1
|
Faino AV, Gordon WW, Buckingham K, Stilp AM, Pace RG, Raraigh KS, Collaco JM, Zhou YH, Dang H, O'Neal W, Knowles MK, Cutting GR, Rosenfeld M, Bamshad MJ, Gibson RL, Blue EE. CHP2 Modifies Chronic Pseudomonas aeruginosa Airway Infection Risk in Cystic Fibrosis. Ann Am Thorac Soc 2025; 22:715-723. [PMID: 39746161 DOI: 10.1513/annalsats.202408-868oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Rationale: Chronic Pseudomonas aeruginosa (Pa) airway infection is common and a key contributor to diminished lung function and early mortality in persons with cystic fibrosis (PwCF). Risk factors for chronic Pa among PwCF include CFTR (cystic fibrosis transmembrane conductance regulator) genotype, genetic modifiers, and environmental factors. Intensive antibiotic therapy and highly effective modulators do not eradicate Pa in most adolescents and adults with cystic fibrosis. Objectives: To identify new genetic modifiers contributing to the pathophysiology of chronic Pa infection in PwCF. Methods: A total of 4,945 participants in the CF Genome Project with whole-genome sequencing linked to longitudinal clinical data from the 2017 Cystic Fibrosis Foundation Patient Registry were used to conduct a time-to-event genome-wide association study using two definitions of chronic Pa infection. Results: We identified a genome-wide significant association (P = 2.2 × 10-8) between delayed onset of chronic Pa infection and rs194810, a common variant near the gene CHP2, which encodes calcineurin B homolog protein 2 (minor A allele frequency 43%). Survival curves by rs198410 allele dosage show that PwCF homozygous for the A allele are an average of 3 years older when achieving chronic Pa infection compared with G allele homozygotes. Conclusions: Variants near CHP2 are associated with a significant delay in the age of chronic Pa infection among PwCF.
Collapse
Affiliation(s)
- Anna V Faino
- Children's Core for Biostatistics, Epidemiology and Analytics in Research
| | | | | | | | - Rhonda G Pace
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Joseph M Collaco
- Eudowood Division of Pediatric Respiratory Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Yi-Hui Zhou
- Bioinformatics Research Center and
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina; and
| | - Hong Dang
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Wanda O'Neal
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael K Knowles
- Marsico Lung Institute/University of North Carolina Cystic Fibrosis Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Margaret Rosenfeld
- Center for Clinical and Translational Research, and
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington School of Medicine
| | - Michael J Bamshad
- Division of Genetic Medicine and
- Department of Genome Sciences
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
| | - Ronald L Gibson
- Center for Respiratory Biology and Therapeutics, Seattle Children's Research Institute, Seattle, Washington
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington School of Medicine
| | - Elizabeth E Blue
- Division of Medical Genetics, Department of Medicine, and
- Institute for Public Health Genetics, University of Washington, Seattle, Washington
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
| |
Collapse
|
2
|
Elsheikh A, Driggers CM, Truong HH, Yang Z, Allen J, Henriksen NM, Walczewska-Szewc K, Shyng SL. AI-based discovery and cryoEM structural elucidation of a K ATP channel pharmacochaperone. eLife 2025; 13:RP103159. [PMID: 40135739 PMCID: PMC11942174 DOI: 10.7554/elife.103159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
Pancreatic KATP channel trafficking defects underlie congenital hyperinsulinism (CHI) cases unresponsive to the KATP channel opener diazoxide, the mainstay medical therapy for CHI. Current clinically used KATP channel inhibitors have been shown to act as pharmacochaperones and restore surface expression of trafficking mutants; however, their therapeutic utility for KATP trafficking-impaired CHI is hindered by high affinity binding, which limits functional recovery of rescued channels. Recent structural studies of KATP channels employing cryo-electron microscopy (cryoEM) have revealed a promiscuous pocket where several known KATP pharmacochaperones bind. The structural knowledge provides a framework for discovering KATP channel pharmacochaperones with desired reversible inhibitory effects to permit functional recovery of rescued channels. Using an AI-based virtual screening technology AtomNet followed by functional validation, we identified a novel compound, termed Aekatperone, which exhibits chaperoning effects on KATP channel trafficking mutations. Aekatperone reversibly inhibits KATP channel activity with a half-maximal inhibitory concentration (IC50) ~9 μM. Mutant channels rescued to the cell surface by Aekatperone showed functional recovery upon washout of the compound. CryoEM structure of KATP bound to Aekatperone revealed distinct binding features compared to known high affinity inhibitor pharmacochaperones. Our findings unveil a KATP pharmacochaperone enabling functional recovery of rescued channels as a promising therapeutic for CHI caused by KATP trafficking defects.
Collapse
Affiliation(s)
- Assmaa Elsheikh
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
- Department of Medical Biochemistry, College of Medicine, Tanta UniversityTantaEgypt
| | - Camden M Driggers
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| | | | - Zhongying Yang
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| | - John Allen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| | | | - Katarzyna Walczewska-Szewc
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in ToruńToruńPoland
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| |
Collapse
|
3
|
Nicosia L, Pranke I, Latorre RV, Murray JB, Lonetti L, Cavusoglu-Doran K, Dreano E, Costello JP, Carroll M, Melotti P, Sorio C, Sermet-Gaudelus I, Scallan MF, Harrison PT. Adenine base editing with engineered virus-like particles rescues the CFTR mutation G542X in patient-derived intestinal organoids. iScience 2025; 28:111979. [PMID: 40144632 PMCID: PMC11938077 DOI: 10.1016/j.isci.2025.111979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/05/2024] [Accepted: 02/05/2025] [Indexed: 03/28/2025] Open
Abstract
Cystic fibrosis (CF) is a life-shortening autosomal recessive disease, caused by loss-of-function mutations that affect the CF transmembrane conductance regulator (CFTR) anion channel. G542X is the second-most common CF-causing variant, and it does not respond to current CFTR modulator drugs. Our study explores the use of adenine base editing to edit G542X to a non-CF-causing variant, G542R, and recover CFTR function. Using base editor engineered virus-like particles (BE-eVLPs) in patient-derived intestinal organoids, we achieved ∼2% G542X-to-G542R editing efficiency and restored CFTR-mediated chloride transport to ∼6.4% of wild-type levels, independent of modulator treatment, and with no bystander edits. This proof-of-principle study demonstrates the potential of base editing to rescue G542X and provides a foundation for future in - vivo applications.
Collapse
Affiliation(s)
- Lucia Nicosia
- Department of Physiology, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Iwona Pranke
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | | | - Joss B. Murray
- Department of Physiology, University College Cork, Cork, Ireland
| | - Lisa Lonetti
- Department of Physiology, University College Cork, Cork, Ireland
| | | | - Elise Dreano
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
| | | | - Michael Carroll
- School of Microbiology, University College Cork, Cork, Ireland
| | - Paola Melotti
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Claudio Sorio
- Department of Medicine, University of Verona, Verona, Italy
| | - Isabelle Sermet-Gaudelus
- INSERM, CNRS, Institut Necker Enfants Malades, Paris, France
- Université Paris-Cité, Paris, France
- Cystic Fibrosis National Pediatric Reference Center, Pneumo-Allergologie Pédiatrique, Hôpital Necker Enfants Malades, , Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
- European Reference Network, ERN-Lung CF, Frankfurt am Mein, Germany
| | | | - Patrick T. Harrison
- Department of Physiology, University College Cork, Cork, Ireland
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| |
Collapse
|
4
|
Harris H, Kittur J. Unlocking the potential of CRISPR-Cas9 for cystic fibrosis: A systematic literature review. Gene 2025; 942:149257. [PMID: 39832688 DOI: 10.1016/j.gene.2025.149257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
CRISPR-Cas9 technology has revolutionized genetic engineering, offering precise and efficient genome editing capabilities. This review explores the application of CRISPR-Cas9 for cystic fibrosis (CF), particularly targeting mutations in the CFTR gene. CF is a multiorgan disease primarily affecting the lungs, gastrointestinal system (e.g., CF-related diabetes (CFRD), CF-associated liver disease (CFLD)), bones (CF-bone disease), and the reproductive system. CF, a genetic disorder characterized by defective ion transport leading to thick mucus accumulation, is often caused by mutations like ΔF508 in the CFTR gene. This review employs a systematic methodology, incorporating an extensive literature search across multiple academic databases, including PubMed, Web of Science, and ScienceDirect, to identify 40 high-quality studies focused on CRISPR-Cas9 applications for CFTR gene editing. The data collection process involved predefined inclusion criteria targeting experimental approaches, gene-editing outcomes, delivery methods, and verification techniques. Data analysis synthesized findings on editing efficiency, off-target effects, and delivery system optimization to present a comprehensive overview of the field. The review highlights the historical development of CRISPR-Cas9, its mechanism, and its transformative role in genetic engineering and medicine. A detailed examination of CRISPR-Cas9's application in CFTR gene correction emphasizes the potential for therapeutic interventions while addressing challenges such as off-target effects, delivery efficiency, and ethical considerations. Future directions include optimizing delivery systems, integrating advanced editing tools like prime and base editing, and expanding personalized medicine approaches to improve treatment outcomes. By systematically analyzing the current landscape, this review provides a foundation for advancing CRISPR-Cas9 technologies for cystic fibrosis treatment and related disorders.
Collapse
Affiliation(s)
- Hudson Harris
- Department of Biomedical Engineering, Gallogly College of Engineering, University of Oklahoma Norman OK USA.
| | - Javeed Kittur
- Department of Biomedical Engineering, Gallogly College of Engineering, University of Oklahoma Norman OK USA
| |
Collapse
|
5
|
Verster AJ, Salerno P, Valls R, Barrack K, Price CE, McClure EA, Madan JC, O’Toole GA, Sanville JL, Ross BD. Persistent delay in maturation of the developing gut microbiota in infants with cystic fibrosis. mBio 2025; 16:e0342024. [PMID: 39945545 PMCID: PMC11898760 DOI: 10.1128/mbio.03420-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/23/2025] [Indexed: 02/19/2025] Open
Abstract
The healthy human infant gut microbiome undergoes stereotypical changes in taxonomic composition between birth and maturation to an adult-like stable state. During this time, extensive communication between microbiota and the host immune system contributes to health status later in life. Although there are many reported associations between microbiota compositional alterations and disease in adults, less is known about how microbiome development is altered in pediatric diseases. One pediatric disease linked to altered gut microbiota composition is cystic fibrosis (CF), a multi-organ genetic disease involving impaired chloride secretion across epithelia and heightened inflammation both in the gut and at other body sites. Here, we use shotgun metagenomics to profile the strain-level composition and developmental dynamics of the infant fecal microbiota from several CF and non-CF longitudinal cohorts spanning from birth to greater than 36 months of life. We identify a set of keystone species that define microbiota development in early life in non-CF infants but are missing or decreased in relative abundance in infants with CF, resulting in a delayed pattern of microbiota maturation, persistent entrenchment in a transitional developmental phase, and subsequent failure to attain an adult-like stable microbiota. Delayed maturation is strongly associated with cumulative antibiotic treatments, and we also detect the increased relative abundance of oral-derived bacteria and higher levels of fungi in infants with CF, features that are associated with decreased gut bacterial density. These findings suggest the potential for future directed therapies targeted at overcoming developmental delays in microbiota maturation for infants with CF.IMPORTANCEThe human gastrointestinal tract harbors a diversity of microbes that colonize upon birth and collectively contribute to host health throughout life. Infants with the disease cystic fibrosis (CF) harbor altered gut microbiota compared to non-CF counterparts, with lower levels of beneficial bacteria. How this altered population is established in infants with CF and how it develops over the first years of life is not well understood. By leveraging multiple large non-CF infant fecal metagenomic data sets and samples from a CF cohort collected prior to highly effective modulator therapy, we define microbiome maturation in infants up to 3 years of age. Our findings identify conserved age-diagnostic species in the non-CF infant microbiome that are diminished in abundance in CF counterparts that instead exhibit an enrichment of oral-derived bacteria and fungi associated with antibiotic exposure. Together, our study builds toward microbiota-targeted therapy to restore healthy microbiota dynamics in infants with CF.
Collapse
Affiliation(s)
- Adrian J. Verster
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Paige Salerno
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Rebecca Valls
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Kaitlyn Barrack
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Courtney E. Price
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Emily A. McClure
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Juliette C. Madan
- Department of Pediatrics, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Julie L. Sanville
- Department of Pediatrics, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Benjamin D. Ross
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
6
|
Carrozzo I, Maule G, Gentile C, Umbach A, Ciciani M, Guidone D, De Santis M, Petris G, Vicente Galietta LJ, Arosio D, Cereseto A. Functional rescue of F508del-CFTR through revertant mutations introduced by CRISPR base editing. Mol Ther 2025; 33:970-985. [PMID: 39797401 PMCID: PMC11897810 DOI: 10.1016/j.ymthe.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/11/2024] [Accepted: 01/08/2025] [Indexed: 01/13/2025] Open
Abstract
Cystic fibrosis (CF) is a life-shortening autosomal recessive disease caused by mutations in the CFTR gene, resulting in functional impairment of the encoded ion channel. F508del mutation, a trinucleotide deletion, is the most frequent cause of CF, affecting approximately 80% of persons with CF (pwCFs). Even though current pharmacological treatments alleviate the F508del-CF disease symptoms, there is no definitive cure. Here, we leveraged revertant mutations (RMs) in cis with F508del to rescue CFTR protein folding and restore its function. We developed CRISPR base editing strategies to efficiently and precisely introduce the desired mutations in the F508del locus. Both editing and CFTR function recovery were verified in CF cellular models, including primary epithelial cells derived from pwCFs. The efficacy of the CFTR recovery strategy was validated in cultures of pseudostratified epithelia from pwCF cells showing full recovery of ion transport. Additionally, we observed an additive effect by combining our strategy with small molecules that enhance F508del activity, thus paving the way to combinatorial therapies.
Collapse
Affiliation(s)
- Irene Carrozzo
- Department CIBIO, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Giulia Maule
- Department CIBIO, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Carmelo Gentile
- Department CIBIO, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Alessandro Umbach
- Department CIBIO, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Matteo Ciciani
- Department CIBIO, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Daniela Guidone
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy
| | | | - Gianluca Petris
- Department CIBIO, University of Trento, Via delle Regole 101, 38123 Trento, Italy
| | - Luis Juan Vicente Galietta
- Telethon Institute of Genetics and Medicine, 80078 Pozzuoli, Italy; Department of Translational Medical Sciences, University of Napoli "Federico II", 80138 Napoli, Italy
| | - Daniele Arosio
- Institute of Biophysics, CNR, Via alla Cascata 56/C, 38123 Trento, Italy.
| | - Anna Cereseto
- Department CIBIO, University of Trento, Via delle Regole 101, 38123 Trento, Italy.
| |
Collapse
|
7
|
Zemanick ET, Ramsey B, Sands D, McKone EF, Fajac I, Taylor-Cousar JL, Mall MA, Konstan MW, Nair N, Zhu J, Arteaga-Solis E, Van Goor F, McGarry L, Prieto-Centurion V, Sosnay PR, Bozic C, Waltz D, Mayer-Hamblett N. Sweat chloride reflects CFTR function and correlates with clinical outcomes following CFTR modulator treatment. J Cyst Fibros 2025; 24:246-254. [PMID: 39755444 DOI: 10.1016/j.jcf.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Highly effective CFTR modulators improve CFTR function and lead to dramatic improvements in health outcomes in many people with cystic fibrosis (pwCF). The relationship between measures of CFTR function, such as sweat chloride concentration, and clinical outcomes in pwCF treated with CFTR modulators is poorly defined. We conducted analyses to better understand the relationships between sweat chloride and CFTR function in vitro, and between sweat chloride and clinical outcomes following CFTR modulator treatment. METHODS Mean sweat chloride values in healthy people, CF carriers, and pwCF treated with CFTR modulators at different doses were compared to chloride transport in corresponding human bronchial epithelial (HBE) cells. A pooled analysis of phase 3 CFTR modulator studies was performed to evaluate the relationship between attained values of sweat chloride and improvements in lung function, body mass index (BMI), patient reported outcomes, pulmonary exacerbations, and lung function change over time. RESULTS Sweat chloride concentrations in vivo correlated strongly with CFTR-dependent chloride current in HBE cells in vitro. Sweat chloride values of <30 mmol/L and ≥30 to <60 mmol/L in pwCF following CFTR modulator treatment were associated with better clinical outcomes than sweat chloride ≥60 to <80 mmol/L and ≥80 mmol/L. CONCLUSIONS In pwCF treated with CFTR modulators, lower sweat chloride levels (reflecting greater CFTR function) are associated with better clinical outcomes. These results support the therapeutic strategy of further restoring CFTR function towards normal, as reflected in lowering sweat chloride to below the diagnostic threshold for CF (<60 mmol/L) and to normal (<30 mmol/L), with CFTR modulators.
Collapse
Affiliation(s)
- Edith T Zemanick
- Department of Pediatrics, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO, USA.
| | - Bonnie Ramsey
- Cystic Fibrosis Therapeutics Development Network Coordinating Center, Seattle Children's Hospital, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Dorota Sands
- Cystic Fibrosis Department, Institute of Mother and Child, Warsaw, Poland
| | - Edward F McKone
- St. Vincent's University Hospital and University College, Dublin, Ireland
| | | | - Jennifer L Taylor-Cousar
- Departments of Internal Medicine and Pediatrics, Pulmonary Divisions National Jewish Health, Denver, CO, USA
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin and German Center for Lung Research, Associated Partner, Berlin, Germany and German Center for Child and Adolescent Health (DZKJ), partner site Berlin, Berlin, Germany
| | - Michael W Konstan
- Department of Pediatrics, Case Western Reserve University School of Medicine and Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - Nitin Nair
- Vertex Pharmaceuticals Incorporated, Boston, MA, USA
| | - Jiaqiang Zhu
- Vertex Pharmaceuticals Incorporated, Boston, MA, USA
| | | | | | - Lisa McGarry
- Vertex Pharmaceuticals Incorporated, Boston, MA, USA
| | | | | | - Carmen Bozic
- Vertex Pharmaceuticals Incorporated, Boston, MA, USA
| | - David Waltz
- Vertex Pharmaceuticals Incorporated, Boston, MA, USA
| | - Nicole Mayer-Hamblett
- Cystic Fibrosis Therapeutics Development Network Coordinating Center, Seattle Children's Hospital, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Department of Biostatistics, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Clarke J, Gadelsayed N, Elsammak M, Brady J, Elnazir B. Case Reflection of a Child With p.Phe312del/p.Phe508del Genotype Undetected on Newborn Screening and With No Clinical Features of Cystic Fibrosis Despite a Sweat Chloride Value in the Diagnostic Range. Cureus 2025; 17:e81151. [PMID: 40276426 PMCID: PMC12020654 DOI: 10.7759/cureus.81151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
This clinical overview reflects on a case of a nine-month-old boy presenting with mild bronchiolitis and persistently elevated transaminases. A total creatine kinase (CK) was requested to assess for dystrophinopathies, which was significantly elevated at 3000 U/L on repeat samples. Molecular testing confirmed the diagnosis of Becker's muscle dystrophy (BMD). During molecular testing, two cystic fibrosis (CF) mutations were incidentally detected, a p.Phe312del mutation and the classic CF-causing mutation p.Phe508del. Sweat chloride testing was repeatedly elevated in keeping with the diagnosis of CF. Despite the significantly elevated sweat chloride and molecular genetic profile showing heterozygosity for p.Phe508del and p.Phe312del mutations, the patient did not show any clinical manifestation of CF. During the newborn screening, immunoreactive trypsinogen (IRT) was 26 ng/mL, below the upper limit value used for screening (54 ng/mL) at that time. This case illustrates two important points: firstly, patients heterozygous for p.Phe312del and p.Phe508del mutations may not be detected during newborn screening and may not have clinical manifestations of cystic fibrosis despite having unequivocally elevated sweat chloride. Secondly, an unexplained elevation of transaminases should trigger creatine kinase testing to check for dystrophinopathies.
Collapse
Affiliation(s)
- Jonathan Clarke
- Pediatrics, Children's Health Ireland at Tallaght, Dublin, IRL
| | | | - Mohammed Elsammak
- Chemical Pathology, Children's Health Ireland at Temple Street, Dublin, IRL
| | - Jennifer Brady
- Clinical Biochemistry, Children's Health Ireland at Temple Street, Dublin, IRL
| | - Basil Elnazir
- Paediatric Respiratory Medicine, Children's Health Ireland at Tallaght, Dublin, IRL
| |
Collapse
|
9
|
Romeo E, Saccoliti F, Ocello R, Andonaia A, Allegretta C, Pastorino C, Pedemonte N, Falchi F, Laselva O, Bandiera T, Bertozzi F. Target Identification with Live-Cell Photoaffinity Labeling and Mechanism of Action Elucidation of ARN23765, a Highly Potent CFTR Corrector. J Med Chem 2025; 68:4596-4618. [PMID: 39928576 PMCID: PMC11873939 DOI: 10.1021/acs.jmedchem.4c02654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/12/2025]
Abstract
Molecular-targeted therapies for the treatment of cystic fibrosis (CF) rely on small-molecule modulators that rescue the activity of the defective CF transmembrane conductance regulator (CFTR) anion channel. ARN23765 is a small molecule with subnanomolar potency in rescuing the function of mutant CFTR in bronchial epithelial cells from CF patients carrying the F508del-CFTR mutation. Considering the multifaceted interactions of CFTR with the plasma membrane and the complexity of the protein network within the cellular compartments, here we report the investigation of ARN23765's molecular mechanism in live cells. We used the photoaffinity labeling (PAL) approach to demonstrate the interaction of ARN23765-derived probes with CFTR in cells. We showed that ARN23765 contributes to F508del-CFTR rescue by stabilizing the membrane-spanning domain-1 and interacting with CFTR at the same site as other type I CFTR correctors. Our study characterizes ARN23765's mode of action and highlights the potential of studying the interactions between CFTR and its correctors in live cells.
Collapse
Affiliation(s)
- Elisa Romeo
- Structural
Biophysics Facility, Istituto Italiano di
Tecnologia (IIT), Genova 16163, Italy
| | - Francesco Saccoliti
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), Genova 16163, Italy
| | - Riccardo Ocello
- Department
of Pharmacy and Biotechnology, University
of Bologna, Bologna 40126, Italy
- Computational
and Chemical Biology, Istituto Italiano
di Tecnologia (IIT), Genova 16163, Italy
| | - Angela Andonaia
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), Genova 16163, Italy
| | - Caterina Allegretta
- Department
of Clinical and Experimental Medicine, University
of Foggia, Foggia 71122, Italy
| | - Cristina Pastorino
- U.O.C.
Genetica
Medica, Istituto Giannina Gaslini (IGG), Genova 16147, Italy
| | - Nicoletta Pedemonte
- U.O.C.
Genetica
Medica, Istituto Giannina Gaslini (IGG), Genova 16147, Italy
| | - Federico Falchi
- Department
of Pharmacy and Biotechnology, University
of Bologna, Bologna 40126, Italy
- Computational
and Chemical Biology, Istituto Italiano
di Tecnologia (IIT), Genova 16163, Italy
| | - Onofrio Laselva
- Department
of Clinical and Experimental Medicine, University
of Foggia, Foggia 71122, Italy
| | - Tiziano Bandiera
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), Genova 16163, Italy
| | - Fabio Bertozzi
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), Genova 16163, Italy
| |
Collapse
|
10
|
Wang X, Tse C, Singh A. Discovery and Development of CFTR Modulators for the Treatment of Cystic Fibrosis. J Med Chem 2025; 68:2255-2300. [PMID: 39882833 DOI: 10.1021/acs.jmedchem.4c02547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Cystic fibrosis (CF) is a genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which regulates ion and fluid transport across epithelial cells. Mutations lead to complications, with life-limiting lung disease being the most severe manifestation. Traditional treatments focused on managing symptoms, but advances in understanding CF's molecular basis led to small-molecule CFTR modulators. Ivacaftor, which is a potentiator, was approved for gating mutations. Dual combinations like ivacaftor/lumacaftor and ivacaftor/tezacaftor brought together a potentiator and a class 1 corrector for F508del homozygous patients. Triple-combination CFTR modulators, including ivacaftor/tezacaftor/elexacaftor with an additional class 2 corrector, are now the standard of care for most CF patients, transforming the outlook for this disease. These drugs stabilize and potentiate the CFTR protein, improving lung function, sweat chloride levels, quality of life, and survival. This Perspective discusses CFTR structure and mutations, biological assays, medicinal chemistry research in identifying CFTR modulators, and clinical data of these agents.
Collapse
Affiliation(s)
- Xueqing Wang
- AbbVie Inc., 1000 Gateway Blvd, South San Francisco, California 94080, United States
| | - Chris Tse
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Ashvani Singh
- AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
11
|
ElSheikh A, Driggers CM, Truong HH, Yang Z, Allen J, Henriksen N, Walczewska-Szewc K, Shyng SL. AI-Based Discovery and CryoEM Structural Elucidation of a K ATP Channel Pharmacochaperone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.05.611490. [PMID: 39282384 PMCID: PMC11398524 DOI: 10.1101/2024.09.05.611490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Pancreatic KATP channel trafficking defects underlie congenital hyperinsulinism (CHI) cases unresponsive to the KATP channel opener diazoxide, the mainstay medical therapy for CHI. Current clinically used KATP channel inhibitors have been shown to act as pharmacochaperones and restore surface expression of trafficking mutants; however, their therapeutic utility for KATP trafficking impaired CHI is hindered by high-affinity binding, which limits functional recovery of rescued channels. Recent structural studies of KATP channels employing cryo-electron microscopy (cryoEM) have revealed a promiscuous pocket where several known KATP pharmacochaperones bind. The structural knowledge provides a framework for discovering KATP channel pharmacochaperones with desired reversible inhibitory effects to permit functional recovery of rescued channels. Using an AI-based virtual screening technology AtomNet® followed by functional validation, we identified a novel compound, termed Aekatperone, which exhibits chaperoning effects on KATP channel trafficking mutations. Aekatperone reversibly inhibits KATP channel activity with a half-maximal inhibitory concentration (IC50) ~ 9 μM. Mutant channels rescued to the cell surface by Aekatperone showed functional recovery upon washout of the compound. CryoEM structure of KATP bound to Aekatperone revealed distinct binding features compared to known high affinity inhibitor pharmacochaperones. Our findings unveil a KATP pharmacochaperone enabling functional recovery of rescued channels as a promising therapeutic for CHI caused by KATP trafficking defects.
Collapse
Affiliation(s)
- Assmaa ElSheikh
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Medical Biochemistry, College of Medicine, Tanta University, Tanta, Egypt
| | - Camden M. Driggers
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ha H. Truong
- Atomwise Inc., 250 Sutter St., Suite 650, San Francisco, CA, USA
| | - Zhongying Yang
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - John Allen
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Niel Henriksen
- Atomwise Inc., 250 Sutter St., Suite 650, San Francisco, CA, USA
| | - Katarzyna Walczewska-Szewc
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100 Toruń, Poland
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
12
|
Rodrigues CS, Railean V, Ramalho SS, Farinha CM, Pankonien I, Amaral MD. Personalized therapy with CFTR modulators: Response of p.Ile148Asn variant. J Cyst Fibros 2025:S1569-1993(25)00048-7. [PMID: 39919950 DOI: 10.1016/j.jcf.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/14/2025] [Accepted: 01/31/2025] [Indexed: 02/09/2025]
Abstract
BACKGROUND Elucidating the molecular and cellular effects caused by CFTR variants is crucial to understand Cystic Fibrosis (CF) disease pathophysiology, but also to predict disease severity, to provide genetic counselling, and to determine the most adequate therapeutic strategy for people with CF (pwCF). While the current CFTR modulator drugs (CFTRm) are approved mainly for pwCF with the most prevalent variant, p.Phe508del, pwCF carrying rare and/or uncharacterized CFTR variants are not eligible. However, previous studies have shown that such rare variants can be rescued by the approved CFTRm, suggesting clinical benefit for those pwCF. Here, we characterized the rare and non-eligible p.Ile148Asn CFTR variant found in Portuguese pwCF, regarding CFTR processing, traffic and function, and response to existing CFTRm. METHODS We used the forskolin-induced swelling (FIS) assay in intestinal organoids (IOs) from 2 CF individuals carrying p.Ile148Asn in heterozygosity with p.Phe508del and p.Gly542Ter, respectively. Additionally, a Cystic Fibrosis Bronchial Epithelial (CFBE) cell line expressing p.Ile148Asn-CFTR was generated to study the molecular defect of this variant individually. RESULTS Our results show that p.Ile148Asn is a CF-causing variant, impairing both CFTR plasma membrane (PM) traffic and function, albeit partially. Moreover, p.Ile148Asn-CFTR can be rescued by approved CFTRm in CFBE cells and IOs, suggesting potential clinical benefit for these individuals. CONCLUSION The work emphasizes the importance of testing CFTRm for rare variants not included in the drug label. It also shows that the 'theranostic' approach using IOs from pwCF, which captures the genetic background of each individual, complements theratyping in cell lines that focuses only on CFTR variants.
Collapse
Affiliation(s)
- Cláudia S Rodrigues
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Violeta Railean
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Sofia S Ramalho
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Carlos M Farinha
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Ines Pankonien
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal.
| | - Margarida D Amaral
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal.
| |
Collapse
|
13
|
Munidasa S, Zanette B, Dumas M, Wee W, Braganza S, Li D, Ratjen F, Santyr G. Comparison of 3D UTE free-breathing lung MRI with hyperpolarized 129Xe MRI in pediatric cystic fibrosis. Magn Reson Med 2025; 93:775-787. [PMID: 39285622 PMCID: PMC11604841 DOI: 10.1002/mrm.30299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 11/30/2024]
Abstract
PURPOSE To compare phase-resolved functional lung (PREFUL) regional ventilation derived from a free breathing 3D UTE radial MRI acquisition to hyperpolarized 129Xe-MRI (Xe-MRI), conventional 2D multi-slice PREFUL MRI, and pulmonary function tests in pediatric cystic fibrosis (CF) lung disease. METHODS Free-breathing 3D UTE and 2D multi-slice 1H MRI as well as Xe-MRI were acquired in 12 stable pediatric CF patients. Using PREFUL, regional ventilation (RVent) maps were calculated from the free-breathing data. Ventilation defect percentage (VDP) was determined from 3D and 2D RVent maps (2D VDPRVent and 3D VDPRVent, respectively) and Xe-MRI ventilation (VDPXe). VDP was calculated for the whole lung and for eight regions based on left/right, anterior/posterior, and superior/inferior divisions of the lung. Global and regional VDP was compared between the three methods using Bland-Altman analysis, linear mixed model-based correlation, and one-way analysis of variance and multiple comparisons tests. RESULTS Global 3D VDPRVent, VDPXe, and 2D VDPRVent were all strongly correlated (all R2 > 0.62, p < 0.0001) and showed minimal, non-significant bias (all <2%, p > 0.05). Three dimensional and 2D VDPRVent significantly correlated to VDPXe in most of the separate lung regions (R2 = 0.18-0.74, p < 0.04), but showed lower inter-agreement. The superior/anterior lung regions showed the least agreement between all three methods (all p > 0.12). CONCLUSION Absolute VDP assessed by 3D UTE PREFUL MRI showed good global agreement with Xe-MRI and 2D multi-slice PREFUL MRI in pediatric CF lung disease. Therefore, 3D UTE PREFUL MRI offers a sensitive and potentially more accessible alternative to Xe-MRI for regional volumetric evaluation of ventilation.
Collapse
Affiliation(s)
- Samal Munidasa
- Translational Medicine ProgramThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Brandon Zanette
- Translational Medicine ProgramThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Marie‐Pier Dumas
- Division of Respiratory MedicineThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Wallace Wee
- Division of Respiratory MedicineThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Sharon Braganza
- Translational Medicine ProgramThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Daniel Li
- Translational Medicine ProgramThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Felix Ratjen
- Translational Medicine ProgramThe Hospital for Sick ChildrenTorontoOntarioCanada
- Division of Respiratory MedicineThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Giles Santyr
- Translational Medicine ProgramThe Hospital for Sick ChildrenTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
14
|
Dobi D, Loberto N, Mauri L, Bassi R, Chiricozzi E, Lunghi G, Aureli M. Effect of CFTR modulators Elexacaftor/Tezacaftor/Ivacaftor on lipid metabolism in human bronchial epithelial cells. Glycoconj J 2025; 42:1-14. [PMID: 39797966 DOI: 10.1007/s10719-024-10174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 01/13/2025]
Abstract
Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation. This study investigated ETI's impact on the maturation of the mutated CFTR, the expression levels of its scaffolding proteins, and lipid composition of cells using bronchial epithelial cell lines expressing both wild-type and F508del CFTR. Our findings revealed that ETI treatment enhances CFTR and its scaffolding proteins expression and aids in rescuing mature F508del CFTR, causing also significant alterations in the lipid profile including reduced levels of lactosylceramide and increased content of gangliosides GM1 and GD1a. These changes were linked to ETI's influence on enzymes involved in the sphingolipid metabolism, in particular GM3 synthase and sialidase. Through this work, we aim to deepen understanding CFTR interactions with lipids, and to elucidate the mechanisms of action of CFTR modulators. Our findings may support the development of potential therapeutic strategies contributing to the ongoing efforts to design effective correctors and potentiators for CF treatment.
Collapse
Affiliation(s)
- Dorina Dobi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Rosaria Bassi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy.
| |
Collapse
|
15
|
Abelenda VLB, Da Costa CH, De Cássia Firmida M, De Oliveira RFJ, Rufino R, Lopes AJ. Longitudinal changes in the 6-minute walk test and the Glittre-activities of daily living test in adults with cystic fibrosis. Monaldi Arch Chest Dis 2025. [PMID: 39783834 DOI: 10.4081/monaldi.2025.3068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/24/2024] [Indexed: 01/12/2025] Open
Abstract
With the increasing use of highly effective modulator therapy (HEMT) in adults with cystic fibrosis (awCF), it is necessary to determine the evolution of the most dynamic physiological markers of this disease, such as the 6-minute walk test (6MWT) and the Glittre-activities of daily living test (TGlittre). The present study aimed to evaluate the 1-year changes in the 6- minute walking distance (6MWD), TGlittre time, and quality of life (QoL) in awCF before the initiation of HEMT and to determine the impact of habitual physical activity (HPA) and chest physiotherapy (CP). This longitudinal study enrolled 24 awCF who completed the 6MWT and TGlittre. Pulmonary function tests, handgrip strength (HGS), and the Cystic Fibrosis Questionnaire-Revised (CFQ-R) were conducted. Measurements were collected at baseline (T1) and 1 year later (T2). The median body mass index increased between T1 and T2 [19.8 (18-24) vs. 21.4 (19-24) kg/m2, p=0.038]. TGlittre time decreased both in relation to the absolute values [3.10 (2.52-3.39) vs. 2.40 (2.00-3.00) minutes, p=0.001] and in relation to the predicted values [127 (116-150) vs. 108 (102-140) % predicted, p=0.001]. Although there was no increase in 6MWD relative to the predicted values, it increased relative to the absolute values [545 (463-654) vs. 617 (540-658) meters, p=0.041]. In relation to the group that did not engage in HPA, individuals who had HPA showed an increase in HGS between T1 and T2 [7.1 (0-20) vs. 0 (-12-3) kgf, p=0.031]. In relation to the group that did not undergo CP, individuals undergoing CP showed an increase in the 'treatment burden'-CFQ-R between T1 and T2 [16.1 (-3-18) vs. -11.2 (-28-1) points, p=0.049]. In conclusion, awCF performed better on TGlittre than on 6MWT. They experienced an improvement in body composition. HPA was correlated with peripheral muscle strength, as were CP and QoL.
Collapse
Affiliation(s)
| | - Cláudia Henrique Da Costa
- Postgraduate Program in Medical Sciences, State University of Rio de Janeiro; Piquet Carneiro Polyclinic, State University of Rio de Janeiro
| | | | | | - Rogério Rufino
- Postgraduate Program in Medical Sciences, State University of Rio de Janeiro; Piquet Carneiro Polyclinic, State University of Rio de Janeiro
| | - Agnaldo José Lopes
- Postgraduate Program in Medical Sciences, State University of Rio de Janeiro; Piquet Carneiro Polyclinic, State University of Rio de Janeiro; Rehabilitation Sciences Postgraduate Program, Augusto Motta University Centre, Rio de Janeiro
| |
Collapse
|
16
|
Nick HJ, Christeson SE, Bratcher PE. VX-770, C act-A1, and Increased Intracellular cAMP Have Distinct Acute Impacts upon CFTR Activity. Int J Mol Sci 2025; 26:471. [PMID: 39859187 PMCID: PMC11764695 DOI: 10.3390/ijms26020471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel that is dysfunctional in individuals with cystic fibrosis (CF). The permeability of CFTR can be experimentally manipulated though different mechanisms, including activation via inducing the phosphorylation of residues in the regulatory domain as well as altering the gating/open probability of the channel. Phosphorylation/activation of the channel is achieved by exposure to compounds that increase intracellular cAMP, with forskolin and IBMX commonly used for this purpose. Cact-A1 is a unique CFTR activator that does not increase intracellular cAMP, and VX-770 (ivacaftor) is a CFTR potentiator that is used experimentally and therapeutically to increase the open probability of the channel. Using primary human nasal epithelial cell (HNEC) cultures and Fischer rat thyroid (FRT) epithelial cells exogenously expressing functional CFTR, we examined the impact of VX-770, Cact-A1, and forskolin/IBMX on CFTR activity during analysis in an Ussing chamber. Relative contributions of these compounds to maximal CFTR activity were dependent on order of exposure, the presence of chemical and electrical gradients, the level of constitutive CFTR function, and the cell model tested. Increasing intracellular cAMP appeared to change cellular functions outside of CFTR activity that resulted in alterations in the drive for chloride through CFTR. These results demonstrate that one can utilize combinations of small-molecule CFTR activators and potentiators to provide detailed characterization of CFTR-mediated ion transport in primary HNECs and properties of these modulators in both primary HNECs and FRT cells. Future studies using these approaches may assist in the identification of novel defects in CFTR function and the identification of modulators with unique impacts on CFTR-mediated ion transport.
Collapse
Affiliation(s)
- Heidi J. Nick
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA; (H.J.N.); (S.E.C.)
| | - Sarah E. Christeson
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA; (H.J.N.); (S.E.C.)
| | - Preston E. Bratcher
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA; (H.J.N.); (S.E.C.)
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
17
|
Mello TP, Ramos LS, Andrade VV, Torres-Santos EC, Lackner M, Branquinha MH, Santos ALS. Elucidating the augmented resistance profile of Scedosporium/Lomentospora species to azoles in a cystic fibrosis mimic environment. J Antimicrob Chemother 2025; 80:106-115. [PMID: 39545480 DOI: 10.1093/jac/dkae381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/08/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Scedosporium/Lomentospora species are ranked as the second most frequently isolated filamentous fungi from cystic fibrosis (CF) patients. Previously, we demonstrated that the minimum inhibitory concentration (MIC) for voriconazole and posaconazole increased when performed on a mucin-containing synthetic CF sputum medium (SCFM) compared to the standard medium, RPMI-1640. In this study, we have expanded the MIC comparison to four additional azoles and investigated characteristics linked to azole resistance in Scedosporium apiospermum, Scedosporium minutisporum, Scedosporium aurantiacum and Lomentospora prolificans. METHODS MIC was assayed by CLSI protocol, efflux pump activity was assessed by rhodamine 6G and sterols were analysed by gas chromatography-mass spectrometry (GC-MS). RESULTS Overall, MICs for fluconazole, itraconazole, voriconazole, posaconazole, miconazole and ketoconazole increased by least 2-fold when susceptibility tests were performed using SCFM compared to RPMI. The activity of efflux pumps was similar in both media; however, in RPMI, but not in SCFM, the activity was induced by voriconazole and fluconazole. Additionally, MICs for those antifungals decreased more noticeably in SCFM than in RPMI in the presence of the efflux pump inhibitor PaβN. The SCFM-grown cells presented fewer sterols in their composition, and consequently higher membrane fluidity, than RPMI-grown cells. GC-MS analysis demonstrated a remodulation in the sterol profile in SCFM- compared to RPMI-grown cells. Accordingly, when the MIC assay was performed in the presence of the membrane stressor NaCl (3%), the susceptibility to voriconazole and fluconazole increased more in SCFM- than RPMI-grown cells. CONCLUSIONS Scedosporium/Lomentospora species undergo cellular adaptations in SCFM that favours their growth in face of the challenges imposed by azole antifungals.
Collapse
Affiliation(s)
- Thaís P Mello
- Departamento de Microbiologia Geral, Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Lívia S Ramos
- Departamento de Microbiologia Geral, Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Valter V Andrade
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Av. Brasil, 4365-Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Eduardo Caio Torres-Santos
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz, Av. Brasil, 4365-Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Michaela Lackner
- Medical University of Innsbruck, Institute for Hygiene and Medical Microbiology, Schöpfstrasse 41, 6020 Innsbruck, Austria
| | - Marta H Branquinha
- Departamento de Microbiologia Geral, Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
- Rede Micologia RJ-Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - André L S Santos
- Departamento de Microbiologia Geral, Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Instituto de Microbiologia Paulo de Góes (IMPG), Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
- Rede Micologia RJ-Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Chimienti R, Torchio S, Siracusano G, Zamarian V, Monaco L, Lombardo MT, Pellegrini S, Manenti F, Cuozzo F, Rossi G, Carrera P, Sordi V, Broccoli V, Bonfanti R, Casari G, Frontino G, Piemonti L. A WFS1 variant disrupting acceptor splice site uncovers the impact of alternative splicing on beta cell apoptosis in a patient with Wolfram syndrome. Diabetologia 2025; 68:128-151. [PMID: 39520565 PMCID: PMC11663190 DOI: 10.1007/s00125-024-06307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/21/2024] [Indexed: 11/16/2024]
Abstract
AIMS/HYPOTHESIS Wolfram syndrome 1 (WS1) is an inherited condition mainly manifesting in childhood-onset diabetes mellitus and progressive optic nerve atrophy. The causative gene, WFS1, encodes wolframin, a master regulator of several cellular responses, and the gene's mutations associate with clinical variability. Indeed, nonsense/frameshift variants correlate with more severe symptoms than missense/in-frame variants. As achieving a genotype-phenotype correlation is crucial for dealing with disease outcome, works investigating the impact of transcriptional and translational landscapes stemming from such mutations are needed. Therefore, we sought to elucidate the molecular determinants behind the pathophysiological alterations in a WS1 patient carrying compound heterozygous mutations in WFS1: c.316-1G>A, affecting the acceptor splice site (ASS) upstream of exon 4; and c.757A>T, introducing a premature termination codon (PTC) in exon 7. METHODS Bioinformatic analysis was carried out to infer the alternative splicing events occurring after disruption of ASS, followed by RNA-seq and PCR to validate the transcriptional landscape. Patient-derived induced pluripotent stem cells (iPSCs) were used as an in vitro model of WS1 and to investigate the WFS1 alternative splicing isoforms in pancreatic beta cells. CRISPR/Cas9 technology was employed to correct ASS mutation and generate a syngeneic control for the endoplasmic reticulum stress induction and immunotoxicity assays. RESULTS We showed that patient-derived iPSCs retained the ability to differentiate into pancreatic beta cells. We demonstrated that the allele carrying the ASS mutation c.316-1G>A originates two PTC-containing alternative splicing transcripts (c.316del and c.316-460del), and two open reading frame-conserving mRNAs (c.271-513del and c.316-456del) leading to N-terminally truncated polypeptides. By retaining the C-terminal domain, these isoforms sustained the endoplasmic reticulum stress response in beta cells. Otherwise, PTC-carrying transcripts were regulated by the nonsense-mediated decay (NMD) in basal conditions. Exposure to cell stress inducers and proinflammatory cytokines affected expression levels of the NMD-related gene SMG7 (>twofold decrease; p<0.001) without eliciting a robust unfolded protein response in WFS1 beta cells. This resulted in a dramatic accumulation of the PTC-containing isoforms c.316del (>100-fold increase over basal; p<0.001) and c.316-460del (>20-fold increase over basal; p<0.001), predisposing affected beta cells to undergo apoptosis. Cas9-mediated recovery of ASS retrieved the canonical transcriptional landscape, rescuing the normal phenotype in patient-derived beta cells. CONCLUSIONS/INTERPRETATION This study represents a new model to study wolframin, highlighting how each single mutation of the WFS1 gene can determine dramatically different functional outcomes. Our data point to increased vulnerability of WFS1 beta cells to stress and inflammation and we postulate that this is triggered by escaping NMD and accumulation of mutated transcripts and truncated proteins. These findings pave the way for further studies on the molecular basis of genotype-phenotype relationship in WS1, to uncover the key determinants that might be targeted to ameliorate the clinical outcome of patients affected by this rare disease. DATA AVAILABILITY The in silico predicted N-terminal domain structure file of WT wolframin was deposited in the ModelArchive, together with procedures, ramachandran plots, inter-residue distance deviation and IDDT scores, and Gromacs configuration files (doi/10.5452/ma-cg3qd). The deep-sequencing data as fastq files used to generate consensus sequences of AS isoforms of WFS1 are available in the SRA database (BioProject PRJNA1109747).
Collapse
Affiliation(s)
- Raniero Chimienti
- Unit of β Cell Biology, Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Silvia Torchio
- Unit of β Cell Biology, Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
- Genetics and Developmental Biology (UMR3215 / U934), Institut Curie, Paris, France.
| | - Gabriel Siracusano
- Unit of β Cell Biology, Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Valentina Zamarian
- Unit of β Cell Biology, Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - Laura Monaco
- Unit of β Cell Biology, Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Marta Tiffany Lombardo
- Unit of β Cell Biology, Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - Silvia Pellegrini
- Unit of β Cell Biology, Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - Fabio Manenti
- Unit of β Cell Biology, Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - Federica Cuozzo
- Unit of β Cell Biology, Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - Greta Rossi
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Carrera
- Unit of Genomics for Human Disease Diagnosis, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Laboratory of Molecular Genetics, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Sordi
- Unit of β Cell Biology, Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | - Vania Broccoli
- Genetics and Developmental Biology (UMR3215 / U934), Institut Curie, Paris, France
- National Research Council of Italy, Institute of Neuroscience, Milan, Italy
| | | | - Giorgio Casari
- Vita-Salute San Raffaele University, Milan, Italy
- Unit of Genome-Phenome Relationship, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Frontino
- Department of Pediatrics, IRCCS San Raffaele Hospital, Milan, Italy
| | - Lorenzo Piemonti
- Unit of β Cell Biology, Diabetes Research Institute, IRCCS San Raffaele Hospital, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
19
|
Terlizzi V, Lopes-Pacheco M. Cystic fibrosis: new challenges and perspectives beyond elexacaftor/tezacaftor/ivacaftor. Ther Adv Respir Dis 2025; 19:17534666251323194. [PMID: 40163448 PMCID: PMC11960163 DOI: 10.1177/17534666251323194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/07/2025] [Indexed: 04/02/2025] Open
Abstract
Over the past decade, major clinical advances have been made in the healthcare and therapeutic development for cystic fibrosis (CF), a lethal genetic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) protein. CFTR modulators represent innovative treatments that directly target the primary defects in the mutated CFTR protein and have demonstrated significant clinical benefits for many people with CF (pwCF) who are eligible for these treatments. In particular, the triple combination therapy composed of elexacaftor, tezacaftor, and ivacaftor (ETI) has changed the CF therapeutic landscape by significantly improving lung function, quality of life, and predicted survival rates. Here, we provided a comprehensive summary of the impact of ETI on clinical outcomes and the need for further research on long-term efficacy, side effects, pregnancy, possible drug-drug interactions, and extra-pulmonary manifestations. Moreover, a significant number of pwCF are unresponsive to these drugs or cannot afford their high costs. We, therefore, discussed health inequity issues and alternative therapeutic strategies under development aiming to obtain effective therapies for all pwCF.
Collapse
Affiliation(s)
- Vito Terlizzi
- Department of Pediatric Medicine, Cystic Fibrosis Regional Reference Center, Meyer Children’s Hospital IRCCS, Viale Gaetano Pieraccini 24, Florence, Italy
| | - Miquéias Lopes-Pacheco
- Department of Pediatrics, Cystic Fibrosis and Airway Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
20
|
Ashique S, Mishra N, Mantry S, Garg A, Kumar N, Gupta M, Kar SK, Islam A, Mohanto S, Subramaniyan V. Crosstalk between ROS-inflammatory gene expression axis in the progression of lung disorders. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:417-448. [PMID: 39196392 DOI: 10.1007/s00210-024-03392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
A significant number of deaths and disabilities worldwide are brought on by inflammatory lung diseases. Many inflammatory lung disorders, including chronic respiratory emphysema, resistant asthma, resistance to steroids, and coronavirus-infected lung infections, have severe variants for which there are no viable treatments; as a result, new treatment alternatives are needed. Here, we emphasize how oxidative imbalance contributes to the emergence of provocative lung problems that are challenging to treat. Endogenic antioxidant systems are not enough to avert free radical-mediated damage due to the induced overproduction of ROS. Pro-inflammatory mediators are then produced due to intracellular signaling events, which can harm the tissue and worsen the inflammatory response. Overproduction of ROS causes oxidative stress, which causes lung damage and various disease conditions. Invasive microorganisms or hazardous substances that are inhaled repeatedly can cause an excessive amount of ROS to be produced. By starting signal transduction pathways, increased ROS generation during inflammation may cause recurrent DNA damage and apoptosis and activate proto-oncogenes. This review provides information about new targets for conducting research in related domains or target factors to prevent, control, or treat such inflammatory oxidative stress-induced inflammatory lung disorders.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal, 713212, India.
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, MP, 474005, India
| | - Shubhrajit Mantry
- Department of Pharmaceutics, Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand, 835103, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, 483001, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to Be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Delhi, 110017, India
| | - Sanjeeb Kumar Kar
- Department of Pharmaceutical Chemistry, Department of Pharmacy, Sarala Birla University, Ranchi, Jharkhand, 835103, India
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India.
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
21
|
Moiceanu ES, Stan IV, Moşescu SE, Leucuţa DC, Iacobescu M, Niţescu GV, Vivisenco IC, Petran EM, Dumitraşcu DL. Impact of CFTR modulatory therapies on liver function and fibrosis indices in cystic fibrosis patients: a retrospective analysis from two Romanian medical centers. Med Pharm Rep 2025; 98:29-35. [PMID: 39949910 PMCID: PMC11817584 DOI: 10.15386/mpr-2806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/31/2024] [Accepted: 08/24/2024] [Indexed: 02/16/2025] Open
Abstract
Background Patients with cystic fibrosis (CF) frequently require modulatory therapies such as Lumacaftor/Ivacaftor (LI) and Elexacaftor/Tezacaftor/Ivacaftor (ETI) to manage their condition. Given the potential hepatic complications associated with CF, it is critical to understand the impact of these therapies on liver function and fibrosis indices. This study aimed to evaluate the changes in liver function markers and fibrosis indices in CF patients undergoing LI and ETI therapies, with a specific focus on the influence of underlying hepatic disease. Methods In this retrospective analysis, liver function markers and fibrosis indices were assessed in CF patients receiving ETI (n=24), LI (n=4), or LI transitioned to ETI (LI/ETI, n=8). Key liver function markers, including alanine aminotransferase (ALT), aspartate aminotransferase (AST), bilirubin, platelet count, and fibrosis indices (APRI and FIB-4), were measured at baseline and at various time points up to 12 months. Results In patients receiving LI therapy, ALT and AST levels demonstrated a slight but non-significant decrease over six months, accompanied by significant fluctuations in total bilirubin levels. Among those receiving ETI therapy, ALT and AST levels initially increased but stabilized over time, while total bilirubin levels significantly increased from baseline to 12 months. No significant differences were observed in liver function markers between patients with and without hepatic disease under ETI therapy. Trends in fibrosis indices (APRI and FIB-4) were modest and largely non-significant across both therapies. Conclusions ETI therapy appears to be safe for CF patients, including those with pre-existing hepatic disease, with no significant deterioration in liver function over a 12-month period. However, the observed fluctuations in bilirubin levels underscore the necessity for ongoing monitoring. Further research is warranted to investigate the long-term hepatic effects of LI and ETI therapies.
Collapse
Affiliation(s)
- Elena-Simona Moiceanu
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Pediatric Poison Centre, Grigore Alexandrescu Clinical Emergency Hospital for Children, Bucharest, Romania
| | - Iustina Violeta Stan
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest, Romania
| | - Simona Elena Moşescu
- Department of Pediatrics, Grigore Alexandrescu Clinical Emergency Hospital for Children, Bucharest, Romania
| | - Daniel-Corneliu Leucuţa
- Medical Informatics and Biostatistics Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Maria Iacobescu
- Institute of Medical Research and Life Sciences – MEDFUTURE, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriela Viorela Niţescu
- Pediatric Poison Centre, Grigore Alexandrescu Clinical Emergency Hospital for Children, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Iolanda Cristina Vivisenco
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Pediatrics, Grigore Alexandrescu Clinical Emergency Hospital for Children, Bucharest, Romania
| | - Elena Mădălina Petran
- Pediatric Poison Centre, Grigore Alexandrescu Clinical Emergency Hospital for Children, Bucharest, Romania
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Dan Lucian Dumitraşcu
- 2nd Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
22
|
Amaral MD, Pankonien I. Theranostics vs theratyping or theranostics plus theratyping? J Cyst Fibros 2025; 24:10-15. [PMID: 39327193 DOI: 10.1016/j.jcf.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Treating all people with Cystic Fibrosis (pwCF) to the level of benefit achieved by highly efficient CFTR modulator therapies (HEMT) remains a significant challenge. Theratyping and theranostics are two distinct approaches to advance CF treatment. Both theratyping in cell lines and pwCF-derived biomaterials theranostics have unique strengths and limitations in the context of studying and treating CF. The challenges, advantages and disadvantages of both approaches are discussed here. While theratyping in cell lines offers ease of use, cost-effectiveness, and standardized platforms for experimentation, it misses physiological relevance and patient-specificity. Theranostics, on the other hand, provides a more human-relevant model for personalized medicine approaches but requires specialized expertise, resources, and access to patient samples. Integrating these two approaches in parallel and leveraging their respective strengths may enhance our understanding of CF and facilitate the development of more effective therapies for all pwCF.
Collapse
Affiliation(s)
- Margarida D Amaral
- BioISI- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal.
| | - Ines Pankonien
- BioISI- Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
23
|
Singh N, Cunnington RH, Bhagirath A, Vaishampayan A, Khan MW, Gupte T, Duan K, Gounni AS, Dakshisnamurti S, Hanrahan JW, Chelikani P. Bitter taste receptor T2R14-Gαi coupling mediates innate immune responses to microbial quorum sensing molecules in cystic fibrosis. iScience 2024; 27:111286. [PMID: 39628561 PMCID: PMC11613190 DOI: 10.1016/j.isci.2024.111286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/30/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease characterized by microbial infection and progressive decline in lung function, leading to significant morbidity and mortality. The bitter taste receptor T2R14 is a chemosensory receptor that is significantly expressed in airways. Using a combination of cell-based assays and T2R14 knockdown in bronchial epithelial cells from CF and non-CF individuals, we observed that T2R14 plays a crucial role in the detection of bacterial and fungal signals and enhances host innate immune responses. Expression of Gαi protein is enhanced in CF bronchial epithelial cells and T2R14-Gαi specific signaling leads to increased calcium mobilization. Knockdown of T2R14 leads to reduced innate immune activation by bacterial strains deficient in quorum sensing. The results demonstrate that T2R14 helps protect against microbial infection and thus may play an important role in the innate immune defense of the CF airway epithelium.
Collapse
Affiliation(s)
- Nisha Singh
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Ryan H. Cunnington
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Anjali Bhagirath
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Dalhousie University, Faculty of Dentistry, Halifax, NS, Canada
| | - Ankita Vaishampayan
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Mohd Wasif Khan
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Tejas Gupte
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Kangmin Duan
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Abdelilah S. Gounni
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Shyamala Dakshisnamurti
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - John W. Hanrahan
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
24
|
Solomon GM, Linnemann RW, Rich R, Streby A, Buehler B, Hunter E, Vijaykumar K, Hunt WR, Brewington JJ, Rab A, Bai SP, Westbrook AL, McNicholas-Bevensee C, Hong J, Manfredi C, Barilla C, Suzuki S, Davis BR, Sorscher EJ. Evaluation of elexacaftor-tezacaftor-ivacaftor treatment in individuals with cystic fibrosis and CFTR N1303K in the USA: a prospective, multicentre, open-label, single-arm trial. THE LANCET. RESPIRATORY MEDICINE 2024; 12:947-957. [PMID: 39208836 DOI: 10.1016/s2213-2600(24)00205-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND CFTR modulators are approved for approximately 90% of people with cystic fibrosis in the USA and provide substantial clinical benefit. N1303K (Asn1303Lys), one of the most common class 2 CFTR defects, has not been approved for these therapies by any regulatory agency. Preclinical investigation by our laboratories showed N1303K CFTR activation with elexacaftor-tezacaftor-ivacaftor (ETI). In this trial, we evaluate whether ETI improves CFTR function, measured by sweat chloride and other clinical outcomes, in people with cystic fibrosis and CFTRN1303K. METHODS In this prospective, open-label, single-arm trial, participants aged 12 years or older with cystic fibrosis encoding at least one N1303K variant and at least one CFTRN1303K allele who were ineligible for modulator therapy by US Food and Drug Administration labelling were given ETI for 28 days followed by a 28-day washout period at two cystic fibrosis centres in the USA. Participants received two orally administered pills of 100 mg elexacaftor, 50 mg tezacaftor, and 75 mg ivacaftor once daily in the morning, and 150 mg ivacaftor once daily in the evening. The primary endpoint was mean change in sweat chloride from baseline up to day 28 compared with mixed-effects models. Secondary endpoints were changes in percentage of predicted FEV1 (ppFEV1), Cystic Fibrosis Questionnaire-Revised (CFQ-R) respiratory domain, BMI, and weight after ETI therapy. Safety was assessed in all participants who received at least one dose of the study drug and primary and secondary analyses were performed in all participants who took the study drug per protocol. The trial was registered at ClinicalTrials.gov (NCT03506061) and remains open for reporting purposes. FINDINGS Between June 7, 2022, and Oct 20, 2023, 20 participants (ten male and ten female) were enrolled and received ETI treatment. One participant was lost to follow-up but was included in intention-to-treat analyses. At 28 days, the mean sweat chloride reduction was -1·1 mmol/L (95% CI -5·3 to 3·1; p=0·61) with only one participant showing a sweat chloride decrease greater than 15 mmol/L. There was a mean increase in ppFEV1 from baseline at day 28 of 9·5 percentage points (6·7-12·3; p<0·0001) with 15 (75%) participants showing at least a 5% increase in ppFEV1. Improvements were also identified in mean CFQ-R respiratory domain score (20·8 increase [95% CI 11·9-29·8]; p<0·0001), BMI (0·4 kg/m2 increase [0·2-0·7]; p=0·0017), and weight (1·0 kg increase [0·4-1·7]; p=0·0020) after 28 days of ETI treatment. 14 (70%) of 20 participants had adverse events (12 [60%] mild, one [5%] moderate), with one (5%) serious adverse event of hospitalisation attributed to pneumonia. No deaths were recorded in the study. INTERPRETATION Individuals with CFTRN1303K showed no change in sweat chloride after 28 days of treatment with ETI. However, there were improvements in secondary clinical endpoints, which suggest clinical efficacy. Our approach provides support for the use of in vitro model systems to inform clinical trials for rare CFTR variants. FUNDING The Cystic Fibrosis Foundation and the US National Institutes of Health.
Collapse
Affiliation(s)
| | - Rachel W Linnemann
- Emory University, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Rachel Rich
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Cristina Barilla
- University of Alabama at Birmingham, Birmingham, AL, USA; University of Texas Health Science Center, Houston, TX, USA
| | - Shingo Suzuki
- University of Alabama at Birmingham, Birmingham, AL, USA; University of Texas Health Science Center, Houston, TX, USA
| | - Brian R Davis
- University of Alabama at Birmingham, Birmingham, AL, USA; University of Texas Health Science Center, Houston, TX, USA
| | - Eric J Sorscher
- Emory University, Atlanta, GA, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA
| |
Collapse
|
25
|
Lacoste J, Haghighi M, Haider S, Reno C, Lin ZY, Segal D, Qian WW, Xiong X, Teelucksingh T, Miglietta E, Shafqat-Abbasi H, Ryder PV, Senft R, Cimini BA, Murray RR, Nyirakanani C, Hao T, McClain GG, Roth FP, Calderwood MA, Hill DE, Vidal M, Yi SS, Sahni N, Peng J, Gingras AC, Singh S, Carpenter AE, Taipale M. Pervasive mislocalization of pathogenic coding variants underlying human disorders. Cell 2024; 187:6725-6741.e13. [PMID: 39353438 PMCID: PMC11568917 DOI: 10.1016/j.cell.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 07/22/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Widespread sequencing has yielded thousands of missense variants predicted or confirmed as disease causing. This creates a new bottleneck: determining the functional impact of each variant-typically a painstaking, customized process undertaken one or a few genes and variants at a time. Here, we established a high-throughput imaging platform to assay the impact of coding variation on protein localization, evaluating 3,448 missense variants of over 1,000 genes and phenotypes. We discovered that mislocalization is a common consequence of coding variation, affecting about one-sixth of all pathogenic missense variants, all cellular compartments, and recessive and dominant disorders alike. Mislocalization is primarily driven by effects on protein stability and membrane insertion rather than disruptions of trafficking signals or specific interactions. Furthermore, mislocalization patterns help explain pleiotropy and disease severity and provide insights on variants of uncertain significance. Our publicly available resource extends our understanding of coding variation in human diseases.
Collapse
Affiliation(s)
- Jessica Lacoste
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Shahan Haider
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Chloe Reno
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Dmitri Segal
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Wesley Wei Qian
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Xueting Xiong
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Tanisha Teelucksingh
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | | | - Pearl V Ryder
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Rebecca Senft
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Beth A Cimini
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ryan R Murray
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Chantal Nyirakanani
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Tong Hao
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gregory G McClain
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Frederick P Roth
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada; Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael A Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - S Stephen Yi
- Livestrong Cancer Institutes, Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA; Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, USA; Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA; Interdisciplinary Life Sciences Graduate Programs (ILSGP), College of Natural Sciences, The University of Texas at Austin, Austin, TX, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Quantitative and Computational Biosciences Program, Baylor College of Medicine, Houston, TX, USA
| | - Jian Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | | | | | - Mikko Taipale
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
26
|
Mésinèle J, Ruffin M, Guillot L, Boëlle PY, Corvol H. Seasonal and climatic influence on respiratory infections in children with cystic fibrosis. Sci Rep 2024; 14:27036. [PMID: 39511324 PMCID: PMC11543658 DOI: 10.1038/s41598-024-77253-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Pseudomonas aeruginosa (Pa) and Methicillin susceptible Staphylococcus aureus (MSSA) are the predominant bacteria found in the airways of people with cystic fibrosis (pwCF), significantly contributing to lung disease progression. While various factors influencing the initial acquisition (IA) of these pathogens are known, the impact of environmental conditions remains understudied. This epidemiological study assessed the risk of MSSA and Pa initial acquisitions in relation to seasonality and climatic zones among 1,184 French pwCF under 18 years old. The age at IA for Pa (Pa-IA) and MSSA (MSSA-IA) was estimated using the Kaplan-Meier method. Seasonality and climatic zones were analysed as risk factors using time-varying Cox regression models. The median age at MSSA-IA was notably earlier (2.0 years) than that at Pa-IA (5.1 years). MSSA-IA occurred increasingly younger in more recent birth cohorts, while the age at Pa-IA remained stable over time. The risk of Pa-IA was consistently higher in all seasons compared with spring, peaking in autumn (HR = 1.53), irrespective of climatic zones. In Oceanic and Continental climates, the highest risk for MSSA-IA was in winter (HRs = 1.45 and 1.20 respectively). In the Mediterranean climate, the risk of MSSA-IA was lower in winter compared to spring (HRs = 0.68 and 0.61 respectively), and the median age at MSSA-IA later than for Pa-IA. This study demonstrates that seasonality and meteorological factors may influence acquisition of MSSA and Pa in pwCF. These findings suggest that environmental factors play a role in pathogen acquisition dynamics in CF and could inform the development of preventive strategies.
Collapse
Affiliation(s)
- Julie Mésinèle
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), Paris, 75012, France
- Inovarion, Paris, 75005, France
| | - Manon Ruffin
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), Paris, 75012, France
| | - Loïc Guillot
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), Paris, 75012, France.
| | - Pierre-Yves Boëlle
- Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Paris, 75012, France.
| | - Harriet Corvol
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), Paris, 75012, France.
- Service de Pneumologie Pédiatrique, Sorbonne Université, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Trousseau, Paris, 75012, France.
| |
Collapse
|
27
|
Valladares KN, Jones LI, Barnes JW, Krick S. Highly Effective Modulator Therapy: Implications for the Microbial Landscape in Cystic Fibrosis. Int J Mol Sci 2024; 25:11865. [PMID: 39595943 PMCID: PMC11594123 DOI: 10.3390/ijms252211865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive multisystem disorder caused by mutations in the cystic fibrosis conductance regulator (CFTR) anion channel. In the lungs specifically, CFTR mutations lead to changes in mucus viscosity and defective mucociliary clearance. Moreover, people with CF (pwCF) mount an insufficient immune response to invading pathogens, which predisposes individuals to chronic airway disease associated with chronic inflammation, colonization, and recurrent infections by mainly opportunistic pathogens. These chronic infections in the CF lung are typically polymicrobial and frequently harbour multidrug-resistant pathogens, making both treatment and eradication very challenging. During the last decade, the development of highly effective CFTR modulator therapy (HEMT) has led to a breakthrough in treatment options for pwCF. While the majority of pwCF now live longer and have fewer CF exacerbations, colonisation with common respiratory pathogens persists, thereby contributing to chronic inflammation and infection. Interestingly, there are limited reports examining the lung microbiome in the post-modulator era. Since ETI treatment is still quite novel and has only been used for about five years by now, this review will be one of the first discussing the current literature on the effect of ETI on CF pathogens. In addition, we will identify unanswered questions that remain from the effect of HEMT on the CF microbiome.
Collapse
Affiliation(s)
- Kristina N. Valladares
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.N.V.); (J.W.B.)
| | - Luke I. Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Medical Scientist Training Program, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jarrod W. Barnes
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.N.V.); (J.W.B.)
- Division of Pulmonary, Allergy and Critical Care Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Stefanie Krick
- Gregory Fleming James Cystic Fibrosis Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; (K.N.V.); (J.W.B.)
- Division of Pulmonary, Allergy and Critical Care Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- Medical Scientist Training Program, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
28
|
Lou S, Lv H, Zhang L. Identification of Vesicle-Mediated Transport-Related Genes for Predicting Prognosis, Immunotherapy Response, and Drug Screening in Cervical Cancer. Immun Inflamm Dis 2024; 12:e70052. [PMID: 39513664 PMCID: PMC11544644 DOI: 10.1002/iid3.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/27/2024] [Accepted: 10/13/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Cervical cancer is one of the most common malignancies among women. Vesicle-mediated transport mechanisms significantly influence tumor cell behavior through intercellular material exchange. However, prognostic significance in CC patients remains underexplored. RESEARCH DESIGN AND METHODS We identified differentially expressed vesicle-mediated transport-related genes from TCGA and GeneCards datasets through differential expression analysis. We constructed a prognostic model using Cox regression and LASSO regression, categorized patients into high- and low-risk groups, and validated the model in the GEO data set. A nomogram integrating clinical features and risk scores demonstrated the model's independent prognostic capability. We analyzed tumor immune cell infiltration, immune checkpoints, and predicted immunotherapy responses in the high- and low-risk groups. Finally, we screened potential drugs for targeting CC and conducted drug-sensitivity analysis. RESULTS We successfully established a 10-gene prognostic model based on VMTRGs. The low-risk group exhibited favorable prognosis, significant immune cell infiltration, and promising immunotherapy response, whereas the high-risk group showed higher sensitivity to chemotherapeutic agents such as Docetaxel and Paclitaxel. Potential drugs identified for targeting CC patients included Megestrol acetate, Lenvatinib, Adavosertib, and Barasertib. CONCLUSIONS The VMTRG-based prognostic model demonstrates reliable clinical prognostic value and enhances understanding of vesicle-mediated transport mechanisms in CC.
Collapse
Affiliation(s)
- Shuai Lou
- Department of Gynecology, Affiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiangChina
- Department of GynecologyJinhua Maternal and Child Health HospitalJinhuaZhejiangChina
| | - Hongqing Lv
- Department of Gynecology, Affiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiangChina
| | - Lin Zhang
- Department of Gynecology, Affiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiangChina
| |
Collapse
|
29
|
Lin B, Gong J, Keenan K, Lin F, Lin YC, Mésinèle J, Calmel C, Mohand Oumoussa B, Boëlle PY, Guillot L, Corvol H, Waters V, Sun L, Strug LJ. Genome-wide association study of susceptibility to Pseudomonas aeruginosa infection in cystic fibrosis. Eur Respir J 2024; 64:2400062. [PMID: 39117430 PMCID: PMC11540985 DOI: 10.1183/13993003.00062-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Pseudomonas aeruginosa is a common pathogen that contributes to progressive lung disease in cystic fibrosis (CF). Genetic factors other than CF-causing CFTR (CF transmembrane conductance regulator) variations contribute ∼85% of the variation in chronic P. aeruginosa infection age in CF according to twin studies, but the susceptibility loci remain unknown. Our objective is to advance understanding of the genetic basis of host susceptibility to P. aeruginosa infection. MATERIALS AND METHODS We conducted a genome-wide association study of chronic P. aeruginosa infection age in 1037 Canadians with CF. We subsequently assessed the genetic correlation between chronic P. aeruginosa infection age and lung function through polygenic risk score (PRS) analysis and inferred their causal relationship through bidirectional Mendelian randomisation analysis. RESULTS Two novel genome-wide significant loci with lead single nucleotide polymorphisms (SNPs) rs62369766 (chr5p12; p=1.98×10-8) and rs927553 (chr13q12.12; p=1.91×10-8) were associated with chronic P. aeruginosa infection age. The rs62369766 locus was validated using an independent French cohort (n=501). Furthermore, the PRS constructed from CF lung function-associated SNPs was significantly associated with chronic P. aeruginosa infection age (p=0.002). Finally, our analysis presented evidence for a causal effect of lung function on chronic P. aeruginosa infection age (β=0.782 years, p=4.24×10-4). In the reverse direction, we observed a moderate effect (β=0.002, p=0.012). CONCLUSIONS We identified two novel loci that are associated with chronic P. aeruginosa infection age in individuals with CF. Additionally, we provided evidence of common genetic contributors and a potential causal relationship between P. aeruginosa infection susceptibility and lung function in CF. Therapeutics targeting these genetic factors may delay the onset of chronic infections, which account for significant remaining morbidity in CF.
Collapse
Affiliation(s)
- Boxi Lin
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jiafen Gong
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Katherine Keenan
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Fan Lin
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yu-Chung Lin
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Julie Mésinèle
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Inovarion, Paris, France
| | - Claire Calmel
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Badreddine Mohand Oumoussa
- Sorbonne Université, Inserm, UMS Production et Analyse des données en Sciences de la vie et en Santé (PASS), Plateforme Post-génomique de la Pitié-Salpêtrière, Paris, France
| | - Pierre-Yves Boëlle
- Sorbonne Université, Inserm, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Saint-Antoine, Paris, France
| | - Loïc Guillot
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Harriet Corvol
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Sorbonne Université, AP-HP, Hôpital Trousseau, Service de Pneumologie Pédiatrique, Paris, France
| | - Valerie Waters
- Division of Infectious Diseases, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Translational Medicine Research Program, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Lei Sun
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
| | - Lisa J Strug
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
30
|
Lakli M, Onnée M, Carrez T, Becq F, Falguières T, Fanen P. ABC transporters involved in respiratory and cholestatic diseases: From rare to very rare monogenic diseases. Biochem Pharmacol 2024; 229:116468. [PMID: 39111603 DOI: 10.1016/j.bcp.2024.116468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/16/2024] [Accepted: 08/03/2024] [Indexed: 08/24/2024]
Abstract
ATP-binding cassette (ABC) transporters constitute a 49-member superfamily in humans. These proteins, most of them being transmembrane, allow the active transport of an important variety of substrates across biological membranes, using ATP hydrolysis as an energy source. For an important proportion of these ABC transporters, genetic variations of the loci encoding them have been correlated with rare genetic diseases, including cystic fibrosis and interstitial lung disease (variations in CFTR/ABCC7 and ABCA3) as well as cholestatic liver diseases (variations in ABCB4 and ABCB11). In this review, we first describe these ABC transporters and how their molecular dysfunction may lead to human diseases. Then, we propose a classification of the genetic variants according to their molecular defect (expression, traffic, function and/or stability), which may be considered as a general guideline for all ABC transporters' variants. Finally, we discuss recent progress in the field of targeted pharmacotherapy, which aim to correct specific molecular defects using small molecules. In conclusion, we are opening the path to treatment repurposing for diseases involving similar deficiencies in other ABC transporters.
Collapse
Affiliation(s)
- Mounia Lakli
- Inserm, Université Paris-Saclay, Physiopathogenèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, 91400 Orsay, France
| | - Marion Onnée
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Créteil, France
| | - Thomas Carrez
- Université de Poitiers, Laboratoire Physiopathologie et Régulation des Transports Ioniques, Pôle Biologie Santé, 86000 Poitiers, France; ManRos Therapeutics, Hôtel de Recherche, Centre de Perharidy, 29680, Roscoff, France
| | - Frédéric Becq
- Université de Poitiers, Laboratoire Physiopathologie et Régulation des Transports Ioniques, Pôle Biologie Santé, 86000 Poitiers, France
| | - Thomas Falguières
- Inserm, Université Paris-Saclay, Physiopathogenèse et traitement des maladies du foie, UMR_S 1193, Hepatinov, 91400 Orsay, France
| | - Pascale Fanen
- Univ Paris Est Creteil, INSERM, IMRB, F-94010, Créteil, France; AP-HP, Département de Génétique Médicale, Hôpital Henri Mondor, F-94010, Créteil, France.
| |
Collapse
|
31
|
Lin L, Lin Y, Han Z, Wang K, Zhou S, Wang Z, Wang S, Chen H. Understanding the molecular regulatory mechanisms of autophagy in lung disease pathogenesis. Front Immunol 2024; 15:1460023. [PMID: 39544928 PMCID: PMC11560454 DOI: 10.3389/fimmu.2024.1460023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024] Open
Abstract
Lung disease development involves multiple cellular processes, including inflammation, cell death, and proliferation. Research increasingly indicates that autophagy and its regulatory proteins can influence inflammation, programmed cell death, cell proliferation, and innate immune responses. Autophagy plays a vital role in the maintenance of homeostasis and the adaptation of eukaryotic cells to stress by enabling the chelation, transport, and degradation of subcellular components, including proteins and organelles. This process is essential for sustaining cellular balance and ensuring the health of the mitochondrial population. Recent studies have begun to explore the connection between autophagy and the development of different lung diseases. This article reviews the latest findings on the molecular regulatory mechanisms of autophagy in lung diseases, with an emphasis on potential targeted therapies for autophagy.
Collapse
Affiliation(s)
- Lin Lin
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- School of Medicine, Southeast University, Nanjing, China
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Ke Wang
- Department of Science and Education, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Shuwei Zhou
- Department of Radiology, Zhongda Hospital, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, School of Medicine, Southeast University, Nanjing, China
| | - Zhanzhan Wang
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Siyu Wang
- Department of Preventive Medicine, Kunshan Hospital of Chinese Medicine, Kunshan, China
| | - Haoran Chen
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
32
|
Stewart CG, Hilkin BM, Gansemer ND, Adam RJ, Dick DW, Sunderland JJ, Stoltz DA, Zabner J, Abou Alaiwa MH. Mucociliary clearance is impaired in small airways of cystic fibrosis pigs. Am J Physiol Lung Cell Mol Physiol 2024; 327:L415-L422. [PMID: 39104314 PMCID: PMC11482522 DOI: 10.1152/ajplung.00010.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic disorder characterized by recurrent airway infections, inflammation, impaired mucociliary clearance, and progressive decline in lung function. The disease may start in the small airways; however, this is difficult to prove due to the limited accessibility of the small airways with the current single-photon mucociliary clearance assay. Here, we developed a dynamic positron emission tomography assay with high spatial and temporal resolution. We tested that mucociliary clearance is abnormal in the small airways of newborn cystic fibrosis pigs. Clearance of [68Ga]-tagged macroaggregated albumin from small airways started immediately after delivery and continued for the duration of the study. Initial clearance was fast but slowed down a few minutes after delivery. Cystic fibrosis pigs' small airways cleared significantly less than non-CF pigs' small airways (non-CF 25.1 ± 3.1% vs. CF 14.6 ± 0.1%). Stimulation of the cystic fibrosis airways with the purinergic secretagogue uridine-5'-triphosphate (UTP) further impaired clearance (non-CF with UTP 20.9 ± 0.3% vs. CF with UTP 13.0 ± 1.8%). None of the cystic fibrosis pigs treated with UTP (n = 6) cleared more than 20% of the delivered dose. These data indicate that mucociliary clearance in the small airways is fast and can easily be missed if the assay is not sensitive enough. The data also indicate that mucociliary clearance is impaired in the small airways of cystic fibrosis pigs. This defect is exacerbated by stimulation of mucus secretions with purinergic agonists.NEW & NOTEWORTHY We developed a novel positron emission tomography scan assay with unprecedented temporal and spatial resolution to measure mucociliary clearance in the small airways. We proved a long-standing but unproven assertion that mucociliary clearance is inherently abnormal in the small airways of newborn cystic fibrosis piglets that are otherwise free of infection or inflammation. This technique can be easily extended to other airway diseases such as asthma, idiopathic pulmonary fibrosis, or chronic obstructive pulmonary disease.
Collapse
Grants
- HL136813 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K08 HL135433 NHLBI NIH HHS
- P30 CA086862 NCI NIH HHS
- R56 HL147073 NHLBI NIH HHS
- HL051670 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01 HL091842 NHLBI NIH HHS
- R01 HL136813 NHLBI NIH HHS
- HL167025 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01 HL051670 NHLBI NIH HHS
- P30 ES005605 NIEHS NIH HHS
- R01 HL167025 NHLBI NIH HHS
- HL135433 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- ABOU20A0-KB Cystic Fibrosis Foundation (CFF)
- HL091842 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Carley G Stewart
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Brieanna M Hilkin
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Nicholas D Gansemer
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Ryan J Adam
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - David W Dick
- Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - John J Sunderland
- Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - David A Stoltz
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Joseph Zabner
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States
- Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Mahmoud H Abou Alaiwa
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
33
|
Soni S, Antonescu L, Ro K, Horowitz JC, Mebratu YA, Nho RS. Influenza, SARS-CoV-2, and Their Impact on Chronic Lung Diseases and Fibrosis: Exploring Therapeutic Options. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1807-1822. [PMID: 39032604 PMCID: PMC11423761 DOI: 10.1016/j.ajpath.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
Respiratory tract infections represent a significant global public health concern, disproportionately affecting vulnerable populations such as children, the elderly, and immunocompromised individuals. RNA viruses, particularly influenza viruses and coronaviruses, significantly contribute to respiratory illnesses, especially in immunosuppressed and elderly individuals. Influenza A viruses (IAVs) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to pose global health threats due to their capacity to cause annual epidemics, with profound implications for public health. In addition, the increase in global life expectancy is influencing the dynamics and outcomes of respiratory viral infections. Understanding the molecular mechanisms by which IAVs and SARS-CoV-2 contribute to lung disease progression is therefore crucial. The aim of this review is to comprehensively explore the impact of IAVs and SARS-CoV-2 on chronic lung diseases, with a specific focus on pulmonary fibrosis in the elderly. It also outlines potential preventive and therapeutic strategies and suggests directions for future research.
Collapse
Affiliation(s)
- Sourabh Soni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Laura Antonescu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Kaylin Ro
- Scripps Research Institute, San Diego, California
| | - Jeffrey C Horowitz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Yohannes A Mebratu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio.
| | - Richard S Nho
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine and The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
34
|
Hourihane E, Hixon KR. Nanoparticles as Drug Delivery Vehicles for People with Cystic Fibrosis. Biomimetics (Basel) 2024; 9:574. [PMID: 39329596 PMCID: PMC11430251 DOI: 10.3390/biomimetics9090574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/29/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Cystic Fibrosis (CF) is a life-shortening, genetic disease that affects approximately 145,000 people worldwide. CF causes a dehydrated mucus layer in the lungs, leading to damaging infection and inflammation that eventually result in death. Nanoparticles (NPs), drug delivery vehicles intended for inhalation, have become a recent source of interest for treating CF and CF-related conditions, and many formulations have been created thus far. This paper is intended to provide an overview of CF and the effect it has on the lungs, the barriers in using NP drug delivery vehicles for treatment, and three common material class choices for these NP formulations: metals, polymers, and lipids. The materials to be discussed include gold, silver, and iron oxide metallic NPs; polyethylene glycol, chitosan, poly lactic-co-glycolic acid, and alginate polymeric NPs; and lipid-based NPs. The novelty of this review comes from a less specific focus on nanoparticle examples, with the focus instead being on the general theory behind material function, why or how a material might be used, and how it may be preferable to other materials used in treating CF. Finally, this paper ends with a short discussion of the two FDA-approved NPs for treatment of CF-related conditions and a recommendation for the future usage of NPs in people with Cystic Fibrosis (pwCF).
Collapse
Affiliation(s)
- Eoin Hourihane
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA;
| | - Katherine R. Hixon
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA;
- Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
35
|
Carbone A, Vitullo P, Di Gioia S, Castellani S, Conese M. A New Frontier in Cystic Fibrosis Pathophysiology: How and When Clock Genes Can Affect the Inflammatory/Immune Response in a Genetic Disease Model. Curr Issues Mol Biol 2024; 46:10396-10410. [PMID: 39329970 PMCID: PMC11430433 DOI: 10.3390/cimb46090618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Cystic fibrosis (CF) is a monogenic syndrome caused by variants in the CF Transmembrane Conductance Regulator (CFTR) gene, affecting various organ and systems, in particular the lung, pancreas, sweat glands, liver, gastrointestinal tract, vas deferens, and vascular system. While for some organs, e.g., the pancreas, a strict genotype-phenotype occurs, others, such as the lung, display a different pathophysiologic outcome in the presence of the same mutational asset, arguing for genetic and environmental modifiers influencing severity and clinical trajectory. CFTR variants trigger a pathophysiological cascade of events responsible for chronic inflammatory responses, many aspects of which, especially related to immunity, are not ascertained yet. Although clock genes expression and function are known modulators of the innate and adaptive immunity, their involvement in CF has been only observed in relation to sleep abnormalities. The aim of this review is to present current evidence on the clock genes role in immune-inflammatory responses at the lung level. While information on this topic is known in other chronic airway diseases (chronic obstructive pulmonary disease and asthma), CF lung disease (CFLD) is lacking in this knowledge. We will present the bidirectional effect between clock genes and inflammatory factors that could possibly be implicated in the CFLD. It must be stressed that besides sleep disturbance and its mechanisms, there are not studies directly addressing the exact nature of clock genes' involvement in inflammation and immunity in CF, pointing out the directions of new and deepened studies in this monogenic affection. Importantly, clock genes have been found to be druggable by means of genetic tools or pharmacological agents, and this could have therapeutic implications in CFLD.
Collapse
Affiliation(s)
- Annalucia Carbone
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Pamela Vitullo
- Cystic Fibrosis Support Center, Ospedale “G. Tatarella”, 71042 Cerignola, Italy;
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Stefano Castellani
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| |
Collapse
|
36
|
Akbari A, Barton AR, Gazal S, Li Z, Kariminejad M, Perry A, Zeng Y, Mittnik A, Patterson N, Mah M, Zhou X, Price AL, Lander ES, Pinhasi R, Rohland N, Mallick S, Reich D. Pervasive findings of directional selection realize the promise of ancient DNA to elucidate human adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613021. [PMID: 39314480 PMCID: PMC11419161 DOI: 10.1101/2024.09.14.613021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
We present a method for detecting evidence of natural selection in ancient DNA time-series data that leverages an opportunity not utilized in previous scans: testing for a consistent trend in allele frequency change over time. By applying this to 8433 West Eurasians who lived over the past 14000 years and 6510 contemporary people, we find an order of magnitude more genome-wide significant signals than previous studies: 347 independent loci with >99% probability of selection. Previous work showed that classic hard sweeps driving advantageous mutations to fixation have been rare over the broad span of human evolution, but in the last ten millennia, many hundreds of alleles have been affected by strong directional selection. Discoveries include an increase from ~0% to ~20% in 4000 years for the major risk factor for celiac disease at HLA-DQB1; a rise from ~0% to ~8% in 6000 years of blood type B; and fluctuating selection at the TYK2 tuberculosis risk allele rising from ~2% to ~9% from ~5500 to ~3000 years ago before dropping to ~3%. We identify instances of coordinated selection on alleles affecting the same trait, with the polygenic score today predictive of body fat percentage decreasing by around a standard deviation over ten millennia, consistent with the "Thrifty Gene" hypothesis that a genetic predisposition to store energy during food scarcity became disadvantageous after farming. We also identify selection for combinations of alleles that are today associated with lighter skin color, lower risk for schizophrenia and bipolar disease, slower health decline, and increased measures related to cognitive performance (scores on intelligence tests, household income, and years of schooling). These traits are measured in modern industrialized societies, so what phenotypes were adaptive in the past is unclear. We estimate selection coefficients at 9.9 million variants, enabling study of how Darwinian forces couple to allelic effects and shape the genetic architecture of complex traits.
Collapse
Affiliation(s)
- Ali Akbari
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alison R Barton
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven Gazal
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Zheng Li
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | | | - Annabel Perry
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yating Zeng
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alissa Mittnik
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Nick Patterson
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Alkes L Price
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ron Pinhasi
- Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Aqil A, Li Y, Wang Z, Islam S, Russell M, Kallak TK, Saitou M, Gokcumen O, Masuda N. Switch-like Gene Expression Modulates Disease Susceptibility. RESEARCH SQUARE 2024:rs.3.rs-4974188. [PMID: 39315271 PMCID: PMC11419265 DOI: 10.21203/rs.3.rs-4974188/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
A fundamental challenge in biomedicine is understanding the mechanisms predisposing individuals to disease. While previous research has suggested that switch-like gene expression is crucial in driving biological variation and disease susceptibility, a systematic analysis across multiple tissues is still lacking. By analyzing transcriptomes from 943 individuals across 27 tissues, we identified 1,013 switch-like genes. We found that only 31 (3.1%) of these genes exhibit switch-like behavior across all tissues. These universally switch-like genes appear to be genetically driven, with large exonic genomic structural variants explaining five (~18%) of them. The remaining switch-like genes exhibit tissue-specific expression patterns. Notably, tissue-specific switch-like genes tend to be switched on or off in unison within individuals, likely under the influence of tissue-specific master regulators, including hormonal signals. Among our most significant findings, we identified hundreds of concordantly switched-off genes in the stomach and vagina that are linked to gastric cancer (41-fold, p<10-4) and vaginal atrophy (44-fold, p<10-4), respectively. Experimental analysis of vaginal tissues revealed that low systemic levels of estrogen lead to a significant reduction in both the epithelial thickness and the expression of the switch-like gene ALOX12. We propose a model wherein the switching off of driver genes in basal and parabasal epithelium suppresses cell proliferation therein, leading to epithelial thinning and, therefore, vaginal atrophy. Our findings underscore the significant biomedical implications of switch-like gene expression and lay the groundwork for potential diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Alber Aqil
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Yanyan Li
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Zhiliang Wang
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Saiful Islam
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, NY, USA
| | - Madison Russell
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, USA
| | | | - Marie Saitou
- Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Omer Gokcumen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, USA
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
38
|
Bacus J, Depuydt C, Arroja N, Chauvel J, Soula V, Papaxanthos A, Reboul MP, Chansel-Debordeaux L. [CFTR gene variant screening in gamete donation candidates in France: Which indications? How to screen? Why?]. GYNECOLOGIE, OBSTETRIQUE, FERTILITE & SENOLOGIE 2024:S2468-7189(24)00281-2. [PMID: 39278406 DOI: 10.1016/j.gofs.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/26/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024]
Abstract
OBJECTIVES According to French recommendations, only the caryotype is carried out as a first line in candidates for gamete donation. The prescription of additional genetic tests for variants responsible for serious monogenic diseases is only recommended in the case of call points. However, cystic fibrosis remains the most common genetic disease with serious consequences in childhood. The purpose is to assess the different screening strategies in the Centres d'Études et de Conservation des Œufs et du Sperme humain (CECOS) regarding abnormalities of the Cystic Fibrosis Transmembrane conductance Regulator gene (CFTR). METHOD Our study is based on the analysis of data collected using a questionnaire. Private centres authorised to donate have been excluded from this work. RESULTS Twenty-six centres participated out of the 33 interviewees. Two centres carry out systematic screening in all their sperm donation candidates while only one centre practises it in its oocyte donation candidates. For the other 23 centres, research is carried out in case of strong clinical suspicions according to personal or family history and when one of the two members of the recipient couple has a known variant. Regarding the molecular analysis technique used, 56.5% of centres use PCR with commercial kits, whereas the other centers use next-generation sequencing. CONCLUSION Targeted screening therefore remains widely practiced in France unlike other countries. Moving to expanded systematic screening raises ethical, financial and organisational issues.
Collapse
Affiliation(s)
- Julie Bacus
- Service de biologie de la reproduction-CECOS, CHU de Bordeaux, Bordeaux, France.
| | - Chloé Depuydt
- Service de biologie de la reproduction-CECOS, CHU de Bordeaux, Bordeaux, France; Bordeaux Institute in Oncology - BRIC - équipe BioGo, Inserm U1312, université de Bordeaux, Bordeaux, France
| | - Nathalie Arroja
- Service de biologie de la reproduction-CECOS, CHU de Bordeaux, Bordeaux, France
| | - Juliette Chauvel
- Service de biologie de la reproduction-CECOS, CHU de Bordeaux, Bordeaux, France
| | - Volcy Soula
- Service de biologie de la reproduction-CECOS, CHU de Bordeaux, Bordeaux, France
| | - Aline Papaxanthos
- Service de biologie de la reproduction-CECOS, CHU de Bordeaux, Bordeaux, France
| | - Marie-Pierre Reboul
- Laboratoire de génétique moléculaire, service de génétique médicale, CHU de Bordeaux, Bordeaux, France
| | - Lucie Chansel-Debordeaux
- Service de biologie de la reproduction-CECOS, CHU de Bordeaux, Bordeaux, France; Bordeaux Institute in Oncology - BRIC - équipe BioGo, Inserm U1312, université de Bordeaux, Bordeaux, France
| |
Collapse
|
39
|
Khan MU, Sakhawat A, Rehman R, Wali AH, Ghani MU, Akram A, Javed MA, Ali Q, Yu-Ming Z, Ali D, Yu-Ming Z. Identification of novel natural compounds against CFTR p.Gly628Arg pathogenic variant. AMB Express 2024; 14:99. [PMID: 39249658 PMCID: PMC11383896 DOI: 10.1186/s13568-024-01762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) protein is an ion channel found in numerous epithelia and controls the flow of water and salt across the epithelium. The aim of our study to find natural compounds that can improve lung function for people with cystic fibrosis (CF) caused by the p.Gly628Arg (rs397508316) mutation of CFTR protein. The sequence of CFTR protein as a target structure was retrieved from UniProt and PDB database. The ligands that included Armepavine, Osthole, Curcumin, Plumbagine, Quercetin, and one Trikafta (R*) reference drug were screened out from PubChem database. Autodock vina software carried out docking, and binding energies between the drug and the target were included using docking-score. The following tools examined binding energy, interaction, stability, toxicity, and visualize protein-ligand complexes. The compounds having binding energies of -6.4, -5.1, -6.6, -5.1, and - 6.5 kcal/mol for Armepavine, Osthole, Curcumin, Plumbagine, Quercetin, and R*-drug, respectively with mutated CFTR (Gly628Arg) structure were chosen as the most promising ligands. The ligands bind to the mutated CFTR protein structure active sites in hydrophobic bonds, hydrogen bonds, and electrostatic interactions. According to ADMET analyses, the ligands Armepavine and Quercetin also displayed good pharmacokinetic and toxicity characteristics. An MD simulation for 200 ns was also established to ensure that Armepavine and Quercetin ligands attached to the target protein favorably and dynamically, and that protein-ligand complex stability was maintained. It is concluded that Armepavine and Quercetin have stronger capacity to inhibit the effect of mutated CFTR protein through improved trafficking and restoration of original function.
Collapse
Affiliation(s)
- Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Azra Sakhawat
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Raima Rehman
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Abbas Haider Wali
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Usman Ghani
- Precision Genomics Research Lab, Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Areeba Akram
- Precision Genomics Research Lab, Centre for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.
| | - Zhou Yu-Ming
- Department of Emergency, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, 341000, Jiangxi Province, P.R. China
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Zhou Yu-Ming
- Department of Emergency, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, 341000, Jiangxi Province, P.R. China
| |
Collapse
|
40
|
Moundir A, Jeddane L, Bousfiha AA. Insights into the genetic theory of infectious diseases. LA TUNISIE MEDICALE 2024; 102:521-528. [PMID: 39287343 PMCID: PMC11459253 DOI: 10.62438/tunismed.v102i9.4872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/08/2024] [Indexed: 09/19/2024]
Abstract
Over the past century, classical approaches from microbiology and immunology have produced spectacular results in the control of infectious diseases. However, the recent SARS-COV-2 pandemic has highlighted our continued failure to control some infections. Other microorganisms still pose a threat to humanity such as HIV, Ebola, and influenza viruses. It seems that conventional approaches are not able to solve all the current problems caused by infectious diseases. Human genetics has shown that infections have a strong genetic determinism that can lead to a predisposition or resistance to infections. This explains much of the clinical variability observed in individuals infected with the same pathogen. The identification of the genetic etiology allows a better understanding of the pathogenesis of infectious diseases and, consequently, the consideration of appropriate preventive and therapeutic strategies. This review provides insights into the genetic theory and the concrete evidence to support it. We highlight the role of primary immunodeficiencies in the discovery of Mendelian and monogenic susceptibility to infections, then we show how genetic and phenotypic heterogeneity, redundancy, and resistance to infection manifest in the context of this genetic determinism. To effectively combat the constant threat of microbes, it is essential to integrate human genetics with microbiology to examine the interactions between pathogens and our immune system.
Collapse
Affiliation(s)
- Abderrahmane Moundir
- Laboratory of Clinical Immunology, Inflammation and Allergies LICIA, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Leila Jeddane
- Laboratory of Clinical Immunology, Inflammation and Allergies LICIA, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Laboratoire National de Référence, Mohamed VI Health Sciences University, Casablanca, Morocco
| | - Ahmed Aziz Bousfiha
- Laboratory of Clinical Immunology, Inflammation and Allergies LICIA, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Ibn-Rochd University Hospital, Casablanca, Morocco
| |
Collapse
|
41
|
Trouvé P, Saint Pierre A, Férec C. Cystic Fibrosis: A Journey through Time and Hope. Int J Mol Sci 2024; 25:9599. [PMID: 39273547 PMCID: PMC11394767 DOI: 10.3390/ijms25179599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
Just over thirty years is the span of a generation. It is also the time that has passed since the discovery of the gene responsible for cystic fibrosis. Today, it is safe to say that this discovery has revolutionized our understanding, research perspectives, and management of this disease, which was, thirty years ago, a pediatric condition with a grim prognosis. The aim of this review is to present the advances that science and medicine have brought to our understanding of the pathophysiology of the disease and its management, which in many ways, epitomizes modern molecular genetic research. Since the discovery of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in 1989, modeling the CFTR protein, deciphering its function as an ion channel, and identifying its molecular partners have led to numerous therapeutic advances. The most significant advancement in this field has been the discovery of protein modulators that can target its membrane localization and chloride channel activity. However, further progress is needed to ensure that all patients can benefit from a therapy tailored to their mutations, with the primary challenge being the development of treatments for mutations leading to a complete absence of the protein. The present review delves into the history of the multifaceted world of CF, covering main historical facts, current landscape, clinical management, emerging therapies, patient perspectives, and the importance of ongoing research, bridging science and medicine in the fight against the disease.
Collapse
Affiliation(s)
- Pascal Trouvé
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Aude Saint Pierre
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| |
Collapse
|
42
|
Aqil A, Li Y, Wang Z, Islam S, Russell M, Kallak TK, Saitou M, Gokcumen O, Masuda N. Switch-like Gene Expression Modulates Disease Susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.24.609537. [PMID: 39229158 PMCID: PMC11370615 DOI: 10.1101/2024.08.24.609537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A fundamental challenge in biomedicine is understanding the mechanisms predisposing individuals to disease. While previous research has suggested that switch-like gene expression is crucial in driving biological variation and disease susceptibility, a systematic analysis across multiple tissues is still lacking. By analyzing transcriptomes from 943 individuals across 27 tissues, we identified 1,013 switch-like genes. We found that only 31 (3.1%) of these genes exhibit switch-like behavior across all tissues. These universally switch-like genes appear to be genetically driven, with large exonic genomic structural variants explaining five (~18%) of them. The remaining switch-like genes exhibit tissue-specific expression patterns. Notably, tissue-specific switch-like genes tend to be switched on or off in unison within individuals, likely under the influence of tissue-specific master regulators, including hormonal signals. Among our most significant findings, we identified hundreds of concordantly switched-off genes in the stomach and vagina that are linked to gastric cancer (41-fold, p<10-4) and vaginal atrophy (44-fold, p<10-4), respectively. Experimental analysis of vaginal tissues revealed that low systemic levels of estrogen lead to a significant reduction in both the epithelial thickness and the expression of the switch-like gene ALOX12. We propose a model wherein the switching off of driver genes in basal and parabasal epithelium suppresses cell proliferation therein, leading to epithelial thinning and, therefore, vaginal atrophy. Our findings underscore the significant biomedical implications of switch-like gene expression and lay the groundwork for potential diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Alber Aqil
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Yanyan Li
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Zhiliang Wang
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Saiful Islam
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, NY, USA
| | - Madison Russell
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, USA
| | | | - Marie Saitou
- Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Omer Gokcumen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, USA
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
43
|
Conto JD, Dalcin PTR, Ziegler B. Factors associated with cystic fibrosis mortality before the age of 30: retrospective analysis of a cohort in southern Brazil. Braz J Med Biol Res 2024; 57:e13476. [PMID: 39194031 DOI: 10.1590/1414-431x2024e13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/26/2024] [Indexed: 08/29/2024] Open
Abstract
The aim of this study was to retrospectively evaluate the factors associated with mortality before the age of 30 in adults with cystic fibrosis (CF) followed up at a referral center in southern Brazil. This study included individuals over 18 years of age. Clinical data related to childhood and the period of transition to an adult healthcare of individuals with CF were recorded, as well as spirometric and mortality data of individuals between 18 and 30 years of age. A total of 48 patients were included in this study, of which 28 (58.3%) were male. Comparing groups, we observed a higher prevalence of homozygosis for the F508del mutation (P=0.028), massive hemoptysis before the age of 18 (P=0.027), and lower values of pulmonary function, forced expiratory volume in the first second (FEV1) (%) (P=0.002), forced vital capacity (FVC) (%) (P=0.01), and FEV1/FVC (%) (P=0.001) in the group that died before age 30. F508del homozygosis, episodes of massive hemoptysis in childhood, and lower FEV1 values at age 18 were related to mortality before age 30 in a cohort of individuals with CF in southern Brazil.
Collapse
Affiliation(s)
- J De Conto
- Programa de Pós-Graduação em Ciências Pneumológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | - P T R Dalcin
- Programa de Pós-Graduação em Ciências Pneumológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | - B Ziegler
- Programa de Pós-Graduação em Ciências Pneumológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| |
Collapse
|
44
|
Vaccarin C, Veit G, Hegedus T, Torres O, Chilin A, Lukacs GL, Marzaro G. Synthesis and Biological Evaluation of Pyrazole-Pyrimidones as a New Class of Correctors of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). J Med Chem 2024; 67:13891-13908. [PMID: 39137389 DOI: 10.1021/acs.jmedchem.4c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Cystic fibrosis (CF) is caused by the functional expression defect of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Despite the recent success in CFTR modulator development, the available correctors only partially restore the F508del-CFTR channel function, and several rare CF mutations show resistance to available drugs. We previously identified compound 4172 that synergistically rescued the F508del-CFTR folding defect in combination with the existing corrector drugs VX-809 and VX-661. Here, novel CFTR correctors were designed by applying a classical medicinal chemistry approach on the 4172 scaffold. Molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were conducted to propose a plausible binding site and design more potent and effective analogs. We identified three optimized compounds, which, in combination with VX-809 and the investigational corrector 3151, increased the plasma membrane density and function of F508del-CFTR and other rare CFTR mutants resistant to the currently approved therapies.
Collapse
Affiliation(s)
- Christian Vaccarin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
- Center for Radiopharmaceutical Sciences, ETH-PSI-USZ, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Guido Veit
- Department of Physiology and Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Tamas Hegedus
- Institute of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary
- HUN-REN Biophysical Virology Research Group, Hungarian Research Network, Budapest 1052, Hungary
| | - Odalys Torres
- Institute of Biophysics and Radiation Biology, Semmelweis University, 1085 Budapest, Hungary
| | - Adriana Chilin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Gergely L Lukacs
- Department of Physiology and Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
45
|
Mall MA, Burgel PR, Castellani C, Davies JC, Salathe M, Taylor-Cousar JL. Cystic fibrosis. Nat Rev Dis Primers 2024; 10:53. [PMID: 39117676 DOI: 10.1038/s41572-024-00538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Cystic fibrosis is a rare genetic disease caused by mutations in CFTR, the gene encoding cystic fibrosis transmembrane conductance regulator (CFTR). The discovery of CFTR in 1989 has enabled the unravelling of disease mechanisms and, more recently, the development of CFTR-directed therapeutics that target the underlying molecular defect. The CFTR protein functions as an ion channel that is crucial for correct ion and fluid transport across epithelial cells lining the airways and other organs. Consequently, CFTR dysfunction causes a complex multi-organ disease but, to date, most of the morbidity and mortality in people with cystic fibrosis is due to muco-obstructive lung disease. Cystic fibrosis care has long been limited to treating symptoms using nutritional support, airway clearance techniques and antibiotics to suppress airway infection. The widespread implementation of newborn screening for cystic fibrosis and the introduction of a highly effective triple combination CFTR modulator therapy that has unprecedented clinical benefits in up to 90% of genetically eligible people with cystic fibrosis has fundamentally changed the therapeutic landscape and improved prognosis. However, people with cystic fibrosis who are not eligible based on their CFTR genotype or who live in countries where they do not have access to this breakthrough therapy remain with a high unmet medical need.
Collapse
Affiliation(s)
- Marcus A Mall
- Department of Paediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany.
- German Centre for Lung Research (DZL), Associated Partner Site Berlin, Berlin, Germany.
- German Center for Child and Adolescent Health (DZKJ), Partner Site Berlin, Berlin, Germany.
| | - Pierre-Régis Burgel
- Université Paris Cité and Institut Cochin, Inserm U1016, Paris, France
- Department of Respiratory Medicine and National Reference Center for Cystic Fibrosis, Cochin Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Carlo Castellani
- IRCCS Istituto Giannina Gaslini, Cystic Fibrosis Center, Genoa, Italy
| | - Jane C Davies
- National Heart & Lung Institute, Imperial College London, London, UK
- St Thomas' NHS Trust, London, UK
- Royal Brompton Hospital, Part of Guy's & St Thomas' Trust, London, UK
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - Jennifer L Taylor-Cousar
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
- Division of Paediatric Pulmonary Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|
46
|
Malwade S, Shaligram R, Garud BP, Mane S. A Rare Case of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Gene Mutation on Exon 8 in a Patient Presenting With Recurrent Infections and Failure to Thrive. Cureus 2024; 16:e67892. [PMID: 39328641 PMCID: PMC11425150 DOI: 10.7759/cureus.67892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Cystic fibrosis (CF) is a genetic disorder that affects various bodily organs, predominantly the pulmonary and gastrointestinal systems. Identifying CF at an early stage can pose a significant challenge, especially when symptoms manifest unusually. The following case study depicts an exceptional and atypical instance of CF in a neonate. A male infant aged 4 months exhibited symptoms such as failure to thrive (FTT), inadequate weight gain, feeding difficulties, slight developmental delay (presence of head lag), and sporadic irritability. The patient experienced an uncomplicated prenatal and postnatal period. Subsequently, the patient suffered from recurring infections and a notable inability to gain weight. Initial tests, encompassing assessments of liver functionality and metabolic processes, yielded inconclusive results. A genetic assessment pinpointed a detrimental cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation on Exon 8, thereby confirming the presence of CF. This analysis underscores the importance of considering CF even in the absence of typical indications. Timely and precise identification through genetic analysis is imperative for effective treatment and enhanced prognoses among individuals with CF.
Collapse
Affiliation(s)
- Sudhir Malwade
- Pediatrics, Dr. D.Y. Patil Medical College, Hospital and Research Center, Dr. D. Y. Patil Vidyapeeth (Deemed to be University) Pimpri, Pune, IND
| | - Ruhi Shaligram
- Pediatrics, Dr. D.Y. Patil Medical College, Hospital and Research Center, Dr. D. Y. Patil Vidyapeeth (Deemed to be University) Pimpri, Pune, IND
| | - Balakrushna P Garud
- Pediatrics, Dr. D.Y. Patil Medical College, Hospital and Research Center, Dr. D. Y. Patil Vidyapeeth (Deemed to be University) Pimpri, Pune, IND
| | - Shailaja Mane
- Pediatrics, Dr. D.Y. Patil Medical College, Hospital and Research Center, Dr. D. Y. Patil Vidyapeeth (Deemed to be University) Pimpri, Pune, IND
| |
Collapse
|
47
|
Khorshid Sokhangouy S, Alizadeh F, Lotfi M, Sharif S, Ashouri A, Yoosefi Y, Bozorg Qomi S, Abbaszadegan MR. Recent advances in CRISPR-Cas systems for colorectal cancer research and therapeutics. Expert Rev Mol Diagn 2024; 24:677-702. [PMID: 39132997 DOI: 10.1080/14737159.2024.2388777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/28/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Colon cancer, ranked as the fourth leading global cause of cancer death, exhibits a complex progression marked by genetic variations. Over the past decade, the utilization of diverse CRISPR systems has propelled accelerated research into colorectal cancer (CRC) treatment. AREAS COVERED CRISPR/Cas9, a key player in this research, identifies new oncogenes, tumor suppressor genes (TSGs), and drug-resistance genes. Additionally, it facilitates the construction of experimental models, conducts genome-wide library screening, and develops new therapeutic targets, especially for targeted knockout in vivo or molecular targeted drug delivery, contributing to personalized treatments and significantly enhancing the care of colon cancer patients. In this review, we provide insights into the mechanism of the CRISPR/Cas9 system, offering a comprehensive exploration of its applications in CRC, spanning screening, modeling, gene functions, diagnosis, and gene therapy. While acknowledging its transformative potential, the article highlights the challenges and limitations of CRISPR systems. EXPERT OPINION The application of CRISPR/Cas9 in CRC research provides a promising avenue for personalized treatments. Its potential for identifying key genes and enabling experimental models and genome-wide screening enhances patient care. This review underscores the significance of CRISPR-Cas9 gene editing technology across basic research, diagnosis, and the treatment landscape of colon cancer.
Collapse
Affiliation(s)
| | - Farzaneh Alizadeh
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Sharif
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Ashouri
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasamin Yoosefi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Bozorg Qomi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
48
|
Araiqat B, Syaj S, Al-Khatib A, Al-Bzour N, Hussein N, Aqel S, Ahmad J. A bibliometric analysis of cystic fibrosis transmembrane conductance regulators. Monaldi Arch Chest Dis 2024. [PMID: 39248412 DOI: 10.4081/monaldi.2024.3004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/03/2024] [Indexed: 09/10/2024] Open
Abstract
Cystic fibrosis (CF), a multisystem disease primarily affecting the lungs, arises due to pathogenic mutations in the CF transmembrane conductance regulator (CFTR) gene. This study embarked on a bibliometric analysis to survey the use of CFTR modulators in CF treatment. Utilizing the Scopus database, a comprehensive search was executed, incorporating terms related to CF and CFTR modulators. Various document types up to July 19, 2023, were included, with citation counts forming the basis of our analyses. Trends, contributor countries, leading institutions, top authors, journals, keywords, and annual citation trends were evaluated. Our search retrieved 2317 records, predominantly articles. The United States dominated in both publications and citations, followed by the United Kingdom. The University of Alabama, Birmingham, and Vertex Pharmaceuticals, Boston, were among the top institutions. Rowe S.M. was identified as a top-cited author. The Journal of Cystic Fibrosis emerged as the leading journal in terms of publication volume, while the New England Journal of Medicine had the highest citation count. The most-cited article addressed a CFTR potentiator's efficacy in patients with the G551D mutation. The keyword "Cystic fibrosis" appeared most frequently. This bibliometric analysis underscores the significant research focus on CF, especially concerning CFTR modulators. The results highlight the pivotal role of certain countries, institutions, authors, and journals in the progression of CF research, offering insights into current trends and future research directions.
Collapse
Affiliation(s)
- Bashar Araiqat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid.
| | - Sebawe Syaj
- Faculty of Medicine, Jordan University of Science and Technology, Irbid.
| | - Aseel Al-Khatib
- Faculty of Medicine, Jordan University of Science and Technology, Irbid.
| | - Nour Al-Bzour
- Faculty of Medicine, Jordan University of Science and Technology, Irbid.
| | - Narmine Hussein
- Faculty of Medicine, Jordan University of Science and Technology, Irbid.
| | - Sarah Aqel
- Medical Research Center, Hamad Medical Corporation, Doha.
| | - Jamil Ahmad
- Department of Urology, Hamad Medical Corporation, Doha.
| |
Collapse
|
49
|
Liu F, Kaplan AL, Levring J, Einsiedel J, Tiedt S, Distler K, Omattage NS, Kondratov IS, Moroz YS, Pietz HL, Irwin JJ, Gmeiner P, Shoichet BK, Chen J. Structure-based discovery of CFTR potentiators and inhibitors. Cell 2024; 187:3712-3725.e34. [PMID: 38810646 PMCID: PMC11262615 DOI: 10.1016/j.cell.2024.04.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a crucial ion channel whose loss of function leads to cystic fibrosis, whereas its hyperactivation leads to secretory diarrhea. Small molecules that improve CFTR folding (correctors) or function (potentiators) are clinically available. However, the only potentiator, ivacaftor, has suboptimal pharmacokinetics and inhibitors have yet to be clinically developed. Here, we combine molecular docking, electrophysiology, cryo-EM, and medicinal chemistry to identify CFTR modulators. We docked ∼155 million molecules into the potentiator site on CFTR, synthesized 53 test ligands, and used structure-based optimization to identify candidate modulators. This approach uncovered mid-nanomolar potentiators, as well as inhibitors, that bind to the same allosteric site. These molecules represent potential leads for the development of more effective drugs for cystic fibrosis and secretory diarrhea, demonstrating the feasibility of large-scale docking for ion channel drug discovery.
Collapse
Affiliation(s)
- Fangyu Liu
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anat Levit Kaplan
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jesper Levring
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Jürgen Einsiedel
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Stephanie Tiedt
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Katharina Distler
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany
| | - Natalie S Omattage
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Ivan S Kondratov
- Enamine Ltd., Chervonotkatska Street 78, 02094 Kyïv, Ukraine; V.P. Kukhar Institute of Bioorganic Chemistry & Petrochemistry, National Academy of Sciences of Ukraine, Murmanska Street 1, 02660 Kyïv, Ukraine
| | - Yurii S Moroz
- Chemspace, Chervonotkatska Street 85, 02094 Kyïv, Ukraine; Taras Shevchenko National University of Kyïv, Volodymyrska Street 60, 01601 Kyïv, Ukraine
| | - Harlan L Pietz
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - John J Irwin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, D-91058 Erlangen, Germany.
| | - Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
50
|
Bihler H, Sivachenko A, Millen L, Bhatt P, Patel AT, Chin J, Bailey V, Musisi I, LaPan A, Allaire NE, Conte J, Simon NR, Magaret AS, Raraigh KS, Cutting GR, Skach WR, Bridges RJ, Thomas PJ, Mense M. In vitro modulator responsiveness of 655 CFTR variants found in people with cystic fibrosis. J Cyst Fibros 2024; 23:664-675. [PMID: 38388235 DOI: 10.1016/j.jcf.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND In 2017, the US Food and Drug Administration initiated expansion of drug labels for the treatment of cystic fibrosis (CF) to include CF transmembrane conductance regulator (CFTR) gene variants based on in vitro functional studies. This study aims to identify CFTR variants that result in increased chloride (Cl-) transport function by the CFTR protein after treatment with the CFTR modulator combination elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA). These data may benefit people with CF (pwCF) who are not currently eligible for modulator therapies. METHODS Plasmid DNA encoding 655 CFTR variants and wild-type (WT) CFTR were transfected into Fisher Rat Thyroid cells that do not natively express CFTR. After 24 h of incubation with control or TEZ and ELX, and acute addition of IVA, CFTR function was assessed using the transepithelial current clamp conductance assay. Each variant's forskolin/cAMP-induced baseline Cl- transport activity, responsiveness to IVA alone, and responsiveness to the TEZ/ELX/IVA combination were measured in three different laboratories. Western blots were conducted to evaluate CFTR protein maturation and complement the functional data. RESULTS AND CONCLUSIONS 253 variants not currently approved for CFTR modulator therapy showed low baseline activity (<10 % of normal CFTR Cl- transport activity). For 152 of these variants, treatment with ELX/TEZ/IVA improved the Cl- transport activity by ≥10 % of normal CFTR function, which is suggestive of clinical benefit. ELX/TEZ/IVA increased CFTR function by ≥10 percentage points for an additional 140 unapproved variants with ≥10 % but <50 % of normal CFTR function at baseline. These findings significantly expand the number of rare CFTR variants for which ELX/TEZ/IVA treatment should result in clinical benefit.
Collapse
Affiliation(s)
- Hermann Bihler
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | | | - Linda Millen
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Priyanka Bhatt
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | | | - Justin Chin
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | - Violaine Bailey
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | - Isaac Musisi
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | - André LaPan
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | | | - Joshua Conte
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA
| | - Noah R Simon
- University of Washington, Seattle, WA 98195-9300, USA
| | | | - Karen S Raraigh
- Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA
| | - Garry R Cutting
- Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA
| | | | - Robert J Bridges
- Rosalind Franklin University Medical School, Chicago, IL 60064, USA
| | - Philip J Thomas
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Martin Mense
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA 02421, USA.
| |
Collapse
|