Long EC. Four Actionable Bottlenecks and Potential Solutions to Translating Psychiatric Genetics Research: An Expert Review. Public Health Genomics 2020; 23:171-183. [PMID: 33147585 PMCID: PMC7854816 DOI: 10.1159/000510832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/27/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Psychiatric genetics has had limited success in translational efforts. A thorough understanding of the present state of translation in this field will be useful in the facilitation and assessment of future translational progress. PURPOSE A narrative literature review was conducted. Combinations of 3 groups of terms were searched in EBSCOhost, Google Scholar, and PubMed. The review occurred in multiple steps, including abstract collection, inclusion/exclusion criteria review, coding, and analysis of included papers. RESULTS One hundred and fourteen articles were analyzed for the narrative review. Across those, 4 bottlenecks were noted that, if addressed, may provide insights and help improve and increase translation in the field of psychiatric genetics. These 4 bottlenecks are emphasizing linear translational frameworks, relying on molecular genomic findings, prioritizing certain psychiatric disorders, and publishing more reviews than experiments. CONCLUSIONS These entwined bottlenecks are examined with one another. Awareness of these bottlenecks can inform stakeholders who work to translate and/or utilize psychiatric genetic information. Potential solutions include utilizing nonlinear translational frameworks as well as a wider array of psychiatric genetic information (e.g., family history and gene-environment interplay) in this area of research, expanding which psychiatric disorders are considered for translation, and when possible, conducting original research. Researchers are urged to consider how their research is translational in the context of the frameworks, genetic information, and psychiatric disorders discussed in this review. At a broader level, these efforts should be supported with translational efforts in funding and policy shifts.
Collapse
Affiliation(s)
- Jessica L Bourdon
- Department of Psychiatry, Brown School of Social Work, Washington University in St. Louis, St. Louis, Missouri, USA,
| | - Rachel A Davies
- Yerkes National Primate Research Center, Division of Behavioral Neuroscience and Psychiatric Disorders, Emory University, Atlanta, Georgia, USA
| | - Elizabeth C Long
- Edna Bennett Pierce Prevention Research Center, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
21
|
Cieślik M, Gąssowska-Dobrowolska M, Jęśko H, Czapski GA, Wilkaniec A, Zawadzka A, Dominiak A, Polowy R, Filipkowski RK, Boguszewski PM, Gewartowska M, Frontczak-Baniewicz M, Sun GY, Beversdorf DQ, Adamczyk A. Maternal Immune Activation Induces Neuroinflammation and Cortical Synaptic Deficits in the Adolescent Rat Offspring. Int J Mol Sci 2020; 21:E4097. [PMID: 32521803 PMCID: PMC7312084 DOI: 10.3390/ijms21114097] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 01/01/2023] Open
Abstract
Maternal immune activation (MIA), induced by infection during pregnancy, is an important risk factor for neuro-developmental disorders, such as autism. Abnormal maternal cytokine signaling may affect fetal brain development and contribute to neurobiological and behavioral changes in the offspring. Here, we examined the effect of lipopolysaccharide-induced MIA on neuro-inflammatory changes, as well as synaptic morphology and key synaptic protein level in cerebral cortex of adolescent male rat offspring. Adolescent MIA offspring showed elevated blood cytokine levels, microglial activation, increased pro-inflammatory cytokines expression and increased oxidative stress in the cerebral cortex. Moreover, pathological changes in synaptic ultrastructure of MIA offspring was detected, along with presynaptic protein deficits and down-regulation of postsynaptic scaffolding proteins. Consequently, ability to unveil MIA-induced long-term alterations in synapses structure and protein level may have consequences on postnatal behavioral changes, associated with, and predisposed to, the development of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Grzegorz A. Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Anna Wilkaniec
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Aleksandra Zawadzka
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| | - Agnieszka Dominiak
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Żwirki i Wigury 61, 02-097 Warsaw, Poland;
| | - Rafał Polowy
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (R.P.); (R.K.F.)
| | - Robert K. Filipkowski
- Behavior and Metabolism Research Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (R.P.); (R.K.F.)
| | - Paweł M. Boguszewski
- Laboratory of Animal Models, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3, 02-093 Warsaw, Poland;
| | - Magdalena Gewartowska
- Electron Microscopy Platform, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.); (M.F.-B.)
| | - Małgorzata Frontczak-Baniewicz
- Electron Microscopy Platform, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.); (M.F.-B.)
| | - Grace Y. Sun
- Department of Biochemistry, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65201, USA;
| | - David Q. Beversdorf
- Departments of Radiology, Neurology, and Psychological Sciences, William and Nancy Thompson Endowed Chair in Radiology, DC069.10, One Hospital Drive, University of Missouri, Columbia, MO 65211, USA;
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; (M.G.-D.); (H.J.); (G.A.C.); (A.W.); (A.Z.)
| |
Collapse
|
22
|
Aberrant Mitochondrial Morphology and Function in the BTBR Mouse Model of Autism Is Improved by Two Weeks of Ketogenic Diet. Int J Mol Sci 2020; 21:ijms21093266. [PMID: 32380723 PMCID: PMC7246481 DOI: 10.3390/ijms21093266] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder that exhibits a common set of behavioral and cognitive impairments. Although the etiology of ASD remains unclear, mitochondrial dysfunction has recently emerged as a possible causative factor underlying ASD. The ketogenic diet (KD) is a high-fat, low-carbohydrate diet that augments mitochondrial function, and has been shown to reduce autistic behaviors in both humans and in rodent models of ASD. The aim of the current study was to examine mitochondrial bioenergetics in the BTBR mouse model of ASD and to determine whether the KD improves mitochondrial function. We also investigated changes in mitochondrial morphology, which can directly influence mitochondrial function. We found that BTBR mice had altered mitochondrial function and exhibited smaller more fragmented mitochondria compared to C57BL/6J controls, and that supplementation with the KD improved both mitochondrial function and morphology. We also identified activating phosphorylation of two fission proteins, pDRP1S616 and pMFFS146, in BTBR mice, consistent with the increased mitochondrial fragmentation that we observed. Intriguingly, we found that the KD decreased pDRP1S616 levels in BTBR mice, likely contributing to the restoration of mitochondrial morphology. Overall, these data suggest that impaired mitochondrial bioenergetics and mitochondrial fragmentation may contribute to the etiology of ASD and that these alterations can be reversed with KD treatment.
Collapse
|
23
|
Yusuf A, Peltekova I, Savion-Lemieux T, Frei J, Bruno R, Joober R, Howe J, Scherer SW, Elsabbagh M. Perceived utility of biological testing for autism spectrum disorder is associated with child and family functioning. RESEARCH IN DEVELOPMENTAL DISABILITIES 2020; 100:103605. [PMID: 32120048 DOI: 10.1016/j.ridd.2020.103605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The clinical integration of chromosomal microarray testing promises improvements in diagnostic yields in Autism Spectrum Disorder (ASD). While the impact on clinical management is promising for some families, the utility perceived by families, including the majority for whom results are negative, is unclear. With next generation genomic sequencing technologies poised for integration, along with promising ASD biomarkers being developed, there is a need to understand the extent to which genomic and other biological testing would have utility for the target recipients of these tests and their families. The purpose of the present cross-sectional study was to examine the predictors of perceived utility of biological testing among parents of a child with ASD. METHODS The Perceived Utility of Biotesting (PUB) Questionnaire was developed based on literature review and integrating family review. Following their child's diagnosis, families participating in an ongoing prospective study completed the PUB questionnaire along with self-reported measures of parent stress, child and family functioning, and family-centered care prior to undergoing genetic testing for both clinical and research purposes. RESULTS Based on n = 85 families, psychometric properties of the Perceived Utility of Biotesting questionnaire suggest a reliable and valid instrument. A stepwise regression analysis reveals that lower levels of child emotional and behavioural functioning and higher levels of family functioning correlated with higher perceived utility for biological testing. LIMITATIONS A main limitation in the study is the participation rate of 50 %, thus the possibility of self-selection bias cannot be ruled out. We also chose to assess perceived utility among parents rather than the individuals with ASD themselves: modifying the questionnaire to capture perceived utility from autistic individuals across the lifespan would prove essential in future studies. Finally, ongoing validation of the PUB by assessing the PUB's discriminant and convergent validity is still needed. CONCLUSIONS We conclude that the utility of biological testing perceived by families whose child is undergoing genetic testing around ASD diagnosis depends on their unique child and family characteristics. This signifies that engaging families in biomarker discovery for improving the impact of research and care requires systematic input from a representative sample of families.
Collapse
Affiliation(s)
- Afiqah Yusuf
- Azrieli Centre for Autism Research, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada; Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Iskra Peltekova
- Azrieli Centre for Autism Research, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada; Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Tal Savion-Lemieux
- Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Jennifer Frei
- Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Ruth Bruno
- Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Ridha Joober
- Department of Psychiatry, McGill University, Montreal, Canada; Douglas Mental Health University Institute, Montreal, Canada
| | - Jennifer Howe
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, Canada; McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Canada
| | - Mayada Elsabbagh
- Azrieli Centre for Autism Research, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada; Research Institute of the McGill University Health Centre, Montreal, Canada.
| |
Collapse
|
24
|
Witt NA, Lee B, Ghent K, Zhang WQ, Pehrson AL, Sánchez C, Gould GG. Vortioxetine Reduces Marble Burying but Only Transiently Enhances Social Interaction Preference in Adult Male BTBR T +Itpr3 tf/J Mice. ACS Chem Neurosci 2019; 10:4319-4327. [PMID: 31468969 DOI: 10.1021/acschemneuro.9b00386] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Vortioxetine is a multimodal antidepressant with agonist activity at serotonin (5-HT)1A and 5-HT1B receptors that blocks the 5-HT transporter (SERT). Previously in male BTBR T+Itpr3tf/J (BTBR) mice, the 5-HT1A partial agonist buspirone and SERT blocker fluoxetine enhanced social interaction but did not reduce marble burying. We hypothesized that vortioxetine through its actions at SERT and 5-HT1A could improve BTBR sociability and via 5-HT1B could reduce burying better than sertraline, a selective SERT blocker. Vortioxetine (5-10 mg/kg) or sertraline (2 mg/kg) was administered 30 min presociability and 75 min prior to marble burying tests. Vortioxetine (10 mg/kg) occupancy (%) was 84 ± 1 for SERT, 31 ± 12 for 5-HT1A, and 80 ± 5 for 5-HT1B in brain at 110 min postinjection, and serum oxytocin was 24% lower (p < 0.01) in vortioxetine-treated mice. Vortioxetine reduced novel object investigation, whereas sertraline enhanced overall sociability. However, the vortioxetine-induced increase in social sniffing was transient, as it was lost with 60-120 min presociability test delays in subsequent experiments. Vortioxetine and sertraline both reduced BTBR marble burying. Based on vortioxetine occupancy, actions at SERT and/or 5-HT1B are more likely to underlie its behavioral effects than 5-HT1A. Overall, vortioxetine has great potential for suppressing restrictive-repetitive behaviors, but it appears less promising as a sociability enhancer.
Collapse
Affiliation(s)
- Nasriya A. Witt
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
- University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Benita Lee
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
- University of Texas, Austin, Texas 78705, United States
| | - Kaylee Ghent
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
- Trinity University, San Antonio, Texas 78212, United States
| | - Wynne Q. Zhang
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
- Baylor College of Medicine, Houston, Texas 77030, United States
| | - Alan L. Pehrson
- Department of Psychology, Monclair State University, Montclair, New Jersey 07043, United States
| | - Connie Sánchez
- Institute of Clinical Medicine, Translational Neuropsychiatry, University of Aarhus, Risskov, Denmark 8240
| | - Georgianna G. Gould
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| |
Collapse
|
25
|
Bridgemohan C, Cochran DM, Howe YJ, Pawlowski K, Zimmerman AW, Anderson GM, Choueiri R, Sices L, Miller KJ, Ultmann M, Helt J, Forbes PW, Farfel L, Brewster SJ, Frazier JA, Neumeyer AM. Investigating Potential Biomarkers in Autism Spectrum Disorder. Front Integr Neurosci 2019; 13:31. [PMID: 31427932 PMCID: PMC6687766 DOI: 10.3389/fnint.2019.00031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/03/2019] [Indexed: 01/20/2023] Open
Abstract
Background Early identification and treatment of individuals with autism spectrum disorder (ASD) improves outcomes, but specific evidence needed to individualize treatment recommendations is lacking. Biomarkers that could be routinely measured within the clinical setting could potentially transform clinical care for patients with ASD. This demonstration project employed collection of biomarker data during regular autism specialty clinical visits and explored the relationship of biomarkers with clinical ASD symptoms. Methods Eighty-three children with ASD, aged 5–10 years, completed a multi-site feasibility study integrating the collection of biochemical (blood serotonin, urine melatonin sulfate excretion) and clinical (head circumference, dysmorphology exam, digit ratio, cognitive and behavioral function) biomarkers during routine ASD clinic visits. Parents completed a demographic survey and the Aberrant Behavior Checklist-Community. Cognitive function was determined by record review. Data analysis utilized Wilcoxon two-sample tests and Spearman correlations. Results Participants were 82% male, 63% White, 19% Hispanic, with a broad range of functioning. Group means indicated hyperserotonemia. In a single regression analysis adjusting for race and median household income, higher income was associated with higher levels of blood serotonin and urine melatonin sulfate excretion levels (p = 0.004 and p = 0.04, respectively). Melatonin correlated negatively with age (p = 0.048) and reported neurologic problems (p = 0.02). Dysmorphic status correlated with higher reported stereotyped behavior (p = 0.02) and inappropriate speech (p = 0.04). Conclusion This demonstration project employed collection of multiple biomarkers, allowed for examination of associations between biochemical and clinical measures, and identified several findings that suggest direction for future studies. This clinical research model has promise for integrative biomarker research in individuals with complex, heterogeneous neurodevelopmental disorders such as ASD.
Collapse
Affiliation(s)
- Carolyn Bridgemohan
- Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - David M Cochran
- University of Massachusetts Memorial Medical Center, Worcester, MA, United States.,University of Massachusetts Medical School, Worcester, MA, United States
| | - Yamini J Howe
- Harvard Medical School, Boston, MA, United States.,Lurie Center for Autism, Massachusetts General Hospital for Children, Lexington, MA, United States
| | | | - Andrew W Zimmerman
- University of Massachusetts Memorial Medical Center, Worcester, MA, United States.,University of Massachusetts Medical School, Worcester, MA, United States
| | - George M Anderson
- Child Study Center, Yale University School of Medicine, New Haven, CT, United States
| | - Roula Choueiri
- University of Massachusetts Memorial Medical Center, Worcester, MA, United States.,University of Massachusetts Medical School, Worcester, MA, United States
| | - Laura Sices
- Boston University Medical Center, Boston, MA, United States.,Boston University School of Medicine, Boston, MA, United States
| | - Karen J Miller
- Center for Children with Special Needs, Floating Children's Hospital at Tufts Medical Center, Boston, MA, United States.,Tufts University School of Medicine, Boston, MA, United States
| | - Monica Ultmann
- Center for Children with Special Needs, Floating Children's Hospital at Tufts Medical Center, Boston, MA, United States.,Tufts University School of Medicine, Boston, MA, United States
| | - Jessica Helt
- Lurie Center for Autism, Massachusetts General Hospital for Children, Lexington, MA, United States
| | | | - Laura Farfel
- Boston University Medical Center, Boston, MA, United States.,Center for Children with Special Needs, Floating Children's Hospital at Tufts Medical Center, Boston, MA, United States.,Autism Consortium at Harvard Medical School, Boston, MA, United States
| | | | - Jean A Frazier
- University of Massachusetts Memorial Medical Center, Worcester, MA, United States.,University of Massachusetts Medical School, Worcester, MA, United States.,Eunice Kennedy Shriver Center, University of Massachusetts Medical School, Worcester, MA, United States
| | - Ann M Neumeyer
- Harvard Medical School, Boston, MA, United States.,Lurie Center for Autism, Massachusetts General Hospital for Children, Lexington, MA, United States
| |
Collapse
|
26
|
Mass Spectrometry for the Study of Autism and Neurodevelopmental Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31347066 DOI: 10.1007/978-3-030-15950-4_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Mass spectrometry (MS) has been increasingly used to study central nervous system (CNS) disorders, including autism spectrum disorders (ASDs). The first studies of ASD using MS focused on the identification of external toxins, but current research is more directed at understanding endogenous protein changes that occur in ASD (ASD proteomics). This chapter focuses on how MS has been used to study ASDs, with particular focus on proteomic analysis. Other neurodevelopmental disorders have been investigated using this technique, including genetic syndromes associated with autism such as fragile X syndrome (FXS) and Smith-Lemli-Opitz Syndrome (SLOS).
Collapse
|
27
|
Unruh KE, Martin LE, Magnon G, Vaillancourt DE, Sweeney JA, Mosconi MW. Cortical and subcortical alterations associated with precision visuomotor behavior in individuals with autism spectrum disorder. J Neurophysiol 2019; 122:1330-1341. [PMID: 31314644 DOI: 10.1152/jn.00286.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In addition to core deficits in social-communication abilities and repetitive behaviors and interests, many patients with autism spectrum disorder (ASD) experience developmental comorbidities, including sensorimotor issues. Sensorimotor issues are common in ASD and associated with more severe clinical symptoms. Importantly, sensorimotor behaviors are precisely quantifiable and highly translational, offering promising targets for neurophysiological studies of ASD. We used functional MRI to identify brain regions associated with sensorimotor behavior using a visually guided precision gripping task in individuals with ASD (n = 20) and age-, IQ-, and handedness-matched controls (n = 18). During visuomotor behavior, individuals with ASD showed greater force variability than controls. The blood oxygen level-dependent signal for multiple cortical and subcortical regions was associated with force variability, including motor and premotor cortex, posterior parietal cortex, extrastriate cortex, putamen, and cerebellum. Activation in the right premotor cortex scaled with sensorimotor variability in controls but not in ASD. Individuals with ASD showed greater activation than controls in left putamen and left cerebellar lobule VIIb, and activation in these regions was associated with more severe clinically rated symptoms of ASD. Together, these results suggest that greater sensorimotor variability in ASD is associated with altered cortical-striatal processes supporting action selection and cortical-cerebellar circuits involved in feedback-guided reactive adjustments of motor output. Our findings also indicate that atypical organization of visuomotor cortical circuits may result in heightened reliance on subcortical circuits typically dedicated to motor skill acquisition. Overall, these results provide new evidence that sensorimotor alterations in ASD involve aberrant cortical and subcortical organization that may contribute to key clinical issues in patients.NEW & NOTEWORTHY This is the first known study to examine functional brain activation during precision visuomotor behavior in autism spectrum disorder (ASD). We replicate previous findings of elevated force variability in ASD and find these deficits are associated with atypical function of ventral premotor cortex, putamen, and posterolateral cerebellum, indicating cortical-striatal processes supporting action selection and cortical-cerebellar circuits involved in feedback-guided reactive adjustments of motor output may be key targets for understanding the neurobiology of ASD.
Collapse
Affiliation(s)
- Kathryn E Unruh
- Schiefelbusch Institute for Life Span Studies and Clinical Child Psychology Program, University of Kansas, Lawrence, Kansas.,Kansas Center for Autism Research and Training, University of Kansas Medical School, Kansas City, Kansas
| | - Laura E Martin
- Hoglund Brain Imaging Center and Department of Preventive Medicine and Public Health, University of Kansas Medical Center, Kansas City, Kansas
| | - Grant Magnon
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - John A Sweeney
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio
| | - Matthew W Mosconi
- Schiefelbusch Institute for Life Span Studies and Clinical Child Psychology Program, University of Kansas, Lawrence, Kansas.,Kansas Center for Autism Research and Training, University of Kansas Medical School, Kansas City, Kansas
| |
Collapse
|
28
|
Gabriele S, Canali M, Lintas C, Sacco R, Tirindelli MC, Ricciardello A, Persico AM. Evidence that ITGB3 promoter variants increase serotonin blood levels by regulating platelet serotonin transporter trafficking. Hum Mol Genet 2019; 28:1153-1161. [PMID: 30535103 DOI: 10.1093/hmg/ddy421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 12/30/2022] Open
Abstract
Elevated serotonin (5-HT) blood levels, the first biomarker identified in autism research, has been consistently found in 20-30% of patients with Autism Spectrum Disorder (ASD). Hyperserotonemia is mainly due to greater 5-HT uptake into platelets, mediated by the 5-HT transporter (SERT) located at the platelet plasma membrane. The protein complex involved in platelet SERT trafficking and externalization includes integrin β3, the beta subunit of the platelet membrane adhesive GP IIb/IIIa. Integrin β3 is encoded by the ITGB3 gene, previously identified as a quantitative trait locus (QTL) for 5-HT blood levels in ASD at single nucleotide polymorphism (SNP) rs2317385. The present study aims to identify the functional ITGB3 gene variants contributing to hyperserotonemia. ITGB3 gene sequencing in 20 individuals selected on the basis of rs2317385 genotypes defined four haplotypes encompassing six SNPs located in the ITGB3 gene promoter region, all in linkage disequilibrium with rs2317385. Luciferase assays in two hematopoietic cell lines, K-562 and HEL 92.1.7, demonstrate that ITGB3 gene promoter activity is enhanced by the presence of the C allele at rs55827077 specifically during differentiation into megakaryocytes (P < 0.01), with modulatory effects by flanking SNPs. This same allele is strongly associated with (a) higher 5-HT blood levels in 176 autistic individuals (P < 0.001), (b) greater platelet integrin β3 protein expression (P < 0.05) and (c) enhanced SERT trafficking from the cytosol toward the platelet plasma membrane (P = 4.05 × 10-11). Our results support rs55827077 as the functional ITGB3 gene promoter variant contributing to elevated 5-HT blood levels in ASD and define a mechanistic chain of events linking ITGB3 to hyperserotonemia.
Collapse
Affiliation(s)
- Stefano Gabriele
- Center for Neurodevelopmental Disorders & Laboratory of Molecular Psychiatry and Neurogenetics, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Marco Canali
- Center for Neurodevelopmental Disorders & Laboratory of Molecular Psychiatry and Neurogenetics, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Carla Lintas
- Center for Neurodevelopmental Disorders & Laboratory of Molecular Psychiatry and Neurogenetics, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Roberto Sacco
- Center for Neurodevelopmental Disorders & Laboratory of Molecular Psychiatry and Neurogenetics, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | | | - Arianna Ricciardello
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| | - Antonio M Persico
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy.,Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy
| |
Collapse
|
29
|
Cai Y, Wang L, Nalvarte I, Xiao R, Li X, Fan X. Citalopram attenuates social behavior deficits in the BTBR T +Itpr3 tf/J mouse model of autism. Brain Res Bull 2019; 150:75-85. [PMID: 31047973 DOI: 10.1016/j.brainresbull.2019.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 03/28/2019] [Accepted: 04/25/2019] [Indexed: 12/16/2022]
Abstract
Autism spectrum disorder (ASD) is diagnosed by two core symptoms: impaired social communication and the presence of repetitive, stereotyped behaviors and/or restricted interests. Alterations in serotonergic signaling are involved in the genesis of ASD. Selective serotonin reuptake inhibitors (SSRIs) have been reported to reduce repetitive behaviors and rescue social deficits in ASD mouse models and patients. In the present study, we examined the potential of citalopram (a representative selective serotonin reuptake inhibitor) on sociability and repetitive behaviors in the BTBR T+Itpr3tf/J (BTBR) mouse model of ASD. We found that the deficits of sociability in the BTBR mice were reversed by a 20 mg/kg dose of citalopram treatment without any adverse effects on locomotor activity or anxiety level. In addition, both high (20 mg/kg) and low (10 mg/kg) doses decreased the repetitive behavior of marble burying but did not affect self-grooming behavior. Furthermore, both doses were shown to have antidepressant-like activity in both the B6 and the BTBR mice in the tail suspension test. Taken together, these findings further demonstrate that citalopram can alleviate behavioral abnormalities in the BTBR autism model and lend support to the hypothesis that SSRIs may be potential therapeutic drugs for the treatment of behavioral dysfunctions in ASD.
Collapse
Affiliation(s)
- Yulong Cai
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Lian Wang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Ivan Nalvarte
- Department of Biosciences and Nutrition, Karolinska Institutet Hälsovägen 7C, Neo, 141 57 Huddinge, Sweden
| | - Rui Xiao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Xin Li
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
30
|
Hicks SD, Carpenter RL, Wagner KE, Pauley R, Barros M, Tierney-Aves C, Barns S, Greene CD, Middleton FA. Saliva MicroRNA Differentiates Children With Autism From Peers With Typical and Atypical Development. J Am Acad Child Adolesc Psychiatry 2019; 59:296-308. [PMID: 30926572 PMCID: PMC6764899 DOI: 10.1016/j.jaac.2019.03.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/10/2019] [Accepted: 03/20/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Clinical diagnosis of autism spectrum disorder (ASD) relies on time-consuming subjective assessments. The primary purpose of this study was to investigate the utility of salivary microRNAs for differentiating children with ASD from peers with typical development (TD) and non-autism developmental delay (DD). The secondary purpose was to explore microRNA patterns among ASD phenotypes. METHOD This multicenter, prospective, case-control study enrolled 443 children (2-6 years old). ASD diagnoses were based on DSM-5 criteria. Children with ASD or DD were assessed with the Autism Diagnostic Observation Schedule II and Vineland Adaptive Behavior Scales II. MicroRNAs were measured with high-throughput sequencing. Differential expression of microRNAs was compared among the ASD (n = 187), TD (n = 125), and DD (n = 69) groups in the training set (n = 381). Multivariate logistic regression defined a panel of microRNAs that differentiated children with ASD and those without ASD. The algorithm was tested in a prospectively collected naïve set of 62 samples (ASD, n = 37; TD, n = 8; DD, n = 17). Relations between microRNA levels and ASD phenotypes were explored. RESULT Fourteen microRNAs displayed differential expression (false discovery rate < 0.05) among ASD, TD, and DD groups. A panel of 4 microRNAs (controlling for medical/demographic covariates) best differentiated children with ASD from children without ASD in training (area under the curve = 0.725) and validation (area under the curve = 0.694) sets. Eight microRNAs were associated (R > 0.25, false discovery rate < 0.05) with social affect, and 10 microRNAs were associated with restricted/repetitive behavior. CONCLUSION Salivary microRNAs are "altered" in children with ASD and associated with levels of ASD behaviors. Salivary microRNA collection is noninvasive, identifying ASD-status with moderate accuracy. A multi-"omic" approach using additional RNA families could improve accuracy, leading to clinical application. CLINICAL TRIAL REGISTRATION INFORMATION A Salivary miRNA Diagnostic Test for Autism; https://clinicaltrials.gov/; NCT02832557.
Collapse
|
31
|
Zhou J, He F, Yang F, Yang Z, Xie Y, Zhou S, Liang J, Xu R, Wang Y, Guo H, Zhou W, Wang M. Increased stool immunoglobulin A level in children with autism spectrum disorders. RESEARCH IN DEVELOPMENTAL DISABILITIES 2018; 82:90-94. [PMID: 29102384 DOI: 10.1016/j.ridd.2017.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND There are currently no effective treatments for the core symptoms of autism spectrum disorders (ASDs). However, alleviating gastrointestinal (GI) problems, which are prevalent in ASD patients, can significantly improve the core symptoms of autism. Previous studies have associated GI disorders in ASD patients with abnormal gut microbiota, although few disease-related microorganisms have been identified. Considering that the gut microbiome affects the intestinal immune system and the patient's behavior, and that immunoglobulin A (IgA) is the main antibody secreted by intestinal immune cells, we investigated stool IgA content as a means of understanding the gut immune status of ASD patients. The IgA level in gut can be used as factor to know the Gene x Environment interactions and diagnose of ASDs. METHODS We enrolled 43 ASD patients and 31 gender- and age-matched healthy children. Stool IgA content was measured by enzyme-linked immunosorbent assay. RESULTS We found that IgA levels were significantly higher in stool samples from ASD patients than from healthy children (p<0.05, Student's t test). CONCLUSIONS This finding may suggest the presence of gut immune abnormalities in ASD patients. Further studies with larger patient and control cohorts will be necessary to determine whether stool IgA levels can be used as a biomarker for ASDs.
Collapse
Affiliation(s)
- Jiaxiu Zhou
- Division of Psychology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Fusheng He
- Autism Research Center, Shenzhen Following Precision Medical Research Institute, Shenzhen, Guangdong, China
| | - Feng Yang
- Division of Speech Therapy, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Zheng Yang
- Shenzhen Center for Chronic Disease Prevention and Treatment, China
| | - Yingjun Xie
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, China
| | - Shaoming Zhou
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Jingwen Liang
- Clinical Laboratory, Longgang Central Hospital of Shenzhen, Guangdong, China
| | - Ruihuan Xu
- Clinical Laboratory, Longgang Central Hospital of Shenzhen, Guangdong, China
| | - Yan Wang
- Shenzhen Imuno Biotech Co. Ltd, China
| | - Hailiang Guo
- Autism Research Center, Shenzhen Following Precision Medical Research Institute, Shenzhen, Guangdong, China; Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.
| | - Wenhao Zhou
- Autism Research Center, Shenzhen Following Precision Medical Research Institute, Shenzhen, Guangdong, China; Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China; Division of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, National Health and Family Planning Commission, Children's Hospital of Fudan University, Shanghai, China.
| | - Mingbang Wang
- Division of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Xiamen Branch, Children's Hospital of Fudan University, Xiamen, Fujian, China.
| |
Collapse
|
32
|
p38α MAPK signaling drives pharmacologically reversible brain and gastrointestinal phenotypes in the SERT Ala56 mouse. Proc Natl Acad Sci U S A 2018; 115:E10245-E10254. [PMID: 30297392 PMCID: PMC6205438 DOI: 10.1073/pnas.1809137115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is a common neurobehavioral disorder with limited treatment options. Activation of p38 MAPK signaling networks has been identified in ASD, and p38 MAPK signaling elevates serotonin (5-HT) transporter (SERT) activity, effects mimicked by multiple, hyperfunctional SERT coding variants identified in ASD subjects. Mice expressing the most common of these variants (SERT Ala56) exhibit hyperserotonemia, a biomarker observed in ASD subjects, as well as p38 MAPK-dependent SERT hyperphosphorylation, elevated hippocampal 5-HT clearance, hypersensitivity of CNS 5-HT1A and 5-HT2A/2C receptors, and behavioral and gastrointestinal perturbations reminiscent of ASD. As the α-isoform of p38 MAPK drives SERT activation, we tested the hypothesis that CNS-penetrant, α-isoform-specific p38 MAPK inhibitors might normalize SERT Ala56 phenotypes. Strikingly, 1-week treatment of adult SERT Ala56 mice with MW150, a selective p38α MAPK inhibitor, normalized hippocampal 5-HT clearance, CNS 5-HT1A and 5-HT2A/2C receptor sensitivities, social interactions, and colonic motility. Conditional elimination of p38α MAPK in 5-HT neurons of SERT Ala56 mice restored 5-HT1A and 5-HT2A/2C receptor sensitivities as well as social interactions, mirroring effects of MW150. Our findings support ongoing p38α MAPK activity as an important determinant of the physiological and behavioral perturbations of SERT Ala56 mice and, more broadly, supports consideration of p38α MAPK inhibition as a potential treatment for core and comorbid phenotypes present in ASD subjects.
Collapse
|
33
|
Diagnostic accuracy of the ADOS and ADOS-2 in clinical practice. Eur Child Adolesc Psychiatry 2018; 27:1193-1207. [PMID: 29560529 DOI: 10.1007/s00787-018-1143-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 03/09/2018] [Indexed: 12/22/2022]
Abstract
The Autism Diagnostic Observation Schedule is a semi-structured, standardized assessment tool for individuals with suspected autism spectrum disorders (ASD) and is deemed to be part of the gold standard for diagnostic evaluation. Good diagnostic accuracy and interpersonal objectivity have been demonstrated for the ADOS in research setting. The question arises whether this is also true for daily clinical practice and whether diagnostic accuracy depends on specialized experience in the diagnostic evaluation. The present study explores the diagnostic accuracy of the original and the revised version of the ADOS for Modules 1 through 4. Thus, seven cases of ADOS executions were recorded and coded by a group of experts of specialized outpatient clinics for ASD. In an extensive consensus process, including video analysis of every minute of the ADOS executions, a "gold standard" coding for every case was defined. The videos of the ADOS administration were presented to a large group of clinicians (from daily clinical routine care) and their codings (n = 189) were obtained and analysed. Variance of coding and congruence with the expert coding were determined. High variance was found in the codings. The accuracy of the coding depends on the experience of the coder with the ADOS as well as on characteristics of the cases and the quality of the administration of the ADOS. Specialization in the diagnostic of ASD has to be claimed. Specialized outpatient clinics for ASD are required which guarantee a qualified diagnostic/differential diagnostic and case management with the aim of demand-oriented supply of individual cases.
Collapse
|
34
|
Wolff JJ, Jacob S, Elison JT. The journey to autism: Insights from neuroimaging studies of infants and toddlers. Dev Psychopathol 2018; 30:479-495. [PMID: 28631578 PMCID: PMC5834406 DOI: 10.1017/s0954579417000980] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
By definition, autism spectrum disorder (ASD) is a neurodevelopmental disorder that emerges during early childhood. It is during this time that infants and toddlers transition from appearing typical across multiple domains to exhibiting the behavioral phenotype of ASD. Neuroimaging studies focused on this period of development have provided crucial knowledge pertaining to this process, including possible mechanisms underlying pathogenesis of the disorder and offering the possibility of prodromal or presymptomatic prediction of risk. In this paper, we review findings from structural and functional brain imaging studies of ASD focused on the first years of life and discuss implications for next steps in research and clinical applications.
Collapse
|
35
|
Trifonova EA, Khlebodarova TM, Gruntenko NE. Molecular mechanisms of autism as a form of synaptic dysfunction. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s2079059717080020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Kamp-Becker I, Poustka L, Bachmann C, Ehrlich S, Hoffmann F, Kanske P, Kirsch P, Krach S, Paulus FM, Rietschel M, Roepke S, Roessner V, Schad-Hansjosten T, Singer T, Stroth S, Witt S, Wermter AK. Study protocol of the ASD-Net, the German research consortium for the study of Autism Spectrum Disorder across the lifespan: from a better etiological understanding, through valid diagnosis, to more effective health care. BMC Psychiatry 2017; 17:206. [PMID: 28577550 PMCID: PMC5455122 DOI: 10.1186/s12888-017-1362-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/19/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a severe, lifelong neurodevelopmental disorder with early onset that places a heavy burden on affected individuals and their families. Due to the need for highly specialized health, educational and vocational services, ASD is a cost-intensive disorder, and strain on health care systems increases with increasing age of the affected individual. METHODS The ASD-Net will study Germany's largest cohort of patients with ASD over the lifespan. By combining methodological expertise from all levels of clinical research, the ASD-Net will follow a translational approach necessary to identify neurobiological pathways of different phenotypes and their appropriate identification and treatment. The work of the ASD-Net will be organized into three clusters concentrating on diagnostics, therapy and health economics. In the diagnostic cluster, data from a large, well-characterized sample (N = 2568) will be analyzed to improve the efficiency of diagnostic procedures. Pattern classification methods (machine learning) will be used to identify algorithms for screening purposes. In a second step, the developed algorithm will be tested in an independent sample. In the therapy cluster, we will unravel how an ASD-specific social skills training with concomitant oxytocin administration can modulate behavior through neurobiological pathways. For the first time, we will characterize long-term effects of a social skills training combined with oxytocin treatment on behavioral and neurobiological phenotypes. Also acute effects of oxytocin will be investigated to delineate general and specific effects of additional oxytocin treatment in order to develop biologically plausible models for symptoms and successful therapeutic interventions in ASD. Finally, in the health economics cluster, we will assess service utilization and ASD-related costs in order to identify potential needs and cost savings specifically tailored to Germany. The ASD-Net has been established as part of the German Research Network for Mental Disorders, funded by the BMBF (German Federal Ministry of Education and Research). DISCUSSION The highly integrated structure of the ASD-Net guarantees sustained collaboration of clinicians and researchers to alleviate individual distress, harm, and social disability of patients with ASD and reduce costs to the German health care system. TRIAL REGISTRATION Both clinical trials of the ASD-Net are registered in the German Clinical Trials Register: DRKS00008952 (registered on August 4, 2015) and DRKS00010053 (registered on April 8, 2016).
Collapse
Affiliation(s)
- Inge Kamp-Becker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Clinic, Philipps-University Marburg, Marburg, Germany
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
- Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
- Department of Child and Adolescent Psychiatry/Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | | | - Stefan Ehrlich
- Department of Child & Adolescent Psychiatry, Medical Faculty of the Technical University Dresden, Dresden, Germany
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Falk Hoffmann
- Department of Health Services Research, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Philipp Kanske
- Department of Social Neuroscience, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Peter Kirsch
- Department of Clinical Psychology Central Institute of Mental Health, Mannheim, Germany
| | - Sören Krach
- Department for Psychiatry and Psychotherapy, University Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Frieder Michel Paulus
- Department for Psychiatry and Psychotherapy, University Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - Stefan Roepke
- Department of Psychiatry, Campus Benjamin Franklin, Charité - Medical Faculty Berlin, Berlin, Germany
| | - Veit Roessner
- Department of Child & Adolescent Psychiatry, Medical Faculty of the Technical University Dresden, Dresden, Germany
| | - Tanja Schad-Hansjosten
- Department of Child and Adolescent Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, Heidelberg University, Mannheim, Germany
| | - Tania Singer
- Department of Social Neuroscience, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sanna Stroth
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Clinic, Philipps-University Marburg, Marburg, Germany
| | - Stephanie Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, Germany
| | - Anne-Kathrin Wermter
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Clinic, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
37
|
Hudac CM, Stessman HAF, DesChamps TD, Kresse A, Faja S, Neuhaus E, Webb SJ, Eichler EE, Bernier RA. Exploring the heterogeneity of neural social indices for genetically distinct etiologies of autism. J Neurodev Disord 2017; 9:24. [PMID: 28559932 PMCID: PMC5446693 DOI: 10.1186/s11689-017-9199-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 05/10/2017] [Indexed: 11/21/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a genetically and phenotypically heterogeneous disorder. Promising initiatives utilizing interdisciplinary characterization of ASD suggest phenotypic subtypes related to specific likely gene-disrupting mutations (LGDMs). However, the role of functionally associated LGDMs in the neural social phenotype is unknown. Methods In this study of 26 children with ASD (n = 13 with an LGDM) and 13 control children, we characterized patterns of mu attenuation and habituation as children watched videos containing social and nonsocial motions during electroencephalography acquisition. Results Diagnostic comparisons were consistent with prior work suggesting aberrant mu attenuation in ASD within the upper mu band (10–12 Hz), but typical patterns within the lower mu band (8–10 Hz). Preliminary exploration indicated distinct social sensitization patterns (i.e., increasing mu attenuation for social motion) for children with an LGDM that is primarily expressed during embryonic development. In contrast, children with an LGDM primarily expressed post-embryonic development exhibited stable typical patterns of lower mu attenuation. Neural social indices were associated with social responsiveness, but not cognition. Conclusions These findings suggest unique neurophysiological profiles for certain genetic etiologies of ASD, further clarifying possible genetic functional subtypes of ASD and providing insight into mechanisms for targeted treatment approaches. Electronic supplementary material The online version of this article (doi:10.1186/s11689-017-9199-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caitlin M Hudac
- Department of Psychiatry and Behavioral Sciences, University of Washington, CHDD Box 357920, Seattle, WA 98195 USA
| | - Holly A F Stessman
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Trent D DesChamps
- Department of Psychiatry and Behavioral Sciences, University of Washington, CHDD Box 357920, Seattle, WA 98195 USA
| | - Anna Kresse
- Center for Child Health, Behavior, and Disabilities, Seattle Children's Research Institute, Seattle, WA 98145 USA
| | - Susan Faja
- Boston Children's Hospital and Division of Developmental Medicine, Harvard School of Medicine, Boston, MA 02215 USA
| | - Emily Neuhaus
- Center for Child Health, Behavior, and Disabilities, Seattle Children's Research Institute, Seattle, WA 98145 USA
| | - Sara Jane Webb
- Department of Psychiatry and Behavioral Sciences, University of Washington, CHDD Box 357920, Seattle, WA 98195 USA.,Center for Child Health, Behavior, and Disabilities, Seattle Children's Research Institute, Seattle, WA 98145 USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195 USA.,Howard Hughes Medical Institute, Seattle, WA 98195 USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, CHDD Box 357920, Seattle, WA 98195 USA.,Center for Child Health, Behavior, and Disabilities, Seattle Children's Research Institute, Seattle, WA 98145 USA
| |
Collapse
|
38
|
Pellissier LP, Gandía J, Laboute T, Becker JAJ, Le Merrer J. μ opioid receptor, social behaviour and autism spectrum disorder: reward matters. Br J Pharmacol 2017; 175:2750-2769. [PMID: 28369738 DOI: 10.1111/bph.13808] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/10/2017] [Accepted: 03/24/2017] [Indexed: 12/19/2022] Open
Abstract
The endogenous opioid system is well known to relieve pain and underpin the rewarding properties of most drugs of abuse. Among opioid receptors, the μ receptor mediates most of the analgesic and rewarding properties of opioids. Based on striking similarities between social distress, physical pain and opiate withdrawal, μ receptors have been proposed to play a critical role in modulating social behaviour in humans and animals. This review summarizes experimental data demonstrating such role and proposes a novel model, the μ opioid receptor balance model, to account for the contribution of μ receptors to the subtle regulation of social behaviour. Interestingly, μ receptor null mice show behavioural deficits similar to those observed in patients with autism spectrum disorder (ASD), including severe impairment in social interactions. Therefore, after a brief summary of recent evidence for blunted (social) reward processes in subjects with ASD, we review here arguments for altered μ receptor function in this pathology. This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
Collapse
Affiliation(s)
- Lucie P Pellissier
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours Rabelais, IFCE, Inserm, Nouzilly, France
| | - Jorge Gandía
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours Rabelais, IFCE, Inserm, Nouzilly, France
| | - Thibaut Laboute
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours Rabelais, IFCE, Inserm, Nouzilly, France
| | - Jérôme A J Becker
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours Rabelais, IFCE, Inserm, Nouzilly, France
| | - Julie Le Merrer
- Physiologie de la Reproduction et des Comportements, INRA UMR-0085, CNRS UMR-7247, Université de Tours Rabelais, IFCE, Inserm, Nouzilly, France
| |
Collapse
|
39
|
Abstract
Mental disorders are among the greatest medical and social challenges facing us. They can occur at all stages of life and are among the most important commonly occurring diseases. In Germany 28 % of the population suffer from a mental disorder every year, while the lifetime risk of suffering from a mental disorder is almost 50 %. Mental disorders cause great suffering for those affected and their social network. Quantitatively speaking, they can be considered to be among those diseases creating the greatest burden for society due to reduced productivity, absence from work and premature retirement. The Federal Ministry of Education and Research is funding a new research network from 2015 to 2019 with up to 35 million euros to investigate mental disorders in order to devise and develop better therapeutic measures and strategies for this population by means of basic and translational clinical research. This is the result of a competitive call for research proposals entitled research network for mental diseases. It is a nationwide network of nine consortia with up to ten psychiatric and clinical psychology partner institutions from largely university-based research facilities for adults and/or children and adolescents. Furthermore, three cross-consortia platform projects will seek to identify shared causes of diseases and new diagnostic modalities for anxiety disorders, attention deficit hyperactivity disorders (ADHS), autism, bipolar disorders, depression, schizophrenia and psychotic disorders as well as substance-related and addictive disorders. The spectrum of therapeutic approaches to be examined ranges from innovative pharmacological and psychotherapeutic treatment to novel brain stimulation procedures. In light of the enormous burden such diseases represent for society as a whole, a sustainable improvement in the financial support for those researching mental disorders seems essential. This network aims to become a nucleus for long overdue and sustained support for a German center for mental disorders.
Collapse
|
40
|
Anderson GM, Cook EH. Commentary on "Platelet Studies in Autism Spectrum Disorder Patients and First-Degree Relatives". Mol Autism 2016; 7:20. [PMID: 27030804 PMCID: PMC4812610 DOI: 10.1186/s13229-016-0086-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/22/2016] [Indexed: 11/10/2022] Open
Abstract
We comment on the recent report entitled "Platelet Studies in Autism Spectrum Disorder Patients and First-Degree Relatives" [Molecular Autism 2015;6:57]. We find it commendable that the authors have investigated platelet factors potentially involved in the well-replicated observation of platelet hyperserotonemia in autism. However, we believe the results need a fuller discussion in the context of prior studies, think that certain aspects of the interpretation need to be reassessed, and attempt to provide a framework for further research in this area.
Collapse
Affiliation(s)
- George M Anderson
- Yale Child Study Center, Yale University School of Medicine, 230 South Frontage Rd., 06519 New Haven, CT USA ; Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT USA
| | - Edwin H Cook
- Institute for Juvenile Research, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL USA
| |
Collapse
|
41
|
Chugani DC, Chugani HT, Wiznitzer M, Parikh S, Evans PA, Hansen RL, Nass R, Janisse JJ, Dixon-Thomas P, Behen M, Rothermel R, Parker JS, Kumar A, Muzik O, Edwards DJ, Hirtz D. Efficacy of Low-Dose Buspirone for Restricted and Repetitive Behavior in Young Children with Autism Spectrum Disorder: A Randomized Trial. J Pediatr 2016; 170:45-53.e1-4. [PMID: 26746121 DOI: 10.1016/j.jpeds.2015.11.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/05/2015] [Accepted: 11/11/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To determine safety and efficacy of the 5HT1A serotonin partial agonist buspirone on core autism and associated features in children with autism spectrum disorder (ASD). STUDY DESIGN Children 2-6 years of age with ASD (N = 166) were randomized to receive placebo or 2.5 or 5.0 mg of buspirone twice daily. The primary objective was to evaluate the effects of 24 weeks of buspirone on the Autism Diagnostic Observation Schedule (ADOS) Composite Total Score. Secondary objectives included evaluating the effects of buspirone on social competence, repetitive behaviors, language, sensory dysfunction, and anxiety and to assess side effects. Positron emission tomography measures of tryptophan metabolism and blood serotonin concentrations were assessed as predictors of buspirone efficacy. RESULTS There was no difference in the ADOS Composite Total Score between baseline and 24 weeks among the 3 treatment groups (P = .400); however, the ADOS Restricted and Repetitive Behavior score showed a time-by-treatment effect (P = .006); the 2.5-mg buspirone group showed significant improvement (P = .003), whereas placebo and 5.0-mg buspirone groups showed no change. Children in the 2.5-mg buspirone group were more likely to improve if they had fewer foci of increased brain tryptophan metabolism on positron emission tomography (P = .018) or if they showed normal levels of blood serotonin (P = .044). Adverse events did not differ significantly among treatment groups. CONCLUSIONS Treatment with 2.5 mg of buspirone in young children with ASD might be a useful adjunct therapy to target restrictive and repetitive behaviors in conjunction with behavioral interventions. TRIAL REGISTRATION ClinicalTrials.gov: NCT00873509.
Collapse
Affiliation(s)
- Diane C Chugani
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI; Children's Hospital of Michigan, Detroit, MI.
| | - Harry T Chugani
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI; Children's Hospital of Michigan, Detroit, MI; Department of Neurology, Wayne State University School of Medicine, Detroit, MI
| | - Max Wiznitzer
- Neuroscience Institute, University Hospitals Case Medical Center, Rainbow Babies and Children's Hospital, Cleveland, OH
| | - Sumit Parikh
- Cleveland Clinic Neurogenetics & Metabolism, Neuroscience Institute Lerner College of Medicine-Case Western Reserve University, Cleveland, OH
| | - Patricia A Evans
- Departments of Neurology and Pediatrics, University of Texas Southwestern Medical Center, Children's Medical Center of Dallas, Dallas, TX
| | - Robin L Hansen
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Department of Pediatrics, University of California Davis, Davis, CA
| | - Ruth Nass
- Department of Neurology, New York University Langone Medical Center, New York, NY; Department of Child and Adolescent Psychiatry, New York University Langone Medical Center, New York, NY
| | - James J Janisse
- Department of Family Medicine and Public Health Sciences, Wayne State University School of Medicine, Detroit, MI
| | - Pamela Dixon-Thomas
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI
| | - Michael Behen
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI; Children's Hospital of Michigan, Detroit, MI
| | - Robert Rothermel
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI
| | - Jacqueline S Parker
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI; Children's Hospital of Michigan, Detroit, MI
| | - Ajay Kumar
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI; Children's Hospital of Michigan, Detroit, MI; Department of Neurology, Wayne State University School of Medicine, Detroit, MI; Department of Radiology, Wayne State University School of Medicine, Detroit, MI
| | - Otto Muzik
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI; Children's Hospital of Michigan, Detroit, MI; Department of Neurology, Wayne State University School of Medicine, Detroit, MI; Department of Radiology, Wayne State University School of Medicine, Detroit, MI
| | - David J Edwards
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Deborah Hirtz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
42
|
Moos WH, Maneta E, Pinkert CA, Irwin MH, Hoffman ME, Faller DV, Steliou K. Epigenetic Treatment of Neuropsychiatric Disorders: Autism and Schizophrenia. Drug Dev Res 2016; 77:53-72. [PMID: 26899191 DOI: 10.1002/ddr.21295] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neuropsychiatric disorders are a heterogeneous group of conditions that often share underlying mitochondrial dysfunction and biological pathways implicated in their pathogenesis, progression, and treatment. To date, these disorders have proven notoriously resistant to molecular-targeted therapies, and clinical options are relegated to interventional types, which do not address the core symptoms of the disease. In this review, we discuss emerging epigenetic-driven approaches using novel acylcarnitine esters (carnitinoids) that act on master regulators of antioxidant and cytoprotective genes and mitophagic pathways. These carnitinoids are actively transported, mitochondria-localizing, biomimetic coenzyme A surrogates of short-chain fatty acids, which inhibit histone deacetylase and may reinvigorate synaptic plasticity and protect against neuronal damage. We outline these neuroprotective effects in the context of treatment of neuropsychiatric disorders such as autism spectrum disorder and schizophrenia.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.,SRI Biosciences, A Division of SRI International, Menlo Park, CA, USA
| | - Eleni Maneta
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Carl A Pinkert
- Department of Biological Sciences, College of Arts and Sciences, The University of Alabama, Tuscaloosa, AL, USA.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Michael H Irwin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Michelle E Hoffman
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Douglas V Faller
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA.,PhenoMatriX, Inc., Boston, MA, USA
| |
Collapse
|
43
|
Parent Perceptions of Care Received by Children With an Autism Spectrum Disorder. J Pediatr Nurs 2016; 31:21-31. [PMID: 26724967 DOI: 10.1016/j.pedn.2015.11.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 11/20/2022]
Abstract
Research in the post-genomic era has provided substantial contributions toward identification of medical, genetic and environmental heritability factors associated with autism spectrum disorder (ASD). A specific etiology related to the diagnosis remains unclear, although prevalence statistics continue to rise with profound impact on families and their primary care providers (PCPs). Support professionals encounter significant challenges delivering comprehensive management for this complex neurobehavioral and developmental disorder. Children with ASD experience significantly higher risk for unmet healthcare needs, and parents report less satisfaction with their care although current literature does not fully explain why this issue persists. This study sought parent insight for the missing answers needed to inform practice. Eleven parents of children with an ASD participated in the study. Parent perceptions of care were examined utilizing Interpretive Phenomenological Analysis (IPA) and the Measure of Process of Care (MPOC-20) to illuminate and describe their lived experiences raising children with ASD, and interactions with their PCPs. Most parents utilized their child's PCP for general health maintenance, and many felt their PCP was unable to manage issues specifically related to their child's ASD. Most did not have an expectation for support with behavioral management in the home and school setting or identification of community and mental health resources, although many struggled with unaddressed needs in both of these realms. Utilizing parent perceptions to highlight practice deficiencies can build a foundation for care models that are more comprehensive and family centered.
Collapse
|
44
|
Haberl MG, Zerbi V, Veltien A, Ginger M, Heerschap A, Frick A. Structural-functional connectivity deficits of neocortical circuits in the Fmr1 (-/y) mouse model of autism. SCIENCE ADVANCES 2015; 1:e1500775. [PMID: 26702437 PMCID: PMC4681325 DOI: 10.1126/sciadv.1500775] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/13/2015] [Indexed: 05/13/2023]
Abstract
Fragile X syndrome (FXS), the most common inherited form of intellectual disability disorder and a frequent cause of autism spectrum disorder (ASD), is characterized by a high prevalence of sensory symptoms. Perturbations in the anatomical connectivity of neocortical circuits resulting in their functional defects have been hypothesized to contribute to the underlying etiology of these disorders. We tested this idea by probing alterations in the functional and structural connectivity of both local and long-ranging neocortical circuits in the Fmr1 (-/y) mouse model of FXS. To achieve this, we combined in vivo ultrahigh-field diffusion tensor magnetic resonance imaging (MRI), functional MRI, and viral tracing approaches in adult mice. Our results show an anatomical hyperconnectivity phenotype for the primary visual cortex (V1), but a disproportional low connectivity of V1 with other neocortical regions. These structural data are supported by defects in the structural integrity of the subcortical white matter in the anterior and posterior forebrain. These anatomical alterations might contribute to the observed functional decoupling across neocortical regions. We therefore identify FXS as a "connectopathy," providing a translational model for understanding sensory processing defects and functional decoupling of neocortical areas in FXS and ASD.
Collapse
Affiliation(s)
- Matthias G. Haberl
- INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, 33077 Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, 33076 Bordeaux, France
- Institute of NeuroInformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Valerio Zerbi
- Biomedical MR Research Group, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, 6500 Nijmegen, Netherlands
| | - Andor Veltien
- Biomedical MR Research Group, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, 6500 Nijmegen, Netherlands
| | - Melanie Ginger
- INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, 33077 Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, 33076 Bordeaux, France
| | - Arend Heerschap
- Biomedical MR Research Group, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, 6500 Nijmegen, Netherlands
| | - Andreas Frick
- INSERM, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, 33077 Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la plasticité neuronale, U862, 33076 Bordeaux, France
- Corresponding author. E-mail:
| |
Collapse
|
45
|
Abstract
TOR (target of rapamycin) and its mammalian ortholog mTOR have been discovered in an effort to understand the mechanisms of action of the immunosuppressant drug rapamycin extracted from a bacterium of the Easter Island (Rapa Nui) soil. mTOR is a serine/threonine kinase found in two functionally distinct complexes, mTORC1 and mTORC2, which are differentially regulated by a great number of nutrients such as glucose and amino acids, energy (oxygen and ATP/AMP content), growth factors, hormones, and neurotransmitters. mTOR controls many basic cellular functions such as protein synthesis, energy metabolism, cell size, lipid metabolism, autophagy, mitochondria, and lysosome biogenesis. In addition, mTOR-controlled signaling pathways regulate many integrated physiological functions of the nervous system including neuronal development, synaptic plasticity, memory storage, and cognition. Thus it is not surprising that deregulation of mTOR signaling is associated with many neurological and psychiatric disorders. Preclinical and preliminary clinical studies indicate that inhibition of mTORC1 can be beneficial for some pathological conditions such as epilepsy, cognitive impairment, and brain tumors, whereas stimulation of mTORC1 (direct or indirect) can be beneficial for other pathologies such as depression or axonal growth and regeneration.
Collapse
Affiliation(s)
- Joël Bockaert
- Centre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale U1191, Montpellier, France; and Université de Montpellier, UMR-5203, Montpellier, France
| | - Philippe Marin
- Centre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale U1191, Montpellier, France; and Université de Montpellier, UMR-5203, Montpellier, France
| |
Collapse
|
46
|
Abstract
Network perspectives, in their emphasis on components and their interactions, might afford the best approach to the complexities of the ASD realm. Categorical approaches are unlikely to be fruitful as one should not expect to find a single or even predominant underlying cause of autism behavior across individuals. It is possible that the complex, highly interactive, heterogeneous and individualistic nature of the autism realm is intractable in terms of identifying clinically useful biomarker tests. It is hopeful from an emergenic perspective that small corrective changes in a single component of a deleterious network/configuration might have large beneficial consequences on developmental trajectories and in later treatment. It is suggested that the relationship between ASD and intellectual disability might be fundamentally different in single-gene versus nonsyndromic ASD. It is strongly stated that available biomarker "tests" for autism/ASD will do more harm than good. Finally, the serotonin-melatonin-oxidative stress-placental intersection might be an especially fruitful area of biological investigation.
Collapse
|
47
|
Abstract
Progress in treating and preventing mental disorders may follow from research that integrates development, genetics, and neuroscience. This review first delineates how longitudinal research has identified three particular groups of disorders shown to differ on the basis of symptom trajectories and risk-factor profiles. In the next section, the review describes how research on genetic contributions to psychopathology has elucidated the nature of risk for two groups of disorders, the neurodevelopmental and psychotic disorders. In the third section, the review describes how research on environmental contributions to psychopathology has targeted early temperament, its associated perturbations in information-processing functions, and its relations to a third group of disorders, the emotional disorders. For all three groups of disorders, such integrative research has generated ideas about novel interventions. The hope is that over the coming decade such ideas will lead to novel treatments that alter the trajectory of risk in developmental psychopathology.
Collapse
Affiliation(s)
- Daniel S Pine
- Intramural Research Program, National Institute of Mental Health, Bethesda, Maryland 20892;
| | | |
Collapse
|
48
|
Miller HL, Ragozzino ME, Cook EH, Sweeney JA, Mosconi MW. Cognitive set shifting deficits and their relationship to repetitive behaviors in autism spectrum disorder. J Autism Dev Disord 2015; 45:805-15. [PMID: 25234483 DOI: 10.1007/s10803-014-2244-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The neurocognitive impairments associated with restricted and repetitive behaviors (RRBs) in autism spectrum disorder (ASD) are not yet clear. Prior studies indicate that individuals with ASD show reduced cognitive flexibility, which could reflect difficulty shifting from a previously learned response pattern or a failure to maintain a new response set. We examined different error types on a test of set-shifting completed by 60 individuals with ASD and 55 age- and nonverbal IQ-matched controls. Individuals with ASD were able to initially shift sets, but they exhibited difficulty maintaining new response sets. Difficulty with set maintenance was related to increased severity of RRBs. General difficulty maintaining new response sets and a heightened tendency to revert to old preferences may contribute to RRBs.
Collapse
Affiliation(s)
- Haylie L Miller
- Department of Physical Therapy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX, USA
| | | | | | | | | |
Collapse
|
49
|
Nava C, Rupp J, Boissel JP, Mignot C, Rastetter A, Amiet C, Jacquette A, Dupuits C, Bouteiller D, Keren B, Ruberg M, Faudet A, Doummar D, Philippe A, Périsse D, Laurent C, Lebrun N, Guillemot V, Chelly J, Cohen D, Héron D, Brice A, Closs EI, Depienne C. Hypomorphic variants of cationic amino acid transporter 3 in males with autism spectrum disorders. Amino Acids 2015. [PMID: 26215737 PMCID: PMC4633447 DOI: 10.1007/s00726-015-2057-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cationic amino acid transporters (CATs) mediate the entry of L-type cationic amino acids (arginine, ornithine and lysine) into the cells including neurons. CAT-3, encoded by the SLC7A3 gene on chromosome X, is one of the three CATs present in the human genome, with selective expression in brain. SLC7A3 is highly intolerant to variation in humans, as attested by the low frequency of deleterious variants in available databases, but the impact on variants in this gene in humans remains undefined. In this study, we identified a missense variant in SLC7A3, encoding the CAT-3 cationic amino acid transporter, on chromosome X by exome sequencing in two brothers with autism spectrum disorder (ASD). We then sequenced the SLC7A3 coding sequence in 148 male patients with ASD and identified three additional rare missense variants in unrelated patients. Functional analyses of the mutant transporters showed that two of the four identified variants cause severe or moderate loss of CAT-3 function due to altered protein stability or abnormal trafficking to the plasma membrane. The patient with the most deleterious SLC7A3 variant had high-functioning autism and epilepsy, and also carries a de novo 16p11.2 duplication possibly contributing to his phenotype. This study shows that rare hypomorphic variants of SLC7A3 exist in male individuals and suggest that SLC7A3 variants possibly contribute to the etiology of ASD in male subjects in association with other genetic factors.
Collapse
Affiliation(s)
- Caroline Nava
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, ICM, 75013, Paris, France.,INSERM, U 1127, 75013, Paris, France.,CNRS, UMR 7225, 75013, Paris, France.,Institut du cerveau et de la moelle épinière (ICM), 75013, Paris, France.,Département de Génétique et de Cytogénétique, Hôpital de la Pitié-Salpêtrière, AP-HP, 75013, Paris, France
| | - Johanna Rupp
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jean-Paul Boissel
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Cyril Mignot
- Département de Génétique et de Cytogénétique, Hôpital de la Pitié-Salpêtrière, AP-HP, 75013, Paris, France.,Centre de Référence "déficiences intellectuelles de causes rares", Paris, France.,Groupe de Recherche Clinique (GRC) "déficience intellectuelle et autisme" UPMC, Paris, France.,Service de neuropédiatrie, Hôpital Trousseau, AP-HP, Paris, France
| | - Agnès Rastetter
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, ICM, 75013, Paris, France.,INSERM, U 1127, 75013, Paris, France.,CNRS, UMR 7225, 75013, Paris, France.,Institut du cerveau et de la moelle épinière (ICM), 75013, Paris, France
| | - Claire Amiet
- Service de psychiatrie de l'enfant et de l'adolescent, Hôpital Pitié-Salpêtrière, AP-HP, 75013, Paris, France
| | - Aurélia Jacquette
- Département de Génétique et de Cytogénétique, Hôpital de la Pitié-Salpêtrière, AP-HP, 75013, Paris, France.,Centre de Référence "déficiences intellectuelles de causes rares", Paris, France.,Groupe de Recherche Clinique (GRC) "déficience intellectuelle et autisme" UPMC, Paris, France
| | - Céline Dupuits
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, ICM, 75013, Paris, France.,INSERM, U 1127, 75013, Paris, France.,CNRS, UMR 7225, 75013, Paris, France.,Institut du cerveau et de la moelle épinière (ICM), 75013, Paris, France
| | - Delphine Bouteiller
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, ICM, 75013, Paris, France.,INSERM, U 1127, 75013, Paris, France.,CNRS, UMR 7225, 75013, Paris, France.,Institut du cerveau et de la moelle épinière (ICM), 75013, Paris, France
| | - Boris Keren
- Département de Génétique et de Cytogénétique, Hôpital de la Pitié-Salpêtrière, AP-HP, 75013, Paris, France
| | - Merle Ruberg
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, ICM, 75013, Paris, France.,INSERM, U 1127, 75013, Paris, France.,CNRS, UMR 7225, 75013, Paris, France.,Institut du cerveau et de la moelle épinière (ICM), 75013, Paris, France
| | - Anne Faudet
- Département de Génétique et de Cytogénétique, Hôpital de la Pitié-Salpêtrière, AP-HP, 75013, Paris, France
| | - Diane Doummar
- Service de neuropédiatrie, Hôpital Trousseau, AP-HP, Paris, France
| | - Anne Philippe
- Service de psychiatrie de l'enfant et de l'adolescent, Hôpital Pitié-Salpêtrière, AP-HP, 75013, Paris, France
| | - Didier Périsse
- Service de psychiatrie de l'enfant et de l'adolescent, Hôpital Pitié-Salpêtrière, AP-HP, 75013, Paris, France.,Centre Diagnostic Autisme de l'Hôpital Pitié-Salpêtrière, 75013, Paris, France
| | - Claudine Laurent
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, ICM, 75013, Paris, France.,INSERM, U 1127, 75013, Paris, France.,CNRS, UMR 7225, 75013, Paris, France.,Institut du cerveau et de la moelle épinière (ICM), 75013, Paris, France.,Service de psychiatrie de l'enfant et de l'adolescent, Hôpital Pitié-Salpêtrière, AP-HP, 75013, Paris, France
| | - Nicolas Lebrun
- Institut Cochin, Inserm U567, UMR 8104, Université René Descartes, Paris 5, France
| | - Vincent Guillemot
- Bioinformatics and Biostatistics Core Facility (iCONICS), Institut du cerveau et de la moelle épinière (ICM), Paris, France
| | - Jamel Chelly
- Institut Cochin, Inserm U567, UMR 8104, Université René Descartes, Paris 5, France
| | - David Cohen
- Service de psychiatrie de l'enfant et de l'adolescent, Hôpital Pitié-Salpêtrière, AP-HP, 75013, Paris, France.,Institut des Systèmes Intelligents et Robotiques, CNRS UMR 7222, UPMC-Paris-6, Paris, France
| | - Delphine Héron
- Département de Génétique et de Cytogénétique, Hôpital de la Pitié-Salpêtrière, AP-HP, 75013, Paris, France.,Centre de Référence "déficiences intellectuelles de causes rares", Paris, France.,Groupe de Recherche Clinique (GRC) "déficience intellectuelle et autisme" UPMC, Paris, France.,Service de neuropédiatrie, Hôpital Trousseau, AP-HP, Paris, France
| | - Alexis Brice
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, ICM, 75013, Paris, France.,INSERM, U 1127, 75013, Paris, France.,CNRS, UMR 7225, 75013, Paris, France.,Institut du cerveau et de la moelle épinière (ICM), 75013, Paris, France.,Département de Génétique et de Cytogénétique, Hôpital de la Pitié-Salpêtrière, AP-HP, 75013, Paris, France
| | - Ellen I Closs
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Christel Depienne
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, ICM, 75013, Paris, France. .,INSERM, U 1127, 75013, Paris, France. .,CNRS, UMR 7225, 75013, Paris, France. .,Institut du cerveau et de la moelle épinière (ICM), 75013, Paris, France. .,Département de Génétique et de Cytogénétique, Hôpital de la Pitié-Salpêtrière, AP-HP, 75013, Paris, France.
| |
Collapse
|
50
|
Lipopolysaccharide Exposure Induces Maternal Hypozincemia, and Prenatal Zinc Treatment Prevents Autistic-Like Behaviors and Disturbances in the Striatal Dopaminergic and mTOR Systems of Offspring. PLoS One 2015. [PMID: 26218250 PMCID: PMC4517817 DOI: 10.1371/journal.pone.0134565] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autism is characterized by social deficits, repetitive behaviors, and cognitive inflexibility. The risk factors appear to include genetic and environmental conditions, such as prenatal infections and maternal dietary factors. Previous investigations by our group have demonstrated that prenatal exposure to lipopolysaccharide (LPS), which mimics infection by gram-negative bacteria, induces autistic-like behaviors. To understand the causes of autistic-like behaviors, we evaluated maternal serum metal concentrations, which are involved in intrauterine development and infection/inflammation. We identified reduced maternal levels of zinc, magnesium, selenium and manganese after LPS exposure. Because LPS induced maternal hypozincemia, we treated dams with zinc in an attempt to prevent or ease the impairments in the offspring. We evaluated the social and cognitive autistic-like behaviors and brain tissues of the offspring to identify the central mechanism that triggers the development of autism. Prenatal LPS exposure impaired play behaviors and T-maze spontaneous alternations, i.e., it induced autistic-like behaviors. Prenatal LPS also decreased tyrosine hydroxylase levels and increased the levels of mammalian target of rapamycin (mTOR) in the striatum. Thus, striatal dopaminergic impairments may be related to autism. Moreover, excessive signaling through the mTOR pathway has been considered a biomarker of autism, corroborating our rat model of autism. Prenatal zinc treatment prevented these autistic-like behaviors and striatal dopaminergic and mTOR disturbances in the offspring induced by LPS exposure. The present findings revealed a possible relation between maternal hypozincemia during gestation and the onset of autism. Furthermore, prenatal zinc administration appears to have a beneficial effect on the prevention of autism.
Collapse
|