1
|
Guizetti J. Imaging malaria parasites across scales and time. J Microsc 2025. [PMID: 39749880 DOI: 10.1111/jmi.13384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
The idea that disease is caused at the cellular level is so fundamental to us that we might forget the critical role microscopy played in generating and developing this insight. Visually identifying diseased or infected cells lays the foundation for any effort to curb human pathology. Since the discovery of the Plasmodium-infected red blood cells, which cause malaria, microscopy has undergone an impressive development now literally resolving individual molecules. This review explores the expansive field of light microscopy, focusing on its application to malaria research. Imaging technologies have transformed our understanding of biological systems, yet navigating the complex and ever-growing landscape of techniques can be daunting. This review offers a guide for researchers, especially those working on malaria, by providing historical context as well as practical advice on selecting the right imaging approach. The review advocates an integrated methodology that prioritises the research question while considering key factors like sample preparation, fluorophore choice, imaging modality, and data analysis. In addition to presenting seminal studies and innovative applications of microscopy, the review highlights a broad range of topics, from traditional techniques like white light microscopy to advanced methods such as superresolution microscopy and time-lapse imaging. It addresses the emerging challenges of microscopy, including phototoxicity and trade-offs in resolution and speed, and offers insights into future technologies that might impact malaria research. This review offers a mix of historical perspective, technological progress, and practical guidance that appeal to novice and advanced microscopists alike. It aims to inspire malaria researchers to explore imaging techniques that could enrich their studies, thus advancing the field through enhanced visual exploration of the parasite across scales and time.
Collapse
Affiliation(s)
- Julien Guizetti
- Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
2
|
E H, Zhang L, Yang Z, Xu L, Wang T, Guo J, Xia L, Yu J, Wang H, She Y, Wu J, Zhao Y, Chen C, Zhao D. SNAI1 promotes epithelial-mesenchymal transition and maintains cancer stem cell-like properties in thymic epithelial tumors through the PIK3R2/p-EphA2 Axis. J Exp Clin Cancer Res 2024; 43:324. [PMID: 39702326 DOI: 10.1186/s13046-024-03243-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Thymic epithelial tumors (TETs) are infrequent malignancies that arise from the anterior mediastinum. Therapeutic options for TETs, especially thymic carcinoma (TC), remain relatively constrained. This study aims to investigate the oncogenic hub gene and its underlying mechanisms in TETs, as well as to identify potential therapeutic targets. METHODS Weighted gene co-expression network analysis (WGCNA) and differential gene expression (DEG) analysis were utilized to identify significant oncogenes using The Cancer Genome Atlas (TCGA) database. LASSO logistic regression analysis was performed to assess the association between hub genes and clinical parameters. The influence of the hub gene on promoting epithelial-mesenchymal transition (EMT), tumor progression, and regulating cancer stem cell-like properties was assessed both in vitro and in vivo. Single-cell RNA sequencing (scRNA-seq) was utilized to analyze the alterations in the tumor and its microenvironment following the administration of the hub gene's inhibitor. Multiplex immunohistochemistry (mIHC) was employed to validate the results. The potential mechanism was further elucidated through the utilization of Cleavage Under Targets and Tagmentation (CUT&Tag), RNA-sequencing, chromatin immunoprecipitation (ChIP), CUT&RUN, luciferase reporter assay, co-immunoprecipitation (Co-IP), mass spectrometry (MS) and phosphoproteomic assays. RESULTS SNAI1 was identified as a hub transcription factor for TETs, and its positive correlation with the invasiveness of the disease was confirmed. Subsequent experiments revealed that the upregulation of SNAI1 augmented the migration, invasion, and EMT of TET cell lines. Furthermore, we observed that the overexpression of SNAI1 sustained cancer stem cell-like properties. ScRNA-seq demonstrated that the use of a SNAI1 inhibitor inhibited the transition of macrophages from M1 to M2 phenotype, a finding further validated by multiplex immunohistochemistry (mIHC). Phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2) was identified as one of the downstream targets of SNAI1 through CUT&Tag and RNA-sequencing, a finding validated by ChIP-qPCR, CUT&RUN-qPCR, luciferase reporter and immunofluorescence assays. Co-IP, MS and phosphoproteomic assays further confirmed that PIK3R2 directly interacted with phosphorylated EphA2 (p-EphA2), facilitating downstream GSK3β/β-catenin signaling pathway. CONCLUSION The tumorigenic role of SNAI1 through the PIK3R2/p-EphA2 axis was preliminarily validated in TETs. A potential therapeutic strategy for TETs may involve the inhibition of SNAI1.
Collapse
Affiliation(s)
- Haoran E
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Lei Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Zhenhua Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
- Department of Thoracic Surgery, Ningbo No.2 Hospital, Ningbo, 315000, China
| | - Long Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Tao Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Junhong Guo
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Lang Xia
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Juemin Yu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Heyong Wang
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yunlang She
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Junqi Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Yue Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Deping Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| |
Collapse
|
3
|
Mishra A, Paul P, Srivastava M, Mishra S. A Plasmodium late liver stage arresting GAP provides superior protection in mice. NPJ Vaccines 2024; 9:193. [PMID: 39424860 PMCID: PMC11489731 DOI: 10.1038/s41541-024-00975-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/19/2024] [Indexed: 10/21/2024] Open
Abstract
Liver-stage genetically attenuated malaria parasites (GAPs) are powerful immunogens that provide protection against sporozoite challenge. We previously generated two late liver-stage-arresting GAPs by deleting the stearoyl-CoA desaturase (Scd) or sporozoite conserved orthologous transcript 1 (Scot1) genes in Plasmodium berghei. Immunization with Scd or Scot1 GAP conferred complete protection against a sporozoite challenge. In a safety study, we observed rare breakthrough blood-stage infections in mice inoculated with high doses of sporozoites, indicating that both GAPs were incompletely attenuated. In this study, we generated a Scd/Scot1 GAP by dual gene deletion. This resulted in complete attenuation of the parasites in the liver and did not transition to blood-stage infection despite a high-dose sporozoite challenge. The Scd/Scot1 KO and WT GFP parasites were indistinguishable during blood, mosquito and early liver stage development. Moreover, Scd/Scot1 KO liver-stage schizonts exhibited an abnormal apicoplast biogenesis and nuclear division phenotype, failed to form hepatic merozoites, and exhibited late liver-stage arrest. Compared with early-arresting Speld KO immunization, late-stage liver-arresting Scd/Scot1 KO induces greater and broader CD8+ T-cell responses and elicits stage-transcending immunity that provides superior protection in C57BL/6 mice. These data prove that multiple gene deletions lead to complete attenuation of the parasite and support the development of late liver stage-arresting P. falciparum GAP.
Collapse
Affiliation(s)
- Akancha Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Plabita Paul
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mrigank Srivastava
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Satish Mishra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Olatunde AC, Cornwall DH, Roedel M, Lamb TJ. Mouse Models for Unravelling Immunology of Blood Stage Malaria. Vaccines (Basel) 2022; 10:1525. [PMID: 36146602 PMCID: PMC9501382 DOI: 10.3390/vaccines10091525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Malaria comprises a spectrum of disease syndromes and the immune system is a major participant in malarial disease. This is particularly true in relation to the immune responses elicited against blood stages of Plasmodium-parasites that are responsible for the pathogenesis of infection. Mouse models of malaria are commonly used to dissect the immune mechanisms underlying disease. While no single mouse model of Plasmodium infection completely recapitulates all the features of malaria in humans, collectively the existing models are invaluable for defining the events that lead to the immunopathogenesis of malaria. Here we review the different mouse models of Plasmodium infection that are available, and highlight some of the main contributions these models have made with regards to identifying immune mechanisms of parasite control and the immunopathogenesis of malaria.
Collapse
Affiliation(s)
| | | | | | - Tracey J. Lamb
- Department of Pathology, University of Utah, Emma Eccles Jones Medical Research Building, 15 N Medical Drive E, Room 1420A, Salt Lake City, UT 84112, USA
| |
Collapse
|
5
|
Song X, Wei W, Cheng W, Zhu H, Wang W, Dong H, Li J. Cerebral malaria induced by plasmodium falciparum: clinical features, pathogenesis, diagnosis, and treatment. Front Cell Infect Microbiol 2022; 12:939532. [PMID: 35959375 PMCID: PMC9359465 DOI: 10.3389/fcimb.2022.939532] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral malaria (CM) caused by Plasmodium falciparum is a fatal neurological complication of malaria, resulting in coma and death, and even survivors may suffer long-term neurological sequelae. In sub-Saharan Africa, CM occurs mainly in children under five years of age. Although intravenous artesunate is considered the preferred treatment for CM, the clinical efficacy is still far from satisfactory. The neurological damage induced by CM is irreversible and lethal, and it is therefore of great significance to unravel the exact etiology of CM, which may be beneficial for the effective management of this severe disease. Here, we review the clinical characteristics, pathogenesis, diagnosis, and clinical therapy of CM, with the aim of providing insights into the development of novel tools for improved CM treatments.
Collapse
Affiliation(s)
- Xiaonan Song
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Wei Wei
- Beijing School of Chemistry and Bioengineering, University of Science and Technology Beijing, Beijing, China
| | - Weijia Cheng
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Huiyin Zhu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Wei Wang
- Key Laboratory of National Health Commission on Technology for Parasitic Diseases Prevention and Control, Jiangsu Provincial Key Laboratory on Parasites and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Haifeng Dong
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Jian Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
6
|
PET Imaging of Translocator Protein as a Marker of Malaria-Associated Lung Inflammation. Infect Immun 2021; 89:e0002421. [PMID: 34251290 DOI: 10.1128/iai.00024-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose. Malaria-associated acute respiratory distress syndrome (MA-ARDS) is a severe complication of malaria despite effective anti-malarial treatment. Currently, non-invasive imaging procedures such as chest X-rays are used to assess oedema in established MA-ARDS but earlier detection methods are needed to reduce morbidity and mortality. The early stages of MA-ARDS are characterized by the infiltration of leukocytes, in particular monocyte/macrophages, thus monitoring of immune infiltrates may provide a useful indicator of early pathology. Procedures. Plasmodium berghei ANKA-infected C57BL/6 mice, a rodent malaria model of MA-ARDS, were longitudinally imaged using the TSPO imaging agent [18F]FEPPA as a marker of macrophage accumulation during the development of pathology and response to combined artesunate and chloroquine diphosphate therapy (ART+CQ). [18F]FEPPA uptake was compared to blood parasitemia levels and pulmonary immune cell infiltrates using flow cytometry. Results. Infected animals showed rapid increases lung retention of [18F]FEPPA, correlating well with increases in blood parasitemia and pulmonary accumulation of interstitial inflammatory macrophages and MHC II+ alveolar macrophages. Treatment with ART+CQ therapy abrogated this increase in parasitemia and significantly reduced both lung uptake of [18F]FEPPA and macrophage infiltrates. Conclusions. Retention of [18F]FEPPA in the lungs is well correlated with changes in blood parasitemia and lung associated macrophages during disease progression and in response to ART+CQ therapy. With further development TSPO biomarkers may have the potential to be able to accurately assess early onset of MA-ARDS.
Collapse
|
7
|
Afifi MA. The Parasites Caught In-Action: Imaging at the Host-Parasite Interface. J Microsc Ultrastruct 2021; 9:1-6. [PMID: 33850705 PMCID: PMC8030542 DOI: 10.4103/jmau.jmau_1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/02/2020] [Accepted: 01/21/2020] [Indexed: 11/24/2022] Open
Abstract
For many decades, scientists were unable to expose the invisible existence of the parasites in their living hosts, except by scarification and then dissection of the animal model. This process just demonstrates a dead parasite in a dead host. Using this approach, very limited information can be obtained concerning the dynamics of infection and the pathways utilized by the parasite to survive within a hostile host's environment. Introduction of ultra-high-speed imaging techniques, with a time domain of barely few microseconds or even less, has revolutionized the "in vivo dissection" of the parasites. Such methods provide platforms for imaging host-parasite interactions at diverse scales, down to the molecular level. These have complementary advantages and relative assets in investigating host-parasite interactions. Therefore, better elucidation of such interaction may require the usage of more than one approach. Precise in vivo quantification, of the parasite load within the host, and better insight into the kinetics of infection are the two main advantages of the novel imaging procedures. However, imaging parasite-host interplay is still a challenging approach due to many constraints related to the parasite biology, the tissue environment within which the parasites exist, and the logistic technical limitations. This review was planned to assist better understanding of how much the new imaging techniques impacted the recent advances in parasite biology, especially the immunobiology of protozoan parasites.
Collapse
Affiliation(s)
- Mohammed A. Afifi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Parasitology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
8
|
Khoury DS, Zaloumis SG, Grigg MJ, Haque A, Davenport MP. Malaria Parasite Clearance: What Are We Really Measuring? Trends Parasitol 2020; 36:413-426. [PMID: 32298629 DOI: 10.1016/j.pt.2020.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 01/22/2023]
Abstract
Antimalarial drugs are vital for treating malaria and controlling transmission. Measuring drug efficacy in the field requires large clinical trials and thus we have identified proxy measures of drug efficacy such as the parasite clearance curve. This is often assumed to measure the rate of drug activity against parasites and is used to predict optimal treatment regimens required to completely clear a blood-stage infection. We discuss evidence that the clearance curve is not measuring the rate of drug killing. This has major implications for how we assess optimal treatment regimens, as well as how we prioritise new drugs in the drug development pipeline.
Collapse
Affiliation(s)
- David S Khoury
- Kirby Institute, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Sophie G Zaloumis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | | | | | | | | |
Collapse
|
9
|
Claser C, Nguee SYT, Balachander A, Wu Howland S, Becht E, Gunasegaran B, Hartimath SV, Lee AWQ, Theng Theng Ho J, Bing Ong C, Newell EW, Goggi J, Guan Ng L, Renia L. Lung endothelial cell antigen cross-presentation to CD8 +T cells drives malaria-associated lung injury. Nat Commun 2019; 10:4241. [PMID: 31534124 PMCID: PMC6751193 DOI: 10.1038/s41467-019-12017-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/15/2019] [Indexed: 01/08/2023] Open
Abstract
Malaria-associated acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) are life-threatening manifestations of severe malaria infections. The pathogenic mechanisms that lead to respiratory complications, such as vascular leakage, remain unclear. Here, we confirm that depleting CD8+T cells with anti-CD8β antibodies in C57BL/6 mice infected with P. berghei ANKA (PbA) prevent pulmonary vascular leakage. When we transfer activated parasite-specific CD8+T cells into PbA-infected TCRβ-/- mice (devoid of all T-cell populations), pulmonary vascular leakage recapitulates. Additionally, we demonstrate that PbA-infected erythrocyte accumulation leads to lung endothelial cell cross-presentation of parasite antigen to CD8+T cells in an IFNγ-dependent manner. In conclusion, pulmonary vascular damage in ALI is a consequence of IFNγ-activated lung endothelial cells capturing, processing, and cross-presenting malaria parasite antigen to specific CD8+T cells induced during infection. The mechanistic understanding of the immunopathogenesis in malaria-associated ARDS and ALI provide the basis for development of adjunct treatments.
Collapse
Affiliation(s)
- Carla Claser
- Singapore Immunology Network (SIgN), A*STAR, 8A Biomedical Grove, Level 3 & 4 Immunos Building, Singapore, 138648, Singapore.
| | - Samantha Yee Teng Nguee
- Singapore Immunology Network (SIgN), A*STAR, 8A Biomedical Grove, Level 3 & 4 Immunos Building, Singapore, 138648, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2 Blk MD4, Level 3, Singapore, 117545, Singapore
| | - Akhila Balachander
- Singapore Immunology Network (SIgN), A*STAR, 8A Biomedical Grove, Level 3 & 4 Immunos Building, Singapore, 138648, Singapore
| | - Shanshan Wu Howland
- Singapore Immunology Network (SIgN), A*STAR, 8A Biomedical Grove, Level 3 & 4 Immunos Building, Singapore, 138648, Singapore
| | - Etienne Becht
- Singapore Immunology Network (SIgN), A*STAR, 8A Biomedical Grove, Level 3 & 4 Immunos Building, Singapore, 138648, Singapore
| | - Bavani Gunasegaran
- Singapore Immunology Network (SIgN), A*STAR, 8A Biomedical Grove, Level 3 & 4 Immunos Building, Singapore, 138648, Singapore
| | - Siddesh V Hartimath
- Isotopic Molecular Imaging Laboratory, Singapore Bioimaging Consortium (SBIC), A*STAR, 11 Biopolis Way, #02-02 Helios, Singapore, 138667, Singapore
| | - Audrey W Q Lee
- Singapore Immunology Network (SIgN), A*STAR, 8A Biomedical Grove, Level 3 & 4 Immunos Building, Singapore, 138648, Singapore
| | - Jacqueline Theng Theng Ho
- Singapore Immunology Network (SIgN), A*STAR, 8A Biomedical Grove, Level 3 & 4 Immunos Building, Singapore, 138648, Singapore
| | - Chee Bing Ong
- Histolopathology/Advanced Molecular Pathology Lab, Institute of Molecular and Cell Biology (IMCB), A*STAR, 61 Biopolis Drive, Level 6 Proteos Building, Singapore, 138673, Singapore
| | - Evan W Newell
- Singapore Immunology Network (SIgN), A*STAR, 8A Biomedical Grove, Level 3 & 4 Immunos Building, Singapore, 138648, Singapore
| | - Julian Goggi
- Isotopic Molecular Imaging Laboratory, Singapore Bioimaging Consortium (SBIC), A*STAR, 11 Biopolis Way, #02-02 Helios, Singapore, 138667, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR, 8A Biomedical Grove, Level 3 & 4 Immunos Building, Singapore, 138648, Singapore
| | - Laurent Renia
- Singapore Immunology Network (SIgN), A*STAR, 8A Biomedical Grove, Level 3 & 4 Immunos Building, Singapore, 138648, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2 Blk MD4, Level 3, Singapore, 117545, Singapore.
| |
Collapse
|
10
|
Khoury DS, Aogo R, Randriafanomezantsoa-Radohery G, McCaw JM, Simpson JA, McCarthy JS, Haque A, Cromer D, Davenport MP. Within-host modeling of blood-stage malaria. Immunol Rev 2019; 285:168-193. [PMID: 30129195 DOI: 10.1111/imr.12697] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Malaria infection continues to be a major health problem worldwide and drug resistance in the major human parasite species, Plasmodium falciparum, is increasing in South East Asia. Control measures including novel drugs and vaccines are in development, and contributions to the rational design and optimal usage of these interventions are urgently needed. Infection involves the complex interaction of parasite dynamics, host immunity, and drug effects. The long life cycle (48 hours in the common human species) and synchronized replication cycle of the parasite population present significant challenges to modeling the dynamics of Plasmodium infection. Coupled with these, variation in immune recognition and drug action at different life cycle stages leads to further complexity. We review the development and progress of "within-host" models of Plasmodium infection, and how these have been applied to understanding and interpreting human infection and animal models of infection.
Collapse
Affiliation(s)
| | - Rosemary Aogo
- Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | | | - James M McCaw
- School of Mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia.,Peter Doherty Institute for Infection and Immunity, The Royal Melbourne Hospital and University of Melbourne, Melbourne, VIC, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | | |
Collapse
|
11
|
γδ-T cells promote IFN-γ-dependent Plasmodium pathogenesis upon liver-stage infection. Proc Natl Acad Sci U S A 2019; 116:9979-9988. [PMID: 31028144 DOI: 10.1073/pnas.1814440116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cerebral malaria (CM) is a major cause of death due to Plasmodium infection. Both parasite and host factors contribute to the onset of CM, but the precise cellular and molecular mechanisms that contribute to its pathogenesis remain poorly characterized. Unlike conventional αβ-T cells, previous studies on murine γδ-T cells failed to identify a nonredundant role for this T cell subset in experimental cerebral malaria (ECM). Here we show that mice lacking γδ-T cells are resistant to ECM when infected with Plasmodium berghei ANKA sporozoites, the liver-infective form of the parasite and the natural route of infection, in contrast with their susceptible phenotype if challenged with P. berghei ANKA-infected red blood cells that bypass the liver stage of infection. Strikingly, the presence of γδ-T cells enhanced the expression of Plasmodium immunogenic factors and exacerbated subsequent systemic and brain-infiltrating inflammatory αβ-T cell responses. These phenomena were dependent on the proinflammatory cytokine IFN-γ, which was required during liver stage for modulation of the parasite transcriptome, as well as for downstream immune-mediated pathology. Our work reveals an unanticipated critical role of γδ-T cells in the development of ECM upon Plasmodium liver-stage infection.
Collapse
|
12
|
Abstract
Malaria is a causative factor in about 500.000 deaths each year world-wide. Cerebral malaria is a particularly severe complication of this disease and thus associated with an exceedingly high mortality. Malaria retinopathy is an ocular manifestation often associated with cerebral malaria, and presumably shares a substantial part of its pathophysiology. Here, we describe that indeed murine malaria retinopathy reproduced the main hallmarks of the corresponding human disease. In the living animal, we were able to follow the circulation and cellular localization of malaria parasites transgenically labelled with GFP via non-invasive in vivo retinal imaging. We found that malaria parasites cross the blood-retinal-barrier and infiltrate the neuroretina, concomitant with an extensive, irreversible, and long-lasting retinal neurodegeneration. Furthermore, anti-malarial treatment with dihydroartemisinin strongly diminished the load of circulating parasites but resolved the symptoms of the retinopathy only in part. In summary, we introduce here a novel preclinical model for human cerebral malaria that is much more directly accessible for studies into disease pathophysiology and development of novel treatment approaches. In vivo retinal imaging may furthermore serve as a valuable tool for the early diagnosis of the human disease.
Collapse
|
13
|
A Plasmodium Parasite with Complete Late Liver Stage Arrest Protects against Preerythrocytic and Erythrocytic Stage Infection in Mice. Infect Immun 2018; 86:IAI.00088-18. [PMID: 29440367 DOI: 10.1128/iai.00088-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 02/05/2018] [Indexed: 01/28/2023] Open
Abstract
Genetically attenuated malaria parasites (GAP) that arrest during liver stage development are powerful immunogens and afford complete and durable protection against sporozoite infection. Late liver stage-arresting GAP provide superior protection against sporozoite challenge in mice compared to early live stage-arresting attenuated parasites. However, very few late liver stage-arresting GAP have been generated to date. Therefore, identification of additional loci that are critical for late liver stage development and can be used to generate novel late liver stage-arresting GAPs is of importance. We further explored genetic attenuation in Plasmodium yoelii by combining two gene deletions, PlasMei2 and liver-specific protein 2 (LISP2), that each cause late liver stage arrest with various degrees of infrequent breakthrough to blood stage infection. The dual gene deletion resulted in a synthetic lethal phenotype that caused complete attenuation in a highly susceptible mouse strain. P. yoeliiplasmei2-lisp2- arrested late in liver stage development and did not persist in livers beyond 3 days after infection. Immunization with this GAP elicited robust protective antibody responses in outbred and inbred mice against sporozoites, liver stages, and blood stages as well as eliciting protective liver-resident T cells. The immunization afforded protection against both sporozoite challenge and blood stage challenge. These findings provide evidence that completely attenuated late liver stage-arresting GAP are achievable via the synthetic lethal approach and might enable a path forward for the creation of a completely attenuated late liver stage-arresting P. falciparum GAP.
Collapse
|
14
|
Avci P, Karimi M, Sadasivam M, Antunes-Melo WC, Carrasco E, Hamblin MR. In-vivo monitoring of infectious diseases in living animals using bioluminescence imaging. Virulence 2017; 9:28-63. [PMID: 28960132 PMCID: PMC6067836 DOI: 10.1080/21505594.2017.1371897] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Traditional methods of localizing and quantifying the presence of pathogenic microorganisms in living experimental animal models of infections have mostly relied on sacrificing the animals, dissociating the tissue and counting the number of colony forming units. However, the discovery of several varieties of the light producing enzyme, luciferase, and the genetic engineering of bacteria, fungi, parasites and mice to make them emit light, either after administration of the luciferase substrate, or in the case of the bacterial lux operon without any exogenous substrate, has provided a new alternative. Dedicated bioluminescence imaging (BLI) cameras can record the light emitted from living animals in real time allowing non-invasive, longitudinal monitoring of the anatomical location and growth of infectious microorganisms as measured by strength of the BLI signal. BLI technology has been used to follow bacterial infections in traumatic skin wounds and burns, osteomyelitis, infections in intestines, Mycobacterial infections, otitis media, lung infections, biofilm and endodontic infections and meningitis. Fungi that have been engineered to be bioluminescent have been used to study infections caused by yeasts (Candida) and by filamentous fungi. Parasitic infections caused by malaria, Leishmania, trypanosomes and toxoplasma have all been monitored by BLI. Viruses such as vaccinia, herpes simplex, hepatitis B and C and influenza, have been studied using BLI. This rapidly growing technology is expected to continue to provide much useful information, while drastically reducing the numbers of animals needed in experimental studies.
Collapse
Affiliation(s)
- Pinar Avci
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,b Department of Dermatology , Harvard Medical School , Boston , MA , USA
| | - Mahdi Karimi
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,c Department of Medical Nanotechnology , School of Advanced Technologies in Medicine, Iran University of Medical Sciences , Tehran , Iran.,d Cellular and Molecular Research Center, Iran University of Medical Sciences , Tehran , Iran
| | - Magesh Sadasivam
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,e Amity Institute of Nanotechnology, Amity University Uttar Pradesh , Noida , India
| | - Wanessa C Antunes-Melo
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,f University of Sao Paulo , Sao Carlos-SP , Brazil
| | - Elisa Carrasco
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,g Department of Biosciences , Durham University , Durham , United Kingdom
| | - Michael R Hamblin
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,b Department of Dermatology , Harvard Medical School , Boston , MA , USA.,h Harvard-MIT Division of Health Sciences and Technology , Cambridge , MA , USA
| |
Collapse
|
15
|
Craig JM, Scott AL. Antecedent Nippostrongylus infection alters the lung immune response to Plasmodium berghei. Parasite Immunol 2017; 39. [PMID: 28475238 DOI: 10.1111/pim.12441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 04/25/2017] [Indexed: 12/13/2022]
Abstract
In endemic regions, it is not uncommon for patients to be co-infected with soil-transmitted helminths and malaria. Although both malaria and many helminth species use the lungs as a site of development, little attention has been paid to the impact that pulmonary immunity induced by one parasite has on the lung response to the other. To model the consequences of a prior hookworm exposure on the development of immunity to malaria in the lungs, mice were infected with Nippostrongylus brasiliensis and 2 weeks later challenged with Plasmodium berghei. We found that a pre-existing hookworm-induced type 2 immune environment had a measurable but modest impact on the nature of the malaria-driven type 1 cytokine response in the lungs that was associated with a transient effect on parasite development and no significant changes in morbidity and mortality after malaria infection. However, prior hookworm infection did have a lasting effect on lung macrophages, where the malaria-induced M1-like response was blunted by previous M2 polarization. These results demonstrate that, although helminth parasites confer robust changes to the immunological status of the pulmonary microenvironment, lung immunity is plastic and capable of rapidly adapting to consecutive heterologous infections.
Collapse
Affiliation(s)
- J M Craig
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - A L Scott
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
16
|
Tavares J, Costa DM, Teixeira AR, Cordeiro-da-Silva A, Amino R. In vivo imaging of pathogen homing to the host tissues. Methods 2017; 127:37-44. [PMID: 28522323 DOI: 10.1016/j.ymeth.2017.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/19/2017] [Accepted: 05/10/2017] [Indexed: 12/19/2022] Open
Abstract
Hematogenous dissemination followed by tissue tropism is a characteristic of the infectious process of many pathogens including those transmitted by blood-feeding vectors. After entering into the blood circulation, these pathogens must arrest in the target organ before they infect a specific tissue. Here, we describe a non-invasive method to visualize and quantify the homing of pathogens to the host tissues. By using in vivo bioluminescence imaging we quantify the accumulation of luciferase-expressing parasites in the host organs during the first minutes following their intravascular inoculation in mice. Using this technique we show that in the malarial infection, once in the blood circulation, most of bioluminescent Plasmodium berghei sporozoites, the parasite stage transmitted to the host skin by a mosquito bite, rapidly home to the liver where they invade and develop inside hepatocytes. This homing is specific to this developmental stage since blood stage parasites do not accumulate in the liver, as well as extracellular Trypanosoma brucei bloodstream forms and liver-infecting Leishmania infantum amastigotes. Finally, this method can be used to study the dynamics of tissue tropism of parasites, dissect the molecular and cellular basis of their increased arrest in organs and to evaluate immune interventions designed to block this targeted interaction.
Collapse
Affiliation(s)
- Joana Tavares
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal.
| | - David Mendes Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Ana Rafaela Teixeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | - Anabela Cordeiro-da-Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal; Faculdade de Farmácia da Universidade do Porto, Departamento de Ciências Biológicas, Portugal
| | - Rogerio Amino
- Unit of Malaria Infection and Immunity, Institut Pasteur, Paris, France.
| |
Collapse
|
17
|
Impact of Extended Duration of Artesunate Treatment on Parasitological Outcome in a Cytocidal Murine Malaria Model. Antimicrob Agents Chemother 2017; 61:AAC.02499-16. [PMID: 28096162 DOI: 10.1128/aac.02499-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/11/2017] [Indexed: 11/20/2022] Open
Abstract
Artemisinin-based combination therapies are a key pillar in global malaria control and are recommended as a first-line Plasmodium falciparum treatment. They rely upon a rapid 4-log-unit reduction in parasitemia by artemisinin compounds with a short half-life and the killing of remaining parasites by a partner compound with a longer half-life. Current treatment guidelines stipulate giving three 24-h-interval doses or six 12-h-interval doses over a 3-day period. Due to the short half-life of artesunate and artemether, almost all of the resulting cytocidal activity is confined within a single 48-h asexual P. falciparum cycle. Here, we utilized a luciferase reporter, Plasmodium berghei ANKA, in a cytocidal model in which treatment was initiated at high parasitemia, allowing us to monitor a greater than 3-log-unit reduction in parasite density, as well as 30-day survival. In this study, we demonstrated that increasing the artesunate duration from spanning one asexual cycle to spanning three asexual cycles while keeping the total dose constant results in enhanced cytocidal activity. Single daily artesunate doses at 50 mg/kg of body weight over 7 days were the minimum necessary for curative monotherapy. In combination with a single sub-human-equivalent dose of the partner drug amodiaquine or piperaquine, the three-asexual-cycle artesunate duration was able to cure 75% and 100% of mice, respectively, whereas 0% and 33% cures were achieved with the single-asexual-cycle artesunate duration. In summary, cytocidal activity of the artemisinin compounds, such as artesunate, can be improved solely by altering the dosing duration.
Collapse
|
18
|
Ding Y, Xu W, Zhou T, Liu T, Zheng H, Fu Y. Establishment of a murine model of cerebral malaria in KunMing mice infected with Plasmodium berghei ANKA. Parasitology 2016; 143:1672-1680. [PMID: 27574013 DOI: 10.1017/s0031182016001475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Malaria remains one of the most devastating diseases. Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection resulting in high mortality and morbidity worldwide. Analysis of precise mechanisms of CM in humans is difficult for ethical reasons and animal models of CM have been employed to study malaria pathogenesis. Here, we describe a new experimental cerebral malaria (ECM) model with Plasmodium berghei ANKA infection in KunMing (KM) mice. KM mice developed ECM after blood-stage or sporozoites infection, and the development of ECM in KM mice has a dose-dependent relationship with sporozoites inoculums. Histopathological findings revealed important features associated with ECM, including accumulation of mononuclear cells and red blood cells in brain microvascular, and brain parenchymal haemorrhages. Blood-brain barrier (BBB) examination showed that BBB disruption was present in infected KM mice when displaying clinical signs of CM. In vivo bioluminescent imaging experiment indicated that parasitized red blood cells accumulated in most vital organs including heart, lung, spleen, kidney, liver and brain. The levels of inflammatory cytokines interferon-gamma, tumour necrosis factor-alpha, interleukin (IL)-17, IL-12, IL-6 and IL-10 were all remarkably increased in KM mice infected with P. berghei ANKA. This study indicates that P. berghei ANKA infection in KM mice can be used as ECM model to extend further research on genetic, pharmacological and vaccine studies of CM.
Collapse
Affiliation(s)
- Yan Ding
- Department of Pathogenic Biology,Third Military Medical University,30 Gaotanyan Zhengjie,Shapingba District,Chongqing 400038,People's Republic of China
| | - Wenyue Xu
- Department of Pathogenic Biology,Third Military Medical University,30 Gaotanyan Zhengjie,Shapingba District,Chongqing 400038,People's Republic of China
| | - Taoli Zhou
- Department of Pathogenic Biology,Third Military Medical University,30 Gaotanyan Zhengjie,Shapingba District,Chongqing 400038,People's Republic of China
| | - Taiping Liu
- Department of Pathogenic Biology,Third Military Medical University,30 Gaotanyan Zhengjie,Shapingba District,Chongqing 400038,People's Republic of China
| | - Hong Zheng
- Department of Pathogenic Biology,Third Military Medical University,30 Gaotanyan Zhengjie,Shapingba District,Chongqing 400038,People's Republic of China
| | - Yong Fu
- Department of Pathogenic Biology,Third Military Medical University,30 Gaotanyan Zhengjie,Shapingba District,Chongqing 400038,People's Republic of China
| |
Collapse
|
19
|
SPECT/CT analysis of splenic function in genistein-treated malaria-infected mice. Exp Parasitol 2016; 170:10-15. [PMID: 27585499 DOI: 10.1016/j.exppara.2016.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 01/24/2023]
Abstract
Spleen traps malaria-infected red blood cells, thereby leading to splenomegaly. Splenomegaly induces impairment in splenic function, i.e., rupture. Therefore, splenomegaly inhibition is required to protect the spleen. In our previous study, genistein was found to have an influence on malaria-induced splenomegaly. However, the effect of genistein in malaria-induced splenomegaly, especially on the function of spleen, has not been fully investigated. In this study, hematoxylin and eosin (H&E) staining images show that genistein partially prevents malaria-induced architectural disruption of spleen. In addition, genistein decreases transgenic Plasmodium parasites accumulation in the spleen. Genistein treatment can protect splenic function from impairment caused by malaria infection. To examine the functions of malaria-infected spleen, we employed single-photon emission computed tomography/computed tomography (SPECT/CT) technology. Red blood cells are specifically radiolabeled with Technetium-99m pertechnetate (99mTcO4-) and trapped inside the spleen. The standardized uptake values (SUVs) in the spleen of infected mice are higher than those of naive and genistein-treated mice. However, genistein reduces the malaria-induced trapping capacity of spleen for heat-damaged radiolabeled RBCs, while exhibiting a protective effect against malaria. Considering these results, we suggested that genistein could be effectively used in combination therapy for malaria-induced splenic impairment.
Collapse
|
20
|
van der Velden M, Rijpma SR, Verweij V, van Gemert GJ, Chevalley-Maurel S, van de Vegte-Bolmer M, Franke-Fayard BM, Russel FGM, Janse CJ, Sauerwein RW, Koenderink JB. Protective Efficacy Induced by Genetically Attenuated Mid-to-Late Liver-Stage Arresting Plasmodium berghei Δmrp2 Parasites. Am J Trop Med Hyg 2016; 95:378-82. [PMID: 27296385 DOI: 10.4269/ajtmh.16-0226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/04/2016] [Indexed: 01/05/2023] Open
Abstract
Whole parasite immunization strategies employing genetically attenuated parasites (GAP), which arrest during liver-stage development, have been applied successfully for induction of sterile malaria protection in rodents. Recently, we generated a Plasmodium berghei GAP-lacking expression of multidrug resistance-associated protein (MRP2) (PbΔmrp2) that was capable of partial schizogony in hepatocytes but showed complete growth arrest. Here, we investigated the protective efficacy after intravenous (IV) immunization of BALB/c and C57BL/6J mice with PbΔmrp2 sporozoites. Low-dose immunization using 400 PbΔmrp2 sporozoites induced 100% sterile protection in BALB/c mice after IV challenge with 10,000 wild-type sporozoites. In addition, almost full protection (90%) was obtained after three immunizations with 10,000 sporozoites in C57BL/6J mice. Parasite liver loads in nonprotected PbΔmrp2-challenged C57BL/6J mice were reduced by 86% ± 5% on average compared with naive control mice. The mid-to-late arresting PbΔmrp2 GAP was equipotent in induction of protective immunity to the early arresting PbΔb9Δslarp GAP. The combined data support a clear basis for further exploration of Plasmodium falciparum parasites lacking mrp2 as a suitable GAP vaccine candidate.
Collapse
Affiliation(s)
- Maarten van der Velden
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sanna R Rijpma
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vivienne Verweij
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Geert-Jan van Gemert
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Séverine Chevalley-Maurel
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Blandine M Franke-Fayard
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
21
|
A Plasmodium yoelii Mei2-Like RNA Binding Protein Is Essential for Completion of Liver Stage Schizogony. Infect Immun 2016; 84:1336-1345. [PMID: 26883588 DOI: 10.1128/iai.01417-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/08/2016] [Indexed: 11/20/2022] Open
Abstract
Plasmodium parasites employ posttranscriptional regulatory mechanisms as their life cycle transitions between host cell invasion and replication within both the mosquito vector and mammalian host. RNA binding proteins (RBPs) provide one mechanism for modulation of RNA function. To explore the role of Plasmodium RBPs during parasite replication, we searched for RBPs that might play a role during liver stage development, the parasite stage that exhibits the most extensive growth and replication. We identified a parasite ortholog of the Mei2 (Meiosis inhibited 2) RBP that is conserved among Plasmodium species (PlasMei2) and exclusively transcribed in liver stage parasites. Epitope-tagged Plasmodium yoelii PlasMei2 was expressed only during liver stage schizogony and showed an apparent granular cytoplasmic location. Knockout of PlasMei2 (plasmei2(-)) in P. yoelii only affected late liver stage development. The P. yoelii plasmei2(-) liver stage size increased progressively until late in development, similar to wild-type parasite development. However, P. yoelii plasmei2(-) liver stage schizonts exhibited an abnormal DNA segregation phenotype and failed to form exoerythrocytic merozoites. Consequently the cellular integrity of P. yoelii plasmei2(-) liver stages became increasingly compromised late in development and the majority of P. yoelii plasmei2(-) underwent cell death by the time wild-type liver stages mature and release merozoites. This resulted in a complete block of P. yoelii plasmei2(-) transition from liver stage to blood stage infection in mice. Our results show for the first time the importance of a Plasmodium RBP in the coordinated progression of late liver stage schizogony and maturation of new invasive forms.
Collapse
|
22
|
De Niz M, Stanway RR, Wacker R, Keller D, Heussler VT. An ultrasensitive NanoLuc-based luminescence system for monitoring Plasmodium berghei throughout its life cycle. Malar J 2016; 15:232. [PMID: 27102897 PMCID: PMC4840902 DOI: 10.1186/s12936-016-1291-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/13/2016] [Indexed: 01/08/2023] Open
Abstract
Background Bioluminescence imaging is widely used for cell-based assays and animal imaging studies, both in biomedical research and drug development. Its main advantages include its high-throughput applicability, affordability, high sensitivity, operational simplicity, and quantitative outputs. In malaria research, bioluminescence has been used for drug discovery in vivo and in vitro, exploring host-pathogen interactions, and studying multiple aspects of Plasmodium biology. While the number of fluorescent proteins available for imaging has undergone a great expansion over the last two decades, enabling simultaneous visualization of multiple molecular and cellular events, expansion of available luciferases has lagged behind. The most widely used bioluminescent probe in malaria research is the Photinus pyralis firefly luciferase, followed by the more recently introduced Click-beetle and Renilla luciferases. Ultra-sensitive imaging of Plasmodium at low parasite densities has not been previously achieved. With the purpose of overcoming these challenges, a Plasmodium berghei line expressing the novel ultra-bright luciferase enzyme NanoLuc, called PbNLuc has been generated, and is presented in this work. Results NanoLuc shows at least 150 times brighter signal than firefly luciferase in vitro, allowing single parasite detection in mosquito, liver, and sexual and asexual blood stages. As a proof-of-concept, the PbNLuc parasites were used to image parasite development in the mosquito, liver and blood stages of infection, and to specifically explore parasite liver stage egress, and pre-patency period in vivo. Conclusions PbNLuc is a suitable parasite line for sensitive imaging of the entire Plasmodium life cycle. Its sensitivity makes it a promising line to be used as a reference for drug candidate testing, as well as the characterization of mutant parasites to explore the function of parasite proteins, host-parasite interactions, and the better understanding of Plasmodium biology. Since the substrate requirements of NanoLuc are different from those of firefly luciferase, dual bioluminescence imaging for the simultaneous characterization of two lines, or two separate biological processes, is possible, as demonstrated in this work.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland.
| | - Rebecca R Stanway
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| | - Rahel Wacker
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| | - Derya Keller
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| | - Volker T Heussler
- Institute of Cell Biology, University of Bern, 3012, Bern, Switzerland
| |
Collapse
|
23
|
De SL, Stanisic DI, Rivera F, Batzloff MR, Engwerda C, Good MF. Plasmodium berghei bio-burden correlates with parasite lactate dehydrogenase: application to murine Plasmodium diagnostics. Malar J 2016; 15:3. [PMID: 26729268 PMCID: PMC4700574 DOI: 10.1186/s12936-015-1027-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The spectrum of techniques to detect malaria parasites in whole blood is limited to measuring parasites in circulation. One approach that is currently used to enumerate total parasite bio-burden involves the use of bio-luminescent parasites. As an alternative approach, this study describes the use of a commercial ELISA human parasite lactate dehydrogenase (pLDH) detection kit to estimate total parasite bio-burden in murine malaria models. METHODS The cross reactivity of pLDH in a commercial human malaria pLDH diagnostic kit was established in different components of blood for different murine malaria models. The use of pLDH as a measure of parasite bio-burden was evaluated by examining pLDH in relation to peripheral blood parasitaemia as determined by microscopy and calculating total parasite bio-burden using a bio-luminescent Plasmodium berghei ANKA luciferase parasite. RESULTS The pLDH antigen was detected in all four murine Plasmodium species and in all components of Plasmodium-infected blood. A significant correlation (r = 0.6922, P value <0.0001) was observed between total parasite bio-burden, measured as log average radiance, and concentration of pLDH units. CONCLUSIONS This high throughput assay is a suitable measure of total parasite bio-burden in murine malaria infections. Unlike existing methods, it permits the estimation of both circulating and sequestered parasites, allowing a more accurate assessment of parasite bio-burden.
Collapse
Affiliation(s)
- Sai Lata De
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.
| | | | - Fabian Rivera
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| | - Michael R Batzloff
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.
| | | | - Michael F Good
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
24
|
Lagassé HAD, Anidi IU, Craig JM, Limjunyawong N, Poupore AK, Mitzner W, Scott AL. Recruited monocytes modulate malaria-induced lung injury through CD36-mediated clearance of sequestered infected erythrocytes. J Leukoc Biol 2015; 99:659-71. [PMID: 26516185 DOI: 10.1189/jlb.4hi0315-130rrr] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 10/11/2015] [Indexed: 12/28/2022] Open
Abstract
Pulmonary complications occur in a significant percentage of adults and children during the course of severe malaria. The cellular and molecular innate immune mechanisms that limit the extent of pulmonary inflammation and preserve lung function during severe Plasmodium infections remain unclear. In particular, the contributions to pulmonary complications by parasitized erythrocyte sequestration and subsequent clearance from the lung microvasculature by immune cells have not been clearly defined. We used the Plasmodium berghei ANKA-C57BL/6 mouse model of severe malaria to investigate the mechanisms governing the nature and extent of malaria-associated lung injury. We have demonstrated that sequestration of infected erythrocytes on postcapillary endothelial surfaces results in acute lung injury and the rapid recruitment of CCR2(+)CD11b(+)Ly6C(hi) monocytes from the circulation. These recruited cells remain in the lungs as monocyte-derived macrophages and are instrumental in the phagocytic clearance of adherent Plasmodium berghei-infected erythrocytes. In contrast, alveolar macrophages do not play a significant role in the clearance of malaria-infected cells. Furthermore, the results obtained from Ccr2(-/-), Cd36(-/-), and CD36 bone marrow chimeric mice showed that sequestration in the absence of CD36-mediated phagocytic clearance by monocytes leads to exaggerated lung pathologic features. In summary, our data indicate that the intensity of malaria-induced lung pathologic features is proportional to the steady-state levels of Plasmodium-infected erythrocytes adhering to the pulmonary vasculature. Moreover, the present work has defined a major role of recruited monocytes in clearing infected erythrocytes from the pulmonary interstitium, thus minimizing lung damage.
Collapse
Affiliation(s)
- H A Daniel Lagassé
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA, and
| | - Ifeanyi U Anidi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA, and
| | - John M Craig
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA, and
| | - Nathachit Limjunyawong
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Amy K Poupore
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA, and
| | - Wayne Mitzner
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alan L Scott
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA, and
| |
Collapse
|
25
|
Sahu PK, Satpathi S, Behera PK, Mishra SK, Mohanty S, Wassmer SC. Pathogenesis of cerebral malaria: new diagnostic tools, biomarkers, and therapeutic approaches. Front Cell Infect Microbiol 2015; 5:75. [PMID: 26579500 PMCID: PMC4621481 DOI: 10.3389/fcimb.2015.00075] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/05/2015] [Indexed: 12/28/2022] Open
Abstract
Cerebral malaria is a severe neuropathological complication of Plasmodium falciparum infection. It results in high mortality and post-recovery neuro-cognitive disorders in children, even after appropriate treatment with effective anti-parasitic drugs. While the complete landscape of the pathogenesis of cerebral malaria still remains to be elucidated, numerous innovative approaches have been developed in recent years in order to improve the early detection of this neurological syndrome and, subsequently, the clinical care of affected patients. In this review, we briefly summarize the current understanding of cerebral malaria pathogenesis, compile the array of new biomarkers and tools available for diagnosis and research, and describe the emerging therapeutic approaches to tackle this pathology effectively.
Collapse
Affiliation(s)
- Praveen K Sahu
- Center for the Study of Complex Malaria in India, Ispat General Hospital Rourkela, India
| | | | | | - Saroj K Mishra
- Center for the Study of Complex Malaria in India, Ispat General Hospital Rourkela, India
| | - Sanjib Mohanty
- Center for the Study of Complex Malaria in India, Ispat General Hospital Rourkela, India
| | - Samuel Crocodile Wassmer
- Department of Microbiology, New York University School of Medicine New York, NY, USA ; Department of Pathology, The University of Sydney Sydney, NSW, Australia
| |
Collapse
|
26
|
de Koning-Ward TF, Gilson PR, Crabb BS. Advances in molecular genetic systems in malaria. Nat Rev Microbiol 2015; 13:373-87. [DOI: 10.1038/nrmicro3450] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Siciliano G, Alano P. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research. Front Microbiol 2015; 6:391. [PMID: 26029172 PMCID: PMC4426725 DOI: 10.3389/fmicb.2015.00391] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/16/2015] [Indexed: 12/31/2022] Open
Abstract
The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have been essential to unveil mechanisms of parasite gene expression and to develop in vivo imaging approaches in mouse malaria models. Mainly the human malaria parasite Plasmodium falciparum and the rodent parasite P. berghei have been engineered to express bioluminescent reporters in almost all the developmental stages of the parasite along its complex life cycle between the insect and the vertebrate hosts. Plasmodium lines expressing conventional and improved luciferase reporters are now gaining a central role to develop cell based assays in the much needed search of new antimalarial drugs and to open innovative approaches for both fundamental and applied research in malaria.
Collapse
Affiliation(s)
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di SanitàRome, Italy
| |
Collapse
|
28
|
De Niz M, Helm S, Horstmann S, Annoura T, del Portillo HA, Khan SM, Heussler VT. In vivo and in vitro characterization of a Plasmodium liver stage-specific promoter. PLoS One 2015; 10:e0123473. [PMID: 25874388 PMCID: PMC4398466 DOI: 10.1371/journal.pone.0123473] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 03/03/2015] [Indexed: 12/28/2022] Open
Abstract
Little is known about stage-specific gene regulation in Plasmodium parasites, in particular the liver stage of development. We have previously described in the Plasmodium berghei rodent model, a liver stage-specific (lisp2) gene promoter region, in vitro. Using a dual luminescence system, we now confirm the stage specificity of this promoter region also in vivo. Furthermore, by substitution and deletion analyses we have extended our in vitro characterization of important elements within the promoter region. Importantly, the dual luminescence system allows analyzing promoter constructs avoiding mouse-consuming cloning procedures of transgenic parasites. This makes extensive mutation and deletion studies a reasonable approach also in the malaria mouse model. Stage-specific expression constructs and parasite lines are extremely valuable tools for research on Plasmodium liver stage biology. Such reporter lines offer a promising opportunity for assessment of liver stage drugs, characterization of genetically attenuated parasites and liver stage-specific vaccines both in vivo and in vitro, and may be key for the generation of inducible systems.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- * E-mail:
| | - Susanne Helm
- Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sebastian Horstmann
- Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Takeshi Annoura
- Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Department of Parasitology, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Hernando A. del Portillo
- Barcelona Centre for International Health Research (CRESIB), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Shahid M. Khan
- Center of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
29
|
Lewis MD, Behrends J, Sá E Cunha C, Mendes AM, Lasitschka F, Sattler JM, Heiss K, Kooij TWA, Prudêncio M, Bringmann G, Frischknecht F, Mueller AK. Chemical attenuation of Plasmodium in the liver modulates severe malaria disease progression. THE JOURNAL OF IMMUNOLOGY 2015; 194:4860-70. [PMID: 25862814 DOI: 10.4049/jimmunol.1400863] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 03/11/2015] [Indexed: 11/19/2022]
Abstract
Cerebral malaria is one of the most severe complications of malaria disease, attributed to a complicated series of immune reactions in the host. The syndrome is marked by inflammatory immune responses, margination of leukocytes, and parasitized erythrocytes in cerebral vessels leading to breakdown of the blood-brain barrier. We show that chemical attenuation of the parasite at the very early, clinically silent liver stage suppresses parasite development, delays the time until parasites establish blood-stage infection, and provokes an altered host immune response, modifying immunopathogenesis and protecting from cerebral disease. The early response is proinflammatory and cell mediated, with increased T cell activation in the liver and spleen, and greater numbers of effector T cells, cytokine-secreting T cells, and proliferating, proinflammatory cytokine-producing T cells. Dendritic cell numbers, T cell activation, and infiltration of CD8(+) T cells to the brain are decreased later in infection, possibly mediated by the anti-inflammatory cytokine IL-10. Strikingly, protection can be transferred to naive animals by adoptive transfer of lymphocytes from the spleen at very early times of infection. Our data suggest that a subpopulation belonging to CD8(+) T cells as early as day 2 postinfection is responsible for protection. These data indicate that liver stage-directed early immune responses can moderate the overall downstream host immune response and modulate severe malaria outcome.
Collapse
Affiliation(s)
- Matthew D Lewis
- Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, D 69120 Heidelberg, Germany; German Centre for Infection Research, D 69120 Heidelberg, Germany
| | - Jochen Behrends
- Core Facility Fluorescence Cytometry, Research Center Borstel, D 23845 Borstel, Germany
| | - Cláudia Sá E Cunha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - António M Mendes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Felix Lasitschka
- German Centre for Infection Research, D 69120 Heidelberg, Germany; Institute of Pathology, Heidelberg University Hospital, D 69120 Heidelberg, Germany
| | - Julia M Sattler
- Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, D 69120 Heidelberg, Germany
| | - Kirsten Heiss
- Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, D 69120 Heidelberg, Germany; MalVa GmbH, D 69121 Heidelberg, Germany
| | - Taco W A Kooij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen, the Netherlands; Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen, the Netherlands; and
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Gerhard Bringmann
- Institute for Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Friedrich Frischknecht
- Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, D 69120 Heidelberg, Germany
| | - Ann-Kristin Mueller
- Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, D 69120 Heidelberg, Germany; German Centre for Infection Research, D 69120 Heidelberg, Germany;
| |
Collapse
|
30
|
Infrared fluorescent imaging as a potent tool for in vitro, ex vivo and in vivo models of visceral leishmaniasis. PLoS Negl Trop Dis 2015; 9:e0003666. [PMID: 25826250 PMCID: PMC4380447 DOI: 10.1371/journal.pntd.0003666] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/02/2015] [Indexed: 11/19/2022] Open
Abstract
Background Visceral leishmaniasis (VL) is hypoendemic in the Mediterranean region, where it is caused by the protozoan Leishmania infantum. An effective vaccine for humans is not yet available and the severe side-effects of the drugs in clinical use, linked to the parenteral administration route of most of them, are significant concerns of the current leishmanicidal medicines. New drugs are desperately needed to treat VL and phenotype-based High Throughput Screenings (HTS) appear to be suitable to achieve this goal in the coming years. Methodology/Principal findings We generated two infrared fluorescent L. infantum strains, which stably overexpress the IFP 1.4 and iRFP reporter genes and performed comparative studies of their biophotonic properties at both promastigote and amastigote stages. To improve the fluorescence emission of the selected reporter in intracellular amastigotes, we engineered distinct constructs by introducing regulatory sequences of differentially-expressed genes (A2, AMASTIN and HSP70 II). The final strain that carries the iRFP gene under the control of the L. infantum HSP70 II downstream region (DSR), was employed to perform a phenotypic screening of a collection of small molecules by using ex vivo splenocytes from infrared-infected BALB/c mice. In order to further investigate the usefulness of this infrared strain, we monitored an in vivo infection by imaging BALB/c mice in a time-course study of 20 weeks. Conclusions/Significance The near-infrared fluorescent L. infantum strain represents an important step forward in bioimaging research of VL, providing a robust model of phenotypic screening suitable for HTS of small molecule collections in the mammalian parasite stage. Additionally, HSP70 II+L. infantum strain permitted for the first time to monitor an in vivo infection of VL. This finding accelerates the possibility of testing new drugs in preclinical in vivo studies, thus supporting the urgent and challenging drug discovery program against this parasitic disease. Visceral leishmaniasis (VL), caused by Leishmania infantum or L. donovani, is still one of the most threatening diseases affecting poor people in developing countries, with a fatality rate as high as 100% in two years in infected and untreated people. With no vaccine available and ineffective and toxic chemotherapy, the search for new potential drugs that accelerate the urgent drug discovery process are highly needed. A novel technology that addresses this important issue has been developed, by performing High Throughput Screening (HTS) assays in 384-well plates format in combination with an infrared L. infantum-expressing strain. The system was further validated to identify active compounds against VL in an ex vivo splenic culture. In addition, in vivo non-invasive imaging of the visceral infection in BALB/c mice was achieved for the first time by using transgenic fluorescent parasites. These findings open up the possibility of testing vast amounts of potential compounds and allow in vivo screening of drug candidates against this severe parasitic disease in an attempt to speed up the vital drug discovery program.
Collapse
|
31
|
Cox-Singh J, Culleton R. Plasmodium knowlesi: from severe zoonosis to animal model. Trends Parasitol 2015; 31:232-8. [PMID: 25837310 DOI: 10.1016/j.pt.2015.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/27/2015] [Accepted: 03/05/2015] [Indexed: 12/21/2022]
Abstract
Plasmodium knowlesi malaria is a newly described zoonosis in Southeast Asia. Similarly to Plasmodium falciparum, P. knowlesi can reach high parasitaemia in the human host and both species cause severe and fatal illness. Interpretation of host-parasite interactions in studies of P. knowlesi malaria adds a counterpoint to studies on P. falciparum. However, there is no model system for testing the resulting hypotheses on malaria pathophysiology or for developing new interventions. Plasmodium knowlesi is amenable to genetic manipulation in vitro and several nonhuman primate species are susceptible to experimental infection. Here, we make a case for drawing on P. knowlesi as both a human pathogen and an experimental model to lift the roadblock between malaria research and its translation into human health benefits.
Collapse
Affiliation(s)
- Janet Cox-Singh
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK.
| | - Richard Culleton
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
32
|
Matz JM, Kooij TWA. Towards genome-wide experimental genetics in the in vivo malaria model parasite Plasmodium berghei. Pathog Glob Health 2015; 109:46-60. [PMID: 25789828 DOI: 10.1179/2047773215y.0000000006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Plasmodium berghei was identified as a parasite of thicket rats (Grammomys dolichurus) and Anopheles dureni mosquitoes in African highland forests. Successful adaptation to a range of rodent and mosquito species established P. berghei as a malaria model parasite. The introduction of stable transfection technology, permitted classical reverse genetics strategies and thus systematic functional profiling of the gene repertoire. In the past 10 years following the publication of the P. berghei genome sequence, many new tools for experimental genetics approaches have been developed and existing ones have been improved. The infection of mice is the principal limitation towards a genome-wide repository of mutant parasite lines. In the past few years, there have been some promising and most welcome developments that allow rapid selection and isolation of recombinant parasites while simultaneously minimising animal usage. Here, we provide an overview of all the currently available tools and methods.
Collapse
|
33
|
Perez-Mazliah D, Langhorne J. CD4 T-cell subsets in malaria: TH1/TH2 revisited. Front Immunol 2015; 5:671. [PMID: 25628621 PMCID: PMC4290673 DOI: 10.3389/fimmu.2014.00671] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/15/2014] [Indexed: 12/13/2022] Open
Abstract
CD4+ T-cells have been shown to play a central role in immune control of infection with Plasmodium parasites. At the erythrocytic stage of infection, IFN-γ production by CD4+ T-cells and CD4+ T-cell help for the B-cell response are required for control and elimination of infected red blood cells. CD4+ T-cells are also important for controlling Plasmodium pre-erythrocytic stages through the activation of parasite-specific CD8+ T-cells. However, excessive inflammatory responses triggered by the infection have been shown to drive pathology. Early classical experiments demonstrated a biphasic CD4+ T-cell response against erythrocytic stages in mice, in which T helper (Th)1 and antibody-helper CD4+ T-cells appear sequentially during a primary infection. While IFN-γ-producing Th1 cells do play a role in controlling acute infections, and they contribute to acute erythrocytic-stage pathology, it became apparent that a classical Th2 response producing IL-4 is not a critical feature of the CD4+ T-cell response during the chronic phase of infection. Rather, effective CD4+ T-cell help for B-cells, which can occur in the absence of IL-4, is required to control chronic parasitemia. IL-10, important to counterbalance inflammation and associated with protection from inflammatory-mediated severe malaria in both humans and experimental models, was originally considered be produced by CD4+ Th2 cells during infection. We review the interpretations of CD4+ T-cell responses during Plasmodium infection, proposed under the original Th1/Th2 paradigm, in light of more recent advances, including the identification of multifunctional T-cells such as Th1 cells co-expressing IFN-γ and IL-10, the identification of follicular helper T-cells (Tfh) as the predominant CD4+ T helper subset for B-cells, and the recognition of inherent plasticity in the fates of different CD4+ T-cells.
Collapse
Affiliation(s)
- Damian Perez-Mazliah
- Division of Parasitology, MRC National Institute for Medical Research , London , UK
| | - Jean Langhorne
- Division of Parasitology, MRC National Institute for Medical Research , London , UK
| |
Collapse
|
34
|
Matsuoka H, Tomita H, Hattori R, Arai M, Hirai M. Visualization of Malaria Parasites in the Skin Using the Luciferase Transgenic Parasite, Plasmodium berghei. Trop Med Health 2014; 43:53-61. [PMID: 25859153 PMCID: PMC4361344 DOI: 10.2149/tmh.2014-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/13/2014] [Indexed: 01/25/2023] Open
Abstract
We produced a transgenic rodent malaria parasite (Plasmodium berghei) that contained the luciferase gene under a promoter region of elongation factor-1α. These transgenic (TG) parasites expressed luciferase in all stages of their life cycle, as previously reported. However, we were the first to succeed in observing sporozoites as a mass in mouse skin following their deposition by the probing of infective mosquitoes. Our transgenic parasites may have emitted stronger bioluminescence than previous TG parasites. The estimated number of injected sporozoites by mosquitoes was between 34 and 775 (median 80). Since luciferase activity diminished immediately after the death of the parasites, luciferase activity could be an indicator of the existence of live parasites. Our results indicated that sporozoites survived at the probed site for more than 42 hours. We also detected sporozoites in the liver within 15 min of the intravenous injection. Bioluminescence was not observed in the lung, kidney or spleen. We confirmed the observation that the liver was the first organ in which malaria parasites entered and increased in number.
Collapse
Affiliation(s)
- Hiroyuki Matsuoka
- Division of Medical Zoology, Jichi Medical University , 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Japan
| | - Hiroyuki Tomita
- Division of Medical Zoology, Jichi Medical University , 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Japan
| | - Ryuta Hattori
- Division of Medical Zoology, Jichi Medical University , 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Japan
| | - Meiji Arai
- Division of Medical Zoology, Jichi Medical University , 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Japan ; Department of International Medical Zoology, Graduate School of Medicine, Kagawa University , Miki-cho 761-0793, Japan
| | - Makoto Hirai
- Division of Medical Zoology, Jichi Medical University , 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Japan ; Department of Parasitology, School of Medicine, Juntendo University , Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
35
|
Wang J, Zhang L, Chen G, Zhang J, Li Z, Lu W, Liu M, Pang X. Small molecule 1'-acetoxychavicol acetate suppresses breast tumor metastasis by regulating the SHP-1/STAT3/MMPs signaling pathway. Breast Cancer Res Treat 2014; 148:279-89. [PMID: 25301089 DOI: 10.1007/s10549-014-3165-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/04/2014] [Indexed: 01/12/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is implicated breast cancer metastasis and represents a potential target for developing new anti-tumor metastasis drugs. The purpose of this study is to investigate whether the natural agent 1'-acetoxychavicol acetate (ACA), derived from the rhizomes and seeds of Languas galanga, could suppress breast cancer metastasis by targeting STAT3 signaling pathway. ACA was examined for its effects on breast cancer migration/invasion and metastasis using Transwell assays in vitro and breast cancer skeletal metastasis mouse model in vivo (n = 10 mice per group). The inhibitory effect of ACA on cellular STAT3 signaling pathway was investigated by series of biochemistry analysis. The chavicol preferentially suppressed cancer cell migration and invasion, and this activity was superior to its cytotoxic effects. ACA suppressed both constitutive and interleukin-6-inducible STAT3 activation and diminished the accumulation of STAT3 in the nucleus and its DNA-binding activity. More importantly, ACA treatment led to significant up-regulation of Src homology region 2 domain-containing phosphatase 1 (SHP-1), and the ACA-induced depression of cancer cell migration and STAT3 signaling could be apparently reversed by blockade of SHP-1. Matrix metalloproteinase (MMP)-2 and -9, gene products of STAT3 that regulate cell invasion, were specifically suppressed by ACA. In tumor metastasis model, ACA potently inhibited the human breast cancer cell-induced osteolysis, and had little apparent in vivo toxicity at the test concentrations. ACA is a novel drug candidate for the inhibition of tumor metastasis through interference with the SHP-1/STAT3/MMPs signaling pathway.
Collapse
Affiliation(s)
- Jieqiong Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Calvo-Álvarez E, Álvarez-Velilla R, Fernández-Prada C, Balaña-Fouce R, Reguera RM. Trypanosomatids see the light: recent advances in bioimaging research. Drug Discov Today 2014; 20:114-21. [PMID: 25256779 DOI: 10.1016/j.drudis.2014.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/29/2014] [Accepted: 09/16/2014] [Indexed: 10/24/2022]
Abstract
The use of genetically engineered pathogens that express fluorescent or luminescent proteins represents a huge stride forward in the understanding of trypanosomatid-borne tropical diseases. Nowadays, such modified microorganisms are being used to screen thousands of compounds under a target-free (phenotypic) approach. In addition, experimental infections with transgenic parasites drastically reduce the number of animals required for preclinical studies, because no animal needs to be put down to assess its parasite load. Finally, the use of fluorescent parasites is contributing to unraveling genetic exchange events between trypanosomatid strains. This phenomenon is important for understanding the mechanism by which traits such as virulence, tissue tropism, and drug resistance are transferred, as well as the emergence of novel strains.
Collapse
Affiliation(s)
- Estefanía Calvo-Álvarez
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Raquel Álvarez-Velilla
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Christopher Fernández-Prada
- Infectious Diseases Research Center of the CHUL of Québec and Laval University, Québec City, Québec G1V 4G2, Canada
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain.
| | - Rosa M Reguera
- Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
37
|
Mac-Daniel L, Buckwalter MR, Berthet M, Virk Y, Yui K, Albert ML, Gueirard P, Ménard R. Local immune response to injection of Plasmodium sporozoites into the skin. THE JOURNAL OF IMMUNOLOGY 2014; 193:1246-57. [PMID: 24981449 DOI: 10.4049/jimmunol.1302669] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Malarial infection is initiated when the sporozoite form of the Plasmodium parasite is inoculated into the skin by a mosquito. Sporozoites invade hepatocytes in the liver and develop into the erythrocyte-infecting form of the parasite, the cause of clinical blood infection. Protection against parasite development in the liver can be induced by injection of live attenuated parasites that do not develop in the liver and thus do not cause blood infection. Radiation-attenuated sporozoites (RAS) and genetically attenuated parasites are now considered as lead candidates for vaccination of humans against malaria. Although the skin appears as the preferable administration route, most studies in rodents, which have served as model systems, have been performed after i.v. injection of attenuated sporozoites. In this study, we analyzed the early response to Plasmodium berghei RAS or wild-type sporozoites (WTS) injected intradermally into C57BL/6 mice. We show that RAS have a similar in vivo distribution to WTS and that both induce a similar inflammatory response consisting of a biphasic recruitment of polymorphonuclear neutrophils and inflammatory monocytes in the skin injection site and proximal draining lymph node (dLN). Both WTS and RAS associate with neutrophils and resident myeloid cells in the skin and the dLN, transform inside CD11b(+) cells, and induce a Th1 cytokine profile in the dLN. WTS and RAS are also similarly capable of priming parasite-specific CD8(+) T cells. These studies delineate the early and local response to sporozoite injection into the skin, and suggest that WTS and RAS prime the host immune system in a similar fashion.
Collapse
Affiliation(s)
- Laura Mac-Daniel
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Matthew R Buckwalter
- Unité d'Immunobiologie des Cellules Dendritiques, Institut Pasteur, 75724 Paris Cedex 15, France; and
| | - Michèle Berthet
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Yasemin Virk
- Unité d'Immunobiologie des Cellules Dendritiques, Institut Pasteur, 75724 Paris Cedex 15, France; and
| | - Katsuyuki Yui
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Matthew L Albert
- Unité d'Immunobiologie des Cellules Dendritiques, Institut Pasteur, 75724 Paris Cedex 15, France; and
| | - Pascale Gueirard
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Robert Ménard
- Unité de Biologie et Génétique du Paludisme, Institut Pasteur, 75724 Paris Cedex 15, France;
| |
Collapse
|
38
|
Zuzarte-Luis V, Mota MM, Vigário AM. Malaria infections: what and how can mice teach us. J Immunol Methods 2014; 410:113-22. [PMID: 24837740 DOI: 10.1016/j.jim.2014.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/24/2014] [Accepted: 05/01/2014] [Indexed: 01/07/2023]
Abstract
Malaria imposes a horrific public health burden - hundreds of millions of infections and millions of deaths - on large parts of the world. While this unacceptable health burden and its economic and social impact have made it a focal point of the international development agenda, it became consensual that malaria control or elimination will be difficult to attain prior to gain a better understanding of the complex interactions occurring between its main players: Plasmodium, the causative agent of disease, and its hosts. Practical and ethical limitations exist regarding the ability to carry out research with human subjects or with human samples. In this review, we highlight how rodent models of infection have contributed significantly during the past decades to a better understanding of the basic biology of the parasite, host response and pathogenesis.
Collapse
Affiliation(s)
- Vanessa Zuzarte-Luis
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Maria M Mota
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | - Ana M Vigário
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal; Unidade de Ciências Médicas, Centro de Competência de Ciências da Vida, Universidade da Madeira, Funchal, Portugal.
| |
Collapse
|
39
|
Serghides L, McDonald CR, Lu Z, Friedel M, Cui C, Ho KT, Mount HTJ, Sled JG, Kain KC. PPARγ agonists improve survival and neurocognitive outcomes in experimental cerebral malaria and induce neuroprotective pathways in human malaria. PLoS Pathog 2014; 10:e1003980. [PMID: 24603727 PMCID: PMC3946361 DOI: 10.1371/journal.ppat.1003980] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 01/22/2014] [Indexed: 01/11/2023] Open
Abstract
Cerebral malaria (CM) is associated with a high mortality rate, and long-term neurocognitive impairment in approximately one third of survivors. Adjunctive therapies that modify the pathophysiological processes involved in CM may improve outcome over anti-malarial therapy alone. PPARγ agonists have been reported to have immunomodulatory effects in a variety of disease models. Here we report that adjunctive therapy with PPARγ agonists improved survival and long-term neurocognitive outcomes in the Plasmodium berghei ANKA experimental model of CM. Compared to anti-malarial therapy alone, PPARγ adjunctive therapy administered to mice at the onset of CM signs, was associated with reduced endothelial activation, and enhanced expression of the anti-oxidant enzymes SOD-1 and catalase and the neurotrophic factors brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the brains of infected mice. Two months following infection, mice that were treated with anti-malarials alone demonstrated cognitive dysfunction, while mice that received PPARγ adjunctive therapy were completely protected from neurocognitive impairment and from PbA-infection induced brain atrophy. In humans with P. falciparum malaria, PPARγ therapy was associated with reduced endothelial activation and with induction of neuroprotective pathways, such as BDNF. These findings provide insight into mechanisms conferring improved survival and preventing neurocognitive injury in CM, and support the evaluation of PPARγ agonists in human CM. Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection that is associated with long-term neurocognitive impairment in about a third of survivors even when optimal anti-malarial therapy is used. Since both the parasite and the host immune response to infection play a role in the development of CM, adjunctive therapies that modulate the host response, given in conjunction with anti-parasitic therapy, may improve survival and prevent neurocognitive injury. Here we examine the effects of PPARγ agonists on neurocongitive injury using a mouse model of CM. We demonstrate that PPARγ agonists, when administered with anti-malarials, protected mice from developing brain atrophy and neurocognitive impairment. This was associated with induction of anti-oxidant and neuroprotective pathways in the brains of infected mice. We also observed the same neuroprotective pathways induced in patients with falciparum malaria that received PPARγ adjunctive therapy. Our findings suggest that PPARγ agonists may be valuable in the treatment and prevention of CM-induced neurocognitive injury, and support the testing of PPARγ agonists in patients with CM.
Collapse
Affiliation(s)
- Lena Serghides
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- SA Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network, Toronto, Ontario, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
- * E-mail:
| | - Chloe R. McDonald
- SA Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network, Toronto, Ontario, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ziyue Lu
- SA Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network, Toronto, Ontario, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Miriam Friedel
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cheryl Cui
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Keith T. Ho
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Howard T. J. Mount
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - John G. Sled
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Kevin C. Kain
- Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- SA Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network, Toronto, Ontario, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
40
|
Claser C, Malleret B, Peng K, Bakocevic N, Gun SY, Russell B, Ng LG, Rénia L. Rodent Plasmodium-infected red blood cells: Imaging their fates and interactions within their hosts. Parasitol Int 2014; 63:187-94. [DOI: 10.1016/j.parint.2013.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 06/30/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
|
41
|
Yamamoto DS, Yokomine T, Sumitani M, Yagi K, Matsuoka H, Yoshida S. Visualization and live imaging analysis of a mosquito saliva protein in host animal skin using a transgenic mosquito with a secreted luciferase reporter system. INSECT MOLECULAR BIOLOGY 2013; 22:685-693. [PMID: 24118655 DOI: 10.1111/imb.12055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mosquitoes inject saliva into a vertebrate host during blood feeding. The analysis of mosquito saliva in host skin is important for the elucidation of the inflammatory responses to mosquito bites, the development of antithrombotic drugs, and the transmission-blocking of vector-borne diseases. We produced transgenic Anopheles stephensi mosquitoes expressing the secretory luciferase protein (MetLuc) fused to a saliva protein (AAPP) in the salivary glands. The transgene product (AAPP-MetLuc) of transgenic mosquitoes exhibited both luciferase activity as a MetLuc and binding activity to collagen as an AAPP. The detection of luminescence in the skin of mice bitten by transgenic mosquitoes showed that AAPP-MetLuc was injected into the skin as a component of saliva via blood feeding. AAPP-MetLuc remained at the mosquito bite site in host skin with luciferase activity for at least 4 h after blood feeding. AAPP was also suspected of remaining at the site of injury caused by the mosquito bite and blocking platelet aggregation by binding to collagen. These results demonstrated the establishment of visualization and time-lapse analysis of mosquito saliva in living vertebrate host skin. This technique may facilitate the analysis of mosquito saliva after its injection into host skin, and the development of new drugs and disease control strategies.
Collapse
Affiliation(s)
- D S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Ferrer M, Martin-Jaular L, De Niz M, Khan SM, Janse CJ, Calvo M, Heussler V, del Portillo HA. Imaging of the spleen in malaria. Parasitol Int 2013; 63:195-205. [PMID: 23999413 DOI: 10.1016/j.parint.2013.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 08/13/2013] [Accepted: 08/26/2013] [Indexed: 11/28/2022]
Abstract
Splenomegaly, albeit variably, is a hallmark of malaria; yet, the role of the spleen in Plasmodium infections remains vastly unknown. The implementation of imaging to study the spleen is rapidly advancing our knowledge of this so-called "blackbox" of the abdominal cavity. Not only has ex vivo imaging revealed the complex functional compartmentalization of the organ and immune effector cells, but it has also allowed the observation of major structural remodeling during infections. In vivo imaging, on the other hand, has allowed quantitative measurements of the dynamic passage of the parasite at spatial and temporal resolution. Here, we review imaging techniques used for studying the malarious spleen, from optical microscopy to in vivo imaging, and discuss the bright perspectives of evolving technologies in our present understanding of the role of this organ in infections caused by Plasmodium.
Collapse
Affiliation(s)
- Mireia Ferrer
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona) ISGlobal, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Baidjoe A, Stone W, Ploemen I, Shagari S, Grignard L, Osoti V, Makori E, Stevenson J, Kariuki S, Sutherland C, Sauerwein R, Cox J, Drakeley C, Bousema T. Combined DNA extraction and antibody elution from filter papers for the assessment of malaria transmission intensity in epidemiological studies. Malar J 2013; 12:272. [PMID: 23914905 PMCID: PMC3750228 DOI: 10.1186/1475-2875-12-272] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 06/30/2013] [Indexed: 12/26/2022] Open
Abstract
Background Informing and evaluating malaria control efforts relies on knowledge of local transmission dynamics. Serological and molecular tools have demonstrated great sensitivity to quantify transmission intensity in low endemic settings where the sensitivity of traditional methods is limited. Filter paper blood spots are commonly used a source of both DNA and antibodies. To enhance the operational practicability of malaria surveys, a method is presented for combined DNA extraction and antibody elution. Methods Filter paper blood spots were collected as part of a large cross-sectional survey in the Kenyan highlands. DNA was extracted using a saponin/chelex method. The eluate of the first wash during the DNA extraction process was used for antibody detection and compared with previously validated antibody elution procedures. Antibody elution efficiency was assessed by total IgG ELISA for malaria antigens apical membrane antigen-1 (AMA-1) and merozoite-surface protein-1 (MSP-142). The sensitivity of nested 18S rRNA and cytochrome b PCR assays and the impact of doubling filter paper material for PCR sensitivity were determined. The distribution of cell material and antibodies throughout filter paper blood spots were examined using luminescent and fluorescent reporter assays. Results Antibody levels measured after the combined antibody/DNA extraction technique were strongly correlated to those measured after standard antibody elution (p < 0.0001). Antibody levels for both AMA-1 and MSP-142 were generally slightly lower (11.3-21.4%) but age-seroprevalence patterns were indistinguishable. The proportion of parasite positive samples ranged from 12.9% to 19.2% in the different PCR assays. Despite strong agreement between outcomes of different PCR assays, none of the assays detected all parasite-positive individuals. For all assays doubling filter paper material for DNA extraction increased sensitivity. The concentration of cell and antibody material was not homogenously distributed throughout blood spots. Conclusion Combined DNA extraction and antibody elution is an operationally attractive approach for high throughput assessment of cumulative malaria exposure and current infection prevalence in endemic settings. Estimates of antibody prevalence are unaffected by the combined extraction and elution procedure. The choice of target gene and the amount and source of filter paper material for DNA extraction can have a marked impact on PCR sensitivity.
Collapse
Affiliation(s)
- Amrish Baidjoe
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Quantitative bioluminescent imaging of pre-erythrocytic malaria parasite infection using luciferase-expressing Plasmodium yoelii. PLoS One 2013; 8:e60820. [PMID: 23593316 PMCID: PMC3623966 DOI: 10.1371/journal.pone.0060820] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/03/2013] [Indexed: 11/30/2022] Open
Abstract
The liver stages of Plasmodium parasites are important targets for the development of anti-malarial vaccine candidates and chemoprophylaxis approaches that aim to prevent clinical infection. Analyzing the impact of interventions on liver stages in the murine malaria model system Plasmodium yoelii has been cumbersome and requires terminal procedures. In vivo imaging of bioluminescent parasites has previously been shown to be an effective and non-invasive alternative to monitoring liver stage burden in the Plasmodium berghei model. Here we report the generation and characterization of a transgenic P. yoelii parasite expressing the reporter protein luciferase throughout the parasite life cycle. In vivo bioluminescent imaging of these parasites allows for quantitative analysis of P. yoelii liver stage burden and parasite development, which is comparable to quantitative RT-PCR analysis of liver infection. Using this system, we show that both BALB/cJ and C57BL/6 mice show comparable susceptibility to P. yoelii infection with sporozoites and that bioluminescent imaging can be used to monitor protective efficacy of attenuated parasite immunizations. Thus, this rapid, simple and noninvasive method for monitoring P. yoelii infection in the liver provides an efficient system to screen and evaluate the effects of anti-malarial interventions in vivo and in real-time.
Collapse
|
45
|
Calvo-Álvarez E, Guerrero NA, Álvarez-Velilla R, Prada CF, Requena JM, Punzón C, Llamas MÁ, Arévalo FJ, Rivas L, Fresno M, Pérez-Pertejo Y, Balaña-Fouce R, Reguera RM. Appraisal of a Leishmania major strain stably expressing mCherry fluorescent protein for both in vitro and in vivo studies of potential drugs and vaccine against cutaneous leishmaniasis. PLoS Negl Trop Dis 2012; 6:e1927. [PMID: 23209866 PMCID: PMC3510153 DOI: 10.1371/journal.pntd.0001927] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 10/16/2012] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Leishmania major cutaneous leishmaniasis is an infectious zoonotic disease. It is produced by a digenetic parasite, which resides in the phagolysosomal compartment of different mammalian macrophage populations. There is an urgent need to develop new therapies (drugs) against this neglected disease that hits developing countries. The main goal of this work is to establish an easier and cheaper tool of choice for real-time monitoring of the establishment and progression of this pathology either in BALB/c mice or in vitro assays. To validate this new technique we vaccinated mice with an attenuated Δhsp70-II strain of Leishmania to assess protection against this disease. METHODOLOGY We engineered a transgenic L. major strain expressing the mCherry red-fluorescent protein for real-time monitoring of the parasitic load. This is achieved via measurement of fluorescence emission, allowing a weekly record of the footpads over eight weeks after the inoculation of BALB/c mice. RESULTS In vitro results show a linear correlation between the number of parasites and fluorescence emission over a range of four logs. The minimum number of parasites (amastigote isolated from lesion) detected by their fluorescent phenotype was 10,000. The effect of antileishmanial drugs against mCherry+L. major infecting peritoneal macrophages were evaluated by direct assay of fluorescence emission, with IC(50) values of 0.12, 0.56 and 9.20 µM for amphotericin B, miltefosine and paromomycin, respectively. An experimental vaccination trial based on the protection conferred by an attenuated Δhsp70-II mutant of Leishmania was used to validate the suitability of this technique in vivo. CONCLUSIONS A Leishmania major strain expressing mCherry red-fluorescent protein enables the monitoring of parasitic load via measurement of fluorescence emission. This approach allows a simpler, faster, non-invasive and cost-effective technique to assess the clinical progression of the infection after drug or vaccine therapy.
Collapse
Affiliation(s)
| | - Nestor Adrian Guerrero
- Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - Jose María Requena
- Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | - Luis Rivas
- Centro de Investigaciones Biológicas, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Madrid, Spain
- Diomune, Parque Cientifico de Madrid, Madrid, Spain
| | | | | | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Universidad de León, León, Spain
| |
Collapse
|
46
|
Pasini EM, Braks JA, Fonager J, Klop O, Aime E, Spaccapelo R, Otto TD, Berriman M, Hiss JA, Thomas AW, Mann M, Janse CJ, Kocken CHM, Franke-Fayard B. Proteomic and genetic analyses demonstrate that Plasmodium berghei blood stages export a large and diverse repertoire of proteins. Mol Cell Proteomics 2012. [PMID: 23197789 PMCID: PMC3567864 DOI: 10.1074/mcp.m112.021238] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Malaria parasites actively remodel the infected red blood cell (irbc) by exporting proteins into the host cell cytoplasm. The human parasite Plasmodium falciparum exports particularly large numbers of proteins, including proteins that establish a vesicular network allowing the trafficking of proteins onto the surface of irbcs that are responsible for tissue sequestration. Like P. falciparum, the rodent parasite P. berghei ANKA sequesters via irbc interactions with the host receptor CD36. We have applied proteomic, genomic, and reverse-genetic approaches to identify P. berghei proteins potentially involved in the transport of proteins to the irbc surface. A comparative proteomics analysis of P. berghei non-sequestering and sequestering parasites was used to determine changes in the irbc membrane associated with sequestration. Subsequent tagging experiments identified 13 proteins (Plasmodium export element (PEXEL)-positive as well as PEXEL-negative) that are exported into the irbc cytoplasm and have distinct localization patterns: a dispersed and/or patchy distribution, a punctate vesicle-like pattern in the cytoplasm, or a distinct location at the irbc membrane. Members of the PEXEL-negative BIR and PEXEL-positive Pb-fam-3 show a dispersed localization in the irbc cytoplasm, but not at the irbc surface. Two of the identified exported proteins are transported to the irbc membrane and were named erythrocyte membrane associated proteins. EMAP1 is a member of the PEXEL-negative Pb-fam-1 family, and EMAP2 is a PEXEL-positive protein encoded by a single copy gene; neither protein plays a direct role in sequestration. Our observations clearly indicate that P. berghei traffics a diverse range of proteins to different cellular locations via mechanisms that are analogous to those employed by P. falciparum. This information can be exploited to generate transgenic humanized rodent P. berghei parasites expressing chimeric P. berghei/P. falciparum proteins on the surface of rodent irbc, thereby opening new avenues for in vivo screening adjunct therapies that block sequestration.
Collapse
Affiliation(s)
- Erica M Pasini
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ramakrishnan C, Rademacher A, Soichot J, Costa G, Waters AP, Janse CJ, Ramesar J, Franke-Fayard BM, Levashina EA. Salivary gland-specific P. berghei reporter lines enable rapid evaluation of tissue-specific sporozoite loads in mosquitoes. PLoS One 2012; 7:e36376. [PMID: 22574152 PMCID: PMC3344870 DOI: 10.1371/journal.pone.0036376] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 04/04/2012] [Indexed: 01/20/2023] Open
Abstract
Malaria is a life-threatening human infectious disease transmitted by mosquitoes. Levels of the salivary gland sporozoites (sgs), the only mosquito stage infectious to a mammalian host, represent an important cumulative index of Plasmodium development within a mosquito. However, current techniques of sgs quantification are laborious and imprecise. Here, transgenic P. berghei reporter lines that produce the green fluorescent protein fused to luciferase (GFP-LUC) specifically in sgs were generated, verified and characterised. Fluorescence microscopy confirmed the sgs stage specificity of expression of the reporter gene. The luciferase activity of the reporter lines was then exploited to establish a simple and fast biochemical assay to evaluate sgs loads in whole mosquitoes. Using this assay we successfully identified differences in sgs loads in mosquitoes silenced for genes that display opposing effects on P. berghei ookinete/oocyst development. It offers a new powerful tool to study infectivity of P. berghei to the mosquito, including analysis of vector-parasite interactions and evaluation of transmission-blocking vaccines.
Collapse
Affiliation(s)
- Chandra Ramakrishnan
- CNRS UPR9022, INSERM U963, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Annika Rademacher
- CNRS UPR9022, INSERM U963, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Julien Soichot
- CNRS UPR9022, INSERM U963, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Giulia Costa
- CNRS UPR9022, INSERM U963, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Andrew P. Waters
- Division of Infection and Immunity, Faculty of Biomedical Life Sciences, and Wellcome Centre for Molecular Parasitology, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Chris J. Janse
- Leiden Malaria Research Group, Department of Parasitology, Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Jai Ramesar
- Leiden Malaria Research Group, Department of Parasitology, Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Blandine M. Franke-Fayard
- Leiden Malaria Research Group, Department of Parasitology, Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Elena A. Levashina
- CNRS UPR9022, INSERM U963, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
48
|
McVeigh P, Maule AG, Dalton JP, Robinson MW. Fasciola hepatica virulence-associated cysteine peptidases: a systems biology perspective. Microbes Infect 2012; 14:301-10. [DOI: 10.1016/j.micinf.2011.11.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/17/2011] [Accepted: 11/17/2011] [Indexed: 02/06/2023]
|
49
|
Abstract
We describe a technology for imaging the sequestration of infected red blood cells (iRBC) of the rodent malaria parasite Plasmodium berghei both in the bodies of live mice and in dissected organs, using a transgenic parasite that expresses luciferase. Real-time imaging of sequestered iRBC is performed by measuring bioluminescence produced by the enzymatic reaction in parasites between the luciferase enzyme and its substrate luciferin injected into the mice several minutes prior to imaging. The bioluminescence signal is detected by a sensitive I-CCD photon-counting video camera. Using a reporter parasite that expresses luciferase under the control of a schizont-specific promoter (i.e., the ama-1 promoter), the schizont stage is made visible when detecting bioluminescence signals. Schizont sequestration is imaged during short-term infections with parasites that are synchronized in development or during ongoing infections. Real-time in vivo imaging of iRBC will provide increased insights into the dynamics of sequestration and its role in pathology, and can be used to evaluate strategies that prevent sequestration.
Collapse
|
50
|
Lin JW, Annoura T, Sajid M, Chevalley-Maurel S, Ramesar J, Klop O, Franke-Fayard BMD, Janse CJ, Khan SM. A novel 'gene insertion/marker out' (GIMO) method for transgene expression and gene complementation in rodent malaria parasites. PLoS One 2011; 6:e29289. [PMID: 22216235 PMCID: PMC3246482 DOI: 10.1371/journal.pone.0029289] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 11/24/2011] [Indexed: 01/25/2023] Open
Abstract
Research on the biology of malaria parasites has greatly benefited from the application of reverse genetic technologies, in particular through the analysis of gene deletion mutants and studies on transgenic parasites that express heterologous or mutated proteins. However, transfection in Plasmodium is limited by the paucity of drug-selectable markers that hampers subsequent genetic modification of the same mutant. We report the development of a novel 'gene insertion/marker out' (GIMO) method for two rodent malaria parasites, which uses negative selection to rapidly generate transgenic mutants ready for subsequent modifications. We have created reference mother lines for both P. berghei ANKA and P. yoelii 17XNL that serve as recipient parasites for GIMO-transfection. Compared to existing protocols GIMO-transfection greatly simplifies and speeds up the generation of mutants expressing heterologous proteins, free of drug-resistance genes, and requires far fewer laboratory animals. In addition we demonstrate that GIMO-transfection is also a simple and fast method for genetic complementation of mutants with a gene deletion or mutation. The implementation of GIMO-transfection procedures should greatly enhance Plasmodium reverse-genetic research.
Collapse
Affiliation(s)
- Jing-wen Lin
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Takeshi Annoura
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Mohammed Sajid
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Séverine Chevalley-Maurel
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jai Ramesar
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Onny Klop
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Blandine M. D. Franke-Fayard
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Chris J. Janse
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Shahid M. Khan
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|