1
|
Plata-Gómez AB, Ho PC. Age- and diet-instructed metabolic rewiring of the tumor-immune microenvironment. J Exp Med 2025; 222:e20241102. [PMID: 40214641 PMCID: PMC11987706 DOI: 10.1084/jem.20241102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
The tumor-immune microenvironment (TIME) plays a critical role in tumor development and metastasis, as it influences the evolution of tumor cells and fosters an immunosuppressive state by intervening the metabolic reprogramming of infiltrating immune cells. Aging and diet significantly impact the metabolic reprogramming of the TIME, contributing to cancer progression and immune evasion. With aging, immune cell function declines, leading to a proinflammatory state and metabolic alterations such as increased oxidative stress and mitochondrial dysfunction, which compromise antitumor immunity. Similarly, dietary factors, particularly high-fat and high-sugar diets, promote metabolic shifts, creating a permissive TIME by fostering tumor-supportive immune cell phenotypes while impairing the tumoricidal activity of immune cells. In contrast, dietary restrictions have been shown to restore immune function by modulating metabolism and enhancing antitumor immune responses. Here, we discuss the intricate interplay between aging, diet, and metabolic reprogramming in shaping the TIME, with a particular focus on T cells, and highlight therapeutic strategies targeting these pathways to empower antitumor immunity.
Collapse
Affiliation(s)
- Ana Belén Plata-Gómez
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Alqahtani S, Alqahtani T, Venkatesan K, Sivadasan D, Ahmed R, Sirag N, Elfadil H, Abdullah Mohamed H, T.A. H, Elsayed Ahmed R, Muralidharan P, Paulsamy P. SASP Modulation for Cellular Rejuvenation and Tissue Homeostasis: Therapeutic Strategies and Molecular Insights. Cells 2025; 14:608. [PMID: 40277933 PMCID: PMC12025513 DOI: 10.3390/cells14080608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025] Open
Abstract
Cellular senescence regulates aging, tissue maintenance, and disease progression through the Senescence-Associated Secretory Phenotype (SASP), a secretory profile of cytokines, chemokines, growth factors, and matrix-remodeling enzymes. While transient SASP aids wound healing, its chronic activation drives inflammation, fibrosis, and tumorigenesis. This review examines SASP's molecular regulation, dual roles in health and pathology, and therapeutic potential. The following two main strategies are explored: senescence clearance, which eliminates SASP-producing cells, and SASP modulation, which refines secretion to suppress inflammation while maintaining regenerative effects. Key pathways, including NF-κB, C/EBPβ, and cGAS-STING, are discussed alongside pharmacological, immunotherapeutic, gene-editing, and epigenetic interventions. SASP heterogeneity necessitates tissue-specific biomarkers for personalized therapies. Challenges include immune interactions, long-term safety, and ethical considerations. SASP modulation emerges as a promising strategy for aging, oncology, and tissue repair, with future advancements relying on multi-omics and AI-driven insights to optimize clinical outcomes.
Collapse
Affiliation(s)
- Saud Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia
| | - Krishnaraju Venkatesan
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia
| | - Durgaramani Sivadasan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Rehab Ahmed
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Nizar Sirag
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Hassabelrasoul Elfadil
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.A.); (H.E.)
| | - Hanem Abdullah Mohamed
- Pediatric Nursing, College of Nursing, King Khalid University, Abha 62521, Saudi Arabia;
- Faculty of Nursing, Cairo University, Giza 12613, Egypt
| | - Haseena T.A.
- College of Nursing, Mahalah Branch for Girls, King Khalid University, Abha 62521, Saudi Arabia; (H.T.); (P.P.)
| | - Rasha Elsayed Ahmed
- Medical Surgical Nursing, Tanta University, Tanta 31527, Egypt;
- College of Nursing, King Khalid University, Khamis Mushait 61421, Saudi Arabia
| | - Pooja Muralidharan
- Undergraduate Program, PSG College of Pharmacy, Peelamedu, Coimbatore 641004, India;
| | - Premalatha Paulsamy
- College of Nursing, Mahalah Branch for Girls, King Khalid University, Abha 62521, Saudi Arabia; (H.T.); (P.P.)
| |
Collapse
|
3
|
Dalle Carbonare L, Cominacini M, Trabetti E, Bombieri C, Pessoa J, Romanelli MG, Valenti MT. The bone microenvironment: new insights into the role of stem cells and cell communication in bone regeneration. Stem Cell Res Ther 2025; 16:169. [PMID: 40221779 PMCID: PMC11993959 DOI: 10.1186/s13287-025-04288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Mesenchymal stem cells (MSCs) play a crucial role in bone formation and remodeling. Intrinsic genetic factors and extrinsic environmental cues regulate their differentiation into osteoblasts. Within the bone microenvironment, a complex network of biochemical and biomechanical signals orchestrates bone homeostasis and regeneration. In addition, the crosstalk among MSCs, immune cells, and neighboring cells-mediated by extracellular vesicles and non-coding RNAs (such as circular RNAs and micro RNAs) -profoundly influences osteogenic differentiation and bone remodeling. Recent studies have explored specific signaling pathways that contribute to effective bone regeneration, highlighting the potential of manipulating the bone microenvironment to enhance MSC functionality. The integration of advanced biomaterials, gene editing techniques, and controlled delivery systems is paving the way for more targeted and efficient regenerative therapies. Furthermore, artificial intelligence could improve bone tissue engineering, optimize biomaterial design, and enable personalized treatment strategies. This review explores the latest advancements in bone regeneration, emphasizing the intricate interplay among stem cells, immune cells, and signaling molecules. By providing a comprehensive overview of these mechanisms and their clinical implications, we aim to shed light on future research directions in this rapidly evolving field.
Collapse
Affiliation(s)
- L Dalle Carbonare
- Department of Engineering for the Innovation Medicine, University of Verona, 37100, Verona, Italy
| | - M Cominacini
- Department of Engineering for the Innovation Medicine, University of Verona, 37100, Verona, Italy
| | - E Trabetti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100, Verona, Italy
| | - C Bombieri
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100, Verona, Italy
| | - J Pessoa
- Department of Medical Sciences and Institute of Biomedicine-Ibimed, University of Aveiro, 3810 - 193, Aveiro, Portugal
| | - M G Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100, Verona, Italy
| | - M T Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100, Verona, Italy.
| |
Collapse
|
4
|
Chen Y, Zhou T, Zhou R, Sun W, Li Y, Zhou Q, Xu D, Zhao Y, Hu P, Liang J, Zhang Y, Zhong B, Yao J, Jing D. TRAF7 knockdown induces cellular senescence and synergizes with lomustine to inhibit glioma progression and recurrence. J Exp Clin Cancer Res 2025; 44:112. [PMID: 40181456 PMCID: PMC11969748 DOI: 10.1186/s13046-025-03363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/08/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND The progression and recurrence are the fatal prognostic factors in glioma patients. However, the therapeutic role and potential mechanism of TRAF7 in glioma patients remain largely unknown. METHODS TRAF7 RNA-seq was analysed with the TCGA and CGGA databases between glioma tissues and normal brain tissues. The expression of TRAF7, cellular senescence and cell cycle arrest pathways in glioma tissues and cell lines was detected by real-time quantitative PCR (RT-qPCR), western blotting and immunohistochemistry. The interaction between TRAF7 and KLF4 was determined by Co-immunoprecipitation (Co-IP) assays. The functions of TRAF7 combined with lomustine in glioma were assessed by both in vitro, in vivo and patient-derived primary and recurrent glioma stem cell (GSC) assays. RESULTS High TRAF7 expression is closely associated with a higher recurrence rate and poorer overall survival (OS). In vitro, TRAF7 knockdown significantly inhibits glioma cell proliferation, invasion, and migration. RNA-seq analysis revealed that TRAF7 inhibition activates pathways related to cellular senescence and cell cycle arrest. In both in vitro and patient-derived GSC assays, the combination of sh-TRAF7 and lomustine enhanced therapeutic efficacy by inducing senescence and G0/G1 cell cycle arrest, surpassing the effects of lomustine or TRAF7 inhibition alone. Mechanistically, TRAF7 interacts with KLF4, and a rescue assay demonstrated that KLF4 overexpression could reverse the effects of TRAF7 depletion on proliferation and cellular senescence. In vivo, TRAF7 knockdown combined with lomustine treatment effectively suppressed glioma growth. CONCLUSION TRAF7 could be used as a predictive biomarker and the potential therapeutic target among National Comprehensive Cancer Network (NCCN) treatment guidelines in the progression and recurrence of glioma. Lomustine, regulating cellular senescence and cell cycle could be the priority choice in glioma patients with high-level TRAF7 expression.
Collapse
Affiliation(s)
- Yu Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Animal Biological Products & Genetic Engineering, Ministry of Agriculture and Rural, Sinopharm Animal Health Corporation Ltd, Wuhan, 430023, China
- State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Company Limited, Beijing, 100024, China
| | - Tongyu Zhou
- Department of Global Health and Social Medicine, King's College London, London, UK
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wen Sun
- Key Laboratory of Animal Biological Products & Genetic Engineering, Ministry of Agriculture and Rural, Sinopharm Animal Health Corporation Ltd, Wuhan, 430023, China
- State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Company Limited, Beijing, 100024, China
| | - Yan Li
- Key Laboratory of Animal Biological Products & Genetic Engineering, Ministry of Agriculture and Rural, Sinopharm Animal Health Corporation Ltd, Wuhan, 430023, China
- State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Company Limited, Beijing, 100024, China
| | - Qiyi Zhou
- Center of PRaG Therapy, Center for Cancer Diagnosis and Treatment, Laboratory of Cancer Radioimmunotherapy, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Dongcheng Xu
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuxin Zhao
- Key Laboratory of Animal Biological Products & Genetic Engineering, Ministry of Agriculture and Rural, Sinopharm Animal Health Corporation Ltd, Wuhan, 430023, China
- State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Company Limited, Beijing, 100024, China
| | - Peihao Hu
- Key Laboratory of Animal Biological Products & Genetic Engineering, Ministry of Agriculture and Rural, Sinopharm Animal Health Corporation Ltd, Wuhan, 430023, China
- State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Company Limited, Beijing, 100024, China
| | - Jingrui Liang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yumeng Zhang
- Key Laboratory of Animal Biological Products & Genetic Engineering, Ministry of Agriculture and Rural, Sinopharm Animal Health Corporation Ltd, Wuhan, 430023, China
- State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Company Limited, Beijing, 100024, China
| | - Bin Zhong
- Department of Neurosurgery, Hunan University of Chinese Medicine Affiliated Yueyang Hospital, Yueyang, 414000, China
| | - Juncheng Yao
- Dalian Medical University, Dalian, 116041, China
| | - Di Jing
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
5
|
Luna A, Chou K, Wragg KM, Worley MJ, Paruchuri N, Zhou X, Blin MG, Moore BB, Salmon M, Goldstein DR, Deng JC. Senolytic treatment attenuates immune cell infiltration without improving IAV outcomes in aged mice. Aging Cell 2025; 24:e14437. [PMID: 39754380 PMCID: PMC11984683 DOI: 10.1111/acel.14437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 01/06/2025] Open
Abstract
Aging is a major risk factor for poor outcomes following respiratory infections. In animal models, the most severe outcomes of respiratory infections in older hosts have been associated with an increased burden of senescent cells that accumulate over time with age and create a hyperinflammatory response. Although studies using coronavirus animal models have demonstrated that removal of senescent cells with senolytics, a class of drugs that selectively kills senescent cells, resulted in reduced lung damage and increased survival, little is known about the role that senescent cells play in the outcome of influenza A viral (IAV) infections in aged mice. Here, we tested if the aged mice survival or weight loss IAV infections could be improved using three different senolytic regimens. We found that neither dasatinib plus quercetin, fisetin, nor ABT-263 improved outcomes. Furthermore, both dasatanib plus quercetin and fisetin treatments further suppressed immune infiltration than aging alone. Additionally, our data show that the short-term senolytic agents do not reduce senescent markers in our aged mouse model. These findings suggest that acute senolytic treatments do not universally reverse aging related immune phenotype against all respiratory viral infections.
Collapse
Affiliation(s)
- Adrian Luna
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Kai‐Neng Chou
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
- Department of Microbiology and ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| | - Kathleen M. Wragg
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
- Division of Cardiology, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Matthew J. Worley
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Nikhil Paruchuri
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Xiaofeng Zhou
- Department of Microbiology and ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| | - Muriel G. Blin
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Bethany B. Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
- Department of Microbiology and ImmunologyUniversity of MichiganAnn ArborMichiganUSA
| | - Morgan Salmon
- Department of Cardiac SurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Daniel R. Goldstein
- Department of Microbiology and ImmunologyUniversity of MichiganAnn ArborMichiganUSA
- Division of Cardiology, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Jane C. Deng
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
- Veterans Affairs Ann Arbor Healthcare SystemAnn ArborMichiganUSA
| |
Collapse
|
6
|
Czajkowski K, Herbet M, Murias M, Piątkowska-Chmiel I. Senolytics: charting a new course or enhancing existing anti-tumor therapies? Cell Oncol (Dordr) 2025; 48:351-371. [PMID: 39633108 PMCID: PMC11996976 DOI: 10.1007/s13402-024-01018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Cell senescence is a natural response within our organisms. Initially, it was considered an effective anti-tumor mechanism. However, it is now believed that while cell senescence initially acts as a robust barrier against tumor initiation, the subsequent accumulation of senescent cells can paradoxically promote cancer recurrence and cause damage to neighboring tissues. This intricate balance between cell proliferation and senescence plays a pivotal role in maintaining tissue homeostasis. Moreover, senescence cells secrete many bioactive molecules collectively termed the senescence-associated secretory phenotype (SASP), which can induce chronic inflammation, alter tissue architecture, and promote tumorigenesis through paracrine signaling. Among the myriads of compounds, senotherapeutic drugs have emerged as exceptionally promising candidates in anticancer treatment. Their ability to selectively target senescent cells while sparing healthy tissues represents a paradigm shift in therapeutic intervention, offering new avenues for personalized oncology medicine. Senolytics have introduced new therapeutic possibilities by enabling the targeted removal of senescent cells. As standalone agents, they can clear tumor cells in a senescent state and, when combined with chemo- or radiotherapy, eliminate residual senescent cancer cells after treatment. This dual approach allows for the intentional use of lower-dose therapies or the removal of unintended senescent cells post-treatment. Additionally, by targeting non-cancerous senescent cells, senolytics may help reduce tumor formation risk, limit recurrence, and slow disease progression. This article examines the mechanisms of cellular senescence, its role in cancer treatment, and the importance of senotherapy, with particular attention to the therapeutic potential of senolytic drugs.
Collapse
Affiliation(s)
- Konrad Czajkowski
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Mariola Herbet
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | - Iwona Piątkowska-Chmiel
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
7
|
Hashimoto M, Goto A, Qiao S, Yamashita H. Aged mice overexpressing cellular repressor of E1A-stimulated genes 1 in adipose tissues exhibited increased liposarcoma incidence and shortened lifespan. Biochem Biophys Res Commun 2025; 753:151454. [PMID: 39978253 DOI: 10.1016/j.bbrc.2025.151454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
Cellular repressor of E1A-stimulated genes 1 (CREG1) is a multifunctional secreted glycoprotein that regulates p16-dependent cellular senescence and cell differentiation and accelerates brown adipogenesis. We recently demonstrated that the CREG1 levels in serum, liver, and kidney were significantly increased in aged wild-type (WT) mice, where age-related renal impairment was further aggravated by promoting cellular senescence. Based on these findings, we hypothesized that the constitutive regulation of CREG1 expression in vivo may affect lifespan. In this study, we revealed that the average lifespan of adipocyte P2-CREG1 transgenic (Tg) mice was shorter than that of WT mice. Moreover, we determined that this reduced lifespan was associated with an increased incidence of liposarcoma (LPS). Our findings indicated that the development of LPS in Tg mice may be driven by chronic inflammation induced by the p19Arf-mouse double minute 2 pathway in white adipose tissue (WAT). These findings indicate that long-term alterations in CREG1 expression in vivo may affect tumor development in the WAT.
Collapse
Affiliation(s)
- Michihiro Hashimoto
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, 078-8510, Hokkaido, Japan.
| | - Ayumi Goto
- Department of Physical Therapy, School of Health Science, Toyohashi SOZO University, Toyohashi, 440-8511, Aichi, Japan
| | - Shanlou Qiao
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Aichi, Japan
| | - Hitoshi Yamashita
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, 487-8501, Aichi, Japan.
| |
Collapse
|
8
|
Dabrowska M, Kępczyńska A, Goździk K, Nowak N, Uram Ł, Skoneczny M, Doligalska M, Sikora E. Expression of angiogenic factors in the mammalian senescent cell sustaining Trichinella spp. muscle larvae. Histochem Cell Biol 2025; 163:33. [PMID: 40029443 DOI: 10.1007/s00418-025-02363-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 03/05/2025]
Abstract
Muscle larvae of the mammalian parasitic nematode Trichinella spp. live in a senescent nurse cell (NC). The NC is formed from a portion of the invaded myofiber and muscle satellite cells that fuse with it. In continuation of our previous research, which documented a senescent phenotype in a fully developed NC analyzed 7 months post-infection, we show in this current study that cellular senescence is a primary event during NC establishment, and occurs as early as 26 days post-infection. At both stages of the formation process, 26 days and 7 months post-infection, the NC was found to express angiogenic factors: angiopoietin 2, interleukin 1β, matrix metallopeptidase 2, platelet-derived growth factor D, and vascular endothelial growth factor C. We hypothesize that the nuclei of the degenerating myofiber transforms the senescent program to the fusing satellite cells. Hypersecretory activity of the senescent NC may facilitate the development of a circulatory rete, which has long been known to accompany the formation of the NC-larva complex.
Collapse
Affiliation(s)
- Magdalena Dabrowska
- Laboratory of Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland.
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland.
| | - Agnieszka Kępczyńska
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Katarzyna Goździk
- Department of Parasitology, Institute of Experimental Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa St., 02-089, Warsaw, Poland
| | - Natalia Nowak
- Laboratory of Imaging Tissue Structure and Function, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| | - Łukasz Uram
- Faculty of Chemistry, Rzeszow University of Technology, 6 Powstancow Warszawy Ave., 35-959, Rzeszow, Poland
| | - Marek Skoneczny
- Laboratory of Yeast Genetics and Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5a Pawinskiego St., 02-106, Warsaw, Poland
| | - Maria Doligalska
- Department of Parasitology, Institute of Experimental Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa St., 02-089, Warsaw, Poland
| | - Ewa Sikora
- Laboratory of Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093, Warsaw, Poland
| |
Collapse
|
9
|
Aspal M, Pushlar N, Melameka M, McVicar RN, Smith E, Ogunyamoju T, Kumar M, Marth JD, Chun J, Snyder EY, Leibel SL. Modeling the Aging Human Lung: Generation of a Senescent Human Lung Organoid Culture System. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639173. [PMID: 40060424 PMCID: PMC11888323 DOI: 10.1101/2025.02.24.639173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Introduction The aging lung enters into a state of irreversible cellular growth arrest characterized by senescence. While senescence is beneficial in preventing oncogenic cell proliferation, it becomes detrimental when persistent, promoting chronic inflammation and fibrosis through the senescence-associated secretory phenotype (SASP). Such senescence-related pathophysiological processes play key roles in lung diseases like chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). However, few models accurately represent senescence in the human lung. Methods To generate a human lung senescence in vitro model, we first generated a human induced pluripotent stem cell (hiPSC)-derived lung organoid (LO) system which was dissociated into monolayers and air-liquid interface (ALI) cultures to enhance visualization and allow uniform exposure to agents. Cellular senescence was induced using doxorubicin, a DNA-damaging agent. Senescence markers, such as β-galactosidase (β-gal) activity, SASP cytokine production and secretion, cell morphology, proliferative capacity, and barrier integrity were evaluated to validate the senescent phenotype. Results The doxorubicin-induced senescent hiPSC-derived lung cells demonstrated the hallmark characteristics of cellular senescence, including increased β-gal activity and increased production of the pro-inflammatory SASP cytokine IL-6 and increased secretion of TNF-α. Senescent cells displayed enlarged morphology, decreased proliferation, and reduced wound repair capacity. Barrier integrity was impaired with decreased electrical resistance, and increased permeability, as well as expression of abnormal tight junction proteins and increased fibrosis, all consistent with the senescent lung. Conclusion Our hiPSC-derived lung cell senescent model reproduces key aspects of human lung senescence and offer an in vitro tool for studying age-related lung disease mechanisms and therapeutic interventions. This model has potential applications in exploring the impact of environmental factors (e.g., toxins, infectious pathogens, etc.) on the senescent lung and assessing treatments that could mitigate pathologies associated with pulmonary aging including barrier impairment, inflammation and fibrosis.
Collapse
Affiliation(s)
- Mohit Aspal
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA 92037 USA
- Sanford Consortium for Regenerative Medicine, La Jolla CA 92037 USA
| | - Natalie Pushlar
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA 92037 USA
- Sanford Consortium for Regenerative Medicine, La Jolla CA 92037 USA
| | - Melina Melameka
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA 92037 USA
- Sanford Consortium for Regenerative Medicine, La Jolla CA 92037 USA
| | - Rachael N McVicar
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA 92037 USA
- Sanford Consortium for Regenerative Medicine, La Jolla CA 92037 USA
| | - Emily Smith
- Sanford Consortium for Regenerative Medicine, La Jolla CA 92037 USA
- University of California, San Diego, La Jolla CA 92037
| | - Temiloluwa Ogunyamoju
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA 92037 USA
- Sanford Consortium for Regenerative Medicine, La Jolla CA 92037 USA
| | - Matangi Kumar
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA 92037 USA
- Sanford Consortium for Regenerative Medicine, La Jolla CA 92037 USA
| | - Jamey D Marth
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA 92037 USA
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA 92037 USA
| | - Evan Y Snyder
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA 92037 USA
- Sanford Consortium for Regenerative Medicine, La Jolla CA 92037 USA
| | - Sandra L Leibel
- Sanford Consortium for Regenerative Medicine, La Jolla CA 92037 USA
- University of California, San Diego, La Jolla CA 92037
| |
Collapse
|
10
|
Lemay SE, Mougin M, Sauvaget M, El Kabbout R, Valasarajan C, Yamamoto K, Martineau S, Pelletier A, Bilodeau C, Grobs Y, Bourgeois A, Romanet C, Breuils-Bonnet S, Montesinos MS, Lu M, Chen H, Gilbert M, Théberge C, Potus F, Pullamsetti S, Provencher S, Bonnet S, Boucherat O. Unraveling AURKB as a potential therapeutic target in pulmonary hypertension using integrated transcriptomic analysis and pre-clinical studies. Cell Rep Med 2025; 6:101964. [PMID: 39933527 DOI: 10.1016/j.xcrm.2025.101964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/29/2024] [Accepted: 01/15/2025] [Indexed: 02/13/2025]
Abstract
Despite advances in treatment, the prognosis for patients with pulmonary arterial hypertension (PAH) remains dismal, highlighting the need for further therapeutic advances. By using RNA sequencing on pulmonary artery smooth muscle cells (PASMCs), functional enrichment, and connectivity map analyses, we identify Aurora kinase B (AURKB) as a candidate therapeutic target. We show that AURKB inhibition blocks cell cycle progression and reverses the gene signature of PAH-PASMCs. We also report that PAH-PASMCs that escape apoptosis acquire a senescence-associated secretory phenotype. In vivo, AURKB inhibition using barasertib improves hemodynamics in two preclinical models of established PAH by attenuating pulmonary vascular remodeling. A therapeutic effect is also observed in human precision-cut lung slices. Finally, we demonstrate that the combination of barasertib with a p21 attenuator is more effective in reducing vascular remodeling than either drug alone. These findings provide insight into strategies for therapeutic manipulation.
Collapse
Affiliation(s)
- Sarah-Eve Lemay
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Manon Mougin
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Mélanie Sauvaget
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Reem El Kabbout
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Chanil Valasarajan
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Keiko Yamamoto
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Sandra Martineau
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Andréanne Pelletier
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Coralie Bilodeau
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Yann Grobs
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Alice Bourgeois
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Charlotte Romanet
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Sandra Breuils-Bonnet
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | | | - Min Lu
- Morphic Therapeutic, Inc, Waltham, MA, USA
| | | | - Mégan Gilbert
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - Charlie Théberge
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada
| | - François Potus
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada; Department of Medicine, Laval University, Québec City, QC, Canada
| | - Soni Pullamsetti
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, German Center for Lung Research (DZL), Bad Nauheim, Germany; Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), DZL, Justus Liebig University, member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Steeve Provencher
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada; Department of Medicine, Laval University, Québec City, QC, Canada
| | - Sébastien Bonnet
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada; Department of Medicine, Laval University, Québec City, QC, Canada.
| | - Olivier Boucherat
- Pulmonary Hypertension Research Group, Québec Heart and Lung Institute Research Centre, Québec City, QC, Canada; Department of Medicine, Laval University, Québec City, QC, Canada.
| |
Collapse
|
11
|
Papadopoulos D, Magliozzi R, Bandiera S, Cimignolo I, Barusolo E, Probert L, Gorgoulis V, Reynolds R, Nicholas R. Accelerated Cellular Senescence in Progressive Multiple Sclerosis: A Histopathological Study. Ann Neurol 2025. [PMID: 39891488 DOI: 10.1002/ana.27195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/29/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025]
Abstract
OBJECTIVE The neurodegenerative processes driving the build-up of disability in progressive multiple sclerosis (P-MS) have not been fully elucidated. Recent data link cellular senescence (CS) to neurodegeneration. We investigated for evidence of CS in P-MS and sought to determine its pattern. METHODS We used 53BP1, p16, and lipofuscin as markers of CS in white matter lesions (WMLs), normal appearing white matter (NAWM), normal appearing cortical gray matter (NAGM), control white matter (CWM), and control gray matter (CGM) on autopsy material from patient with P-MS and healthy controls. Senescence-associated secretory phenotype (SASP) factors were quantified in cerebrospinal fluid (CSF). RESULTS P16+ cell counts were significantly increased in WMLs and GMLs, compared with NAWM, CWM, NAGM, and CGM and lipofuscin+ cells were significantly increased in WMLs, compared with NAWM and CWM, indicating more abundant CS in demyelinated lesions. The 53BP1+ cells in WMLs were significantly increased compared with NAWM and CWM. The 53BP1+ and p16+ cells were found significantly more abundant in acute active WMLs and GMLs, compared with chronic inactive lesions. Co-localization studies showed evidence of CS in neurons, astrocytes, oligodendrocytes, microglia, and macrophages. Among the quantified CSF SASP factors, IL-6, MIF, and MIP1a levels correlated with 53BP1+ cell counts in NAGM, whereas IL-10 levels correlated with p16+ cell counts in NAWM. P16+ cell counts in WMLs exhibited an inverse correlation with time to requiring a wheelchair and with age at death. INTERPRETATION Our data indicates that CS primarily affects actively demyelinating gray and WMLs. A higher senescent cell load in P-MS is associated with faster disability progression and death. ANN NEUROL 2025.
Collapse
Affiliation(s)
- Dimitrios Papadopoulos
- School of Medicine, European University, Nicosia, Cyprus
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Roberta Magliozzi
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Sara Bandiera
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Ilaria Cimignolo
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Elena Barusolo
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Lesley Probert
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | - Vassilis Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Richard Reynolds
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Richard Nicholas
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
12
|
Fountoulakis N, Miyamoto Y, Pavkov ME, Karalliedde J, Maltese G. Pathophysiology of vascular ageing and the effect of novel cardio-renal protective medications in preventing progression of chronic kidney disease in people living with diabetes. Diabet Med 2025; 42:e15464. [PMID: 39497615 PMCID: PMC11733662 DOI: 10.1111/dme.15464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 01/16/2025]
Abstract
AIM Among people with diabetes those with chronic kidney disease (CKD) have a reduced life expectancy with increased risk of cardiovascular disease (CVD) a major contributor to morbidity and mortality. CKD related to diabetes is growing worldwide and is one of the leading causes of kidney failure globally. Diabetes is associated with accelerated vascular ageing and the related mechanisms and mediators that drive the progression of CKD and CVD disease in people with diabetes may help provide insights into the pathophysiology of cardio-renal complications and guide treatment interventions in people with diabetes. METHODS We conducted a narrative review of the literature using PubMed for English language articles that contained keywords that related to diabetes, chronic or diabetic kidney disease, ageing, cellular senescence, arterial stiffness, Klotho and sirtuins, sodium-glucose co-transporter-2 (SGLT-2) inhibitors, renin angiotensin aldosterone system (RAAS) and glucagon-like peptide-1 (GLP-1) receptor agonists. RESULTS Progressive kidney disease in diabetes is associated with accelerated ageing driven in part by multiple processes such as cellular senescence, inflammation, oxidative stress and circulating uremic toxins. This accelerated ageing phenotype contributes to increased arterial stiffness, endothelial dysfunction, cognitive decline and muscle wasting, thereby elevating morbidity and mortality in individuals with diabetes and CKD. Deficiency of the kidney-derived anti-ageing hormone Klotho and reduced sirtuin levels play pivotal roles in these ageing pathways. Dietary, lifestyle and pharmacological interventions targeting vascular ageing may help reduce the progression of CKD and associated CVD in people with diabetes. The current standard of care and pillars of treatment for kidney disease such as RAAS inhibitors, SGLT-2 inhibitors and GLP-1 receptor agonists all influence pathways involved in vascular ageing. CONCLUSIONS A multifactorial intervention to prevent the development of CKD by targeting traditional risk factors as well as treatment with novel agents with cardio-renal beneficial effects can prevent accelerated ageing and extend lifespan in people with diabetes.
Collapse
Affiliation(s)
- Nikolaos Fountoulakis
- School of Cardiovascular, Metabolic Medicine and SciencesKing's College LondonLondonUK
| | | | - Meda E. Pavkov
- Centers for Disease Control and PreventionAtlantaGeorgiaUSA
| | - Janaka Karalliedde
- School of Cardiovascular, Metabolic Medicine and SciencesKing's College LondonLondonUK
| | - Giuseppe Maltese
- School of Cardiovascular, Metabolic Medicine and SciencesKing's College LondonLondonUK
| |
Collapse
|
13
|
Singh K, Jin Y, Hu MW, Palazzo I, Cano M, Hoang T, Bhutto I, Wang S, Sinha D, Blackshaw S, Qian J, Handa JT. Cigarette smoke and biological age induce degenerative heterogeneity in retinal pigment epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635096. [PMID: 39974955 PMCID: PMC11838378 DOI: 10.1101/2025.01.27.635096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Environmental exposure such as cigarette smoke induces epigenetic changes that can induce degenerative heterogeneity and accelerate aging. In early age-related macular degeneration (AMD), the leading worldwide cause of blindness among the elderly, retinal pigment epithelial (RPE) cell heterogeneity is a key change. Since smoking is the strongest environmental risk factor for AMD, we hypothesized that cigarette smoke induces degenerative RPE heterogeneity through epigenetic changes that are distinct from aging, and that with aging, the RPE becomes vulnerable to cigarette smoke insult. We administered cigarette smoke condensate (CSC) intravitreally to young and aged mice and performed snRNA-seq and snATAC-seq on the RPE/choroid. This analysis identified separate cell clusters corresponding to healthy and abnormal, dedifferentiated RPE in both aged vehicle-treated and young CSC-treated mice. The dedifferentiated RPE were characterized by a global decrease in chromatin accessibility and decreased expression of genes in functional categories that were linked to hallmarks of aging. Notably, young, dedifferentiated RPE also exhibited a compensatory upregulation of hallmarks of aging-related genes, specifically those related to mitochondrial function and proteostasis. In contrast, aged dedifferentiated RPE did not express these compensatory changes, and did not survive CSC treatment, as experimentally verified with TUNEL labeling. These changes are relevant to early AMD because we identified through scRNA-seq, similar dedifferentiated and healthy macular RPE clusters in a donor who smoked and another with early AMD, but not from a nonsmoker. Degenerative cellular heterogeneity can include an abnormal cluster that jeopardizes cell survival and may represent an additional hallmark of ocular aging.
Collapse
Affiliation(s)
- Krishna Singh
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - Yang Jin
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - Ming-Wen Hu
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - Isabella Palazzo
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - Marisol Cano
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - Thanh Hoang
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - Imran Bhutto
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - Shusheng Wang
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
| | - Debasish Sinha
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - Seth Blackshaw
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - Jiang Qian
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| | - James T Handa
- Department of Cell and Molecular Biology and Department of Ophthalmology, Tulane University, New Orleans, LA, 70118
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA 21287
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA 212872
| |
Collapse
|
14
|
Iskandar M, Xiao Barbero M, Jaber M, Chen R, Gomez-Guevara R, Cruz E, Westerheide S. A Review of Telomere Attrition in Cancer and Aging: Current Molecular Insights and Future Therapeutic Approaches. Cancers (Basel) 2025; 17:257. [PMID: 39858038 PMCID: PMC11764024 DOI: 10.3390/cancers17020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES As cells divide, telomeres shorten through a phenomenon known as telomere attrition, which leads to unavoidable senescence of cells. Unprotected DNA exponentially increases the odds of mutations, which can evolve into premature aging disorders and tumorigenesis. There has been growing academic and clinical interest in exploring this duality and developing optimal therapeutic strategies to combat telomere attrition in aging and cellular immortality in cancer. The purpose of this review is to provide an updated overview of telomere biology and therapeutic tactics to address aging and cancer. METHODS We used the Rayyan platform to review the PubMed database and examined the ClinicalTrial.gov registry to gain insight into clinical trials and their results. RESULTS Cancer cells activate telomerase or utilize alternative lengthening of telomeres to escape telomere shortening, leading to near immortality. Contrarily, normal cells experience telomeric erosion, contributing to premature aging disorders, such as Werner syndrome and Hutchinson-Gilford Progeria, and (2) aging-related diseases, such as neurodegenerative and cardiovascular diseases. CONCLUSIONS The literature presents several promising therapeutic approaches to potentially balance telomere maintenance in aging and shortening in cancer. This review highlights gaps in knowledge and points to the potential of these optimal interventions in preclinical and clinical studies to inform future research in cancer and aging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sandy Westerheide
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL 33620, USA; (M.I.); (M.X.B.); (M.J.); (R.C.); (R.G.-G.); (E.C.)
| |
Collapse
|
15
|
Bridges JP, Vladar EK, Kurche JS, Krivoi A, Stancil IT, Dobrinskikh E, Hu Y, Sasse SK, Lee JS, Blumhagen RZ, Yang IV, Gerber AN, Peljto AL, Evans CM, Redente EF, Riches DW, Schwartz DA. Progressive lung fibrosis: reprogramming a genetically vulnerable bronchoalveolar epithelium. J Clin Invest 2025; 135:e183836. [PMID: 39744946 PMCID: PMC11684817 DOI: 10.1172/jci183836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is etiologically complex, with well-documented genetic and nongenetic origins. In this Review, we speculate that the development of IPF requires two hits: the first establishes a vulnerable bronchoalveolar epithelium, and the second triggers mechanisms that reprogram distal epithelia to initiate and perpetuate a profibrotic phenotype. While vulnerability of the bronchoalveolar epithelia is most often driven by common or rare genetic variants, subsequent injury of the bronchoalveolar epithelia results in persistent changes in cell biology that disrupt tissue homeostasis and activate fibroblasts. The dynamic biology of IPF can best be contextualized etiologically and temporally, including stages of vulnerability, early disease, and persistent and progressive lung fibrosis. These dimensions of IPF highlight critical mechanisms that adversely disrupt epithelial function, activate fibroblasts, and lead to lung remodeling. Together with better recognition of early disease, this conceptual approach should lead to the development of novel therapeutics directed at the etiologic and temporal drivers of lung fibrosis that will ultimately transform the care of patients with IPF from palliative to curative.
Collapse
Affiliation(s)
- James P. Bridges
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eszter K. Vladar
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jonathan S. Kurche
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
| | - Andrei Krivoi
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ian T. Stancil
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University, School of Medicine, Stanford, California, USA
| | - Evgenia Dobrinskikh
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yan Hu
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sarah K. Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Joyce S. Lee
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rachel Z. Blumhagen
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA
| | - Ivana V. Yang
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anthony N. Gerber
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Anna L. Peljto
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher M. Evans
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
| | - Elizabeth F. Redente
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - David W.H. Riches
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David A. Schwartz
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Rocky Mountain Regional Veteran Affairs Medical Center, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
16
|
Wang B, Han J, Elisseeff JH, Demaria M. The senescence-associated secretory phenotype and its physiological and pathological implications. Nat Rev Mol Cell Biol 2024; 25:958-978. [PMID: 38654098 DOI: 10.1038/s41580-024-00727-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
Cellular senescence is a state of terminal growth arrest associated with the upregulation of different cell cycle inhibitors, mainly p16 and p21, structural and metabolic alterations, chronic DNA damage responses, and a hypersecretory state known as the senescence-associated secretory phenotype (SASP). The SASP is the major mediator of the paracrine effects of senescent cells in their tissue microenvironment and of various local and systemic biological functions. In this Review, we discuss the composition, dynamics and heterogeneity of the SASP as well as the mechanisms underlying its induction and regulation. We describe the various biological properties of the SASP, its beneficial and detrimental effects in different physiological and pathological settings, and its impact on overall health span. Finally, we discuss the use of the SASP as a biomarker and of SASP inhibitors as senomorphic interventions to treat cancer and other age-related conditions.
Collapse
Affiliation(s)
- Boshi Wang
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, Netherlands
| | - Jin Han
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, John Hopkins University School of Medicine, Baltimore MD, MD, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute, and Department of Biomedical Engineering, John Hopkins University School of Medicine, Baltimore MD, MD, USA
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen (RUG), Groningen, Netherlands.
| |
Collapse
|
17
|
Hudson HR, Riessland M, Orr ME. Defining and characterizing neuronal senescence, 'neurescence', as G X arrested cells. Trends Neurosci 2024; 47:971-984. [PMID: 39389805 DOI: 10.1016/j.tins.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/16/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Cellular senescence is a cell state characterized by resistance to apoptosis and stable cell cycle arrest. Senescence was first observed in mitotic cells in vitro. Recent evidence from in vivo studies and human tissue indicates that postmitotic cells, including neurons, may also become senescent. The quiescent cell state of neurons and inconsistent descriptions of neuronal senescence across studies, however, have caused confusion in this burgeoning field. We summarize evidence demonstrating that exit from G0 quiescence may protect neurons against apoptosis and predispose them toward senescence. Additionally, we propose the term 'neurescent' for senescent neurons and introduce the cell state, GX, to describe cell cycle arrest achieved by passing through G0 quiescence. Criteria are provided to identify neurescent cells, distinguish them from G0 quiescent neurons, and compare neurescent phenotypes with classic replicative senescence.
Collapse
Affiliation(s)
- Hannah R Hudson
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Markus Riessland
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA; Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| | - Miranda E Orr
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Department of Internal Medicine Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Salisbury VA Medical Center, Salisbury, NC, USA.
| |
Collapse
|
18
|
Hugo C, Asante I, Sadybekov A, Katritch V, Yassine HN. Development of Calcium-Dependent Phospholipase A2 Inhibitors to Target Cellular Senescence and Oxidative Stress in Neurodegenerative Diseases. Antioxid Redox Signal 2024; 41:1100-1116. [PMID: 39575710 DOI: 10.1089/ars.2024.0794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Significance: Cellular senescence is a critical process underlying aging and is associated with age-related diseases such as Alzheimer's disease. Lipids are implicated in cellular senescence. Fatty acids, particularly eicosanoids, have been associated with various forms of senescence and inflammation, and the associated reactive oxygen species production has been proposed as a therapeutic target for mitigating senescence. When overactivated, calcium-dependent phospholipase A2 (cPLA2) catalyzes the conversion of arachidonic acid into eicosanoids such as leukotrienes and prostaglandins. Recent Advances: With a growing understanding of the importance of lipids as mediators and modulators of senescence, cPLA2 has emerged as a compelling drug target. cPLA2 overactivation plays a significant role in several pathways associated with senescence, including neuroinflammation and oxidative stress. Critical Issues: Previous cPLA2 inhibitors have shown potential in ameliorating inflammation and oxidative stress, but the dominant hurdles in the central nervous system-targeting drug discovery are specificity and blood-brain barrier penetrance. Future Directions: With the need for more effective drugs against neurological diseases, we emphasize the significance of discovering new brain-penetrant, potent, and specific cPLA2 inhibitors. We discuss how the recently developed Virtual Synthon Hierarchical Enumeration Screening, an iterative synthon-based approach for fast structure-based virtual screening of billions of compounds, provides an efficient exploration of large chemical spaces for the discovery of brain-penetrant cPLA2 small-molecule inhibitors. Antioxid. Redox Signal. 41, 1100-1116.
Collapse
Affiliation(s)
- Cristelle Hugo
- Department of Neurology, Keck School of Medicine, Los Angeles, California, USA
| | - Isaac Asante
- Department of Ophthalmology, Keck School of Medicine, Los Angeles, California, USA
- Department of Clinical Pharmacy, Mann School of Pharmacy, Los Angeles, California, USA
- Medical Systems Innovation (ITEMS), USC Institute for Technology, Los Angeles, California, USA
| | - Anastasiia Sadybekov
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, California, USA
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, California, USA
- Department of Chemistry, University of Southern California, Los Angeles, California, USA
| | - Hussein N Yassine
- Department of Neurology, Keck School of Medicine, Los Angeles, California, USA
- Center for Personalized Brain Health, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
19
|
Cheng YY, Worley BL, Javed Z, Elhaw AT, Tang PW, Al-Saad S, Kamlapurkar S, White S, Uboveja A, Mythreye K, Aird KM, Czyzyk TA, Hempel N. Loss of the predicted cell adhesion molecule MPZL3 promotes EMT and chemoresistance in ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623672. [PMID: 39605523 PMCID: PMC11601277 DOI: 10.1101/2024.11.14.623672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Myelin protein zero-like 3 (MPZL3) is an Immunoglobulin-containing transmembrane protein with predicted cell adhesion molecule function. Loss of 11q23, where the MPZL3 gene resides, is frequently observed in cancer, and MPZL3 copy number alterations are frequently detected in tumor specimens. Yet the role and consequences of altered MPZL3 expression have not been explored in tumor development and progression. We addressed this in ovarian cancer, where both MPZL3 amplification and deletions are observed in respective subsets of high-grade serous specimens. While high and low MPZL3 expressing populations were similarly observed in primary ovarian tumors from an independent patient cohort, metastatic omental tumors largely displayed decreased MPZL3 expression, suggesting that MPZL3 loss is associated with metastatic progression. MPZL3 knock-down leads to strong upregulation of vimentin and an EMT gene signature that is associated with poor patient outcomes. Moreover, MPZL3 is necessary for homotypic cancer cell adhesion, and decreasing MPZL3 expression enhances invasion and clearance of mesothelial cell monolayers. In addition, MPZL3 loss abrogated cell cycle progression and proliferation. This was associated with increased resistance to Cisplatin and Olaparib and reduced DNA damage and apoptosis in response to these agents. Enhanced Cisplatin resistance was further validated in vivo . These data demonstrate for the first time that MPZL3 acts as an adhesion molecule and that MPZL3 loss results in EMT, decreased proliferation, and drug resistance in ovarian cancer. Our study suggests that decreased MPZL3 expression is a phenotype of ovarian cancer tumor progression and metastasis and may contribute to treatment failure in advanced-stage patients.
Collapse
|
20
|
He S, Yan L, Yuan C, Li W, Wu T, Chen S, Li N, Wu M, Jiang J. The role of cardiomyocyte senescence in cardiovascular diseases: A molecular biology update. Eur J Pharmacol 2024; 983:176961. [PMID: 39209099 DOI: 10.1016/j.ejphar.2024.176961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, and advanced age is a main contributor to the prevalence of CVD. Cellular senescence is an irreversible state of cell cycle arrest that occurs in old age or after cells encounter various stresses. Senescent cells not only result in the reduction of cellular function, but also produce senescence-associated secretory phenotype (SASP) to affect surrounding cells and tissue microenvironment. There is increasing evidence that the gradual accumulation of senescent cardiomyocytes is causally involved in the decline of cardiovascular system function. To highlight the role of senescent cardiomyocytes in the pathophysiology of age-related CVD, we first introduced that senescent cardiomyoyctes can be identified by structural changes and several senescence-associated biomarkers. We subsequently provided a comprehensive summary of existing knowledge, outlining the compelling evidence on the relationship between senescent cardiomyocytes and age-related CVD phenotypes. In addition, we discussed that the significant therapeutic potential represented by the prevention of accelerated senescent cardiomyocytes, and the current status of some existing geroprotectors in the prevention and treatment of age-related CVD. Together, the review summarized the role of cardiomyocyte senescence in CVD, and explored the molecular knowledge of senescent cardiomyocytes and their potential clinical significance in developing senescent-based therapies, thereby providing important insights into their biology and potential therapeutic exploration.
Collapse
Affiliation(s)
- Shuangyi He
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Li Yan
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Department of Pharmacy, Wuhan Asia General Hospital, Wuhan, 430056, China
| | - Chao Yuan
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Wenxuan Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Tian Wu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Suya Chen
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Niansheng Li
- Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410078, China
| | - Meiting Wu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Department of Nephrology, Institute of Nephrology, 2nd Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
| | - Junlin Jiang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410078, China.
| |
Collapse
|
21
|
Yu W, Yu Y, Sun S, Lu C, Zhai J, Lei Y, Bai F, Wang R, Chen J. Immune Alterations with Aging: Mechanisms and Intervention Strategies. Nutrients 2024; 16:3830. [PMID: 39599617 PMCID: PMC11597283 DOI: 10.3390/nu16223830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Aging is the result of a complex interplay of physical, environmental, and social factors, leading to an increased prevalence of chronic age-related diseases that burden health and social care systems. As the global population ages, it is crucial to understand the aged immune system, which undergoes declines in both innate and adaptive immunity. This immune decline exacerbates the aging process, creating a feedback loop that accelerates the onset of diseases, including infectious diseases, autoimmune disorders, and cancer. Intervention strategies, including dietary adjustments, pharmacological treatments, and immunomodulatory therapies, represent promising approaches to counteract immunosenescence. These interventions aim to enhance immune function by improving the activity and interactions of aging-affected immune cells, or by modulating inflammatory responses through the suppression of excessive cytokine secretion and inflammatory pathway activation. Such strategies have the potential to restore immune homeostasis and mitigate age-related inflammation, thus reducing the risk of chronic diseases linked to aging. In summary, this review provides insights into the effects and underlying mechanisms of immunosenescence, as well as its potential interventions, with particular emphasis on the relationship between aging, immunity, and nutritional factors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; (W.Y.)
| |
Collapse
|
22
|
Riessland M, Ximerakis M, Jarjour AA, Zhang B, Orr ME. Therapeutic targeting of senescent cells in the CNS. Nat Rev Drug Discov 2024; 23:817-837. [PMID: 39349637 PMCID: PMC11927922 DOI: 10.1038/s41573-024-01033-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 11/01/2024]
Abstract
Senescent cells accumulate throughout the body with advanced age, diseases and chronic conditions. They negatively impact health and function of multiple systems, including the central nervous system (CNS). Therapies that target senescent cells, broadly referred to as senotherapeutics, recently emerged as potentially important treatment strategies for the CNS. Promising therapeutic approaches involve clearing senescent cells by disarming their pro-survival pathways with 'senolytics'; or dampening their toxic senescence-associated secretory phenotype (SASP) using 'senomorphics'. Following the pioneering discovery of first-generation senolytics dasatinib and quercetin, dozens of additional therapies have been identified, and several promising targets are under investigation. Although potentially transformative, senotherapies are still in early stages and require thorough testing to ensure reliable target engagement, specificity, safety and efficacy. The limited brain penetrance and potential toxic side effects of CNS-acting senotherapeutics pose challenges for drug development and translation to the clinic. This Review assesses the potential impact of senotherapeutics for neurological conditions by summarizing preclinical evidence, innovative methods for target and biomarker identification, academic and industry drug development pipelines and progress in clinical trials.
Collapse
Affiliation(s)
- Markus Riessland
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
- Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA
| | | | | | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miranda E Orr
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Salisbury VA Medical Center, Salisbury, NC, USA.
| |
Collapse
|
23
|
Naushad S, Gaucher J, Mezdari Z, Détrait M, Belaidi E, Zhang Y, Vial G, Bouyon S, Czibik G, Pini M, Aldekwer S, Liang H, Pelloux V, Aron-Wisnewsky J, Tamisier R, Pépin JL, Derumeaux G, Sawaki D, Arnaud C. Chronic intermittent hypoxia triggers cardiac fibrosis: Role of epididymal white adipose tissue senescent remodeling? Acta Physiol (Oxf) 2024; 240:e14231. [PMID: 39263916 DOI: 10.1111/apha.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 09/13/2024]
Abstract
AIM Obstructive sleep apnea (OSA) is a growing health problem affecting nearly 1 billion people worldwide. The landmark feature of OSA is chronic intermittent hypoxia (CIH), accounting for multiple organ damage, including heart disease. CIH profoundly alters both visceral white adipose tissue (WAT) and heart structure and function, but little is known regarding inter-organ interaction in the context of CIH. We recently showed that visceral WAT senescence drives myocardial alterations in aged mice without CIH. Here, we aimed at investigating whether CIH induces a premature visceral WAT senescent phenotype, triggering subsequent cardiac remodeling. METHODS In a first experiment, 10-week-old C57bl6J male mice (n = 10/group) were exposed to 14 days of CIH (8 h daily, 5%-21% cyclic inspired oxygen fraction, 60 s per cycle). In a second series, mice were submitted to either epididymal WAT surgical lipectomy or sham surgery before CIH exposure. Finally, we used p53 deficient mice or Wild-type (WT) littermates, also exposed to the same CIH protocol. Epididymal WAT was assessed for fibrosis, DNA damages, oxidative stress, markers of senescence (p16, p21, and p53), and inflammation by RT-qPCR and histology, and myocardium was assessed for fibrosis and cardiomyocyte hypertrophy. RESULTS CIH-induced epididymal WAT remodeling characterized by increased fibrosis, oxidative stress, DNA damage response, inflammation, and increased expression of senescent markers. CIH-induced epididymal WAT remodeling was associated with subtle and early myocardial interstitial fibrosis. Both epididymal WAT surgical lipectomy and p53 deletion prevented CIH-induced myocardial fibrosis. CONCLUSION Short-term exposure to CIH induces epididymal WAT senescent remodeling and cardiac interstitial fibrosis, the latter being prevented by lipectomy. This finding strongly suggests visceral WAT senescence as a new target to mitigate OSA-related cardiac disorders.
Collapse
Affiliation(s)
- Suzain Naushad
- Université Paris Est Créteil, INSERM U955, Créteil, France
| | - Jonathan Gaucher
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Zaineb Mezdari
- Université Paris Est Créteil, INSERM U955, Créteil, France
| | - Maximin Détrait
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Elise Belaidi
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Yanyan Zhang
- Université Paris Est Créteil, INSERM U955, Créteil, France
| | - Guillaume Vial
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Sophie Bouyon
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Gabor Czibik
- Université Paris Est Créteil, INSERM U955, Créteil, France
| | - Maria Pini
- Université Paris Est Créteil, INSERM U955, Créteil, France
| | - Sahar Aldekwer
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Hao Liang
- Université Paris Est Créteil, INSERM U955, Créteil, France
| | - Véronique Pelloux
- Nutrition and Obesities, Systemic Approaches, NutriOmics, Laboratory, Sorbonne University, Paris, France
- Nutrition Department, CRNH Ile de France, AP-HP, Pitie-Salpêtrière Hospital, Paris, France
| | - Judith Aron-Wisnewsky
- Nutrition and Obesities, Systemic Approaches, NutriOmics, Laboratory, Sorbonne University, Paris, France
- Nutrition Department, CRNH Ile de France, AP-HP, Pitie-Salpêtrière Hospital, Paris, France
| | - Renaud Tamisier
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Jean-Louis Pépin
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, HP2, Grenoble, France
| | - Geneviève Derumeaux
- Université Paris Est Créteil, INSERM U955, Créteil, France
- Department of Physiology, AP-HP, Henri Mondor Hospital, FHU-SENEC, Créteil, France
| | - Daigo Sawaki
- Université Paris Est Créteil, INSERM U955, Créteil, France
| | - Claire Arnaud
- Université Grenoble Alpes, INSERM U1300, CHU Grenoble Alpes, HP2, Grenoble, France
| |
Collapse
|
24
|
Raabe J, Wittig I, Laurette P, Stathopoulou K, Brand T, Schulze T, Klampe B, Orthey E, Cabrera-Orefice A, Meisterknecht J, Thiemann E, Laufer SD, Shibamiya A, Reinsch M, Fuchs S, Kaiser J, Yang J, Zehr S, Wrona KM, Lorenz K, Lukowski R, Hansen A, Gilsbach R, Brandes RP, Ulmer BM, Eschenhagen T, Cuello F. Physioxia rewires mitochondrial complex composition to protect stem cell viability. Redox Biol 2024; 77:103352. [PMID: 39341035 PMCID: PMC11466565 DOI: 10.1016/j.redox.2024.103352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are an invaluable tool to study molecular mechanisms on a human background. Culturing stem cells at an oxygen level different from their microenvironmental niche impacts their viability. To understand this mechanistically, dermal skin fibroblasts of 52 probands were reprogrammed into hiPSCs, followed by either hyperoxic (20 % O2) or physioxic (5 % O2) culture and proteomic profiling. Analysis of chromosomal stability by Giemsa-banding revealed that physioxic -cultured hiPSC clones exhibited less pathological karyotypes than hyperoxic (e.g. 6 % vs. 32 % mosaicism), higher pluripotency as evidenced by higher Stage-Specific Embryonic Antigen 3 positivity, higher glucose consumption and lactate production. Global proteomic analysis demonstrated lower abundance of several subunits of NADH:ubiquinone oxidoreductase (complex I) and an underrepresentation of pathways linked to oxidative phosphorylation and cellular senescence. Accordingly, release of the pro-senescent factor IGFBP3 and β-galactosidase staining were lower in physioxic hiPSCs. RNA- and ATAC-seq profiling revealed a distinct hypoxic transcription factor-binding footprint, amongst others higher expression of the HIF1α-regulated target NDUFA4L2 along with increased chromatin accessibility of the NDUFA4L2 gene locus. While mitochondrial DNA content did not differ between groups, physioxic hiPSCs revealed lower polarized mitochondrial membrane potential, altered mitochondrial network appearance and reduced basal respiration and electron transfer capacity. Blue-native polyacrylamide gel electrophoresis coupled to mass spectrometry of the mitochondrial complexes detected higher abundance of NDUFA4L2 and ATP5IF1 and loss of incorporation into complex IV or V, respectively. Taken together, physioxic culture of hiPSCs improved chromosomal stability, which was associated with downregulation of oxidative phosphorylation and senescence and extensive re-wiring of mitochondrial complex composition.
Collapse
Affiliation(s)
- Janice Raabe
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Ilka Wittig
- Functional Proteomics Center, Institute for Cardiovascular Physiology, Goethe-University, 60590 Frankfurt am Main, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Rhein-Main, Frankfurt, Germany
| | - Patrick Laurette
- Institute of Experimental Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Konstantina Stathopoulou
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Theresa Brand
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Thomas Schulze
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Birgit Klampe
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Ellen Orthey
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Alfredo Cabrera-Orefice
- Functional Proteomics Center, Institute for Cardiovascular Physiology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Jana Meisterknecht
- Functional Proteomics Center, Institute for Cardiovascular Physiology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Ellen Thiemann
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Sandra D Laufer
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Aya Shibamiya
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Marina Reinsch
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Sigrid Fuchs
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Jennifer Kaiser
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Jiaqi Yang
- Institute of Pharmacy, Experimental Pharmacology, University Tübingen, 72076 Tübingen, Germany
| | - Simonida Zehr
- DZHK (German Center for Cardiovascular Research), Partner Site Rhein-Main, Frankfurt, Germany; Institute for Cardiovascular Physiology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Kinga M Wrona
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Robert Lukowski
- Institute of Pharmacy, Experimental Pharmacology, University Tübingen, 72076 Tübingen, Germany
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Ralf Gilsbach
- Institute of Experimental Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany
| | - Ralf P Brandes
- DZHK (German Center for Cardiovascular Research), Partner Site Rhein-Main, Frankfurt, Germany; Institute for Cardiovascular Physiology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Bärbel M Ulmer
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
25
|
Jiang L, Qi X, Lai M, Zhou J, Yuan M, You J, Liu Q, Pan J, Zhao L, Ying M, Ji J, Li K, Zhang Y, Pan W, He Q, Yang B, Cao J. WDR20 prevents hepatocellular carcinoma senescence by orchestrating the simultaneous USP12/46-mediated deubiquitination of c-Myc. Proc Natl Acad Sci U S A 2024; 121:e2407904121. [PMID: 39432777 PMCID: PMC11536108 DOI: 10.1073/pnas.2407904121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/16/2024] [Indexed: 10/23/2024] Open
Abstract
The dysfunction of the ubiquitin-proteasome system (UPS) facilitates the malignant progression of hepatocellular carcinoma (HCC). While targeting the UPS for HCC therapy has been proposed, identifying effective targets has been challenging. In this study, we conducted a focused screen of siRNA libraries targeting UPS-related WD40 repeat (WDR) proteins and found that silencing WDR20, a deubiquitinating enzyme activating factor, selectively inhibited the proliferation of HCC cells without affecting normal hepatocytes. Moreover, the downregulation of WDR20 expression induced HCC cellular senescence and suppressed tumor progression in xenograft, sleeping beauty transposon/transposase, and hydrodynamic tail vein injection-induced HCC models, and Alb-Cre+/MYC+ HCC transgenic mouse models. Mechanistically, we found that WDR20 silencing disturbed the protein stability of c-Myc, orchestrating the simultaneous USP12/46-mediated deubiquitination of c-Myc, thereby promoting the transcriptional activation of CDKN1A. Further investigation revealed a positive coexpression of WDR20 and c-Myc in a tissue microarray with 88 HCC clinical samples. By employing three patient-derived organoids from individuals with HCC, we have validated the decrease in c-Myc expression and the significant induction of senescence and growth inhibition following silencing of WDR20. This study not only uncovers the biological function of WDR20 and elucidates the molecular mechanism underlying its negative regulation of HCC cellular senescence but also highlight the potential of WDR20 as a promising target for HCC therapy.
Collapse
Affiliation(s)
- Li Jiang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou310058, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou310018, China
- Cancer Center, Zhejiang University, Hangzhou310058, China
| | - Xuxin Qi
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou310058, China
| | - Minshan Lai
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou310058, China
| | - Jiahao Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou310058, China
| | - Meng Yuan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou310058, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou310018, China
- Cancer Center, Zhejiang University, Hangzhou310058, China
| | - Jieqiong You
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou310058, China
| | - Qiang Liu
- Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou310006, China
| | - Jinchang Pan
- Life Sciences Institute, Zhejiang University, Hangzhou310058, China
| | - Luyao Zhao
- Key Laboratory of Biotechnology of Antibiotic of National Health Commission, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou310058, China
- Cancer Center, Zhejiang University, Hangzhou310058, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou310018, China
| | - Junfang Ji
- Cancer Center, Zhejiang University, Hangzhou310058, China
- Life Sciences Institute, Zhejiang University, Hangzhou310058, China
- Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing312099, China
| | - Ke Li
- Key Laboratory of Biotechnology of Antibiotic of National Health Commission, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
| | - Yan Zhang
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou310016, China
- Department of Pharmacology and Department of Pathology of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou311113, China
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou310016, China
- Frontier Science Center for Brain Research and Brain-Machine Integration of Ministry of Education, Zhejiang University School of Medicine, Hangzhou310058, China
| | - Weiwei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing314001, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou310058, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou310018, China
- Cancer Center, Zhejiang University, Hangzhou310058, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou310018, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou310058, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou310018, China
- Cancer Center, Zhejiang University, Hangzhou310058, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou310018, China
- School of Medicine, Hangzhou City University, Hangzhou310015, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou310058, China
- The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou310018, China
- Cancer Center, Zhejiang University, Hangzhou310058, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou310018, China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou310009, China
| |
Collapse
|
26
|
Perié L, Houël C, Zambon A, Guere C, Vié K, Leroy-Dudal J, Vendrely C, Agniel R, Carreiras F, Picot CR. Impaired incorporation of fibronectin into the extracellular matrix during aging exacerbates the senescent state of dermal cells. Exp Cell Res 2024; 442:114251. [PMID: 39265920 DOI: 10.1016/j.yexcr.2024.114251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
Fibronectin (Fn) is a ubiquitous extracellular matrix (ECM) glycoprotein that acts as an ECM scaffold organizer and is essential in many biological functions, including tissue repair, differentiation or cancer dissemination. Evidence suggests that the amount of Fn changes during aging. However, how these changes influence the aging process remains unclear. This study aims to understand Fn influence on cell aging. First, we assess the relative level of Fn abundance in both different biopsies of skin donors and replicative senescence cellular model. In skin biopsies, we observed that Fn level decreases with aging in the reticular dermis, while its expression remains relatively stable in the papillary dermis, likely to sustain the dermis-epidermis junction. During replicative senescence, in BJ skin fibroblasts, while intracellular Fn increases, we found that secretion and Fn fibrils formation are less effective. Reduced Fn fibrils leads to disorganization of the ECM. This could be explained by the expression of different Fn isoforms observed in the secretome of senescent cells. Surprisingly, the knockdown of Fn delays the onset of senescence while cultivating cells onto a Fn-coated support promotes it. Taken together, these new insights on the role of Fn during aging may emerge new therapeutic strategies on aged-related diseases.
Collapse
Affiliation(s)
- Luce Perié
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, ERRMECe (EA 1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Maison International de la Recherche, CY Cergy Paris Université, 1 rue Descartes, 95000, Neuville-sur-Oise, France
| | - Cynthia Houël
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, ERRMECe (EA 1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Maison International de la Recherche, CY Cergy Paris Université, 1 rue Descartes, 95000, Neuville-sur-Oise, France
| | - Anne Zambon
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, ERRMECe (EA 1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Maison International de la Recherche, CY Cergy Paris Université, 1 rue Descartes, 95000, Neuville-sur-Oise, France
| | | | - Katell Vié
- Laboratoires Clarins, 5 rue Ampère, 95300, Pontoise, France
| | - Johanne Leroy-Dudal
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, ERRMECe (EA 1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Maison International de la Recherche, CY Cergy Paris Université, 1 rue Descartes, 95000, Neuville-sur-Oise, France
| | - Charlotte Vendrely
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, ERRMECe (EA 1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Maison International de la Recherche, CY Cergy Paris Université, 1 rue Descartes, 95000, Neuville-sur-Oise, France
| | - Rémy Agniel
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, ERRMECe (EA 1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Maison International de la Recherche, CY Cergy Paris Université, 1 rue Descartes, 95000, Neuville-sur-Oise, France
| | - Franck Carreiras
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, ERRMECe (EA 1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Maison International de la Recherche, CY Cergy Paris Université, 1 rue Descartes, 95000, Neuville-sur-Oise, France
| | - Cédric R Picot
- Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules, ERRMECe (EA 1391), Groupe Matrice Extracellulaire et Physiopathologie (MECuP), Maison International de la Recherche, CY Cergy Paris Université, 1 rue Descartes, 95000, Neuville-sur-Oise, France.
| |
Collapse
|
27
|
Kalykaki M, Rubio-Tomás T, Tavernarakis N. The role of mitochondria in cytokine and chemokine signalling during ageing. Mech Ageing Dev 2024; 222:111993. [PMID: 39307464 DOI: 10.1016/j.mad.2024.111993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Ageing is accompanied by a persistent, low-level inflammation, termed "inflammageing", which contributes to the pathogenesis of age-related diseases. Mitochondria fulfil multiple roles in host immune responses, while mitochondrial dysfunction, a hallmark of ageing, has been shown to promote chronic inflammatory states by regulating the production of cytokines and chemokines. In this review, we aim to disentangle the molecular mechanisms underlying this process. We describe the role of mitochondrial signalling components such as mitochondrial DNA, mitochondrial RNA, N-formylated peptides, ROS, cardiolipin, cytochrome c, mitochondrial metabolites, potassium efflux and mitochondrial calcium in the age-related immune system activation. Furthermore, we discuss the effect of age-related decline in mitochondrial quality control mechanisms, including mitochondrial biogenesis, dynamics, mitophagy and UPRmt, in inflammatory states upon ageing. In addition, we focus on the dynamic relationship between mitochondrial dysfunction and cellular senescence and its role in regulating the secretion of pro-inflammatory molecules by senescent cells. Finally, we review the existing literature regarding mitochondrial dysfunction and inflammation in specific age-related pathological conditions, including neurodegenerative diseases (Alzheimer's and Parkinson's disease, and amyotrophic lateral sclerosis), osteoarthritis and sarcopenia.
Collapse
Affiliation(s)
- Maria Kalykaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece
| | - Teresa Rubio-Tomás
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete GR-70013, Greece; Division of Basic Sciences, School of Medicine, University of Crete, Heraklion, Crete GR-71003, Greece.
| |
Collapse
|
28
|
Iordache F, Petcu ACI, Alexandru DM. Genetic and Epigenetic Interactions Involved in Senescence of Stem Cells. Int J Mol Sci 2024; 25:9708. [PMID: 39273655 PMCID: PMC11396476 DOI: 10.3390/ijms25179708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Cellular senescence is a permanent condition of cell cycle arrest caused by a progressive shortening of telomeres defined as replicative senescence. Stem cells may also undergo an accelerated senescence response known as premature senescence, distinct from telomere shortening, as a response to different stress agents. Various treatment protocols have been developed based on epigenetic changes in cells throughout senescence, using different drugs and antioxidants, senolytic vaccines, or the reprogramming of somatic senescent cells using Yamanaka factors. Even with all the recent advancements, it is still unknown how different epigenetic modifications interact with genetic profiles and how other factors such as microbiota physiological conditions, psychological states, and diet influence the interaction between genetic and epigenetic pathways. The aim of this review is to highlight the new epigenetic modifications that are involved in stem cell senescence. Here, we review recent senescence-related epigenetic alterations such as DNA methylation, chromatin remodeling, histone modification, RNA modification, and non-coding RNA regulation outlining new possible targets for the therapy of aging-related diseases. The advantages and disadvantages of the animal models used in the study of cellular senescence are also briefly presented.
Collapse
Affiliation(s)
- Florin Iordache
- Biochemistry Disciplines, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania
- Advanced Research Center for Innovative Materials, Products and Processes CAMPUS, Politehnica University, 060042 Bucharest, Romania
| | - Adriana Cornelia Ionescu Petcu
- Biochemistry Disciplines, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania
| | - Diana Mihaela Alexandru
- Pharmacology and Pharmacy Disciplines, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania
| |
Collapse
|
29
|
Gehlot P, Brünnert D, Kaushik V, Yadav A, Bage S, Gaur K, Saini M, Ehrhardt J, Manjunath GK, Kumar A, Kasliwal N, Sharma AK, Zygmunt M, Goyal P. Unconventional localization of PAI-1 in PML bodies: A possible link with cellular growth of endothelial cells. Biochem Biophys Rep 2024; 39:101793. [PMID: 39161580 PMCID: PMC11332193 DOI: 10.1016/j.bbrep.2024.101793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1/Serpin E1) is classically known for its antifibrinolytic activity via inhibiting uPA and tPA of the fibrinolytic pathway. PAI-1 has a paradoxical role in tumor progression, and its molecular functions are poorly understood. PAI-1 is a widely accepted secretory protease inhibitor, however, a study suggested the localization of PAI-1 in the cytoplasm and the nucleus. Besides the plethora of its biological functions as a secretory protein, intracellular localization, and functions of PAI-1 remain unexplored at the molecular level. In this study, using various in silico approaches, we showed that PAI-1 possesses a nuclear export signal. Using the CRM1-specific inhibitor leptomycin B, we demonstrated that PAI-1 has a functional CRM1-dependent NES, indicating the possibility of its nuclear localization. Further, we confirm that PAI-1 is localized in the nucleus of endothelial cells using fluorescence microscopy and immunoprecipitation. Notably, we identified an unconventional distribution of PAI-1 in the PML bodies of the nucleus of normal endothelial cells, while the protein was restricted in the cytoplasm of slow-growing cells. The data showed that the localization of PAI-1 in PML bodies is highly correlated with the growth potential of endothelial cells. This conditional nucleocytoplasmic shuttling of PAI-1 during the aging of cells could impart a strong link to its age-related functions and tumor progression. Together, this study identifies the novel behavior of PAI-1 that might be linked with cell aging and may be able to unveil the elusive role of PAI-1 in tumor progression.
Collapse
Affiliation(s)
- Pragya Gehlot
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, 305 817, Rajasthan, India
| | - Daniela Brünnert
- University Hospital of Würzburg, Department of Obstetrics and Gynecology, Josef-Schneider-Str. 4, D-97080, Würzburg, Germany
- Department of Obstetrics and Gynecology, University of Greifswald, Ferdinand-Sauerbruchstrasse, D-17489, Greifswald, Germany
| | - Vibha Kaushik
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, 305 817, Rajasthan, India
| | - Arpana Yadav
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, 305 817, Rajasthan, India
| | - Saloni Bage
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, 305 817, Rajasthan, India
| | - Kritika Gaur
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, 305 817, Rajasthan, India
| | - Mahesh Saini
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, 305 817, Rajasthan, India
| | - Jens Ehrhardt
- Department of Obstetrics and Gynecology, University of Greifswald, Ferdinand-Sauerbruchstrasse, D-17489, Greifswald, Germany
| | - Gowrang Kasaba Manjunath
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, Karnataka, India
| | - Abhishek Kumar
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, Karnataka, India
| | - Neena Kasliwal
- Department of Pathology, J.L.N. Medical College, Ajmer, 305001, Rajasthan, India
| | - Ajay Kumar Sharma
- Department of Obstetrics and Gynecology, J.L.N. Medical College, Ajmer, 305001, Rajasthan, India
| | - Marek Zygmunt
- Department of Obstetrics and Gynecology, University of Greifswald, Ferdinand-Sauerbruchstrasse, D-17489, Greifswald, Germany
| | - Pankaj Goyal
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, 305 817, Rajasthan, India
| |
Collapse
|
30
|
Scanlan RL, Pease L, O'Keefe H, Martinez-Guimera A, Rasmussen L, Wordsworth J, Shanley D. Systematic transcriptomic analysis and temporal modelling of human fibroblast senescence. FRONTIERS IN AGING 2024; 5:1448543. [PMID: 39267611 PMCID: PMC11390594 DOI: 10.3389/fragi.2024.1448543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Cellular senescence is a diverse phenotype characterised by permanent cell cycle arrest and an associated secretory phenotype (SASP) which includes inflammatory cytokines. Typically, senescent cells are removed by the immune system, but this process becomes dysregulated with age causing senescent cells to accumulate and induce chronic inflammatory signalling. Identifying senescent cells is challenging due to senescence phenotype heterogeneity, and senotherapy often requires a combinatorial approach. Here we systematically collected 119 transcriptomic datasets related to human fibroblasts, forming an online database describing the relevant variables for each study allowing users to filter for variables and genes of interest. Our own analysis of the database identified 28 genes significantly up- or downregulated across four senescence types (DNA damage induced senescence (DDIS), oncogene induced senescence (OIS), replicative senescence, and bystander induced senescence) compared to proliferating controls. We also found gene expression patterns of conventional senescence markers were highly specific and reliable for different senescence inducers, cell lines, and timepoints. Our comprehensive data supported several observations made in existing studies using single datasets, including stronger p53 signalling in DDIS compared to OIS. However, contrary to some early observations, both p16 and p21 mRNA levels rise quickly, depending on senescence type, and persist for at least 8-11 days. Additionally, little evidence was found to support an initial TGFβ-centric SASP. To support our transcriptomic analysis, we computationally modelled temporal protein changes of select core senescence proteins during DDIS and OIS, as well as perform knockdown interventions. We conclude that while universal biomarkers of senescence are difficult to identify, conventional senescence markers follow predictable profiles and construction of a framework for studying senescence could lead to more reproducible data and understanding of senescence heterogeneity.
Collapse
Affiliation(s)
- R-L Scanlan
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - L Pease
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - H O'Keefe
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - A Martinez-Guimera
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - L Rasmussen
- Center for Healthy Aging, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - J Wordsworth
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| | - D Shanley
- Campus for Ageing and Vitality, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
31
|
Al-Sammarraie SHA, Ayaz-Güner Ş, Acar MB, Şimşek A, Sınıksaran BS, Bozalan HD, Özkan M, Saraymen R, Dündar M, Özcan S. Mesenchymal stem cells from adipose tissue prone to lose their stemness associated markers in obesity related stress conditions. Sci Rep 2024; 14:19702. [PMID: 39181924 PMCID: PMC11344827 DOI: 10.1038/s41598-024-70127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Obesity is a health problem characterized by large expansion of adipose tissue. During this expansion, genotoxic stressors can be accumulated and negatively affect the mesenchymal stem cells (MSCs) of adipose tissue. Due to the oxidative stress generated by these genotoxic stressors, senescence phenotype might be observed in adipose tissue MSCs. Senescent MSCs lose their proliferations and differentiation properties and secrete senescence-associated molecules to their niche thus triggering senescence for the rest of the tissue. Accumulation of senescent cells in adipose tissue results in decreased tissue regeneration and functional impairment not only in the close vicinity but also in the other tissues. Here we hypothesized that declined tissue regeneration might be associated with loss of stemness markers in MSCs population. We analyzed the expression of several stemness-associated genes of in vitro cultured MSCs originated from adipose tissue of high-fat diet and normal diet mice models. Since the heterogenous MSCs population covers a small percentage of the pluripotent stem cells, which have roles in proliferation and tissue regeneration, we measured the percentage of these cells via TRA-1-60 pluripotent state antigen. Additionally, by conducting a shotgun proteomic approach using LC-MS/MS, whole cell proteome of the adipose tissue MSCs of high-fat diet and normal diet mice were analyzed and identified proteins were evaluated via gene ontology and PPI network analysis. MSCs of obese mice showed senescent phenotype and altered cell cycle distribution due to a hostile environment with oxidative stress in adipose tissue where they reside. Additionally, the number of pluripotent markers expressing cells declined in the MSC population of the high-fat diet mice. Gene expression analysis evidenced the loss of stemness with a decrease in the expression of stemness-associated genes. Of the proteomic comparison of the normal and the high-fat diet group, MSCs revealed that stemness-associated molecules were decreased while inflammation and senescence-associated phenotypes emerged in obese mice MSCs. Our results showed us that the MSCs of adipose tissue may lose their stemness properties due to obesity-associated stress conditions.
Collapse
Affiliation(s)
- Sura Hilal Ahmed Al-Sammarraie
- Genome and Stem Cell Center, GENKÖK, Erciyes University, Kayseri, Turkey
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138, Naples, Italy
| | - Şerife Ayaz-Güner
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Mustafa Burak Acar
- Genome and Stem Cell Center, GENKÖK, Erciyes University, Kayseri, Turkey
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138, Naples, Italy
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - Ahmet Şimşek
- Genome and Stem Cell Center, GENKÖK, Erciyes University, Kayseri, Turkey
| | | | | | - Miray Özkan
- Genome and Stem Cell Center, GENKÖK, Erciyes University, Kayseri, Turkey
| | - Recep Saraymen
- Department of Biochemistry, Private Tekden Hospital, Kayseri, Turkey
| | - Munis Dündar
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Servet Özcan
- Genome and Stem Cell Center, GENKÖK, Erciyes University, Kayseri, Turkey.
- Department of Biology, Faculty of Science, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
32
|
Konstantinou E, Longange E, Kaya G. Mechanisms of Senescence and Anti-Senescence Strategies in the Skin. BIOLOGY 2024; 13:647. [PMID: 39336075 PMCID: PMC11428750 DOI: 10.3390/biology13090647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024]
Abstract
The skin is the layer of tissue that covers the largest part of the body in vertebrates, and its main function is to act as a protective barrier against external environmental factors, such as microorganisms, ultraviolet light and mechanical damage. Due to its important function, investigating the factors that lead to skin aging and age-related diseases, as well as understanding the biology of this process, is of high importance. Indeed, it has been reported that several external and internal stressors contribute to skin aging, similar to the aging of other tissues. Moreover, during aging, senescent cells accumulate in the skin and express senescence-associated factors, which act in a paracrine manner on neighboring healthy cells and tissues. In this review, we will present the factors that lead to skin aging and cellular senescence, as well as ways to study senescence in vitro and in vivo. We will further discuss the adverse effects of the accumulation of chronic senescent cells and therapeutic agents and tools to selectively target and eliminate them.
Collapse
Affiliation(s)
- Evangelia Konstantinou
- Department of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland; (E.K.); (E.L.)
| | - Eliane Longange
- Department of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland; (E.K.); (E.L.)
| | - Gürkan Kaya
- Department of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1206 Geneva, Switzerland; (E.K.); (E.L.)
- Departments of Dermatology and Clinical Pathology, Geneva University Hospitals, Rue Gabrielle Perret-Gentil 4, CH-1205 Geneva, Switzerland
| |
Collapse
|
33
|
Ratushnyy A, Ezdakova M, Matveeva D, Tyrina E, Buravkova L. Regulatory Effects of Senescent Mesenchymal Stem Cells: Endotheliocyte Reaction. Cells 2024; 13:1345. [PMID: 39195236 PMCID: PMC11352319 DOI: 10.3390/cells13161345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Currently, there is a growing focus on aging and age-related diseases. The processes of aging are based on cell senescence, which results in changes in intercellular communications and pathological alterations in tissues. In the present study, we investigate the influence of senescent mesenchymal stem cells (MSCs) on endothelial cells (ECs). In order to induce senescence in MSCs, we employed a method of stress-induced senescence utilizing mitomycin C (MmC). Subsequent experiments involved the interaction of ECs with MSCs in a coculture or the treatment of ECs with the secretome of senescent MSCs. After 48 h, we assessed the EC state. Our findings revealed that direct interaction led to a decrease in EC proliferation and migratory activity of the coculture. Furthermore, there was an increase in the activity of the lysosomal compartment, as well as an upregulation of the genes P21, IL6, IL8, ITGA1, and ITGB1. Treatment of ECs with the "senescent" secretome resulted in less pronounced effects, although a decrease in proliferation and an increase in ICAM-1 expression were observed. The maintenance of high levels of typical "senescent" cytokines and growth factors after 48 h suggests that the addition of the "senescent" secretome may have a prolonged effect on the cells. It is noteworthy that in samples treated with the "senescent" secretome, the level of PDGF-AA was higher, which may explain some of the pro-regenerative effects of senescent cells. Therefore, the detected changes may underlie both the negative and positive effects of senescence. The findings provide insight into the effects of cell senescence in vitro, where many of the organism's regulatory mechanisms are absent.
Collapse
Affiliation(s)
- Andrey Ratushnyy
- Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse, 76a, 123007 Moscow, Russia; (M.E.); (D.M.); (E.T.); (L.B.)
| | | | | | | | | |
Collapse
|
34
|
Wang J, Zhang M, Wang H. Emerging Landscape of Mesenchymal Stem Cell Senescence Mechanisms and Implications on Therapeutic Strategies. ACS Pharmacol Transl Sci 2024; 7:2306-2325. [PMID: 39144566 PMCID: PMC11320744 DOI: 10.1021/acsptsci.4c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
Mesenchymal stem cells (MSCs) hold significant promise for regenerative medicine and tissue engineering due to their unique multipotent differentiation ability and immunomodulatory properties. MSC therapy is widely discussed and utilized in clinical treatment. However, during both in vitro expansion and in vivo transplantation, MSCs are prone to senescence, an irreversible growth arrest characterized by morphological, gene expression, and functional changes in genomic regulation. The microenvironment surrounding MSCs plays a crucial role in modulating their senescence phenotype, influenced by factors such as hypoxia, inflammation, and aging status. Numerous strategies targeting MSC senescence have been developed, including senolytics and senomorphic agents, antioxidant and exosome therapies, mitochondrial transfer, and niche modulation. Novel approaches addressing replicative senescence have also emerged. This paper comprehensively reviews the current molecular manifestations of MSC senescence, addresses the environmental impact on senescence, and highlights potential therapeutic strategies to mitigate senescence in MSC-based therapies. These insights aim to enhance the efficacy and understanding of MSC therapies.
Collapse
Affiliation(s)
- Jing Wang
- Department
of Cellular and Molecular Medicine, University
of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Muqing Zhang
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21215, United States
| | - Hu Wang
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21215, United States
| |
Collapse
|
35
|
Matin M, Joshi T, Wang D, Tzvetkov NT, Matin FB, Wierzbicka A, Jóźwik A, Horbańczuk JO, Atanasov AG. Effects of Ginger ( Zingiber officinale) on the Hallmarks of Aging. Biomolecules 2024; 14:940. [PMID: 39199328 PMCID: PMC11352747 DOI: 10.3390/biom14080940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Ginger (Zingiber officinale Roscoe) is broadly used as a traditional remedy and food ingredient, and numerous preclinical and clinical studies have demonstrated health benefits in a range of age-related disorders. Moreover, longevity-promoting effects have been demonstrated in several (preclinical) research models. With this work, we aimed to comprehensively review the reported effects of ginger and its bioactive constituents on the twelve established hallmarks of aging, with the ultimate goal of gaining a deeper understanding of the potential for future interventions in the area of longevity-extension and counteracting of aging-related diseases. The reviewed literature supports the favorable effects of ginger and some of its constituents on all twelve hallmarks of aging, with a particularly high number of animal research studies indicating counteraction of nutrient-sensing dysregulations, mitochondrial dysfunction, chronic inflammation, and dysbiosis. On this background, validation in human clinical trials is still insufficient or is entirely missing, with the exception of some studies indicating positive effects on deregulated nutrient-sensing, chronic inflammation, and dysbiosis. Thus, the existing body of literature clearly supports the potential of ginger to be further studied in clinical trials as a supplement for the promotion of both lifespan and health span.
Collapse
Affiliation(s)
- Maima Matin
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Bhimtal, Kumaun University, Nainital 263002, India;
| | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada;
| | - Nikolay T. Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Farhan Bin Matin
- Department of Pharmacy, East West University, Aftabnagar, Dhaka 1212, Bangladesh;
| | - Agnieszka Wierzbicka
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Artur Jóźwik
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland; (M.M.); (A.W.); (A.J.); (J.O.H.)
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| |
Collapse
|
36
|
Pramotton FM, Spitz S, Kamm RD. Challenges and Future Perspectives in Modeling Neurodegenerative Diseases Using Organ-on-a-Chip Technology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403892. [PMID: 38922799 PMCID: PMC11348103 DOI: 10.1002/advs.202403892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Indexed: 06/28/2024]
Abstract
Neurodegenerative diseases (NDDs) affect more than 50 million people worldwide, posing a significant global health challenge as well as a high socioeconomic burden. With aging constituting one of the main risk factors for some NDDs such as Alzheimer's disease (AD) and Parkinson's disease (PD), this societal toll is expected to rise considering the predicted increase in the aging population as well as the limited progress in the development of effective therapeutics. To address the high failure rates in clinical trials, legislative changes permitting the use of alternatives to traditional pre-clinical in vivo models are implemented. In this regard, microphysiological systems (MPS) such as organ-on-a-chip (OoC) platforms constitute a promising tool, due to their ability to mimic complex and human-specific tissue niches in vitro. This review summarizes the current progress in modeling NDDs using OoC technology and discusses five critical aspects still insufficiently addressed in OoC models to date. Taking these aspects into consideration in the future MPS will advance the modeling of NDDs in vitro and increase their translational value in the clinical setting.
Collapse
Affiliation(s)
- Francesca Michela Pramotton
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sarah Spitz
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Roger D. Kamm
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
37
|
Chesnokova V, Zonis S, Apaydin T, Barrett R, Melmed S. Non-pituitary growth hormone enables colon cell senescence evasion. Aging Cell 2024; 23:e14193. [PMID: 38724466 PMCID: PMC11320355 DOI: 10.1111/acel.14193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 08/15/2024] Open
Abstract
DNA damage-induced senescence is initially sustained by p53. Senescent cells produce a senescence-associated secretory phenotype (SASP) that impacts the aging microenvironment, often promoting cell transformation. Employing normal non-tumorous human colon cells (hNCC) derived from surgical biopsies and three-dimensional human intestinal organoids, we show that local non-pituitary growth hormone (npGH) induced in senescent cells is a SASP component acting to suppress p53. npGH autocrine/paracrine suppression of p53 results in senescence evasion and cell-cycle reentry, as evidenced by increased Ki67 and BrdU incorporation. Post-senescent cells exhibit activated epithelial-to-mesenchymal transition (EMT), and increased cell motility. Nu/J mice harboring GH-secreting HCT116 xenografts with resultant high GH levels and injected intrasplenic with post-senescent hNCC developed fourfold more metastases than did mice harboring control xenografts, suggesting that paracrine npGH enables post-senescent cell transformation. By contrast, senescent cells with suppressed npGH exhibit downregulated Ki67 and decreased soft agar colony formation. Mechanisms underlying these observations include npGH induction by the SASP chemokine CXCL1, which attracts immune effectors to eliminate senescent cells; GH, in turn, suppresses CXCL1, likely by inhibiting phospho-NFκB, resulting in SASP cytokine downregulation. Consistent with these findings, GH-receptor knockout mice exhibited increased colon phospho-NFκB and CXCL1, while GH excess decreased colon CXCL1. The results elucidate mechanisms for local hormonal regulation of microenvironmental changes in DNA-damaged non-tumorous epithelial cells and portray a heretofore unappreciated GH action favoring age-associated epithelial cell transformation.
Collapse
Affiliation(s)
- Vera Chesnokova
- Department of MedicineCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Svetlana Zonis
- Department of MedicineCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Tugce Apaydin
- Department of MedicineCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Robert Barrett
- Board of Governors Regenerative Medicine InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Shlomo Melmed
- Department of MedicineCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| |
Collapse
|
38
|
Sugulle M, Fiskå BS, Jacobsen DP, Fjeldstad HE, Staff AC. Placental Senescence and the Two-Stage Model of Preeclampsia. Am J Reprod Immunol 2024; 92:e13904. [PMID: 39049670 DOI: 10.1111/aji.13904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
In this review, we summarize how an increasingly stressed and aging placenta contributes to the maternal clinical signs of preeclampsia, a potentially lethal pregnancy complication. The pathophysiology of preeclampsia has been conceptualized in the two-stage model. Originally, highlighting the importance of poor placentation for early-onset preeclampsia, the revised two-stage model explains late-onset preeclampsia as well, which is often preceded by normal placentation. We discuss how cellular senescence in the placenta may fit with the framework of the revised two-stage model of preeclampsia pathophysiology and summarize potential cellular and molecular mechanisms, including effects on placental and maternal endothelial function. Cellular senescence may occur in response to inflammatory processes and oxidative, mitochondrial, or endoplasmic reticulum stress and chronic stress induce accelerated, premature placental senescence. In preeclampsia, both circulating and tissue-based senescence markers are present. We suggest that aspirin prophylaxis, commonly recommended from the first trimester onward for women at risk of preeclampsia, may affect placentation and possibly mechanisms of placental senescence, thus attenuating the risk of preeclampsia developing clinically. We propose that biomarkers of placental dysfunction and senescence may contribute to altered preventive strategies, including discontinuation of aspirin at week 24-28 depending on placenta-associated biomarker risk stratification.
Collapse
Affiliation(s)
- Meryam Sugulle
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
| | - Bendik S Fiskå
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
| | - Daniel Pitz Jacobsen
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
| | - Heidi Elisabeth Fjeldstad
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
| | - Anne Cathrine Staff
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
39
|
Brockmueller A, Ruiz de Porras V, Shakibaei M. Curcumin and its anti-colorectal cancer potential: From mechanisms of action to autophagy. Phytother Res 2024; 38:3525-3551. [PMID: 38699926 DOI: 10.1002/ptr.8220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
Colorectal cancer (CRC) development and progression, one of the most common cancers globally, is supported by specific mechanisms to escape cell death despite chemotherapy, including cellular autophagy. Autophagy is an evolutionarily highly conserved degradation pathway involved in a variety of cellular processes, such as the maintenance of cellular homeostasis and clearance of foreign bodies, and its imbalance is associated with many diseases. However, the role of autophagy in CRC progression remains controversial, as it has a dual function, affecting either cell death or survival, and is associated with cellular senescence in tumor therapy. Indeed, numerous data have been presented that autophagy in cancers serves as an alternative to cell apoptosis when the latter is ineffective or in apoptosis-resistant cells, which is why it is also referred to as programmed cell death type II. Curcumin, one of the active constituents of Curcuma longa, has great potential to combat CRC by influencing various cellular signaling pathways and epigenetic regulation in a safe and cost-effective approach. This review discusses the efficacy of curcumin against CRC in vitro and in vivo, particularly its modulation of autophagy and apoptosis in various cellular pathways. While clinical studies have assessed the potential of curcumin in cancer prevention and treatment, none have specifically examined its role in autophagy. Nonetheless, we offer an overview of potential correlations to support the use of this polyphenol as a prophylactic or co-therapeutic agent in CRC.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Vicenç Ruiz de Porras
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Barcelona, Spain
- GRET and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
40
|
Huzum RM, Hînganu MV, Huzum B, Hînganu D. Advances in Molecular Research on Hip Joint Impingement-A Vascular Perspective. Biomolecules 2024; 14:784. [PMID: 39062498 PMCID: PMC11275018 DOI: 10.3390/biom14070784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
With the rise in longevity within the population, medicine continues to encounter fresh hurdles necessitating prompt actions, among which are those associated with hip joint aging. Age-related arthropathies encompass damage to bones' articulating extremities and their supporting structures, such as articular cartilage, and alterations in the quantity and quality of synovial fluid. This study aims to summarize the biomolecular methods of hip joint evaluation focused on its vascularization, using data correlated with biomolecular research on other joints and tissues, in order to reach an objective opinion of the study prospects in this field. Following a retrospective study on most modern biomolecular research methods on the synovium, the capsule, and the articular cartilage of the hip joint, we have hereby concretized certain future research directions in this field that will improve the qualitative and morphofunctional management of the hip joint at an advanced age, even within population categories at risk of developing various degenerative joint pathologies.
Collapse
Affiliation(s)
- Riana Maria Huzum
- Department of Radiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 400347 Iasi, Romania;
| | - Marius Valeriu Hînganu
- Department of Morpho-Functional Sciences I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 400347 Iasi, Romania;
| | - Bogdan Huzum
- Department of Orthopedics and Traumatology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 400347 Iasi, Romania;
| | - Delia Hînganu
- Department of Morpho-Functional Sciences I, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 400347 Iasi, Romania;
| |
Collapse
|
41
|
Cai Y, Han Z, Cheng H, Li H, Wang K, Chen J, Liu ZX, Xie Y, Lin Y, Zhou S, Wang S, Zhou X, Jin S. The impact of ageing mechanisms on musculoskeletal system diseases in the elderly. Front Immunol 2024; 15:1405621. [PMID: 38774874 PMCID: PMC11106385 DOI: 10.3389/fimmu.2024.1405621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Ageing is an inevitable process that affects various tissues and organs of the human body, leading to a series of physiological and pathological changes. Mechanisms such as telomere depletion, stem cell depletion, macrophage dysfunction, and cellular senescence gradually manifest in the body, significantly increasing the incidence of diseases in elderly individuals. These mechanisms interact with each other, profoundly impacting the quality of life of older adults. As the ageing population continues to grow, the burden on the public health system is expected to intensify. Globally, the prevalence of musculoskeletal system diseases in elderly individuals is increasing, resulting in reduced limb mobility and prolonged suffering. This review aims to elucidate the mechanisms of ageing and their interplay while exploring their impact on diseases such as osteoarthritis, osteoporosis, and sarcopenia. By delving into the mechanisms of ageing, further research can be conducted to prevent and mitigate its effects, with the ultimate goal of alleviating the suffering of elderly patients in the future.
Collapse
Affiliation(s)
- Yijin Cai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Cheng
- School of Automation Engineering, University of Electronic Science and Technology, Chengdu, China
| | - Hongpeng Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Chen
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhi-Xiang Liu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulong Xie
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuwei Zhou
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Siyu Wang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xiao Zhou
- Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| | - Song Jin
- Department of Rehabilitation, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
42
|
Dolan M, Shi Y, Mastri M, Long MD, McKenery A, Hill JW, Vaghi C, Benzekry S, Barbi J, Ebos JM. A senescence-mimicking (senomimetic) VEGFR TKI side-effect primes tumor immune responses via IFN/STING signaling. Mol Cancer Ther 2024; 23:745113. [PMID: 38690835 PMCID: PMC11527799 DOI: 10.1158/1535-7163.mct-24-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Tyrosine kinase inhibitors (TKIs) that block the vascular endothelial growth factor receptors (VEGFRs) disrupt tumor angiogenesis but also have many unexpected side-effects that impact tumor cells directly. This includes the induction of molecular markers associated with senescence, a form of cellular aging that typically involves growth arrest. We have shown that VEGFR TKIs can hijack these aging programs by transiently inducting senescence-markers (SMs) in tumor cells to activate senescence-associated secretory programs that fuel drug resistance. Here we show that these same senescence-mimicking ('senomimetic') VEGFR TKI effects drive an enhanced immunogenic signaling that, in turn, can alter tumor response to immunotherapy. Using a live-cell sorting method to detect beta-galactosidase, a commonly used SM, we found that subpopulations of SM-expressing (SM+) tumor cells have heightened interferon (IFN) signaling and increased expression of IFN-stimulated genes (ISGs). These ISG increases were under the control of the STimulator of INterferon Gene (STING) signaling pathway, which we found could be directly activated by several VEGFR TKIs. TKI-induced SM+ cells could stimulate or suppress CD8 T-cell activation depending on host:tumor cell contact while tumors grown from SM+ cells were more sensitive to PD-L1 inhibition in vivo, suggesting that offsetting immune-suppressive functions of SM+ cells can improve TKI efficacy overall. Our findings may explain why some (but not all) VEGFR TKIs improve outcomes when combined with immunotherapy and suggest that exploiting senomimetic drug side-effects may help identify TKIs that uniquely 'prime' tumors for enhanced sensitivity to PD-L1 targeted agents.
Collapse
Affiliation(s)
- Melissa Dolan
- Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center Buffalo, NY, 14263. USA
| | - Yuhao Shi
- Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center Buffalo, NY, 14263. USA
| | - Michalis Mastri
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263. USA
| | - Mark D. Long
- Department of Bioinformatics and Statistics, Roswell Park Comprehensive Cancer Center Buffalo, NY, 14263. USA
| | - Amber McKenery
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263. USA
| | - James W. Hill
- Jacobs School of Medicine and Biomedical Sciences, SUNY at Buffalo, Buffalo, New York, 14263. USA
| | - Cristina Vaghi
- Inria Team MONC, Inria Bordeaux Sud-Ouest, Talence, France
- Computational Pharmacology and Clinical Oncology (COMPO), Inria Sophia Antipolis–Méditerranée, Cancer Research Center of Marseille, Inserm UMR1068, CNRS UMR7258, Aix Marseille University UM105, 13385 Marseille, France
| | - Sebastien Benzekry
- Inria Team MONC, Inria Bordeaux Sud-Ouest, Talence, France
- Computational Pharmacology and Clinical Oncology (COMPO), Inria Sophia Antipolis–Méditerranée, Cancer Research Center of Marseille, Inserm UMR1068, CNRS UMR7258, Aix Marseille University UM105, 13385 Marseille, France
| | - Joseph Barbi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263. USA
| | - John M.L. Ebos
- Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center Buffalo, NY, 14263. USA
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263. USA
- Department of Medicine, Roswell Park Comprehensive Cancer Center Buffalo, NY, 14263. USA
- Lead Contact
| |
Collapse
|
43
|
Ruple BA, Mattingly ML, Godwin JS, McIntosh MC, Kontos NJ, Agyin-Birikorang A, Michel JM, Plotkin DL, Chen SY, Ziegenfuss TN, Fruge AD, Gladden LB, Robinson AT, Mobley CB, Mackey AL, Roberts MD. The effects of resistance training on denervated myofibers, senescent cells, and associated protein markers in middle-aged adults. FASEB J 2024; 38:e23621. [PMID: 38651653 PMCID: PMC11047210 DOI: 10.1096/fj.202302103rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Denervated myofibers and senescent cells are hallmarks of skeletal muscle aging. However, sparse research has examined how resistance training affects these outcomes. We investigated the effects of unilateral leg extensor resistance training (2 days/week for 8 weeks) on denervated myofibers, senescent cells, and associated protein markers in apparently healthy middle-aged participants (MA, 55 ± 8 years old, 17 females, 9 males). We obtained dual-leg vastus lateralis (VL) muscle cross-sectional area (mCSA), VL biopsies, and strength assessments before and after training. Fiber cross-sectional area (fCSA), satellite cells (Pax7+), denervated myofibers (NCAM+), senescent cells (p16+ or p21+), proteins associated with denervation and senescence, and senescence-associated secretory phenotype (SASP) proteins were analyzed from biopsy specimens. Leg extensor peak torque increased after training (p < .001), while VL mCSA trended upward (interaction p = .082). No significant changes were observed for Type I/II fCSAs, NCAM+ myofibers, or senescent (p16+ or p21+) cells, albeit satellite cells increased after training (p = .037). While >90% satellite cells were not p16+ or p21+, most p16+ and p21+ cells were Pax7+ (>90% on average). Training altered 13 out of 46 proteins related to muscle-nerve communication (all upregulated, p < .05) and 10 out of 19 proteins related to cellular senescence (9 upregulated, p < .05). Only 1 out of 17 SASP protein increased with training (IGFBP-3, p = .031). In conclusion, resistance training upregulates proteins associated with muscle-nerve communication in MA participants but does not alter NCAM+ myofibers. Moreover, while training increased senescence-related proteins, this coincided with an increase in satellite cells but not alterations in senescent cell content or SASP proteins. These latter findings suggest shorter term resistance training is an unlikely inducer of cellular senescence in apparently healthy middle-aged participants. However, similar study designs are needed in older and diseased populations before definitive conclusions can be drawn.
Collapse
Affiliation(s)
| | | | | | | | | | | | - J. Max Michel
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | | | | | | | | | | | | | | | - Abigail L. Mackey
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DK
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery, Copenhagen University Hospital – Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | | |
Collapse
|
44
|
Kalisperati P, Spanou E, Pateras IS, Evangelou K, Thymara I, Korkolopoulou P, Kotsinas A, Vlachoyiannopoulos PG, Tzioufas AG, Kanellopoulos C, Gorgoulis VG, Sougioultzis S. Helicobacter pylori Eradication Reverses DNA Damage Response Pathway but Not Senescence in Human Gastric Epithelium. Int J Mol Sci 2024; 25:3888. [PMID: 38612698 PMCID: PMC11011975 DOI: 10.3390/ijms25073888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Helicobacter pylori (H. pylori) infection induces DNA Double-Strand Breaks (DSBs) and consequently activates the DNA Damage Response pathway (DDR) and senescence in gastric epithelium. We studied DDR activation and senescence before and after the eradication of the pathogen. Gastric antral and corpus biopsies of 61 patients with H. pylori infection, prior to and after eradication treatment, were analyzed by means of immunohistochemistry/immunofluorescence for DDR marker (γH2AΧ, phosporylated ataxia telangiectasia-mutated (pATM), p53-binding protein (53BP1) and p53) expression. Samples were also evaluated for Ki67 (proliferation index), cleaved caspase-3 (apoptotic index) and GL13 staining (cellular senescence). Ten H. pylori (-) dyspeptic patients served as controls. All patients were re-endoscoped in 72-1361 days (mean value 434 days), and tissue samples were processed in the same manner. The eradication of the microorganism, in human gastric mucosa, downregulates γH2AΧ expression in both the antrum and corpus (p = 0.00019 and p = 0.00081 respectively). The expression of pATM, p53 and 53BP1 is also reduced after eradication. Proliferation and apoptotic indices were reduced, albeit not significantly, after pathogen clearance. Moreover, cellular senescence is increased in H. pylori-infected mucosa and remains unaffected after eradication. Interestingly, senescence was statistically increased in areas of intestinal metaplasia (IM) compared with adjacent non-metaplastic mucosa (p < 0.001). In conclusion, H. pylori infection triggers DSBs, DDR and senescence in the gastric epithelium. Pathogen eradication reverses the DDR activation but not senescence. Increased senescent cells may favor IM persistence, thus potentially contributing to gastric carcinogenesis.
Collapse
Affiliation(s)
- Polyxeni Kalisperati
- Gastroenterology Unit, Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece;
| | - Evangelia Spanou
- Gastroenterology Unit, Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece;
| | - Ioannis S. Pateras
- 2nd Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, 12462 Athens, Greece;
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece; (K.E.); (A.K.); (V.G.G.)
| | - Irene Thymara
- 1st Department of Pathology, Laiko Hospital, School of Medicine, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece; (I.T.); (P.K.)
| | - Penelope Korkolopoulou
- 1st Department of Pathology, Laiko Hospital, School of Medicine, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece; (I.T.); (P.K.)
| | - Athanassios Kotsinas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece; (K.E.); (A.K.); (V.G.G.)
| | - Panayiotis G. Vlachoyiannopoulos
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece; (P.G.V.); (A.G.T.)
| | - Athanasios G. Tzioufas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece; (P.G.V.); (A.G.T.)
| | - Christos Kanellopoulos
- Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Faculty of Medicine, National Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece; (K.E.); (A.K.); (V.G.G.)
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 4HN, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Faculty of Health and Medical Sciences, University of Surrey, 30 Priestley Road, Surrey Research Park, Guildford, Surrey GU2 7YH, UK
| | - Stavros Sougioultzis
- Gastroenterology Unit, Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Mikras Asias 75, 11527 Athens, Greece;
| |
Collapse
|
45
|
Fan H, Qiao Z, Li J, Shang G, Shang C, Chen S, Leng Z, Su H, Kou H, Liu H. Recent advances in senescence-associated secretory phenotype and osteoporosis. Heliyon 2024; 10:e25538. [PMID: 38375248 PMCID: PMC10875379 DOI: 10.1016/j.heliyon.2024.e25538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
The worldwide elderly population is on the rise, and aging is a major osteoporosis risk factor. Senescent cells accumulation can have a detrimental effect the body as we age. The senescence-associated secretory phenotype (SASP), an essential cellular senescence hallmark, is an important mechanism connecting cellular senescence to osteoporosis. This review describes in detail the characteristics of SASPs and their regulatory agencies, and shed fresh light on how SASPs from different senescent cells contribute to osteoporosis development. Furthermore, we summarized various innovative therapy techniques that target SASPs to lower the burden of osteoporosis in the elderly and discussed the potential challenges of SASPs-based therapy for osteoporosis as a new clinical trial.
Collapse
Affiliation(s)
- Haonan Fan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Zhi Qiao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Jitian Li
- Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital)/Henan Institute of Orthopedic and Traumatology, Luoyang 471000, China
| | - Guowei Shang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Chunfeng Shang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Zikuan Leng
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Huifang Su
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Hongwei Kou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
46
|
Dong H, Sun Y, Nie L, Cui A, Zhao P, Leung WK, Wang Q. Metabolic memory: mechanisms and diseases. Signal Transduct Target Ther 2024; 9:38. [PMID: 38413567 PMCID: PMC10899265 DOI: 10.1038/s41392-024-01755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
Metabolic diseases and their complications impose health and economic burdens worldwide. Evidence from past experimental studies and clinical trials suggests our body may have the ability to remember the past metabolic environment, such as hyperglycemia or hyperlipidemia, thus leading to chronic inflammatory disorders and other diseases even after the elimination of these metabolic environments. The long-term effects of that aberrant metabolism on the body have been summarized as metabolic memory and are found to assume a crucial role in states of health and disease. Multiple molecular mechanisms collectively participate in metabolic memory management, resulting in different cellular alterations as well as tissue and organ dysfunctions, culminating in disease progression and even affecting offspring. The elucidation and expansion of the concept of metabolic memory provides more comprehensive insight into pathogenic mechanisms underlying metabolic diseases and complications and promises to be a new target in disease detection and management. Here, we retrace the history of relevant research on metabolic memory and summarize its salient characteristics. We provide a detailed discussion of the mechanisms by which metabolic memory may be involved in disease development at molecular, cellular, and organ levels, with emphasis on the impact of epigenetic modulations. Finally, we present some of the pivotal findings arguing in favor of targeting metabolic memory to develop therapeutic strategies for metabolic diseases and provide the latest reflections on the consequences of metabolic memory as well as their implications for human health and diseases.
Collapse
Affiliation(s)
- Hao Dong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuezhang Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lulingxiao Nie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Aimin Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pengfei Zhao
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Wai Keung Leung
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
47
|
Hattangady NG, Carter K, Maroni-Rana B, Wang T, Ayers JL, Yu M, Grady WM. Mapping the core senescence phenotype of primary human colon fibroblasts. Aging (Albany NY) 2024; 16:3068-3087. [PMID: 38385965 PMCID: PMC10929841 DOI: 10.18632/aging.205577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024]
Abstract
Advanced age is the largest risk factor for many diseases and several types of cancer, including colorectal cancer (CRC). Senescent cells are known to accumulate with age in various tissues, where they can modulate the surrounding tissue microenvironment through their senescence associated secretory phenotype (SASP). Recently, we showed that there is an increased number of senescent cells in the colons of CRC patients and demonstrated that senescent fibroblasts and their SASP create microniches in the colon that are conducive to CRC onset and progression. However, the composition of the SASP is heterogenous and cell-specific, and the precise senescence profile of colon fibroblasts has not been well-defined. To generate a SASP atlas of human colon fibroblasts, we induced senescence in primary human colon fibroblasts using various in vitro methods and assessed the resulting transcriptome. Using RNASequencing and further validation by quantitative RT-PCR and Luminex assays, we define and validate a 'core senescent profile' that might play a significant role in shaping the colon microenvironment. We also performed KEGG analysis and GO analyses to identify key pathways and biological processes that are differentially regulated in colon fibroblast senescence. These studies provide insights into potential driver proteins involved in senescence-associated diseases, like CRC, which may lead to therapies to improve overall health in the elderly and to prevent CRC.
Collapse
Affiliation(s)
- Namita Ganesh Hattangady
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Kelly Carter
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Brett Maroni-Rana
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ting Wang
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Jessica Lee Ayers
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ming Yu
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - William M. Grady
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Division of Gastroenterology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
48
|
Gleason CE, Dickson MA, Klein (Dooley) ME, Antonescu CR, Gularte-Mérida R, Benitez M, Delgado JI, Kataru RP, Tan MWY, Bradic M, Adamson TE, Seier K, Richards AL, Palafox M, Chan E, D'Angelo SP, Gounder MM, Keohan ML, Kelly CM, Chi P, Movva S, Landa J, Crago AM, Donoghue MT, Qin LX, Serra V, Turkekul M, Barlas A, Firester DM, Manova-Todorova K, Mehrara BJ, Kovatcheva M, Tan NS, Singer S, Tap WD, Koff A. Therapy-Induced Senescence Contributes to the Efficacy of Abemaciclib in Patients with Dedifferentiated Liposarcoma. Clin Cancer Res 2024; 30:703-718. [PMID: 37695642 PMCID: PMC10870201 DOI: 10.1158/1078-0432.ccr-23-2378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
PURPOSE We conducted research on CDK4/6 inhibitors (CDK4/6i) simultaneously in the preclinical and clinical spaces to gain a deeper understanding of how senescence influences tumor growth in humans. PATIENTS AND METHODS We coordinated a first-in-kind phase II clinical trial of the CDK4/6i abemaciclib for patients with progressive dedifferentiated liposarcoma (DDLS) with cellular studies interrogating the molecular basis of geroconversion. RESULTS Thirty patients with progressing DDLS enrolled and were treated with 200 mg of abemaciclib twice daily. The median progression-free survival was 33 weeks at the time of the data lock, with 23 of 30 progression-free at 12 weeks (76.7%, two-sided 95% CI, 57.7%-90.1%). No new safety signals were identified. Concurrent preclinical work in liposarcoma cell lines identified ANGPTL4 as a necessary late regulator of geroconversion, the pathway from reversible cell-cycle exit to a stably arrested inflammation-provoking senescent cell. Using this insight, we were able to identify patients in which abemaciclib induced tumor cell senescence. Senescence correlated with increased leukocyte infiltration, primarily CD4-positive cells, within a month of therapy. However, those individuals with both senescence and increased TILs were also more likely to acquire resistance later in therapy. These suggest that combining senolytics with abemaciclib in a subset of patients may improve the duration of response. CONCLUSIONS Abemaciclib was well tolerated and showed promising activity in DDLS. The discovery of ANGPTL4 as a late regulator of geroconversion helped to define how CDK4/6i-induced cellular senescence modulates the immune tumor microenvironment and contributes to both positive and negative clinical outcomes. See related commentary by Weiss et al., p. 649.
Collapse
Affiliation(s)
- Caroline E. Gleason
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Program in Molecular Biology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Mark A. Dickson
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Mary E. Klein (Dooley)
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Program in Molecular Biology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | | | - Rodrigo Gularte-Mérida
- Department of Surgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Marimar Benitez
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Program in Molecular Biology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Juliana I. Delgado
- Louis V. Gerstner Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
- Program in Molecular Biology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Raghu P. Kataru
- Department of Plastic Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark Wei Yi Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Martina Bradic
- The Marie Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Travis E. Adamson
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Kenneth Seier
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Allison L. Richards
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Marta Palafox
- The Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Eric Chan
- The Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sandra P. D'Angelo
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Mrinal M. Gounder
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Mary Louise Keohan
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Ciara M. Kelly
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Ping Chi
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
- Human Oncology and Pathogenesis, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sujana Movva
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Jonathan Landa
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Aimee M. Crago
- Department of Surgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Mark T.A. Donoghue
- The Marie Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Li-Xuan Qin
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Violetta Serra
- The Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Mesruh Turkekul
- The Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Afsar Barlas
- The Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel M. Firester
- Department of Sensory Neuroscience, The Rockefeller University, New York, New York
| | - Katia Manova-Todorova
- The Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Babak J. Mehrara
- Department of Plastic Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marta Kovatcheva
- Program in Molecular Biology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - William D. Tap
- Departments of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Andrew Koff
- Program in Molecular Biology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| |
Collapse
|
49
|
De Blander H, Tonon L, Fauvet F, Pommier RM, Lamblot C, Benhassoun R, Angileri F, Gibert B, Rodriguez R, Ouzounova M, Morel AP, Puisieux A. Cooperative pro-tumorigenic adaptation to oncogenic RAS through epithelial-to-mesenchymal plasticity. SCIENCE ADVANCES 2024; 10:eadi1736. [PMID: 38354248 PMCID: PMC10866563 DOI: 10.1126/sciadv.adi1736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
In breast cancers, aberrant activation of the RAS/MAPK pathway is strongly associated with mesenchymal features and stemness traits, suggesting an interplay between this mitogenic signaling pathway and epithelial-to-mesenchymal plasticity (EMP). By using inducible models of human mammary epithelial cells, we demonstrate herein that the oncogenic activation of RAS promotes ZEB1-dependent EMP, which is necessary for malignant transformation. Notably, EMP is triggered by the secretion of pro-inflammatory cytokines from neighboring RAS-activated senescent cells, with a prominent role for IL-6 and IL-1α. Our data contrast with the common view of cellular senescence as a tumor-suppressive mechanism and EMP as a process promoting late stages of tumor progression in response to signals from the tumor microenvironment. We highlighted here a pro-tumorigenic cooperation of RAS-activated mammary epithelial cells, which leverages on oncogene-induced senescence and EMP to trigger cellular reprogramming and malignant transformation.
Collapse
Affiliation(s)
- Hadrien De Blander
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Equipe Labellisée Ligue Contre le Cancer, 69008, Lyon, France
- LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
| | - Laurie Tonon
- Synergie Lyon Cancer, Plateforme de Bioinformatique ‘Gilles Thomas’, Centre Léon Bérard, Lyon, France
| | - Frédérique Fauvet
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Equipe Labellisée Ligue Contre le Cancer, 69008, Lyon, France
- LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
| | - Roxane M. Pommier
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Equipe Labellisée Ligue Contre le Cancer, 69008, Lyon, France
- LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
- Synergie Lyon Cancer, Plateforme de Bioinformatique ‘Gilles Thomas’, Centre Léon Bérard, Lyon, France
| | - Christelle Lamblot
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Equipe Labellisée Ligue Contre le Cancer, 69008, Lyon, France
- LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
| | - Rahma Benhassoun
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Equipe Labellisée Ligue Contre le Cancer, 69008, Lyon, France
- LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
| | - Francesca Angileri
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Equipe Labellisée Ligue Contre le Cancer, 69008, Lyon, France
- LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
| | - Benjamin Gibert
- LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
- Gastroenterology and Technologies for Health Group, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS5286, Université Lyon 1, 69008, Lyon, France
| | - Raphaël Rodriguez
- Equipe Labellisée Ligue Contre le Cancer, CNRS UMR 3666, INSERM U1143, Paris, France
- Institut Curie, PSL Research University, Paris, France
| | - Maria Ouzounova
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Equipe Labellisée Ligue Contre le Cancer, 69008, Lyon, France
- LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
| | - Anne-Pierre Morel
- Cancer Research Center of Lyon, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Equipe Labellisée Ligue Contre le Cancer, 69008, Lyon, France
- LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
| | - Alain Puisieux
- Equipe Labellisée Ligue Contre le Cancer, CNRS UMR 3666, INSERM U1143, Paris, France
- Institut Curie, PSL Research University, Paris, France
| |
Collapse
|
50
|
Konar GJ, Flickinger Z, Sharma S, Vallone KT, Lyon CE, Doshier C, Lingan A, Lyon W, Patton JG. Damage-Induced Senescent Immune Cells Regulate Regeneration of the Zebrafish Retina. AGING BIOLOGY 2024; 2:e20240021. [PMID: 39156966 PMCID: PMC11328971 DOI: 10.59368/agingbio.20240021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Zebrafish spontaneously regenerate their retinas in response to damage through the action of Müller glia (MG). Even though MG are conserved in higher vertebrates, the capacity to regenerate retinal damage is lost. Recent work has focused on the regulation of inflammation during tissue regeneration, with temporal roles for macrophages and microglia. Senescent cells that have withdrawn from the cell cycle have mostly been implicated in aging but are still metabolically active, releasing a variety of signaling molecules as part of the senescence-associated secretory phenotype. Here, we discover that in response to retinal damage, a subset of cells expressing markers of microglia/macrophages also express markers of senescence. These cells display a temporal pattern of appearance and clearance during retina regeneration. Premature removal of senescent cells by senolytic treatment led to a decrease in proliferation and incomplete repair of the ganglion cell layer after N-methyl-D-aspartate damage. Our results demonstrate a role for modulation of senescent cell responses to balance inflammation, regeneration, plasticity, and repair as opposed to fibrosis and scarring.
Collapse
Affiliation(s)
- Gregory J. Konar
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Zachary Flickinger
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Shivani Sharma
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Kyle T. Vallone
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Charles E. Lyon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Claire Doshier
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Audrey Lingan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - William Lyon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - James G. Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|