1
|
Zhao YY, Xu Y, Zhang X, Chen Z, Kim H, Li X, Yoon J. A Hypoxia-Triggered Bioreduction of Hydrophilic Type I Photosensitizer for Switchable In Vivo Photoacoustic Imaging and High-Specificity Cancer Phototherapy. Angew Chem Int Ed Engl 2025:e202506412. [PMID: 40204649 DOI: 10.1002/anie.202506412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/11/2025]
Abstract
Considering that hypoxia is strongly connected with tumor proliferation, metastasis, invasion, and drug resistance, it is of significant implication for alleviating the effects of hypoxia in tumor treatment. The negligible oxygen-dependent nature of type I photosensitizers (PSs) has made them appropriate candidates for the treatment of hypoxic tumors. However, the lack of effective molecular design approaches, the phototoxicity of PSs to normal tissue before and after treatment, and the drawbacks of poor hydrophilicity severely hinder the development of PSs in hypoxic tumor therapy. Thus, developing a hydrophilic PS with good hypoxia resistance and minimal side effects is an urgent but challenging problem. Herein, we present a nanotheranostic (NanoPcN8O) based on the self-assembly of a hydrophilic phthalocyanine derivative (PcN8O), a hypoxia-responsive bioreductive phototherapeutic agent suitable for activatable photoacoustic (PA) imaging and tumor therapy. Hypoxic regions in various tumors exhibit strong reductive capability, and only in such conditions did NanoPcN8O feature multiple N-oxide groups that could be bioreduced to yield the product NanoPcN8 with abundant electron-rich tertiary amine groups, which switches on the type I photodynamic and photothermal effects, facilitating the generation of type I reactive oxygen species (ROS) and heat. Better still, NanoPcN8O achieved hypoxia-induced selective PA imaging in a preclinical model. Based on these merits, the hypoxia-induced switchable type I photodynamic therapy (PDT) and photothermal therapy (PTT) strategies demonstrated remarkable phototherapeutic efficiency with high biosafety. This delicate design is anticipated to offer a novel and safe strategy to overcome hypoxia resistance in phototherapeutics.
Collapse
Affiliation(s)
- Yuan-Yuan Zhao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Yihui Xu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaojun Zhang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zixuan Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Xingshu Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul, 03760, South Korea
| |
Collapse
|
2
|
Silva CR, Vieira DP, de Freitas AZ, Ribeiro MS. Photodynamic therapy as a strategic ally in radiotherapy for triple-negative breast cancer: the importance of treatment order. Breast Cancer Res Treat 2025; 210:687-697. [PMID: 39776332 DOI: 10.1007/s10549-024-07607-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) accounts for 20% of all breast cancer cases and is notably resistant to radiotherapy (RT). Photodynamic therapy (PDT) using porphyrins or their derivatives has shown promise as a potential cancer treatment and immune activator. This study evaluated the effects of combining PDT and RT in sublethal conditions for TNBC using in vitro and in vivo models. METHODS In vitro, PDT was combined with RT (2.5 Gy) using a porphyrin (TMPyP, 32 μmolL-1) and red light (660 ± 15 nm) with a dose of 50 Jcm-2. We assessed cell viability, survival, apoptosis, ROS, singlet oxygen, and GSH/GSSG ratio. In vivo, we used a TNBC-bearing mouse model and combined PDT with RT in four sessions, comparing treatment sequences. We evaluated tumor volume, clinical manifestations, survival, metastasis in the lungs, ROS, singlet oxygen, and glutathione levels. RESULTS Cells treated with PDT + RT had a lower survival fraction, although PDT alone showed higher apoptosis and singlet oxygen levels than RT-treated groups. In vivo, the treatment sequence plays a crucial role: PDT after RT resulted in better clinical outcomes, prolonged survival, and fewer lung nodules compared to RT, with higher singlet oxygen levels likely stimulating an immune response. CONCLUSION Our results show that PDT can be a valuable adjunct in the RT of TNBC, with the treatment sequence playing a crucial role in enhancing efficacy.
Collapse
Affiliation(s)
- Camila Ramos Silva
- Center for Lasers and Applications, Energy and Nuclear Research Institute (IPEN-CNEN), Av. Lineu Prestes, 2242, São Paulo, Brazil
| | - Daniel Perez Vieira
- Center of Biotechnology, Energy and Nuclear Research Institute (IPEN-CNEN), Av. Lineu Prestes, 2242, São Paulo, Brazil
| | - Anderson Zanardi de Freitas
- Center for Lasers and Applications, Energy and Nuclear Research Institute (IPEN-CNEN), Av. Lineu Prestes, 2242, São Paulo, Brazil
| | - Martha Simões Ribeiro
- Center for Lasers and Applications, Energy and Nuclear Research Institute (IPEN-CNEN), Av. Lineu Prestes, 2242, São Paulo, Brazil.
| |
Collapse
|
3
|
Kuzuoglu-Ozturk D, Nguyen HG, Xue L, Figueredo E, Subramanyam V, Liu I, Bonitto K, Noronha A, Dabrowska A, Cowan JE, Oses-Prieto JA, Burlingame AL, Worland ST, Carroll PR, Ruggero D. Small-molecule RNA therapeutics to target prostate cancer. Cancer Cell 2025:S1535-6108(25)00079-0. [PMID: 40118049 DOI: 10.1016/j.ccell.2025.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 11/20/2024] [Accepted: 02/28/2025] [Indexed: 03/23/2025]
Abstract
Tuning protein expression by targeting RNA structure using small molecules is an unexplored avenue for cancer treatment. To understand whether this vulnerability could be therapeutically targeted in the most lethal form of prostate cancer, castration-resistant prostate cancer (CRPC), we use a clinical small molecule, zotatifin, that targets the RNA helicase and translation factor eukaryotic initiation factor 4A (eIF4A). Zotatifin represses tumorigenesis in patient-derived and xenograft models and prolonged survival in vivo alongside hormone therapy. Genome-wide transcriptome, translatome, and proteomic analysis reveals two important translational targets: androgen receptor (AR), a key oncogene in CRPC, and hypoxia-inducible factor 1A (HIF1A), an essential cancer modulator in hypoxia. We solve the structure of the 5' UTRs of these oncogenic mRNAs and strikingly observe complex structural remodeling of these select mRNAs by this small molecule. Remarkably, tumors treated with zotatifin become more sensitive to anti-androgen therapy and radiotherapy. Therefore, "translatome therapy" provides additional strategies to treat the deadliest cancers.
Collapse
Affiliation(s)
- Duygu Kuzuoglu-Ozturk
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Hao G Nguyen
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Lingru Xue
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Emma Figueredo
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Vishvak Subramanyam
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Isabelle Liu
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Kenya Bonitto
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Tetrad Graduate Program, University of California, San Francisco, CA, USA
| | - Ashish Noronha
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Adrianna Dabrowska
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Janet E Cowan
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | | | - Peter R Carroll
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Davide Ruggero
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Espín R, Medina-Jover F, Sigüenza-Andrade J, Farran-Matas S, Mateo F, Figueras A, Sanz R, Vicent G, Shabbir A, Ruiz-Auladell L, Racionero-Andrés E, García I, Baiges A, Franco-Luzón L, Martínez-Tebar A, Pardo-Cea M, Martínez-Iniesta M, Wang X, Cuyàs E, Menendez J, Lopez-Cerda M, Muñoz P, Richaud I, Raya A, Fabregat I, Villanueva A, Serrat X, Cerón J, Alemany M, Guix I, Herencia-Ropero A, Serra V, Krishnan R, Mekhail K, Hakem R, Bruna J, Barcellos-Hoff M, Viñals F, Aytes Á, Pujana M. Harnessing transcriptional regulation of alternative end-joining to predict cancer treatment. NAR Cancer 2025; 7:zcaf007. [PMID: 40061566 PMCID: PMC11886861 DOI: 10.1093/narcan/zcaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/13/2025] [Accepted: 03/04/2025] [Indexed: 04/15/2025] Open
Abstract
Alternative end-joining (alt-EJ) is an error-prone DNA repair pathway that cancer cells deficient in homologous recombination rely on, making them vulnerable to synthetic lethality via inhibition of poly(ADP-ribose) polymerase (PARP). Targeting alt-EJ effector DNA polymerase theta (POLθ), which synergizes with PARP inhibitors and can overcome resistance, is of significant preclinical and clinical interest. However, the transcriptional regulation of alt-EJ and its interactions with processes driving cancer progression remain poorly understood. Here, we show that alt-EJ is suppressed by hypoxia while positively associated with MYC (myelocytomatosis oncogene) transcriptional activity. Hypoxia reduces PARP1 and POLQ expression, decreases MYC binding at their promoters, and lowers PARylation and alt-EJ-mediated DNA repair in cancer cells. Tumors with HIF1A mutations overexpress the alt-EJ gene signature. Inhibition of hypoxia-inducible factor 1α or HIF1A expression depletion, combined with PARP or POLθ inhibition, synergistically reduces the colony-forming capacity of cancer cells. Deep learning reveals the anticorrelation between alt-EJ and hypoxia across regions in tumor images, and the predictions for these and MYC activity achieve area under the curve values between 0.70 and 0.86. These findings further highlight the critical role of hypoxia in modulating DNA repair and present a strategy for predicting and improving outcomes centered on targeting alt-EJ.
Collapse
Affiliation(s)
- Roderic Espín
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Ferran Medina-Jover
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Department of Physiological Sciences, University of Barcelona, L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Javier Sigüenza-Andrade
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Sònia Farran-Matas
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Francesca Mateo
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Agnes Figueras
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Rosario T Sanz
- Molecular Biology Institute of Barcelona, Spanish National Research Council (IBMB-CSIC), Barcelona 08028, Spain
| | - Guillermo Pablo Vicent
- Molecular Biology Institute of Barcelona, Spanish National Research Council (IBMB-CSIC), Barcelona 08028, Spain
| | - Arzoo Shabbir
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Lara Ruiz-Auladell
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | | | - Irene García
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Alexandra Baiges
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Lídia Franco-Luzón
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Adrián Martínez-Tebar
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Miguel Angel Pardo-Cea
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - María Martínez-Iniesta
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Xieng Chen Wang
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Elisabet Cuyàs
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Girona Biomedical Research Institute (IDIBGI), Salt, Girona 17190, Spain
| | - Javier A Menendez
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Girona Biomedical Research Institute (IDIBGI), Salt, Girona 17190, Spain
| | - Marta Lopez-Cerda
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Purificacion Muñoz
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Ivonne Richaud
- Regenerative Medicine Program and Program for Clinical Translation of Regenerative Medicine in Catalonia—P-CMR[C], Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Biomedical Research Network Centre in Bioengineering, Nanomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Angel Raya
- Regenerative Medicine Program and Program for Clinical Translation of Regenerative Medicine in Catalonia—P-CMR[C], Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Biomedical Research Network Centre in Bioengineering, Nanomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid 28029, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| | - Isabel Fabregat
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Biomedical Research Networking Centre in Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Alberto Villanueva
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Xènia Serrat
- Modeling Human Diseases in C. elegans Group, Genes, Diseases, and Therapies Program, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Julián Cerón
- Modeling Human Diseases in C. elegans Group, Genes, Diseases, and Therapies Program, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Montserrat Alemany
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Neuro-Oncology Unit, University Hospital of Bellvitge, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Inés Guix
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Centre, University of California San Francisco, San Francisco, CA 94115, United States
| | - Andrea Herencia-Ropero
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona 08193, Spain
- Experimental Therapeutics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
| | - Rehna Krishnan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Razqallah Hakem
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jordi Bruna
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Neuro-Oncology Unit, University Hospital of Bellvitge, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology and Helen Diller Family Comprehensive Cancer Centre, University of California San Francisco, San Francisco, CA 94115, United States
| | - Francesc Viñals
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Department of Physiological Sciences, University of Barcelona, L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Álvaro Aytes
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
| | - Miquel Angel Pujana
- ProCURE, Catalan Institute of Oncology, L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, Barcelona 08908, Spain
- Girona Biomedical Research Institute (IDIBGI), Salt, Girona 17190, Spain
| |
Collapse
|
5
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
6
|
Mahmoudian-Hamedani S, Lotfi-Shahreza M, Nikpour P. Investigating combined hypoxia and stemness indices for prognostic transcripts in gastric cancer: Machine learning and network analysis approaches. Biochem Biophys Rep 2025; 41:101897. [PMID: 39807391 PMCID: PMC11729012 DOI: 10.1016/j.bbrep.2024.101897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction Gastric cancer (GC) is among the deadliest malignancies globally, characterized by hypoxia-driven pathways that promote cancer progression, including stemness mechanisms facilitating invasion and metastasis. This study aimed to develop a prognostic decision tree using genes implicated in hypoxia and stemness pathways to predict outcomes in GC patients. Materials and methods GC RNA-seq data from The Cancer Genome Atlas (TCGA) were analyzed to compute hypoxia and stemness scores using Gene Set Variation Analysis (GSVA) and the mRNA expression-based stemness index (mRNAsi). Hierarchical clustering identified clusters with distinct survival outcomes, and differentially expressed genes (DEGs) between clusters were identified. Weighted Gene Co-expression Network Analysis (WGCNA) identified modules and hub genes associated with clinical traits. Overlapping DEGs and hub genes underwent functional enrichment, protein-protein interaction (PPI) network analysis, and survival analysis. A prognostic decision tree was constructed using survival-associated shared genes. Results Hierarchical clustering identified six clusters among 375 TCGA GC patients, with significant survival differences between cluster 1 (low hypoxia, high stemness) and cluster 4 (high hypoxia, high stemness). Validation in the GSE62254 dataset corroborated these findings. WGCNA revealed modules linked to clinical traits and survival, with functional enrichment highlighting pathways like cell adhesion and calcium signaling. The decision tree, based on genes such as AKAP6, GLRB, and RUNX1T1, achieved an AUC of 0.81 (training) and 0.67 (test), demonstrating the utility of combined scores in patient stratification. Conclusion This study introduces a novel hypoxia-stemness-based prognostic decision tree for GC. The identified genes show promise as prognostic biomarkers, warranting further clinical validation.
Collapse
Affiliation(s)
- Sharareh Mahmoudian-Hamedani
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Lotfi-Shahreza
- Department of Computer Engineering, Shahreza Campus, University of Isfahan, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Fatima S, Kumar V, Kumar D. Molecular mechanism of genetic, epigenetic, and metabolic alteration in lung cancer. Med Oncol 2025; 42:61. [PMID: 39893601 DOI: 10.1007/s12032-025-02608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
Lung cancer, a leading cause of cancer-related deaths worldwide, is primarily linked to smoking, tobacco use, air pollution, and exposure to hazardous chemicals. Genetic alterations, particularly in oncogenes like RAS, EGFR, MYC, BRAF, HER, and P13K, can lead to metabolic changes in cancer cells. These cells often rely on glycolysis for energy production, even in the presence of oxygen, a phenomenon known as aerobic glycolysis. This metabolic shift, along with other alterations, contributes to cancer cell growth and survival. To develop effective therapies, it's crucial to understand the genetic and metabolic changes that drive lung cancer. This review aims to identify specific genes associated with these metabolic alterations and screen phytochemicals for their potential to target these genes. By targeting both genetic and metabolic pathways, we hope to develop innovative therapeutic approaches to combat lung cancer.
Collapse
Affiliation(s)
- Sheeri Fatima
- School of Health Science and Technology (SoHST), UPES, Dehradun, Uttarakhand, 248007, India
| | - Vineet Kumar
- Chemistry & Bioprospecting Division, Forest Research Institute, Dehradun, 248006, India
| | - Dhruv Kumar
- School of Health Science and Technology (SoHST), UPES, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
8
|
Zhou S, Sun J, Zhu W, Yang Z, Wang P, Zeng Y. Hypoxia studies in non‑small cell lung cancer: Pathogenesis and clinical implications (Review). Oncol Rep 2025; 53:29. [PMID: 39749693 PMCID: PMC11715622 DOI: 10.3892/or.2024.8862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Non‑small cell lung cancer (NSCLC) is one of the most prevalent and lethal types of cancers worldwide and its high incidence and mortality rates pose a significant public health challenge. Despite significant advances in targeted therapy and immunotherapy, the overall prognosis of patients with NSCLC remains poor. Hypoxia is a critical driving factor in tumor progression, influencing the biological behavior of tumor cells through complex molecular mechanisms. The present review systematically examined the role of the hypoxic microenvironment in NSCLC, demonstrating its crucial role in promoting tumor cell growth, invasion and metastasis. Additionally, it has been previously reported that the hypoxic microenvironment enhances tumor cell resistance by activating hypoxia‑inducible factor and regulating exosome secretion. The hypoxic microenvironment also enables tumor cells to adapt to low oxygen and nutrient‑deficient conditions by enhancing metabolic reprogramming, such as through upregulating glycolysis. Further studies have shown that the hypoxic microenvironment facilitates immune escape by modulating tumor‑associated immune cells and suppressing the antitumor response of the immune system. Moreover, the hypoxic microenvironment increases tumor resistance to radiotherapy, chemotherapy and other types of targeted therapy through various pathways, significantly reducing the therapeutic efficacy of these treatments. Therefore, it could be suggested that early detection of cellular hypoxia and targeted therapy based on hypoxia may offer new therapeutic approaches for patients with NSCLC. The present review not only deepened the current understanding of the mechanisms of action and role of the hypoxic microenvironment in NSCLC but also provided a solid theoretical basis for the future development of precision treatments for patients with NSCLC.
Collapse
Affiliation(s)
- Sirui Zhou
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Jiazheng Sun
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Weijian Zhu
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Zhiying Yang
- Department of Radiation Oncology, Minda Hospital of Hubei Minzu University, Enshi, Hubei 445000, P.R. China
| | - Ping Wang
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Yulan Zeng
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| |
Collapse
|
9
|
Li HH, Hung HY, Yu JS, Liao YC, Lai MC. Hypoxia-induced translation of collagen-modifying enzymes PLOD2 and P4HA1 is dependent on RBM4 and eIF4E2 in human colon cancer HCT116 cells. FEBS J 2025; 292:881-898. [PMID: 39710969 DOI: 10.1111/febs.17371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 09/04/2024] [Accepted: 12/12/2024] [Indexed: 12/24/2024]
Abstract
Hypoxia is a critical microenvironmental factor that induces tumorigenesis and cancer progression, including metastasis. The highly dynamic nature of the extracellular matrix (ECM) plays a crucial role in metastasis. Collagens are the predominant component of structural proteins embedded within the ECM. The biosynthesis of collagen typically undergoes a series of posttranslational modifications, such as hydroxylation of lysine and proline residues by procollagen-lysine, 2-oxoglutarate 5-dioxygenases (PLODs) and prolyl 4-hydroxylases (P4Hs), respectively. Collagen hydroxylation is critical for ECM remodeling and maintenance. We recently investigated hypoxia-induced translation in human colon cancer HCT116 cells and identified several collagen-modifying enzymes, including procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) and prolyl 4-hydroxylase subunit alpha 1 (P4HA1). Although the translation of bulk mRNAs is repressed in hypoxia, specific mRNAs remain efficiently translated under such conditions. We have found that PLOD2 and P4HA1 are significantly upregulated in hypoxic HCT116 cells compared to normoxic cells. HIF-1 is known to induce the transcription of PLOD2 and P4HA1 during hypoxia. However, the molecular mechanisms of hypoxia-induced translation of PLOD2 and P4HA1 remain largely unclear. We provide evidence that RBM4 and eIF4E2 are required for hypoxia-induced translation of PLOD2 and P4HA1 mRNAs. The 3' UTRs of PLOD2 and P4HA1 mRNAs are involved in translational control during hypoxia in HCT116 cells.
Collapse
Affiliation(s)
- Hung-Hsuan Li
- Master & Ph.D Program in Biotechnology Industry, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Yuan Hung
- Department of Colorectal Surgery, New Taipei Municipal Tucheng Hospital, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Cheng Liao
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Chih Lai
- Department of Colorectal Surgery, New Taipei Municipal Tucheng Hospital, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
10
|
Szymulewska-Konopko K, Reszeć-Giełażyn J, Małeczek M. Ferritin as an Effective Prognostic Factor and Potential Cancer Biomarker. Curr Issues Mol Biol 2025; 47:60. [PMID: 39852175 PMCID: PMC11763953 DOI: 10.3390/cimb47010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
Ferritin is found in all cells of the body, serving as a reservoir of iron and protecting against damage to the molecules that make up cellular structures. It has emerged as a biomarker not only for iron-related disorders but also for inflammatory diseases and conditions in which inflammation plays a key role, including cancer, neurodegeneration, and infection. Oxidative stress, which can cause cellular damage, is induced by reactive oxygen species generated during the Fenton reaction, activating signaling pathways associated with tumor growth and proliferation. This review primarily emphasizes basic studies on the identification and function of ferritin, its essential role in iron metabolism, its involvement in inflammatory diseases, and its potential as an important prognostic factor and biomarker for cancer detection.
Collapse
Affiliation(s)
| | - Joanna Reszeć-Giełażyn
- Department of Medical Pathomorphology, Medical University of Bialystok, 15-089 Białystok, Poland; (K.S.-K.); (M.M.)
| | | |
Collapse
|
11
|
Aluru N, Venkataraman YR, Murray CS, DePascuale V. Gene expression and DNA methylation changes in response to hypoxia in toxicant-adapted Atlantic killifish (Fundulus heteroclitus). Biol Open 2025; 14:BIO061801. [PMID: 39760289 PMCID: PMC11744052 DOI: 10.1242/bio.061801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Coastal fish populations are threatened by multiple anthropogenic impacts, including the accumulation of industrial contaminants and the increasing frequency of hypoxia. Some populations of the Atlantic killifish (Fundulus heteroclitus), like those in New Bedford Harbor (NBH), Massachusetts, USA, have evolved a resistance to dioxin-like polychlorinated biphenyls (PCBs) that may influence their ability to cope with secondary stressors. To address this question, we compared hepatic gene expression and DNA methylation patterns in response to mild or severe hypoxia in killifish from NBH and Scorton Creek (SC), a reference population from a relatively pristine environment. We hypothesized that NBH fish would show altered responses to hypoxia due to trade-offs linked to toxicant resistance. Our results revealed substantial differences between populations. SC fish demonstrated dose-dependent changes in gene expression in response to hypoxia, while NBH fish exhibited a muted transcriptional response to severe hypoxia. Interestingly, NBH fish showed significant DNA methylation changes in response to hypoxia, while SC fish did not exhibit notable epigenetic alterations. These findings suggest that toxicant-adapted killifish may face trade-offs in their molecular response to environmental stress, potentially impacting their ability to survive severe hypoxia in coastal habitats. Further research is needed to elucidate the functional implications of these epigenetic modifications and their role in adaptive stress responses.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543,USA
- Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543,USA
| | | | | | - Veronica DePascuale
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543,USA
- College of Arts and Sciences, Oberlin College and Conservatory, Oberlin, OH 44074,USA
| |
Collapse
|
12
|
Bhardwaj A, Panepinto MC, Ueberheide B, Neel BG. A mechanism for hypoxia-induced inflammatory cell death in cancer. Nature 2025; 637:470-477. [PMID: 39506105 DOI: 10.1038/s41586-024-08136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Hypoxic cancer cells resist many antineoplastic therapies and can seed recurrence1,2. We previously found that either deficiency or inhibition of protein-tyrosine phosphatase (PTP1B) promotes human epidermal growth factor receptor 2-positive breast cancer cell death in hypoxia by activation of RNF213 (ref. 3), a large protein with multiple AAA-ATPase domains and two ubiquitin ligase domains (RING and RZ) implicated in Moyamoya disease, lipotoxicity and innate immunity4. Here we report that PTP1B and ABL1/2 reciprocally control RNF213 tyrosine phosphorylation and, consequently, its oligomerization and RZ domain activation. The RZ domain ubiquitylates and induces the degradation of the major NF-κB regulator CYLD/SPATA2. Decreased CYLD/SPATA2 levels lead to NF-κB activation and induction of the NLRP3 inflammasome which, together with hypoxia-induced endoplasmic reticulum stress, triggers pyroptotic cell death. Consistent with this model, CYLD deletion phenocopies, whereas NLRP3 deletion blocks, the effects of PTP1B deficiency on human epidermal growth factor receptor 2-positive breast cancer xenograft growth. Reconstitution studies with RNF213 mutants confirm that the RZ domain mediates tumour cell death. In concert, our results identify a unique, potentially targetable PTP1B-RNF213-CYLD-SPATA2 pathway critical for the control of inflammatory cell death in hypoxic tumours, provide new insights into RNF213 regulation and have potential implications for the pathogenesis of Moyamoya disease, inflammatory disorders and autoimmune disease.
Collapse
Affiliation(s)
- Abhishek Bhardwaj
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA.
| | - Maria C Panepinto
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA
| | - Beatrix Ueberheide
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Benjamin G Neel
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| |
Collapse
|
13
|
Wang Y, Lin M, Fan T, Zhou M, Yin R, Wang X. Advances of Stimuli-Responsive Amphiphilic Copolymer Micelles in Tumor Therapy. Int J Nanomedicine 2025; 20:1-24. [PMID: 39776491 PMCID: PMC11700880 DOI: 10.2147/ijn.s495387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Amphiphilic copolymers are composed of both hydrophilic and hydrophobic chains, which can self-assemble into polymeric micelles in aqueous solution via the hydrophilic/hydrophobic interactions. Due to their unique properties, polymeric micelles have been widely used as drug carriers. Poorly soluble drugs can be covalently attached to polymer chains or non-covalently incorporated in the micelles, with improved pharmacokinetic profiles and enhanced efficacy. In recent years, stimuli-responsive amphiphilic copolymer micelles have attracted significant attention. These micelles can respond to specific stimuli, including physical triggers (light, temperature, etc). chemical stimuli (pH, redox, etc). and physiological factors (enzymes, ATP, etc). Under these stimuli, the structures or properties of the micelles can change, enabling targeted therapy and controlled drug release in tumors. These stimuli-responsive strategies offer new avenues and approaches to enhance the tumor efficacy and reduce drug side effects. We will review the applications of different types of stimuli-responsive amphiphilic copolymer micelles in tumor therapy, aiming to provide valuable guidance for future research directions and clinical translation.
Collapse
Affiliation(s)
- Yao Wang
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Meng Lin
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Tianfei Fan
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Minglu Zhou
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Ruxi Yin
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xueyan Wang
- Department of pharmacy, west china hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
14
|
Fernandes Q, Folorunsho OG. Unveiling the nexus: The tumor microenvironment as a strategic frontier in viral cancers. Cytokine 2025; 185:156827. [PMID: 39647395 DOI: 10.1016/j.cyto.2024.156827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Viral infections are a significant factor in the etiology of various cancers, with the tumor microenvironment (TME) playing a crucial role in disease progression. This review delves into the complex interactions between viruses and the TME, highlighting how these interactions shape the course of viral cancers. We explore the distinct roles of immune cells, including T-cells, B-cells, macrophages, and dendritic cells, within the TME and their influence on cancer progression. The review also examines how viral oncoproteins manipulate the TME to promote immune evasion and tumor survival. Unraveling these mechanisms highlights the emerging paradigm of targeting the TME as a novel approach to cancer treatment. Our analysis provides insights into the dynamic interplay between viruses and the TME, offering a roadmap for innovative treatments that leverage the unique characteristics of viral cancers.
Collapse
Affiliation(s)
- Queenie Fernandes
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, PO. Box 3050, Doha, Qatar.
| | - Oginni Gbenga Folorunsho
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 5000, Nova Gorica, Slovenia
| |
Collapse
|
15
|
Gao Y, Wang X, Cloutier P, Zheng Y, Sanche L. Oxygen Effect on 0-30 eV Electron Damage to DNA Under Different Hydration Levels: Base and Clustered Lesions, Strand Breaks and Crosslinks. Molecules 2024; 29:6033. [PMID: 39770123 PMCID: PMC11680046 DOI: 10.3390/molecules29246033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Studies on radiosensitization of biological damage by O2 began about a century ago and it remains one of the most significant subjects in radiobiology. It has been related to increased production of oxygen radicals and other reactive metabolites, but only recently to the action of the numerous low-energy electrons (LEEs: 0-30 eV) produced by ionizing radiation. We provide the first complete set of G-values (yields of specific products per energy deposited) for all conformational damages induced to plasmid DNA by LEEs (GLEE (O2)) and 1.5 keV X-rays (GX(O2)) under oxygen at atmospheric pressure. The experiments are performed in a chamber, under humidity levels ranging from 2.5 to 33 water molecules/base. Photoelectrons from 0 to 30 eV are produced by X-rays incident on a tantalum substrate covered with DNA. Damage yields are measured by electrophoresis as a function of X-ray fluence. The oxygen enhancement ratio GLEE(O2)/GLEE(N2), which lies around 2 for potentially lethal cluster lesions, is similar to that found with cells. The average ratio, GLEE(O2)/GX(O2), of 12 for cluster lesions and crosslinks strongly suggest that DNA damages that harm cells are much more likely to be created by LEEs than any other initial species generated by X-rays in the presence of O2.
Collapse
Affiliation(s)
- Yingxia Gao
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China; (Y.G.); (X.W.); (Y.Z.)
| | - Xuran Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China; (Y.G.); (X.W.); (Y.Z.)
| | - Pierre Cloutier
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China; (Y.G.); (X.W.); (Y.Z.)
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Léon Sanche
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| |
Collapse
|
16
|
Kong W, Meng Q, Kong RM, Zhao Y, Qu F. Valence-Transforming O 2-Depleting Nano-Assembly Enable In Situ Tumor Depositional Embolization. Adv Healthc Mater 2024; 13:e2402899. [PMID: 39328009 DOI: 10.1002/adhm.202402899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Indexed: 09/28/2024]
Abstract
Abnormal metabolism and blood supply/O2 imbalance in tumor cells affect drug transport delivery and increase the difficulty of tumor treatment. Controlling tumor growth by inhibiting tumor cell metabolism and regulating progressive embolization in the tumor region provides an innovative basis for constructing tumor therapeutic models. A highly biocompatible and efficient O2-depleting agent has been investigated to enable in situ precipitation and embolization within the tumor microenvironment. In situ deformation embolizer, Fe-GA@CaCO3 nano-assembly (GA: gallic acid), can convert into the large granular size embolization components of Fe(III) precipitates and affluent Ca2+ within the tumor microenvironment. In situ progressive O2 depletion produces Fe(III) precipitates that embolize tumor regions, isolating O2 and nutrients by blocking supply. Meanwhile, affluent Ca2+ acts on the intracellular, causing mitochondrial dysfunction through calcium overload and contributing to irreversible tumor cell damage. Both internal and external routes work synergistically to produce precise functional inhibition of tumors from the inside out, simultaneously responding to both intracellular and the corresponding tumor regions, providing an innovative solution for anti-tumor therapy.
Collapse
Affiliation(s)
- Weiheng Kong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Qingyao Meng
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Rong-Mei Kong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Yan Zhao
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Fengli Qu
- Department of Pathology, Cancer Hospital of Zhejiang Province, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
| |
Collapse
|
17
|
Fan L, Lin Y, Fu Y, Wang J. Small cell lung cancer with liver metastases: from underlying mechanisms to treatment strategies. Cancer Metastasis Rev 2024; 44:5. [PMID: 39585433 DOI: 10.1007/s10555-024-10220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024]
Abstract
Small cell lung cancer (SCLC) represents an aggressive neuroendocrine (NE) tumor within the pulmonary region, characterized by very poor prognoses. Druggable targets for SCLC remain limited, thereby constraining treatment options available to patients. Immuno-chemotherapy has emerged as a pivotal therapeutic strategy for extensive-stage SCLC (ES-SCLC), yet it fails to confer significant efficacy in cases involving liver metastases (LMs) originating from SCLC. Therefore, our attention is directed towards the challenging subset of SCLC patients with LMs. Disease progression of LM-SCLC patients is affected by various factors in the tumor microenvironment (TME), including immune cells, blood vessels, inflammatory mediators, metabolites, and NE substances. Beyond standard immuno-chemotherapy, ongoing efforts to manage LMs in SCLC encompass anti-angiogenic therapy, radiotherapy, microwave ablation (MWA) / radiofrequency ablation (RFA), trans-arterial chemoembolization (TACE), and systemic therapies in conjunction with local interventions. Prospective experimental and clinical investigations into SCLC should prioritize precise and individualized approaches to enhance the prognosis across distinct patient cohorts.
Collapse
Affiliation(s)
- Linjie Fan
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yiwen Lin
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yunjie Fu
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jie Wang
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
18
|
Aluru N, Venkataraman YR, Murray CS, DePascuale V. Gene expression and DNA methylation changes in response to hypoxia in toxicant-adapted Atlantic killifish ( Fundulus heteroclitus). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.620405. [PMID: 39554046 PMCID: PMC11565929 DOI: 10.1101/2024.11.01.620405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Coastal fish populations are threatened by multiple anthropogenic impacts, including the accumulation of industrial contaminants and the increasing frequency of hypoxia. Some populations of the Atlantic killifish (Fundulus heteroclitus), like those in New Bedford Harbor (NBH), Massachusetts, have evolved a resistance to dioxin-like polychlorinated biphenyls (PCBs) that may influence their ability to cope with secondary stressors. To address this question, we compared hepatic gene expression and DNA methylation patterns in response to mild or severe hypoxia in killifish from NBH and Scorton Creek (SC), a reference population from a relatively pristine environment. We hypothesized that NBH fish would show altered responses to hypoxia due to trade-offs linked to toxicant resistance. Our results revealed substantial differences between populations. SC fish demonstrated a dose-dependent changes in gene expression in response to hypoxia, while NBH fish exhibited a muted transcriptional response to severe hypoxia. Interestingly, NBH fish showed significant DNA methylation changes in response to hypoxia, while SC fish did not exhibit notable epigenetic alterations. These findings suggest that toxicant-adapted killifish may face trade-offs in their molecular response to environmental stress, potentially impacting their ability to survive severe hypoxia in coastal habitats. Further research is needed to elucidate the functional implications of these epigenetic modifications and their role in adaptive stress responses.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department, Woods Hole, Massachusetts 02543
- Woods Hole Center for Oceans and Human Health Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | | | | | - Veronica DePascuale
- Biology Department, Woods Hole, Massachusetts 02543
- College of Arts and Sciences, Oberlin College and Conservatory, Oberlin, Ohio 44074
| |
Collapse
|
19
|
Hsieh HC, Chen CY, Chou CH, Peng BY, Sun YC, Lin TW, Chien Y, Chiou SH, Hung KF, Lu HHS. Deep learning-based automatic image classification of oral cancer cells acquiring chemoresistance in vitro. PLoS One 2024; 19:e0310304. [PMID: 39485749 PMCID: PMC11530068 DOI: 10.1371/journal.pone.0310304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/29/2024] [Indexed: 11/03/2024] Open
Abstract
Cell shape reflects the spatial configuration resulting from the equilibrium of cellular and environmental signals and is considered a highly relevant indicator of its function and biological properties. For cancer cells, various physiological and environmental challenges, including chemotherapy, cause a cell state transition, which is accompanied by a continuous morphological alteration that is often extremely difficult to recognize even by direct microscopic inspection. To determine whether deep learning-based image analysis enables the detection of cell shape reflecting a crucial cell state alteration, we used the oral cancer cell line resistant to chemotherapy but having cell morphology nearly indiscernible from its non-resistant parental cells. We then implemented the automatic approach via deep learning methods based on EfficienNet-B3 models, along with over- and down-sampling techniques to determine whether image analysis of the Convolutional Neural Network (CNN) can accomplish three-class classification of non-cancer cells vs. cancer cells with and without chemoresistance. We also examine the capability of CNN-based image analysis to approximate the composition of chemoresistant cancer cells within a population. We show that the classification model achieves at least 98.33% accuracy by the CNN model trained with over- and down-sampling techniques. For heterogeneous populations, the best model can approximate the true proportions of non-chemoresistant and chemoresistant cancer cells with Root Mean Square Error (RMSE) reduced to 0.16 by Ensemble Learning (EL). In conclusion, our study demonstrates the potential of CNN models to identify altered cell shapes that are visually challenging to recognize, thus supporting future applications with this automatic approach to image analysis.
Collapse
Affiliation(s)
- Hsing-Chuan Hsieh
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Cho-Yi Chen
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Hsien Chou
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Bou-Yue Peng
- Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chen Sun
- College of Medicine, Tzu-Chi University, Hualien, Taiwan
- Department of Ophthalmology, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Tzu-Wei Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kai-Feng Hung
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Dentistry, School of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Henry Horng-Shing Lu
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Statistics and Data Science, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
20
|
Karunakaran V, Dadgar S, Paidi SK, Mordi AF, Lowe WA, Mim UM, Ivers JD, Rodriguez Troncoso JI, McPeake JA, Fernandes A, Tripathi SD, Barman I, Rajaram N. Investigating In Vivo Tumor Biomolecular Changes Following Radiation Therapy Using Raman Spectroscopy. ACS OMEGA 2024; 9:43025-43033. [PMID: 39464461 PMCID: PMC11500151 DOI: 10.1021/acsomega.4c06096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024]
Abstract
Treatment resistance is a major bottleneck in the success of cancer therapy. Early identification of the treatment response or lack thereof in patients can enable an earlier switch to alternative treatment strategies that can enhance response rates. Here, Raman spectroscopy was applied to monitor early tumor biomolecular changes in sensitive (UM-SCC-22B) and resistant (UM-SCC-47) head and neck tumor xenografts for the first time in in vivo murine tumor models in response to radiation therapy. We used a validated multivariate curve resolution-alternating least-squares (MCR-ALS) model to resolve complex multicomponent Raman spectra into individual pure spectra and their respective contributions. We observed a significant radiation-induced increase in the contributions of lipid-like species (p = 0.0291) in the radiation-sensitive UM-SCC-22B tumors at 48 h following radiation compared to the nonradiated baseline (prior to commencing treatment). We also observed an increase in the contribution of collagen-like species in the radiation-resistant UM-SCC-47 tumors at 24 h following radiation compared to the nonradiated baseline (p = 0.0125). In addition to the in vivo analysis, we performed ex vivo confocal Raman microscopic imaging of frozen sections derived from the same tumors. A comparison of all control and treated tumors revealed similar trends in the contributions of lipid-like and collagen-like species in both in vivo and ex vivo measurements; however, when evaluated as a function of time, longitudinal trends in the scores of collagen-like and lipid-like components were not consistent between the two data sets, likely due to sample numbers and differences in sampling depth at which information is obtained. Nevertheless, this study demonstrates the potential of fiber-based Raman spectroscopy for identifying early tumor microenvironmental changes in response to clinical doses of radiation therapy.
Collapse
Affiliation(s)
- Varsha Karunakaran
- Department
of Biomedical Engineering, University of
Arkansas, Fayetteville, Arkansas 72701, United States
| | - Sina Dadgar
- Department
of Biomedical Engineering, University of
Arkansas, Fayetteville, Arkansas 72701, United States
| | - Santosh K. Paidi
- Department
of Mechanical Engineering, Johns Hopkins
University, Baltimore, Maryland 21218, United States
| | - April F. Mordi
- Department
of Biomedical Engineering, University of
Arkansas, Fayetteville, Arkansas 72701, United States
| | - Whitney A. Lowe
- Department
of Biomedical Engineering, University of
Arkansas, Fayetteville, Arkansas 72701, United States
| | - Umme Marium Mim
- Department
of Biomedical Engineering, University of
Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jesse D. Ivers
- Department
of Biomedical Engineering, University of
Arkansas, Fayetteville, Arkansas 72701, United States
| | - Joel I. Rodriguez Troncoso
- Department
of Biomedical Engineering, University of
Arkansas, Fayetteville, Arkansas 72701, United States
| | - Jared A. McPeake
- Department
of Biomedical Engineering, University of
Arkansas, Fayetteville, Arkansas 72701, United States
| | - Alric Fernandes
- Department
of Biomedical Engineering, University of
Arkansas, Fayetteville, Arkansas 72701, United States
| | - Sanidhya D. Tripathi
- Department
of Biomedical Engineering, University of
Arkansas, Fayetteville, Arkansas 72701, United States
| | - Ishan Barman
- Department
of Mechanical Engineering, Johns Hopkins
University, Baltimore, Maryland 21218, United States
| | - Narasimhan Rajaram
- Department
of Biomedical Engineering, University of
Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
21
|
Mzizi Y, Mbambara S, Moetlhoa B, Mahapane J, Mdanda S, Sathekge M, Kgatle M. Ionising radiation exposure-induced regulation of selected biomarkers and their impact in cancer and treatment. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1469897. [PMID: 39498386 PMCID: PMC11532091 DOI: 10.3389/fnume.2024.1469897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024]
Abstract
Ionising radiation (IR) is a form of energy that travels as electromagnetic waves or particles. While it is vital in medical and occupational health settings, IR can also damage DNA, leading to mutations, chromosomal aberrations, and transcriptional changes that disrupt the functions of certain cell regulators, genes, and transcription factors. These disruptions can alter functions critical for cancer development, progression, and treatment response. Additionally, IR can affect various cellular proteins and their regulators within different cell signalling pathways, resulting in physiological changes that may promote cancer development, progression, and resistance to treatment. Understanding these impacts is crucial for developing strategies to mitigate the harmful effects of IR exposure and improve cancer treatment outcomes. This review focuses on specific genes and protein biomarkers regulated in response to chronic IR exposure, and how their regulation impacts disease onset, progression, and treatment response.
Collapse
Affiliation(s)
- Yonwaba Mzizi
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| | - Saidon Mbambara
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Biomedical Sciences, Tropical Diseases Research Centre, Ndola, Zambia
| | - Boitumelo Moetlhoa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Johncy Mahapane
- Department of Radiography, University of Pretoria, Pretoria, South Africa
| | - Sipho Mdanda
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| | - Mankgopo Kgatle
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
22
|
Zhang G, Wang L, Qiao Y, Zhang F, Sun R, Akkaya EU. Overcoming multidrug resistance by a singlet oxygen releasing camptothecin-endoperoxide. Chem Commun (Camb) 2024; 60:12197-12200. [PMID: 39350695 DOI: 10.1039/d4cc03576c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
We made structural modifications on the A-ring of camptothecin (CPT) by incorporating methyl substituents on positions 9 and 12. This allows conversion of the camptothecin-derivative to an endoperoxide (ENDO-CPT). The endoperoxide obtained this way thermally releases singlet oxygen, reverting back to the original 9,12-dimethylcamptothecin (DM-CPT) with a half-life of 1.4 hours at 37 °C. Endoperoxide modification yields a significant improvement in cytotoxicity against MDR-cell lines, compared to both CPT and DM-CPT. It appears that the simultaneous action of singlet oxygen and CPT is highly effective due to the targeting of P-glycoprotein by singlet oxygen.
Collapse
Affiliation(s)
- Guangyu Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, P. R. China
| | - Lei Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, P. R. China
| | - Yuan Qiao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, P. R. China
| | - Feiyan Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, P. R. China
| | - Rensong Sun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, P. R. China
| | - Engin U Akkaya
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, P. R. China
| |
Collapse
|
23
|
Ciepła J, Smolarczyk R. Tumor hypoxia unveiled: insights into microenvironment, detection tools and emerging therapies. Clin Exp Med 2024; 24:235. [PMID: 39361163 PMCID: PMC11449960 DOI: 10.1007/s10238-024-01501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Hypoxia is one of the defining characteristics of the tumor microenvironment (TME) in solid cancers. It has a major impact on the growth and spread of malignant cells as well as their resistance to common treatments like radiation and chemotherapy. Here, we explore the complex functions of hypoxia in the TME and investigate its effects on angiogenesis, immunological evasion, and cancer cell metabolism. For prognostic and therapeutic reasons, hypoxia identification is critical, and recent developments in imaging and molecular methods have enhanced our capacity to precisely locate underoxygenated areas inside tumors. Furthermore, targeted therapies that take advantage of hypoxia provide a potential new direction in the treatment of cancer. Therapeutic approaches that specifically target hypoxic conditions in tumors without causing adverse effects are being led by hypoxia-targeted nanocarriers and hypoxia-activated prodrugs (HAPs). This review provides an extensive overview of this dynamic and clinically significant area of oncology research by synthesizing current knowledge about the mechanisms of hypoxia in cancer, highlighting state-of-the-art detection methodologies, and assessing the potential and efficacy of hypoxia-targeted therapies.
Collapse
Affiliation(s)
- Joanna Ciepła
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland
| | - Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| |
Collapse
|
24
|
Kothari R, Venuganti VVK. Effect of oxygen generating nanozymes on indocyanine green and IR 820 mediated phototherapy against oral cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113002. [PMID: 39141980 DOI: 10.1016/j.jphotobiol.2024.113002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
The hypoxic environment within a solid tumor is a limitation to the effectiveness of photodynamic therapy. Here, we demonstrate the use of oxygen generating nanozymes (CeO2, Fe3O4, and MnO2) to improve the photodynamic effect. The optimized combination of process parameters for irradiation was obtained using the Box Behnken experimental design. Indocyanine green, IR 820, and their different combinations with oxygen generators were studied for their effect on oral carcinoma. Dynamic light scattering technique showed the average particle size of CeO2, MnO2, and Fe3O4 to be 211 ± 16, and 157 ± 28, 143 ± 19 nm with PDI of 0.23, 0.28 and 0.20 and a zeta potential of -2.6 ± 0.45, -2.4 ± 0.60 and -6.1 ± 0.23 mV, respectively. The formation of metal oxides was confirmed using UV-visible, FTIR, and X-ray photon spectroscopies. The amount of dissolved oxygen produced by CeO2, MnO2, and Fe3O4 in the presence of H2O2 within 2 min was 1.7 ± 0.15, 1.7 ± 0.16, and 1.4 ± 0.12 mg/l, respectively. Growth inhibition studies in the FaDu oral carcinoma spheroid model showed a significant (P < 0.05) increase in growth reduction from 81 ± 2.9 and 88 ± 2.1% to 97 ± 1.2 and 99 ± 1.0% for ICG and IR 820, respectively, after irradiation (808 nm laser, 1 W/cm2, 5 min) in the presence of CeO2 (25 μg/ml). In conclusion, oxygen-generating nanozymes can improve the photodynamic effect of ICG and IR 820.
Collapse
Affiliation(s)
- Rupal Kothari
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Venkata Vamsi Krishna Venuganti
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India.
| |
Collapse
|
25
|
Adepu KK, Anishkin A, Adams SH, Chintapalli SV. A versatile delivery vehicle for cellular oxygen and fuels or metabolic sensor? A review and perspective on the functions of myoglobin. Physiol Rev 2024; 104:1611-1642. [PMID: 38696337 PMCID: PMC11495214 DOI: 10.1152/physrev.00031.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/04/2024] Open
Abstract
A canonical view of the primary physiological function of myoglobin (Mb) is that it is an oxygen (O2) storage protein supporting mitochondrial oxidative phosphorylation, especially as the tissue O2 partial pressure (Po2) drops and Mb off-loads O2. Besides O2 storage/transport, recent findings support functions for Mb in lipid trafficking and sequestration, interacting with cellular glycolytic metabolites such as lactate (LAC) and pyruvate (PYR), and "ectopic" expression in some types of cancer cells and in brown adipose tissue (BAT). Data from Mb knockout (Mb-/-) mice and biochemical models suggest additional metabolic roles for Mb, especially regulation of nitric oxide (NO) pools, modulation of BAT bioenergetics, thermogenesis, and lipid storage phenotypes. From these and other findings in the literature over many decades, Mb's function is not confined to delivering O2 in support of oxidative phosphorylation but may serve as an O2 sensor that modulates intracellular Po2- and NO-responsive molecular signaling pathways. This paradigm reflects a fundamental change in how oxidative metabolism and cell regulation are viewed in Mb-expressing cells such as skeletal muscle, heart, brown adipocytes, and select cancer cells. Here, we review historic and emerging views related to the physiological roles for Mb and present working models illustrating the possible importance of interactions between Mb, gases, and small-molecule metabolites in regulation of cell signaling and bioenergetics.
Collapse
Affiliation(s)
- Kiran Kumar Adepu
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| | - Andriy Anishkin
- Department of Biology, University of Maryland, College Park, Maryland, United States
| | - Sean H Adams
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, California, United States
- Center for Alimentary and Metabolic Science, School of Medicine, University of California Davis, Sacramento, California, United States
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
26
|
Iriondo O, Mecenas D, Li Y, Chin CR, Thomas A, Moriarty A, Marker R, Wang YJ, Hendrick H, Amzaleg Y, Ortiz V, MacKay M, Dickerson A, Lee G, Harotoonian S, Benayoun BA, Smith A, Mason CE, Torres ETR, Klotz R, Yu M. Hypoxic Memory Mediates Prolonged Tumor-Intrinsic Type I Interferon Suppression to Promote Breast Cancer Progression. Cancer Res 2024; 84:3141-3157. [PMID: 38990731 PMCID: PMC11444891 DOI: 10.1158/0008-5472.can-23-2028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 05/03/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Hypoxia is a common feature of many solid tumors due to aberrant proliferation and angiogenesis that is associated with tumor progression and metastasis. Most of the well-known hypoxia effects are mediated through hypoxia-inducible factors (HIF). Identification of the long-lasting effects of hypoxia beyond the immediate HIF-induced alterations could provide a better understanding of hypoxia-driven metastasis and potential strategies to circumvent it. Here, we uncovered a hypoxia-induced mechanism that exerts a prolonged effect to promote metastasis. In breast cancer patient-derived circulating tumor cell lines and common breast cancer cell lines, hypoxia downregulated tumor-intrinsic type I IFN signaling and its downstream antigen presentation (AP) machinery in luminal breast cancer cells, via both HIF-dependent and HIF-independent mechanisms. Hypoxia induced durable IFN/AP suppression in certain cell types that was sustained after returning to normoxic conditions, presenting a "hypoxic memory" phenotype. Hypoxic memory of IFN/AP downregulation was established by specific hypoxic priming, and cells with hypoxic memory had an enhanced ability for tumorigenesis and metastasis. Overexpression of IRF3 enhanced IFN signaling and reduced tumor growth in normoxic, but not hypoxic, conditions. The histone deacetylase inhibitor entinostat upregulated IFN targets and erased the hypoxic memory. These results point to a mechanism by which hypoxia facilitates tumor progression through a long-lasting memory that provides advantages for circulating tumor cells during the metastatic cascade. Significance: Long-term cellular memory of hypoxia leads to sustained suppression of tumor-intrinsic type I IFN signaling and the antigen presentation pathway that facilitates tumorigenesis and metastasis. See related commentary by Purdy and Ford, p. 3125.
Collapse
Affiliation(s)
- Oihana Iriondo
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- Center for Cooperative Research (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio 48160, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Desirea Mecenas
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Yilin Li
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Christopher R. Chin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Amal Thomas
- Department of Molecular and Computational Biology, USC Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Aidan Moriarty
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rebecca Marker
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yiru Jess Wang
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Haley Hendrick
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yonatan Amzaleg
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA 90033, USA
| | - Veronica Ortiz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Matthew MacKay
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Amber Dickerson
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Grace Lee
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Sevana Harotoonian
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Bérénice A. Benayoun
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew Smith
- Department of Molecular and Computational Biology, USC Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Evanthia T. Roussos Torres
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Remi Klotz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
27
|
Gao Y, Zhang J, Tang T, Liu Z. Hypoxia Pathways in Parkinson's Disease: From Pathogenesis to Therapeutic Targets. Int J Mol Sci 2024; 25:10484. [PMID: 39408813 PMCID: PMC11477385 DOI: 10.3390/ijms251910484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The human brain is highly dependent on oxygen, utilizing approximately 20% of the body's oxygen at rest. Oxygen deprivation to the brain can lead to loss of consciousness within seconds and death within minutes. Recent studies have identified regions of the brain with spontaneous episodic hypoxia, referred to as "hypoxic pockets". Hypoxia can also result from impaired blood flow due to conditions such as heart disease, blood clots, stroke, or hemorrhage, as well as from reduced oxygen intake or excessive oxygen consumption caused by factors like low ambient oxygen, pulmonary diseases, infections, inflammation, and cancer. Severe hypoxia in the brain can manifest symptoms similar to Parkinson's disease (PD), including cerebral edema, mood disturbances, and cognitive impairments. Additionally, the development of PD appears to be closely associated with hypoxia and hypoxic pathways. This review seeks to investigate the molecular interactions between hypoxia and PD, emphasizing the pathological role of hypoxic pathways in PD and exploring their potential as therapeutic targets.
Collapse
Affiliation(s)
- Yuanyuan Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (J.Z.)
| | - Jiarui Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (J.Z.)
| | - Tuoxian Tang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (J.Z.)
| |
Collapse
|
28
|
Yang Y, Wang Y, Liu Y, Wang K, Wang G, Yang Y, Jang WJ, James TD, Yoon J, Zhang H. Tumor oxygen microenvironment-tailored electron transfer-type photosensitizers for precise cancer therapy. Chem Sci 2024; 15:d4sc03424d. [PMID: 39328193 PMCID: PMC11421038 DOI: 10.1039/d4sc03424d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
The oxygen level in a tumor typically exhibits complex characteristics, ranging from mild hypoxia to moderate and even severe hypoxia. This poses significant challenges for the efficacy of photodynamic therapy, where oxygen is an essential element. Herein, we propose a novel therapeutic strategy and develop a series of lipid droplet-targeting photosensitive dyes (Ser-TPAs), i.e., in situ synergistic activation of two different electron transfer-type reactions. Based on this strategy, Ser-TPAs can synergistically generate O2˙- and nitrogen radicals regardless of the oxygen content, which results in a sustained high concentration of strongly oxidizing substances in the lipid droplets of cancer cells. As such, Ser-TPAs exhibited inhibitory activity against tumor growth in vivo, resulting in a significant reduction in tumor volume (V experimental group : V control group ≈ 0.07). This strategy offers a conceptual framework for the design of innovative photosensitive dyes that are suitable for cancer therapy in complex oxygen environments.
Collapse
Affiliation(s)
- Yiting Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Province, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Yafu Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Province, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Yang Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Province, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Kui Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Province, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Ge Wang
- College of Basic Medicine, Xinxiang Medical University Xinxiang Henan 453007 P. R. China
| | - Yonggang Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Province, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Won Jun Jang
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Tony D James
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Province, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Hua Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Province, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
29
|
Liu Y, Weng L, Wang Y, Zhang J, Wu Q, Zhao P, Shi Y, Wang P, Fang L. Deciphering the role of CD47 in cancer immunotherapy. J Adv Res 2024; 63:129-158. [PMID: 39167629 PMCID: PMC11380025 DOI: 10.1016/j.jare.2023.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/05/2023] [Accepted: 10/18/2023] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Immunotherapy has emerged as a novel strategy for cancer treatment following surgery, radiotherapy, and chemotherapy. Immune checkpoint blockade and Chimeric antigen receptor (CAR)-T cell therapies have been successful in clinical trials. Cancer cells evade immune surveillance by hijacking inhibitory pathways via overexpression of checkpoint genes. The Cluster of Differentiation 47 (CD47) has emerged as a crucial checkpoint for cancer immunotherapy by working as a "don't eat me" signal and suppressing innate immune signaling. Furthermore, CD47 is highly expressed in many cancer types to protect cancer cells from phagocytosis via binding to SIRPα on phagocytes. Targeting CD47 by either interrupting the CD47-SIRPα axis or combing with other therapies has been demonstrated as an encouraging therapeutic strategy in cancer immunotherapy. Antibodies and small molecules that target CD47 have been explored in pre- and clinical trials. However, formidable challenges such as the anemia and palate aggregation cannot be avoided because of the wide presentation of CD47 on erythrocytes. AIM OF VIEW This review summarizes the current knowledge on the regulation and function of CD47, and provides a new perspective for immunotherapy targeting CD47. It also highlights the clinical progress of targeting CD47 and discusses challenges and potential strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW This review provides a comprehensive understanding of targeting CD47 in cancer immunotherapy, it also augments the concept of combination immunotherapy strategies by employing both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Yu'e Liu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Linjun Weng
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yanjin Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Jin Zhang
- Department of Pharmacology and Toxicology, University of Mississippi, Medical Center, 39216 Jackson, MS, USA
| | - Qi Wu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China
| | - Pengcheng Zhao
- School of Life Sciences and Medicine, Shandong University of Technology, No.266 Xincun West Road, Zibo 255000, Shandong Province, China
| | - Yufeng Shi
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China; Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China.
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Lan Fang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
30
|
Lu Z, Verginadis I, Kumazoe M, Castillo GM, Yao Y, Guerra RE, Bicher S, You M, McClung G, Qiu R, Xiao Z, Miao Z, George SS, Beiting DP, Nojiri T, Tanaka Y, Fujimura Y, Onda H, Hatakeyama Y, Nishimoto-Ashfield A, Bykova K, Guo W, Fan Y, Buynov NM, Diehl JA, Stanger BZ, Tachibana H, Gade TP, Puré E, Koumenis C, Bolotin EM, Fuchs SY. Modified C-type natriuretic peptide normalizes tumor vasculature, reinvigorates antitumor immunity, and improves solid tumor therapies. Sci Transl Med 2024; 16:eadn0904. [PMID: 39167664 PMCID: PMC11866103 DOI: 10.1126/scitranslmed.adn0904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/23/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
Deficit of oxygen and nutrients in the tumor microenvironment (TME) triggers abnormal angiogenesis that produces dysfunctional and leaky blood vessels, which fail to adequately perfuse tumor tissues. Resulting hypoxia, exacerbation of metabolic disturbances, and generation of an immunosuppressive TME undermine the efficacy of anticancer therapies. Use of carefully scheduled angiogenesis inhibitors has been suggested to overcome these problems and normalize the TME. Here, we propose an alternative agonist-based normalization approach using a derivative of the C-type natriuretic peptide (dCNP). Multiple gene expression signatures in tumor tissues were affected in mice treated with dCNP. In several mouse orthotopic and subcutaneous solid tumor models including colon and pancreatic adenocarcinomas, this well-tolerated agent stimulated formation of highly functional tumor blood vessels to reduce hypoxia. Administration of dCNP also inhibited stromagenesis and remodeling of the extracellular matrix and decreased tumor interstitial fluid pressure. In addition, treatment with dCNP reinvigorated the antitumor immune responses. Administration of dCNP decelerated growth of primary mouse tumors and suppressed their metastases. Moreover, inclusion of dCNP into the chemo-, radio-, or immune-therapeutic regimens increased their efficacy against solid tumors in immunocompetent mice. These results demonstrate the proof of principle for using vasculature normalizing agonists to improve therapies against solid tumors and characterize dCNP as the first in class among such agents.
Collapse
Affiliation(s)
- Zhen Lu
- Dept. of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ioannis Verginadis
- Dept. of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Motofumi Kumazoe
- Div. of Applied Biological Chemistry, Dept. of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | | | - Yao Yao
- PharmaIN Corp., Bothell, WA 98011, USA
| | | | - Sandra Bicher
- Dept. of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Menghao You
- Dept. of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George McClung
- Dept. of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rong Qiu
- Dept. of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zebin Xiao
- Dept. of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhen Miao
- Dept. of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Subin S. George
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel P. Beiting
- Dept. of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Takashi Nojiri
- Dept. of General Thoracic Surgery, Higashiosaka City Medical Center, Higashiosaka, 578-8588, Japan
| | - Yasutake Tanaka
- Div. of Applied Biological Chemistry, Dept. of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yoshinori Fujimura
- Div. of Applied Biological Chemistry, Dept. of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Hiroaki Onda
- Div. of Applied Biological Chemistry, Dept. of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yui Hatakeyama
- Div. of Applied Biological Chemistry, Dept. of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | | | | | - Wei Guo
- Dept. of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Fan
- Dept. of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - J. Alan Diehl
- Dept. of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ben Z. Stanger
- Dept. of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hirofumi Tachibana
- Div. of Applied Biological Chemistry, Dept. of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Terence P. Gade
- Dept. of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ellen Puré
- Dept. of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Constantinos Koumenis
- Dept. of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Serge Y. Fuchs
- Dept. of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
31
|
Cao Z, Zuo X, Liu X, Xu G, Yong KT. Recent progress in stimuli-responsive polymeric micelles for targeted delivery of functional nanoparticles. Adv Colloid Interface Sci 2024; 330:103206. [PMID: 38823215 DOI: 10.1016/j.cis.2024.103206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Stimuli-responsive polymeric micelles have emerged as a revolutionary approach for enhancing the in vivo stability, biocompatibility, and targeted delivery of functional nanoparticles (FNPs) in biomedicine. This article comprehensively reviews the preparation methods of these polymer micelles, detailing the innovative strategies employed to introduce stimulus responsiveness and surface modifications essential for precise targeting. We delve into the breakthroughs in utilizing these micelles to selectively deliver various FNPs including magnetic nanoparticles, upconversion nanoparticles, gold nanoparticles, and quantum dots, highlighting their transformative impact in the biomedical realm. Concluding, we present an insight into the current research landscape, addressing the challenges at hand, and envisioning the future trajectory in this burgeoning domain. Join us as we navigate the exciting confluence of polymer science and nanotechnology in reshaping biomedical solutions.
Collapse
Affiliation(s)
- Zhonglin Cao
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiaoling Zuo
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiaochen Liu
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia; The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia; The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
32
|
Xu N, Wang J, Liu L, Gong C. Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. CHINESE CHEM LETT 2024; 35:109225. [DOI: 10.1016/j.cclet.2023.109225] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
33
|
Adebayo AK, Bhat-Nakshatri P, Davis C, Angus SP, Erdogan C, Gao H, Green N, Kumar B, Liu Y, Nakshatri H. Oxygen tension-dependent variability in the cancer cell kinome impacts signaling pathways and response to targeted therapies. iScience 2024; 27:110068. [PMID: 38872973 PMCID: PMC11170190 DOI: 10.1016/j.isci.2024.110068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/05/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Most cells in solid tumors are exposed to oxygen levels between 0.5% and 5%. We developed an approach that allows collection, processing, and evaluation of cancer and non-cancer cells under physioxia, while preventing exposure to ambient air. This aided comparison of baseline and drug-induced changes in signaling pathways under physioxia and ambient oxygen. Using tumor cells from transgenic models of breast cancer and cells from breast tissues of clinically breast cancer-free women, we demonstrate oxygen-dependent differences in cell preference for epidermal growth factor receptor (EGFR) or platelet-derived growth factor receptor beta (PDGFRβ) signaling. Physioxia caused PDGFRβ-mediated activation of AKT and extracellular regulated kinase (ERK) that reduced sensitivity to EGFR and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) inhibition and maintained PDGFRβ+ epithelial-mesenchymal hybrid cells with potential cancer stem cell (CSC) properties. Cells in ambient air displayed differential EGFR activation and were more sensitive to targeted therapies. Our data emphasize the importance of oxygen considerations in preclinical cancer research to identify effective drug targets and develop combination therapy regimens.
Collapse
Affiliation(s)
- Adedeji K. Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Christopher Davis
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Steven P. Angus
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Cihat Erdogan
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hongyu Gao
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nick Green
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
34
|
Li CY, Wang W, Leung CH, Yang GJ, Chen J. KDM5 family as therapeutic targets in breast cancer: Pathogenesis and therapeutic opportunities and challenges. Mol Cancer 2024; 23:109. [PMID: 38769556 PMCID: PMC11103982 DOI: 10.1186/s12943-024-02011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Breast cancer (BC) is the most frequent malignant cancer diagnosis and is a primary factor for cancer deaths in women. The clinical subtypes of BC include estrogen receptor (ER) positive, progesterone receptor (PR) positive, human epidermal growth factor receptor 2 (HER2) positive, and triple-negative BC (TNBC). Based on the stages and subtypes of BC, various treatment methods are available with variations in the rates of progression-free disease and overall survival of patients. However, the treatment of BC still faces challenges, particularly in terms of drug resistance and recurrence. The study of epigenetics has provided new ideas for treating BC. Targeting aberrant epigenetic factors with inhibitors represents a promising anticancer strategy. The KDM5 family includes four members, KDM5A, KDM5B, KDM5C, and KDMD, all of which are Jumonji C domain-containing histone H3K4me2/3 demethylases. KDM5 proteins have been extensively studied in BC, where they are involved in suppressing or promoting BC depending on their specific upstream and downstream pathways. Several KDM5 inhibitors have shown potent BC inhibitory activity in vitro and in vivo, but challenges still exist in developing KDM5 inhibitors. In this review, we introduce the subtypes of BC and their current therapeutic options, summarize KDM5 family context-specific functions in the pathobiology of BC, and discuss the outlook and pitfalls of KDM5 inhibitors in this disease.
Collapse
Affiliation(s)
- Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau, China.
- Macao Centre for Research and Development in Chinese Medicine, University of Macau, Macau, China.
- MoE Frontiers Science Centre for Precision Oncology, University of Macau, Macau, China.
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China.
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China.
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
35
|
Caldarella C, De Risi M, Massaccesi M, Miccichè F, Bussu F, Galli J, Rufini V, Leccisotti L. Role of 18F-FDG PET/CT in Head and Neck Squamous Cell Carcinoma: Current Evidence and Innovative Applications. Cancers (Basel) 2024; 16:1905. [PMID: 38791983 PMCID: PMC11119768 DOI: 10.3390/cancers16101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
This article provides an overview of the use of 18F-FDG PET/CT in various clinical scenarios of head-neck squamous cell carcinoma, ranging from initial staging to treatment-response assessment, and post-therapy follow-up, with a focus on the current evidence, debated issues, and innovative applications. Methodological aspects and the most frequent pitfalls in head-neck imaging interpretation are described. In the initial work-up, 18F-FDG PET/CT is recommended in patients with metastatic cervical lymphadenectomy and occult primary tumor; moreover, it is a well-established imaging tool for detecting cervical nodal involvement, distant metastases, and synchronous primary tumors. Various 18F-FDG pre-treatment parameters show prognostic value in terms of disease progression and overall survival. In this scenario, an emerging role is played by radiomics and machine learning. For radiation-treatment planning, 18F-FDG PET/CT provides an accurate delineation of target volumes and treatment adaptation. Due to its high negative predictive value, 18F-FDG PET/CT, performed at least 12 weeks after the completion of chemoradiotherapy, can prevent unnecessary neck dissections. In addition to radiomics and machine learning, emerging applications include PET/MRI, which combines the high soft-tissue contrast of MRI with the metabolic information of PET, and the use of PET radiopharmaceuticals other than 18F-FDG, which can answer specific clinical needs.
Collapse
Affiliation(s)
- Carmelo Caldarella
- Nuclear Medicine Unit, Department of Radiology and Oncologic Radiotherapy, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (M.D.R.); (L.L.)
| | - Marina De Risi
- Nuclear Medicine Unit, Department of Radiology and Oncologic Radiotherapy, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (M.D.R.); (L.L.)
| | - Mariangela Massaccesi
- Radiation Oncology Unit, Department of Radiology and Oncologic Radiotherapy, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Francesco Miccichè
- Radiation Oncology Unit, Ospedale Isola Tiberina—Gemelli Isola, 00186 Rome, Italy;
| | - Francesco Bussu
- Otorhinolaryngology Operative Unit, Azienda Ospedaliero Universitaria Sassari, 07100 Sassari, Italy;
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Jacopo Galli
- Otorhinolaryngology Unit, Department of Neurosciences, Sensory Organs and Thorax, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Section of Otolaryngology, Department of Head-Neck and Sensory Organs, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Vittoria Rufini
- Nuclear Medicine Unit, Department of Radiology and Oncologic Radiotherapy, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (M.D.R.); (L.L.)
- Section of Nuclear Medicine, Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lucia Leccisotti
- Nuclear Medicine Unit, Department of Radiology and Oncologic Radiotherapy, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (C.C.); (M.D.R.); (L.L.)
- Section of Nuclear Medicine, Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
36
|
Zhi S, Chen C, Huang H, Zhang Z, Zeng F, Zhang S. Hypoxia-inducible factor in breast cancer: role and target for breast cancer treatment. Front Immunol 2024; 15:1370800. [PMID: 38799423 PMCID: PMC11116789 DOI: 10.3389/fimmu.2024.1370800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Globally, breast cancer stands as the most prevalent form of cancer among women. The tumor microenvironment of breast cancer often exhibits hypoxia. Hypoxia-inducible factor 1-alpha, a transcription factor, is found to be overexpressed and activated in breast cancer, playing a pivotal role in the anoxic microenvironment by mediating a series of reactions. Hypoxia-inducible factor 1-alpha is involved in regulating downstream pathways and target genes, which are crucial in hypoxic conditions, including glycolysis, angiogenesis, and metastasis. These processes significantly contribute to breast cancer progression by managing cancer-related activities linked to tumor invasion, metastasis, immune evasion, and drug resistance, resulting in poor prognosis for patients. Consequently, there is a significant interest in Hypoxia-inducible factor 1-alpha as a potential target for cancer therapy. Presently, research on drugs targeting Hypoxia-inducible factor 1-alpha is predominantly in the preclinical phase, highlighting the need for an in-depth understanding of HIF-1α and its regulatory pathway. It is anticipated that the future will see the introduction of effective HIF-1α inhibitors into clinical trials, offering new hope for breast cancer patients. Therefore, this review focuses on the structure and function of HIF-1α, its role in advancing breast cancer, and strategies to combat HIF-1α-dependent drug resistance, underlining its therapeutic potential.
Collapse
Affiliation(s)
| | | | | | | | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
37
|
Shi H, Zhang M, Zhang Y. Construction of a prognostic model for autophagy in Wilm's tumor. Pediatr Surg Int 2024; 40:122. [PMID: 38704513 DOI: 10.1007/s00383-024-05712-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Wilm's tumor (WT) is one of the most common childhood urological tumors, ranking second in the incidence of pediatric abdominal tumors. The development of WT is associated with various factors, and the correlation with autophagy is currently unclear. PURPOSE To develop a new prognostic model of autophagy-related genes (ATG) for WT. METHODS Using the Therapeutically applicable research to generate effective treatments (TARGET) database to screen for differentially expressed ATGs in WT and normal tissues. ATGs were screened for prognostic relevance to WT using one-way and multifactorial Cox regression analyses and prognostic models were constructed. The risk score was calculated according to the model, and the predictive ability of the constructed model was analyzed using the ROC (receiver operating characteristic) curve to verify the significance of the model for the prognosis of WT. RESULTS Sixty-eight differentially expressed ATGs were identified by univariate Cox regression analysis, and two critical prognostic ATGs (CXCR4 and ERBB2) were identified by multivariate Cox regression analysis. Patients were divided into high-risk and low-risk groups according to the differential expression of these two ATGs. Kaplan-Meier (KM) curves showed a significant difference in survival time between the two groups. The critical prognostic ATGs were combined with race, age, and stage in a multifactorial regression analysis, and the final prognostic model was produced as a line graph. CONCLUSION The prognostic model of autophagy-related genes composed of the CXCR4 gene and ERBB2 gene has a specific predictive value for the prognosis of WT, and the present study provides a clear basis for future research on biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Haoyu Shi
- Department of Pediatric Surgery, Affiliated Matern and Child Care Hospital of Nantong University, 399 Century Avenue, Chongchuan, Nantong, Jiangsu, China
| | - Min Zhang
- Department of Pediatric Surgery, Affiliated Matern and Child Care Hospital of Nantong University, 399 Century Avenue, Chongchuan, Nantong, Jiangsu, China.
| | - Youbo Zhang
- Department of Pediatric Surgery, Affiliated Matern and Child Care Hospital of Nantong University, 399 Century Avenue, Chongchuan, Nantong, Jiangsu, China
| |
Collapse
|
38
|
Li G, Yao Q, Liu P, Zhang H, Liu Y, Li S, Shi Y, Li Z, Zhu W. Critical roles and clinical perspectives of RNA methylation in cancer. MedComm (Beijing) 2024; 5:e559. [PMID: 38721006 PMCID: PMC11077291 DOI: 10.1002/mco2.559] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 01/06/2025] Open
Abstract
RNA modification, especially RNA methylation, is a critical posttranscriptional process influencing cellular functions and disease progression, accounting for over 60% of all RNA modifications. It plays a significant role in RNA metabolism, affecting RNA processing, stability, and translation, thereby modulating gene expression and cell functions essential for proliferation, survival, and metastasis. Increasing studies have revealed the disruption in RNA metabolism mediated by RNA methylation has been implicated in various aspects of cancer progression, particularly in metabolic reprogramming and immunity. This disruption of RNA methylation has profound implications for tumor growth, metastasis, and therapy response. Herein, we elucidate the fundamental characteristics of RNA methylation and their impact on RNA metabolism and gene expression. We highlight the intricate relationship between RNA methylation, cancer metabolic reprogramming, and immunity, using the well-characterized phenomenon of cancer metabolic reprogramming as a framework to discuss RNA methylation's specific roles and mechanisms in cancer progression. Furthermore, we explore the potential of targeting RNA methylation regulators as a novel approach for cancer therapy. By underscoring the complex mechanisms by which RNA methylation contributes to cancer progression, this review provides a foundation for developing new prognostic markers and therapeutic strategies aimed at modulating RNA methylation in cancer treatment.
Collapse
Affiliation(s)
- Ganglei Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Qinfan Yao
- Kidney Disease CenterThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Peixi Liu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Hongfei Zhang
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Yingjun Liu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Sichen Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Yuan Shi
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Zongze Li
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Wei Zhu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersShanghaiChina
- Shanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationShanghaiChina
- Neurosurgical Institute of Fudan UniversityShanghaiChina
- Shanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| |
Collapse
|
39
|
Greco F, D’Andrea V, Beomonte Zobel B, Mallio CA. Radiogenomics and Texture Analysis to Detect von Hippel-Lindau (VHL) Mutation in Clear Cell Renal Cell Carcinoma. Curr Issues Mol Biol 2024; 46:3236-3250. [PMID: 38666933 PMCID: PMC11049152 DOI: 10.3390/cimb46040203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Radiogenomics, a burgeoning field in biomedical research, explores the correlation between imaging features and genomic data, aiming to link macroscopic manifestations with molecular characteristics. In this review, we examine existing radiogenomics literature in clear cell renal cell carcinoma (ccRCC), the predominant renal cancer, and von Hippel-Lindau (VHL) gene mutation, the most frequent genetic mutation in ccRCC. A thorough examination of the literature was conducted through searches on the PubMed, Medline, Cochrane Library, Google Scholar, and Web of Science databases. Inclusion criteria encompassed articles published in English between 2014 and 2022, resulting in 10 articles meeting the criteria out of 39 initially retrieved articles. Most of these studies applied computed tomography (CT) images obtained from open source and institutional databases. This literature review investigates the role of radiogenomics, with and without texture analysis, in predicting VHL gene mutation in ccRCC patients. Radiogenomics leverages imaging modalities such as CT and magnetic resonance imaging (MRI), to analyze macroscopic features and establish connections with molecular elements, providing insights into tumor heterogeneity and biological behavior. The investigations explored diverse mutations, with a specific focus on VHL mutation, and applied CT imaging features for radiogenomic analysis. Moreover, radiomics and machine learning techniques were employed to predict VHL gene mutations based on CT features, demonstrating promising results. Additional studies delved into the relationship between VHL mutation and body composition, revealing significant associations with adipose tissue distribution. The review concludes by highlighting the potential role of radiogenomics in guiding targeted and selective therapies.
Collapse
Affiliation(s)
- Federico Greco
- Department of Radiology, Cittadella Della Salute Azienda Sanitaria Locale di Lecce, Piazza Filippo Bottazzi 2, 73100 Lecce, Italy
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy; (V.D.); (B.B.Z.); (C.A.M.)
| | - Valerio D’Andrea
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy; (V.D.); (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
| | - Bruno Beomonte Zobel
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy; (V.D.); (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
| | - Carlo Augusto Mallio
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy; (V.D.); (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
| |
Collapse
|
40
|
Agranier E, Crétin P, Joublin-Delavat A, Veillard L, Touahri K, Delavat F. Development and utilization of new O 2-independent bioreporters. Microbiol Spectr 2024; 12:e0409123. [PMID: 38441526 PMCID: PMC10986488 DOI: 10.1128/spectrum.04091-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/19/2024] [Indexed: 04/06/2024] Open
Abstract
Fluorescent proteins have revolutionized science since their discovery in 1962. They have enabled imaging experiments to decipher the function of proteins, cells, and organisms, as well as gene regulation. Green fluorescent protein and all its derivatives are now standard tools in cell biology, immunology, molecular biology, and microbiology laboratories around the world. A common feature of these proteins is their dioxygen (O2)-dependent maturation allowing fluorescence, which precludes their use in anoxic contexts. In this work, we report the development and in cellulo characterization of genetic circuits encoding the O2-independent KOFP-7 protein, a flavin-binding fluorescent protein. We have optimized the genetic circuit for high bacterial fluorescence at population and single-cell level, implemented this circuit in various plasmids differing in host range, and quantified their fluorescence under both aerobic and anaerobic conditions. Finally, we showed that KOFP-7-based constructions can be used to produce fluorescing cells of Vibrio diazotrophicus, a facultative anaerobe, demonstrating the usefulness of the genetic circuits for various anaerobic bacteria. These genetic circuits can thus be modified at will, both to solve basic and applied research questions, opening a highway to shed light on the obscure anaerobic world.IMPORTANCEFluorescent proteins are used for decades, and have allowed major discoveries in biology in a wide variety of fields, and are used in environmental as well as clinical contexts. Green fluorescent protein (GFP) and all its derivatives share a common feature: they rely on the presence of dioxygen (O2) for protein maturation and fluorescence. This dependency precludes their use in anoxic environments. Here, we constructed a series of genetic circuits allowing production of KOFP-7, an O2-independant flavin-binding fluorescent protein. We demonstrated that Escherichia coli cells producing KOFP-7 are fluorescent, both at the population and single-cell levels. Importantly, we showed that, unlike cells producing GFP, cells producing KOFP-7 are fluorescent in anoxia. Finally, we demonstrated that Vibrio diazotrophicus NS1, a facultative anaerobe, is fluorescent in the absence of O2 when KOFP-7 is produced. Altogether, the development of new genetic circuits allowing O2-independent fluorescence will open new perspective to study anaerobic processes.
Collapse
Affiliation(s)
- Eva Agranier
- Nantes Université, CNRS, US2B, UMR6286, Nantes, France
| | | | | | - Léa Veillard
- Nantes Université, CNRS, US2B, UMR6286, Nantes, France
| | - Katia Touahri
- Nantes Université, CNRS, US2B, UMR6286, Nantes, France
- Laboratoire Chimie et Biochimie de Molécules Bioactives, Université de Strasbourg/CNRS, UMR7177, Strasbourg, France
| | | |
Collapse
|
41
|
Ivers JD, Puvvada N, Quick CM, Rajaram N. Investigating the relationship between hypoxia, hypoxia-inducible factor 1, and the optical redox ratio in response to radiation therapy. BIOPHOTONICS DISCOVERY 2024; 1:015003. [PMID: 40109884 PMCID: PMC11922545 DOI: 10.1117/1.bios.1.1.015003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Significance Radiation resistance is a major contributor to cancer treatment failure and is likely driven by multiple pathways. Multivariate visualization that preserves the spatial co-localization of factors could aid in understanding mechanisms of resistance and identifying biomarkers of response. Aim We aim to investigate the spatial and temporal relationship between hypoxia, hypoxia-inducible factor 1 (HIF-1α), and metabolism in response to radiation therapy in two cell lines of known radiation resistance and sensitivity. Approach Two-photon excited fluorescence and fluorescence lifetime imaging microscopy were used to quantify the optical redox ratio (ORR) and NAD(P)H fluorescent lifetime and bound fraction in frozen tumor sections and co-registered with immunohistochemical stain-based imaging of hypoxic fraction and HIF-1α. Results Histogram analysis of hypoxia, HIF-1α, and ORR revealed an increase in the ORR in regions of low hypoxia and high HIF-1α, indicating that the stabilization of HIF-1α is likely due to an increase in reactive oxygen species following radiation therapy. In addition, the bound NAD(P)H fraction was higher in regions with a low ORR in resistant tumors following radiation, suggesting an increase in fatty acid synthesis. Conclusions A multivariate histogram approach can reveal hidden trends not observed in bulk analysis of tumor images and may be useful in understanding biomarkers and mechanisms of radiation resistance.
Collapse
Affiliation(s)
- Jesse D Ivers
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, Arkansas, United States
| | - Nagavenkatasai Puvvada
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, Arkansas, United States
| | - Charles M Quick
- University of Arkansas for Medical Sciences, Department of Pathology, Little Rock, Arkansas, United States
| | - Narasimhan Rajaram
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, Arkansas, United States
| |
Collapse
|
42
|
Chen H, Yu S, Ma R, Deng L, Yi Y, Niu M, Xu C, Xiao ZXJ. Hypoxia-activated XBP1s recruits HDAC2-EZH2 to engage epigenetic suppression of ΔNp63α expression and promote breast cancer metastasis independent of HIF1α. Cell Death Differ 2024; 31:447-459. [PMID: 38413797 PMCID: PMC11043437 DOI: 10.1038/s41418-024-01271-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
Hypoxia is a hallmark of cancer development. However, the molecular mechanisms by which hypoxia promotes tumor metastasis are not fully understood. In this study, we demonstrate that hypoxia promotes breast cancer metastasis through suppression of ΔNp63α in a HIF1α-independent manner. We show that hypoxia-activated XBP1s forms a stable repressor protein complex with HDAC2 and EZH2 to suppress ΔNp63α transcription. Notably, H3K27ac is predominantly occupied on the ΔNp63 promoter under normoxia, while H3K27me3 on the promoter under hypoxia. We show that XBP1s binds to the ΔNp63 promoter to recruit HDAC2 and EZH2 in facilitating the switch of H3K27ac to H3K27me3. Pharmacological inhibition or the knockdown of either HDAC2 or EZH2 leads to increased H3K27ac, accompanied by the reduced H3K27me3 and restoration of ΔNp63α expression suppressed by hypoxia, resulting in inhibition of cell migration. Furthermore, the pharmacological inhibition of IRE1α, but not HIF1α, upregulates ΔNp63α expression in vitro and inhibits tumor metastasis in vivo. Clinical analyses reveal that reduced p63 expression is correlated with the elevated expression of XBP1, HDAC2, or EZH2, and is associated with poor overall survival in human breast cancer patients. Together, these results indicate that hypoxia-activated XBP1s modulates the epigenetic program in suppression of ΔNp63α to promote breast cancer metastasis independent of HIF1α and provides a molecular basis for targeting the XBP1s/HDAC2/EZH2-ΔNp63α axis as a putative strategy in the treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Hu Chen
- School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China.
| | - Shuhan Yu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Ruidong Ma
- School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Liyuan Deng
- School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu Medical College, Chengdu, China
| | - Yong Yi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengmeng Niu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chuan Xu
- Department of Oncology & Cancer Institute, Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Zhi-Xiong Jim Xiao
- Department of Oncology & Cancer Institute, Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
43
|
de Oliveira KG, Bång-Rudenstam A, Beyer S, Boukredine A, Talbot H, Governa V, Johansson MC, Månsson AS, Forsberg-Nilsson K, Bengzon J, Malmström J, Welinder C, Belting M. Decoding of the surfaceome and endocytome in primary glioblastoma cells identifies potential target antigens in the hypoxic tumor niche. Acta Neuropathol Commun 2024; 12:35. [PMID: 38414005 PMCID: PMC10898066 DOI: 10.1186/s40478-024-01740-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
Immunotherapies with antibody-drug-conjugates (ADC) and CAR-T cells, targeted at tumor surface antigens (surfaceome), currently revolutionize clinical oncology. However, target identification warrants a better understanding of the surfaceome and how it is modulated by the tumor microenvironment. Here, we decode the surfaceome and endocytome and its remodeling by hypoxic stress in glioblastoma (GBM), the most common and aggressive brain tumor in adults. We employed a comprehensive approach for global and dynamic profiling of the surfaceome and endocytosed (endocytome) proteins and their regulation by hypoxia in patient-derived GBM cultures. We found a heterogeneous surface-endocytome profile and a divergent response to hypoxia across GBM cultures. We provide a quantitative ranking of more than 600 surface resident and endocytosed proteins, and their regulation by hypoxia, serving as a resource to the cancer research community. As proof-of-concept, the established target antigen CD44 was identified as a commonly and abundantly expressed surface protein with high endocytic activity. Among hypoxia induced proteins, we reveal CXADR, CD47, CD81, BSG, and FXYD6 as potential targets of the stressed GBM niche. We could validate these findings by immunofluorescence analyses in patient tumors and by increased expression in the hypoxic core of GBM spheroids. Selected candidates were finally confronted by treatment studies, showing their high capacity for internalization and ADC delivery. Importantly, we highlight the limited correlation between transcriptomics and proteomics, emphasizing the critical role of membrane protein enrichment strategies and quantitative mass spectrometry. Our findings provide a comprehensive understanding of the surface-endocytome and its remodeling by hypoxia in GBM as a resource for exploration of targets for immunotherapeutic approaches in GBM.
Collapse
Affiliation(s)
- Kelin Gonçalves de Oliveira
- Department of Clinical Sciences, Lund, Section of Oncology, Lund University, Barngatan 4, 221 85, Lund, Sweden
| | - Anna Bång-Rudenstam
- Department of Clinical Sciences, Lund, Section of Oncology, Lund University, Barngatan 4, 221 85, Lund, Sweden
| | - Sarah Beyer
- Department of Clinical Sciences, Lund, Section of Oncology, Lund University, Barngatan 4, 221 85, Lund, Sweden
| | - Axel Boukredine
- Department of Clinical Sciences, Lund, Section of Oncology, Lund University, Barngatan 4, 221 85, Lund, Sweden
| | - Hugo Talbot
- Department of Clinical Sciences, Lund, Section of Oncology, Lund University, Barngatan 4, 221 85, Lund, Sweden
| | - Valeria Governa
- Department of Clinical Sciences, Lund, Section of Oncology, Lund University, Barngatan 4, 221 85, Lund, Sweden
| | - Maria C Johansson
- Department of Clinical Sciences, Lund, Section of Oncology, Lund University, Barngatan 4, 221 85, Lund, Sweden
| | - Ann-Sofie Månsson
- Department of Clinical Sciences, Lund, Section of Oncology, Lund University, Barngatan 4, 221 85, Lund, Sweden
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Division of Cancer and Stem Cells, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Johan Bengzon
- Department of Clinical Sciences, Section of Neurosurgery, Lund University, Lund, Sweden
| | - Johan Malmström
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Charlotte Welinder
- Department of Clinical Sciences, Lund, Section of Oncology, Lund University, Barngatan 4, 221 85, Lund, Sweden
| | - Mattias Belting
- Department of Clinical Sciences, Lund, Section of Oncology, Lund University, Barngatan 4, 221 85, Lund, Sweden.
- Department of Hematology, Oncology and Radiophysics, Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
44
|
Chen X, Guo Q, Chen X, Zheng W, Kang Y, Cao D. Clinical and multiparametric MRI features for differentiating uterine carcinosarcoma from endometrioid adenocarcinoma. BMC Med Imaging 2024; 24:48. [PMID: 38373912 PMCID: PMC10877902 DOI: 10.1186/s12880-024-01225-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
INTRODUCTION The purpose of our study was to differentiate uterine carcinosarcoma (UCS) from endometrioid adenocarcinoma (EAC) by the multiparametric magnetic resonance imaging (MRI) features. METHODS We retrospectively evaluated clinical and MRI findings in 17 patients with UCS and 34 patients with EAC proven by histologically. The following clinical and pathological features were evaluated: post- or pre-menopausal, clinical presentation, invasion depth, FIGO stage, lymphaticmetastasis. The following MRI features were evaluated: tumor dimension, cystic degeneration or necrosis, hemorrhage, signal intensity (SI) on T2-weighted images (T2WI), relative SI of lesion to myometrium on T2WI, T1WI, DWI, ADCmax, ADCmin, ADCmean (RSI-T2, RSI-T1, RSI-DWI, RSI-ADCmax, RSI-ADCmin, RSI-ADCmean), ADCmax, ADCmin, ADCmean, the maximum, minimum and mean relative enhancement (RE) of lesion to myometrium on the arterial and venous phases (REAmax, REAmin, REAmean, REVmax, REVmin, REVmean). Receiver operating characteristic (ROC) analysis and the area under the curve (AUC) were used to evaluate prediction ability. RESULTS The mean age of UCS was higher than EAC. UCS occurred more often in the postmenopausal patients. UCS and EAC did not significantly differ in depth of myometrial invasion, FIGO stage and lymphatic metastasis. The anterior-posterior and transverse dimensions were significantly larger in UCS than EAC. Cystic degeneration or necrosis and hemorrhage were more likely occurred in UCS. The SI of tumor on T2WI was more heterogeneous in UCS. The RSI-T2, ADCmax, ADCmean, RSI-ADCmax and RSI-ADCmean of UCS were significantly higher than EAC. The REAmax, REAmin, REAmean, REVmax, REVmin and REVmean of UCS were all higher than EAC. The AUCs were 0.72, 0.71, 0.86, 0.96, 0.89, 0.84, 0.73, 0.97, 0.88, 0.94, 0.91, 0.69 and 0.80 for the anterior-posterior dimension, transverse dimension, RSI-T2, ADCmax, ADCmean, RSI-ADCmax, RSI-ADCmean, REAmax, REAmin, REAmean, REVmax, REVmin and REVmean, respectively. The AUC was 0.997 of the combined of ADCmax, REAmax and REVmax. Our study showed that ADCmax threshold value of 789.05 (10-3mm2/s) can differentiate UCS from EAC with 100% sensitivity, 76.5% specificity, and 0.76 AUC, REAmax threshold value of 0.45 can differentiate UCS from EAC with 88.2% sensitivity, 100% specificity, and 0.88 AUC. CONCLUSION Multiparametric MRI features may be utilized as a biomarker to distinguish UCS from EAC.
Collapse
Affiliation(s)
- Xiaodan Chen
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, 350005, Fujian, P.R. China
| | - Qingyong Guo
- Department of Gynecologic Oncology, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Xiaorong Chen
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, 350005, Fujian, P.R. China
| | - Wanjing Zheng
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, 350005, Fujian, P.R. China
| | - Yaqing Kang
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, 350005, Fujian, P.R. China
| | - Dairong Cao
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, 350005, Fujian, P.R. China.
- Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, P.R. China.
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, P.R. China.
| |
Collapse
|
45
|
Köry J, Narain V, Stolz BJ, Kaeppler J, Markelc B, Muschel RJ, Maini PK, Pitt-Francis JM, Byrne HM. Enhanced perfusion following exposure to radiotherapy: A theoretical investigation. PLoS Comput Biol 2024; 20:e1011252. [PMID: 38363799 PMCID: PMC10903964 DOI: 10.1371/journal.pcbi.1011252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 02/29/2024] [Accepted: 01/23/2024] [Indexed: 02/18/2024] Open
Abstract
Tumour angiogenesis leads to the formation of blood vessels that are structurally and spatially heterogeneous. Poor blood perfusion, in conjunction with increased hypoxia and oxygen heterogeneity, impairs a tumour's response to radiotherapy. The optimal strategy for enhancing tumour perfusion remains unclear, preventing its regular deployment in combination therapies. In this work, we first identify vascular architectural features that correlate with enhanced perfusion following radiotherapy, using in vivo imaging data from vascular tumours. Then, we present a novel computational model to determine the relationship between these architectural features and blood perfusion in silico. If perfusion is defined to be the proportion of vessels that support blood flow, we find that vascular networks with small mean diameters and large numbers of angiogenic sprouts show the largest increases in perfusion post-irradiation for both biological and synthetic tumours. We also identify cases where perfusion increases due to the pruning of hypoperfused vessels, rather than blood being rerouted. These results indicate the importance of considering network composition when determining the optimal irradiation strategy. In the future, we aim to use our findings to identify tumours that are good candidates for perfusion enhancement and to improve the efficacy of combination therapies.
Collapse
Affiliation(s)
- Jakub Köry
- School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Vedang Narain
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Bernadette J. Stolz
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
- Laboratory for Topology and Neuroscience, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jakob Kaeppler
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Bostjan Markelc
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Ruth J. Muschel
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Philip K. Maini
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Joe M. Pitt-Francis
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Helen M. Byrne
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
46
|
Mansouri M, Lamichhane A, Das D, Aucejo F, Tavana H, Leipzig ND. Comparison of Engineered Liver 3D Models and the Role of Oxygenation for Patient-Derived Tumor Cells and Immortalized Cell Lines Cocultured with Tumor Stroma in the Detection of Hepatotoxins. Adv Biol (Weinh) 2024; 8:e2300386. [PMID: 37845003 DOI: 10.1002/adbi.202300386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Indexed: 10/18/2023]
Abstract
In metabolically active tumors, responses of cells to drugs are heavily influenced by oxygen availability via the surrounding vasculature alongside the extracellular matrix signaling. The objective of this study is to investigate hepatotoxicity by replicating critical features of hepatocellular carcinoma (HCC). This includes replicating 3D structures, metabolic activities, and tumor-specific markers. The internal environment of spheroids comprised of cancerous human patient-derived hepatocytes using microparticles is modulated to enhance the oxygenation state and recreate cell-extracellular matrix interactions. Furthermore, the role of hepatic stellate cells in maintaining hepatocyte survival and function is explored and hepatocytes from two cellular sources (immortalized and patient-derived) to create four formulations with and without microparticles are utilized. To investigate drug-induced changes in metabolism and apoptosis in liver cells, coculture spheroids with and without microparticles are exposed to three hepatotoxic drugs. The use of microparticles increases levels of apoptotic markers in both liver models under drug treatments. This coincides with reduced levels of anti-apoptotic proteins and increased levels of pro-apoptotic proteins. Moreover, cells from different origins undergo apoptosis through distinct apoptotic pathways in response to identical drugs. This 3D microphysiological system offers a viable tool for liver cancer research to investigate mechanisms of apoptosis under different microenvironmental conditions.
Collapse
Affiliation(s)
- Mona Mansouri
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Astha Lamichhane
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Dola Das
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Federico Aucejo
- Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Nic D Leipzig
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, OH, 44325, USA
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA
| |
Collapse
|
47
|
Hua Y, Yang S, Zhang Y, Li J, Wang M, Yeerkenbieke P, Liao Q, Liu Q. Modulating ferroptosis sensitivity: environmental and cellular targets within the tumor microenvironment. J Exp Clin Cancer Res 2024; 43:19. [PMID: 38217037 PMCID: PMC10787430 DOI: 10.1186/s13046-023-02925-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/06/2023] [Indexed: 01/14/2024] Open
Abstract
Ferroptosis, a novel form of cell death triggered by iron-dependent phospholipid peroxidation, presents significant therapeutic potential across diverse cancer types. Central to cellular metabolism, the metabolic pathways associated with ferroptosis are discernible in both cancerous and immune cells. This review begins by delving into the intricate reciprocal regulation of ferroptosis between cancer and immune cells. It subsequently details how factors within the tumor microenvironment (TME) such as nutrient scarcity, hypoxia, and cellular density modulate ferroptosis sensitivity. We conclude by offering a comprehensive examination of distinct immunophenotypes and environmental and metabolic targets geared towards enhancing ferroptosis responsiveness within the TME. In sum, tailoring precise ferroptosis interventions and combination strategies to suit the unique TME of specific cancers may herald improved patient outcomes.
Collapse
Affiliation(s)
- Yuze Hua
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Yalu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Department of General Surgery, Anhui Provincial Hospital, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230027, China
| | - Jiayi Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Mengyi Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Palashate Yeerkenbieke
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Department of General Surgery, Xinjiang Yili Kazak Autonomous Prefecture Friendship Hospital, Xinjiang, 835099, China
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 1# Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
48
|
Ferguson DT, Taka E, Tilghman SL, Womble T, Redmond BV, Gedeon S, Flores-Rozas H, Reed SL, Soliman KFA, Kanga KJW, Darling-Reed SF. The Anticancer Effects of the Garlic Organosulfide Diallyl Trisulfide through the Attenuation of B[a]P-Induced Oxidative Stress, AhR Expression, and DNA Damage in Human Premalignant Breast Epithelial (MCF-10AT1) Cells. Int J Mol Sci 2024; 25:923. [PMID: 38255999 PMCID: PMC10815401 DOI: 10.3390/ijms25020923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Benzo[a]pyrene (B[a]P) is the most characterized polycyclic aromatic hydrocarbon associated with breast cancer. Our lab previously reported that the organosulfur compound (OSC), diallyl trisulfide (DATS), chemoprevention mechanism works through the induction of cell cycle arrest and a reduction in oxidative stress and DNA damage in normal breast epithelial cells. We hypothesize that DATS will inhibit B[a]P-induced cancer initiation in premalignant breast epithelial (MCF-10AT1) cells. In this study, we evaluated the ability of DATS to attenuate B[a]P-induced neoplastic transformation in MCF-10AT1 cells by measuring biological endpoints such as proliferation, clonogenicity, reactive oxygen species (ROS) formation, and 8-hydroxy-2-deoxyguanosine (8-OHdG) DNA damage levels, as well as DNA repair and antioxidant proteins. The results indicate that B[a]P induced proliferation, clonogenic formation, ROS formation, and 8-OHdG levels, as well as increasing AhR, ARNT/HIF-1β, and CYP1A1 protein expression compared with the control in MCF-10AT1 cells. B[a]P/DATS's co-treatment (CoTx) inhibited cell proliferation, clonogenic formation, ROS formation, AhR protein expression, and 8-OHdG levels compared with B[a]P alone and attenuated all the above-mentioned B[a]P-induced changes in protein expression, causing a chemopreventive effect. This study demonstrates, for the first time, that DATS prevents premalignant breast cells from undergoing B[a]P-induced neoplastic transformation, thus providing more evidence for its chemopreventive effects in breast cancer.
Collapse
Affiliation(s)
- Dominique T. Ferguson
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.L.T.); (T.W.); (S.G.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Equar Taka
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.L.T.); (T.W.); (S.G.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Syreeta L. Tilghman
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.L.T.); (T.W.); (S.G.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Tracy Womble
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.L.T.); (T.W.); (S.G.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Bryan V. Redmond
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Shasline Gedeon
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.L.T.); (T.W.); (S.G.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Hernan Flores-Rozas
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.L.T.); (T.W.); (S.G.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Sarah L. Reed
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.L.T.); (T.W.); (S.G.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Karam F. A. Soliman
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.L.T.); (T.W.); (S.G.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| | - Konan J. W. Kanga
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA;
| | - Selina F. Darling-Reed
- Pharmaceutical Sciences Division, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (D.T.F.); (E.T.); (S.L.T.); (T.W.); (S.G.); (H.F.-R.); (S.L.R.); (K.F.A.S.)
| |
Collapse
|
49
|
Yang Z, He H, He G, Zeng C, Hu Q. Investigating Causal Effects of Hematologic Traits on Lung Cancer: A Mendelian Randomization Study. Cancer Epidemiol Biomarkers Prev 2024; 33:96-105. [PMID: 37909945 DOI: 10.1158/1055-9965.epi-23-0725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/24/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Observational studies have suggested blood cell counts may act as predictors of cancer. It is not known whether these hematologic traits are causally associated with lung cancer. METHODS Two-sample bidirectional univariable Mendelian randomization (MR) and multivariable MR (MVMR) were performed to investigate the causal association between hematologic traits and the overall risk of lung cancer and three histologic subtypes [lung adenocarcinoma, squamous cell lung cancer, and small cell lung cancer (SCLC)]. The instrumental variables of 23 hematologic traits were strictly selected from large-scale genome-wide association studies. Inverse-variance weighted method and five extra methods were used to obtain robust causal estimates. RESULTS We found evidence that genetically influenced higher hematocrit [OR, 0.845; 95% confidence interval (CI), 0.783-0.913; P = 1.68 × 10-5] and hemoglobin concentration (OR, 0.868; 95% CI, 0.804-0.938; P = 3.20 × 10-4) and reticulocyte count (OR, 0.923; 95% CI, 0.872-0.976; P = 5.19 × 10-3) decreased lung carcinoma risk, especially in ever smokers. MVMR further identified hematocrit independently of smoking as an independent predictor. Subgroup analysis showed that a higher plateletcrit level increased the risk of small cell lung carcinoma (OR, 1.288; 95% CI, 1.126-1.474; P = 2.25 × 10-4). CONCLUSIONS Genetically driven higher levels of reticulocyte count and hematocrit decreased lung cancer risk. Higher plateletcrit had an adverse effect on SCLC. Hematologic traits may act as low-cost factors for lung cancer risk stratification. IMPACT Further studies are required to elucidate the potential mechanisms underlying the dysregulation of homeostasis related to hematologic traits, such as subclinical inflammation.
Collapse
Affiliation(s)
- Zhanghuan Yang
- Department of Oncology, Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hao He
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Guangxu He
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chudai Zeng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
50
|
Chattopadhyay M, Chanda A, Pal B. Unravelling the Nexus: Mitochondrial Oxidative Stress, Tumour Microenvironment, and Escape from Immune Surveillance. CANCER DRUG DISCOVERY AND DEVELOPMENT 2024:255-286. [DOI: 10.1007/978-3-031-66421-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
|