1
|
Lin YD, Li XY, Shao LW, Liu AJ. Methylation of SOX1 and PAX1 Are Risk Factors and Potential Biomarkers for Cervical Lesions. World J Oncol 2025; 16:104-112. [PMID: 39850527 PMCID: PMC11750758 DOI: 10.14740/wjon1985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/10/2024] [Indexed: 01/25/2025] Open
Abstract
Background The correlation between methylation of paired box gene 1 (PAX1) and sex determining region Y-box 1 (SOX1) with human papillomavirus (HPV) infection and the progression of cervical lesions is not well understood. This study aims to explore the potential value of PAX1 and SOX1 as diagnostic biomarkers for cervical diseases. Methods A total of 139 cervical biopsy tissue samples were obtained from the Department of Pathology, the Seventh Medical Center, Chinese PLA General Hospital from 2021 to 2023. The samples include 32 cases of chronic cervicitis (inflammation group), 30 cases of low-grade squamous intraepithelial lesions (LSIL group), 50 cases of high-grade squamous intraepithelial lesions (HSIL group), and 27 cases of cervical squamous cell carcinoma (CSCC group). DNA was extracted from paraffin-embedded tissues, and the levels of HPV infection and methylation of PAX1 and SOX1 were detected. Results The methylation index (M-index) of PAX1 and SOX1 in the HSIL and CSCC groups is significantly higher than in the inflammation group (both P < 0.0001), with no significant difference between the LSIL and inflammation groups. There is no significant difference in the positive PAX1 and SOX1 methylation rate with HPV infection and age. The positive rates of PAX1 methylation in the inflammation, LSIL, HSIL, and CSCC groups were 3.13%, 10.00%, 44.00%, and 88.89%, respectively. The positive rates of SOX1 methylation were 3.13%, 10.00%, 40.00%, and 77.78%, respectively, and increasing with the progression of cervical lesions (R2 = 0.9189/R2 = 0.9279, P < 0.0001/P < 0.0001). Comparing LSIL, HSIL, and CSCC with the inflammation group and using cervical biopsy pathology diagnosis as the gold standard, methylation of PAX1 and SOX1 is a risk factor for HSIL and CSCC, with odds ratio (OR) values significantly increasing as lesions progress. The sensitivity of PAX1 and SOX1 methylation to cervical lesions increases with the progression of the lesions. Conclusions Methylation of SOX1 and PAX1 is not associated with HPV infection. The positive rate of methylation for SOX1 and PAX1 is positively correlated with cervical lesions, which can serve as potential biomarkers for HSIL and CSCC. They are risk factors and potential screening indicators for HSIL and above cervical lesions.
Collapse
Affiliation(s)
- Yan Die Lin
- Department of Pathology, The Seventh Medical Center, Chinese PLA General Hospital, Beijing 100700, China
- These authors contributed equally to this work
| | - Xiao Yue Li
- Department of Pathology, The Seventh Medical Center, Chinese PLA General Hospital, Beijing 100700, China
- These authors contributed equally to this work
| | - Li Wei Shao
- Department of Pathology, The Seventh Medical Center, Chinese PLA General Hospital, Beijing 100700, China
| | - Ai Jun Liu
- Department of Pathology, The Seventh Medical Center, Chinese PLA General Hospital, Beijing 100700, China
| |
Collapse
|
2
|
Lee J, Choi E, Kim H, Kim YJ, Kim SH. NELL2- PAX7 Transcriptional Cascade Suggests Activation Mechanism for RAD52-Dependent Alternative Lengthening of Telomeres During Malignant Transformation of Malignant Peripheral Nerve Sheath Tumors: Elongation of Telomeres and Poor Survival. Biomedicines 2025; 13:281. [PMID: 40002695 PMCID: PMC11853032 DOI: 10.3390/biomedicines13020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Background: In eukaryotes with a double-stranded linear DNA genome, the loss of terminal DNA during replication is inevitable due to an end-replication problem; here, telomeres serve as a buffer against DNA loss. Thus, the activation of the telomere maintenance mechanism (TMM) is a prerequisite for malignant transformation. Methods: We compared neurofibroma (NF, benign) and malignant peripheral nerve sheath tumors (MPNSTs) occurring in the same patient with type 1 neurofibromatosis, where each NF-MPNST pair shared the same genetic background and differentiation lineage; this minimizes the genetic bias and contrasts only those changes that are related to malignant transformation. A total of 20 NF-MPNST pairs from 20 NF1 patients were analyzed. Whole-transcriptome sequencing (WTS) was conducted to profile the transcriptional relationship, and whole-genome sequencing (WGS) was performed to measure the telomere length. Results: We identified 22 differentially expressed genes (DEGs) during the malignant transformation of MPNSTs. Among them, NELL2 activated PAX7, which sequentially activated RAD52, the recombinase of RAD52-dependent alternative lengthening of telomeres (ALT). RAD52 elongated MPNSTs-telomeres (p = 0.017). Otherwise, neither NELL2 nor PAX7 affected telomere length (p = 0.647 and p = 0.354, respectively). RAD52 increased MPNSTs-telomeres length, independently of NELL2 and PAX7 in multiple analyses (p = 0.021). The group with increased telomere length during the malignant transformation showed inferior overall survival (OS) (HR = 3.809, p = 0.038) to the group without increased telomere length. Accordingly, the group with increased PAX7 showed inferior OS (HR = 4.896, p = 0.046) and metastasis-free survival (MFS) (HR = 9.129, p = 0.007) in comparison to the group without increased PAX7; the group with increased RAD52 showed inferior MFS (HR = 8.669, p = 0.011) in comparison to the group without increased RAD52. Conclusions: We suggest that the NELL2-PAX7 transcriptional cascade activates RAD52-dependent ALT to increase telomere length during the malignant transformation of MPNSTs, resulting in a poor prognosis.
Collapse
Affiliation(s)
- Jungwoo Lee
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul 03722, Republic of Korea; (J.L.); (E.C.); (H.K.); (Y.-J.K.)
| | - Eunji Choi
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul 03722, Republic of Korea; (J.L.); (E.C.); (H.K.); (Y.-J.K.)
| | - Hyoju Kim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul 03722, Republic of Korea; (J.L.); (E.C.); (H.K.); (Y.-J.K.)
| | - Young-Joon Kim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul 03722, Republic of Korea; (J.L.); (E.C.); (H.K.); (Y.-J.K.)
| | - Seung Hyun Kim
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Asrani K, Amaral A, Woo J, Abadchi SN, Vidotto T, Feng K, Liu HB, Kasbe M, Baba M, Oike Y, Outeda P, Watnick T, Rosenberg AZ, Schmidt LS, Linehan WM, Argani P, Lotan TL. SFPQ-TFE3 gene fusion reciprocally regulates mTORC1 activity and induces lineage plasticity in a novel mouse model of renal tumorigenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624702. [PMID: 39605439 PMCID: PMC11601635 DOI: 10.1101/2024.11.21.624702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The MiT/TFE family gene fusion proteins, such as SFPQ-TFE3 , drive both epithelial (eg, translocation renal cell carcinoma, tRCC) and mesenchymal (eg, perivascular epithelioid cell tumor, PEComa) neoplasms with aggressive behavior. However, no prior mouse models for SFPQ-TFE3 -related tumors exist and the mechanisms of lineage plasticity induced by this fusion remain unclear. Here, we demonstrate that constitutive murine renal expression of human SFPQ-TFE3 using Ksp Cadherin-Cre as a driver disrupts kidney development leading to early neonatal renal failure and death. In contrast, post-natal induction of SFPQ-TFE3 in renal tubular epithelial cells using Pax8 ERT-Cre induces infiltrative epithelioid tumors, which morphologically and transcriptionally resemble human PEComas. As seen in MiT/TFE fusion-driven human tumors, SFPQ-TFE3 expression is accompanied by the strong induction of mTORC1 signaling, which is partially amino acid-sensitive and dependent on increased SFPQ-TFE3 -mediated RRAGC/D transcription. Remarkably, SFPQ-TFE3 expression is sufficient to induce lineage plasticity in renal tubular epithelial cells, with rapid down-regulation of the critical PAX2/PAX8 nephric lineage factors and tubular epithelial markers, and concomitant up-regulation of PEComa differentiation markers in transgenic mice, human cell line models and human tRCC. Pharmacologic or genetic inhibition of mTOR signaling downregulates expression of the SFPQ-TFE3 fusion protein and rescues nephric lineage marker expression and transcriptional activity in vitro. These data provide evidence of a potential epithelial cell-of-origin for TFE3 -driven PEComas and highlight a reciprocal role for SFPQ-TFE3 and mTOR in driving lineage plasticity in the kidney, expanding our understanding of the pathogenesis of MiT/TFE-driven tumors.
Collapse
|
4
|
Choi E, Lee J, Kim H, Kim YJ, Kim SH. TGF-β superfamily-induced transcriptional activation pathways establish the RAD52-dependent ALT machinery during malignant transformation of MPNSTs. Sci Rep 2024; 14:26475. [PMID: 39488637 PMCID: PMC11531527 DOI: 10.1038/s41598-024-76732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024] Open
Abstract
To study telomere maintenance mechanism (TMM) activation during malignant transformation, we compared neurofibroma (NF) and malignant peripheral nerve sheath tumor (MPNST) in the same patient with type-1 neurofibromatosis (NF1), a total of 20 NF-MPNST pairs in 20 NF1 patients. These comparisons minimized genetic bias and contrasted only changes associated with malignant transformation, while subtracting changes that developed upon the transformation of normal cells to the benign tumor. TGF-β superfamily genes were found to activate the PAX and SOX transcription factors, leading to TMM activation. BMPER activates PAX6 through BMP2 and PAX7 through BMP4; BMP15 activates SOX14; and INHBC activates PAX9 and SOX14. The activated PAX and SOX genes sequentially establish the core architecture of the RAD52-dependent alternative lengthening of telomeres (ALT). Specifically, PAX7 activates the recombinase (RAD52) and a negative regulator (SLX4IP). PAX6 and SOX14 activate positive regulators (BLM and BRCA2, respectively). PAX9 and SOX14 activate RAD9B and FEN1, which are responsible for the stability of homologous recombination intermediates and increase, together with RAD52, the telomere length. Telomere elongation achieved by the activation of PAX7 and PAX9 is associated with a poor prognosis. We demonstrated that TGF-β superfamily-induced transcriptional activation pathways activated the RAD52-dependent ALT during malignant transformation of MPNSTs.
Collapse
Affiliation(s)
- Eunji Choi
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jungwoo Lee
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul, 03722, Republic of Korea
| | - HyoJu Kim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul, 03722, Republic of Korea
| | - Young-Joon Kim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seung Hyun Kim
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
5
|
Dong X, Zhang D, Zhang X, Liu Y, Liu Y. Network modeling links kidney developmental programs and the cancer type-specificity of VHL mutations. NPJ Syst Biol Appl 2024; 10:114. [PMID: 39362887 PMCID: PMC11449910 DOI: 10.1038/s41540-024-00445-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024] Open
Abstract
Elucidating the molecular dependencies behind the cancer-type specificity of driver mutations may reveal new therapeutic opportunities. We hypothesized that developmental programs would impact the transduction of oncogenic signaling activated by a driver mutation and shape its cancer-type specificity. Therefore, we designed a computational analysis framework by combining single-cell gene expression profiles during fetal organ development, latent factor discovery, and information theory-based differential network analysis to systematically identify transcription factors that selectively respond to driver mutations under the influence of organ-specific developmental programs. After applying this approach to VHL mutations, which are highly specific to clear cell renal cell carcinoma (ccRCC), we revealed important regulators downstream of VHL mutations in ccRCC and used their activities to cluster patients with ccRCC into three subtypes. This classification revealed a more significant difference in prognosis than the previous mRNA profile-based method and was validated in an independent cohort. Moreover, we found that EP300, a key epigenetic factor maintaining the regulatory network of the subtype with the worst prognosis, can be targeted by a small inhibitor, suggesting a potential treatment option for a subset of patients with ccRCC. This work demonstrated an intimate relationship between organ development and oncogenesis from the perspective of systems biology, and the method can be generalized to study the influence of other biological processes on cancer driver mutations.
Collapse
Affiliation(s)
- Xiaobao Dong
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Donglei Zhang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xian Zhang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yun Liu
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Yuanyuan Liu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Yan X, Wang K, Shi C, Xu K, Lai B, Yang S, Sheng L, Zhang P, Chen Y, Mu Q, Ouyang G. MicroRNA-138 promotes the progression of multiple myeloma through targeting paired PAX5. Mutat Res 2024; 829:111869. [PMID: 38959562 DOI: 10.1016/j.mrfmmm.2024.111869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Multiple myeloma cancer stem cells (MMSC) have been considered as the leading cause of multiple myeloma (MM) drug resistance and eventual relapse, microRNAs (miRNAs) collectively participate in the progression of MM. However, the pathogenesis of miR-138 in MMSC is still not fully understood. OBJECTIVE The intention of this study was to investigate the mechanism and role of miR-138 in multiple myeloma. METHOD Bone marrow samples and peripheral blood from patients and normal controls were collected. Use Magnet-based Cancer Stem Cell Isolation Kit to separate and extract MMSC. Real-time quantitative PCR (RT-qPCR) was carried out to determine mRNA level. Western blot was applied to detect protein levels. MTT and flow cytometry were conducted to examine the proliferation and apoptosis of MMSC. Finally, dual-luciferase reporter gene assays were performed to confirm that paired box 5 (PAX5) is a direct target for miR-138. RESULTS Compared with normal group, the expression of miR-138 in patients was significantly up-regulated, and the expression of miR-138 was in a negative correlation with PAX5. Additionally, downregulated miR-138 facilitated the apoptosis and inhibited the proliferation of MMSC in vitro and in vivo. Downregulated miR-138 moderated the expression of PAX5, Bcl-2, Bax, and Caspase-3. PAX5 was a direct target of miR-138. CONCLUSION Taken together, miR-138 plays a carcinogenic role in MM, and miR-138 adjusted the proliferation and apoptosis of MMSC by targeting PAX5. miR-138 has the probability of becoming a new medicinal target for the treatment of MM.
Collapse
Affiliation(s)
- Xiao Yan
- Department of Haematology, The First Affiliated Hospital of Ningbo University, China; Ningbo Clinical Research Center for Hematologic malignancies, China
| | - Keting Wang
- Health Science Center of Ningbo University, China
| | - Cong Shi
- Ningbo Clinical Research Center for Hematologic malignancies, China; Laboratory of Stem Cell Transplantation, The First Affiliated Hospital of Ningbo University, China
| | - Kaihong Xu
- Department of Haematology, The First Affiliated Hospital of Ningbo University, China; Ningbo Clinical Research Center for Hematologic malignancies, China
| | - Binbin Lai
- Ningbo Clinical Research Center for Hematologic malignancies, China; Laboratory of Stem Cell Transplantation, The First Affiliated Hospital of Ningbo University, China
| | - Shujun Yang
- Ningbo Clinical Research Center for Hematologic malignancies, China; Laboratory of Stem Cell Transplantation, The First Affiliated Hospital of Ningbo University, China
| | - Lixia Sheng
- Department of Haematology, The First Affiliated Hospital of Ningbo University, China; Ningbo Clinical Research Center for Hematologic malignancies, China
| | - Ping Zhang
- Department of Haematology, The First Affiliated Hospital of Ningbo University, China; Ningbo Clinical Research Center for Hematologic malignancies, China
| | - Ying Chen
- Ningbo Clinical Research Center for Hematologic malignancies, China; Laboratory of Stem Cell Transplantation, The First Affiliated Hospital of Ningbo University, China.
| | - Qitian Mu
- Ningbo Clinical Research Center for Hematologic malignancies, China; Laboratory of Stem Cell Transplantation, The First Affiliated Hospital of Ningbo University, China.
| | - Guifang Ouyang
- Department of Haematology, The First Affiliated Hospital of Ningbo University, China; Ningbo Clinical Research Center for Hematologic malignancies, China.
| |
Collapse
|
7
|
Li L, Hossain SM, Eccles MR. The Role of the PAX Genes in Renal Cell Carcinoma. Int J Mol Sci 2024; 25:6730. [PMID: 38928435 PMCID: PMC11203709 DOI: 10.3390/ijms25126730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Renal cell carcinoma (RCC) is a significant oncological challenge due to its heterogeneous nature and limited treatment options. The PAX developmental gene family encodes nine highly conserved transcription factors that play crucial roles in embryonic development and organogenesis, which have been implicated in the occurrence and development of RCC. This review explores the molecular landscape of RCC, with a specific focus on the role of the PAX gene family in RCC tumorigenesis and disease progression. Of the various RCC subtypes, clear cell renal cell carcinoma (ccRCC) is the most prevalent, characterized by the loss of the von Hippel-Lindau (VHL) tumor suppressor gene. Here, we review the published literature on the expression patterns and functional implications of PAX genes, particularly PAX2 and PAX8, in the three most common RCC subtypes, including ccRCC, papillary RCC (PRCC), and chromophobe RCC (ChRCC). Further, we review the interactions and potential biological mechanisms involving PAX genes and VHL loss in driving the pathogenesis of RCC, including the key signaling pathways mediated by VHL in ccRCC and associated mechanisms implicating PAX. Lastly, concurrent with our update regarding PAX gene research in RCC, we review and comment on the targeting of PAX towards the development of novel RCC therapies.
Collapse
Affiliation(s)
- Lei Li
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (L.L.); (S.M.H.)
| | - Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (L.L.); (S.M.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (L.L.); (S.M.H.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
8
|
Noda A. Morphogenesis-coupled DNA repair - in mammalian embryogenesis, morphogenesis and DNA double strand break (DSB) repair are carried out simultaneously to ensure normal development. JOURNAL OF RADIATION RESEARCH 2024; 65:416-419. [PMID: 38718394 PMCID: PMC11115463 DOI: 10.1093/jrr/rrae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/05/2024] [Indexed: 05/25/2024]
Affiliation(s)
- Asao Noda
- Department of Molecular Biosciences, Radiation Effects Research Foundation, 5-2 Hijiyama-Park, Minami-Ku, Hiroshima 732-0815, Japan
| |
Collapse
|
9
|
Shaw T, Barr FG, Üren A. The PAX Genes: Roles in Development, Cancer, and Other Diseases. Cancers (Basel) 2024; 16:1022. [PMID: 38473380 PMCID: PMC10931086 DOI: 10.3390/cancers16051022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Since their 1986 discovery in Drosophila, Paired box (PAX) genes have been shown to play major roles in the early development of the eye, muscle, skeleton, kidney, and other organs. Consistent with their roles as master regulators of tissue formation, the PAX family members are evolutionarily conserved, regulate large transcriptional networks, and in turn can be regulated by a variety of mechanisms. Losses or mutations in these genes can result in developmental disorders or cancers. The precise mechanisms by which PAX genes control disease pathogenesis are well understood in some cases, but much remains to be explored. A deeper understanding of the biology of these genes, therefore, has the potential to aid in the improvement of disease diagnosis and the development of new treatments.
Collapse
Affiliation(s)
- Taryn Shaw
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20001, USA
| | - Frederic G Barr
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Aykut Üren
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20001, USA
| |
Collapse
|
10
|
Miyadai M, Takada H, Shiraishi A, Kimura T, Watakabe I, Kobayashi H, Nagao Y, Naruse K, Higashijima SI, Shimizu T, Kelsh RN, Hibi M, Hashimoto H. A gene regulatory network combining Pax3/7, Sox10 and Mitf generates diverse pigment cell types in medaka and zebrafish. Development 2023; 150:dev202114. [PMID: 37823232 PMCID: PMC10617610 DOI: 10.1242/dev.202114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Neural crest cells generate numerous derivatives, including pigment cells, and are a model for studying how fate specification from multipotent progenitors is controlled. In mammals, the core gene regulatory network for melanocytes (their only pigment cell type) contains three transcription factors, Sox10, Pax3 and Mitf, with the latter considered a master regulator of melanocyte development. In teleosts, which have three to four pigment cell types (melanophores, iridophores and xanthophores, plus leucophores e.g. in medaka), gene regulatory networks governing fate specification are poorly understood, although Mitf function is considered conserved. Here, we show that the regulatory relationships between Sox10, Pax3 and Mitf are conserved in zebrafish, but the role for Mitf is more complex than previously emphasized, affecting xanthophore development too. Similarly, medaka Mitf is necessary for melanophore, xanthophore and leucophore formation. Furthermore, expression patterns and mutant phenotypes of pax3 and pax7 suggest that Pax3 and Pax7 act sequentially, activating mitf expression. Pax7 modulates Mitf function, driving co-expressing cells to differentiate as xanthophores and leucophores rather than melanophores. We propose that pigment cell fate specification should be considered to result from the combinatorial activity of Mitf with other transcription factors.
Collapse
Affiliation(s)
- Motohiro Miyadai
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hiroyuki Takada
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Akiko Shiraishi
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Tetsuaki Kimura
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Ikuko Watakabe
- National Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Hikaru Kobayashi
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yusuke Nagao
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Shin-ichi Higashijima
- National Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems, National Institute for Basic Biology, Okazaki 444-8787, Japan
| | - Takashi Shimizu
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Robert N. Kelsh
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Masahiko Hibi
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hisashi Hashimoto
- Laboratory of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
11
|
Li L, Li CG, Almomani SN, Hossain SM, Eccles MR. Co-Expression of Multiple PAX Genes in Renal Cell Carcinoma (RCC) and Correlation of High PAX Expression with Favorable Clinical Outcome in RCC Patients. Int J Mol Sci 2023; 24:11432. [PMID: 37511191 PMCID: PMC10380508 DOI: 10.3390/ijms241411432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Renal cell carcinoma (RCC) is the most common form of kidney cancer, consisting of multiple distinct subtypes. RCC has the highest mortality rate amongst the urogenital cancers, with kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), and kidney chromophobe carcinoma (KICH) being the most common subtypes. The Paired-box (PAX) gene family encodes transcription factors, which orchestrate multiple processes in cell lineage determination during embryonic development and organogenesis. Several PAX genes have been shown to be expressed in RCC following its onset and progression. Here, we performed real-time quantitative polymerase chain reaction (RT-qPCR) analysis on a series of human RCC cell lines, revealing significant co-expression of PAX2, PAX6, and PAX8. Knockdown of PAX2 or PAX8 mRNA expression using RNA interference (RNAi) in the A498 RCC cell line resulted in inhibition of cell proliferation, which aligns with our previous research, although no reduction in cell proliferation was observed using a PAX2 small interfering RNA (siRNA). We downloaded publicly available RNA-sequencing data and clinical histories of RCC patients from The Cancer Genome Atlas (TCGA) database. Based on the expression levels of PAX2, PAX6, and PAX8, RCC patients were categorized into two PAX expression subtypes, PAXClusterA and PAXClusterB, exhibiting significant differences in clinical characteristics. We found that the PAXClusterA expression subgroup was associated with favorable clinical outcomes and better overall survival. These findings provide novel insights into the association between PAX gene expression levels and clinical outcomes in RCC patients, potentially contributing to improved treatment strategies for RCC.
Collapse
Affiliation(s)
- Lei Li
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Caiyun G Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Suzan N Almomani
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Sultana Mehbuba Hossain
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
12
|
The Pleiotropy of PAX5 Gene Products and Function. Int J Mol Sci 2022; 23:ijms231710095. [PMID: 36077495 PMCID: PMC9456430 DOI: 10.3390/ijms231710095] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
PAX5, a member of the Paired Box (PAX) transcription factor family, is an essential factor for B-lineage identity during lymphoid differentiation. Mechanistically, PAX5 controls gene expression profiles, which are pivotal to cellular processes such as viability, proliferation, and differentiation. Given its crucial function in B-cell development, PAX5 aberrant expression also correlates with hallmark cancer processes leading to hematological and other types of cancer lesions. Despite the well-established association of PAX5 in the development, maintenance, and progression of cancer disease, the use of PAX5 as a cancer biomarker or therapeutic target has yet to be implemented. This may be partly due to the assortment of PAX5 expressed products, which layers the complexity of their function and role in various regulatory networks and biological processes. In this review, we provide an overview of the reported data describing PAX5 products, their regulation, and function in cellular processes, cellular biology, and neoplasm.
Collapse
|
13
|
Shively SB, Edwards NA, MacDonald TJ, Johnson KR, Diaz-Rodriguez NM, Merrill MJ, Vortmeyer AO. Developmentally Arrested Basket/Stellate Cells in Postnatal Human Brain as Potential Tumor Cells of Origin for Cerebellar Hemangioblastoma in von Hippel-Lindau Patients. J Neuropathol Exp Neurol 2022; 81:885-899. [PMID: 35980299 PMCID: PMC9803908 DOI: 10.1093/jnen/nlac073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
von Hippel-Lindau (VHL) disease is an autosomal dominant hereditary cancer disorder caused by a germline mutation in the VHL tumor suppressor gene. Loss of the wild-type allele results in VHL deficiency and the potential formation of cerebellar hemangioblastomas, which resemble embryonic hemangioblast proliferation and differentiation processes. Multiple, microscopic, VHL-deficient precursors, termed developmentally arrested structural elements (DASEs), consistently involve the cerebellar molecular layer in VHL patients, indicating the tumor site of origin. Unlike hemangioblastomas, however, cerebellar DASEs do not express brachyury, a mesodermal marker for hemangioblasts. In this study, neuronal progenitors occupying the molecular layer were investigated as tumor cells of origin. By immunohistochemistry, cerebellar DASEs and hemangioblastomas lacked immunoreactivity with antibody ZIC1 (Zic family member 1), a granule cell progenitor marker with concordance from oligonucleotide RNA expression array analyses. Rather, cerebellar DASEs and hemangioblastomas were immunoreactive with antibody PAX2 (paired box 2), a marker of basket/stellate cell progenitors. VHL cerebellar cortices also revealed PAX2-positive cells in Purkinje and molecular layers, resembling the histological and molecular development of basket/stellate cells in postnatal non-VHL mouse and human cerebella. These data suggest that VHL deficiency can result in the developmental arrest of basket/stellate cells in the human cerebellum and that these PAX2-positive, initiated cells await another insult or signal to form DASEs and eventually, tumors.
Collapse
Affiliation(s)
- Sharon Baughman Shively
- From the Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA,Department of Molecular Medicine, Institute for Biomedical Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Nancy A Edwards
- From the Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Kory R Johnson
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Alexander O Vortmeyer
- Send correspondence to: Alexander O. Vortmeyer, MD, PhD, Division of Neuropathology, Department of Pathology and Laboratory Medicine, Indiana University-Purdue University Indianapolis, 350 W. 11th Street, Suite 4034, Indianapolis, IN 46202, USA; E-mail:
| |
Collapse
|
14
|
Kakun RR, Melamed Z, Perets R. PAX8 in the Junction between Development and Tumorigenesis. Int J Mol Sci 2022; 23:ijms23137410. [PMID: 35806410 PMCID: PMC9266416 DOI: 10.3390/ijms23137410] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 12/17/2022] Open
Abstract
Normal processes of embryonic development and abnormal transformation to cancer have many parallels, and in fact many aberrant cancer cell capabilities are embryonic traits restored in a distorted, unorganized way. Some of these capabilities are cell autonomous, such as proliferation and resisting apoptosis, while others involve a complex interplay with other cells that drives significant changes in neighboring cells. The correlation between embryonic development and cancer is driven by shared proteins. Some embryonic proteins disappear after embryogenesis in adult differentiated cells and are restored in cancer, while others are retained in adult cells, acquiring new functions upon transformation to cancer. Many embryonic factors embraced by cancer cells are transcription factors; some are master regulators that play a major role in determining cell fate. The paired box (PAX) domain family of developmental transcription factors includes nine members involved in differentiation of various organs. All paired box domain proteins are involved in different cancer types carrying pro-tumorigenic or anti-tumorigenic roles. This review focuses on PAX8, a master regulator of transcription in embryonic development of the thyroid, kidney, and male and female genital tracts. We detail the role of PAX8 in each of these organ systems, describe its role during development and in the adult if known, and highlight its pro-tumorigenic role in cancers that emerge from PAX8 expressing organs.
Collapse
Affiliation(s)
- Reli Rachel Kakun
- Bruce and Ruth Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 3109601, Israel;
- Clinical Research Institute at Rambam, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Zohar Melamed
- Division of Oncology, Rambam Health Care Campus, Haifa 3109601, Israel;
| | - Ruth Perets
- Bruce and Ruth Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa 3109601, Israel;
- Clinical Research Institute at Rambam, Rambam Health Care Campus, Haifa 3109601, Israel
- Division of Oncology, Rambam Health Care Campus, Haifa 3109601, Israel;
- Correspondence:
| |
Collapse
|
15
|
Chen X, Li Y, Paiboonrungruang C, Li Y, Peters H, Kist R, Xiong Z. PAX9 in Cancer Development. Int J Mol Sci 2022; 23:5589. [PMID: 35628401 PMCID: PMC9147292 DOI: 10.3390/ijms23105589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 02/05/2023] Open
Abstract
Paired box 9 (PAX9) is a transcription factor of the PAX family functioning as both a transcriptional activator and repressor. Its functional roles in the embryonic development of various tissues and organs have been well studied. However, its roles and molecular mechanisms in cancer development are largely unknown. Here, we review the current understanding of PAX9 expression, upstream regulation of PAX9, and PAX9 downstream events in cancer development. Promoter hypermethylation, promoter SNP, microRNA, and inhibition of upstream pathways (e.g., NOTCH) result in PAX9 silencing or downregulation, whereas gene amplification and an epigenetic axis upregulate PAX9 expression. PAX9 may contribute to carcinogenesis through dysregulation of its transcriptional targets and related molecular pathways. In summary, extensive studies on PAX9 in its cellular and tissue contexts are warranted in various cancers, in particular, HNSCC, ESCC, lung cancer, and cervical SCC.
Collapse
Affiliation(s)
- Xiaoxin Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
| | - Yahui Li
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
| | - Chorlada Paiboonrungruang
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
| | - Yong Li
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
- Department of Thoracic Surgery, National Cancer Center, Cancer Hospital of Chinese Academy of Medical Sciences, 17 Panjiayuan Nanli Road, Beijing 100021, China
| | - Heiko Peters
- Newcastle University Biosciences Institute, Newcastle upon Tyne NE2 4BW, UK;
| | - Ralf Kist
- Newcastle University Biosciences Institute, Newcastle upon Tyne NE2 4BW, UK;
- School of Dental Sciences, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW, UK
| | - Zhaohui Xiong
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
| |
Collapse
|
16
|
Lun J, Wang Y, Gao Q, Wang Y, Zhang H, Fang J. PHD3 inhibits cell proliferation through hydroxylation of PAX2 at proline 9. Acta Biochim Biophys Sin (Shanghai) 2022; 54:708-715. [PMID: 35920196 PMCID: PMC9827955 DOI: 10.3724/abbs.2022043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The oncoprotein transcription factor paired box 2 (PAX2) is aberrantly expressed in cancers, but the underlying mechanism remains elusive. Prolyl hydroxylase 3 (PHD3) hydroxylates the proline residue of HIFα, mediating HIFα degradation. The von Hippel-Lindau protein (pVHL) is an E3 ligase which mediates ubiquitination and degradation of hydroxylated HIFα. PHD3 and pVHL are found to inhibit the expression of PAX2, however, the molecular mechanism is unclear. Here we demonstrate that PHD3 hydroxylates PAX2 at proline 9, which is required for pVHL to mediate PAX2 ubiquitination and degradation. Overexpression of PHD3 enhances prolyl hydroxylation, ubiquitination and degradation of PAX2 with little effect on those of PAX2(P9A). PHD3 does not influence PAX2 expression in VHL-null cells. pVHL binds to PAX2 and enhances PAX2 ubiquitination and degradation. However, pVHL does not bind with PAX2(P9A) and cannot enhance its ubiquitination and degradation. Our results suggest that proline 9 hydroxylation is a prerequisite for PAX2 degradation by pVHL. Functional studies indicate that introduction of PAX2 into PAX2-null COS-7 cells promotes cell proliferation, which is suppressed by co-expression of PHD3 but not by hydroxylase-deficient PHD3(H196A). PHD3 inhibits PAX2-induced, but not PAX2(P9A)-induced proliferation of COS-7 cells. These results suggest that PHD3 hydroxylates PAX2, followed by pVHL-mediated PAX2 ubiquitination and degradation. This study also suggests that PHD3 inhibits cell proliferation through downregulating PAX2.
Collapse
Affiliation(s)
- Jie Lun
- Cancer Institutethe Affiliated Hospital of Qingdao UniversitySchool of Basic Medicine of Qingdao UniversityQingdao266061China
| | - Yuxin Wang
- Shanghai Institute of Nutrition and HealthChinese Academy of SciencesShanghai200031China
| | - Qiang Gao
- Shanghai Institute of Nutrition and HealthChinese Academy of SciencesShanghai200031China
| | - Yu Wang
- Cancer Institutethe Affiliated Hospital of Qingdao UniversitySchool of Basic Medicine of Qingdao UniversityQingdao266061China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care HospitalJinan250014China
| | - Jing Fang
- Cancer Institutethe Affiliated Hospital of Qingdao UniversitySchool of Basic Medicine of Qingdao UniversityQingdao266061China,Correspondence address. Tel: +86-532-82991017; E-mail:
| |
Collapse
|
17
|
Qian Y, Xiong Z, Li Y, Kayser M, Liu L, Liu F. The effects of Tbx15 and Pax1 on facial and other physical morphology in mice. FASEB Bioadv 2021; 3:1011-1019. [PMID: 34938962 PMCID: PMC8664010 DOI: 10.1096/fba.2021-00094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
DNA variants in or close to the human TBX15 and PAX1 genes have been repeatedly associated with facial morphology in independent genome-wide association studies, while their functional roles in determining facial morphology remain to be understood. We generated Tbx15 knockout (Tbx15 -/-) and Pax1 knockout (Pax1 -/-) mice by applying the one-step CRISPR/Cas9 method. A total of 75 adult mice were used for subsequent phenotype analysis, including 38 Tbx15 mice (10 homozygous Tbx15 -/-, 18 heterozygous Tbx15 +/-, 10 wild-type Tbx15 +/+ WT littermates) and 37 Pax1 mice (12 homozygous Pax1 -/-, 15 heterozygous Pax1 +/-, 10 Pax1 +/+ WT littermates). Facial and other physical morphological phenotypes were obtained from three-dimensional (3D) images acquired with the HandySCAN BLACK scanner. Compared to WT littermates, the Tbx15 -/- mutant mice had significantly shorter faces (p = 1.08E-8, R2 = 0.61) and their ears were in a significantly lower position (p = 3.54E-8, R2 = 0.62) manifesting a "droopy ear" characteristic. Besides these face alternations, Tbx15 -/- mutant mice displayed significantly lower weight as well as shorter body and limb length. Pax1 -/- mutant mice showed significantly longer noses (p = 1.14E-5, R2 = 0.46) relative to WT littermates, but otherwise displayed less obvious morphological alterations than Tbx15 -/- mutant mice did. We provide the first direct functional evidence that two well-known and replicated human face genes, Tbx15 and Pax1, impact facial and other body morphology in mice. The general agreement between our findings in knock-out mice with those from previous GWASs suggests that the functional evidence we established here in mice may also be relevant in humans.
Collapse
Affiliation(s)
- Yu Qian
- CAS Key Laboratory of Genomic and Precision MedicineBeijing Institute of GenomicsChinese Academy of SciencesBeijingChina
- China National Center for BioinformationBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ziyi Xiong
- Department of Genetic IdentificationErasmus MC University Medical Center RotterdamRotterdamthe Netherlands
- Department of EpidemiologyErasmus MC University Medical Center RotterdamRotterdamthe Netherlands
| | - Yi Li
- CAS Key Laboratory of Genomic and Precision MedicineBeijing Institute of GenomicsChinese Academy of SciencesBeijingChina
- China National Center for BioinformationBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Manfred Kayser
- Department of Genetic IdentificationErasmus MC University Medical Center RotterdamRotterdamthe Netherlands
| | - Lei Liu
- Department of Plastic and Burn SurgeryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Fan Liu
- CAS Key Laboratory of Genomic and Precision MedicineBeijing Institute of GenomicsChinese Academy of SciencesBeijingChina
- China National Center for BioinformationBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Department of Genetic IdentificationErasmus MC University Medical Center RotterdamRotterdamthe Netherlands
| |
Collapse
|
18
|
Xu S, Jiang C, Lin R, Wang X, Hu X, Chen W, Chen X, Chen T. Epigenetic activation of the elongator complex sensitizes gallbladder cancer to gemcitabine therapy. J Exp Clin Cancer Res 2021; 40:373. [PMID: 34823564 PMCID: PMC8613969 DOI: 10.1186/s13046-021-02186-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/13/2021] [Indexed: 01/07/2023] Open
Abstract
Background Gallbladder cancer (GBC) is known for its high malignancy and multidrug resistance. Previously, we uncovered that impaired integrity and stability of the elongator complex leads to GBC chemotherapy resistance, but whether its restoration can be an efficient therapeutic strategy for GBC remains unknown. Methods RT-qPCR, MS-qPCR and ChIP-qPCR were used to evaluate the direct association between ELP5 transcription and DNA methylation in tumour and non-tumour tissues of GBC. EMSA, chromatin accessibility assays, and luciferase assays were utilized to analysis the DNA methylation in interfering PAX5-DNA interactions. The functional experiments in vitro and in vivo were performed to investigate the effects of DNA demethylating agent decitabine (DAC) on the transcription activation of elongator complex and the enhanced sensitivity of gemcitabine in GBC cells. Tissue microarray contains GBC tumour tissues was used to evaluate the association between the expression of ELP5, DNMT3A and PAX5. Results We demonstrated that transcriptional repression of ELP5 in GBC was highly correlated with hypermethylation of the promoter. Mechanistically, epigenetic analysis revealed that DNA methyltransferase DNMT3A-catalysed hypermethylation blocked transcription factor PAX5 activation of ELP5 by disrupting PAX5-DNA interaction, resulting in repressed ELP5 transcription. Pharmacologically, the DNA demethylating agent DAC eliminated the hypermethylated CpG dinucleotides in the ELP5 promoter and then facilitated PAX5 binding and reactivated ELP5 transcription, leading to the enhanced function of the elongator complex. To target this mechanism, we employed a sequential combination therapy of DAC and gemcitabine to sensitize GBC cells to gemcitabine-therapy through epigenetic activation of the elongator complex. Conclusions Our findings suggest that ELP5 expression in GBC is controlled by DNA methylation-sensitive induction of PAX5. The sequential combination therapy of DAC and gemcitabine could be an efficient therapeutic strategy to overcome chemotherapy resistance in GBC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02186-0.
Collapse
Affiliation(s)
- Sunwang Xu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China. .,Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| | - Cen Jiang
- Central Laboratory, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Ruirong Lin
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaopeng Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaoqiang Hu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiangjin Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| | - Tao Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
19
|
McDougall L, Kueh JTB, Ward J, Tyndall JDA, Woolley AG, Mehta S, Stayner C, Larsen DS, Eccles MR. Chemical Synthesis of the PAX Protein Inhibitor EG1 and Its Ability to Slow the Growth of Human Colorectal Carcinoma Cells. Front Oncol 2021; 11:709540. [PMID: 34722257 PMCID: PMC8549845 DOI: 10.3389/fonc.2021.709540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/20/2021] [Indexed: 11/19/2022] Open
Abstract
Colorectal cancer is primarily a disease of the developed world. The incidence rate has continued to increase over time, reflecting both demographic and lifestyle changes, which have resulted in genomic and epigenomic modifications. Many of the epigenetic modifications occur in genes known to be closely associated with embryonic development and cellular growth. In particular, the paired box (PAX) transcription factors are crucial for correct tissue development during embryogenesis due to their role in regulating genes involved in proliferation and cellular maintenance. In a number of cancers, including colorectal cancer, the PAX transcription factors are aberrantly expressed, driving proliferation and thus increased tumour growth. Here we have synthesized and used a small molecule PAX inhibitor, EG1, to inhibit PAX transcription factors in HCT116 colorectal cell cultures which resulted in reduced proliferation after three days of treatment. These results highlight PAX transcription factors as playing an important role in the proliferation of HCT116 colorectal cancer cells, suggesting there may be a potential therapeutic role for inhibition of PAX in limiting cancer cell growth.
Collapse
Affiliation(s)
- Lorissa McDougall
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | - Jake Ward
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Joel D A Tyndall
- School of Pharmacy, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Adele G Woolley
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,School of Pharmacy, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Sunali Mehta
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,School of Pharmacy, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Cherie Stayner
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - David S Larsen
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,School of Pharmacy, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
20
|
Incidence of malignant transformation in the oviductal fimbria in laying hens, a preclinical model of spontaneous ovarian cancer. PLoS One 2021; 16:e0255007. [PMID: 34314463 PMCID: PMC8315513 DOI: 10.1371/journal.pone.0255007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/07/2021] [Indexed: 11/19/2022] Open
Abstract
Ovarian high grade serous carcinoma (HGSC) is a lethal form of ovarian cancer (OVCA). In most cases it is detected at late stages as the symptoms are non-specific during early stages. Emerging information suggests that the oviductal fimbria is a site of origin of ovarian HGSC. Currently available tests cannot detect ovarian HGSC at early stage. The lack of a preclinical model with oviductal fimbria that develops spontaneous ovarian HGSC is a significant barrier to developing an early detection test for this disease. The goal of this study was to examine if the oviductal fimbria in hens is a site of origin of HGSC and whether it expresses several putative markers expressed in ovarian HGSC in patients. A total of 135 laying hens (4 years old) were selected from a flock using transvaginal ultrasound (TVUS) imaging, followed by euthanasia and gross examination for the presence of solid masses and ascites. Histological types of carcinomas were determined by hematoxylin and eosin staining. Expression of WT-1, mutant p53, CA-125, PAX2 and Ki67 in normal or malignant fimbriae or ovaries were examined using immunohistochemistry, immunoblotting and gene expression assays. This study detected tumors in oviductal fimbriae in hens and routine staining revealed ovarian HGSC-like microscopic features in these tumors. These tumors showed similarities to ovarian HGSC in patients in expressing several markers. Compared with normal fimbriae, intensities of expression of WT-1, mutant p53, CA-125, and Ki67 were significantly (P<0.05) higher in fimbrial tumors. In contrast, expression of PAX2 decreased gradually as the tumor progressed to late stages. The patterns of expression of these markers were similar to those in ovarian HGSC patients. Thus, tumors of the oviductal fimbria in hens may offer a preclinical model to study different aspects of spontaneous ovarian HGSC in women including its early detection.
Collapse
|
21
|
Islam Z, Ali AM, Naik A, Eldaw M, Decock J, Kolatkar PR. Transcription Factors: The Fulcrum Between Cell Development and Carcinogenesis. Front Oncol 2021; 11:681377. [PMID: 34195082 PMCID: PMC8236851 DOI: 10.3389/fonc.2021.681377] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022] Open
Abstract
Higher eukaryotic development is a complex and tightly regulated process, whereby transcription factors (TFs) play a key role in controlling the gene regulatory networks. Dysregulation of these regulatory networks has also been associated with carcinogenesis. Transcription factors are key enablers of cancer stemness, which support the maintenance and function of cancer stem cells that are believed to act as seeds for cancer initiation, progression and metastasis, and treatment resistance. One key area of research is to understand how these factors interact and collaborate to define cellular fate during embryogenesis as well as during tumor development. This review focuses on understanding the role of TFs in cell development and cancer. The molecular mechanisms of cell fate decision are of key importance in efforts towards developing better protocols for directed differentiation of cells in research and medicine. We also discuss the dysregulation of TFs and their role in cancer progression and metastasis, exploring TF networks as direct or indirect targets for therapeutic intervention, as well as specific TFs' potential as biomarkers for predicting and monitoring treatment responses.
Collapse
Affiliation(s)
- Zeyaul Islam
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Ameena Mohamed Ali
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Adviti Naik
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Mohamed Eldaw
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Julie Decock
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Prasanna R. Kolatkar
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| |
Collapse
|
22
|
Zong Y, Xiong Y, Dresser K, Yang M, Bledsoe JR. Polyclonal PAX8 expression in carcinomas of the biliary tract - Frequent non-specific staining represents a potential diagnostic pitfall. Ann Diagn Pathol 2021; 53:151762. [PMID: 34102541 DOI: 10.1016/j.anndiagpath.2021.151762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Paired box protein 8 (PAX8) is a transcription factor that is considered a relatively specific marker of carcinomas of the thyroid, kidney, and Müllerian/Wolffian duct derivatives. Unexpected PAX8 immunoreactivity has occasionally been reported in other tumors. The frequency of PAX8 expression in carcinomas of the biliary tract is not well studied. We evaluated the immunohistochemical expression of PAX8 in 73 cases of biliary tract carcinoma. We found that 28 of 73 (38%) biliary tract carcinomas had variable immunoreactivity for PAX8, assessed by a widely used polyclonal antibody (ProteinTech Group, Chicago, IL). This included 3 (4%) of cases with strong diffuse, and 14 (19%) of cases with strong focal staining. Strong PAX8 expression was more frequent in distal bile duct carcinomas than other biliary sites (p = 0.015), and showed a weak association with advanced T stage (T3-T4 versus T1-T2; p = 0.09). No correlation was observed between PAX8 positivity and age at diagnosis, gender, or lymph node metastasis. The 28 polyclonal PAX8-positive cases were largely negative for monoclonal PAX8 and PAX6 immunostains, with only rare tumor cells with weak immunoreactivity being present in a subset of cases. We show that a substantial fraction of biliary tract carcinomas exhibit immunoreactivity with a widely used polyclonal PAX8 antibody. Pathologists should be aware of this potential pitfall during the diagnostic workup of hepatobiliary lesions to avoid misdiagnosis as a metastasis from a PAX8-positive tumor.
Collapse
Affiliation(s)
- Yang Zong
- Department of Pathology, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Yiqin Xiong
- Department of Pathology, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Karen Dresser
- Department of Pathology, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Michelle Yang
- Department of Pathology, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Jacob R Bledsoe
- Department of Pathology, UMass Memorial Medical Center, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
23
|
Sanchez Caballero L, Gorgogietas V, Arroyo MN, Igoillo-Esteve M. Molecular mechanisms of β-cell dysfunction and death in monogenic forms of diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:139-256. [PMID: 33832649 DOI: 10.1016/bs.ircmb.2021.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monogenetic forms of diabetes represent 1%-5% of all diabetes cases and are caused by mutations in a single gene. These mutations, that affect genes involved in pancreatic β-cell development, function and survival, or insulin regulation, may be dominant or recessive, inherited or de novo. Most patients with monogenic diabetes are very commonly misdiagnosed as having type 1 or type 2 diabetes. The severity of their symptoms depends on the nature of the mutation, the function of the affected gene and, in some cases, the influence of additional genetic or environmental factors that modulate severity and penetrance. In some patients, diabetes is accompanied by other syndromic features such as deafness, blindness, microcephaly, liver and intestinal defects, among others. The age of diabetes onset may also vary from neonatal until early adulthood manifestations. Since the different mutations result in diverse clinical presentations, patients usually need different treatments that range from just diet and exercise, to the requirement of exogenous insulin or other hypoglycemic drugs, e.g., sulfonylureas or glucagon-like peptide 1 analogs to control their glycemia. As a consequence, awareness and correct diagnosis are crucial for the proper management and treatment of monogenic diabetes patients. In this chapter, we describe mutations causing different monogenic forms of diabetes associated with inadequate pancreas development or impaired β-cell function and survival, and discuss the molecular mechanisms involved in β-cell demise.
Collapse
Affiliation(s)
- Laura Sanchez Caballero
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Vyron Gorgogietas
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Maria Nicol Arroyo
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/.
| |
Collapse
|
24
|
Thompson B, Davidson EA, Liu W, Nebert DW, Bruford EA, Zhao H, Dermitzakis ET, Thompson DC, Vasiliou V. Overview of PAX gene family: analysis of human tissue-specific variant expression and involvement in human disease. Hum Genet 2021; 140:381-400. [PMID: 32728807 PMCID: PMC7939107 DOI: 10.1007/s00439-020-02212-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022]
Abstract
Paired-box (PAX) genes encode a family of highly conserved transcription factors found in vertebrates and invertebrates. PAX proteins are defined by the presence of a paired domain that is evolutionarily conserved across phylogenies. Inclusion of a homeodomain and/or an octapeptide linker subdivides PAX proteins into four groups. Often termed "master regulators", PAX proteins orchestrate tissue and organ development throughout cell differentiation and lineage determination, and are essential for tissue structure and function through maintenance of cell identity. Mutations in PAX genes are associated with myriad human diseases (e.g., microphthalmia, anophthalmia, coloboma, hypothyroidism, acute lymphoblastic leukemia). Transcriptional regulation by PAX proteins is, in part, modulated by expression of alternatively spliced transcripts. Herein, we provide a genomics update on the nine human PAX family members and PAX homologs in 16 additional species. We also present a comprehensive summary of human tissue-specific PAX transcript variant expression and describe potential functional significance of PAX isoforms. While the functional roles of PAX proteins in developmental diseases and cancer are well characterized, much remains to be understood regarding the functional roles of PAX isoforms in human health. We anticipate the analysis of tissue-specific PAX transcript variant expression presented herein can serve as a starting point for such research endeavors.
Collapse
Affiliation(s)
- Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA
| | - Emily A Davidson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA
| | - Wei Liu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06510, USA
| | - Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics, Cincinnati Children's Research Center, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
- Department of Pediatrics and Molecular and Developmental Biology, Cincinnati Children's Research Center, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Hongyu Zhao
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06510, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06510, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211, Geneva, Switzerland
- Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211, Geneva, Switzerland
- Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA.
| |
Collapse
|
25
|
Chaves-Moreira D, Morin PJ, Drapkin R. Unraveling the Mysteries of PAX8 in Reproductive Tract Cancers. Cancer Res 2021; 81:806-810. [PMID: 33361393 PMCID: PMC8026505 DOI: 10.1158/0008-5472.can-20-3173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022]
Abstract
Paired Box 8 (PAX8) is a lineage-specific transcription factor that has essential roles during embryogenesis and tumorigenesis. The importance of PAX8 in the development of the reproductive system is highlighted by abnormalities observed upon the loss or mutation of this PAX family member. In cancer, PAX8 expression is deregulated in a key set of neoplasms, including those arising from the Müllerian ducts. The roles of PAX8 in oncogenesis are diverse and include epigenetic remodeling, stimulation of proliferation, inhibition of apoptosis, and regulation of angiogenesis. PAX8 can interact with different protein partners during cancer progression and may exhibit significant function-altering alternative splicing. Moreover, expression of PAX8 in cancer can also serve as a biomarker for diagnostic and prognostic purposes. In this review, we focus on the roles of PAX8 in cancers of the reproductive system. Understanding the diverse mechanisms of action of PAX8 in development and oncogenesis may identify new vulnerabilities in malignancies that currently lack effective therapies.
Collapse
Affiliation(s)
- Daniele Chaves-Moreira
- Department of Obstetrics and Gynecology, Penn Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Patrice J Morin
- Department of Obstetrics and Gynecology, Penn Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, Penn Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
26
|
Jahangiri R, Mosaffa F, Emami Razavi A, Teimoori-Toolabi L, Jamialahmadi K. PAX2 promoter methylation and AIB1 overexpression promote tamoxifen resistance in breast carcinoma patients. J Oncol Pharm Pract 2021; 28:310-325. [PMID: 33509057 DOI: 10.1177/1078155221989404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Disease recurrence is an important obstacle in estrogen receptor positive (ER+) tamoxifen treated breast carcinoma patients. Tamoxifen resistance-related molecular mechanisms are not fully understood. Alteration in DNA methylation which contributes to transcriptional regulation of cancer-related genes plays a crucial role in tamoxifen response. In the present study, the contribution of promoter methylation and mRNA expression of PAX2 and AIB1 in the development of breast carcinoma and tamoxifen refractory was assessed. METHODS Methylation specific-high resolution melting (MS-HRM) analysis and Real-time quantitative PCR (RT-qPCR) experiment were performed to analyze the promoter methylation and mRNA expression levels of PAX2 and AIB1 genes in 102 breast tumors and adjacent normal breast specimens. RESULTS We indicated that PAX2 expression is decreased in breast tissues due to hypermethylation in its promoter region. Compared to the adjacent normal tissues, the tumors exhibited significantly lower relative mRNA levels of PAX2 and increased expression of AIB1. Aberrant promoter methylation of PAX2 and overexpression of AIB1 was observed in tamoxifen resistance patients compared to the sensitive ones. Cox regression analysis exhibited that the increased promoter methylation status of PAX2 and overexpression of AIB1 remained as unfavorable identifiers which influence patients' survival independently. CONCLUSIONS Our results revealed that the aberration in PAX2 promoter methylation and AIB1 overexpression are associated with the tamoxifen response in breast carcinoma patients. Further research is needed to demonstrate the potential of using PAX2 and AIB1 expression and their methylation-mediated regulation as predictive or prognostic biomarkers or as a new target therapy for better disease management.
Collapse
Affiliation(s)
- Rosa Jahangiri
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
El Aliani A, El-Abid H, El Mallali Y, Attaleb M, Ennaji MM, El Mzibri M. Association between Gene Promoter Methylation and Cervical Cancer Development: Global Distribution and A Meta-analysis. Cancer Epidemiol Biomarkers Prev 2021; 30:450-459. [DOI: 10.1158/1055-9965.epi-20-0833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/27/2020] [Accepted: 12/31/2020] [Indexed: 12/24/2022] Open
|
28
|
Lu X, Yang C, Hu Y, Xu J, Shi C, Rao J, Yu W, Cheng F. Upregulation of miR-1254 promotes Hepatocellular Carcinoma Cell Proliferation, Migration, and Invasion via Inactivation of the Hippo-YAP signaling pathway by decreasing PAX5. J Cancer 2021; 12:771-789. [PMID: 33403035 PMCID: PMC7778534 DOI: 10.7150/jca.49680] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence suggests that microRNAs (miRNAs) affect the progression of hepatocellular carcinoma (HCC). However, the exact function and mechanism of miR-1254 in HCC remains unclear. This study explored the effects of miR-1254 on the biological behavior of HCC cells and determined the underlying mechanism. RT-qPCR was used to detect the expression of miR-1254. Gain- or loss-of-function assays determined if miR-1254 affected the biological function of HCC cells in vitro. Dual luciferase reporter assays confirmed the target gene of miR-1254. Tumor xenografts in mice were used to explore the effects of miR-1254 on tumorigenesis and metastasis of HCC. miR-1254 was upregulated in HCC tissues and cell lines and linked to larger tumor size, aggressive vascular invasion and higher Edmondson grade. Lentiviral-based overexpression and knockdown experiments indicated that miR-1254 promoted proliferation, migration, invasion, and the epithelial-mesenchymal transition of HCC cells. The paired box gene 5 (PAX5) was downregulated in HCC tissues, negatively correlated with miR-1254 expression, and confirmed to be a direct target of miR-1254. Restoration of PAX5 reversed the effects of miR-1254 on the biological behavior of HCC cells. Advanced mechanism studies suggested that PAX5 might mediate miR-1254 by regulating the Hippo signaling pathway. Tumor xenografts in mice confirmed that miR-1254 promoted tumorigenesis and metastasis, and led to poor survival. In conclusion, miR-1254 promoted proliferation, migration, and invasion of HCC cells via decreasing Hippo signaling through targeting PAX5 in vitro and in vivo. This miRNA might be a therapeutic target for HCC.
Collapse
Affiliation(s)
- Xu Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation; Nanjing 210029, Jiangsu Province, China
| | - Chao Yang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation; Nanjing 210029, Jiangsu Province, China
| | - Yuanchang Hu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation; Nanjing 210029, Jiangsu Province, China
| | - Jian Xu
- Department of General Surgery, Changzhou Jintan District People's Hospital; Changzhou 213200, Jiangsu Province, China
| | - Chengyu Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation; Nanjing 210029, Jiangsu Province, China
| | - Jianhua Rao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation; Nanjing 210029, Jiangsu Province, China
| | - Weixin Yu
- Department of General Surgery, Changzhou Jintan District People's Hospital; Changzhou 213200, Jiangsu Province, China
| | - Feng Cheng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation; Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
29
|
Pak B, Schmitt CE, Oh S, Kim JD, Choi W, Han O, Kim M, Kim MJ, Ham HJ, Kim S, Huh TL, Kim JI, Jin SW. Pax9 is essential for granulopoiesis but dispensable for erythropoiesis in zebrafish. Biochem Biophys Res Commun 2020; 534:359-366. [PMID: 33256983 DOI: 10.1016/j.bbrc.2020.11.077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 11/26/2022]
Abstract
Paired Box (Pax) gene family, a group of transcription regulators have been implicated in diverse physiological processes. However, their role during hematopoiesis which generate a plethora of blood cells remains largely unknown. Using a previously reported single cell transcriptomics data, we analyzed the expression of individual Pax family members in hematopoietic cells in zebrafish. We have identified that Pax9, which is an essential regulator for odontogenesis and palatogenesis, is selectively localized within a single cluster of the hematopoietic lineage. To further analyze the function of Pax9 in hematopoiesis, we generated two independent pax9 knock-out mutants using the CRISPR-Cas9 technique. We found that Pax9 appears to be an essential regulator for granulopoiesis but dispensable for erythropoiesis during development, as lack of pax9 selectively decreased the number of neutrophils with a concomitant decrease in the expression level of neutrophil markers. In addition, embryos, where pax9 was functionally disrupted by injecting morpholinos, failed to increase the number of neutrophils in response to pathogenic bacteria, suggesting that Pax9 is not only essential for developmental granulopoiesis but also emergency granulopoiesis. Due to the inability to initiate emergency granulopoiesis, innate immune responses were severely compromised in pax9 morpholino-mediated embryos, increasing their susceptibility and mortality. Taken together, our data indicate that Pax9 is essential for granulopoiesis and promotes innate immunity in zebrafish larvae.
Collapse
Affiliation(s)
- Boryeong Pak
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Chris E Schmitt
- Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Dept. of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sera Oh
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jun-Dae Kim
- Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Dept. of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA; Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX, USA
| | - Woosoung Choi
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Orjin Han
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Minjung Kim
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Myoung-Jin Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Hyung-Jin Ham
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Shanghyeon Kim
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Tae-Lin Huh
- School of Life Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Il Kim
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Suk-Won Jin
- Cell Logistics Research Center and School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea; Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Dept. of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
30
|
Specific Biomarker Expression Patterns in the Diagnosis of Residual and Recurrent Endometrial Precancers After Progestin Treatment: A Longitudinal Study. Am J Surg Pathol 2020; 44:1429-1439. [PMID: 32931681 DOI: 10.1097/pas.0000000000001537] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Conservative management with progestin is a treatment option for atypical hyperplasia (AH). However, pathologic diagnosis of residual/recurrent lesions is often problematic because of the profound morphologic changes induced by progestin and the lack of established diagnostic criteria for progestin-treated residual AH. METHODS We conducted a longitudinal study of 265 endometrial biopsies from 54 patients with a history of AH on progestin therapy. Patient outcomes were divided into 3 categories after morphologic review and immunohistochemical staining with phosphatase and tensin homolog (PTEN) and paired box 2 (PAX2): (1) persistent or residual disease; (2) recurrent disease; (3) complete response. All specimens were classified into 3 categories based on morphology: (1) persistent/recurrent disease (nonresponse), (2) morphologically uncertain response, (3) optimally treated (complete response). The staining patterns of PTEN/PAX2 were tracked over time in individual patients and correlated with morphologic findings before and after progestin therapy. RESULTS Our data showed that aberrant expression patterns of PTEN and/or PAX2 were identified in 48 (88.9%) of the 54 primary biopsies and persisted in persistent/recurrent AH across serial endometrial biopsies (n=99, P<0.00001), while normal PTEN and PAX2 expressions were consistently observed in optimally treated cases (n=84, P<0.00001). More importantly, follow-up biopsies that showed a morphologically uncertain response but a PTEN/PAX2 expression pattern identical to the initial biopsy were significantly correlated with persistent or recurrent disease (n=18, P=0.000182), as evidenced by areas with morphologic features diagnostic of AH on subsequent biopsy. CONCLUSIONS Biomarker PTEN/PAX2 signatures offer a valuable diagnostic aid to identify residual AH in progestin-treated endometrial samples for which the biomarker status from preprogestin treated AH is known. The findings of this study are promising for a possible future change of diagnostic practice.
Collapse
|
31
|
Kimura K, Tsuchiya J, Kitazume Y, Kishino M, Akahoshi K, Kudo A, Tanaka S, Tanabe M, Tateishi U. Dynamic Enhancement Pattern on CT for Predicting Pancreatic Neuroendocrine Neoplasms with Low PAX6 Expression: A Retrospective Observational Study. Diagnostics (Basel) 2020; 10:diagnostics10110919. [PMID: 33182335 PMCID: PMC7695321 DOI: 10.3390/diagnostics10110919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022] Open
Abstract
Paired box 6 (PAX6) is a transcription factor that plays a critical role in tumor suppression, implying that the downregulation of PAX6 promotes tumor growth and invasiveness. This study aimed to examine dynamic computed tomography (CT) features for predicting pancreatic neuroendocrine neoplasms (Pan-NENs) with low PAX6 expression. We retrospectively evaluated 51 patients with Pan-NENs without synchronous liver metastasis to assess the pathological expression of PAX6. Two radiologists analyzed preoperative dynamic CT images to determine morphological features and enhancement patterns. We compared the CT findings between low and high PAX6 expression groups. Pathological analysis identified 11 and 40 patients with low and high PAX6 expression, respectively. Iso- or hypoenhancement types in the arterial and portal phases were significantly associated with low PAX6 expression (p = 0.009; p = 0.001, respectively). Low PAX6 Pan-NENs showed a lower portal enhancement ratio than high PAX6 Pan-NENs (p = 0.044). The combination based on enhancement types (iso- or hypoenhancement during arterial and portal phases) and portal enhancement ratio (≤1.22) had 54.5% sensitivity, 92.5% specificity, and 84.3% accuracy in identifying low PAX6 Pan-NENs. Dynamic CT features, including iso- or hypoenhancement types in the arterial and portal phases and lower portal enhancement ratio may help predict Pan-NENs with low PAX6 expression.
Collapse
Affiliation(s)
- Koichiro Kimura
- Department of Diagnostic Radiology, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 1138510, Japan; (J.T.); (Y.K.); (M.K.); (U.T.)
- Correspondence: ; Tel.: +81-3-5803-5311
| | - Junichi Tsuchiya
- Department of Diagnostic Radiology, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 1138510, Japan; (J.T.); (Y.K.); (M.K.); (U.T.)
| | - Yoshio Kitazume
- Department of Diagnostic Radiology, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 1138510, Japan; (J.T.); (Y.K.); (M.K.); (U.T.)
| | - Mitsuhiro Kishino
- Department of Diagnostic Radiology, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 1138510, Japan; (J.T.); (Y.K.); (M.K.); (U.T.)
| | - Keiichi Akahoshi
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 1138510, Japan; (K.A.); (A.K.); (M.T.)
| | - Atsushi Kudo
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 1138510, Japan; (K.A.); (A.K.); (M.T.)
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 1138510, Japan;
| | - Minoru Tanabe
- Department of Hepatobiliary and Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 1138510, Japan; (K.A.); (A.K.); (M.T.)
| | - Ukihide Tateishi
- Department of Diagnostic Radiology, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 1138510, Japan; (J.T.); (Y.K.); (M.K.); (U.T.)
| |
Collapse
|
32
|
Colina JA, Varughese P, Karthikeyan S, Salvi A, Modi DA, Burdette JE. Reduced PAX2 expression in murine fallopian tube cells enhances estrogen receptor signaling. Carcinogenesis 2020; 41:646-655. [PMID: 31271204 DOI: 10.1093/carcin/bgz127] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is thought to progress from a series of precursor lesions in the fallopian tube epithelium (FTE). One of the preneoplastic lesions found in the FTE is called a secretory cell outgrowth (SCOUT), which is partially defined by a loss of paired box 2 (PAX2). In the present study, we developed PAX2-deficient murine cell lines in order to model a SCOUT and to explore the role of PAX2 loss in the etiology of HGSOC. Loss of PAX2 alone in the murine oviductal epithelium (MOE) did not induce changes in proliferation, migration and survival in hypoxia or contribute to resistance to first line therapies, such as cisplatin or paclitaxel. RNA sequencing of MOE PAX2shRNA cells revealed significant alterations in the transcriptome. Silencing of PAX2 in MOE cells produced a messenger RNA expression pattern that recapitulated several aspects of the transcriptome of previously characterized human SCOUTs. RNA-seq analysis and subsequent qPCR validation of this SCOUT model revealed an enrichment of genes involved in estrogen signaling and an increase in expression of estrogen receptor α. MOE PAX2shRNA cells had higher estrogen signaling activity and higher expression of putative estrogen responsive genes both in the presence and absence of exogenous estrogen. In summary, loss of PAX2 in MOE cells is sufficient to transcriptionally recapitulate a human SCOUT, and this model revealed an enrichment of estrogen signaling as a possible route for tumor progression of precursor lesions in the fallopian tube.
Collapse
Affiliation(s)
- Jose A Colina
- Pharmaceutical Sciences, Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Peter Varughese
- Pharmaceutical Sciences, Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Subbulakshmi Karthikeyan
- Pharmaceutical Sciences, Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Amrita Salvi
- Pharmaceutical Sciences, Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Dimple A Modi
- Pharmaceutical Sciences, Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Joanna E Burdette
- Pharmaceutical Sciences, Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
33
|
Mudhar HS, Milman T, Eagle RC, Sanderson T, Pheasey L, Paine S, Salvi S, Rennie IG, Rundle P, Shields CL, Shields JA. Usefulness of PAX8 Immunohistochemistry in Adult Intraocular Tumor Diagnosis. Ophthalmology 2020; 128:765-778. [PMID: 33002562 DOI: 10.1016/j.ophtha.2020.09.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/26/2020] [Accepted: 09/21/2020] [Indexed: 10/23/2022] Open
Abstract
PURPOSE To evaluate the distribution of the PAX8 transcription factor protein in ocular tissues and to investigate if immunohistochemical stains for this biomarker are useful in the diagnosis of intraocular tumors. DESIGN Observational case series. PARTICIPANTS Excision and cytologic analysis specimens of 6 ciliary body epithelial neoplasms, 2 iris epithelial neoplasms, 3 retinal pigment epithelial neoplasms, 3 intraocular medulloepitheliomas, 15 uveal melanomas, and 5 uveal melanocytomas. METHODS Hematoxylin-eosin and PAX8 immunohistochemical stains were performed on all specimens. In appropriate cases, bleached preparations and other immunohistochemical stains, including AE1/AE3 cytokeratin, Lin28A, and CD45, were performed. MAIN OUTCOME MEASURES Distribution of PAX8 expression in normal and neoplastic tissue. RESULTS Strong nuclear PAX8 expression was observed in the normal corneal epithelium, iris sphincter pupillae muscle, iris pigment epithelium and dilator muscle complex, nonpigmented and pigmented epithelia of the ciliary body, lens epithelium, and a subset of retinal neurons. The normal retinal pigment epithelium and uveal melanocytes did not stain for PAX8. The ciliary body epithelial and neuroepithelial tumors (adenoma, adenocarcinoma, and medulloepithelioma) showed uniform strong nuclear PAX8 immunoreactivity. All melanocytic tumors (iris melanoma, ciliary-choroidal melanoma, and melanocytoma) and retinal pigment epithelial neoplasms showed negative results for PAX8. A subset of tumor-associated lymphocytes, most prominent in uveal melanoma, showed positive results for PAX8. The uniformity of the PAX8 staining was superior to the variable cytokeratin staining in the ciliary epithelial neoplasms and the variable Lin28A staining in malignant medulloepithelioma. The veracity of PAX8 staining was equally as robust on cytologic analysis and open-flap biopsy specimens of ciliary epithelial and iris epithelial neoplasms, melanocytoma, and melanoma. CONCLUSIONS PAX8 has proven to be a very useful diagnostic marker in a select group of adult intraocular tumors, and we highly recommend its inclusion in diagnostic antibody panels of morphologically challenging intraocular neoplasms.
Collapse
Affiliation(s)
- Hardeep Singh Mudhar
- National Specialist Ophthalmic Pathology Service, Department of Histopathology, Royal Hallamshire Hospital, Sheffield, United Kingdom.
| | - Tatyana Milman
- Department of Pathology, Wills Eye Hospital, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Ralph C Eagle
- Department of Pathology, Wills Eye Hospital, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Tracy Sanderson
- Immunohistochemistry, Department of Histopathology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Leanne Pheasey
- Immunohistochemistry, Department of Histopathology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Simon Paine
- Neuropathology, Department of Cellular Pathology, Nottingham University Hospitals NHS Trust, Queen's Medical Centre, Nottingham, United Kingdom
| | - Sachin Salvi
- Sheffield Ocular Oncology Service, Department of Ophthalmology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Ian G Rennie
- Sheffield Ocular Oncology Service, Department of Ophthalmology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Paul Rundle
- Sheffield Ocular Oncology Service, Department of Ophthalmology, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Carol L Shields
- Ocular Oncology Service, Wills Eye Hospital, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jerry A Shields
- Ocular Oncology Service, Wills Eye Hospital, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Fetuses of diabetic mothers are at increased risk for congenital malformations. Research in recent decades using animal and embryonic stem cell models has revealed many embryonic developmental processes that are disturbed by maternal diabetes. The aim of this review is to give clinicians a better understanding of the reasons for rigorous glycemic control in early pregnancy, and to provide background to guide future research. RECENT FINDINGS Mouse models of diabetic pregnancy have revealed mechanisms for altered expression of tissue-specific genes that lead to malformations that are more common in diabetic pregnancies, such as neural tube defects (NTDs) and congenital heart defects (CHDs), and how altered gene expression causes apoptosis that leads to malformations. Embryos express the glucose transporter, GLUT2, which confers susceptibility to malformation, due to high rates of glucose uptake during maternal hyperglycemia and subsequent oxidative stress; however, the teleological function of GLUT2 for mammalian embryos may be to transport the amino sugar glucosamine (GlcN) from maternal circulation to be used as substrate for glycosylation reactions and to promote embryo cell growth. Malformations in diabetic pregnancy may be not only due to excess glucose uptake but also due to insufficient GlcN uptake. Avoiding maternal hyperglycemia during early pregnancy should prevent excess glucose uptake via GLUT2 into embryo cells, and also permit sufficient GLUT2-mediated GlcN uptake.
Collapse
Affiliation(s)
- Mary R Loeken
- Section on Islet Cell and Regenerative Biology, Department of Medicine, Joslin Diabetes Center and Harvard Medical School, One Joslin Place, Boston, MA, 02215, USA.
| |
Collapse
|
35
|
Zeng K, Xie W, Huang J, Yang J, Deng K, Luo X. PAX3 silencing inhibits prostate cancer progression through the suppression of the TGF-β/Smad signaling axis. Cell Biol Int 2020; 44:2131-2139. [PMID: 32672875 DOI: 10.1002/cbin.11421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 01/20/2023]
Abstract
Multiple studies have confirmed the pro-oncogenic effects of PAX3 in an array of cancers, but its role in prostate cancer (PCa) remains largely undefined. The aim of this study is to investigate the role of PAX3 in PCa. PAX3 expression was compared between PCa tumor tissue and nontumor tissues and PCa cell lines and normal prostate epithelial cells (PNT2) by western blot analysis and immunohistochemistry staining. MTT and immunofluorescence assays were used to detect PCa cell proliferation. Flow cytometry was used to evaluate cell apoptosis in PCa. Transwell assays were used for the determination of cell migration and PCa cell invasion. PAX3 expression was higher in PCa tissues and human PCa cell lines. Moreover, PAX3 silencing inhibited the proliferation, metastasis, and epithelial-mesenchymal transition (EMT) of PCa cells, and increased the rates of apoptosis. PAX3 silencing inhibited transforming growth factor-β (TGF-β)/Smad signaling in PCa cells. The effects of si-PAX3 on the proliferation, apoptosis, metastasis, and EMT of PCa cells were alleviated by TGF-β1 treatment. PAX3 silencing inhibits PCa progression through the inhibition of TGF-β/Smad signaling. This reveals PAX3 as a novel biomarker and therapeutic target for future PCa treatments.
Collapse
Affiliation(s)
- Ke Zeng
- Department of Urology, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Wenxian Xie
- Department of Basic Medicine, Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan, China
| | - Jun Huang
- Department of Urology, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Jian Yang
- Department of Urology, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Kefei Deng
- Department of Urology, Zigong First People's Hospital, Zigong, Sichuan, China
| | - Xiaohui Luo
- Department of Urology, Baoji Central Hospital, Baoji, Shaanxi, China
| |
Collapse
|
36
|
Downregulated Pancreatic Beta Cell Genes Indicate Poor Prognosis in Patients With Pancreatic Neuroendocrine Neoplasms. Ann Surg 2020; 271:732-739. [PMID: 29979246 DOI: 10.1097/sla.0000000000002911] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To predict metachronous liver metastasis after pancreatectomy for pancreatic neuroendocrine neoplasms (Pan-NENs). SUMMARY OF BACKGROUND DATA Liver metastasis determines the prognosis of patients with Pan-NENs, but no index exists in the WHO 2017 classification for this prediction. METHODS Between April 2014 and March 2018, resected primary tumors from 20 patients with or without simultaneous liver metastasis were examined using genome-wide gene expression analysis. For validation analysis, resected primary tumors from 62 patients without simultaneous liver metastasis were examined for PAX6 expression. RESULTS Gene expression profiling revealed pancreatic beta cell genes (NES, -2.0; P < 0.001) as the most downregulated set in patients with simultaneous liver metastasis. In the test study, PAX6 was the most valuable index for liver metastasis (log FC, -3.683; P = 0.0096). Multivariate analysis identified PAX6 expression (hazard ratio, 0.2; P = 0.03) as an independent risk factor for metachronous liver metastasis-free survival (mLM-FS). The 5-year mLM-FS of patients with high versus low PAX6 expression was significantly better (95% vs 66%, respectively; P < 0.0001). The 5-year overall survival rate of was also better than in those with high versus low PAX6 expression (100% vs 87%, respectively). Patients with low PAX 6 expression were significantly younger and leaner, had a higher Ki-67 index (P = 0.01, 0.007, 0.008, respectively), and showed a higher mitotic rate than patients with high PAX6 expression. CONCLUSIONS Downregulated pancreatic beta cell genes involving PAX6 in primary tumors may predict mLM and poor overall survival after primary tumor resection in Pan-NEN patients.
Collapse
|
37
|
Yan T, Naren D, Gong Y. Positive expression of PAX7 indicates poor prognosis of pediatric and adolescent AML patients. Expert Rev Hematol 2020; 13:289-297. [PMID: 31990602 DOI: 10.1080/17474086.2020.1719826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objective: Therapeutic advances based on risk stratification and implementation of excellent supportive care measures have significantly improved outcomes for childhood acute myeloid leukemia (AML) over the past 30 years. However, approximately half of all childhood AML cases relapse. Therefore, precise risk stratification is needed for predicting relapse potential.Methods: RNA-seq data of TARGET-AML and corresponding clinical information of pediatric and adolescent AML cases were downloaded from The Cancer Genome Atlas. Clinical information of 156 patients with gene expression data was extracted. The effects of PAX7 expression profiles on overall survival (OS) and event-free survival (EFS) were analyzed.Results: Positive expression of PAX7 indicated shorter OS and EFS, especially in patients older than 14 years. Furthermore, positive PAX7 expression also predicted shorter OS and EFS in intermediate- and low-risk group patients, compared to patients with negative PAX7 expression. In addition, patients who have received allogenic hematopoietic stem cell transplantation (allo-HSCT) in the first complete remission had better outcome than those who did not receive HSCT.Conclusions: Positive PAX7 expression in pediatric and adolescent AML patients indicates a poor outcome. Hence, the detection of PAX7 expression profiles is helpful for further stratification of intermediate- and low-risk groups.
Collapse
Affiliation(s)
- Tianyou Yan
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Duolan Naren
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuping Gong
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Feng Y, Tang Y, Mao Y, Liu Y, Yao D, Yang L, Garson K, Vanderhyden BC, Wang Q. PAX2 promotes epithelial ovarian cancer progression involving fatty acid metabolic reprogramming. Int J Oncol 2020; 56:697-708. [PMID: 31922217 PMCID: PMC7010223 DOI: 10.3892/ijo.2020.4958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/19/2019] [Indexed: 01/28/2023] Open
Abstract
Ovarian cancer is the fifth most common type of cancer afflicting women and frequently presents at a late stage with a poor prognosis. While paired box 2 (PAX2) expression is frequently lost in high-grade serous ovarian cancer, it is expressed in a subset of ovarian tumors and may play a role in tumorigenesis. This study investigated the expression of PAX2 in ovarian cancer. The expression of PAX2 in a murine allograft model of ovarian cancer, the RM model, led to a more rapidly growing cell line both in vitro and in vivo. This finding was in accordance with the shorter progression-free survival observed in patients with a higher PAX2 expression, as determined in this study cohort by immunohistochemistry. iTRAQ-based proteomic profiling revealed that proteins involved in fatty acid metabolism and oxidative phosphorylation were found to be upregulated in RM tumors expressing PAX2. The expression of two key fatty acid metabolic genes was also found to be upregulated in PAX2-expressing human ovarian cancer samples. The analysis of existing datasets also indicated that a high expression of key enzymes in fatty acid metabolism was associated with a shorter progression-free survival time in patients with serous ovarian cancer. Thus, on the whole, the findings of this study indicate that PAX2 may promote ovarian cancer progression, involving fatty acid metabolic reprograming.
Collapse
Affiliation(s)
- Yan Feng
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yong Tang
- Department of Urology, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530199, P.R. China
| | - Yannan Mao
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yingzhao Liu
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Desheng Yao
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Linkai Yang
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Kenneth Garson
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Barbara C Vanderhyden
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Qi Wang
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
39
|
Huilgol D, Venkataramani P, Nandi S, Bhattacharjee S. Transcription Factors That Govern Development and Disease: An Achilles Heel in Cancer. Genes (Basel) 2019; 10:E794. [PMID: 31614829 PMCID: PMC6826716 DOI: 10.3390/genes10100794] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
Development requires the careful orchestration of several biological events in order to create any structure and, eventually, to build an entire organism. On the other hand, the fate transformation of terminally differentiated cells is a consequence of erroneous development, and ultimately leads to cancer. In this review, we elaborate how development and cancer share several biological processes, including molecular controls. Transcription factors (TF) are at the helm of both these processes, among many others, and are evolutionarily conserved, ranging from yeast to humans. Here, we discuss four families of TFs that play a pivotal role and have been studied extensively in both embryonic development and cancer-high mobility group box (HMG), GATA, paired box (PAX) and basic helix-loop-helix (bHLH) in the context of their role in development, cancer, and their conservation across several species. Finally, we review TFs as possible therapeutic targets for cancer and reflect on the importance of natural resistance against cancer in certain organisms, yielding knowledge regarding TF function and cancer biology.
Collapse
Affiliation(s)
- Dhananjay Huilgol
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| | | | - Saikat Nandi
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| | - Sonali Bhattacharjee
- Bungtown Road, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY 11724, USA.
| |
Collapse
|
40
|
Dvorská D, Braný D, Nagy B, Grendár M, Poka R, Soltész B, Jagelková M, Zelinová K, Lasabová Z, Zubor P, Danková Z. Aberrant Methylation Status of Tumour Suppressor Genes in Ovarian Cancer Tissue and Paired Plasma Samples. Int J Mol Sci 2019; 20:ijms20174119. [PMID: 31450846 PMCID: PMC6747242 DOI: 10.3390/ijms20174119] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is a highly heterogeneous disease and its formation is affected by many epidemiological factors. It has typical lack of early signs and symptoms, and almost 70% of ovarian cancers are diagnosed in advanced stages. Robust, early and non-invasive ovarian cancer diagnosis will certainly be beneficial. Herein we analysed the regulatory sequence methylation profiles of the RASSF1, PTEN, CDH1 and PAX1 tumour suppressor genes by pyrosequencing in healthy, benign and malignant ovarian tissues, and corresponding plasma samples. We recorded statistically significant higher methylation levels (p < 0.05) in the CDH1 and PAX1 genes in malignant tissues than in controls (39.06 ± 18.78 versus 24.22 ± 6.93; 13.55 ± 10.65 versus 5.73 ± 2.19). Higher values in the CDH1 gene were also found in plasma samples (22.25 ± 14.13 versus 46.42 ± 20.91). A similar methylation pattern with positive correlation between plasma and benign lesions was noted in the CDH1 gene (r = 0.886, p = 0.019) and malignant lesions in the PAX1 gene (r = 0.771, p < 0.001). The random forest algorithm combining methylation indices of all four genes and age determined 0.932 AUC (area under the receiver operating characteristic (ROC) curve) prediction power in the model classifying malignant lesions and controls. Our study results indicate the effects of methylation changes in ovarian cancer development and suggest that the CDH1 gene is a potential candidate for non-invasive diagnosis of ovarian cancer.
Collapse
Affiliation(s)
- Dana Dvorská
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Dušan Braný
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia.
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Marián Grendár
- Bioinformatic Unit, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Robert Poka
- Institute of Obstetrics and Gynecology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Marianna Jagelková
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Katarína Zelinová
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Zora Lasabová
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Pavol Zubor
- Department of Gynaecology and Obstetrics, Martin University Hospital, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Zuzana Danková
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| |
Collapse
|
41
|
Guan D, Li C, Lv X, Yang Y. Pseudolaric acid B inhibits PAX2 expression through Wnt signaling and induces BAX expression, therefore promoting apoptosis in HeLa cervical cancer cells. J Gynecol Oncol 2019; 30:e77. [PMID: 31328459 PMCID: PMC6658601 DOI: 10.3802/jgo.2019.30.e77] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/11/2019] [Accepted: 03/05/2019] [Indexed: 01/05/2023] Open
Abstract
Objectives Pseudolaric acid B (PAB) has been shown to inhibit the growth of various tumor cells, but the molecular details of its function are still unknown. This study investigated the molecular mechanisms by which PAB induces apoptosis in HeLa cells. Methods The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays were performed to investigate the effect of PAB treatment in various cervical cancer cell lines. Annexin V/propidium iodide staining combined with flow cytometry and Hoechst 33258 staining were used to assess PAB-induced apoptosis. Additionally, we performed bioinformatics analyses and identified a paired box 2 (PAX2) binding site on the BAX promoter. We then validated the binding using luciferase and chromatin immunoprecipitation assays. Finally, western blotting assays were used to investigate PAB effect on the Wnt signaling and the involved signaling molecules. Results PAB promotes apoptosis and downregulates PAX2 expression in HeLa cells in a time- and concentration-dependent manner. PAX2 binds to the promoter of BAX and inhibits its expression; therefore, PAX2 inhibition is associated with increased levels of BAX, which induces apoptosis of HeLa cells via the mitochondrial pathway. Additionally, PAB inhibits classical Wnt signaling. Conclusion PAB effectively inhibits Wnt signaling and PAX2 expression, and increases BAX levels, which induce apoptosis in HeLa cells. Therefore, PAB is a promising natural molecule for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Defeng Guan
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Chenyang Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Xiao Lv
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yongxiu Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China.,Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
42
|
Gaczkowska A, Biedziak B, Budner M, Zadurska M, Lasota A, Hozyasz KK, Dąbrowska J, Wójcicki P, Szponar-Żurowska A, Żukowski K, Jagodziński PP, Mostowska A. PAX7 nucleotide variants and the risk of non-syndromic orofacial clefts in the Polish population. Oral Dis 2019; 25:1608-1618. [PMID: 31173442 DOI: 10.1111/odi.13139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/16/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The etiology of non-syndromic cleft lip with or without cleft palate (nsCL/P) is multifactorial, heterogeneous, and still not completely understood. The aim of the present study was to examine the associations between common and rare PAX7 nucleotide variants and the risk of this common congenital anomaly in a Polish population. SUBJECTS AND METHODS Eight top nsCL/P-associated PAX7 variants identified in our cleft genome-wide association study (GWAS) were selected for replication analysis in an independent group of patients and controls (n = 247 and n = 445, respectively). In addition, mutation screening of the PAX7 protein-coding region was conducted. RESULTS Analysis of the pooled data from the GWAS and replication study confirmed that common PAX7 nucleotide variants are significantly associated with the increased risk of nsCL/P. The strongest individual variant was rs1339062 (c.586 + 15617T > C) with a p-value = 2.47E-05 (OR = 1.4, 95%CI: 1.20-1.64). Sequencing analysis identified a novel synonymous PAX7 substitution (c.87G > A, p.Val29Val) in a single patient with nsCLP. This transition located in the early exonic position was predicted to disrupt potential splice enhancer elements. CONCLUSION Our study confirmed that PAX7 is a strong candidate gene for nsCL/P. Nucleotide variants of this gene contribute to the etiology of nsCL/P in the homogenous Polish population.
Collapse
Affiliation(s)
- Agnieszka Gaczkowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - Barbara Biedziak
- Clinic of Craniofacial Anomalies, Poznan University of Medical Sciences, Poznan, Poland
| | - Margareta Budner
- Eastern Poland Burn Treatment and Reconstructive Center, Leczna, Poland
| | | | - Agnieszka Lasota
- Department of Jaw Orthopedics, Medical University of Lublin, Lublin, Poland
| | - Kamil K Hozyasz
- Institute of Health Sciences, State School of Higher Education, Biala Podlaska, Poland
| | - Justyna Dąbrowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Wójcicki
- Plastic Surgery Clinic, Medical University in Wroclaw, Wroclaw, Poland
| | - Anna Szponar-Żurowska
- Clinic of Craniofacial Anomalies, Poznan University of Medical Sciences, Poznan, Poland
| | - Kacper Żukowski
- Department of Cattle Breeding, National Research Institute of Animal Production, Balice, Poland
| | - Paweł P Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| | - Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
43
|
Paired Box-1 (PAX1) Activates Multiple Phosphatases and Inhibits Kinase Cascades in Cervical Cancer. Sci Rep 2019; 9:9195. [PMID: 31235851 PMCID: PMC6591413 DOI: 10.1038/s41598-019-45477-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 06/07/2019] [Indexed: 02/07/2023] Open
Abstract
DNA methylation alteration, such as global hypomethylation and localized hypermethylation, within the promoters of tumor suppressor genes, is an important risk factor in cervical cancer. The potential use of DNA methylation detection, in cervical cancer screening or triage of mildly abnormal cytology, has recently been demonstrated. In particular, PAX1 DNA methylation testing was approved as an adjunct to cytology, in Taiwan, and is now undergoing registration trials in China. However, the function of PAX1 in cancer biology remains largely unknown. Here, we show that PAX1 inhibits malignant phenotypes upon oncogenic stress. Specifically, PAX1 expression inhibited the phosphorylation of multiple kinases, after challenges with oncogenic growth factors such as EGF and IL-6. Analogously, PAX1 activated a panel of phosphatases, including DUSP1, 5, and 6, and inhibited EGF/MAPK signaling. PAX1 also interacted with SET1B, increasing histone H3K4 methylation and DNA demethylation of numerous phosphatase-encoding genes. Furthermore, hypermethylated PAX1 associated with poor prognosis in cervical cancer. Taken together, this study reveals, for the first time, the functional relevance of PAX1 in cancer biology, and further supports the prospect of targeting multifold oncogenic kinase cascades, which jointly contribute to multiresistance, via epigenetic reactivation of PAX1.
Collapse
|
44
|
Shi K, Yin X, Cai MC, Yan Y, Jia C, Ma P, Zhang S, Zhang Z, Gu Z, Zhang M, Di W, Zhuang G. PAX8 regulon in human ovarian cancer links lineage dependency with epigenetic vulnerability to HDAC inhibitors. eLife 2019; 8:44306. [PMID: 31050342 PMCID: PMC6533083 DOI: 10.7554/elife.44306] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/02/2019] [Indexed: 12/15/2022] Open
Abstract
PAX8 is a prototype lineage-survival oncogene in epithelial ovarian cancer. However, neither its underlying pro-tumorigenic mechanisms nor potential therapeutic implications have been adequately elucidated. Here, we identified an ovarian lineage-specific PAX8 regulon using modified cancer outlier profile analysis, in which PAX8-FGF18 axis was responsible for promoting cell migration in an autocrine fashion. An image-based drug screen pinpointed that PAX8 expression was potently inhibited by small-molecules against histone deacetylases (HDACs). Mechanistically, HDAC blockade altered histone H3K27 acetylation occupancies and perturbed the super-enhancer topology associated with PAX8 gene locus, resulting in epigenetic downregulation of PAX8 transcripts and related targets. HDAC antagonists efficaciously suppressed ovarian tumor growth and spreading as single agents, and exerted synergistic effects in combination with standard chemotherapy. These findings provide mechanistic and therapeutic insights for PAX8-addicted ovarian cancer. More generally, our analytic and experimental approach represents an expandible paradigm for identifying and targeting lineage-survival oncogenes in diverse human malignancies.
Collapse
Affiliation(s)
- Kaixuan Shi
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Yin
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mei-Chun Cai
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Yan
- GenenDesign Co. Ltd, Shanghai, China
| | - Chenqiang Jia
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Pengfei Ma
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shengzhe Zhang
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenfeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenyu Gu
- GenenDesign Co. Ltd, Shanghai, China
| | - Meiying Zhang
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wen Di
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
45
|
Carazo F, Campuzano L, Cendoya X, Planes FJ, Rubio A. TranscriptAchilles: a genome-wide platform to predict isoform biomarkers of gene essentiality in cancer. Gigascience 2019; 8:giz021. [PMID: 30942869 PMCID: PMC6446222 DOI: 10.1093/gigascience/giz021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/18/2018] [Accepted: 02/07/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Aberrant alternative splicing plays a key role in cancer development. In recent years, alternative splicing has been used as a prognosis biomarker, a therapy response biomarker, and even as a therapeutic target. Next-generation RNA sequencing has an unprecedented potential to measure the transcriptome. However, due to the complexity of dealing with isoforms, the scientific community has not sufficiently exploited this valuable resource in precision medicine. FINDINGS We present TranscriptAchilles, the first large-scale tool to predict transcript biomarkers associated with gene essentiality in cancer. This application integrates 412 loss-of-function RNA interference screens of >17,000 genes, together with their corresponding whole-transcriptome expression profiling. Using this tool, we have studied which are the cancer subtypes for which alternative splicing plays a significant role to state gene essentiality. In addition, we include a case study of renal cell carcinoma that shows the biological soundness of the results. The databases, the source code, and a guide to build the platform within a Docker container are available at GitLab. The application is also available online. CONCLUSIONS TranscriptAchilles provides a user-friendly web interface to identify transcript or gene biomarkers of gene essentiality, which could be used as a starting point for a drug development project. This approach opens a wide range of translational applications in cancer.
Collapse
Affiliation(s)
- Fernando Carazo
- Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián, Spain. Department of Biomedical Engineering and Sciences
| | - Lucía Campuzano
- University of Luxembourg, 2, avenue de l'Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Xabier Cendoya
- Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián, Spain. Department of Biomedical Engineering and Sciences
| | - Francisco J Planes
- Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián, Spain. Department of Biomedical Engineering and Sciences
| | - Angel Rubio
- Tecnun (University of Navarra), Paseo Manuel Lardizábal 15, 20018 San Sebastián, Spain. Department of Biomedical Engineering and Sciences
| |
Collapse
|
46
|
Liu Y, Cui S, Li W, Zhao Y, Yan X, Xu J. PAX3 is a biomarker and prognostic factor in melanoma: Database mining. Oncol Lett 2019; 17:4985-4993. [PMID: 31186709 PMCID: PMC6507366 DOI: 10.3892/ol.2019.10155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 02/14/2019] [Indexed: 11/24/2022] Open
Abstract
Paired box 3 (PAX3) is a transcription factor and critical regulator of pigment cell development during embryonic development. However, while there have been several studies on PAX3, its expression patterns and precise role remain to be clarified. The present study is an in-depth computational study of tumor-associated gene information, with specific emphasis on the expression of PAX3 in melanoma, using Oncomine along with an investigation of corresponding expression profiles in an array of cancer cell lines through Cancer Cell Line Encyclopedia analysis. Based on Kaplan-Meier analysis, the prognostic value of high PAX3 expression in tissues from patients with melanoma compared with normal tissues was assessed. PAX3 was more highly expressed in male patients with melanoma compared with female patients with melanoma. Using Oncomine and Coexpedia analysis, it was demonstrated that PAX3 expression was clearly associated with SRY-box 10 expression. The survival analysis results revealed that high PAX3 mRNA expression was associated with worse survival rates in patients with melanoma. These results suggested that PAX3 may be a biomarker and essential prognostic factor for melanoma, and provided an important theoretical basis for the development of melanoma treatments.
Collapse
Affiliation(s)
- Yong Liu
- Department of Dermatology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710003, P.R. China
| | - Shengnan Cui
- Department of Hematology, The Second Affiliated Hospital, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Wenbin Li
- Department of Dermatology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710003, P.R. China
| | - Yiding Zhao
- Department of Dermatology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710003, P.R. China
| | - Xiaoning Yan
- Department of Dermatology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710003, P.R. China
| | - Jianqin Xu
- Department of Dermatology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710003, P.R. China
| |
Collapse
|
47
|
Raffone A, Travaglino A, Saccone G, Mascolo M, Insabato L, Mollo A, De Placido G, Zullo F. PAX2 in endometrial carcinogenesis and in differential diagnosis of endometrial hyperplasia: A systematic review and meta-analysis of diagnostic accuracy. Acta Obstet Gynecol Scand 2019; 98:287-299. [DOI: 10.1111/aogs.13512] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/29/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Antonio Raffone
- Gynecology and Obstetrics Unit; Department of Neuroscience, Reproductive Sciences and Dentistry; School of Medicine; University of Naples Federico II; Naples Italy
| | - Antonio Travaglino
- Anatomic Pathology Unit; Department of Advanced Biomedical Sciences; School of Medicine; University of Naples Federico II; Naples Italy
| | - Gabriele Saccone
- Gynecology and Obstetrics Unit; Department of Neuroscience, Reproductive Sciences and Dentistry; School of Medicine; University of Naples Federico II; Naples Italy
| | - Massimo Mascolo
- Anatomic Pathology Unit; Department of Advanced Biomedical Sciences; School of Medicine; University of Naples Federico II; Naples Italy
| | - Luigi Insabato
- Anatomic Pathology Unit; Department of Advanced Biomedical Sciences; School of Medicine; University of Naples Federico II; Naples Italy
| | - Antonio Mollo
- Gynecology and Obstetrics Unit; Department of Neuroscience, Reproductive Sciences and Dentistry; School of Medicine; University of Naples Federico II; Naples Italy
| | - Giuseppe De Placido
- Gynecology and Obstetrics Unit; Department of Neuroscience, Reproductive Sciences and Dentistry; School of Medicine; University of Naples Federico II; Naples Italy
| | - Fulvio Zullo
- Gynecology and Obstetrics Unit; Department of Neuroscience, Reproductive Sciences and Dentistry; School of Medicine; University of Naples Federico II; Naples Italy
| |
Collapse
|
48
|
Martin-Montalvo A, López-Noriega L, Jiménez-Moreno C, Herranz A, Lorenzo PI, Cobo-Vuilleumier N, Tamayo A, González-Guerrero C, Hofsteede JSWR, Lebreton F, Bosco D, García Toscano M, Herranz L, Anselmo J, Moreno JC, Gauthier BR. Transient PAX8 Expression in Islets During Pregnancy Correlates With β-Cell Survival, Revealing a Novel Candidate Gene in Gestational Diabetes Mellitus. Diabetes 2019; 68:109-118. [PMID: 30352879 DOI: 10.2337/db18-0285] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 10/17/2018] [Indexed: 11/13/2022]
Abstract
Transient Pax8 expression was reported in mouse islets during gestation, whereas a genome-wide linkage and admixture mapping study highlighted PAX8 as a candidate gene for diabetes mellitus (DM). We sought the significance of PAX8 expression in mouse and human islet biology. PAX8 was induced in gestating mouse islets and in human islets treated with recombinant prolactin. Global gene expression profiling of human and mouse islets overexpressing the corresponding species-specific PAX8 revealed the modulation of distinct genetic pathways that converge on cell survival. Accordingly, apoptosis was reduced in PAX8-overexpressing islets. These findings support that PAX8 could be a candidate gene for the study of gestational DM (GDM). PAX8 was genotyped in patients with GDM and gestational thyroid dysfunction (GTD), a pathology commonly found in patients with mutations on PAX8 A novel missense PAX8 mutation (p.T356M, c.1067C>T) was identified in a female diagnosed with GDM and GTD as well as in her father with type 2 DM but was absent in control patients. The p.T356M variant did not alter protein stability or cellular localization, whereas its transactivation activity was hindered. In parallel, a retrospective clinical analysis uncovered that a pregnant female harboring a second PAX8 mutation (p.P25R, c.74C>G) previously reported to cause congenital hypothyroidism also developed GDM. These data indicate that increased expression of PAX8 affects islet viability and that PAX8 could be considered as a candidate gene for the study of GDM.
Collapse
Affiliation(s)
- Alejandro Martin-Montalvo
- Pancreatic Islet Development and Regeneration Unit/Laboratory of Aging Biology, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Livia López-Noriega
- Pancreatic Islet Development and Regeneration Unit/Laboratory of Aging Biology, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Carmen Jiménez-Moreno
- Pancreatic Islet Development and Regeneration Unit/Laboratory of Aging Biology, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Amanda Herranz
- Thyroid Molecular Laboratory, Institute for Medical and Molecular Genetics, La Paz University Hospital, Autonomous University of Madrid, Madrid, Spain
| | - Petra I Lorenzo
- Pancreatic Islet Development and Regeneration Unit/Laboratory of Aging Biology, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Nadia Cobo-Vuilleumier
- Pancreatic Islet Development and Regeneration Unit/Laboratory of Aging Biology, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Alejandra Tamayo
- Thyroid Molecular Laboratory, Institute for Medical and Molecular Genetics, La Paz University Hospital, Autonomous University of Madrid, Madrid, Spain
| | - Cristian González-Guerrero
- Thyroid Molecular Laboratory, Institute for Medical and Molecular Genetics, La Paz University Hospital, Autonomous University of Madrid, Madrid, Spain
| | - Jonathan S W R Hofsteede
- Thyroid Molecular Laboratory, Institute for Medical and Molecular Genetics, La Paz University Hospital, Autonomous University of Madrid, Madrid, Spain
| | - Fanny Lebreton
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | | | - Lucrecia Herranz
- Thyroid Molecular Laboratory, Institute for Medical and Molecular Genetics, La Paz University Hospital, Autonomous University of Madrid, Madrid, Spain
| | - Joao Anselmo
- Department of Endocrinology and Nutrition, Hospital Divino Espírito Santo, Ponta Delgada, Portugal
| | - José Carlos Moreno
- Thyroid Molecular Laboratory, Institute for Medical and Molecular Genetics, La Paz University Hospital, Autonomous University of Madrid, Madrid, Spain
| | - Benoit R Gauthier
- Pancreatic Islet Development and Regeneration Unit/Laboratory of Aging Biology, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
49
|
Li Y, Yao M, Wu T, Zhang L, Wang Y, Chen L, Fu G, Weng X, Wang J. Loss of hypermethylated in cancer 1 (HIC1) promotes lung cancer progression. Cell Signal 2019; 53:162-169. [DOI: 10.1016/j.cellsig.2018.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 11/25/2022]
|
50
|
PAX3: A Molecule with Oncogenic or Tumor Suppressor Function Is Involved in Cancer. BIOMED RESEARCH INTERNATIONAL 2018. [DOI: 10.1155/2018/1095459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Metastasis is the most deadly aspect of cancer and results from acquired gene regulation abnormalities in tumor cells. Transcriptional regulation is an essential component of controlling of gene function and its failure could contribute to tumor progression and metastasis. During cancer progression, deregulation of oncogenic or tumor suppressive transcription factors, as well as master cell fate regulators, collectively influences multiple steps of the metastasis cascade, including local invasion and dissemination of the tumor to distant organs. Transcription factor PAX3/Pax3, which contributes to diverse cell lineages during embryonic development, plays a major role in tumorigenesis. Mutations in this gene can cause neurodevelopmental disease and the existing literature supports that there is a potential link between aberrant expression of PAX3 genes in adult tissues and a wide variety of cancers. PAX3 function is tissue-specific and could contribute to tumorigenesis either directly as oncogene or as a tumor suppressor by losing its function. In this review, we discuss comprehensively the differential role played by PAX3 in various tissues and how its aberrant expression is implicated in disease development. This review particularly highlights the oncogenic and tumor suppressor role played by PAX3 in different cancers and underlines the importance of precisely identifying tissue-specific role of PAX3 in order to determine its exact role in development of cancer.
Collapse
|