1
|
Son HG, Ha DT, Xia Y, Li T, Blandin J, Oka T, Azin M, Conrad DN, Zhou C, Zeng Y, Hasegawa T, Strickley JD, Messerschmidt JL, Guennoun R, Erlich TH, Shoemaker GL, Johnson LH, Palmer KE, Fisher DE, Horn TD, Neel VA, Nazarian RM, Joh JJ, Demehri S. Commensal papillomavirus immunity preserves the homeostasis of highly mutated normal skin. Cancer Cell 2025; 43:36-48.e10. [PMID: 39672169 PMCID: PMC11732714 DOI: 10.1016/j.ccell.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/12/2024] [Accepted: 11/21/2024] [Indexed: 12/15/2024]
Abstract
Immunosuppression commonly disrupts the homeostasis of mutated normal skin, leading to widespread skin dysplasia and field cancerization. However, the immune system's role in maintaining the normal state of mutated tissues remains uncertain. Herein, we demonstrate that T cell immunity to cutaneotropic papillomaviruses promotes the homeostasis of ultraviolet radiation-damaged skin. Mouse papillomavirus (MmuPV1) colonization blocks the expansion of mutant p53 clones in the epidermis in a CD8+ T cell-dependent manner. MmuPV1 activity is increased in p53-deficient keratinocytes, leading to their specific targeting by CD8+ T cells in the skin. Sun-exposed human skin containing mutant p53 clones shows increased epidermal beta-human papillomavirus (β-HPV) activity and CD8+ T cell infiltrates compared with sun-protected skin. The expansion of mutant p53 clones in premalignant skin lesions associates with β-HPV loss. Thus, immunity to commensal HPVs contributes to the homeostasis of mutated normal skin, highlighting the role of virome-immune system interactions in preserving aging human tissues.
Collapse
Affiliation(s)
- Heehwa G Son
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dat Thinh Ha
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Yun Xia
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tiancheng Li
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jasmine Blandin
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tomonori Oka
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marjan Azin
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Danielle N Conrad
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Can Zhou
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yuhan Zeng
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tatsuya Hasegawa
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - John D Strickley
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Jonathan L Messerschmidt
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ranya Guennoun
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tal H Erlich
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gregory L Shoemaker
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY, USA
| | - Luke H Johnson
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY, USA
| | - Kenneth E Palmer
- Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA; Center for Predictive Medicine, University of Louisville Health Sciences Center, Louisville, KY, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas D Horn
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Victor A Neel
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rosalynn M Nazarian
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joongho J Joh
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA; Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY, USA
| | - Shadmehr Demehri
- Center for Cancer Immunology, Krantz Family Center for Cancer Research, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA; Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Zhong H, Shao X, Cao J, Huang J, Wang J, Yang N, Yuan B. Comparison of the Distribution Patterns of Microsatellites Across the Genomes of Reptiles. Ecol Evol 2024; 14:e70458. [PMID: 39575149 PMCID: PMC11581779 DOI: 10.1002/ece3.70458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/29/2024] [Accepted: 09/29/2024] [Indexed: 11/24/2024] Open
Abstract
Microsatellites or simple sequence repeats (SSRs) are prevalent across various organisms' genomes. However, their distribution patterns and evolutionary dynamics in reptile genomes are rarely studied systematically. We herein conducted a comprehensive analysis of SSRs in the genomes of 36 reptile species. Our findings revealed that the total number of SSRs ranged from 1,840,965 to 7,664,452, accounting for 2.16%-8.19% of the genomes analyzed. The relative density ranged from 21,567.82 to 81,889.41 bp per megabase (Mbp). The abundance of different SSR categories followed the pattern of imperfect SSR (I-SSR) > perfect SSR (P-SSR) > compound SSR (C-SSR). A significant positive correlation was observed between the number of SSRs and genome size (p = 0.0034), whereas SSR frequency (p = 0.013) or density (p = 0.0099) showed a negative correlation with genome size. Furthermore, no correlation was found between SSR length and genome size. Mononucleotide repeats were the most common P-SSRs in crocodilians and turtles, whereas mononucleotides, trinucleotides, or tetranucleotides were the most common P-SSRs in snakes, lizards, and tuatara. P-SSRs of varying motif sizes showed nonrandom distribution across different genic regions, with AT-rich repeats being predominant. The genomic SSR content of the squamate lineage ranked the highest in abundance and variability, whereas crocodilians and turtles showed a slowly evolving and reduced microsatellite landscape. Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that genes harboring P-SSRs in the coding DNA sequence regions were primarily involved in the regulation of transcription and translation processes. The SSR dataset generated in this study provides potential candidates for functional analysis and calls for broader-scale analyses across the evolutionary spectrum.
Collapse
Affiliation(s)
- Huaming Zhong
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
- Key Laboratory on Agricultural Microorganism Resources Development of ShangqiuScience and Technology Bureau of Shangqiu CityShangqiuHenanChina
| | - Xuan Shao
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
- Key Laboratory on Agricultural Microorganism Resources Development of ShangqiuScience and Technology Bureau of Shangqiu CityShangqiuHenanChina
| | - Jing Cao
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Jie Huang
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Jing Wang
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Nuo Yang
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Baodong Yuan
- College of Life ScienceLiaocheng UniversityLiaochengShandongChina
| |
Collapse
|
3
|
Liu T, Zhang Y, Nie H, Sun J, Yan X. Characterization and expression patterns of the Fox gene family under heat and cold stress in Manila clam Ruditapes philippinarum based on genome-wide identification. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101313. [PMID: 39216278 DOI: 10.1016/j.cbd.2024.101313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
In this study, the Fox gene family of Ruditapes philippinarum was identified by bioinformatics analysis and genome data. The results showed that a total of 21 Fox genes were identified in R. philippinarum, which were divided into 16 subfamilies, including two members of Foxa subfamily (Foxa1, Foxa2), three members of Foxl subfamily (Foxl1b, Foxl1a, FOXL2), three members of Foxn subfamily (FOXN3, FOX4A, Foxn4b) and one member of other families. The chromosome distribution, domains, conserved motifs, introns, exons and protein tertiary structures of these 21 Fox genes were predicted. By analyzing the RNA-seq data of R. philippinarum, it was found that the Fox gene family was differentially expressed in different tissues, different developmental stages and under heat and cold stress. Most of Fox genes were highly expressed in four tissues: labial palp, gonad, gill and foot. Most of the Fox genes were highly expressed in blastula stage. Most of the Fox genes were highly expressed in high temperature group of two populations, and Foxo, FOXG1 were highly expressed in low temperature group. In addition, qPCR showed that the expression levels of Foxo and Foxj1b genes increased significantly under acute cold stress. Therefore, we speculate that Fox genes may play important roles in embryo development and the temperature stress of R. philippinarum, and this study provides a basis for further exploring the molecular mechanism of low temperature tolerance mediated by Fox.
Collapse
Affiliation(s)
- Tao Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Yue Zhang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China.
| | - Jingxian Sun
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China.
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
4
|
He X, Liao Y, Shen Y, Shao J, Wang S, Bao Y. Transcriptomic analysis of mRNA and miRNA reveals new insights into the regulatory mechanisms of Anadara granosa responses to heat stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101311. [PMID: 39154435 DOI: 10.1016/j.cbd.2024.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/03/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Temperature fluctuations resulting from climate change and global warming pose significant threats to various species. The blood clam, Anadara granosa, a commercially important marine bivalve, predominantly inhabits intertidal mudflats that are especially susceptible to elevated temperatures. This vulnerability has led to noticeable declines in the survival rates of A. granosa larvae, accompanied by an increase in malformations. Despite these observable trends, there is a lack of comprehensive research on the regulatory mechanisms underlying A. granosa's responses to heat stress. In this study, we examined the survival rates of A. granosa under varying high temperature conditions, selecting 34 °C as heat stress temperature. Enzyme activity assays have shed light on A. granosa's adaptive response to heat stress, revealing its ability to maintain redox balance and transition from aerobic to anaerobic metabolic pathways. Subsequently, mRNA and miRNA transcriptome analyses were conducted, elucidating several key responses of A. granosa to heat stress. These responses include the upregulation of transcription and protein synthesis, downregulation of proteasome activity, and metabolic pattern adjustments. Furthermore, we identified miRNA-mRNA networks implicated in heat stress responses, potentially serving as valuable candidate markers for A. granosa's heat stress response. Notably, we validated the involvement of agr-miR-3199 in A. granosa's heat stress response through its regulation of the target gene Foxj1. These findings not only deepen our understanding of the molecular mechanisms underlying the blood clam's response to heat stress but also offer valuable insights for enhancing heat stress resilience in the blood clam aquaculture industry. Moreover, they contribute to improved cultivation strategies for molluscs in the face of global warming and have significant implications for the conservation of marine resources and the preservation of ecological balance.
Collapse
Affiliation(s)
- Xin He
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, China; Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China
| | - Yushan Liao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Yiping Shen
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Junfa Shao
- Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Shi Wang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China
| | - Yongbo Bao
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai 315604, China; Key Laboratory of Aquatic Germplasm Resource of Zhejiang, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China.
| |
Collapse
|
5
|
Bamba C, Rohilla M, Kumari A, Kaur A, Srivastava P. Influence of forkhead box protein 3 gene polymorphisms in recurrent pregnancy loss: A meta-analysis. Placenta 2024; 146:79-88. [PMID: 38198891 DOI: 10.1016/j.placenta.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/04/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND Treg cells play an important role in development of tolerance in maternal immune system against the semi-allogenic embryo. Human forkhead box protein 3 (FOXP3) gene, is the major transcription factor responsible for the regulation of Treg function during pregnancy. Single nucleotide polymorphisms (SNPs) of FOXP3 gene have been reported as a risk factor for Recurrent Pregnancy Loss (RPL), however, results from previous studies are inconsistent. METHODOLOGY We have collected data from different studies to investigate the overall association of FOXP3 SNPs with risk of RPL. PubMed, Google Scholar, Elsevier, and Cochrane databases were searched to identify eligible studies. Odds Ratio (OR) and 95 % Confidence Interval (CI), calculated via fixed effect or random effect models, were used to evaluate strength of association. This meta-analysis included 11 studies (1383 RPL cases and 1413 controls) of 6 SNPs: rs3761548 A/C, rs2232365 A/G, rs2294021 T/C, 2280883 T/C, rs5902434del/ATT and rs141704699C/T, with ≥2 studies per SNPs and at least 1 significant result. RESULTS We observed that FOXP3 polymorphism was predominantly present in Asian women with history of RPL. rs2232365 A/G, rs3761548 A/C, rs2294021 T/C, rs2280883 T/C and rs5902434del/ATT polymorphisms were significantly associated with risk of RPL in Indian population. Further, among the most commonly seen polymorphism, rs3761548 A/C was significantly associated with risk of RPL in women from Kazakhstan, China and Gaza, Palestine; rs2232365 A/G in populations of Kazakhstan, Egypt, Iran and Gaza, Palestine. Results of this study indicates that FOXP3 polymorphism is significantly associated with risk of RPL, especially in Asians.
Collapse
Affiliation(s)
- Chitra Bamba
- Genetic Metabolic Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research, Sector-12, Chandigarh, 160012, India
| | - Minakshi Rohilla
- Department of Obstetric & Gynaecology, Post Graduate Institute of Medical Education & Research, Sector-12, Chandigarh, 160012, India
| | - Anu Kumari
- Genetic Metabolic Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research, Sector-12, Chandigarh, 160012, India
| | - Anupriya Kaur
- Genetic Metabolic Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research, Sector-12, Chandigarh, 160012, India
| | - Priyanka Srivastava
- Genetic Metabolic Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research, Sector-12, Chandigarh, 160012, India.
| |
Collapse
|
6
|
Ding Y, Lv Y, Pan Y, Li J, Yan K, Yu Z, Shang Q. A masked gene concealed hand in glove in the forkhead protein crocodile regulates the predominant detoxification CYP6DA1 in Aphis gossypii Glover. Int J Biol Macromol 2023; 253:126824. [PMID: 37690634 DOI: 10.1016/j.ijbiomac.2023.126824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Cytochrome P450-mediated metabolism is an important mechanism of insecticide resistance, most studies show upregulated transcript levels of P450s in resistant insect strains. Our previous studies illustrated that some upregulated P450s were associated with cyantraniliprole resistance, and it is more comprehensive to use the tissue specificity of transcriptomes to compare resistant (CyR) and susceptible (SS) strains. In this study, the expression profiles of P450s in a CyR strain compared with a SS strain in remaining carcass or midgut were investigated by RNA sequencing, and candidate genes were selected for functional study. Drosophila melanogaster bioassays suggested that ectopic overexpression of CYP4CK1, CYP6CY5, CYP6CY9, CYP6CY19, CYP6CZ1 and CYP6DA1 in flies was sufficient to confer cyantraniliprole resistance, among which CYP6DA1 was the predominant contributor to resistance (12.24-fold). RNAi suppression of CYP4CK1, CYP6CY5, CYP6CY9 and CYP6DA1 significantly increased CyR aphid sensitivity to cyantraniliprole. The CYP6DA1 promoter had two predicted binding sites for crocodile (CROC), an intron-free ORF with bidirectional transcription yielding CROC (+) and CROC (-). Y1H, RNAi and EMSA found that CROC (-) was a transcription factor directly regulating CYP6DA1 expression. In conclusion, P450 genes contribute to cyantraniliprole resistance, and the transcription factor CROC (-) regulates the expression of CYP6DA1 in A. gossypii.
Collapse
Affiliation(s)
- Yaping Ding
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Zihan Yu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
7
|
Gharbaran R. Insights into the molecular roles of FOXR2 in the pathology of primary pediatric brain tumors. Crit Rev Oncol Hematol 2023; 192:104188. [PMID: 37879492 DOI: 10.1016/j.critrevonc.2023.104188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Forkhead box gene R2 (FOXR2) belongs to the family of FOX genes which codes for highly conserved transcription factors (TFs) with critical roles in biological processes ranging from development to organogenesis to metabolic and immune regulation to cellular homeostasis. A number of FOX genes are associated with cancer development and progression and poor prognosis. A growing body of evidence suggests that FOXR2 is an oncogene. Studies suggested important roles for FOXR2 in cancer cell growth, metastasis, and drug resistance. Recent studies showed that FOXR2 is overexpressed by a subset of newly identified entities of embryonal tumors. This review discusses the role(s) FOXR2 plays in the pathology of pediatric brain cancers and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rajendra Gharbaran
- Biological Sciences Department, Bronx Community College/City University of New York, 2155 University Avenue, Bronx, NY 10453, USA.
| |
Collapse
|
8
|
Sadaf, Hazazi A, Alkhalil SS, Alsaiari AA, Gharib AF, Alhuthali HM, Rana S, Aloliqi AA, Eisa AA, Hasan MR, Dev K. Role of Fork-Head Box Genes in Breast Cancer: From Drug Resistance to Therapeutic Targets. Biomedicines 2023; 11:2159. [PMID: 37626655 PMCID: PMC10452497 DOI: 10.3390/biomedicines11082159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer has been acknowledged as one of the most notorious cancers, responsible for millions of deaths around the globe. Understanding the various factors, genetic mutations, comprehensive pathways, etc., that are involved in the development of breast cancer and how these affect the development of the disease is very important for improving and revitalizing the treatment of this global health issue. The forkhead-box gene family, comprising 19 subfamilies, is known to have a significant impact on the growth and progression of this cancer. The article looks into the various forkhead genes and how they play a role in different types of cancer. It also covers their impact on cancer drug resistance, interaction with microRNAs, explores their potential as targets for drug therapies, and their association with stem cells.
Collapse
Affiliation(s)
- Sadaf
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India;
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh 11481, Saudi Arabia;
| | - Samia S. Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11961, Saudi Arabia;
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Amal F. Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Hayaa M. Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Shanika Rana
- School of Biosciences, Apeejay Stya University, Gurugram 122003, India;
| | - Abdulaziz A. Aloliqi
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Alaa Abdulaziz Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina 30002, Saudi Arabia;
| | - Mohammad Raghibul Hasan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11961, Saudi Arabia;
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India;
| |
Collapse
|
9
|
Zhan F, Zhou S, Shi F, Li Q, Lin L, Qin Z. Transcriptome analysis of Macrobrachium rosenbergii hemocytes in response to Staphylococcus aureus infection. FISH & SHELLFISH IMMUNOLOGY 2023:108927. [PMID: 37406892 DOI: 10.1016/j.fsi.2023.108927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
The aquaculture industry has suffered significant financial losses as a result of disease outbreaks. In particular, disease outbreaks have become a major problem that can seriously affect the sustainable development of the Macrobrachium rosenbergii aquaculture industry. It is crucial to determine the defense mechanism of the host after pathogenic invasion in order to provide effective defense measures after disease outbreaks. Shrimp, like other invertebrates, primarily depend on their innate immune systems to defend against pathogens, and recognize and resist pathogens through humoral and cellular immune responses. In this investigation, we used RNA-seq technology to investigate the transcriptome of hemocytes from M. rosenbergii induced by Staphylococcus aureus. Our main targets were immune pathways and genes related to innate immunity. RNA-seq identified 209,069 and 204,775 unigenes in the control and experimental groups, respectively. In addition, we identified 547 and 1734 differentially expressed genes (DEGs) following S. aureus challenge after 6 and 12 h (h), respectively. GO and KEGG enrichment analysis revealed that the DEGs were significantly enriched in several biological signalling pathways, including NOD-like receptor, PI3K-Akt, Toll and Imd, IL-17, TGF-beta, RIG-I-like receptor, cAMP, apoptosis, and C-type lectin receptor. Sixteen DEGs were chosen at random for qPCR verification; these results concurred with those from sequencing. Our findings revealed that immune-related genes play an important role in antibacterial activities and have specific functions for gram-positive bacteria. These results provide more data for the prevention of M. rosenbergii diseases and offer a basis for the better prevention of diseases.
Collapse
Affiliation(s)
- Fanbin Zhan
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Shichun Zhou
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Qingqing Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| |
Collapse
|
10
|
Caldas HC, Gonçalves NDN, Costa DS, Dias C, Caires LP, Baptista MASF, Fernandes-Charpiot IMM, Abbud-Filho M. Different Patterns of Foxp3 Gene Expression in Pre-and Post-Transplantation Kidney Biopsies and the Effect of Use Mammalian Target of Rapamycin Inhibitors. Transplant Proc 2023; 55:1408-1410. [PMID: 37156660 DOI: 10.1016/j.transproceed.2023.03.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Trafficking of regulatory T cells (Tregs) modulates the inflammatory response after kidney transplantation (KTx). There is scarce information on whether circulating and intragraft Tregs are similarly affected by immunosuppressive drugs and the type of deceased kidney donor. METHODS FOXP3 gene expression was measured in the pretransplant kidney biopsies (PIBx) from donors who met extended (ECD) and standard (SCD) criteria donors. In the third month after KTx, the patients were divided according to tacrolimus (Tac) or everolimus (Eve) and the type of kidney they had received. FOXP3 gene expression in the peripheral blood (PB) and kidney biopsies (Bx) was analyzed using real-time polymerase chain reaction. RESULTS FOXP3 gene expression in the PIBx was higher in ECD kidneys. FOXP3 gene expression in the PB and Bx was greater in Eve- than in Tac-treated patients. However, SCD recipients treated with Eve (SCD/Eve) had higher FOXP3 expression than ECD/Eve. CONCLUSION Pretransplant kidney biopsies from ECD kidneys had higher FOXP3 gene expression than SCD, and the use of Eve may affect the expression of the FOXP3 gene only in SCD kidneys.
Collapse
Affiliation(s)
- Heloisa Cristina Caldas
- Laboratory of Immunology and Experimental Transplantation (LITEX), Medical School of Sao Jose do Rio Preto-FAMERP, Sao Jose do Rio Preto, SP, Brazil
| | - Naiane do Nascimento Gonçalves
- Laboratory of Immunology and Experimental Transplantation (LITEX), Medical School of Sao Jose do Rio Preto-FAMERP, Sao Jose do Rio Preto, SP, Brazil
| | - Douglas Santos Costa
- Laboratory of Immunology and Experimental Transplantation (LITEX), Medical School of Sao Jose do Rio Preto-FAMERP, Sao Jose do Rio Preto, SP, Brazil
| | - Cinthia Dias
- Laboratory of Immunology and Experimental Transplantation (LITEX), Medical School of Sao Jose do Rio Preto-FAMERP, Sao Jose do Rio Preto, SP, Brazil
| | - Lennon Pereira Caires
- Laboratory of Immunology and Experimental Transplantation (LITEX), Medical School of Sao Jose do Rio Preto-FAMERP, Sao Jose do Rio Preto, SP, Brazil
| | - Maria Alice Sperto Ferreira Baptista
- Laboratory of Immunology and Experimental Transplantation (LITEX), Medical School of Sao Jose do Rio Preto-FAMERP, Sao Jose do Rio Preto, SP, Brazil; Kidney Transplant and Dialysis Unit, Hospital de Base-FUNFARME, Sao Jose do Rio Preto, SP, Brazil
| | - Ida Maria Maximina Fernandes-Charpiot
- Laboratory of Immunology and Experimental Transplantation (LITEX), Medical School of Sao Jose do Rio Preto-FAMERP, Sao Jose do Rio Preto, SP, Brazil; Kidney Transplant and Dialysis Unit, Hospital de Base-FUNFARME, Sao Jose do Rio Preto, SP, Brazil
| | - Mario Abbud-Filho
- Laboratory of Immunology and Experimental Transplantation (LITEX), Medical School of Sao Jose do Rio Preto-FAMERP, Sao Jose do Rio Preto, SP, Brazil; Kidney Transplant and Dialysis Unit, Hospital de Base-FUNFARME, Sao Jose do Rio Preto, SP, Brazil.
| |
Collapse
|
11
|
Xing B, Shen C, Yang Q, Wang Z, Tan W. miR-144-3p represses hepatocellular carcinoma progression by affecting cell aerobic glycolysis via FOXK1. Int J Exp Pathol 2023; 104:117-127. [PMID: 36806218 PMCID: PMC10182365 DOI: 10.1111/iep.12468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 02/22/2023] Open
Abstract
Aerobic glycolysis is a unique mark of cancer cells, which enables therapeutic intervention in cancer. Forkhead box K1 (FOXK1) is a transcription factor that facilitates the progression of multiple cancers including hepatocellular carcinoma (HCC). Nevertheless, it is unclear whether or not FOXK1 can affect HCC cell glycolysis. This study attempted to study the effect of FOXK1 on HCC cell glycolysis. Expression of mature miRNAs and mRNAs, as well as clinical data, was downloaded from The Cancer Genome Atlas-Liver hepatocellular carcinoma (TCGA-LIHC) dataset. FOXK1 and miR-144-3p levels were assessed through quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Targeting of the relationship between miR-144-3p and FOXK1 was verified via a dual-luciferase assay. Pathway enrichment analysis of FOXK1 was performed by Gene Set Enrichment Analysis (GSEA). Cell function assays revealed the glycolytic ability, cell viability, migration, invasion, cell cycle, and apoptosis of HCC cells in each treatment group. Bioinformatics analysis suggested that FOXK1 was upregulated in tissues of HCC patients, while the upstream miR-144-3p was downregulated in tumour tissues. Dual-luciferase assay implied a targeting relationship between miR-144-3p and FOXK1. Cellular experiments implied that silencing FOXK1 repressed HCC cell glycolysis, which in turn inhibited the HCC malignant progression. Rescue assay confirmed that miR-144-3p repressed glycolysis in HCC cells by targeting FOXK1, and then repressed HCC malignant progression. miR-144-3p/FOXK1 axis repressed malignant progression of HCC via affecting the aerobic glycolytic process of HCC cells. miR-144-3p and FOXK1 have the potential to become new therapeutic targets for HCC, which provide new insights for HCC treatment.
Collapse
Affiliation(s)
- Binyu Xing
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Cunyi Shen
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Qinling Yang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Zheng Wang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Wenjun Tan
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
12
|
Fouad FM, Eid JI. PAX5 fusion genes in acute lymphoblastic leukemia: A literature review. Medicine (Baltimore) 2023; 102:e33836. [PMID: 37335685 PMCID: PMC10194640 DOI: 10.1097/md.0000000000033836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/03/2023] [Indexed: 06/21/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a common cancer affecting children worldwide. The development of ALL is driven by several genes, some of which can be targeted for treatment by inhibiting gene fusions. PAX5 is frequently mutated in ALL and is involved in chromosomal rearrangements and translocations. Mutations in PAX5 interact with other genes, such as ETV6 and FOXP1, which influence B-cell development. PAX5/ETV6 has been observed in both B-ALL patients and a mouse model. The interaction between PAX5 and FOXP1 negatively suppresses the Pax5 gene in B-ALL patients. Additionally, ELN and PML genes have been found to fuse with PAX5, leading to adverse effects on B-cell differentiation. ELN-PAX5 interaction results in the decreased expression of LEF1, MB1, and BLNK, while PML-PAX5 is critical in the early stages of leukemia. PAX5 fusion genes prevent the transcription of the PAX5 gene, making it an essential target gene for the study of leukemia progression and the diagnosis of B-ALL.
Collapse
Affiliation(s)
- Fatma Mohamed Fouad
- Biology Department, College of Science, Sultan Qaboos University, Muscat, Oman
- Chemistry Department, Biotechnology/Bimolecular Chemistry program, Faculty of Science, Cairo University, Giza, Egypt
| | - Jehane I. Eid
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
13
|
Hussein SI, Al-Yasiri AY, Hassan HF, Kashman BM, Azeez RA. Immunohistochemistry technique for effect of gold nanoparticles, laser, and photodynamic therapy on FoxP1 level in infected mice with mammary adenocarcinoma. Lasers Med Sci 2023; 38:106. [PMID: 37074483 DOI: 10.1007/s10103-023-03765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
The current study was performed to investigate the treatment of tumors with gold nanoparticles, laser, and photodynamic therapy (PDT) by using an immunohistochemistry method and to investigate the expression of FOXP1 in infected mice with mammary adenocarcinoma whether it can be used as an indicator to estimate the recovery of tissues from cancer disease. Twenty-five albino female mice were used in this research; they were divided into five groups, four groups were infected with mammary adenocarcinoma, and then three of them were treated with gold nanoparticles, laser, and PDT, respectively, while the fourth group was left without any treatment and represents the positive control, and the fifth group (normal mice) represents the negative control. Tissue sections were taken from different groups of mice in order to estimate FOXP1 expression in infected mice by using an immunohistochemistry assay. FOXP1 expression was higher in the tumor and kidney tissues of the mice treated with PDT than that in mice treated with either gold nanoparticles or laser alone. Also, in the group of mice treated with laser, FOXP1 expression was higher than the expression in mice which were treated with gold nanoparticles but lower than that in mice which were treated with PDT. FOXP1 can be used as a biomarker for the prognosis outcome of breast and other solid tumors, as well as it considers a key tumor suppressor. PDT is the best choice to treat cancer in comparison to using either gold nanoparticles or the laser separately.
Collapse
Affiliation(s)
- Sumaiah I Hussein
- Department of Basic Sciences, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Amal Y Al-Yasiri
- Department of Basic Sciences, College of Dentistry, University of Baghdad, Baghdad, Iraq.
| | - Heba F Hassan
- Department of Basic Sciences, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Basim M Kashman
- National Cancer Research Center, University of Baghdad, Baghdad, Iraq
| | - Rasha A Azeez
- Department of Basic Sciences, College of Dentistry, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
14
|
Gao C, Cai X, Ma L, Sun P, Li C. Systematic analysis of circRNA-related ceRNA networks of black rockfish (Sebastes schlegelii) in response to Aeromonas salmonicides infection. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108648. [PMID: 36842642 DOI: 10.1016/j.fsi.2023.108648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Aeromonas salmonicides is a type of Gram-negative bacteria and has become the main fish pathogen in aquaculture because of its characteristics of worldwide distribution, broad host range and potentially devastating impacts. In the past years, studies have been focused to explore the regulatory roles of circRNA-miRNA-mRNA network in fish diseases. However, there are only few systematic studies linked to the anti-bacterial roles of circRNA-related ceRNA networks in the spleen immune system of black rockfish (Sebastes schlegelii). In this study, the whole-transcriptome sequencing (RNA-seq) was conducted in the black rockfish spleen with A. salmonicida challenging. The differentially expressed (DE) circRNAs were identified comprehensively for the following enrichment analysis. Interactions of miRNA-circRNA pairs and miRNA-mRNA pairs were predicted for the construction of circRNA-related ceRNA regulatory networks. Then, protein-protein interaction (PPI) analysis of mRNAs from these ceRNA networks were conducted. Finally, a total number of 39 circRNAs exhibited significantly differential expressions during A. salmonicida infection in the black rockfish spleen in 4338 identified circRNAs from 12 samples in 4 libraries. Functional enrichment analysis suggested that they were significantly enriched in several immune-related pathways, including Endocytosis, FoxO signaling pathway, Jak-STST signaling pathway, Herpes simplex infection, etc. Subsequently, 290 circRNA-miRNA-mRNA pathways (91 at 2 h, 142 at 12 h and 65 at 24 h) were constructed including 31 circRNAs, 50 miRNAs, and 156 mRNAs. In conclusion, the circRNA-related ceRNA networks were established, which will provide some novel insights in molecular mechanistic investigations of anti-bacterial immune response in teleost. Also, these findings will propose significant predictive values for the development of methods of treatment and prevention in black rockfish after bacterial infection in the future.
Collapse
Affiliation(s)
- Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Le Ma
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Peng Sun
- Shandong Weifang Ecological Environment Monitoring Center, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
15
|
Zou XL, Yang HL, Ding WW, Li HK, Zhou YQ, Zhang TT. Down-expression of Foxj1 on airway epithelium with impaired cilia architecture in non-cystic fibrosis bronchiectasis implies disease severity. THE CLINICAL RESPIRATORY JOURNAL 2023; 17:405-413. [PMID: 36929635 DOI: 10.1111/crj.13605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
INTRODUCTION The pathogenesis of non-cystic fibrosis bronchiectasis has not been clearly clarified. This study aimed to investigate the expression of ciliary regulating protein forkhead box protein j1 (Foxj1) on airway epithelium in non-cystic fibrosis bronchiectasis and its association with airway cilia structure disorder and disease severity. METHODS Lung tissue sections excised from 47 patients with non-cystic fibrosis bronchiectasis were included between January 2018 and June 2021. Specimens from 26 subjects who underwent a lobectomy due to lung nodule were chosen as controls. Clinical information was collected, and pathologic analysis was performed to assess the epithelial structure and expression of ciliary regulating Foxj1. RESULTS Of the 47 patients with non-cystic fibrosis bronchiectasis, 25 were considered as mild, 12 were moderate whereas the remaining 10 cases were severe according to the bronchiectasis severity index score evaluation. Epithelial hyperplasia, hyperplasia of goblet cells and inflammatory cell infiltration were observed in non-cystic fibrosis bronchiectasis, compared with control subjects. Cilia length in non-cystic fibrosis bronchiectasis patients were shorter than that in the control group, (5.34 ± 0.89) μm versus (7.34 ± 0.71) μm, respectively (P = 0.002). The expression of Foxj1 was (2.69 ± 1.09) × 106 in non-cystic fibrosis bronchiectasis, compared with (6.67 ± 1.15) × 106 in the control group (P = 0.001). Moreover, patients with lower expression of Foxj1 showed shorter airway cilia and worse in disease severity. CONCLUSION Foxj1 declined in the airway epithelium of patients with non-cystic fibrosis bronchiectasis, positively correlated to cilia length and might imply worse disease severity.
Collapse
Affiliation(s)
- Xiao-Ling Zou
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
| | - Hai-Ling Yang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
| | - Wen-Wen Ding
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
| | - Hai-Ke Li
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
| | - Yu-Qi Zhou
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
| | - Tian-Tuo Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
16
|
Predicting Prognosis and Platinum Resistance in Ovarian Cancer: Role of Immunohistochemistry Biomarkers. Int J Mol Sci 2023; 24:ijms24031973. [PMID: 36768291 PMCID: PMC9916805 DOI: 10.3390/ijms24031973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
Ovarian cancer is a lethal reproductive tumour affecting women worldwide. The advancement in presentation and occurrence of chemoresistance are the key factors for poor survival among ovarian cancer women. Surgical debulking was the mainstay of systemic treatment for ovarian cancer, which was followed by a successful start to platinum-based chemotherapy. However, most women develop platinum resistance and relapse within six months of receiving first-line treatment. Thus, there is a great need to identify biomarkers to predict platinum resistance before enrolment into chemotherapy, which would facilitate individualized targeted therapy for these subgroups of patients to ensure better survival and an improved quality of life and overall outcome. Harnessing the immune response through immunotherapy approaches has changed the treatment way for patients with cancer. The immune outline has emerged as a beneficial tool for recognizing predictive and prognostic biomarkers clinically. Studying the tumour microenvironment (TME) of ovarian cancer tissue may provide awareness of actionable targets for enhancing chemotherapy outcomes and quality of life. This review analyses the relevance of immunohistochemistry biomarkers as prognostic biomarkers in predicting chemotherapy resistance and improving the quality of life in ovarian cancer.
Collapse
|
17
|
Wang C, Zhou M, Zhu P, Ju C, Sheng J, Du D, Wan J, Yin H, Xing Y, Li H, He J, He F. IGF2BP2-induced circRUNX1 facilitates the growth and metastasis of esophageal squamous cell carcinoma through miR-449b-5p/FOXP3 axis. J Exp Clin Cancer Res 2022; 41:347. [PMID: 36522683 PMCID: PMC9753396 DOI: 10.1186/s13046-022-02550-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most common digestive malignancies with relatively high morbidity and mortality. Emerging evidence suggests circular RNAs (circRNAs) play critical roles in tumor cell malignancy. However, the biological function and clinical significance of many circRNAs in ESCC remain elusive. METHODS The expression level and clinical implication of circRUNX1 in ESCC tissues were evaluated using qRT-PCR. In vitro and in vivo functional studies were conducted to investigate the underlying biological effects of circRUNX1 on ESCC cell growth and metastasis. Moreover, bioinformatics analysis, RNA sequencing (RNA-seq), RNA immunoprecipitation (RIP) assays, dual-luciferase reporter assays, and rescue experiments were performed to explore the relationships between circRUNX1, miR-449b-5p, Forkhead box protein P3 (FOXP3), and insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). RESULTS CircRUNX1 was found to be significantly up-regulated in ESCC tissues and associated with TNM stage and differentiation grade. Functionally, circRUNX1 promoted ESCC cell proliferation and metastasis in vitro and in vivo. CircRUNX1 enhanced FOXP3 expression by competitively sponging miR-449b-5p. Notably, both miR-449b-5p mimics and FOXP3 knockdown restored the effects of circRUNX1 overexpression on cell proliferation and metastasis. Furthermore, IGF2BP2 binding to circRUNX1 prevented its degradation. CONCLUSIONS IGF2BP2 mediated circRUNX1 functions as an oncogenic factor to facilitate ESCC progression through the miR-449b-5p/FOXP3 axis, implying that circRUNX1 has the potential to be a promising diagnostic marker and therapeutic target for ESCC patients.
Collapse
Affiliation(s)
- Chang Wang
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Mingxia Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Peiyu Zhu
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Chenxi Ju
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jinxiu Sheng
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dan Du
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junhu Wan
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Huiqing Yin
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yurong Xing
- Center of Health Examination, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongle Li
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, Henan, China.
| | - Jing He
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Fucheng He
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
18
|
Yan ZY, Hu WQ, Zong QQ, Yu GH, Zhai CX, Wang LL, Wang YH, Zhang TY, Li Z, Teng Y, Cai J, Chen YF, Li M, Xu ZZ, Pan FM, Pan HF, Su H, Zou YF. Associations of RPEL1 and miR-1307 gene polymorphisms with disease susceptibility, glucocorticoid efficacy, anxiety, depression, and health-related quality of life in Chinese systemic lupus erythematosus patients. Lupus 2022; 31:1735-1743. [PMID: 36194484 DOI: 10.1177/09612033221131182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Our present study intended to examine the associations of RPEL1 and miR-1307 gene polymorphisms (rs4917385 and rs7911488) with susceptibility, glucocorticoids (GCs) efficacy, anxiety, depression, and health-related quality of life (HRQoL) in Chinese systemic lupus erythematosus (SLE) patients. METHODS Initially, 1000 participants (500 SLE cases and 500 controls) were recruited for the case-control study. Then, 429 cases who received GCs were followed through 12 weeks to explore GCs efficacy, depression, anxiety, and HRQoL. We selected the iMLDR technique for genotyping: RPEL1: rs4917385 (G/T) and miR-1307: rs7911488 (A/G). RESULTS The minor G allele of rs7911488 reduced the risk of SLE (p = .024). Four haplotypes consisting of rs4917385 and rs7911488 were associated with SLE susceptibility (p < .025). Both rs4917385 and rs7911488 were associated with anxiety symptoms and physical function (PF) in SLE patients (p < .025). The rs4917385 was associated with depression and its improvement. No statistical significance was found between RPEL1 and miR-1307 gene polymorphisms with GCs efficacy. Meanwhile, additive interaction analysis showed a significant association between RPEL1 and miR-1307 gene polymorphisms with tea consumption in anxiety. CONCLUSION RPEL1 and miR-1307 gene polymorphisms (rs4917385 and rs7911488) might be related to SLE susceptibility in Chinese population. Additionally, the two polymorphisms were possibly associated with depression, anxiety, and HRQoL in Chinese SLE population.
Collapse
Affiliation(s)
- Zi-Ye Yan
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Wan-Qin Hu
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Qi-Qun Zong
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Guang-Hui Yu
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Chun-Xia Zhai
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Lin-Lin Wang
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Yu-Hua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Ting-Yu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Zhen Li
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Ying Teng
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Jing Cai
- Department of Rheumatology and Immunology, 36639The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang-Fan Chen
- Department of Rheumatology and Immunology, 36639The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mu Li
- Department of Rheumatology and Immunology, 36639The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhou-Zhou Xu
- Department of Rheumatology and Immunology, 533251The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fa-Ming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Hong Su
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China
| | - Yan-Feng Zou
- Department of Epidemiology and Biostatistics, School of Public Health, 12485Anhui Medical University, Hefei, China.,12485The Key Laboratory of Anhui Medical Autoimmune Diseases (Anhui Medical University), Hefei, China.,Key Laboratory of Dermatology, (Anhui Medical University), Ministry of Education, Hefei, China
| |
Collapse
|
19
|
Yuan H, Hatleberg WL, Degnan BM, Degnan SM. Gene activation of metazoan Fox transcription factors at the onset of metamorphosis in the marine demosponge Amphimedon queenslandica. Dev Growth Differ 2022; 64:455-468. [PMID: 36155915 PMCID: PMC9828451 DOI: 10.1111/dgd.12812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 01/12/2023]
Abstract
Transcription factors encoded by the Forkhead (Fox) gene family have diverse, sometimes conserved, regulatory roles in eumetazoan development, immunity, and physiology. Although this gene family includes members that predate the origin of the animal kingdom, the majority of metazoan Fox genes evolved after the divergence of animals and choanoflagellates. Here, we characterize the composition, structure, and expression of Fox genes in the marine demosponge Amphimedon queenslandica to better understand the origin and evolution of this family. The Fox gene repertoire in A. queenslandica appears to be similar to the ancestral metazoan Fox gene family. All 17 A. queenslandica Fox genes are differentially expressed during development and in adult cell types. Remarkably, eight of these, all of which appear to be metazoan-specific, are induced within just 1 h of larval settlement and commencement of metamorphosis. Gene co-expression analyses suggest that these eight Fox genes regulate developmental and physiological processes similar to their roles in other animals. These findings are consistent with Fox genes playing deeply ancestral roles in animal development and physiology, including in response to changes in the external environment.
Collapse
Affiliation(s)
- Huifang Yuan
- School of Biological Sciences and Centre for Marine ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | - William L. Hatleberg
- School of Biological Sciences and Centre for Marine ScienceUniversity of QueenslandBrisbaneQueenslandAustralia,Present address:
Department of Biological SciencesCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Bernard M. Degnan
- School of Biological Sciences and Centre for Marine ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Sandie M. Degnan
- School of Biological Sciences and Centre for Marine ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
20
|
Ma C, Li S, Yang F, Cao W, Liu H, Feng T, Zhang K, Zhu Z, Liu X, Hu Y, Zheng H. FoxJ1 inhibits African swine fever virus replication and viral S273R protein decreases the expression of FoxJ1 to impair its antiviral effect. Virol Sin 2022; 37:445-454. [PMID: 35513267 PMCID: PMC9243675 DOI: 10.1016/j.virs.2022.04.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/30/2022] [Indexed: 11/04/2022] Open
Abstract
African swine fever (ASF) is a highly pathogenic swine infectious disease that affects domestic pigs and wild boar, which is caused by the African swine fever virus (ASFV). ASF has caused huge economic losses to the pig industry and seriously threatens global food security and livestock health. To date, there is no safe and effective commercial vaccine against ASF. Unveiling the underlying mechanisms of ASFV-host interplay is critical for developing effective vaccines and drugs against ASFV. In the present study, RNA-sequencing, RT-qPCR and Western blotting analysis revealed that the transcriptional and protein levels of the host factor FoxJ1 were significantly down-regulated in primary porcine alveolar macrophages (PAMs) infected by ASFV. RT-qPCR analysis showed that overexpression of FoxJ1 upregulated the transcription of type I interferon and interferon stimulating genes (ISGs) induced by poly(dA:dT). FoxJ1 revealed a function to positively regulate innate immune response, therefore, suppressing the replication of ASFV. In addition, Western blotting analysis indicated that FoxJ1 degraded ASFV MGF505-2R and E165R proteins through autophagy pathway. Meanwhile, RT-qPCR and Western blotting analysis showed that ASFV S273R inhibited the expression of FoxJ1. Altogether, we determined that FoxJ1 plays an antiviral role against ASFV replication, and ASFV protein impairs FoxJ1-mediated antiviral effect by degradation of FoxJ1. Our findings provide new insights into the antiviral function of FoxJ1, which might help design antiviral drugs or vaccines against ASFV infection. FoxJ1 inhibits ASFV replication by degrading ASFV MGF505-2R and E165R proteins via autophagy. FoxJ1 enhances type I IFN response, showing an essential antiviral role. ASFV S273R protein inhibits FoxJ1 expression to impair its antiviral effect.
Collapse
|
21
|
Lv W, Wu Z, Lin Y, Jiang Y, Chen X, Zhu P, Wang S. Effect of circRNA_FOXO3 rs12196996 polymorphism and FOXO3 rs2232365 polymorphism on survival rate and severity of intensive care unit-acquired sepsis. Bioengineered 2022; 13:4821-4831. [PMID: 35156517 PMCID: PMC8974086 DOI: 10.1080/21655979.2022.2034567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The expression of circRNA_FOXO3 was found to be positively associated with the expression of Forkhead Box O3 (FOXO3), which is targeted and regulated by miR-23a. Polymorphisms in rs12196996 and rs2232365 have been reported in various diseases. In this study, we recruited intensive care unit (ICU)-acquired sepsis patients and grouped them according to their genotypes of rs12196996 and rs2232365. Quantitative real-time PCR was performed to analyze the expression of circRNA_FOXO3, FOXO3 mRNA, and miR-23a. ELISA was carried out to evaluate the abundance of cytokines and luciferase assay was used to explore the inhibitory role of miR-23a on circRNA_FOXO3 and FOXO3. Accordingly, we found that rs12196996 GG and rs2232365 AA were significantly correlated with prolonged survival of ICU-acquired sepsis patients. Rs12196996 GG and rs2232365 AA were also correlated with increased level of miR-23a, IL-10 and decreased level of TNF, IL-2, IFN, IL-6 and IL-1β in the peripheral blood cell samples of patients with ICU-acquired sepsis. The luciferase activity of wild-type (WT) circRNA_FOXO3 and FOXO3 were severely reduced by miR-23a. MiR-23a precursors could effectively suppress the expression of circRNA_FOXO3 and FOXO3 in the cells. Moreover, LPS-induced cell viability loss and dysregulation of cytokines were effectively restored by the knockdown of FOXO3 or circRNA_FOXO3 siRNA in the cells. This study revealed that the minor allele of rs12196996 polymorphism and rs2232365 polymorphism collaboratively contributed to the increased survival and suppressed severity of ICU-acquired sepsis.
Collapse
Affiliation(s)
- Wang Lv
- Department of Emergency, Wenzhou People’s Hospital, Wenzhou, Zhejiang, China
| | - Zhang Wu
- Department of Emergency, Wenzhou People’s Hospital, Wenzhou, Zhejiang, China
| | - Yue Lin
- Department of Emergency, Wenzhou People’s Hospital, Wenzhou, Zhejiang, China
| | - Yingying Jiang
- Department of Emergency, Wenzhou People’s Hospital, Wenzhou, Zhejiang, China
| | - Xinguo Chen
- Department of Emergency, Wenzhou People’s Hospital, Wenzhou, Zhejiang, China
| | - Peng Zhu
- Department of Emergency, Wenzhou People’s Hospital, Wenzhou, Zhejiang, China
| | - Shengnan Wang
- Department of Rheumatology and Immunology, Wenzhou People’s Hospital, Wenzhou, Zhejiang, China
| |
Collapse
|
22
|
Pahan S, Dasarathi S, Pahan K. Glyceryl tribenzoate: A food additive with unique properties to be a substitute for cinnamon. ACTA ACUST UNITED AC 2021; 6:367-372. [PMID: 34723288 DOI: 10.33140/jcei.06.05.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cinnamon is a regularly used natural seasoning and flavoring material throughout the world for eras. Recent laboratory studies have demonstrated that oral cinnamon may be beneficial for different neuroinflammatory and neurodegenerative disorders such as multiple sclerosis (MS), Parkinson's disease (PD), Alzheimer's disease (AD), and Lewy body diseases (LBD). However, cinnamon's certain limitations (e.g. unavailability of true Ceylon cinnamon throughout the world, impurities in ground cinnamon, etc.) have initiated an interest among researchers to find an alternate of cinnamon that can potentially deliver the same efficacy in the diseases mentioned above. Glyceryl tribenzoate (GTB) is a U.S. Food and Drug Administration (FDA)-approved flavoring ingredient that is used in food and food packaging industries. It has been found that similar to cinnamon, oral GTB is capable of upregulating regulatory T cells and suppressing the autoimmune disease process of experimental autoimmune encephalomyelitis, an animal model of MS. Moreover, both GTB and cinnamon metabolite sodium benzoate (NaB) have the potency to attenuate neurodegenerative pathology in a mouse model of Huntington disease (HD). Here, we have also demonstrated anti-inflammatory property of GTB in astrocytes and macrophages, a property that is also seen with cinnamon and its metabolite sodium benzoate (NaB). Therefore, here, we have made a sincere attempt to discuss the similarities and dissimilarities between cinnamon and GTB with a focus whether GTB has the potential to be considered as a substitute of cinnamon for neuroinflammatory and neurodegenerative disorders.
Collapse
Affiliation(s)
- Swarupa Pahan
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA
| | - Sridevi Dasarathi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Kalipada Pahan
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, USA.,Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| |
Collapse
|
23
|
Zhang C, Li YZ, Dai DQ. Aberrant DNA Methylation-Mediated FOXF2 Dysregulation Is a Prognostic Risk Factor for Gastric Cancer. Front Mol Biosci 2021; 8:645470. [PMID: 34568422 PMCID: PMC8460759 DOI: 10.3389/fmolb.2021.645470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Background: The prognosis of gastric cancer (GC) patients is poor. The effect of aberrant DNA methylation on FOXF2 expression and the prognostic role of FOXF2 methylation in GC have not yet been identified. Methods: The RNA-Seq and gene methylation HM450 profile data were used for analyzing FOXF2 expression in GC and its association with methylation level. Bisulfite sequencing PCR (BSP) was performed to measure the methylation level of the FOXF2 promoter region in GC cell lines and normal GES-1 cells. The cells were treated with the demethylation reagent 5-Aza-dC, and the mRNA and protein expression levels of FOXF2 were then measured by qRT-PCR and western blot assays. The risk score system from SurvivalMeth was calculated by integrating the methylation level of the cg locus and the corresponding Cox regression coefficient. Results: FOXF2 was significantly downregulated in GC cells and tissues. On the basis of RNA-Seq and Illumina methylation 450 data, FOXF2 expression was significantly negatively correlated with the FOXF2 methylation level (Pearson’s R = −0.42, p < 2.2e−16). The FOXF2 methylation level in the high FOXF2 expression group was lower than that in the low FOXF2 expression group. The BSP assay indicated that the methylation level of the FOXF2 promoter region in GC cell lines was higher than that in GES-1 cells. The qRT-PCR and western blot assay showed that FOXF2 mRNA and protein levels were increased in GC cells following treatment with 5-Aza-Dc. The methylation risk score model indicated that patients in the high risk group had poorer survival probability than those in the low risk group (HR = 1.84 (1.11–3.07) and p = 0.0068). FOXF2 also had a close transcriptional regulation network with four miRNAs and their corresponding target genes. Functional enrichment analysis of the target genes revealed that these genes were significantly related to several important signaling pathways. Conclusion: FOXF2 was downregulated due to aberrant DNA methylation in GC, and the degree of methylation in the promoter region of FOXF2 was related to the prognosis of patients. The FOXF2/miRNAs/target genes axis may play a vital biological regulation role in GC.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yong-Zhi Li
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Dong-Qiu Dai
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
24
|
Cáceres P, Barría A, Christensen KA, Bassini LN, Correa K, Garcia B, Lhorente JP, Yáñez JM. Genome-scale comparative analysis for host resistance against sea lice between Atlantic salmon and rainbow trout. Sci Rep 2021; 11:13231. [PMID: 34168167 PMCID: PMC8225872 DOI: 10.1038/s41598-021-92425-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/10/2021] [Indexed: 11/08/2022] Open
Abstract
Sea lice (Caligus rogercresseyi) is an ectoparasite which causes major production losses in the salmon aquaculture industry worldwide. Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) are two of the most susceptible salmonid species to sea lice infestation. The objectives of this study were to: (1) identify genomic regions associated with resistance to Caligus rogercresseyi in Atlantic salmon and rainbow trout by performing single-step Genome-Wide Association studies (ssGWAS), and (2) identify candidate genes related to trait variation based on exploring orthologous genes within the associated regions across species. A total of 2626 Atlantic salmon and 2643 rainbow trout were challenged and genotyped with 50 K and 57 K SNP panels, respectively. We ran two independent ssGWAS for sea lice resistance on each species and identified 7 and 13 regions explaining more than 1% of the genetic variance for the trait, with the most important regions explaining 3% and 2.7% for Atlantic salmon and rainbow trout, respectively. We identified genes associated with immune response, cytoskeleton function, and cell migration when focusing on important genomic regions for each species. Moreover, we found 15 common orthogroups which were present in more than one associated genomic region, within- or between-species; however, only one orthogroup showed a clear potential biological relevance in the response against sea lice. For instance, dual-specificity protein phosphatase 10-like (dusp10) and dual-specificity protein phosphatase 8 (dusp8) were found in genomic regions associated with lice density in Atlantic salmon and rainbow trout, respectively. Dusp10 and dusp8 are modulators of the MAPK pathway and might be involved in the differences of the inflammation response between lice resistant and susceptible fish from both species. Our results provide further knowledge on candidate genes related to sea lice resistance and may help establish better control for sea lice in fish populations.
Collapse
Affiliation(s)
- Pablo Cáceres
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa 11735, La Pintana, 8820808, Santiago, Chile
| | - Agustín Barría
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Easter Bush, Midlothian, EH25 9RG, UK
| | - Kris A Christensen
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, Canada
| | - Liane N Bassini
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Katharina Correa
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa 11735, La Pintana, 8820808, Santiago, Chile
| | - Baltasar Garcia
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa 11735, La Pintana, 8820808, Santiago, Chile
- School of Agricultural and Veterinary Sciences, UNESP-Sao Paulo State University, Jaboticabal, 14884900, Brazil
| | | | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa 11735, La Pintana, 8820808, Santiago, Chile.
- Núcleo Milenio INVASAL, Concepción, Chile.
- Center for Research and Innovation in Aquaculture (CRIA), Universidad de Chile, Santiago, Santiago, Chile.
| |
Collapse
|
25
|
Inda MA, van Swinderen P, van Brussel A, Moelans CB, Verhaegh W, van Zon H, den Biezen E, Bikker JW, van Diest PJ, van de Stolpe A. Heterogeneity in Signaling Pathway Activity within Primary and between Primary and Metastatic Breast Cancer. Cancers (Basel) 2021; 13:1345. [PMID: 33809754 PMCID: PMC8002348 DOI: 10.3390/cancers13061345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
Targeted therapy aims to block tumor-driving signaling pathways and is generally based on analysis of one primary tumor (PT) biopsy. Tumor heterogeneity within PT and between PT and metastatic breast lesions may, however, impact the effect of a chosen therapy. Whereas studies are available that investigate genetic heterogeneity, we present results on phenotypic heterogeneity by analyzing the variation in the functional activity of signal transduction pathways, using an earlier developed platform to measure such activity from mRNA measurements of pathways' direct target genes. Statistical analysis comparing macro-scale variation in pathway activity on up to five spatially distributed PT tissue blocks (n = 35), to micro-scale variation in activity on four adjacent samples of a single PT tissue block (n = 17), showed that macro-scale variation was not larger than micro-scale variation, except possibly for the PI3K pathway. Simulations using a "checkerboard clone-size" model showed that multiple small clones could explain the higher micro-scale variation in activity found for the TGFβ and Hedgehog pathways, and that intermediate/large clones could explain the possibly higher macro-scale variation of the PI3K pathway. While within PT, pathway activities presented a highly positive correlation, correlations weakened between PT and lymph node metastases (n = 9), becoming even worse for PT and distant metastases (n = 9), including a negative correlation for the ER pathway. While analysis of multiple sub-samples of a single biopsy may be sufficient to predict PT response to targeted therapies, metastatic breast cancer treatment prediction requires analysis of metastatic biopsies. Our findings on phenotypic intra-tumor heterogeneity are compatible with emerging ideas on a Big Bang type of cancer evolution in which macro-scale heterogeneity appears not dominant.
Collapse
Affiliation(s)
- Márcia A. Inda
- Precision Diagnostics Department, Philips Research, 5656 AE Eindhoven, The Netherlands; (M.A.I.); (P.v.S.); (H.v.Z.)
| | - Paul van Swinderen
- Precision Diagnostics Department, Philips Research, 5656 AE Eindhoven, The Netherlands; (M.A.I.); (P.v.S.); (H.v.Z.)
| | - Anne van Brussel
- Philips Molecular Pathway Diagnostics, 5656 AE Eindhoven, The Netherlands; (A.v.B.); (E.d.B.); (A.v.d.S.)
| | - Cathy B. Moelans
- Department of Pathology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; (C.B.M.); (P.J.v.D.)
| | - Wim Verhaegh
- Precision Diagnostics Department, Philips Research, 5656 AE Eindhoven, The Netherlands; (M.A.I.); (P.v.S.); (H.v.Z.)
| | - Hans van Zon
- Precision Diagnostics Department, Philips Research, 5656 AE Eindhoven, The Netherlands; (M.A.I.); (P.v.S.); (H.v.Z.)
| | - Eveline den Biezen
- Philips Molecular Pathway Diagnostics, 5656 AE Eindhoven, The Netherlands; (A.v.B.); (E.d.B.); (A.v.d.S.)
| | - Jan Willem Bikker
- CQM, Consultants in Quantitative Methods, 5616 RM Eindhoven, The Netherlands;
| | - Paul J. van Diest
- Department of Pathology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; (C.B.M.); (P.J.v.D.)
| | - Anja van de Stolpe
- Philips Molecular Pathway Diagnostics, 5656 AE Eindhoven, The Netherlands; (A.v.B.); (E.d.B.); (A.v.d.S.)
| |
Collapse
|
26
|
Han K, Singh K, Rodman MJ, Hassanzadeh S, Wu K, Nguyen A, Huffstutler RD, Seifuddin F, Dagur PK, Saxena A, McCoy JP, Chen J, Biancotto A, Stagliano KER, Teague HL, Mehta NN, Pirooznia M, Sack MN. Fasting-induced FOXO4 blunts human CD4 + T helper cell responsiveness. Nat Metab 2021; 3:318-326. [PMID: 33723462 PMCID: PMC7990708 DOI: 10.1038/s42255-021-00356-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 02/03/2021] [Indexed: 01/11/2023]
Abstract
Intermittent fasting blunts inflammation in asthma1 and rheumatoid arthritis2, suggesting that fasting may be exploited as an immune-modulatory intervention. However, the mechanisms underpinning the anti-inflammatory effects of fasting are poorly characterized3-5. Here, we show that fasting in humans is sufficient to blunt CD4+ T helper cell responsiveness. RNA sequencing and flow cytometry immunophenotyping of peripheral blood mononuclear cells from volunteers subjected to overnight or 24-h fasting and 3 h of refeeding suggest that fasting blunts CD4+ T helper cell activation and differentiation. Transcriptomic analysis reveals that longer fasting has a more robust effect on CD4+ T-cell biology. Through bioinformatics analyses, we identify the transcription factor FOXO4 and its canonical target FK506-binding protein 5 (FKBP5) as a potential fasting-responsive regulatory axis. Genetic gain- or loss-of-function of FOXO4 and FKBP5 is sufficient to modulate TH1 and TH17 cytokine production. Moreover, we find that fasting-induced or genetic overexpression of FOXO4 and FKBP5 is sufficient to downregulate mammalian target of rapamycin complex 1 signalling and suppress signal transducer and activator of transcription 1/3 activation. Our results identify FOXO4-FKBP5 as a new fasting-induced, signal transducer and activator of transcription-mediated regulatory pathway to blunt human CD4+ T helper cell responsiveness.
Collapse
Affiliation(s)
- Kim Han
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Komudi Singh
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Bioinformatics and Computational Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthew J Rodman
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shahin Hassanzadeh
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kaiyuan Wu
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - An Nguyen
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca D Huffstutler
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fayaz Seifuddin
- Bioinformatics and Computational Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pradeep K Dagur
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ankit Saxena
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - J Philip McCoy
- Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jinguo Chen
- Center of Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Angélique Biancotto
- Center of Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Precision Immunology, Sanofi, Cambridge, MA, USA
| | - Katherine E R Stagliano
- Center of Human Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Heather L Teague
- Laboratory of Cardiometabolic Disease and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nehal N Mehta
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Cardiometabolic Disease and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mehdi Pirooznia
- Bioinformatics and Computational Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael N Sack
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
27
|
Song X, Yang T, Zhang X, Yuan Y, Yan X, Wei Y, Zhang J, Zhou C. Comparison of the Microsatellite Distribution Patterns in the Genomes of Euarchontoglires at the Taxonomic Level. Front Genet 2021; 12:622724. [PMID: 33719337 PMCID: PMC7953163 DOI: 10.3389/fgene.2021.622724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/05/2021] [Indexed: 02/05/2023] Open
Abstract
Microsatellite or simple sequence repeat (SSR) instability within genes can induce genetic variation. The SSR signatures remain largely unknown in different clades within Euarchontoglires, one of the most successful mammalian radiations. Here, we conducted a genome-wide characterization of microsatellite distribution patterns at different taxonomic levels in 153 Euarchontoglires genomes. Our results showed that the abundance and density of the SSRs were significantly positively correlated with primate genome size, but no significant relationship with the genome size of rodents was found. Furthermore, a higher level of complexity for perfect SSR (P-SSR) attributes was observed in rodents than in primates. The most frequent type of P-SSR was the mononucleotide P-SSR in the genomes of primates, tree shrews, and colugos, while mononucleotide or dinucleotide motif types were dominant in the genomes of rodents and lagomorphs. Furthermore, (A)n was the most abundant motif in primate genomes, but (A)n, (AC)n, or (AG)n was the most abundant motif in rodent genomes which even varied within the same genus. The GC content and the repeat copy numbers of P-SSRs varied in different species when compared at different taxonomic levels, reflecting underlying differences in SSR mutation processes. Notably, the CDSs containing P-SSRs were categorized by functions and pathways using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes annotations, highlighting their roles in transcription regulation. Generally, this work will aid future studies of the functional roles of the taxonomic features of microsatellites during the evolution of mammals in Euarchontoglires.
Collapse
Affiliation(s)
- Xuhao Song
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China.,Institute of Ecology, China West Normal University, Nanchong, China
| | - Tingbang Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China.,Institute of Ecology, China West Normal University, Nanchong, China
| | - Xinyi Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Ying Yuan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Xianghui Yan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Yi Wei
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China.,Institute of Ecology, China West Normal University, Nanchong, China
| | - Jun Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China.,Institute of Ecology, China West Normal University, Nanchong, China
| | - Caiquan Zhou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China.,Institute of Ecology, China West Normal University, Nanchong, China
| |
Collapse
|
28
|
Ge L, Zhang Y, Zhao X, Wang J, Zhang Y, Wang Q, Yu H, Zhang Y, You Y. EIF2AK2 selectively regulates the gene transcription in immune response and histones associated with systemic lupus erythematosus. Mol Immunol 2021; 132:132-141. [PMID: 33588244 DOI: 10.1016/j.molimm.2021.01.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
PKR, also known as EIF2AK2, is an IFN-stimulated gene (ISG) and shows a higher expression in probands with systemic lupus erythematosus (SLE), which is likely responsible for the impaired translational and proliferative responses to mitogens in T cells from SLE patients. In this study, we overexpressed EIF2AK2 in HeLa cells to study EIF2AK2-regulated genes using RNA-seq technology, followed by bioinformatic analysis of target genes of EIF2AK2-regulated transcriptional factors (TFs). Overexpression of EIF2AK2 promotes HeLa cell apoptosis. EIF2AK2 selectively represses the transcription of histone protein genes associated with SLE, immune response genes and TF genes, which was validated by RT-qPCR experiments. Analysis of motifs overrepresented in the promoter regions of EIF2AK2-regulated genes revealed eighteen EIF2AK2-regulated TFs involved in establishing the EIF2AK2 network. Eight out of these predicted EIF2AK2-regulated TFs were further verified by RT-qPCR selectively in both HeLa and Jurkat cells, and most such as HEY2, TFEC, BATF2, GATA3 and ATF3 and FOXO6 are known to regulate immune response. Our results suggest that the dsRNA-dependent kinase EIF2AK2 selectively regulates the transcription of immune response and SLE-associated histone protein genes, and such a selectivity is likely to be operated by EIF2AK2-targeted TFs. The EIF2AK2-TFs axis potentially offers new therapeutic targets for counteracting immunological disease in the future.
Collapse
Affiliation(s)
- Lan Ge
- Department of Dermatology, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, 400038, China.
| | - Yuhong Zhang
- Laboratory of Human Health and Genome Regulation, ABLife Inc., Wuhan, Hubei 430075, China; Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Xingwang Zhao
- Department of Dermatology, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, 400038, China.
| | - Juan Wang
- Department of Dermatology, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, 400038, China.
| | - Yu Zhang
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Qi Wang
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Han Yu
- Laboratory of Human Health and Genome Regulation, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Yi Zhang
- Laboratory of Human Health and Genome Regulation, ABLife Inc., Wuhan, Hubei 430075, China; Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, China.
| | - Yi You
- Department of Dermatology, Southwest Hospital, Third Military Medical University(Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
29
|
Asghar K, Loya A, Rana IA, Bakar MA, Farooq A, Tahseen M, Ishaq M, Masood I, Rashid MU. Forkhead box P3 and indoleamine 2,3-dioxygenase co-expression in Pakistani triple negative breast cancer patients. World J Clin Oncol 2020; 11:1018-1028. [PMID: 33437664 PMCID: PMC7769718 DOI: 10.5306/wjco.v11.i12.1018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/24/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Forkhead box P3 (FOXP3) is a specific marker for immunosuppressive regulatory T (T-reg) cells. T-regs and an immunosuppressive enzyme, indoleamine 2,3-dioxygenase (IDO), are associated with advanced disease in cancer.
AIM To evaluate the co-expression of FOXP3 and IDO in triple negative breast cancer (TNBC) with respect to hormone-positive breast cancer patients from Pakistan.
METHODS Immunohistochemistry was performed to analyze the expression of FOXP3, IDO, estrogen receptor, progesterone receptor, and human epidermal growth factor receptor on tissues of breast cancer patients (n = 100): Hormone-positive breast cancer (n = 51) and TNBC (n = 49). A total of 100 patients were characterized as FOXP3 negative vs positive and further categorized based on low, medium, and high IDO expression score. Univariate and multivariate logistic regression models were used.
RESULTS Out of 100 breast tumors, 25% expressed FOXP3 positive T-regs. A significant co-expression of FOXP3 and IDO was observed among patients with TNBC (P = 0.01) compared to those with hormone-positive breast cancer. Two variables were identified as significant independent risk factors for FOXP3 positive: IDO expression high (adjusted odds ratio (AOR) 5.90; 95% confidence interval (CI): 1.22-28.64; P = 0.03) and TNBC (AOR 2.80; 95%CI: 0.96-7.95; P = 0.05).
CONCLUSION Our data showed that FOXP3 positive cells might be associated with high expression of IDO in TNBC patients. FOXP3 and IDO co-expression may also suggest its involvement in disease, and evaluation of FOXP3 and IDO expression in TNBC patients may offer a new therapeutic option.
Collapse
Affiliation(s)
- Kashif Asghar
- Department of Basic Science Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab 54000, Pakistan
| | - Asif Loya
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab 54000, Pakistan
| | - Iftikhar Ali Rana
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab 54000, Pakistan
| | - Muhammad Abu Bakar
- Department of Cancer Registry and Clinical Data Management, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab 54000, Pakistan
| | - Asim Farooq
- Department of Clinical Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab 54000, Pakistan
| | - Muhammad Tahseen
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab 54000, Pakistan
| | - Muhammad Ishaq
- Department of Pathology, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab 54000, Pakistan
| | - Iqra Masood
- Department of Clinical Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab 54000, Pakistan
| | - Muhammad Usman Rashid
- Department of Basic Science Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Punjab 54000, Pakistan
| |
Collapse
|
30
|
Duddu S, Chakrabarti R, Ghosh A, Shukla PC. Hematopoietic Stem Cell Transcription Factors in Cardiovascular Pathology. Front Genet 2020; 11:588602. [PMID: 33193725 PMCID: PMC7596349 DOI: 10.3389/fgene.2020.588602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Transcription factors as multifaceted modulators of gene expression that play a central role in cell proliferation, differentiation, lineage commitment, and disease progression. They interact among themselves and create complex spatiotemporal gene regulatory networks that modulate hematopoiesis, cardiogenesis, and conditional differentiation of hematopoietic stem cells into cells of cardiovascular lineage. Additionally, bone marrow-derived stem cells potentially contribute to the cardiovascular cell population and have shown potential as a therapeutic approach to treat cardiovascular diseases. However, the underlying regulatory mechanisms are currently debatable. This review focuses on some key transcription factors and associated epigenetic modifications that modulate the maintenance and differentiation of hematopoietic stem cells and cardiac progenitor cells. In addition to this, we aim to summarize different potential clinical therapeutic approaches in cardiac regeneration therapy and recent discoveries in stem cell-based transplantation.
Collapse
Affiliation(s)
| | | | | | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
31
|
Lin CH, Lee HH, Chang WM, Lee FP, Chen LC, Lu LS, Lin YF. FOXD1 Repression Potentiates Radiation Effectiveness by Downregulating G3BP2 Expression and Promoting the Activation of TXNIP-Related Pathways in Oral Cancer. Cancers (Basel) 2020; 12:cancers12092690. [PMID: 32967107 PMCID: PMC7563336 DOI: 10.3390/cancers12092690] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Radioresistance remains a critical issue in treating oral cancer patients. This study was thus aimed to identify a potential drug target for enhancing the therapeutic effectiveness of irradiation and uncover a possible mechanism for radioresistance in oral cancer. Here we show that FOXD1, a gene encoding forkhead box d1 (Foxd1), is significantly upregulated in primary tumors compared to normal tissues and serves as a poor prognostic marker in oral cancer patients receiving radiotherapy. FOXD1 repression by a gene knockdown experiment dramatically enhanced the cytotoxic efficacy of irradiation probably via activating the p53-related DNA repairing pathways and reinforcing the T cell-mediated immune responses in oral cancer cells. Our findings demonstrate that FOXD1 may play a pivotal role in conferring radioresistance, which might provide a new strategy to combat the irradiation-insensitive oral cancer cells via therapeutically targeting FOXD1 activity. Abstract Radiotherapy is commonly used to treat oral cancer patients in the current clinics; however, a subpopulation of patients shows poor radiosensitivity. Therefore, the aim of this study is to identify a biomarker or druggable target to enhance the effectiveness of radiotherapy on oral cancer patients. By performing an in silico analysis against public databases, we found that the upregulation of FOXD1, a gene encoding forkhead box d1 (Foxd1), is extensively detected in primary tumors compared to normal tissues and associated with a poor outcome in oral cancer patients receiving irradiation treatment. Moreover, our data showed that the level of FOXD1 transcript is causally relevant to the effective dosage of irradiation in a panel of oral cancer cell lines. The FOXD1 knockdown (FOXD1-KD) dramatically suppressed the colony-forming ability of oral cancer cells after irradiation treatment. Differentially expressed genes analysis showed that G3BP2, a negative regulator of p53, is predominantly repressed after FOXD1-KD and transcriptionally regulated by Foxd1, as judged by a luciferase-based promoter assay in oral cancer cells. Gene set enrichment analysis significantly predicted the inhibition of E2F-related signaling pathway but the activation of the interferons (IFNs) and p53-associated cellular functions, which were further validated by luciferase reporter assays in the FOXD1-KD oral cancer cells. Robustly, our data showed that FOXD1-KD fosters the expression of TXNIP, a downstream effector of IFN signaling and activator of p53, in oral cancer cells. These findings suggest that FOXD1 targeting might potentiate the anti-cancer effectiveness of radiotherapy and promote immune surveillance on oral cancer.
Collapse
Affiliation(s)
- Che-Hsuan Lin
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.L.); (F.-P.L.); (L.-C.C.)
- Department of Otolaryngology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsun-Hua Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Neurology, Vertigo and Balance Impairment Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Wei-Min Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Fei-Peng Lee
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.L.); (F.-P.L.); (L.-C.C.)
- Department of Otolaryngology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Lung-Che Chen
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (C.-H.L.); (F.-P.L.); (L.-C.C.)
- Department of Otolaryngology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Long-Sheng Lu
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 3106)
| |
Collapse
|
32
|
Tian Z, Song Y, Yao Y, Guo J, Gong Z, Wang Z. Genetic Etiology Shared by Multiple Sclerosis and Ischemic Stroke. Front Genet 2020; 11:646. [PMID: 32719717 PMCID: PMC7348066 DOI: 10.3389/fgene.2020.00646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/27/2020] [Indexed: 12/23/2022] Open
Abstract
Although dramatic progress has been achieved in the understanding and treatment of multiple sclerosis (MS) and ischemic stroke (IS), more precise and instructive support is required for further research. Recent large-scale genome-wide association studies (GWASs) have already revealed risk variants for IS and MS, but the common genetic etiology between MS and IS remains an unresolved issue. This research was designed to overlapping genes between MS and IS and unmask their transcriptional features. We designed a three-section analysis process. Firstly, we computed gene-based analyses of MS GWAS and IS GWAS data sets by VGEAS2. Secondly, overlapping genes of significance were identified in a meta-analysis using the Fisher’s procedure. Finally, we performed gene expression analyses to confirm transcriptional changes. We identified 24 shared genes with Bonferroni correction (Pcombined < 2.31E-04), and five (FOXP1, CAMK2G, CLEC2D, LBH, and SLC2A4RG) had significant expression differences in MS and IS gene expression omnibus data sets. These meaningful shared genes between IS and MS shed light on the underlying genetic etiologies shared by the diseases. Our results provide a basis for in-depth genomic studies of associations between MS and IS.
Collapse
Affiliation(s)
- Zhu Tian
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Yang Song
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Yang Yao
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Jie Guo
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Zhongying Gong
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Zhiyun Wang
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
33
|
Wu S, Zhang Y, Li Y, Wei H, Guo Z, Wang S, Zhang L, Bao Z. Identification and expression profiles of Fox transcription factors in the Yesso scallop (Patinopecten yessoensis). Gene 2020; 733:144387. [PMID: 31972308 DOI: 10.1016/j.gene.2020.144387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 02/07/2023]
Abstract
The forkhead box (Fox) gene family is a family of transcription factors that play important roles in a variety of biological processes in vertebrates, including early development and cell proliferation and differentiation. However, at present, studies on the mollusk Fox family are relatively lacking. In the present study, the Fox gene family of the Yesso scallop (Patinopecten yessoensis) was systematically identified. In addition, the expression profiles of the Fox gene family in early development and adult tissues were analyzed. The results showed that there were 26 Fox genes in P. yessoensis. Of the 26 genes, 24 belonged to 20 subfamilies. The Fox genes belonging to the I, Q1, R and S subfamilies were absent in P. yessoensis. The other 2 genes formed 2 independent clades with the Fox genes of other mollusks and protostomes. They might be new members of the Fox family and were named FoxY and FoxZ. P. yessoensis contained a FoxC-FoxL1 gene cluster similar in structure to that of Branchiostoma floridae, suggesting that the cluster might already exist in the ancestors of bilaterally symmetrical animals. The gene expression analysis of Fox showed that most of the genes were continuously expressed in multiple stages of early development, suggesting that Fox genes might be widely involved in the regulation of embryo and larval development of P. yessoensis. Nine Fox genes were specifically expressed in certain tissues, such as the nerve ganglia, foot, ovary, testis, and gills. For the 9 genes that were differentially expressed between the testis and ovary, their expression levels were analyzed during the 4 developmental stages of gonads. The results showed that FoxL2, FoxE and FoxY were highly expressed in the ovary during all developmental stages, while FoxZ was highly expressed in the testis during all developmental stages. The results suggested that these genes might play an important role in sex maintenance or gametogenesis. The present study could provide a reference for evolutionary and functional studies of the Fox family in metazoans.
Collapse
Affiliation(s)
- Shaoxuan Wu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yang Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yajuan Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Huilan Wei
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Zhenyi Guo
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, China
| |
Collapse
|
34
|
Goto R, Hirota Y, Aruga T, Horiguchi S, Miura S, Nakamura S, Takimoto M. The number of FoxP3-positive tumor-infiltrating lymphocytes in patients with synchronous bilateral breast cancer. Breast Cancer 2020; 27:586-593. [PMID: 31933123 DOI: 10.1007/s12282-020-01049-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/05/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE In breast cancer, FoxP3-positive tumor-infiltrating lymphocytes (FoxP3+ TILs) vary depending on lymph node status, histological grade, and subtype. All these studies have compared the numbers of FoxP3+ TILs among different hosts, but recruitment of FoxP3+ TILs might depend on each individual's immune environment and each tumor's biological characteristics. In the present study, FoxP3+ TIL numbers were investigated in patients with synchronous bilateral breast cancer (SBBC) to determine the factors that affect FoxP3+ TIL recruitment in the same anti-tumor immune environment. METHODS Patients diagnosed with SBBC who underwent curative surgery at two institutions were enrolled in this study. Patients who underwent primary systemic therapy or who were diagnosed with ductal carcinoma in situ or who had distant metastases at diagnosis were excluded. The average numbers of Foxp3+ TILs were determined from the scores of five high-power microscopic fields (HPF). The associations between Foxp3+ TIL numbers and the clinicopathological features of bilateral breasts in a single individual were examined. RESULTS Nuclear grade (NG) (p = 0.007) and subtype (p = 0.03), but not size (p = 0.18) and axillary lymph node (p = 0.23) were significantly associated with increase of FoxP3 + TIL numbers by univariate analysis. Further, only NG was a statistically significant clinicopathological factor for change in the number of FoxP3+ TILs by multivariate analysis (p = 0.046) CONCLUSIONS: There was no relationship between FoxP3+ TIL numbers and cancer progression as reflected in tumor size and axillary lymph node in patients with SBBC. Aggressive biological factors, especially high NG, were significantly related to enhanced recruitment of FoxP3+ TILs.
Collapse
Affiliation(s)
- Risa Goto
- Department of Breast Surgical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome Bunkyoku, Tokyo, Japan.
- Department of Pathology, Showa University, Tokyo, Japan.
| | - Yuko Hirota
- Department of Pathology, Showa University Koto Toyosu Hospital, Tokyo, Japan
| | - Tomoyuki Aruga
- Department of Breast Surgical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, 3-18-22 Honkomagome Bunkyoku, Tokyo, Japan
| | - Shinichiro Horiguchi
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Sakiko Miura
- Department of Pathology, Showa University, Tokyo, Japan
| | - Seigo Nakamura
- Department of Surgery, Division of Breast Surgical Oncology, Showa University, Tokyo, Japan
| | | |
Collapse
|
35
|
Differentiation into an Effector Memory Phenotype Potentiates HIV-1 Latency Reversal in CD4 + T Cells. J Virol 2019; 93:JVI.00969-19. [PMID: 31578289 PMCID: PMC6880164 DOI: 10.1128/jvi.00969-19] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/15/2019] [Indexed: 12/12/2022] Open
Abstract
By performing phenotypic analysis of latency reversal in CD4+ T cells from virally suppressed individuals, we identify the TEM subset as the largest contributor to the inducible HIV reservoir. Differential responses of memory CD4+ T cell subsets to latency-reversing agents (LRAs) demonstrate that HIV gene expression is associated with heightened expression of transcriptional pathways associated with differentiation, acquisition of effector function, and cell cycle entry. In vitro modeling of the latent HIV reservoir in memory CD4+ T cell subsets identify LRAs that reverse latency with ranges of efficiency and specificity. We found that therapeutic induction of latency reversal is associated with upregulation of identical sets of TEM-associated genes and cell surface markers shown to be associated with latency reversal in our ex vivo and in vitro models. Together, these data support the idea that the effector memory phenotype supports HIV latency reversal in CD4+ T cells. During antiretroviral therapy (ART), human immunodeficiency virus type 1 (HIV-1) persists as a latent reservoir in CD4+ T cell subsets in central memory (TCM), transitional memory (TTM), and effector memory (TEM) CD4+ T cells. We have identified differences in mechanisms underlying latency and responses to latency-reversing agents (LRAs) in ex vivo CD4+ memory T cells from virally suppressed HIV-infected individuals and in an in vitro primary cell model of HIV-1 latency. Our ex vivo and in vitro results demonstrate the association of transcriptional pathways of T cell differentiation, acquisition of effector function, and cell cycle entry in response to LRAs. Analyses of memory cell subsets showed that effector memory pathways and cell surface markers of activation and proliferation in the TEM subset are predictive of higher frequencies of cells carrying an inducible reservoir. Transcriptional profiling also demonstrated that the epigenetic machinery (known to control latency and reactivation) in the TEM subset is associated with frequencies of cells with HIV-integrated DNA and inducible HIV multispliced RNA. TCM cells were triggered to differentiate into TEM cells when they were exposed to LRAs, and this increase of TEM subset frequencies upon LRA stimulation was positively associated with higher numbers of p24+ cells. Together, these data highlight differences in underlying biological latency control in different memory CD4+ T cell subsets which harbor latent HIV in vivo and support a role for differentiation into a TEM phenotype in facilitating latency reversal. IMPORTANCE By performing phenotypic analysis of latency reversal in CD4+ T cells from virally suppressed individuals, we identify the TEM subset as the largest contributor to the inducible HIV reservoir. Differential responses of memory CD4+ T cell subsets to latency-reversing agents (LRAs) demonstrate that HIV gene expression is associated with heightened expression of transcriptional pathways associated with differentiation, acquisition of effector function, and cell cycle entry. In vitro modeling of the latent HIV reservoir in memory CD4+ T cell subsets identify LRAs that reverse latency with ranges of efficiency and specificity. We found that therapeutic induction of latency reversal is associated with upregulation of identical sets of TEM-associated genes and cell surface markers shown to be associated with latency reversal in our ex vivo and in vitro models. Together, these data support the idea that the effector memory phenotype supports HIV latency reversal in CD4+ T cells.
Collapse
|
36
|
Li Z, Zhu H, Liu C, Wang Y, Wang D, Liu H, Cao W, Hu Y, Lin Q, Tong C, Lu M, Sachinidis A, Li L, Peng L. GSK-3β inhibition protects the rat heart from the lipopolysaccharide-induced inflammation injury via suppressing FOXO3A activity. J Cell Mol Med 2019; 23:7796-7809. [PMID: 31503410 PMCID: PMC6815822 DOI: 10.1111/jcmm.14656] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 12/25/2022] Open
Abstract
Sepsis-induced cardiac dysfunction represents a main cause of death in intensive care units. Previous studies have indicated that GSK-3β is involved in the modulation of sepsis. However, the signalling details of GSK-3β regulation in endotoxin lipopolysaccharide (LPS)-induced septic myocardial dysfunction are still unclear. Here, based on the rat septic myocardial injury model, we found that LPS could induce GSK-3β phosphorylation at its active site (Y216) and up-regulate FOXO3A level in primary cardiomyocytes. The FOXO3A expression was significantly reduced by GSK-3β inhibitors and further reversed through β-catenin knock-down. This pharmacological inhibition of GSK-3β attenuated the LPS-induced cell injury via mediating β-catenin signalling, which could be abolished by FOXO3A activation. In vivo, GSK-3β suppression consistently improved cardiac function and relieved heart injury induced by LPS. In addition, the increase in inflammatory cytokines in LPS-induced model was also blocked by inhibition of GSK-3β, which curbed both ERK and NF-κB pathways, and suppressed cardiomyocyte apoptosis via activating the AMP-activated protein kinase (AMPK). Our results demonstrate that GSK-3β inhibition attenuates myocardial injury induced by endotoxin that mediates the activation of FOXO3A, which suggests a potential target for the therapy of septic cardiac dysfunction.
Collapse
Affiliation(s)
- Zhigang Li
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Huifang Zhu
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Chang Liu
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yumei Wang
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Duo Wang
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Huan Liu
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Wenze Cao
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yi Hu
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Qin Lin
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Chang Tong
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Min Lu
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Agapios Sachinidis
- Institute of Neurophysiology and Center for Molecular Medicine, Cologne (CMMC)University of CologneCologneGermany
| | - Li Li
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Luying Peng
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|
37
|
Huang J, Shen G, Ren H, Zhang Z, Yu X, Zhao W, Shang Q, Cui J, Yu P, Peng J, Liang D, Yang Z, Jiang X. Role of forkhead box gene family in bone metabolism. J Cell Physiol 2019; 235:1986-1994. [DOI: 10.1002/jcp.29178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Jinjing Huang
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Gengyang Shen
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Hui Ren
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
- Department of Spinal Surgery The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou China
| | - Zhida Zhang
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Xiang Yu
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Wenhua Zhao
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Qi Shang
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Jianchao Cui
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Peiyuan Yu
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - Jiancheng Peng
- Guangzhou University of Chinese Medicine Guangzhou China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
| | - De Liang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
- Department of Spinal Surgery The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou China
| | - Zhidong Yang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
- Department of Spinal Surgery The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou China
| | - Xiaobing Jiang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine Guangzhou China
- Department of Spinal Surgery The First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou China
| |
Collapse
|
38
|
Forkhead box transcription factors as context-dependent regulators of lymphocyte homeostasis. Nat Rev Immunol 2019; 18:703-715. [PMID: 30177790 DOI: 10.1038/s41577-018-0048-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lymphocytes have evolved to react rapidly and robustly to changes in their local environment by using transient adaptations and by regulating their terminal differentiation programmes. Forkhead box transcription factors (FTFs) can direct leukocyte-specific responses, and their functional diversification promotes a high degree of context-dependent specification. Many, often antagonistic, FTFs have overlapping expression patterns and can thereby compete for binding to the same chromosomal target sequences. Multiple molecular mechanisms also connect extracellular signals to the expression and functionality of specific FTFs and, in this way, fine-tune their activity. Through these diverse mechanisms, FTFs can function as context-dependent rheostats responding to diverse environmental stimuli. Focusing on the various mechanisms by which their functional activity is modulated, as well as on their mechanisms of action, we discuss how specific FTFs control lymphocyte function, allowing for the establishment and maintenance of immune homeostasis.
Collapse
|
39
|
Mulvaney EP, O'Sullivan ÁG, Eivers SB, Reid HM, Kinsella BT. Differential expression of the TPα and TPβ isoforms of the human T Prostanoid receptor during chronic inflammation of the prostate: Role for FOXP1 in the transcriptional regulation of TPβ during monocyte-macrophage differentiation. Exp Mol Pathol 2019; 110:104277. [PMID: 31271729 DOI: 10.1016/j.yexmp.2019.104277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/21/2019] [Accepted: 06/22/2019] [Indexed: 11/16/2022]
Abstract
Inflammation is linked to prostate cancer (PCa) and to other diseases of the prostate. The prostanoid thromboxane (TX)A2 is a pro-inflammatory mediator implicated in several prostatic diseases, including PCa. TXA2 signals through the TPα and TPβ isoforms of the T Prostanoid receptor (TP) which exhibit several functional differences and transcriptionally regulated by distinct promoters Prm1 and Prm3, respectively, within the TBXA2R gene. This study examined the expression of TPα and TPβ in inflammatory infiltrates within human prostate tissue. Strikingly, TPβ expression was detected in 94% of infiltrates, including in B- and T-lymphocytes and macrophages. In contrast, TPα was more variably expressed and, where present, expression was mainly confined to macrophages. To gain molecular insight into these findings, expression of TPα and TPβ was evaluated as a function of monocyte-to-macrophage differentiation in THP-1 cells. Expression of both TPα and TPβ was upregulated following phorbol-12-myristate-13-acetate (PMA)-induced differentiation of monocytic THP-1 to their macrophage lineage. Furthermore, FOXP1, an essential transcriptional regulator down-regulated during monocyte-to-macrophage differentiation, was identified as a key trans-acting factor regulating TPβ expression through Prm3 in THP-1 cells. Knockdown of FOXP1 increased TPβ, but not TPα, expression in THP-1 cells, while genetic reporter and chromatin immunoprecipitation (ChIP) analyses established that FOXP1 exerts its repressive effect on TPβ through binding to four cis-elements within Prm3. Collectively, FOXP1 functions as a transcriptional repressor of TPβ in monocytes. This repression is lifted in differentiated macrophages, allowing for upregulation of TPβ expression and possibly accounting for the prominent expression of TPβ in prostate tissue-resident macrophages.
Collapse
Affiliation(s)
- Eamon P Mulvaney
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Áine G O'Sullivan
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sarah B Eivers
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Helen M Reid
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - B Therese Kinsella
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; ATXA Therapeutics Limited, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
40
|
Abstract
Multiple sclerosis (MS) is a chronic and debilitating autoimmune disorder of the central nervous system in which the autoimmune T cells destroy myelin, thus causing lesion, damage, and neuronal dysfunction. Experimental autoimmune encephalomyelitis (EAE) is an animal model of MS that is particularly useful for testing new therapeutic approaches against MS. Aspirin (acetyl salicylic acid) is one of the oldest and widely used medicines in the world, and recently it has been shown that low-dose aspirin is capable of suppressing the disease process of EAE in mice. One of the root causes of this autoimmune disease process is the decrease and/or suppression of Foxp3-expressing anti-autoimmune regulatory T cells (Tregs) and associated increase in autoimmune T-helper 1 (Th1) and Th17 cells. Aspirin upregulates Tregs and decreases Th1 and Th17 responses. Accordingly, the suppression of Tregs abrogates the protective effect of aspirin on EAE, indicating that aspirin protects EAE via Tregs. While there are several mechanisms for the maintenance of Tregs under immune insults, aspirin increases the level of interleukin-11 (IL-11), an immunomodulatory cytokine, and IL-11 alone is sufficient to protect Tregs. Being a multifunctional molecule, aspirin stimulates the activation of cAMP-response element-binding (CREB) to promote the recruitment of CREB to the IL-11 gene promoter and stimulate the transcription of IL-11 in splenocytes. Therefore, it appears that low-dose aspirin protects EAE via CREB-mediated stimulation of IL-11-Treg pathway and that aspirin may have therapeutic importance in MS.
Collapse
Affiliation(s)
- Swarupa Pahan
- 1 Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Kalipada Pahan
- 1 Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
- 2 Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
41
|
Guram K, Kim SS, Wu V, Sanders PD, Patel S, Schoenberger SP, Cohen EEW, Chen SY, Sharabi AB. A Threshold Model for T-Cell Activation in the Era of Checkpoint Blockade Immunotherapy. Front Immunol 2019; 10:491. [PMID: 30936880 PMCID: PMC6431643 DOI: 10.3389/fimmu.2019.00491] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
Continued discoveries of negative regulators of inflammatory signaling provide detailed molecular insights into peripheral tolerance and anti-tumor immunity. Accumulating evidence indicates that peripheral tolerance is maintained at multiple levels of immune responses by negative regulators of proinflammatory signaling, soluble anti-inflammatory factors, inhibitory surface receptors & ligands, and regulatory cell subsets. This review provides a global overview of these regulatory machineries that work in concert to maintain peripheral tolerance at cellular and host levels, focusing on the direct and indirect regulation of T cells. The recent success of checkpoint blockade immunotherapy (CBI) has initiated a dramatic shift in the paradigm of cancer treatment. Unprecedented responses to CBI have highlighted the central role of T cells in both anti-tumor immunity and peripheral tolerance and underscored the importance of T cell exhaustion in cancer. We discuss the therapeutic implications of modulating the negative regulators of T cell function for tumor immunotherapy with an emphasis on inhibitory surface receptors & ligands—central players in T cell exhaustion and targets of checkpoint blockade immunotherapies. We then introduce a Threshold Model for Immune Activation—the concept that these regulatory mechanisms contribute to defining a set threshold of immunogenic (proinflammatory) signaling required to elicit an anti-tumor or autoimmune response. We demonstrate the value of the Threshold Model in understanding clinical responses and immune related adverse events in the context of peripheral tolerance, tumor immunity, and the era of Checkpoint Blockade Immunotherapy.
Collapse
Affiliation(s)
- Kripa Guram
- Department of Radiation Medicine and Applied Sciences, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Sangwoo S Kim
- Department of Radiation Medicine and Applied Sciences, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Victoria Wu
- Moores Comprehensive Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - P Dominick Sanders
- Department of Radiation Medicine and Applied Sciences, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Sandip Patel
- Division of Hematology and Oncology, Center for Personalized Cancer Therapy, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Stephen P Schoenberger
- Division of Hematology and Oncology, Center for Personalized Cancer Therapy, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States.,Laboratory of Cellular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Ezra E W Cohen
- Moores Comprehensive Cancer Center, University of California, San Diego, San Diego, CA, United States
| | - Si-Yi Chen
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| | - Andrew B Sharabi
- Department of Radiation Medicine and Applied Sciences, San Diego Moores Cancer Center, University of California, San Diego, San Diego, CA, United States.,Moores Comprehensive Cancer Center, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
42
|
Skretting G, Andersen E, Myklebust CF, Sandset PM, Tinholt M, Iversen N, Stavik B. Transcription factor FOXP3: A repressor of the
TFPI
gene? J Cell Biochem 2019; 120:12924-12936. [DOI: 10.1002/jcb.28563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 01/04/2019] [Accepted: 01/14/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Grethe Skretting
- Department of Haematology Oslo University Hospital Oslo Norway
- Research Institute of Internal Medicine Oslo University Hospital Oslo Norway
| | - Elisabeth Andersen
- Department of Haematology Oslo University Hospital Oslo Norway
- Research Institute of Internal Medicine Oslo University Hospital Oslo Norway
- Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Christiane F. Myklebust
- Department of Haematology Oslo University Hospital Oslo Norway
- Research Institute of Internal Medicine Oslo University Hospital Oslo Norway
| | - Per Morten Sandset
- Department of Haematology Oslo University Hospital Oslo Norway
- Research Institute of Internal Medicine Oslo University Hospital Oslo Norway
- Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Mari Tinholt
- Department of Haematology Oslo University Hospital Oslo Norway
- Department of Medical Genetics Oslo University Hospital Oslo Norway
| | - Nina Iversen
- Department of Medical Genetics Oslo University Hospital Oslo Norway
| | - Benedicte Stavik
- Department of Haematology Oslo University Hospital Oslo Norway
- Research Institute of Internal Medicine Oslo University Hospital Oslo Norway
| |
Collapse
|
43
|
Enabling precision medicine by unravelling disease pathophysiology: quantifying signal transduction pathway activity across cell and tissue types. Sci Rep 2019; 9:1603. [PMID: 30733525 PMCID: PMC6367506 DOI: 10.1038/s41598-018-38179-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
Signal transduction pathways are important in physiology and pathophysiology. Targeted drugs aim at modifying pathogenic pathway activity, e.g., in cancer. Optimal treatment choice requires assays to measure pathway activity in individual patient tissue or cell samples. We developed a method enabling quantitative measurement of functional pathway activity based on Bayesian computational model inference of pathway activity from measurements of mRNA levels of target genes of the pathway-associated transcription factor. Oestrogen receptor, Wnt, and PI3K-FOXO pathway assays have been described previously. Here, we report model development for androgen receptor, Hedgehog, TGFβ, and NFκB pathway assays, biological validation on multiple cell types, and analysis of data from published clinical studies (multiple sclerosis, amyotrophic lateral sclerosis, contact dermatitis, Ewing sarcoma, lymphoma, medulloblastoma, ependymoma, skin and prostate cancer). Multiple pathway analysis of clinical prostate cancer (PCa) studies showed increased AR activity in hyperplasia and primary PCa but variable AR activity in castrate resistant (CR) PCa, loss of TGFβ activity in PCa, increased Wnt activity in TMPRSS2:ERG fusion protein-positive PCa, active PI3K pathway in advanced PCa, and active PI3K and NFκB as potential hormonal resistance pathways. Potential value for future clinical practice includes disease subtyping and prediction and targeted therapy response prediction and monitoring.
Collapse
|
44
|
Mondal S, Jana M, Dasarathi S, Roy A, Pahan K. Aspirin ameliorates experimental autoimmune encephalomyelitis through interleukin-11-mediated protection of regulatory T cells. Sci Signal 2018; 11:11/558/eaar8278. [PMID: 30482850 DOI: 10.1126/scisignal.aar8278] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multiple sclerosis (MS) is a human disease that results from autoimmune T cells targeting myelin protein that is expressed within the central nervous system. In MS, the number of FoxP3-expressing regulatory T cells (Tregs) is reduced, which facilitates the activation of autoreactive T cells. Because aspirin (acetylsalicylic acid) is the most widely used nonsteroidal anti-inflammatory drug, we examined its immunomodulatory effect in mice with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. We found that low-dose aspirin suppressed the clinical symptoms of EAE in mouse models of both relapsing-remitting and chronic disease. Aspirin reduced the development of EAE driven by myelin basic protein (MBP)-specific T cells and the associated perivascular cuffing, inflammation, and demyelination. The effects of aspirin required the presence of CD25+FoxP3+ Tregs Aspirin increased the amounts of Foxp3 and interleukin-4 (IL-4) in T cells and suppressed the differentiation of naïve T cells into T helper 17 (TH17) and TH1 cells. Aspirin also increased the transcription of Il11 mediated by the transcription factor CREB, which was necessary for the generation of Tregs Neutralization of IL-11 negated the effects of aspirin on Treg development and exacerbated EAE. Furthermore, we found that IL-11 alone was sufficient to maintain the percentage of FoxP3+ Tregs and protect mice from EAE. These results identify a previously uncharacterized mode of action of aspirin.
Collapse
Affiliation(s)
- Susanta Mondal
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Malabendu Jana
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Sridevi Dasarathi
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Avik Roy
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Kalipada Pahan
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA. .,Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
45
|
Insights into the DNA binding induced thermal stabilization of transcription factor FOXP3. J Biomol Struct Dyn 2018; 37:2219-2229. [DOI: 10.1080/07391102.2018.1486228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
46
|
Abstract
The early life environment can exert a profound effect on long-term health. However, differences in developmental epigenetic patterns in response to environmental challenges are not well understood in humans, where nutrient insufficiency and pathogen exposure in early infancy can impact immune system function and metabolic health into adulthood. Here we report a comprehensive global picture of the patterns of the epigenetic modification histone H3 lysine 4 trimethylation (H3K4me3) in undernourished infants and their mothers. Comparisons of the emergent patterns of H3K4me3 within the first year of life reveal large-scale changes consistent with the impact of a poor environment, and uncovered a candidate gene with a role in the response, which was validated in a mouse model. Chronically undernourished children become stunted during their first 2 years and thereafter bear burdens of ill health for the rest of their lives. Contributors to stunting include poor nutrition and exposure to pathogens, and parental history may also play a role. However, the epigenetic impact of a poor environment on young children is largely unknown. Here we show the unfolding pattern of histone H3 lysine 4 trimethylation (H3K4me3) in children and mothers living in an urban slum in Dhaka, Bangladesh. A pattern of chromatin modification in blood cells of stunted children emerges over time and involves a global decrease in methylation at canonical locations near gene start sites and increased methylation at ectopic sites throughout the genome. This redistribution occurs at metabolic and immune genes and was specific for H3K4me3, as it was not observed for histone H3 lysine 27 acetylation in the same samples. Methylation changes in stunting globally resemble changes that occur in vitro in response to altered methylation capacity, suggesting that reduced levels of one-carbon nutrients in the diet play a key role in stunting in this population. A network of differentially expressed genes in stunted children reveals effects on chromatin modification machinery, including turnover of H3K4me3, as well as posttranscriptional gene regulation affecting immune response pathways and lipid metabolism. Consistent with these changes, reduced expression of the endocytic receptor gene LDL receptor 1 (LRP1) is a driver of stunting in a mouse model, suggesting a target for intervention.
Collapse
|
47
|
Bach DH, Long NP, Luu TTT, Anh NH, Kwon SW, Lee SK. The Dominant Role of Forkhead Box Proteins in Cancer. Int J Mol Sci 2018; 19:E3279. [PMID: 30360388 PMCID: PMC6213973 DOI: 10.3390/ijms19103279] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/16/2022] Open
Abstract
Forkhead box (FOX) proteins are multifaceted transcription factors that are significantly implicated in cancer, with various critical roles in biological processes. Herein, we provide an overview of several key members of the FOXA, FOXC, FOXM1, FOXO and FOXP subfamilies. Important pathophysiological processes of FOX transcription factors at multiple levels in a context-dependent manner are discussed. We also specifically summarize some major aspects of FOX transcription factors in association with cancer research such as drug resistance, tumor growth, genomic alterations or drivers of initiation. Finally, we suggest that targeting FOX proteins may be a potential therapeutic strategy to combat cancer.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | | | | | - Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
48
|
Meng S, Li L, Zhou M, Jiang W, Niu H, Yang K. Distribution and prognostic value of tumor‑infiltrating T cells in breast cancer. Mol Med Rep 2018; 18:4247-4258. [PMID: 30221739 PMCID: PMC6172376 DOI: 10.3892/mmr.2018.9460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 07/30/2018] [Indexed: 12/15/2022] Open
Abstract
Tumor-infiltrating lymphocytes are associated with the response to neoadjuvent chemotherapy and prognosis in breast cancer. However, the distribution, interaction and prognostic value of tumor‑infiltrating T cells, the main component of the tumor microenvironment, have seldom been reported. In the present study, surgical specimens of 72 breast cancer patients were analyzed. Tumor‑infiltrating T cell subsets [cluster of differentiation (CD)4+T, CD8+T and regulatory T cells] and expression of their cytokines [interferon‑γ, interleukin (IL)‑4, and IL‑17] were evaluated by flow cytometry. These parameters together with The Cancer Genome Atlas database were used to demonstrate the distribution, interaction and prognostic value of tumor‑infiltrating T cells in breast cancer. Tumor‑infiltrating lymphocytes were closely associated with histological grade (P=0.03), estrogen receptor status (P=0.006), human epidermal growth factor receptor 2 status (P=0.047) and molecular subtype in breast cancer (P=0.012). The gene expression of CD4, CD8A and forkhead box protein P3 in the tumor was increased compared with healthy breast tissue, and was positively associated with the prognosis of breast cancer patients. HER2+ and triple‑negative breast cancer exhibited a significantly increased percentage of CD4+T cells (P=0.01) and regulatory T cells (P=0.035), and a decreased percentage of CD8+T cells (P=0.006) compared with the luminal subtype. Furthermore, the regulatory T cell number was positively correlated with CD8+T cell number in tumors (R=0.7, P=1.5x10‑162) and significantly inhibited the cytokine secretion of T cells. These results reveal the distribution and interaction of tumor‑infiltrating T cell subsets, and indicate that CD8+T cells and regulatory T cells may be used as reliable predictors of prognosis in breast cancer.
Collapse
Affiliation(s)
- Shaoda Meng
- Department of Breast and Thyroid Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P.R. China
| | - Li Li
- Department of Breast and Thyroid Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P.R. China
| | - Meiling Zhou
- Department of Breast and Thyroid Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P.R. China
| | - Wanjie Jiang
- Department of Emergency Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, P.R. China
| | - Heng Niu
- Department of Breast and Thyroid Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P.R. China
| | - Kunxian Yang
- Department of Breast and Thyroid Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650011, P.R. China
| |
Collapse
|
49
|
Fuller EA, Sominsky L, Sutherland JM, Redgrove KA, Harms L, McLaughlin EA, Hodgson DM. Neonatal immune activation depletes the ovarian follicle reserve and alters ovarian acute inflammatory mediators in neonatal rats. Biol Reprod 2018; 97:719-730. [PMID: 29040417 DOI: 10.1093/biolre/iox123] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/07/2017] [Indexed: 12/30/2022] Open
Abstract
Normal ovarian development is crucial for female reproductive success and longevity. Interruptions to the delicate process of initial folliculogenesis may lead to ovarian dysfunction. We have previously demonstrated that an early life immune challenge in the rat, induced by administration of lipopolysaccharide (LPS) on postnatal day (PND) 3 and 5, depletes ovarian follicle reserve long term. Here, we hypothesized that this neonatal immune challenge leads to an increase in peripheral and ovarian inflammatory signaling, contributing to an acute depletion of ovarian follicles. Morphological analysis of neonatal ovaries indicated that LPS administration significantly depleted PND 5 primordial follicle populations and accelerated follicle maturation. LPS exposure upregulated circulating interleukin 6, tumor necrosis factor alpha (TNFa), and C-reactive protein on PND 5, and upregulated ovarian mRNA expression of Tnfa, mitogen-activated protein kinase 8 (Mapk8/Jnk1), and growth differentiation factor 9 (Gdf9) (P < 0.05). Mass spectrometry and cell signaling pathway analysis indicated upregulation of cellular pathways associated with acute phase signaling, and cellular survival and assembly. Apoptosis assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling indicated significantly increased positive staining in the ovaries of LPS-treated neonates. These findings suggest that increased proinflammatory signaling within the neonatal ovary may be responsible for the LPS-induced depletion of the primordial follicle pool. These findings also have implications for female reproductive health, as the ovarian reserve is a major determinate of female reproductive longevity.
Collapse
Affiliation(s)
- Erin A Fuller
- Laboratory of Neuroimmunology, Priority Research Centre for Brain and Mental Health Research, School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia
| | - Luba Sominsky
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Melbourne, Victoria, Australia
| | - Jessie M Sutherland
- School of Environmental and Life Sciences, Priority Research Centre in Chemical Biology, University of Newcastle, Callaghan, New South Wales, Australia
| | - Kate A Redgrove
- School of Environmental and Life Sciences, Priority Research Centre in Chemical Biology, University of Newcastle, Callaghan, New South Wales, Australia
| | - Lauren Harms
- Laboratory of Neuroimmunology, Priority Research Centre for Brain and Mental Health Research, School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia
| | - Eileen A McLaughlin
- School of Environmental and Life Sciences, Priority Research Centre in Chemical Biology, University of Newcastle, Callaghan, New South Wales, Australia.,School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Deborah M Hodgson
- Laboratory of Neuroimmunology, Priority Research Centre for Brain and Mental Health Research, School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
50
|
The association of IL-33 and Foxp3 gene polymorphisms with recurrent pregnancy loss in Egyptian women. Cytokine 2018; 108:115-119. [DOI: 10.1016/j.cyto.2018.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/11/2017] [Accepted: 03/19/2018] [Indexed: 11/23/2022]
|