1
|
Liu C, Shao FH, He XC, Du HZ, Liu CM, Zhou B, Teng ZQ. Single-Cell RNA Sequencing Uncovers Molecular Features Underlying the Disrupted Neurogenesis Following Traumatic Brain Injury. Glia 2025; 73:1036-1050. [PMID: 39760225 DOI: 10.1002/glia.24671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with limited effective treatment strategies. Endogenous neural stem cells (NSCs) give rise to neurons and glial cells throughout life. However, NSCs are more likely to differentiate into glial cells rather than neurons at the lesion site after TBI and the underlying molecular mechanism remains largely unknown. Here, we performed large-scale single-cell transcriptome sequencing of subventricular zone (SVZ) NSCs and NSCs-derived cells in the mouse brain, and provide molecular evidence for previous observations that glial differentiation of NSCs prevails after TBI. In addition, we show that the disrupted neurogenesis following TBI is caused by the reduction of a NSC subcluster (NSC-4) expressing the neuronal gene Tubb3. Finally, we demonstrate that the transcriptional factor Dlx2 is significantly downregulated in NSC-4, and Dlx2 overexpression is sufficient to drive NSCs towards neuronal lineage differentiation at the expense of astrocytic lineage differentiation under pro-inflammatory conditions.
Collapse
Affiliation(s)
- Cong Liu
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Mental Health and Drug Discovery, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Mental Health, Wenzhou Medical University, Zhejiang, China
| | - Fang-Hong Shao
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xuan-Cheng He
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Chinese Academy of Sciences, Institute for Stem Cell and Regeneration, Beijing, China
| | - Hong-Zhen Du
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Chinese Academy of Sciences, Institute for Stem Cell and Regeneration, Beijing, China
| | - Chang-Mei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Chinese Academy of Sciences, Institute for Stem Cell and Regeneration, Beijing, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Bing Zhou
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Chinese Academy of Sciences, Institute for Stem Cell and Regeneration, Beijing, China
| | - Zhao-Qian Teng
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Chinese Academy of Sciences, Institute for Stem Cell and Regeneration, Beijing, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Hu JH, Malloy C, Liu Y, Park JM, Pratt A, Welch M, Murphy JG, Abebe D, Karlsson RM, Cameron HA, Hoffman DA. Activity-dependent degradation of Kv4.2 contributes to synaptic plasticity and behavior in Angelman syndrome model mice. Cell Rep 2025; 44:115583. [PMID: 40310720 DOI: 10.1016/j.celrep.2025.115583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/18/2024] [Accepted: 03/28/2025] [Indexed: 05/03/2025] Open
Abstract
Angelman syndrome (AS) is a severe neurological disorder characterized by intellectual disability, absence of speech, spontaneous seizure, and motor dysfunction. The absence of functional maternally derived UBE3A protein is considered the primary cause of AS, yet the downstream signaling pathways remain elusive. Here, we show the voltage-gated K+ channel Kv4.2 as an activity-dependent substrate for UBE3A. We show that UBE3A binding of Kv4.2 at its N terminus, ubiquitinating residue K103, induces activity-induced Kv4.2 protein loss. In a mouse model of AS, we observe elevated Kv4.2 protein level and abolished kainic acid-induced Kv4.2 protein loss. Moreover, deficits in mEPSC frequency and spike-timing-dependent long-term potentiation, as well as certain behaviors including cognitive inflexibility found in AS mice, are rescued when bred with Kv4.2 conditional knockout mice. These findings indicate a UBE3A downstream pathway regulating plasticity and cognitive behaviors and provide potential targets for the treatment of AS.
Collapse
Affiliation(s)
- Jia-Hua Hu
- Molecular Neurophysiology and Biophysics Section, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| | - Cole Malloy
- Molecular Neurophysiology and Biophysics Section, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Ying Liu
- Molecular Neurophysiology and Biophysics Section, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Jung M Park
- Molecular Neurophysiology and Biophysics Section, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Ashley Pratt
- Molecular Neurophysiology and Biophysics Section, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Meghyn Welch
- Molecular Neurophysiology and Biophysics Section, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Jonathan G Murphy
- Molecular Neurophysiology and Biophysics Section, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Daniel Abebe
- Molecular Neurophysiology and Biophysics Section, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Rose-Marie Karlsson
- Section on Neuroplasticity, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Heather A Cameron
- Section on Neuroplasticity, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Dax A Hoffman
- Molecular Neurophysiology and Biophysics Section, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Caillens V, Boisel E, Ouksel A, Nugue M, Evnouchidou I, Saveanu L. Integrin linked kinase and threonine tyrosine kinase modulate TCR signaling. Sci Rep 2025; 15:14392. [PMID: 40274929 PMCID: PMC12022052 DOI: 10.1038/s41598-025-99331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/18/2025] [Indexed: 04/26/2025] Open
Abstract
T cell activation is critical for adaptive immunity, helping to protect the body from infection and tumors. A key step in this activation is signal transduction downstream of the T cell antigen receptor. This signaling involves several steps, with early ones occurring at the plasma membrane and others that occur later, after TCR internalization. The late steps in TCR signaling remain poorly understood. Since the TCR can signal after its internalization, we postulated that kinases abundantly expressed in T cells may regulate TCR signaling. This study focuses on two such enzymes: integrin-linked kinase (ILKs) and threonine-tyrosine kinase (TTKs), whose involvement in TCR signaling has not been previously studied. Using specific depletion of TTK and ILK by lentiviral shRNA, we show that in the absence of ILK and TTK, the early steps of TCR signaling are strongly enhanced, while IL-2 production by activated T cells is strongly decreased. These findings are relevant because TTK and ILK are both important targets in oncology, and our results show that their inhibition affects the activation of T cells, which play an essential role in anti-tumor defense.
Collapse
Affiliation(s)
- Vivien Caillens
- Centre de Recherche sur l'Inflammation, U1149 INSERM, Faculté de Médecine X Bichat, 16 rue Henri Huchard, Paris, 75018, France
- CNRS ERL8252, Paris, France
- Université de Paris-Cité, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Eva Boisel
- Centre de Recherche sur l'Inflammation, U1149 INSERM, Faculté de Médecine X Bichat, 16 rue Henri Huchard, Paris, 75018, France
- CNRS ERL8252, Paris, France
- Université de Paris-Cité, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Alycia Ouksel
- Centre de Recherche sur l'Inflammation, U1149 INSERM, Faculté de Médecine X Bichat, 16 rue Henri Huchard, Paris, 75018, France
- CNRS ERL8252, Paris, France
- Université de Paris-Cité, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Mathilde Nugue
- Centre de Recherche sur l'Inflammation, U1149 INSERM, Faculté de Médecine X Bichat, 16 rue Henri Huchard, Paris, 75018, France
- CNRS ERL8252, Paris, France
- Université de Paris-Cité, Site Xavier Bichat, Paris, France
- Inflamex Laboratory of Excellence, Paris, France
| | - Irini Evnouchidou
- Centre de Recherche sur l'Inflammation, U1149 INSERM, Faculté de Médecine X Bichat, 16 rue Henri Huchard, Paris, 75018, France.
- CNRS ERL8252, Paris, France.
- Université de Paris-Cité, Site Xavier Bichat, Paris, France.
- Inflamex Laboratory of Excellence, Paris, France.
| | - Loredana Saveanu
- Centre de Recherche sur l'Inflammation, U1149 INSERM, Faculté de Médecine X Bichat, 16 rue Henri Huchard, Paris, 75018, France.
- CNRS ERL8252, Paris, France.
- Université de Paris-Cité, Site Xavier Bichat, Paris, France.
- Inflamex Laboratory of Excellence, Paris, France.
| |
Collapse
|
4
|
Ma D, Liu X, Zhang X, Hong Y, Wang Y, Zhang F, Du L, Zhao J, Wang Q, Chang C, Liu W, Lou Y, Liu X. Discovery of the 2,3-Dihydrobenzopyrane-4-one as a Potent FTO Inhibitor against Obesity-Related Metabolic Diseases. J Med Chem 2025; 68:7421-7440. [PMID: 40152179 DOI: 10.1021/acs.jmedchem.4c03124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The involvement of the fat mass and obesity-associated gene (FTO) in the development and advancement of metabolic disorders is widely recognized. However, the existing FTO inhibitor entacapone has been limited in clinical application due to its low potency and short plasma elimination half-life. Here, through drug library screening and in depth structure-activity relationship analysis, title compound 40, eriodictyol was identified as a potent FTO inhibitor, and showed good binding to FTO by surface plasmon resonance (SPR) and Microscale thermophoresis (MST) detection. The residues Arg96, Tyr108, Ser229, Asp233, and Glu234 of FTO are essential for binding. Meanwhile, eriodictyol attenuated obesity-related metabolic diseases by enhancing glucose metabolism pathways via the FTO-FOXO1-G6PC/PCK1 axis and increasing adipose tissue heat production for weight loss via the FTO-FOXO1-Ucp1 axis in vivo. Surprisingly, eriodictyol showed good pharmacokinetic properties and no obvious toxicity. These results could provide the reference for design of new FTO inhibitors against obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Duo Ma
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Xianan Liu
- Faculty of Science, The University of Hong Kong, Pokfulam, Kowloon, Hong Kong 999077, P. R. China
| | - Xingxing Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Yaling Hong
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Yumeng Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Famin Zhang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Leran Du
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Junjie Zhao
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Quan Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Cui Chang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Wenhu Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Yan Lou
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| | - Xinhua Liu
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
5
|
Magne L, Bugarin F, Ferrand A. How to Study the Mechanobiology of Intestinal Epithelial Organoids? A Review of Culture Supports, Imaging Techniques, and Analysis Methods. Biol Cell 2025; 117:e70003. [PMID: 40223609 PMCID: PMC11995250 DOI: 10.1111/boc.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 04/15/2025]
Abstract
Mechanobiology studies how mechanical forces influence biological processes at different scales, both in homeostasis and in pathology. Organoids, 3D structures derived from stem cells, are particularly relevant tools for modeling tissues and organs in vitro. They currently constitute one of the most suitable models for mechanobiology studies. This review provides an overview of existing or applicable approaches to organoids for mechanical studies. We first present the different types of culture supports, including hydrogels and organ-on-chip. We then discuss advanced imaging techniques, particularly suitable for studying the physical properties of cells, allowing the visualization of mechanical forces and cellular responses. We also describe the approaches and tools available to observe the organoids by microscopy. Finally, we present analytical methods, including computational models and biophysical measurement approaches, which facilitate the quantification of mechanical interactions. This review aims to provide the most comprehensive overview possible of the methods, instrumentations, and tools available to conduct a mechanobiological study on organoids.
Collapse
Affiliation(s)
- Léa Magne
- Institut de Recherche en Santé DigestiveUniversité de Toulouse, INSERM, INRAE, ENVT, UPSToulouseFrance
- Institut Clément AderUniversité Fédérale de Toulouse Midi‐Pyrénées, CNRS, UPS, INSA, ISAE‐SUPAEROToulouseFrance
| | - Florian Bugarin
- Institut Clément AderUniversité Fédérale de Toulouse Midi‐Pyrénées, CNRS, UPS, INSA, ISAE‐SUPAEROToulouseFrance
| | - Audrey Ferrand
- Institut de Recherche en Santé DigestiveUniversité de Toulouse, INSERM, INRAE, ENVT, UPSToulouseFrance
| |
Collapse
|
6
|
Liao M, Liu Y, Xu Z, Fang M, Yu Z, Cui Y, Sun Z, Huo R, Yang J, Huang F, Liu M, Zhou Q, Song X, Han H, Chen S, Xu X, Qin X, He Q, Ju D, Wang T, Thakkar N, Hardin PE, Golden SS, Zhang EE. The P-loop NTPase RUVBL2 is a conserved clock component across eukaryotes. Nature 2025:10.1038/s41586-025-08797-3. [PMID: 40140583 DOI: 10.1038/s41586-025-08797-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 02/17/2025] [Indexed: 03/28/2025]
Abstract
The eukaryotic circadian clock keeps time by using a transcription-translation feedback loop, which exhibits an architecture that is conserved across a diverse range of organisms, including fungi, plants and animals1. Despite their mechanistic similarity, the molecular components of these clocks indicate a lack of common ancestry2. Our study reveals that RUVBL2, which is a P-loop NTPase enzyme previously shown to affect circadian phase and amplitude as part of mammalian clock super-complexes, influences the circadian period through its remarkably slow ATPase activity, resembling the well-characterized KaiC-based clock in cyanobacteria. A screen of RUVBL2 variants identified arrhythmic, short-period and long-period mutants that altered circadian locomotor activity rhythms following delivery by adeno-associated virus to the murine suprachiasmatic nucleus. Enzymatic assays showed that wild-type RUVBL2 hydrolyses only around 13 ATP molecules a day, a vastly reduced turnover compared with typical ATPases. Notably, physical interactions between RUVBL2 orthologues and core clock proteins in humans, Drosophila and the fungus Neurospora, along with consistent circadian phenotypes of RUVBL2-mutant orthologues across species, reinforce their clock-related function in eukaryotes. Thus, as well as establishing RUVBL2 as a common core component in eukaryotic clocks, our study supports the idea that slow ATPase activity, initially discovered in cyanobacteria, is a shared feature of eukaryotic clocks.
Collapse
Affiliation(s)
- Meimei Liao
- National Institute of Biological Sciences, Beijing, China
| | - Yanqin Liu
- National Institute of Biological Sciences, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhancong Xu
- National Institute of Biological Sciences, Beijing, China
- Graduate Program, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Mingxu Fang
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA
| | - Ziqing Yu
- National Institute of Biological Sciences, Beijing, China
- Graduate Program, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yufan Cui
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Zhengda Sun
- National Institute of Biological Sciences, Beijing, China
- Graduate Program, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ran Huo
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Jieyu Yang
- National Institute of Biological Sciences, Beijing, China
| | - Fusheng Huang
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mingming Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Qin Zhou
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Xiaocui Song
- National Institute of Biological Sciences, Beijing, China
| | - Hui Han
- National Institute of Biological Sciences, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Ximing Qin
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Qun He
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dapeng Ju
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tao Wang
- National Institute of Biological Sciences, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Nirav Thakkar
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, USA
| | - Paul E Hardin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX, USA
| | - Susan S Golden
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Eric Erquan Zhang
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Izkovich B, Yiannakas A, Ne'eman S, Chandran SK, Rosenblum K, Edry E. Virally mediated expression of a biologically active peptide to restrain the nuclear functions of ERK1/2 attenuates learning extinction but not acquisition. Mol Brain 2025; 18:19. [PMID: 40087800 PMCID: PMC11908084 DOI: 10.1186/s13041-025-01190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/02/2025] [Indexed: 03/17/2025] Open
Abstract
Peptide drug technologies offer powerful approaches to develop potent and selective lead molecules for therapeutic and research applications. However, new and optimized delivery approaches are necessary to overcome current pitfalls including fast degradation in cells and tissue. Extracellular signal-regulated kinases 1/2 (ERK1/2) exemplifies proteins that play crucial and varied roles within distinct cellular compartments. Here, we established an innovative method, based on viral vectors, which utilizes the endogenous biogenesis of neurotrophins to deliver and express a biologically active peptide to attenuate specifically ERK1/2 nuclear functions in specific brain area of the adult forebrain. In contrast to our hypothesis, nuclear functions of ERK1/2 in the forebrain are fundamental for the extinction of associative-aversive memories, but not for acquisition, nor for retrieval of these memories. Our research demonstrates the feasibility and applicability of viral vectors to deliver a peptide of interest to manipulate specific molecular processes and/or protein interactions in specific tissue.
Collapse
Affiliation(s)
- Bar Izkovich
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
| | - Adonis Yiannakas
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
- European University of Cyprus Medical School, Frankfurt, Germany
| | - Sapir Ne'eman
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel
| | | | - Kobi Rosenblum
- Sagol Department of Neuroscience, University of Haifa, Haifa, Israel.
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel.
| | - Efrat Edry
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel.
| |
Collapse
|
8
|
Wang W, Liang J, Zhang Y, Wang J, Miao X, Chang Y, Chen Y. Myeloid sirtuin 6 deficiency causes obesity in mice by inducing norepinephrine degradation to limit thermogenic tissue function. Sci Signal 2025; 18:eadl6441. [PMID: 40067908 DOI: 10.1126/scisignal.adl6441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2024] [Accepted: 02/21/2025] [Indexed: 05/13/2025]
Abstract
Brown and beige adipocytes dissipate energy to generate heat through uncoupled respiration, and the hormone norepinephrine plays an important role in stimulating brown fat thermogenesis and beige adipocyte development in white adipose depots. Increasing energy expenditure by promoting the function and development of brown and beige fat is a potential approach to treat obesity and diabetes. Here, we investigated the effects of macrophage sirtuin 6 (SIRT6) on the regulation of the norepinephrine content of brown adipose tissue (BAT) and on obesity in mice. Myeloid SIRT6 deficiency impaired the thermogenic function of BAT, thereby decreasing core body temperatures because of reduced norepinephrine concentrations in BAT and subsequently leading to cold sensitivity. In addition, the oxygen consumption rate was reduced, resulting in severe insulin resistance and obesity. Furthermore, macrophage SIRT6 deficiency inhibited BAT thermogenesis after cold exposure or norepinephrine treatment and cold exposure-induced increases in markers of lipid metabolism and thermogenesis in white adipose tissue. Myeloid-specific SIRT6 deficiency promoted H3K9 acetylation in the promoter regions and the expression of genes encoding the norepinephrine-degrading enzyme MAOA and the norepinephrine transporter SLC6A2 in macrophages in BAT, leading to norepinephrine degradation and obesity. Our findings indicate that SIRT6 in macrophages is essential for maintaining norepinephrine concentrations in BAT in mice.
Collapse
Affiliation(s)
- Wei Wang
- National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, China
| | - Jichao Liang
- National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, China
| | - Yinliang Zhang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Junjun Wang
- National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, China
| | - Xiaolei Miao
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yongsheng Chang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Yong Chen
- National & Local Joint Engineering Research Center of High-Throughput Drug Screening Technology, Hubei University, Wuhan, China
| |
Collapse
|
9
|
Hwang SP, Liao H, Barondeau K, Han X, Herbert C, McConie H, Shekar A, Pestov DG, Limbach PA, Chang JT, Denicourt C. TRMT1L-catalyzed m 22G27 on tyrosine tRNA is required for efficient mRNA translation and cell survival under oxidative stress. Cell Rep 2025; 44:115167. [PMID: 39786998 PMCID: PMC11834103 DOI: 10.1016/j.celrep.2024.115167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/11/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
tRNA modifications are critical for several aspects of their functions, including decoding, folding, and stability. Using a multifaceted approach encompassing eCLIP-seq and nanopore tRNA-seq, we show that the human tRNA methyltransferase TRMT1L interacts with the component of the Rix1 ribosome biogenesis complex and binds to the 28S rRNA as well as to a subset of tRNAs. Mechanistically, we demonstrate that TRMT1L is responsible for catalyzing N2,N2-dimethylguanosine (m22G) solely at position 27 of tRNA-Tyr-GUA. Surprisingly, TRMT1L depletion also impaired the deposition of 3-(3-amino-3-carboxypropyl) uridine (acp3U) and dihydrouridine on tRNA-Tyr-GUA, Cys-GCA, and Ala-CGC. TRMT1L knockout cells have a marked decrease in tRNA-Tyr-GUA levels, coinciding with a reduction in global translation rates and hypersensitivity to oxidative stress. Our results establish TRMT1L as the elusive methyltransferase catalyzing the m22G27 modification on tRNA Tyr, resolving a long-standing gap of knowledge and highlighting its potential role in a tRNA modification circuit crucial for translation regulation and stress response.
Collapse
Affiliation(s)
- Sseu-Pei Hwang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Han Liao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Katherine Barondeau
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Xinyi Han
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Cassandra Herbert
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Hunter McConie
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Amirtha Shekar
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Dimitri G Pestov
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Catherine Denicourt
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Matsubara J, Li YF, Koul S, Mukohyama J, Salazar LEV, Isobe T, Qian D, Clarke MF, Sahoo D, Altman RB, Dalerba P. The E2F4 transcriptional repressor is a key mechanistic regulator of colon cancer resistance to irinotecan (CPT-11). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.633435. [PMID: 39896677 PMCID: PMC11785039 DOI: 10.1101/2025.01.22.633435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Background Colorectal carcinomas (CRCs) are seldom eradicated by cytotoxic chemotherapy. Cancer cells with stem-like functional properties, often referred to as "cancer stem cells" (CSCs), display preferential resistance to several anti-tumor agents used in cancer chemotherapy, but the molecular mechanisms underpinning their selective survival remain only partially understood. Methods In this study, we used Transcription Factor Target Genes (TFTG) enrichment analysis to identify transcriptional regulators (activators or repressors) that undergo preferential activation by chemotherapy in CRC cells with a "bottom-of-the-crypt" phenotype (EPCAM+/CD44+/CD166+; CSC-enriched) as compared to CRC cells with a "top-of-the-crypt" phenotype (EPCAM+/CD44neg/CD166neg; CSC-depleted). The two cell populations were purified in parallel by fluorescence-activated cell sorting (FACS) from a patient-derived xenograft (PDX) line representative of a moderately differentiated human CRC, following in vivo chemotherapy with irinotecan (CPT-11). The transcriptional regulators identified as differentially activated were tested for differential expression in normal vs. cancer tissues, and in cell populations enriched in stem/progenitor cell-types as compared to differentiated lineages (goblet cells, enterocytes) in the mouse colon epithelium. Finally, the top candidate was tested for mechanistic contribution to drug-resistance by selective down-regulation using short-hairpin RNAs (shRNAs). Results Our analysis identified E2F4 and TFDP1, two core components of the DREAM transcriptional repression complex, as transcriptional modulators preferentially activated by irinotecan in EPCAM+/CD44+/CD166+ as compared to EPCAM+/CD44neg/CD166neg cancer cells. The expression levels of both genes (E2F4, TFDP1) were found up-regulated in CRCs as compared to human normal colon tissues, and in a sub-population of mouse colon epithelial cells enriched in stem/progenitor elements (Epcam+/Cd44+/Cd66alow/Kitneg) as compared to other sub-populations enriched in either goblet cells (Epcam+/Cd44+/Cd66alow/Kit+) or enterocytes (Epcam+/Cd44neg/Cd66ahigh). Most importantly, E2F4 down-regulation using shRNAs dramatically enhanced the sensitivity of human CRCs to in vivo treatment with irinotecan, across three independent PDX models. Conclusions Our data identified E2F4 and the DREAM repressor complex as critical regulators of human CRC resistance to irinotecan, and as candidate targets for the development of chemo-sensitizing agents.
Collapse
Affiliation(s)
- Junichi Matsubara
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA (USA)
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto (Japan)
| | - Yong Fuga Li
- Department of Genetics, Stanford University, Stanford, CA (USA)
- Department of Bioengineering, Stanford University, Stanford, CA (USA)
- Illumina Inc., San Diego, CA (USA)
| | - Sanjay Koul
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health (HMH), Nutley, NJ (USA)
- Department of Biological Sciences and Geology, Queensborough Community College (QCC), The City University of New York (CUNY), Bayside, NY (USA)
- Department of Pathology and Cell Biology, Columbia University, New York, NY (USA)
- Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, NY (USA)
- Columbia Stem Cell Initiative (CSCI), Columbia University, New York, NY (USA)
| | - Junko Mukohyama
- Department of Pathology and Cell Biology, Columbia University, New York, NY (USA)
- Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, NY (USA)
- Columbia Stem Cell Initiative (CSCI), Columbia University, New York, NY (USA)
- Department of Surgery, Institute of Medical Science, University of Tokyo, Tokyo (Japan)
| | - Luis E. Valencia Salazar
- Department of Pathology and Cell Biology, Columbia University, New York, NY (USA)
- Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, NY (USA)
- Columbia Stem Cell Initiative (CSCI), Columbia University, New York, NY (USA)
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY (USA)
| | - Taichi Isobe
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA (USA)
- Department of Comprehensive Oncology, Graduate School of Medicine, Kyushu University, Fukuoka (Japan)
| | - Dalong Qian
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA (USA)
| | - Michael F. Clarke
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA (USA)
| | - Debashis Sahoo
- Department of Computer Science and Engineering, University of California San Diego (UCSD), San Diego, CA (USA)
- Department of Pediatrics, University of California San Diego (UCSD), San Diego, CA (USA); Department of Medicine (Division of Digestive and Liver Diseases), Columbia University, New York, NY (USA)
| | - Russ B. Altman
- Department of Genetics, Stanford University, Stanford, CA (USA)
- Department of Bioengineering, Stanford University, Stanford, CA (USA)
| | - Piero Dalerba
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health (HMH), Nutley, NJ (USA)
- Department of Pathology and Cell Biology, Columbia University, New York, NY (USA)
- Herbert Irving Comprehensive Cancer Center (HICCC), Columbia University, New York, NY (USA)
- Columbia Stem Cell Initiative (CSCI), Columbia University, New York, NY (USA)
- Digestive and Liver Disease Research Center (DLDRC), Columbia University, New York, NY (USA)
- Department of Medical Sciences, Hackensack Meridian School of Medicine (HMSOM), Nutley, NJ (USA)
- Lombardi Comprehensive Cancer Center (LCCC), Georgetown University, Washington, DC (USA)
| |
Collapse
|
11
|
Liu J, Cai Y, Rahman KU, Zhou Q, Liu G, Kang H, Li M, Zhang S, Wang G, Feng W, Zhang X, Zhang G, Song Y, Li P. Rh-relaxin-2 attenuates oxidative stress and neuronal apoptosis via ERK-nNOS-NO pathway after germinal matrix hemorrhage in rats. Fluids Barriers CNS 2025; 22:8. [PMID: 39815354 PMCID: PMC11734463 DOI: 10.1186/s12987-024-00616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025] Open
Abstract
Oxidative stress and neuronal apoptosis could be an important factor leading to post-hemorrhagic consequences after germinal matrix hemorrhage (GMH). Previously study have indicated that relaxin 2 receptor activation initiates anti-oxidative stress and anti-apoptosis in ischemia-reperfusion injury. However, whether relaxin 2 activation can attenuate oxidative stress and neuronal apoptosis after GMH remains unknown. To investigate the beneficial effect of relaxin 2 on oxidative stress injury and neuronal apoptosis by GMH, a total of 150 rat pups were subjected to GMH by an intraparenchymal injection of bacterial collagenase. Recombinant human relaxin-2 (rh-relaxin-2) was administered intraperitoneally injections at 1 h and 13 h after GMH. Lenti-virus with sgRXFP1 and sgCtrl was administered intracerebroventricular (i.c.v.) on the left side of the brain to inhibit the RXFP1 at 2d prior to GMH induction, and LY321499, ERK inhibitor, was administered by i.c.v. injection at 1 h on the left side of the brain prior to GMH induction, respectively. Co-immunoprecipitation, immunofluorescence, TUNEL, Fluoro-Jade C, DHE staining, western blot, Nitrix Oxide (NO) quantification and side effect experiments were performed to evaluate post-GMH. We found endogenous relaxin-2 interacts with RXFP1 and both protein colocalized in neurons on the first day after GMH. Additionally, RXFP1 activation with rh-relaxin-2 significantly inhibited oxidative stress and neuronal apoptosis in GMH + rh-relaxin-2 group compared with GMH + vehicle group. Moreover, rh-relaxin-2 treatment significantly inhibited the phosphorylation of ERK and nNOS, as well as upregulated expression of Bcl2 and NO and downregulated expression of Bax and Romo 1. The beneficial effects of rh-relaxin-2 were reversed by i.c.v. injection of lenti-virus with sgRXFP1 and LY321499, respectively. Furthermore, the side effect experiment showed rh-relaxin-2 did not affect neurological behavior and the function of liver and kidney. In conclusion, our finding showed that rh-relaxin-2 attenuated oxidative stress and neuronal apoptosis after GMH through RXFP1-ERK-nNOS-NO signaling pathway.
Collapse
Affiliation(s)
- Jun Liu
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yonghua Cai
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Khalil Ur Rahman
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Qixiong Zhou
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Guangjie Liu
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Huibin Kang
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Mingzhou Li
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Shichao Zhang
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Gang Wang
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Wenfeng Feng
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Xi'an Zhang
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China
| | - Guozhong Zhang
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China.
| | - Ye Song
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China.
- Department of Neurosurgery, Guangzhou Women and Children's Medical Center, Guangzhou, 510515, China.
| | - Peng Li
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
12
|
Liu Z, Li D, Deng M, Zhou L, Wang J, Liu L, Mao W, Lu H, Xu X, Wang F, Wan Y. METTL3 improves the development of somatic cell nuclear transfer embryos through AURKB and H3S10ph in goats. Int J Biol Macromol 2025; 286:138546. [PMID: 39653227 DOI: 10.1016/j.ijbiomac.2024.138546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Developmental abnormalities are more common in somatic cell nuclear transfer (SCNT) embryos due to epigenetic barriers that occur during the maternal-to-zygotic transition (MZT). N6-methyladenosine (m6A) is an RNA epigenetic modification that plays a significant role in numerous biological processes. However, the relationship between m6A and SCNT embryonic development is largely unexplored. In the present study, we found that the low expression of m6A methyltransferase-like 3 (METTL3) was associated with developmental arrest before zygotic genome activation (ZGA) in goat SCNT embryos and that karyokinesis defects were evident during their development. Notably, we demonstrated that METTL3 overexpression rescued the karyokinesis abnormalities, enhanced embryonic development and elevated the blastocyst formation rate. Further experiments revealed that METTL3 could mitigate the defects of maternal mRNA degradation, enhance the translation of Aurora kinase B (AURKB) and increase the phosphorylation of serine 10 on histone H3 (H3S10ph) to ensure the normal karyokinesis in SCNT embryos before ZGA in goats. Overall, our study highlights the essential role of METTL3 in enhancing the development of goat SCNT embryos. These findings indicate that METTL3 is critical for optimal SCNT efficiency and advance our understanding of m6A's role in embryonic development.
Collapse
Affiliation(s)
- Zifei Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University; Changzhou Key Laboratory of Maternal and Child Health Medicine, Changzhou 213003, Jiangsu, China
| | - Dongxu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingtian Deng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingang Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weijia Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honghui Lu
- Department of Animal Husbandry & Veterinary, Haimen distinct, Nantong 226000, China
| | - Xinsong Xu
- Department of Animal Husbandry & Veterinary, Haimen distinct, Nantong 226000, China
| | - Feng Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongjie Wan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
13
|
Buckingham AB, Ho S, Knops-Mckim F, Ingemarsdotter CK, Lever AM. Optimization of a lentivirus-mediated gene therapy targeting HIV-1 RNA to eliminate HIV-1-infected cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102341. [PMID: 39434850 PMCID: PMC11491724 DOI: 10.1016/j.omtn.2024.102341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/12/2024] [Indexed: 10/23/2024]
Abstract
Persistence of HIV-1 in cellular reservoirs results in lifelong infection, with cure achieved only in rare cases through ablation of marrow-derived cells. We report on optimization of an approach that could potentially be aimed at eliminating these reservoirs, hijacking the HIV-1 alternative splicing process to functionalize the herpes simplex virus thymidine kinase (HSVtk)/ganciclovir (GCV) cell suicide system through targeted RNA trans-splicing at the HIV-1 D4 donor site. AUG1-deficient HSVtk therapeutic pre-mRNA was designed to gain an in-frame start codon from HIV-1 tat1. D4-targeting lentiviral vectors were produced and used to transduce HIV-1-expressing cells, where trans-spliced HIV-1 tat/HSVtk mRNA was successfully detected. However, translation of catalytically active HSVtk polypeptides from internal AUGs in HSVtk ΔAUG1 caused GCV-mediated cytotoxicity in uninfected cells. Modifying these sites in the D4 opt 2 lentiviral vector effectively mitigated this major off-target effect. Promoter choice was optimized for increased transgene expression. Affinity for HIV-1 RNA predicted in silico correlated with the propensity of opt 2 payloads to induce HIV-1 RNA trans-splicing and killing of HIV-1-expressing cells with no significant effect on uninfected cells. Following latency reversing agent (LRA) optimization and treatment, 45% of lymphocytes in an HIV-1-infected latency model could be eliminated with D4 opt 2/GCV. Further development would be warranted to exploit this approach.
Collapse
Affiliation(s)
- Amanda B. Buckingham
- University of Cambridge, Department of Medicine, Level 5 Addenbrooke’s Hospital, Hills Rd, Cambridge CB2 0QQ, UK
| | - Sophia Ho
- University of Cambridge, Department of Medicine, Level 5 Addenbrooke’s Hospital, Hills Rd, Cambridge CB2 0QQ, UK
| | | | - Carin K. Ingemarsdotter
- University of Cambridge, Department of Medicine, Level 5 Addenbrooke’s Hospital, Hills Rd, Cambridge CB2 0QQ, UK
| | - Andrew M.L. Lever
- University of Cambridge, Department of Medicine, Level 5 Addenbrooke’s Hospital, Hills Rd, Cambridge CB2 0QQ, UK
| |
Collapse
|
14
|
Yang SH, Ahmed I, Li Y, Bleaney C, Sharrocks A. Massively parallel reporter assays identify enhancer elements in oesophageal Adenocarcinoma. NAR Cancer 2024; 6:zcae041. [PMID: 39417090 PMCID: PMC11482635 DOI: 10.1093/narcan/zcae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/09/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Cancer is a disease underpinned by aberrant gene expression. Enhancers are regulatory elements that play a major role in transcriptional control and changes in active enhancer function are likely critical in the pathogenesis of oesophageal adenocarcinoma (OAC). Here, we utilise STARR-seq to profile the genome-wide enhancer landscape in OAC and identify hundreds of high-confidence enhancer elements. These regions are enriched in enhancer-associated chromatin marks, are actively transcribed and exhibit high levels of associated gene activity in OAC cells. These characteristics are maintained in human patient samples, demonstrating their disease relevance. This relevance is further underlined by their responsiveness to oncogenic ERBB2 inhibition and increased activity compared to the pre-cancerous Barrett's state. Mechanistically, these enhancers are linked to the core OAC transcriptional network and in particular KLF5 binding is associated with high level activity, providing further support for a role of this transcription factor in defining the OAC transcriptome. Our results therefore uncover a set of enhancer elements with physiological significance, that widen our understanding of the molecular alterations in OAC and point to mechanisms through which response to targeted therapy may occur.
Collapse
Affiliation(s)
- Shen-Hsi Yang
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Ibrahim Ahmed
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Yaoyong Li
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Christopher W Bleaney
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Andrew D Sharrocks
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
15
|
Sookhoo JRV, Schiffman Z, Ambagala A, Kobasa D, Pardee K, Babiuk S. Protein Expression Platforms and the Challenges of Viral Antigen Production. Vaccines (Basel) 2024; 12:1344. [PMID: 39772006 PMCID: PMC11680109 DOI: 10.3390/vaccines12121344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Several protein expression platforms exist for a wide variety of biopharmaceutical needs. A substantial proportion of research and development into protein expression platforms and their optimization since the mid-1900s is a result of the production of viral antigens for use in subunit vaccine research. This review discusses the seven most popular forms of expression systems used in the past decade-bacterial, insect, mammalian, yeast, algal, plant and cell-free systems-in terms of advantages, uses and limitations for viral antigen production in the context of subunit vaccine research. Post-translational modifications, immunogenicity, efficacy, complexity, scalability and the cost of production are major points discussed. Examples of licenced and experimental vaccines are included along with images which summarize the processes involved.
Collapse
Affiliation(s)
- Jamie R. V. Sookhoo
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| | - Zachary Schiffman
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (Z.S.); (D.K.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Aruna Ambagala
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Darwyn Kobasa
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada; (Z.S.); (D.K.)
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Keith Pardee
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada;
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Shawn Babiuk
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, MB R3E 3R2, Canada; (J.R.V.S.); (A.A.)
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada
| |
Collapse
|
16
|
Choi YG, Ma X, Das S, Sierra-Pagan JE, Larson T, Gong W, Sadek HA, Zhang JJ, Garry MG, Garry DJ. ETV2 transcriptionally activates Rig1 gene expression and promotes reprogramming of the endothelial lineage. Sci Rep 2024; 14:28688. [PMID: 39562637 PMCID: PMC11576751 DOI: 10.1038/s41598-024-78115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
ETV2 is an essential transcription factor as Etv2 null murine embryos lack all vasculature, blood and are lethal early during embryogenesis. Previous studies have established that ETV2 functions as a pioneer factor and directly reprograms fibroblasts to endothelial cells. However, the underlying molecular mechanisms regulating this reprogramming process remain incompletely defined. In the present study, we examined the ETV2-RIG1 cascade as regulators that govern ETV2-mediated reprogramming. Mouse embryonic fibroblasts (MEFs) harboring an inducible ETV2 expression system were used to overexpress ETV2 and reprogram these somatic cells to the endothelial lineage. Single-cell RNA-seq from reprogrammed fibroblasts defined the induction of the transcriptional network involved in Rig1-like receptor signaling pathways. Studies using ChIP-seq, electrophoretic mobility shift assays, and transcriptional assays demonstrated that ETV2 was a direct upstream activator of Rig1 gene expression. We further demonstrated that the knockdown of Rig1 and separately, Nfκb1 using shRNA significantly reduced the efficiency of endothelial cell reprogramming. These results highlight that ETV2 reprograms fibroblasts to endothelial cells by directly activating RIG1. These findings extend our current understanding of the molecular mechanisms underlying ETV2-mediated reprogramming and will be important in the design of revascularization strategies for the treatment of ischemic tissues such as ischemic heart disease.
Collapse
Affiliation(s)
- Young Geun Choi
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Xiao Ma
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Satyabrata Das
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Javier E Sierra-Pagan
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Thijs Larson
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wuming Gong
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hesham A Sadek
- Cardiovascular Division, UT Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA
| | - Jianyi Jay Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
- Department of Medicine, Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Mary G Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
- Lillehei Heart Institute, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA
- NorthStar Genomics, Eagan, MN, USA
| | - Daniel J Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
- Lillehei Heart Institute, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA.
- NorthStar Genomics, Eagan, MN, USA.
| |
Collapse
|
17
|
Vahidi S, Bigdeli MR, Shahsavarani H, Ahmadloo S, Roghani M. Neuroprotective Therapeutic Potential of microRNA-149-5p against Murine Ischemic Stroke. Mol Neurobiol 2024; 61:8886-8903. [PMID: 38573413 DOI: 10.1007/s12035-024-04159-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Ischemic stroke resulting from blockade of brain vessels lacks effective treatments, prompting exploration for potential therapies. Among promising candidates, microRNA-149 (miR-149) has been investigated for its role in alleviating oxidative stress, inflammation, and neurodegeneration associated with ischemic conditions. To evaluate its therapeutic effect, male Wistar rats were categorized into five groups, each consisting of 27 rats: sham, MCAO, lentiviral control, lentiviral miR-149, and miR149-5p mimic. Treatments were microinjected intracerebroventricularly (ICV) (right side), and ischemia was induced using middle cerebral artery occlusion (MCAO) procedure. Post-MCAO, neurological function, histopathological changes, blood-brain barrier (BBB) permeability, cerebral edema, and mRNA levels of Fas ligand (Faslg) and glutamate ionotropic NMDA receptor 1 (GRIN1) were assessed, alongside biochemical assays. MiR-149 administration improved neurological function, reduced brain damage, preserved BBB integrity, and attenuated cerebral edema. Upregulation of miR149-5p decreased Faslg and GRIN1 expression in ischemic brain regions. MiR-149 also reduced oxidative stress, enhanced antioxidant activity, decreased caspase-1 and - 3 activity, and modulated inflammatory factors in ischemic brain regions. Moreover, DNA fragmentation as an index of cell death decreased following miR-149 treatment. In conclusion, the study underscores miR-149 potential as a neuroprotective agent against ischemic stroke, showcasing its efficacy in modulating various mechanisms and supporting its candidacy as a promising therapeutic target for innovative strategies in stroke treatment.
Collapse
Affiliation(s)
- Samira Vahidi
- Department of Animal Science and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mohammad-Reza Bigdeli
- Department of Animal Science and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
- Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran.
| | - Hosein Shahsavarani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Salma Ahmadloo
- Department of Animal Science and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
18
|
Freeland J, Muñoz M, O’Donnell E, Langerman J, Darrow M, Bergonio J, Suarez-Navarro J, Thorpe S, Canter R, Randall RL, Plath K, Carraway KL, Witte ON, Graeber TG, Carr-Ascher JR. Genetic Screen in a Preclinical Model of Sarcoma Development Defines Drivers and Therapeutic Vulnerabilities. Clin Cancer Res 2024; 30:4957-4973. [PMID: 39177582 PMCID: PMC11530313 DOI: 10.1158/1078-0432.ccr-24-1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
PURPOSE High-grade complex karyotype sarcomas are a heterogeneous group of tumors with a uniformly poor prognosis. Within complex karyotype sarcomas, there are innumerable genetic changes but identifying those that are clinically relevant has been challenging. EXPERIMENTAL DESIGN To address this, we utilized a pooled genetic screening approach, informed by The Cancer Genome Atlas (TCGA) data, to identify key drivers and modifiers of sarcoma development that were validated in vivo. RESULTS YAP1 and wild-type KRAS were validated as drivers and transformed human mesenchymal stem cells into two distinct sarcoma subtypes, undifferentiated pleomorphic sarcoma and myxofibrosarcoma, respectively. A subset of tumors driven by CDK4 and PIK3CA reflected leiomyosarcoma and osteosarcoma demonstrating the plasticity of this approach and the potential to investigate sarcoma subtype heterogeneity. All generated tumors histologically reflected human sarcomas and had increased aneuploidy as compared to simple karyotype sarcomas. Comparing differential gene expression of TCGA samples to model data identified increased oxidative phosphorylation signaling in YAP1 tumors. Treatment of a panel of soft tissue sarcomas with a combination of YAP1 and oxidative phosphorylation inhibitors led to significantly decreased viability. CONCLUSIONS Transcriptional co-analysis of TCGA patient samples to YAP1 and KRAS model tumors supports that these sarcoma subtypes lie along a spectrum of disease and adds guidance for further transcriptome-based refinement of sarcoma subtyping. This approach can be used to begin to understand pathways and mechanisms driving human sarcoma development, the relationship between sarcoma subtypes, and to identify and validate new therapeutic vulnerabilities for this aggressive and heterogeneous disease.
Collapse
Affiliation(s)
- Jack Freeland
- These authors contributed equally and are listed alphabetically
- Department of Molecular and Medical Pharmacology, Molecular Biology Interdepartmental Program, University of California, Los Angeles; Los Angeles, CA, 90095
| | - Maria Muñoz
- These authors contributed equally and are listed alphabetically
- Department of Internal Medicine, Division of Hematology/Oncology, University of California, Davis; Sacramento, CA, 95817
| | - Edmond O’Donnell
- Department of Orthopaedic Surgery, University of California, Davis; Sacramento, CA, 95817
| | - Justin Langerman
- Department of Biological Chemistry, University of California, Los Angeles; Los Angeles, CA, 90095
| | - Morgan Darrow
- Department of Pathology and Laboratory Medicine, University of California, Davis; Sacramento, CA, 95817
| | - Jessica Bergonio
- Department of Internal Medicine, Division of Hematology/Oncology, University of California, Davis; Sacramento, CA, 95817
| | - Julissa Suarez-Navarro
- Department of Internal Medicine, Division of Hematology/Oncology, University of California, Davis; Sacramento, CA, 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology Graduate Group, University of California, Davis; Davis, CA, 95616
| | - Steven Thorpe
- Department of Orthopaedic Surgery, University of California, Davis; Sacramento, CA, 95817
| | - Robert Canter
- Department of Surgery, Division of Surgical Oncology, University of California, Davis; Sacramento, CA, 95817
| | - R. Lor Randall
- Department of Orthopaedic Surgery, University of California, Davis; Sacramento, CA, 95817
| | - Kathrin Plath
- Department of Biological Chemistry, University of California, Los Angeles; Los Angeles, CA, 90095
| | - Kermit L. Carraway
- Department of Biochemistry and Molecular Medicine, University of California, Davis; Sacramento, CA, 95817
| | - Owen N. Witte
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA, 90095
| | - Thomas G. Graeber
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, Jonsson Comprehensive Cancer Center, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles; Los Angeles, CA, 90095
| | - Janai R. Carr-Ascher
- Department of Internal Medicine, Division of Hematology/Oncology, University of California, Davis; Sacramento, CA, 95817
- Department of Orthopaedic Surgery, University of California, Davis; Sacramento, CA, 95817
| |
Collapse
|
19
|
Hwang SP, Liao H, Barondeau K, Han X, Herbert C, McConie H, Shekar A, Pestov D, Limbach PA, Chang JT, Denicourt C. TRMT1L-catalyzed m 2 2G27 on tyrosine tRNA is required for efficient mRNA translation and cell survival under oxidative stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.591343. [PMID: 39416027 PMCID: PMC11482778 DOI: 10.1101/2024.05.02.591343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
tRNA modifications are critical for several aspects of their functions, including decoding, folding, and stability. Using a multifaceted approach encompassing eCLIP-seq and Nanopore tRNA-seq, we show that the human tRNA methyltransferase TRMT1L interacts with component of the Rix1 ribosome biogenesis complex and binds to the 28S rRNA, as well as to a subset of tRNAs. Mechanistically, we demonstrate that TRMT1L is responsible for catalyzing m2 2G solely at position 27 of tRNA-Tyr-GUA. Surprisingly, TRMT1L depletion also impaired the deposition of acp3U and dihydrouridine on tRNA-Tyr-GUA, Cys-GCA, and Ala-CGC. TRMT1L knockout cells have a marked decrease in tRNA-Tyr-GUA levels, coinciding with a reduction in global translation rates and hypersensitivity to oxidative stress. Our results establish TRMT1L as the elusive methyltransferase catalyzing the m2 2G27 modification on tRNA Tyr, resolving a long-standing gap of knowledge and highlighting its potential role in a tRNA modification circuit crucial for translation regulation and stress response.
Collapse
Affiliation(s)
- Sseu-Pei Hwang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Han Liao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Katherine Barondeau
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Xinyi Han
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Cassandra Herbert
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Hunter McConie
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Amirtha Shekar
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Dimitri Pestov
- Department of Cell Biology and Neuroscience, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08028, USA
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Catherine Denicourt
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
- Lead Contact
| |
Collapse
|
20
|
Liu AC, Shen Y, Serbinski CR, He H, Roman D, Endale M, Aschbacher-Smith L, King KA, Granadillo JL, López I, Krueger DA, Dye TJ, Smith DF, Hogenesch JB, Prada CE. Clinical and functional studies of MTOR variants in Smith-Kingsmore syndrome reveal deficits of circadian rhythm and sleep-wake behavior. HGG ADVANCES 2024; 5:100333. [PMID: 39030910 PMCID: PMC11342114 DOI: 10.1016/j.xhgg.2024.100333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024] Open
Abstract
Heterozygous de novo or inherited gain-of-function mutations in the MTOR gene cause Smith-Kingsmore syndrome (SKS). SKS is a rare autosomal dominant condition, and individuals with SKS display macrocephaly/megalencephaly, developmental delay, intellectual disability, and seizures. A few dozen individuals are reported in the literature. Here, we report a cohort of 28 individuals with SKS that represent nine MTOR pathogenic variants. We conducted a detailed natural history study and found pathophysiological deficits among individuals with SKS in addition to the common neurodevelopmental symptoms. These symptoms include sleep-wake disturbance, hyperphagia, and hyperactivity, indicative of homeostatic imbalance. To characterize these variants, we developed cell models and characterized their functional consequences. We showed that these SKS variants display a range of mechanistic target of rapamycin (mTOR) activities and respond to the mTOR inhibitor, rapamycin, differently. For example, the R1480_C1483del variant we identified here and the previously known C1483F are more active than wild-type controls and less responsive to rapamycin. Further, we showed that SKS mutations dampened circadian rhythms and low-dose rapamycin improved the rhythm amplitude, suggesting that optimal mTOR activity is required for normal circadian function. As SKS is caused by gain-of-function mutations in MTOR, rapamycin was used to treat several patients. While higher doses of rapamycin caused delayed sleep-wake phase disorder in a subset of patients, optimized lower doses improved sleep. Our study expands the clinical and molecular spectrum of SKS and supports further studies for mechanism-guided treatment options to improve sleep-wake behavior and overall health.
Collapse
Affiliation(s)
- Andrew C Liu
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | - Yang Shen
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Carolyn R Serbinski
- Divisions of Human Genetics, Neurology, Immunobiology, Pediatric Otolaryngology, and Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Genetics, Genomics & Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Hongzhi He
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Destino Roman
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Mehari Endale
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Lindsey Aschbacher-Smith
- Divisions of Human Genetics, Neurology, Immunobiology, Pediatric Otolaryngology, and Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Katherine A King
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jorge L Granadillo
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Isabel López
- Pediatric Neurology Unit, Department of Neurology, Clínica Las Condes, Santiago, Chile
| | - Darcy A Krueger
- Divisions of Human Genetics, Neurology, Immunobiology, Pediatric Otolaryngology, and Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Thomas J Dye
- Divisions of Human Genetics, Neurology, Immunobiology, Pediatric Otolaryngology, and Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - David F Smith
- Divisions of Pediatric Otolaryngology and Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Sleep Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; The Center for Circadian Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Otolaryngology Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - John B Hogenesch
- Divisions of Human Genetics, Neurology, Immunobiology, Pediatric Otolaryngology, and Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Carlos E Prada
- Divisions of Human Genetics, Neurology, Immunobiology, Pediatric Otolaryngology, and Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Genetics, Genomics & Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Department of Pediatrics, Feinberg School of Medicine of Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
21
|
Hadas R, Rubinstein H, Mittnenzweig M, Mayshar Y, Ben-Yair R, Cheng S, Aguilera-Castrejon A, Reines N, Orenbuch AH, Lifshitz A, Chen DY, Elowitz MB, Zernicka-Goetz M, Hanna JH, Tanay A, Stelzer Y. Temporal BMP4 effects on mouse embryonic and extraembryonic development. Nature 2024; 634:652-661. [PMID: 39294373 PMCID: PMC11485214 DOI: 10.1038/s41586-024-07937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/09/2024] [Indexed: 09/20/2024]
Abstract
The developing placenta, which in mice originates through the extraembryonic ectoderm (ExE), is essential for mammalian embryonic development. Yet unbiased characterization of the differentiation dynamics of the ExE and its interactions with the embryo proper remains incomplete. Here we develop a temporal single-cell model of mouse gastrulation that maps continuous and parallel differentiation in embryonic and extraembryonic lineages. This is matched with a three-way perturbation approach to target signalling from the embryo proper, the ExE alone, or both. We show that ExE specification involves early spatial and transcriptional bifurcation of uncommitted ectoplacental cone cells and chorion progenitors. Early BMP4 signalling from chorion progenitors is required for proper differentiation of uncommitted ectoplacental cone cells and later for their specification towards trophoblast giant cells. We also find biphasic regulation by BMP4 in the embryo. The early ExE-originating BMP4 signal is necessary for proper mesoendoderm bifurcation and for allantois and primordial germ cell specification. However, commencing at embryonic day 7.5, embryo-derived BMP4 restricts the primordial germ cell pool size by favouring differentiation of their extraembryonic mesoderm precursors towards an allantois fate. ExE and embryonic tissues are therefore entangled in time, space and signalling axes, highlighting the importance of their integrated understanding and modelling in vivo and in vitro.
Collapse
Affiliation(s)
- Ron Hadas
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hernan Rubinstein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Markus Mittnenzweig
- Department of Computer Science and Applied Mathematics and Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Mayshar
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Raz Ben-Yair
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Saifeng Cheng
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Netta Reines
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Aviezer Lifshitz
- Department of Computer Science and Applied Mathematics and Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Dong-Yuan Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Magdalena Zernicka-Goetz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jacob H Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Amos Tanay
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
- Department of Computer Science and Applied Mathematics and Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Yonatan Stelzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
22
|
Yu Z, Ran G, Chai J, Zhang EE. A nature-inspired HIF stabilizer derived from a highland-adaptation insertion of plateau pika Epas1 protein. Cell Rep 2024; 43:114727. [PMID: 39269902 DOI: 10.1016/j.celrep.2024.114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) play pivotal roles in numerous diseases and high-altitude adaptation, and HIF stabilizers have emerged as valuable therapeutic tools. In our prior investigation, we identified a highland-adaptation 24-amino-acid insertion within the Epas1 protein. This insertion enhances the protein stability of Epas1, and mice engineered with this insertion display enhanced resilience to hypoxic conditions. In the current study, we delved into the biochemical mechanisms underlying the protein-stabilizing effects of this insertion. Our findings unveiled that the last 11 amino acids within this insertion adopt a helical conformation and interact with the α-domain of the von Hippel-Lindau tumor suppressor protein (pVHL), thereby disrupting the Eloc-pVHL interaction and impeding the ubiquitination of Epas1. Utilizing a synthesized peptide, E14-24, we demonstrated its favorable membrane permeability and ability to stabilize endogenous HIF-α proteins, inducing the expression of hypoxia-responsive element (HRE) genes. Furthermore, the administration of E14-24 to mice subjected to hypoxic conditions mitigated body weight loss, suggesting its potential to enhance hypoxia adaptation.
Collapse
Affiliation(s)
- Ziqing Yu
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100006, China; National Institute of Biological Sciences, Beijing 102206, China.
| | - Guangdi Ran
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Juan Chai
- National Institute of Biological Sciences, Beijing 102206, China
| | - Eric Erquan Zhang
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China.
| |
Collapse
|
23
|
Chauhan M, Singh K, Chongtham C, A G A, Sharma P. miR-449a mediated repression of the cell cycle machinery prevents neuronal apoptosis. J Biol Chem 2024; 300:107698. [PMID: 39173945 PMCID: PMC11419829 DOI: 10.1016/j.jbc.2024.107698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024] Open
Abstract
Aberrant activation of the cell cycle of terminally differentiated neurons results in their apoptosis and is known to contribute to neuronal loss in various neurodegenerative disorders like Alzheimer's Disease. However, the mechanisms that regulate cell cycle-related neuronal apoptosis are poorly understood. We identified several miRNA that are dysregulated in neurons from a transgenic APP/PS1 mouse model for AD (TgAD). Several of these miRNA are known to and/or are predicted to target cell cycle-related genes. Detailed investigation on miR-449a revealed the following: a, it promotes neuronal differentiation by suppressing the neuronal cell cycle; b, its expression in cortical neurons was impaired in response to amyloid peptide Aβ42; c, loss of its expression resulted in aberrant activation of the cell cycle leading to apoptosis. miR-449a may prevent cell cycle-related neuronal apoptosis by targeting cyclin D1 and protein phosphatase CDC25A, which are important for G1-S transition. Importantly, the lentiviral-mediated delivery of miR-449a in TgAD mouse brain significantly reverted the defects in learning and memory, which are associated with AD.
Collapse
Affiliation(s)
- Monika Chauhan
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India.
| | - Komal Singh
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India
| | - Chen Chongtham
- Molecular Genetics Laboratory, National Institute of Immunology, New Delhi, India
| | - Aneeshkumar A G
- Molecular Genetics Laboratory, National Institute of Immunology, New Delhi, India
| | - Pushkar Sharma
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi, India.
| |
Collapse
|
24
|
Zeng R, Huang X, Fu W, Ji W, Cai W, Xu M, Lan D. Construction of Lentiviral Vectors Carrying Six Pluripotency Genes in Yak to Obtain Yak iPSC Cells. Int J Mol Sci 2024; 25:9431. [PMID: 39273379 PMCID: PMC11394755 DOI: 10.3390/ijms25179431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Yak is an excellent germplasm resource on the Tibetan Plateau and is able to live in high-altitude areas with hypoxic, cold, and harsh environments. Studies on induced pluripotent stem cells (iPSCs) in large ruminants commonly involve a combination strategy involving six transcription factors, Oct4, Sox2, Klf4, c-Myc, Nanog, and Lin28 (OSKMNL). This strategy tends to utilize genes from the same species to optimize pluripotency maintenance. In this study, we cloned the six pluripotency genes (OSKMNL) from yak and constructed a multi-cistronic lentiviral vector carrying these genes. This vector efficiently delivered the genes into yak fibroblasts, aiming to promote the reprogramming process. We verified that the treated cells had several pluripotency characteristics, marking the first successful construction of a lentiviral system carrying yak pluripotency genes. This achievement lays the foundation for subsequent establishment of yak iPSCs and holds significant implications for yak-breed improvement and germplasm-resource conservation.
Collapse
Affiliation(s)
- Ruilin Zeng
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Xianpeng Huang
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Wei Fu
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Wenhui Ji
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Wenyi Cai
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Meng Xu
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Daoliang Lan
- College of Animal & Verterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Qinghai-Tibet Plateau Animal Genetic Resource and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
25
|
Tan J, Li Y, Li X, Zhu X, Liu L, Huang H, Wei J, Wang H, Tian Y, Wang Z, Zhang Z, Zhu B. Pramel15 facilitates zygotic nuclear DNMT1 degradation and DNA demethylation. Nat Commun 2024; 15:7310. [PMID: 39181896 PMCID: PMC11344788 DOI: 10.1038/s41467-024-51614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
In mammals, global passive demethylation contributes to epigenetic reprogramming during early embryonic development. At this stage, the majority of DNA-methyltransferase 1 (DNMT1) protein is excluded from nucleus, which is considered the primary cause. However, whether the remaining nuclear activity of DNMT1 is regulated by additional mechanisms is unclear. Here, we report that nuclear DNMT1 abundance is finetuned through proteasomal degradation in mouse zygotes. We identify a maternal factor, Pramel15, which targets DNMT1 for degradation via Cullin-RING E3 ligases. Loss of Pramel15 elevates DNMT1 levels in the zygote pronuclei, impairs zygotic DNA demethylation, and causes a stochastic gain of DNA methylation in early embryos. Thus, Pramel15 can modulate the residual level of DNMT1 in the nucleus during zygotic DNA replication, thereby ensuring efficient DNA methylation reprogramming in early embryos.
Collapse
Affiliation(s)
- Jiajun Tan
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yingfeng Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiang Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoxiao Zhu
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
| | - Liping Liu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jiahua Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hailing Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yong Tian
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China
| | - Zhigao Wang
- Center for Regenerative Medicine, Heart Institute, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Zhuqiang Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China.
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Bing Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, China.
- New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
26
|
Kaneda Y, Miyata H, Xu Z, Shimada K, Kamoshita M, Nakagawa T, Emori C, Ikawa M. FBXO24 deletion causes abnormal accumulation of membraneless electron-dense granules in sperm flagella and male infertility. eLife 2024; 13:RP92794. [PMID: 39163107 PMCID: PMC11335345 DOI: 10.7554/elife.92794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Ribonucleoprotein (RNP) granules are membraneless electron-dense structures rich in RNAs and proteins, and involved in various cellular processes. Two RNP granules in male germ cells, intermitochondrial cement and the chromatoid body (CB), are associated with PIWI-interacting RNAs (piRNAs) and are required for transposon silencing and spermatogenesis. Other RNP granules in male germ cells, the reticulated body and CB remnants, are also essential for spermiogenesis. In this study, we disrupted FBXO24, a testis-enriched F-box protein, in mice and found numerous membraneless electron-dense granules accumulated in sperm flagella. Fbxo24 knockout (KO) mice exhibited malformed flagellar structures, impaired sperm motility, and male infertility, likely due to the accumulation of abnormal granules. The amount and localization of known RNP granule-related proteins were not disrupted in Fbxo24 KO mice, suggesting that the accumulated granules were distinct from known RNP granules. Further studies revealed that RNAs and two importins, IPO5 and KPNB1, abnormally accumulated in Fbxo24 KO spermatozoa and that FBXO24 could ubiquitinate IPO5. In addition, IPO5 and KPNB1 were recruited to stress granules, RNP complexes, when cells were treated with oxidative stress or a proteasome inhibitor. These results suggest that FBXO24 is involved in the degradation of IPO5, disruption of which may lead to the accumulation of abnormal RNP granules in sperm flagella.
Collapse
Affiliation(s)
- Yuki Kaneda
- Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
- Graduate School of Pharmaceutical Sciences, Osaka UniversityOsakaJapan
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
| | - Zoulan Xu
- Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
- Graduate School of Pharmaceutical Sciences, Osaka UniversityOsakaJapan
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
| | - Maki Kamoshita
- Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
| | - Tatsuya Nakagawa
- Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
- Graduate School of Pharmaceutical Sciences, Osaka UniversityOsakaJapan
| | - Chihiro Emori
- Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
- Graduate School of Pharmaceutical Sciences, Osaka UniversityOsakaJapan
- Center for Infectious Disease Education and Research (CiDER), Osaka UniversityOsakaJapan
- The Institute of Medical Science, The University of TokyoTokyoJapan
- Center for Advanced Modalities and DDS (CAMaD), Osaka UniversityOsakaJapan
| |
Collapse
|
27
|
Budhiraja S, McManus G, Baisiwala S, Perrault EN, Cho S, Saathoff M, Chen L, Park CH, Kazi HA, Dmello C, Lin P, James CD, Sonabend AM, Heiland DH, Ahmed AU. ARF4-mediated retrograde trafficking as a driver of chemoresistance in glioblastoma. Neuro Oncol 2024; 26:1421-1437. [PMID: 38506351 PMCID: PMC11300013 DOI: 10.1093/neuonc/noae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Cellular functions hinge on the meticulous orchestration of protein transport, both spatially and temporally. Central to this process is retrograde trafficking, responsible for targeting proteins to the nucleus. Despite its link to many diseases, the implications of retrograde trafficking in glioblastoma (GBM) are still unclear. METHODS To identify genetic drivers of TMZ resistance, we conducted comprehensive CRISPR-knockout screening, revealing ADP-ribosylation factor 4 (ARF4), a regulator of retrograde trafficking, as a major contributor. RESULTS Suppressing ARF4 significantly enhanced TMZ sensitivity in GBM patient-derived xenograft (PDX) models, leading to improved survival rates (P < .01) in both primary and recurrent lines. We also observed that TMZ exposure stimulates ARF4-mediated retrograde trafficking. Proteomics analysis of GBM cells with varying levels of ARF4 unveiled the influence of this pathway on EGFR signaling, with increased nuclear trafficking of EGFR observed in cells with ARF4 overexpression and TMZ treatment. Additionally, spatially resolved RNA-sequencing of GBM patient tissues revealed substantial correlations between ARF4 and crucial nuclear EGFR (nEGFR) downstream targets, such as MYC, STAT1, and DNA-PK. Decreased activity of DNA-PK, a DNA repair protein downstream of nEGFR signaling that contributes to TMZ resistance, was observed in cells with suppressed ARF4 levels. Notably, treatment with DNA-PK inhibitor, KU-57788, in mice with a recurrent PDX line resulted in prolonged survival (P < .01), highlighting the promising therapeutic implications of targeting proteins reliant on ARF4-mediated retrograde trafficking. CONCLUSIONS Our findings demonstrate that ARF4-mediated retrograde trafficking contributes to the development of TMZ resistance, cementing this pathway as a viable strategy to overcome chemoresistance in GBM.
Collapse
Affiliation(s)
- Shreya Budhiraja
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Graysen McManus
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Ella N Perrault
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sia Cho
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Miranda Saathoff
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Li Chen
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Cheol H Park
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hasaan A Kazi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Crismita Dmello
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Peiyu Lin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - C David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Adam M Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dieter H Heiland
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
| | - Atique U Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
28
|
Halim DO, Krishnan G, Hass EP, Lee S, Verma M, Almeida S, Gu Y, Kwon DY, Fazzio TG, Gao FB. The exocyst subunit EXOC2 regulates the toxicity of expanded GGGGCC repeats in C9ORF72-ALS/FTD. Cell Rep 2024; 43:114375. [PMID: 38935506 PMCID: PMC11299523 DOI: 10.1016/j.celrep.2024.114375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 04/26/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024] Open
Abstract
GGGGCC (G4C2) repeat expansion in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). How this genetic mutation leads to neurodegeneration remains largely unknown. Using CRISPR-Cas9 technology, we deleted EXOC2, which encodes an essential exocyst subunit, in induced pluripotent stem cells (iPSCs) derived from C9ORF72-ALS/FTD patients. These cells are viable owing to the presence of truncated EXOC2, suggesting that exocyst function is partially maintained. Several disease-relevant cellular phenotypes in C9ORF72 iPSC-derived motor neurons are rescued due to, surprisingly, the decreased levels of dipeptide repeat (DPR) proteins and expanded G4C2 repeats-containing RNA. The treatment of fully differentiated C9ORF72 neurons with EXOC2 antisense oligonucleotides also decreases expanded G4C2 repeats-containing RNA and partially rescued disease phenotypes. These results indicate that EXOC2 directly or indirectly regulates the level of G4C2 repeats-containing RNA, making it a potential therapeutic target in C9ORF72-ALS/FTD.
Collapse
Affiliation(s)
- Dilara O Halim
- Frontotemporal Dementia Research Center, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Gopinath Krishnan
- Frontotemporal Dementia Research Center, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Evan P Hass
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Soojin Lee
- Frontotemporal Dementia Research Center, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Mamta Verma
- Frontotemporal Dementia Research Center, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sandra Almeida
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Yuanzheng Gu
- Neuromuscular & Muscle Disorders, Biogen, Cambridge, MA 02142, USA
| | - Deborah Y Kwon
- Neuromuscular & Muscle Disorders, Biogen, Cambridge, MA 02142, USA
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Fen-Biao Gao
- Frontotemporal Dementia Research Center, RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
29
|
Frohlich J, Liorni N, Mangoni M, Lochmanová G, Pírek P, Kaštánková N, Pata P, Kucera J, Chaldakov GN, Tonchev AB, Pata I, Gorbunova V, Leire E, Zdráhal Z, Mazza T, Vinciguerra M. Epigenetic and transcriptional control of adipocyte function by centenarian-associated SIRT6 N308K/A313S mutant. Clin Epigenetics 2024; 16:96. [PMID: 39033117 PMCID: PMC11265064 DOI: 10.1186/s13148-024-01710-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Obesity is a major health burden. Preadipocytes proliferate and differentiate in mature adipocytes in the adipogenic process, which could be a potential therapeutic approach for obesity. Deficiency of SIRT6, a stress-responsive protein deacetylase and mono-ADP ribosyltransferase enzyme, blocks adipogenesis. Mutants of SIRT6 (N308K/A313S) were recently linked to the in the long lifespan Ashkenazi Jews. In this study, we aimed to clarify how these new centenarian-associated SIRT6 genetic variants affect adipogenesis at the transcriptional and epigenetic level. METHODS We analyzed the role of SIRT6 wild-type (WT) or SIRT6 centenarian-associated mutant (N308K/A313S) overexpression in adipogenesis, by creating stably transduced preadipocyte cell lines using lentivirus on the 3T3-L1 model. Histone post-translational modifications (PTM: acetylation, methylation) and transcriptomic changes were analyzed by mass spectrometry (LC-MS/MS) and RNA-Seq, respectively, in 3T3-L1 adipocytes. In addition, the adipogenic process and related signaling pathways were investigated by bioinformatics and biochemical approaches. RESULTS Overexpression of centenarian-associated SIRT6 mutant increased adipogenic differentiation to a similar extent compared to the WT form. However, it triggered distinct histone PTM profiles in mature adipocytes, with significantly higher acetylation levels, and activated divergent transcriptional programs, including those dependent on signaling related to the sympathetic innervation and to PI3K pathway. 3T3-L1 mature adipocytes overexpressing SIRT6 N308K/A313S displayed increased insulin sensitivity in a neuropeptide Y (NPY)-dependent manner. CONCLUSIONS SIRT6 N308K/A313S overexpression in mature adipocytes ameliorated glucose sensitivity and impacted sympathetic innervation signaling. These findings highlight the importance of targeting SIRT6 enzymatic activities to regulate the co-morbidities associated with obesity.
Collapse
Affiliation(s)
- Jan Frohlich
- International Clinical Research Center, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | - Niccolò Liorni
- IRCCS, Bioinformatics Unit, Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Manuel Mangoni
- IRCCS, Bioinformatics Unit, Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Gabriela Lochmanová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavlína Pírek
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Nikola Kaštánková
- International Clinical Research Center, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic
| | | | - Jan Kucera
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Physical Activities and Health, Faculty of Sports Studies, Masaryk University, Brno, Czech Republic
| | - George N Chaldakov
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, Varna, Bulgaria
- Department of Anatomy and Cell Biology, Faculty of Medicine, Varna, Bulgaria
| | - Anton B Tonchev
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, Varna, Bulgaria
- Department of Anatomy and Cell Biology, Faculty of Medicine, Varna, Bulgaria
| | | | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Eric Leire
- GenFlow Biosciences Srl, Charleroi, Belgium
- Clinique 135, Brussels, Belgium
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tommaso Mazza
- IRCCS, Bioinformatics Unit, Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Manlio Vinciguerra
- International Clinical Research Center, St. Anne's University Hospital and Masaryk University, Brno, Czech Republic.
- Department of Translational Stem Cell Biology, Research Institute of the Medical University, Varna, Bulgaria.
- Faculty of Science, Liverpool John Moores University (LJMU), Liverpool, UK.
| |
Collapse
|
30
|
Bobrovsky PA, Grafskaia EN, Kharlampieva DD, Manuvera VA, Lazarev VN. Specific Activation of the Expression of Growth Factor Genes in Expi293F Human Cells Using CRISPR/Cas9-SAM Technology Increases Their Proliferation. Acta Naturae 2024; 16:25-37. [PMID: 39539522 PMCID: PMC11557215 DOI: 10.32607/actanaturae.27415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/02/2024] [Indexed: 11/16/2024] Open
Abstract
Human cell lines play an important role in biotechnology and pharmacology. For them to grow, they need complex nutrient media containing signaling proteins - growth factors. We have tested a new approach that reduces the need of cultured human cell lines for exogenous growth factors. This approach is based on the generation of a modified cell with a selectively activated gene expression of one of the endogenous growth factors: IGF-1, FGF-2, or EIF3I. We modified the Expi293F cell line, a HEK293 cell line variant widely used in the production of recombinant proteins. Gene expression of the selected growth factors in these cells was activated using CRISPR/Cas9 technology with the synergistic activation mediators CRISPR/Cas9-SAM, which increased the expression of the selected genes at both mRNA and protein levels. Upon culturing under standard conditions, the modified lines exhibited increased proliferation. A synergistic effect was observed in co-culture of the three modified lines. In our opinion, these results indicate that this approach is promising for efficient modification of cell lines used in biotechnology.
Collapse
Affiliation(s)
- P. A. Bobrovsky
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow,119435 Russian Federation
- Moscow Institute of Physics and Technology, Moscow, 141701 Russian Federation
| | - E. N. Grafskaia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow,119435 Russian Federation
| | - D. D. Kharlampieva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow,119435 Russian Federation
| | - V. A. Manuvera
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow,119435 Russian Federation
- Moscow Institute of Physics and Technology, Moscow, 141701 Russian Federation
| | - V. N. Lazarev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow,119435 Russian Federation
- Moscow Institute of Physics and Technology, Moscow, 141701 Russian Federation
| |
Collapse
|
31
|
Zhou Z, Wu X, Chen T, Zhang B, Li W, Zhou M, Zhao J, Dong E, Li T. Restoration of functional endometrium in an intrauterine adhesion rat model with endometrial stromal cells transplantation. Stem Cell Res Ther 2024; 15:181. [PMID: 38902788 PMCID: PMC11191336 DOI: 10.1186/s13287-024-03788-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/09/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Intrauterine adhesion (IUA) as a prevalent gynecological disease is developed from infection or trauma. However, therapeutic strategies to repair damaged endometrium are relatively limited. Emerging studies have shed light on the crucial role of endometrial stromal cells (EnSCs) in the process of uterine endometrial regeneration. EnSCs isolated from the uterine endometrium have similar characteristics to mesenchymal stem cells (MSCs). However, it is still unknown whether EnSCs could be used as donor cells to treat IUA. The aim of this study was to evaluate the potential efficacy of EnSCs in treating rat IUA. METHODS Human EnSCs were isolated from the endometrial tissue of healthy female donors and subjected to extensive expansion and culture in vitro. Immunofluorescence, flow cytometry, cell proliferation assay, trilineage differentiation experiment, and decidualization assay were used to characterize the biological properties of EnSCs. We evaluated the immunoregulatory potential of EnSCs by analyzing their secreted cytokines and conducting bulk RNA sequencing after IFN-γ treatment. After EnSCs were transplanted into the uterine muscle layer in IUA rats, their therapeutic effects and underlying mechanisms were analyzed using histological analysis, Q-PCR, fertility and pregnancy outcome assay, and transcriptome analysis. RESULTS We successfully isolated EnSCs from the endometrium of human donors and largely expanded in vitro. EnSCs exhibited characteristics of mesenchymal stem cells and retained responsiveness to sex hormones. Following IFN-γ stimulation, EnSCs upregulated the anti-inflammatory cytokines and activated immunosuppressive molecules. Xenogeneic transplantation of EnSCs successfully repaired injured endometrium and significantly restored the pregnancy rate in IUA rats. Mechanistically, the therapeutic effects of EnSCs on IUA endometrium functioned through anti-inflammation, anti-fibrosis and the secretion of regeneration factor. CONCLUSIONS Due to their large expansion ability, immunoregulatory properties, and great potential in treating IUA, EnSCs, as a valuable source of donor cells, could offer a potential treatment avenue for injury-induced IUA.
Collapse
Affiliation(s)
- Zhengli Zhou
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650500, China
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650031, China
| | - Xiaomei Wu
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650031, China
| | - Tingwei Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650500, China
| | - Bo Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650500, China
| | - Wenxin Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650500, China
| | - Min Zhou
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650500, China
| | - Jingxue Zhao
- The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650031, China
| | - E Dong
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650500, China.
| | - Tianqing Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, 650500, China.
| |
Collapse
|
32
|
Kaneda Y, Miyata H, Xu Z, Shimada K, Kamoshita M, Nakagawa T, Emori C, Ikawa M. FBXO24 deletion causes abnormal accumulation of membraneless electron-dense granules in sperm flagella and male infertility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.10.566635. [PMID: 37986737 PMCID: PMC10659433 DOI: 10.1101/2023.11.10.566635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Ribonucleoprotein (RNP) granules are membraneless electron-dense structures rich in RNAs and proteins, and involved in various cellular processes. Two RNP granules in male germ cells, intermitochondrial cement and the chromatoid body (CB), are associated with PIWI-interacting RNAs (piRNAs) and are required for transposon silencing and spermatogenesis. Other RNP granules in male germ cells, the reticulated body and CB remnants, are also essential for spermiogenesis. In this study, we disrupted FBXO24, a testis-enriched F-box protein, in mice and found numerous membraneless electron-dense granules accumulated in sperm flagella. Fbxo24 knockout (KO) mice exhibited malformed flagellar structures, impaired sperm motility, and male infertility, likely due to the accumulation of abnormal granules. The amount and localization of known RNP granule-related proteins were not disrupted in Fbxo24 KO mice, suggesting that the accumulated granules were distinct from known RNP granules. Further studies revealed that RNAs and two importins, IPO5 and KPNB1, abnormally accumulated in Fbxo24 KO spermatozoa and that FBXO24 could ubiquitinate IPO5. In addition, IPO5 and KPNB1 were recruited to stress granules, RNP complexes, when cells were treated with oxidative stress or a proteasome inhibitor. These results suggest that FBXO24 is involved in the degradation of IPO5, disruption of which may lead to the accumulation of abnormal RNP granules in sperm flagella.
Collapse
Affiliation(s)
- Yuki Kaneda
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 5650871 JAPAN
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 5650871 JAPAN
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 5650871 JAPAN
| | - Zoulan Xu
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 5650871 JAPAN
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 5650871 JAPAN
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 5650871 JAPAN
| | - Maki Kamoshita
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 5650871 JAPAN
| | - Tatsuya Nakagawa
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 5650871 JAPAN
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 5650871 JAPAN
| | - Chihiro Emori
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 5650871 JAPAN
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 5650871 JAPAN
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 5650871 JAPAN
- The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 1088639 JAPAN
- Center for Infectious Disease Education and Research (CiDER), Osaka University, 2-8 Yamadaoka, Suita, Osaka 5650871 JAPAN
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, 2-8 Yamadaoka, Suita, Osaka 5650871 JAPAN
| |
Collapse
|
33
|
Jose E, March-Steinman W, Wilson BA, Shanks L, Parkinson C, Alvarado-Cruz I, Sweasy JB, Paek AL. Temporal coordination of the transcription factor response to H 2O 2 stress. Nat Commun 2024; 15:3440. [PMID: 38653977 PMCID: PMC11039679 DOI: 10.1038/s41467-024-47837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Oxidative stress from excess H2O2 activates transcription factors that restore redox balance and repair oxidative damage. Although many transcription factors are activated by H2O2, it is unclear whether they are activated at the same H2O2 concentration, or time. Dose-dependent activation is likely as oxidative stress is not a singular state and exhibits dose-dependent outcomes including cell-cycle arrest and cell death. Here, we show that transcription factor activation is both dose-dependent and coordinated over time. Low levels of H2O2 activate p53, NRF2 and JUN. Yet under high H2O2, these transcription factors are repressed, and FOXO1, NF-κB, and NFAT1 are activated. Time-lapse imaging revealed that the order in which these two groups of transcription factors are activated depends on whether H2O2 is administered acutely by bolus addition, or continuously through the glucose oxidase enzyme. Finally, we provide evidence that 2-Cys peroxiredoxins control which group of transcription factors are activated.
Collapse
Affiliation(s)
- Elizabeth Jose
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Bryce A Wilson
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Lisa Shanks
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Chance Parkinson
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Isabel Alvarado-Cruz
- Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Joann B Sweasy
- Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
- University of Arizona Cancer Center, Tucson, AZ, 85724, USA
- Fred and Pamela Buffett Cancer Center and Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Andrew L Paek
- Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA.
- Program in Applied Mathematics, University of Arizona, Tucson, AZ, 85721, USA.
- University of Arizona Cancer Center, Tucson, AZ, 85724, USA.
| |
Collapse
|
34
|
Zhang H, Chen C, Zhang EE, Huang X. TDP-43 deficiency in suprachiasmatic nucleus perturbs rhythmicity of neuroactivity in prefrontal cortex. iScience 2024; 27:109522. [PMID: 38585660 PMCID: PMC10995886 DOI: 10.1016/j.isci.2024.109522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/28/2023] [Accepted: 03/14/2024] [Indexed: 04/09/2024] Open
Abstract
Individuals within the amyotrophic lateral sclerosis and frontotemporal dementia disease spectrum (ALS/FTD) often experience disruptive mental behaviors and sleep-wake disturbances. The hallmark of ALS/FTD is the pathological involvement of TAR DNA-binding protein 43 (TDP-43). Understanding the role of TDP-43 in the circadian clock holds promise for addressing these behavioral abnormalities. In this study, we unveil TDP-43 as a pivotal regulator of the circadian clock. TDP-43 knockdown induces intracellular arrhythmicity, disrupts transcriptional activation regulation, and diminishes clock genes expression. Moreover, our experiments in adult mouse reveal that TDP-43 knockdown, specifically within the suprachiasmatic nucleus (SCN), induces locomotor arrhythmia, arrhythmic c-Fos expression, and depression-like behavior. This observation offers valuable insights into the substantial impact of TDP-43 on the behavioral aberrations associated with ALS/FTD. In summary, our study illuminates the significance of TDP-43 in circadian regulation, shedding light on the circadian regulatory mechanisms that may elucidate the pathological underpinnings of ALS/FTD.
Collapse
Affiliation(s)
- Hongxia Zhang
- Department of Medical Microbiology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Chen Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | | | - Xiaotian Huang
- Department of Medical Microbiology, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| |
Collapse
|
35
|
Nieto-Romero V, García-Torralba A, Molinos-Vicente A, Moya FJ, Rodríguez-Perales S, García-Escudero R, Salido E, Segovia JC, García-Bravo M. Restored glyoxylate metabolism after AGXT gene correction and direct reprogramming of primary hyperoxaluria type 1 fibroblasts. iScience 2024; 27:109530. [PMID: 38577102 PMCID: PMC10993186 DOI: 10.1016/j.isci.2024.109530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 01/18/2024] [Accepted: 03/16/2024] [Indexed: 04/06/2024] Open
Abstract
Primary hyperoxaluria type 1 (PH1) is a rare inherited metabolic disorder characterized by oxalate overproduction in the liver, resulting in renal damage. It is caused by mutations in the AGXT gene. Combined liver and kidney transplantation is currently the only permanent curative treatment. We combined locus-specific gene correction and hepatic direct cell reprogramming to generate autologous healthy induced hepatocytes (iHeps) from PH1 patient-derived fibroblasts. First, site-specific AGXT corrected cells were obtained by homology directed repair (HDR) assisted by CRISPR-Cas9, following two different strategies: accurate point mutation (c.731T>C) correction or knockin of an enhanced version of AGXT cDNA. Then, iHeps were generated, by overexpression of hepatic transcription factors. Generated AGXT-corrected iHeps showed hepatic gene expression profile and exhibited in vitro reversion of oxalate accumulation compared to non-edited PH1-derived iHeps. This strategy set up a potential alternative cellular source for liver cell replacement therapy and a personalized PH1 in vitro disease model.
Collapse
Affiliation(s)
- Virginia Nieto-Romero
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Aida García-Torralba
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Andrea Molinos-Vicente
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Francisco José Moya
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Ramón García-Escudero
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)-ISCIII, Research Institute Hospital 12 de Octubre (imas12)-University Hospital 12 de Octubre, 28040 Madrid, Spain
| | - Eduardo Salido
- Pathology Department, Hospital Universitario de Canarias, Universidad La Laguna, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, 38320 Tenerife, Spain
| | - José-Carlos Segovia
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - María García-Bravo
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| |
Collapse
|
36
|
Wang P, Liu B, Song C, Jia J, Wang Y, Pang K, Wang Y, Chen C. Exosome MiR-21-5p Upregulated by HIF-1α Induces Adipose Stem Cell Differentiation to Promote Ectopic Bone Formation. Chem Biodivers 2024; 21:e202301972. [PMID: 38342761 DOI: 10.1002/cbdv.202301972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Heterotopic bone occurs after burns, trauma and major orthopedic surgery, which cannot be completely cured by current treatments. The development of new treatments requires more in-depth research into the mechanism of HO. Available evidence suggests that miR-21-5p plays an important role in bone formation. However, its mechanism in traumatic HO is still unclear. First, we identified exosomes extracted from L6 cells using TEM observation of the structure and western blotting detection of the surface marker CD63. Regulation effect of HIF-1α to miR-21-5p was confirmed by q-PCR assay. Then we co-cultured L6 cells with ASCs and performed alizarin red staining and ALP detection. Overexpression of miR-21-5p upregulated BMP4, p-smad1/5/8, OCN and OPN, which suggests the BMP4-smad signaling pathway may be involved in miR-21-5p regulation of osteogenic differentiation of ASCs. Finally in vivo experiments showed that miR-21-5p exosomes promoted ectopic formation in traumatized mice. This study confirms that HIF-1α could modulate miR-21-5p exosomes to promote post-traumatic ectopic bone formation by inducing ASCs cell differentiation. Our study reveals the mechanisms of miR-21-5p in ectopic ossification formation after trauma.
Collapse
Affiliation(s)
- Peng Wang
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China
| | - Bo Liu
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China
| | - Chunhao Song
- Department of Medical Imaging, Weihai Wendeng District People Hospital, Weihai, 264200, China
| | - Jun Jia
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China
| | - Yuanhao Wang
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China
| | - Kai Pang
- Department of Operations Management, Wehai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China
| | - Yitao Wang
- Department of Laboratory, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China
| | - Cong Chen
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China
| |
Collapse
|
37
|
Sun C, Xie K, Yang L, Cai S, Wang M, Zhu Y, Tao B, Zhu Y. HDAC6 Enhances Endoglin Expression through Deacetylation of Transcription Factor SP1, Potentiating BMP9-Induced Angiogenesis. Cells 2024; 13:490. [PMID: 38534334 PMCID: PMC10969049 DOI: 10.3390/cells13060490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Histone deacetylase 6 (HDAC6) plays a crucial role in the acetylation of non-histone proteins and is notably implicated in angiogenesis, though its underlying mechanisms were previously not fully understood. This study conducted transcriptomic and proteomic analyses on vascular endothelial cells with HDAC6 knockdown, identifying endoglin (ENG) as a key downstream protein regulated by HDAC6. This protein is vital for maintaining vascular integrity and plays a complex role in angiogenesis, particularly in its interaction with bone morphogenetic protein 9 (BMP9). In experiments using human umbilical vein endothelial cells (HUVECs), the pro-angiogenic effects of BMP9 were observed, which diminished following the knockdown of HDAC6 and ENG. Western blot analysis revealed that BMP9 treatment increased SMAD1/5/9 phosphorylation, a process hindered by HDAC6 knockdown, correlating with reduced ENG expression. Mechanistically, our study indicates that HDAC6 modulates ENG transcription by influencing promoter activity, leading to increased acetylation of transcription factor SP1 and consequently altering its transcriptional activity. Additionally, the study delves into the structural role of HDAC6, particularly its CD2 domain, in regulating SP1 acetylation and subsequently ENG expression. In conclusion, the present study underscores the critical function of HDAC6 in modulating SP1 acetylation and ENG expression, thereby significantly affecting BMP9-mediated angiogenesis. This finding highlights the potential of HDAC6 as a therapeutic target in angiogenesis-related processes.
Collapse
Affiliation(s)
- Chen Sun
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; (C.S.); (K.X.); (L.Y.); (S.C.); (M.W.)
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Avenida WaiLong, Taipa, Macau 999078, China;
| | - Kuifang Xie
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; (C.S.); (K.X.); (L.Y.); (S.C.); (M.W.)
| | - Lejie Yang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; (C.S.); (K.X.); (L.Y.); (S.C.); (M.W.)
| | - Shengyang Cai
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; (C.S.); (K.X.); (L.Y.); (S.C.); (M.W.)
| | - Mingjie Wang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; (C.S.); (K.X.); (L.Y.); (S.C.); (M.W.)
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Avenida WaiLong, Taipa, Macau 999078, China;
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 200433, China
| | - Beibei Tao
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; (C.S.); (K.X.); (L.Y.); (S.C.); (M.W.)
| | - Yichun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai 200032, China; (C.S.); (K.X.); (L.Y.); (S.C.); (M.W.)
| |
Collapse
|
38
|
Sun B, Meng XH, Li YM, Lin H, Xiao ZD. MicroRNA-18a prevents senescence of mesenchymal stem cells by targeting CTDSPL. Aging (Albany NY) 2024; 16:4904-4919. [PMID: 38460957 PMCID: PMC10968691 DOI: 10.18632/aging.205642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/26/2023] [Indexed: 03/11/2024]
Abstract
Stem cell therapy requires massive-scale homogeneous stem cells under strict qualification control. However, Prolonged ex vivo expansion impairs the biological functions and results in senescence of mesenchymal stem cells (MSCs). We investigated the function of CTDSPL in the premature senescence process of MSCs and clarified that miR-18a-5p played a prominent role in preventing senescence of long-term cultured MSCs and promoting the self-renewal ability of MSCs. Over-expression of CTDSPL resulted in an enlarged morphology, up-regulation of p16 and accumulation of SA-β-gal of MSCs. The reduced phosphorylated RB suggested cell cycle arrest of MSCs. All these results implied that CTDSPL induced premature senescence of MSCs. We further demonstrated that miR-18a-5p was a putative regulator of CTDSPL by luciferase reporter assay. Inhibition of miR-18a-5p promoted the expression of CTDSPL and induced premature senescence of MSCs. Continuous overexpression of miR-18a-5p improved self-renewal of MSCs by reducing ROS level, increased expression of Oct4 and Nanog, and promoted growth rate and differentiation capability. We reported for the first time that the dynamic interaction of miR-18a-5p and CTDSPL is crucial for stem cell senescence.
Collapse
Affiliation(s)
- Bo Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xian-Hui Meng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yu-Min Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hao Lin
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhong-Dang Xiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
39
|
Ning P, Du F, Wang H, Gong X, Xia Y, Zhang X, Deng H, Zhang R, Wang Z. Genetically engineered macrophages as living cell drug carriers for targeted cancer therapy. J Control Release 2024; 367:697-707. [PMID: 38331001 DOI: 10.1016/j.jconrel.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Precise targeting is a major prerequisite for effective cancer therapy because it ensures a sufficient therapeutic dosage in tumors while minimizing off-target side effects. Herein, we report a live-macrophage-based therapeutic system for high-efficiency tumor therapy. As a proof of concept, anti-human epidermal growth factor receptor-2 (HER2) affibodies were genetically engineered onto the extracellular membrane of macrophages (AE-Mφ), which further internalized doxorubicin (DOX)-loaded poly(lactic-co-glycolic acid) nanoparticles (NPs) to produce a macrophage-based therapeutic system armed with anti-HER2 affibodies. NPs(DOX)@AE-Mφ were able to target HER2+ cancer cells and specifically elicit affibody-mediated cell therapy. Most importantly, the superior HER2 + -targeting capability of NPs(DOX)@AE-Mφ greatly guaranteed high accumulation at the tumor site for improved chemotherapy, which acted synergistically with cell therapy to significantly enhance anti-tumor efficacy. This study suggests that NPs(DOX)@AE-Mφ could be utilized as an innovative 'living targeted drug' platform for combining both macrophage-mediated cell therapy and targeted chemotherapy for the individualized treatment of solid tumors.
Collapse
Affiliation(s)
- Pengbo Ning
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China.
| | - Fuyu Du
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Haotian Wang
- Department of radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110801, China
| | - Xiaocheng Gong
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Yuqiong Xia
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Xianghan Zhang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Hongzhang Deng
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Ruili Zhang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China.
| | - Zhongliang Wang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China.
| |
Collapse
|
40
|
Gödecke N, Hauser H, Wirth D. Stable Expression by Lentiviral Transduction of Cells. Methods Mol Biol 2024; 2810:147-159. [PMID: 38926278 DOI: 10.1007/978-1-0716-3878-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Lentiviral gene transfer represents a versatile and powerful method for genetic transduction of many cell lines and primary cells including "hard-to-transfect" cells. As a consequence of the integration of the recombinant lentiviral vector into the cellular genome, the transgene is stably maintained, and long-term producing cells are established. Here, we describe the current state of the art and give details for lab-scale production of lentiviral vectors as well as for infection and titration of the viral vectors.
Collapse
Affiliation(s)
- Natascha Gödecke
- Helmholtz Centre for Infection Research, Model Systems for Infection and Immunity (MSYS), Braunschweig, Germany
| | - Hansjörg Hauser
- Helmholtz Centre for Infection Research, Scientific Strategy, Braunschweig, Germany
| | - Dagmar Wirth
- Helmholtz Centre for Infection Research, Model Systems for Infection and Immunity (MSYS), Braunschweig, Germany.
| |
Collapse
|
41
|
Nettles SA, Ikeuchi Y, Lefton KB, Abbasi L, Erickson A, Agwu C, Papouin T, Bonni A, Gabel HW. MeCP2 represses the activity of topoisomerase IIβ in long neuronal genes. Cell Rep 2023; 42:113538. [PMID: 38096051 PMCID: PMC10844882 DOI: 10.1016/j.celrep.2023.113538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/31/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
A unique signature of neurons is the high expression of the longest genes in the genome. These genes have essential neuronal functions, and disruption of their expression has been implicated in neurological disorders. DNA topoisomerases resolve DNA topological constraints and facilitate neuronal long gene expression. Conversely, the Rett syndrome protein, methyl-CpG-binding protein 2 (MeCP2), can transcriptionally repress long genes. How these factors regulate long genes is not well understood, and whether they interact is not known. Here, we identify and map a functional interaction between MeCP2 and topoisomerase IIβ (TOP2β) in mouse neurons. We profile neuronal TOP2β activity genome wide, detecting enrichment at regulatory regions and gene bodies of long genes, including MeCP2-regulated genes. We show that loss and overexpression of MeCP2 alter TOP2β activity at MeCP2-regulated genes. These findings uncover a mechanism of TOP2β inhibition by MeCP2 in neurons and implicate TOP2β dysregulation in disorders caused by MeCP2 disruption.
Collapse
Affiliation(s)
- Sabin A Nettles
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yoshiho Ikeuchi
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katheryn B Lefton
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ladan Abbasi
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alyssa Erickson
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chibueze Agwu
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas Papouin
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
42
|
Teixeira M, Sheta R, Idi W, Oueslati A. Optogenetic-mediated induction and monitoring of α-synuclein aggregation in cellular models of Parkinson's disease. STAR Protoc 2023; 4:102738. [PMID: 37991922 PMCID: PMC10700619 DOI: 10.1016/j.xpro.2023.102738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/09/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Studying Parkinson's disease (PD) is complex due to a lack of cellular models mimicking key aspects of protein pathology. Here, we present a protocol for inducing and monitoring α-synuclein aggregation in living cells using optogenetics. We describe steps for plasmid transduction, biochemical validation, immunocytochemistry, and live-cell confocal imaging. These induced aggregates fulfill the cardinal features of authentic protein inclusions observed in PD-diseased brains and offer a tool to study the role of protein aggregation in neurodegeneration. For complete details on the use and execution of this protocol, please refer to Bérard et al.1.
Collapse
Affiliation(s)
- Maxime Teixeira
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada.
| | - Razan Sheta
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Walid Idi
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Abid Oueslati
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada.
| |
Collapse
|
43
|
Chen CC, Tran W, Song K, Sugimoto T, Obusan MB, Wang L, Sheu KM, Cheng D, Ta L, Varuzhanyan G, Huang A, Xu R, Zeng Y, Borujerdpur A, Bayley NA, Noguchi M, Mao Z, Morrissey C, Corey E, Nelson PS, Zhao Y, Huang J, Park JW, Witte ON, Graeber TG. Temporal evolution reveals bifurcated lineages in aggressive neuroendocrine small cell prostate cancer trans-differentiation. Cancer Cell 2023; 41:2066-2082.e9. [PMID: 37995683 PMCID: PMC10878415 DOI: 10.1016/j.ccell.2023.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/25/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
Trans-differentiation from an adenocarcinoma to a small cell neuroendocrine state is associated with therapy resistance in multiple cancer types. To gain insight into the underlying molecular events of the trans-differentiation, we perform a multi-omics time course analysis of a pan-small cell neuroendocrine cancer model (termed PARCB), a forward genetic transformation using human prostate basal cells and identify a shared developmental, arc-like, and entropy-high trajectory among all transformation model replicates. Further mapping with single cell resolution reveals two distinct lineages defined by mutually exclusive expression of ASCL1 or ASCL2. Temporal regulation by groups of transcription factors across developmental stages reveals that cellular reprogramming precedes the induction of neuronal programs. TFAP4 and ASCL1/2 feedback are identified as potential regulators of ASCL1 and ASCL2 expression. Our study provides temporal transcriptional patterns and uncovers pan-tissue parallels between prostate and lung cancers, as well as connections to normal neuroendocrine cell states.
Collapse
Affiliation(s)
- Chia-Chun Chen
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Wendy Tran
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Kai Song
- Department of Bioengineering, UCLA, Los Angeles, CA, USA
| | - Tyler Sugimoto
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Matthew B Obusan
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Liang Wang
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Katherine M Sheu
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Donghui Cheng
- Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA
| | - Lisa Ta
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Grigor Varuzhanyan
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Arthur Huang
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Runzhe Xu
- Department of Biological Chemistry, UCLA, Los Angeles, CA, USA
| | - Yuanhong Zeng
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Amirreza Borujerdpur
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Nicholas A Bayley
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Miyako Noguchi
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA
| | - Zhiyuan Mao
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Colm Morrissey
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Eva Corey
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA; Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Yue Zhao
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA; Department of Pathology, College of Basic Medical Sciences and the First Hospital, China Medical University, Shenyang, China
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Jung Wook Park
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Owen N Witte
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA; Eli and Edythe Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, USA; Parker Institute for Cancer Immunotherapy, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA; Crump Institute for Molecular Imaging, UCLA, Los Angeles, CA, USA; California NanoSystems Institute, UCLA, Los Angeles, CA, USA; Metabolomics Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
44
|
Huang J, Yang R, Jiao J, Li Z, Wang P, Liu Y, Li S, Chen C, Li Z, Qu G, Chen K, Wu X, Chi B, Ren J. A click chemistry-mediated all-peptide cell printing hydrogel platform for diabetic wound healing. Nat Commun 2023; 14:7856. [PMID: 38030636 PMCID: PMC10687272 DOI: 10.1038/s41467-023-43364-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
High glucose-induced vascular endothelial injury is a major pathological factor involved in non-healing diabetic wounds. To interrupt this pathological process, we design an all-peptide printable hydrogel platform based on highly efficient and precise one-step click chemistry of thiolated γ-polyglutamic acid, glycidyl methacrylate-conjugated γ-polyglutamic acid, and thiolated arginine-glycine-aspartate sequences. Vascular endothelial growth factor 165-overexpressed human umbilical vein endothelial cells are printed using this platform, hence fabricating a living material with high cell viability and precise cell spatial distribution control. This cell-laden hydrogel platform accelerates the diabetic wound healing of rats based on the unabated vascular endothelial growth factor 165 release, which promotes angiogenesis and alleviates damages on vascular endothelial mitochondria, thereby reducing tissue hypoxia, downregulating inflammation, and facilitating extracellular matrix remodeling. Together, this study offers a promising strategy for fabricating tissue-friendly, high-efficient, and accurate 3D printed all-peptide hydrogel platform for cell delivery and self-renewable growth factor therapy.
Collapse
Affiliation(s)
- Jinjian Huang
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiao Jiao
- Department of Rehabilitation, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ze Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ye Liu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Sicheng Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Canwen Chen
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Zongan Li
- Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, NARI School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing, 210042, China
| | - Guiwen Qu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Kang Chen
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China.
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
45
|
Thapa R, Druessel L, Ma L, Torry DS, Bany BM. ATOH8 Expression Is Regulated by BMP2 and Plays a Key Role in Human Endometrial Stromal Cell Decidualization. Endocrinology 2023; 165:bqad188. [PMID: 38060684 PMCID: PMC10729865 DOI: 10.1210/endocr/bqad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Indexed: 12/21/2023]
Abstract
During the secretory phase of the menstrual cycle, elongated fibroblast-like mesenchymal cells in the uterine endometrium begin to transdifferentiate into polygonal epithelioid-like (decidual) cells. This decidualization process continues more broadly during early pregnancy, and the resulting decidual tissue supports successful embryo implantation and placental development. This study was carried out to determine if atonal basic helix-loop-helix transcription factor 8 (ATOH8) plays a role in human endometrial stromal fibroblast (ESF) decidualization. ATOH8 messenger RNA and protein expression levels significantly increased in human ESF cells undergoing in vitro decidualization, with the protein primarily localized to the nucleus. When ATOH8 expression was silenced, the ability of the cells to undergo decidualization was significantly diminished. Overexpression of ATOH8 enhanced the expression of many decidualization markers. Silencing the expression of ATOH8 reduced the expression of FZD4, FOXO1, and several known FOXO1-downstream targets during human ESF cell decidualization. Therefore, ATOH8 may be a major upstream regulator of the WNT/FZD-FOXO1 pathway, previously shown to be critical for human endometrial decidualization. Finally, we explored possible regulators of ATOH8 expression during human ESF decidualization. BMP2 significantly enhanced ATOH8 expression when cells were stimulated to undergo decidualization, while an ALK2/3 inhibitor reduced ATOH8 expression. Finally, although the steroids progesterone plus estradiol did not affect ATOH8 expression, the addition of cyclic adenosine monophosphate (cAMP) analogue alone represented the major effect of ATOH8 expression when cells were stimulated to undergo decidualization. Our results suggest that ATOH8 plays a crucial role in human ESF decidualization and that BMP2 plus cAMP are major regulators of ATOH8 expression.
Collapse
Affiliation(s)
- Rupak Thapa
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Logan Druessel
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Liang Ma
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St Louis, MO 63018, USA
| | - Donald S Torry
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Brent M Bany
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| |
Collapse
|
46
|
Wang L, Fang X, Yang Z, Li X, Cheng M, Cheng L, Wang G, Li W, Liu L. LncRP11-675F6.3 responds to rapamycin treatment and reduces triglyceride accumulation via interacting with HK1 in hepatocytes by regulating autophagy and VLDL-related proteins. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1606-1617. [PMID: 37222534 PMCID: PMC10577451 DOI: 10.3724/abbs.2023091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been widely proven to be involved in liver lipid homeostasis. Herein, we identify an upregulated lncRNA named lncRP11-675F6.3 in response to rapamycin treatment using a microarray in HepG2 cells. Knockdown of lncRP11-675F6. 3 leads to a significant reduction in apolipoprotein 100 (ApoB100), microsomal triglyceride transfer protein (MTTP), ApoE and ApoC3 with increased cellular triglyceride level and autophagy. Furthermore, we find that ApoB100 is obviously colocalized with GFP-LC3 in autophagosomes when lncRP11-675F6. 3 is knocked down, indicating that elevated triglyceride accumulation likely related to autophagy induces the degradation of ApoB100 and impairs very low-density lipoprotein (VLDL) assembly. We then identify and validate that hexokinase 1 (HK1) acts as the binding protein of lncRP11-675F6.3 and mediates triglyceride regulation and cell autophagy. More importantly, we find that lncRP11-675F6.3 and HK1 attenuate high fat diet induced nonalcoholic fatty liver disease (NAFLD) by regulating VLDL-related proteins and autophagy. In conclusion, this study reveals that lncRP11-675F6.3 is potentially involved in the downstream of mTOR signaling pathway and the regulatory network of hepatic triglyceride metabolism in cooperation with its interacting protein HK1, which may provide a new target for fatty liver disorder treatment.
Collapse
Affiliation(s)
- Lingling Wang
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Xiaojuan Fang
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Ziyou Yang
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Xueling Li
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Mengdi Cheng
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Liang Cheng
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Ganglin Wang
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Wei Li
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
| | - Lin Liu
- Key Laboratory of Laboratory MedicineMinistry of Education of ChinaZhejiang Provincial Key Laboratory of Medical GeneticsSchool of Laboratory Medicine and Life SciencesWenzhou Medical UniversityWenzhou325035China
- Zhuji Affiliated Hospital of Wenzhou Medical UniversityShaoxing311800China
| |
Collapse
|
47
|
Pereira RS, Kumar R, Cais A, Paulini L, Kahler A, Bravo J, Minciacchi VR, Krack T, Kowarz E, Zanetti C, Godavarthy PS, Hoeller F, Llavona P, Stark T, Tascher G, Nowak D, Meduri E, Huntly BJP, Münch C, Pampaloni F, Marschalek R, Krause DS. Distinct and targetable role of calcium-sensing receptor in leukaemia. Nat Commun 2023; 14:6242. [PMID: 37802982 PMCID: PMC10558580 DOI: 10.1038/s41467-023-41770-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 09/12/2023] [Indexed: 10/08/2023] Open
Abstract
Haematopoietic stem cells (HSC) reside in the bone marrow microenvironment (BMM), where they respond to extracellular calcium [eCa2+] via the G-protein coupled calcium-sensing receptor (CaSR). Here we show that a calcium gradient exists in this BMM, and that [eCa2+] and response to [eCa2+] differ between leukaemias. CaSR influences the location of MLL-AF9+ acute myeloid leukaemia (AML) cells within this niche and differentially impacts MLL-AF9+ AML versus BCR-ABL1+ leukaemias. Deficiency of CaSR reduces AML leukaemic stem cells (LSC) 6.5-fold. CaSR interacts with filamin A, a crosslinker of actin filaments, affects stemness-associated factors and modulates pERK, β-catenin and c-MYC signaling and intracellular levels of [Ca2+] in MLL-AF9+ AML cells. Combination treatment of cytarabine plus CaSR-inhibition in various models may be superior to cytarabine alone. Our studies suggest CaSR to be a differential and targetable factor in leukaemia progression influencing self-renewal of AML LSC via [eCa2+] cues from the BMM.
Collapse
Affiliation(s)
- Raquel S Pereira
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Alessia Cais
- Pediatric Neurooncology, Hopp Children's Cancer Center Heidelberg (KiTZ) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lara Paulini
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Alisa Kahler
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Jimena Bravo
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Valentina R Minciacchi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Theresa Krack
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Eric Kowarz
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt am Main, Germany
| | - Costanza Zanetti
- University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Fabian Hoeller
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Pablo Llavona
- Institute of Molecular Biology gGmbH (IMB), Mainz, Germany
| | - Tabea Stark
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Eshwar Meduri
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Brian J P Huntly
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS, CEF-MC), Goethe University, Frankfurt am Main, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt am Main, Germany
| | - Daniela S Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany.
- Institute of General Pharmacology and Toxicology, Goethe-University, Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- Frankfurt Cancer Institute, Frankfurt, Germany.
| |
Collapse
|
48
|
Schafer CT, Chen Q, Tesmer JJG, Handel TM. Atypical Chemokine Receptor 3 "Senses" CXC Chemokine Receptor 4 Activation Through GPCR Kinase Phosphorylation. Mol Pharmacol 2023; 104:174-186. [PMID: 37474305 PMCID: PMC11033958 DOI: 10.1124/molpharm.123.000710] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/22/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023] Open
Abstract
Atypical chemokine receptor 3 (ACKR3) is an arrestin-biased receptor that regulates extracellular chemokine levels through scavenging. The scavenging process restricts the availability of the chemokine agonist CXCL12 for the G protein-coupled receptor (GPCR) CXCR4 and requires phosphorylation of the ACKR3 C-terminus by GPCR kinases (GRKs). ACKR3 is phosphorylated by GRK2 and GRK5, but the mechanisms by which these kinases regulate the receptor are unresolved. Here we determined that GRK5 phosphorylation of ACKR3 results in more efficient chemokine scavenging and β-arrestin recruitment than phosphorylation by GRK2 in HEK293 cells. However, co-activation of CXCR4-enhanced ACKR3 phosphorylation by GRK2 through the liberation of Gβγ, an accessory protein required for efficient GRK2 activity. The results suggest that ACKR3 "senses" CXCR4 activation through a GRK2-dependent crosstalk mechanism, which enables CXCR4 to influence the efficiency of CXCL12 scavenging and β-arrestin recruitment to ACKR3. Surprisingly, we also found that despite the requirement for phosphorylation and the fact that most ligands promote β-arrestin recruitment, β-arrestins are dispensable for ACKR3 internalization and scavenging, suggesting a yet-to-be-determined function for these adapter proteins. Since ACKR3 is also a receptor for CXCL11 and opioid peptides, these data suggest that such crosstalk may also be operative in cells with CXCR3 and opioid receptor co-expression. Additionally, kinase-mediated receptor cross-regulation may be relevant to other atypical and G protein-coupled receptors that share common ligands. SIGNIFICANCE STATEMENT: The atypical receptor ACKR3 indirectly regulates CXCR4-mediated cell migration by scavenging their shared agonist CXCL12. Here, we show that scavenging and β-arrestin recruitment by ACKR3 are primarily dependent on phosphorylation by GRK5. However, we also show that CXCR4 co-activation enhances the contribution of GRK2 by liberating Gβγ. This phosphorylation crosstalk may represent a common feedback mechanism between atypical and G protein-coupled receptors with shared ligands for regulating the efficiency of scavenging or other atypical receptor functions.
Collapse
Affiliation(s)
- Christopher T Schafer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (C.T.S., T.M.H.) and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (Q.C., J.J.G.T.)
| | - Qiuyan Chen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (C.T.S., T.M.H.) and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (Q.C., J.J.G.T.)
| | - John J G Tesmer
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (C.T.S., T.M.H.) and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (Q.C., J.J.G.T.)
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California (C.T.S., T.M.H.) and Departments of Biological Sciences and of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (Q.C., J.J.G.T.)
| |
Collapse
|
49
|
Sheta R, Teixeira M, Idi W, Oueslati A. Optimized protocol for the generation of functional human induced-pluripotent-stem-cell-derived dopaminergic neurons. STAR Protoc 2023; 4:102486. [PMID: 37515763 PMCID: PMC10400954 DOI: 10.1016/j.xpro.2023.102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/31/2023] Open
Abstract
Generation of functional human dopaminergic (DA) neurons from human induced pluripotent stem cells (hiPSCs) is a crucial tool for modeling dopamine-related human diseases and cell replacement therapies. Here, we present a protocol to combine neuralizing transcription factor (NGN2) programming and DA patterning to differentiate hiPSCs into mature and functional induced DA (iDA) neurons. We describe steps from transduction of hiPSCs and neural induction through to differentiation and maturation of near-pure, fully functional iDA neurons within 3 weeks. For complete details on the use and execution of this protocol, please refer to Sheta et al. (2022).1.
Collapse
Affiliation(s)
- Razan Sheta
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| | - Maxime Teixeira
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Walid Idi
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Abid Oueslati
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, QC, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
50
|
Dzien P, Mackintosh A, Malviya G, Johnson E, Soloviev D, Brown G, Uribe AH, Nixon C, Lyons SK, Maddocks O, Blyth K, Lewis DY. Positron emission tomography imaging of the sodium iodide symporter senses real-time energy stress in vivo. Cancer Metab 2023; 11:14. [PMID: 37679822 PMCID: PMC10486058 DOI: 10.1186/s40170-023-00314-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Tissue environment is critical in determining tumour metabolic vulnerability. However, in vivo drug testing is slow and waiting for tumour growth delay may not be the most appropriate endpoint for metabolic treatments. An in vivo method for measuring energy stress would rapidly determine tumour targeting in a physiologically relevant environment. The sodium-iodide symporter (NIS) is an imaging reporter gene whose protein product co-transports sodium and iodide, and positron emission tomography (PET) radiolabelled anions into the cell. Here, we show that PET imaging of NIS-mediated radiotracer uptake can rapidly visualise tumour energy stress within minutes following in vivo treatment. METHODS We modified HEK293T human embryonic kidney cells, and A549 and H358 lung cancer cells to express transgenic NIS. Next, we subjected these cells and implanted tumours to drugs known to induce metabolic stress to observe the impact on NIS activity and energy charge. We used [18F]tetrafluoroborate positron emission tomography (PET) imaging to non-invasively image NIS activity in vivo. RESULTS NIS activity was ablated by treating HEK293T cells in vitro, with the Na+/K+ ATPase inhibitor digoxin, confirming that radiotracer uptake was dependent on the sodium-potassium concentration gradient. NIS-mediated radiotracer uptake was significantly reduced (- 58.2%) following disruptions to ATP re-synthesis by combined glycolysis and oxidative phosphorylation inhibition in HEK293T cells and by oxidative phosphorylation inhibition (- 16.6%) in A549 cells in vitro. PET signal was significantly decreased (- 56.5%) within 90 min from the onset of treatment with IACS-010759, an oxidative phosphorylation inhibitor, in subcutaneous transgenic A549 tumours in vivo, showing that NIS could rapidly and sensitively detect energy stress non-invasively, before more widespread changes to phosphorylated AMP-activated protein kinase, phosphorylated pyruvate dehydrogenase, and GLUT1 were detectable. CONCLUSIONS NIS acts as a rapid metabolic sensor for drugs that lead to ATP depletion. PET imaging of NIS could facilitate in vivo testing of treatments targeting energetic pathways, determine drug potency, and expedite metabolic drug development.
Collapse
Affiliation(s)
- Piotr Dzien
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Agata Mackintosh
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Gaurav Malviya
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Emma Johnson
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Dmitry Soloviev
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Gavin Brown
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | | | - Colin Nixon
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Scott K Lyons
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Oliver Maddocks
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - David Y Lewis
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|